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A SUPERNODAL CHOLESKY FACTORIZATION ALGORITHM FOR 
SHARED-MEMORY MULTIPROCESSORS

Esmond G. Ng 
Barry W. Peyton

Abstract

This paper presents a new left-looking parallel sparse Cholesky factorization al­
gorithm for shared-memory MIMD multiprocessors. The algorithm is particularly 
well-suited for vector supercomputers with multiple processors, such as the Cray 
Y-MP. The new algorithm uses supernodes in the Cholesky factor to improve per­
formance by reducing indirect addressing and memory traffic. Earlier factorization 
algorithms have also used supernodes in this manner. The new algorithm, how­
ever, also uses supernodes to reduce the number of system synchronization calls, 
often by an order of magnitude or more in practice. Experimental results on a 
Sequent Balance 8000 and a Cray Y-MP demonstrate the effectiveness of the new 
algorithm. On eight processors of a Cray Y-MP, the new routine performs the fac­
torization at rates exceeding one Gflop for several test problems from the Harwell 
Boeing test collection, none of which are exceedingly large by current standards.
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1. Introduction

Large sparse symmetric positive definite systems arise frequently in many scientific 
and engineering applications. One way to solve such a system is to use Cholesky 
factorization. Let v4 be a symmetric positive definite matrix. The Cholesky factor 
of A, denoted by L, is a lower triangular matrix with positive diagonal such that 
A = LLt. When A is sparse, fill occurs during the factorization; that is, some of 
the zero elements in A will become nonzero elements in X. In order to reduce time 
and storage requirements, only the nonzero positions of L are stored and operated on 
during sparse Cholesky factorization. Techniques for accomphshing this task and for 
reducing fill have been studied extensively (see [16] for details). In this paper we restrict 
our attention to the numerical factorization phase. We assume that the preprocessing 
steps, such as reordering to reduce fill and symbolic factorization to set up the compact 
data structure for X, have been performed. Details on the preprocessing can be found 
in [16].

In recent years, because of advances in computer architectures, there has been much 
interest in the solution of large sparse linear systems on high performance computers. 
In particular, there have been investigations into the solution of such problems on com­
puters with multiple processors [18]. Basically, multiprocessor systems can be classified 
by how their memory is organized. In a shared-memory multiprocessor system, every 
processor has direct access to a globally shared memory. In this case, the processors 
can read from or write into the same memory location simultaneously. Of course, for 
data integrity, writing into the same memory location at any time by more than one 
processor must be synchronized. Examples of shared-memory multiprocessor systems 
include the Cray Y-MP, Encore Multimax, Sequent Balance, and Sequent Symmetry. 
Another way of organizing the memory in a multiprocessor system is to give each pro­
cessor its own memory to which the owner alone has direct access. For one processor 
to access data in another processor’s memory, the two processors must communicate 
with each other, for example, by message passing. Examples of distributed-memory 
multiprocessor systems include the NCUBE 3200 and 6400, and the Intel iPSC/2 and 
iPSC/i860. It should be noted that there are also hybrid multiprocessor systems in 
which both local and shared memory are available, such as the BBN Butterfly.

In this paper, we are concerned with the factorization of a sparse symmetric positive 
definite matrix A on a shared-memory multiprocessor system. This paper can be re­
garded as a sequel to [15], in which a parallel implementation of a sequential algorithm 
from [16] was described. We will show however that the number of synchronization 
operations (i.e., locking and unlocking operations) required by the parallel algorithm 
in [15] is relatively high; it is proportional to the number of nonzeros in the Cholesky 
factor X. The object of our paper is to describe a new version of the algorithm that 
reduces the amount of synchronization overhead by exploiting the supernodal struc­
ture found in the sparsity pattern of X. (The notion of supernodes will be introduced
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in Section 3.) The role of supernodes in improving both left- and right-looking sparse 
Cholesky factorization algorithms is well documented [1,3,5,12,25,28]. The new parallel 
algorithm uses supernodes to reduce memory traffic and indirect indexing operations 
as previous algorithms have done, which is particularly important on vector supercom­
puters [1,3,5]. The primary contribution of the paper is the way supernodes are used 
to improve the parallel efficiency of a left-looking algorithm.

An outhne of the paper is as follows. Section 2 reviews the sequential and parallel 
factorization algorithms discussed in [15]. Section 3 describes the notion of supern­
odes and their usefulness in a sequential sparse Cholesky factorization algorithm. A 
parallel supernodal Cholesky factorization algorithm will be presented in Section 3 as 
well. Section 4 provides experimental results on an IBM RS/6000, a Cray Y-MP, and 
a Sequent Balance 8000. Finally, Section 5 contains a few concluding remarks and 
discusses possible future work.

2. Background material

2.1. Notation and terminology

Assume that A is an n X n symmetric and positive definite matrix, and let L denote the 
Cholesky factor of A. We use and Li^ to represent respectively the y-th column 
and Tth row of L. The sparsity structures of column j and row i of L (excluding the 
diagonal entry) are denoted by Struct^L^j) and Struct(Li^), respectively. That is,

Struct(L*j) .— (5 j . ls,j ^ 0},
Struct{Li^) := {t < i : li>t ^ 0}.

Assume that 7^ 0 and suppose that Z^j is not the last nonzero in column j of 
L. The function next(k,j) returns the row index of the first nonzero beneath Z^j in 
the column [15]. If lk,j is the last nonzero in then we define next(k,j) to be 
n + 1.

The two computational tasks occurring at each step in the Cholesky factorization 
are scaling a vector and subtracting a multiple of a vector from another vector. These 
two tasks will be denoted by cdiv and cmod, respectively [14].

cdiv(j):
1 (n \1!2

for i = j + 1 to 71 do
Z«\j

end for
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cmod(j, k),k < j:
for i = j to n do

ai,j ai,j ~ h,k

end for

Finally, if M is an m X ra matrix, then \M\ denotes the number of nonzero elements 
in M.

2.2. Sequential sparse Cholesky factorization

We begin our discussion by first reviewing a sequential general sparse Cholesky fac­
torization algorithm, details of which can be found in [16]. The algorithm is column- 
oriented and is a left-looking algorithm. That is, when column is to be computed, 
the algorithm modifies column with multiples of the previous columns of L, namely 
L*,k, l < k < j — 1. Of course, sparsity will be exploited when A is sparse. We will 
assume throughout that the nonzeros of A and L are stored by columns. The sequen­
tial factorization algorithm is given in Figure 2.1. This algorithm and its variations are 
widely used in many sparse matrix packages, such as SPARSPAK [7].

for j = 1 to n do
for k G Struct(Lj<m) do 

cmod(j, k) 
end for 
cdiv(j) 

end for

Figure 2.1: A sequential sparse Cholesky factorization algorithm.

Since the algorithm in Figure 2.1 is column-oriented and the nonzeros of L are stored 
by columns, its implementation is quite straightforward except for the determination 
of the structure of row j of L (i.e., Struct(Ljt*)). Instead of computing the structure of 
every row of L prior to the factorization, the factorization algorithm itself can efficiently 
generate these sets during the factorization, as shown in Figure 2.2. For each column 
T*j, we maintain a set Sj of column indices, which will contain precisely the column 
indices belonging to Struct(Lj^) when the column is computed.

After has been computed, j is inserted into Sq, where q is the row index 
of the first nonzero beneath the diagonal in column j (i.e., q = next(j, j)). When 
the algorithm is ready to compute T»i9, it will examine Sq to find the columns of L 
needed to modify A*ig. Among those columns it will find X»j, and thus it will perform 
cmod(q,j) as required. It is easy to see that the next column of A that L+j will modify
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for j = 1 to n do 

end for

for j = 1 to ra do 
for k G Sj do 

cmod(j, k) 
p <— next(j, k) 
if p < 7i then

Sp <— Sp U {&} 

end if 
end for 
cdiv(j)
q <- next(jj)
if q < n then

Sq <r- SqU {j}
end if 

end for

Figure 2.2: A sequential sparse Cholesky factorization algorithm, with the generation 
of row structure.
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is given by p — next(q,j). Hence, the algorithm puts j in Sp for use when it later 
computes More informally, immediately after L*j has been computed it begins
“migrating” from one column of A to another as determined by the values of next(*,j) 
(or equivalently the structure of The columns visited by are exactly those
that must be modified by X,j. At any point during the factorization, S, C\Sj — 9 for 
i ^ j. Consequently, the sets Sj (1 < j < n) can be stored economically as linked lists 
using a single integer array of length n. This is the primary reason for generating the 
sets Struct{Lj^) in this manner.

2.3. Sources of parallelism

As indicated in [15], there are two sources of potential parallelism in sparse Cholesky 
factorization. The first one is in performing cmod operations with the same “updating” 
column. Suppose Struct(L*j) — {ix, z2,..., fp}, with j < i\ < ii < ... < ip. When 

has been computed, columns ii, i2, ..., ip of A have to be modified by X*j. These 
cmod's are independent: they can be performed simultaneously or in any order. Thus, 
if there are enough processors and if the nonzero entries of L+j are available to these 
processors, the operations cmod(ii,j), cmod(i2,j),..., cmod(ip,j) can be performed 
concurrently. The independence of cmod’s using the same updating column but dif­
ferent target columns has nothing to do with the sparsity of X; indeed, they are the 
primary source of parallelism in a dense column-based factorization.

Sparsity in X gives rise to large-grained parallelism that is not available in a dense 
factorization. Consider columns X*^ and X„j where j > k. We shall say that X.j 
depends on X*^ if X*j cannot be completed until after X,^ has been completed. When 
neither X„j depends on X*^ nor X*^ depends on X*j, the two columns are said to be 
independent of one another. The column dependencies are very simple when X is 
dense: since computation of X*j requires modification of by a multiple of every 
column X,^ where k < j, X*j depends on every such column X*^. To identify column 
dependencies in the sparse case, we introduce elimination trees.

Consider the Cholesky factor X. For each column X*j having off-diagonal nonzero 
elements, we define parent[j] to be the row index of the first off-diagonal nonzero in 
that column; that is, parent[j] = next(j,j). For convenience, we define parent[j] to 
be j when column X*j has no off-diagonal nonzeros. The elimination forest of X is a 
graph T with {1,2,..., n} as its node set, and an edge connecting i and j if and only 
if j = parent[i] and i ^ j [21,26]. It is also easy to show that T is & tree if and only 
if the matrix A is irreducible. Without loss of generality, we will assume from now on 
that the given matrix A is irreducible, so that T is indeed an elimination tree. We 
assume familiarity with the standard terminology associated with rooted trees: e.g., 
root, parent, child, ancestor, and descendant. We use the notation T[i] to denote the 
subtree rooted at node i; that is, T[i] is a tree consisting of i and all of its descendants 
in T.
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Figure 2.3: A matrix example defined on a 7 X 7 nine-point grid ordered by nested 
dissection, (each X and • refers to a nonzero in A and a fill entry in L, respectively.)

Consider the example in Figure 2.3, which contains the matrix and Cholesky factor 
associated with a 7 X 7 nine-point grid ordered by the nested dissection algorithm [13]. 
In the figure, each X is a nonzero entry in the matrix A, and each • is a fill entry in 
the Cholesky factor L. The reader may verify that the tree shown in Figure 2.4 is the 
elimination tree of the matrix L shown in Figure 2.3.

One of the many uses of elimination trees in sparse matrix computation is the anal­
ysis of column dependencies in sparse Cholesky factorization. (A survey of elimination 
trees and their applications in sparse matrix computations is contained in [22].) A key 
observation [21,26] is that Struct(Ljif) C T[j]\ that is, every k £ Struct(Ljt*) is a 
descendant of j in the elimination tree. Of course, column j of L cannot be completed 
until all columns in Struct(Lj^) have been completed. Recursive application of this ob­
servation to the descendants of j demonstrates that column j of L cannot be completed 
until the columns associated with all descendants of y (i.e., all members of T[j] — {j}) 
have been completed. Moreover, 1*^ does not depend on any other columns. Hence, 
columns i and j are independent if and only if T[i] and T[j] are disjoint subtrees. For
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Figure 2.4: Elimination tree for the matrix shown in Figure 2.3.
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example, column 41 in Figure 2.4 depends on columns 22 — 40, and depends on no 
other columns of the matrix. Columns 41 and 21 are independent because T[41] and 
T[21] are disjoint subtrees.

2.4. Parallel sparse Cholesky factorization

We now describe an algorithm for shared-memory multiprocessor systems that exploits 
these two sources of parallelism. (The algorithm was introduced in [15].) The task 
of computing column is referred to as a column task in the computation and is 
denoted by Tcol(j). More precisely,

Tcol(j) {cmod(j,k) \ k G Struct(L*j)} U {cdiv(j)}.

The parallel algorithm maintains a pool of column tasks, and each processor will be 
responsible for performing a subset of these column tasks. The assignment of column 
tasks to processors is dynamic. When a processor is free, it will get a column task from 
the pool, perform the necessary cmod operations, and then carry out the required cdiv 
operation. When the processor has finished a column task, it will get another column 
task from the pool. Efficient implementation of this dynamic scheduling strategy re­
quires that the pool of tasks be made available to all processors. This is particularly 
appropriate for shared-memory multiprocessor systems. This approach usually results 
in good load-balancing, as might be expected.

The parallel algorithm in [15] is presented in Figure 2.5. A few comments on the 
parallel algorithm are in order. First, note that it is quite similar to the algorithm in 
Figure 2.2. Second, we assume that the data reside in a globally-shared memory so 
that every processor can access the entire set of data. Third, since every processor will 
access the pool of tasks Q, popping a column task from Q is a critical section and must 
be performed in a synchronized manner.

Fourth, updating an index set Sp requires another critical section since Sp may be 
simultaneously updated by more than one processor. In Figure 2.5, we have used two 
primitives, lock and unlock, to synchronize this operation. The first primitive, lock, 
signals the beginning of a critical section and allows only one processor to proceed. If 
there is already a processor executing the critical section, a second processor attempting 
to enter the same section must wait until the first processor has exited the section. 
The second primitive, unlock, signals the end of a critical section, and its execution by 
one processor permits another processor to enter the critical section. The number of 
synchronization operations required to maintain the pool of tasks is 0(n). It is easy to 
see that the number of synchronization calls required to update each set <S, is 0(|Z/jt*|). 
Thus, the total number of synchronization calls required in the parallel algorithm is 
0{\L\).
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Global initialization:
Q <- {Tcol(l),Tcol(2),... ,Tcol(n)} 
for ?’ = 1 to 7i do

Sj 0
end for

Work performed by each processor: 
while Q ^ 0 do

pop Tcol(j) from Q
while column j requires further cmod's do 

if Sj = 0 then
wait until Sj ^ 0 

end if 
lock
obtain k from Sj 

q next(j, k) 
if q < n then

Sq <— Sq U {fc} 
end if 
unlock 
cmod(j, k) 

end while 
cdiv(j)
q <- next(j,j)
if q < 77 then 

lock
Sq+-SqU {j} 
unlock 

end if 
end while

Figure 2.5: A parallel sparse Cholesky factorization algorithm for shared-memory mul­
tiprocessor machines.
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3. Supernodal Cholesky factorization algorithms

Although the results reported in [15] indicated that the parallel algorithm in Figure 2.5 
achieved good speed-up ratios, the algorithms in Figures 2.2 and 2.5 are far from 
optimal for at least two important reasons. First, both the sequential and parallel 
algorithms are poor at exploiting some of the hardware features available on advanced 
computer architectures, in particular, the pipehned arithmetic units on current vector 
supercomputers. Second, the number of synchronization operations connected with 
critical sections in the parallel algorithm is relatively high.

In this section, we discuss the notion of supernodes in the Cholesky factor of a 
sparse symmetric positive definite matrix, and show how these supernodes can be used 
to improve the algorithms in Figures 2.2 and 2.5. In particular, we show how both 
difficulties with the algorithm in [15] can be dealt with by taking advantage of the 
supernodal structure.

3.1. Notion of supernodes

In the Cholesky factor of a sparse symmetric positive definite matrix, columns with the 
“same” sparsity structure are often clustered together. Such a grouping of columns is 
referred to as a supernode1. We define a supernode of a sparse Cholesky factor L to be 
a contiguous block of columns in X, {p,p-\- l,...,p-t-q' — 1}, such that

Struct(L*,p) - Struct^L+'p+q-x) U {p + 1,... ,p + q - 1}.

It is quite easy to show that for p<*<p-fq — 2, Struct(L*ti) = Struct(L^tp^.q-i) U 
{i +1,... ,p + q — 1}. (For details consult [23,24]). Thus, the columns of the supernode 
{p,p+l,...,p + g—1} have a dense diagonal block and have identical structure below 
row p -f g — 1. Figure 3.1 shows a set of supernodes for the matrix of Figure 2.3. 
The partition of the columns of L into supernodes is often referred to as a supernode 
partition.

Apparently, the term “supernode” first appeared in [5], although the basic idea 
behind the term was used much earlier. For example, the notion of supernodes has 
played an important role in improving the efficiency of the minimum degree ordering 
algorithm [17] and the symbolic factorization process [27]. More recently, supernodes 
have been used to organize sparse numerical factorization algorithms around matrix- 
vector or matrix-matrix operations that reduce memory traffic, thereby making more 
efficient use of vector registers [3,5] or cache [1,25]. They play such a role in both the 
serial and the new parallel Cholesky factorization algorithms presented in this section.

Note that supernode partitions are not uniquely specified in our definition. Indeed, 
the choices of a supernode partition depend heavily on the maximal sets of contiguous

Tt is convenient to denote a column L,:J belonging to a supernode by its column index j. It should 
be clear by context when j is being used in this manner.



-11 -

1

• XX

• XX
• • X X • •
• • X X • •

• XX• • X X • •

• XX
X • •

X • • • XX
• • •

X • • • XX
• • XX

X • •

12 3 4
1234567890123456789012345678901234567890123456789

Figure 3.1: Fundamental supernodes in the matrix given in Figure 2.3. (Each x and • 
represents a nonzero in A and a fill in Z, respectively. Numbers over diagonal entries 
label supernodes.)
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columns that can be supernodes and from which one or more supernodes can be formed. 
We have used so-called fundamental supernodes in our algorithms. The set K — 
{p,p + 1,... ,p + q — 1} is a fundamental supernode if if is a maximal subset of 
contiguous columns that forms a supernode for which the following holds: for i = 1,
2,..g — 1, the node p + i — 1 is the sole child of p + i in the elimination tree. The 
notion of fundamental supernodes was introduced in [4] and was discussed extensively 
in [23]. The fundamental supernodes for our model problem are shown in Figure 3.1. 
Associated with any supernode partition is a supernodal elimination tree, which is 
obtained from the elimination tree essentially by collapsing the nodes (columns) in 
each supernode into a single node. The supernodal elimination tree for the partition 
in Figure 3.1 is shown in Figure 3.2, superimposed on the underlying elimination tree.

The primary reason for using the fundamental supernode partition in this appli­
cation was pointed out in [23]: it is the coarsest supernode partition for which the 
supernode dependencies can be observed in the supernode elimination tree in a man­
ner strictly analogous to the way the column dependencies are observed in the nodal 
elimination tree. Consequently, a fundamental supernode partition can be used more 
cleanly and naturally in a parallel factorization algorithm, where data dependencies 
are of great practical importance. Liu et al. [23] contains a full discussion of this point.

Given the matrix A, the supernode partition can be obtained by several means. 
When the ordering of the columns and rows of A is a minimum degree or nested 
dissection ordering, the partition can be obtained easily as a natural by-product of 
the reordering step. Otherwise, the supernode partition can be obtained directly from 
the structure of L after the symbolic factorization; it can also be obtained before the 
symbolic factorization using the algorithm given in [23].

3.2. Sequential supernodal Cholesky factorization

In this section we describe a left-looking sequential sparse Cholesky factorization al­
gorithm that exploits the supernodal structure in L. The algorithm is not new; its 
variants have appeared in [5] and [25]. Let K = {p,p + l,...,p + g — l}bea supernode 
in L. Consider the computation of L.j for some j > p + q — l. Suppose column A*j 
has to be modified by L*it- where i £ K. It follows from the definition of supernodes 
that column will be modified by all columns of JC In other words, a column 
j > p + q — 1 is either updated by no column of K or every column of K. This 
observation has some important ramifications for the performance of sparse Cholesky 
factorization. Loosely speaking, the columns in a supernode can now be treated as 
a single unit in the computation. Since the columns in a supernode have the same 
sparsity structure below the dense diagonal block, modification of a particular column 
j>p + q— 1 by these columns can be accumulated in a work vector using dense 
vector operations, and then applied to the target column using a single sparse vector 
operation that employs indirect addressing. Moreover, the use of loop unrolling in the
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21(2710(12 13(15 18(24 25(33 28(36

Figure 3.2: Supernodal elimination tree induced by the fundamental supernodes of the 
matrix shown in Figure 2.3. Ovals enclose supernodes that contain more than one 
node; nodes not enclosed by ovals are singleton supernodes. Bold-face numbers label 
supernodes.
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accumulation, as described in [9], further reduces memory traffic. These issues have 
been addressed in detail in [1,3,5,25].

In Figure 3.3, we present a supernodal Cholesky factorization algorithm, which 
is quite similar to the one in Figure 2.2. In Figure 2.2, Sj identifies the columns of 
L needed to modify when is computed. Incorporating supernodes into the 
algorithm, we exploit the fact that columns in the same supernode update the same 
set of columns outside the supernode. Thus, Sj will identify the supernodes needed to 
modify A+j when X*j is to be computed. In Figure 3.3, we have adopted the following 
notation. Supernodes are denoted by bold capital letters, and in order to keep the 
notation simple K is to be interpreted in one of two different senses, depending on the 
context in which it appears. In one context, K is interpreted as the set of columns 
composing the supernode, i.e., K = {p,p + 1,.. .,p + <7 — !}• In other lines of the 
algorithm, the supernodes are treated as an ordered set of loop indices 1, 2, ..., K, 
..., N, where K < J if and only if p < p', where p and p1 are the first columns 
of K and J, respectively. This dual-purpose notation is illustrated in Figure 3.1, 
where the supernode labels are written over the diagonal entries, yet we can still write 
30 = {40,41,42}, for example. We denote both the last supernode and the number of 
supernodes by N.

Suppose K = {p,p+ l,...,p + <7—1}. Whenever j > p + q — l and 7^ 0, the
task cmod(j, K) consists of the operations cmod(j, k) where k = p,p-\-l,...,p + q—l. 
If, however, j 6 K, then cmod(j, K) consists of the operations cmod(j,k), for k = 
p,p + 1,.. .,j — 1. Suppose is the last column in a supernode K and let ljte ^ 0. 
Then next(j, K) is defined to be next(j,i). Similarly, we define next(K, K) to be 
next(£, £).

To reiterate the advantage of exploiting the supernodal structure of X, we note that 
the operation cmod(j, K) for j & K can be accumulated in work storage by a sequence 
of dense vector operations (saxpy using the BLAS terminology [19]), after which the 
accumulated column modifications can be applied to the target column X*j using a 
single column operation that requires indirect addressing. Execution of the operation 
cmod(j, J) for j £ J is even easier, requiring no work storage or indirect addressing. In 
both cases, loop unrolling can be employed to reduce memory traffic, thereby improv­
ing the utilization of pipelined arithmetic units, especially on vector supercomputers. 
These capabilities are not available in the “nodal” Cholesky factorization algorithm in 
Figure 2.2.

3.3. Parallel supernodal Cholesky factorization

As far as we know, the first attempt to parallelize a supernodal Cholesky factorization 
algorithm was described in [28]. Using the notation in Figure 3.3, the basic idea in 
[28] is to partition the work in cmod(j, K) and cmod(j, J) evenly among the available 
processors. This approach is similar to that employed in the LAPACK project [2],
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for 7 = 1 to iV do
^ +-0

end for

for J = 1 to iV do
for j £ J (in order) do 

for K 6 Sj do 
cmod(j, K) 
q <— next(j, K) 
ifq < n then

<S9 <Sg U {K} 
end if 

end for 
cmod(j, J) 
cdiv(j) 

end for 
q <— next(J, J) 
if q < n then

Sq *— SqU {J} 
end if 

end for

Figure 3.3: A sequential supernodal Cholesky factorization algorithm.
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where, in the interest of software portability and reliability, use of multiple processors 
occurs strictly within each call to some computationally intensive variant of a matrix- 
matrix multiply (BLASS) or matrix-vector multiply (BLAS2) kernel subroutine. Hence 
each call to the kernel involves a fork-and-join operation. For large dense matrices, 
where the vectors are quite long and each call to the kernel routine typically involves 
a substantial amount of work, this approach is quite effective [8]. For sparse matrices, 
however, short vectors and a limited amount of work within a typical call to the kernel 
routine make it quite difficult to implement this approach in an effective manner. 
The performance of the code in [28] apparently suffers from these defects, and the 
stripmining technique used to distribute the tasks cmod(j, K) and cmod(j, J) among 
the processors greatly shortens the vector lengths, which is quite detrimental on the 
target machine, a Cray Y-MP multiprocessor.

In this section, we describe a different way to parallelize the supernodal Cholesky 
factorization algorithm in Figure 3.3. Our parallel version, shown in Figure 3.4, exploits 
far more of the potential parallelism than the technique used in [28].

A few comments on the algorithm in Figure 3.4 are in order. First, note that a 
supernode J is inserted into Sq, where q — next(J, J), only after the last column of 
J has been completed. Thus, when a processor working on column q obtains J from 
Sq, all columns of the supernode J are available for updating column q of A. This 
is potentially inefficient, as the columns of J are not made available to update other 
columns of A as soon as they have been completed. An alternative to this approach is 
to insert J into Sq as soon as the first column of the supernode has been completed. 
Of course, when a processor working on column q obtains J from Sq, not all columns 
of J are necessarily available. Some flags must be maintained so that the processor can 
determine which columns of J have been completed. This approach attempts to make 
every column of L available to update other columns as soon as it has been completed. 
We have implemented both approaches. Preliminary tests indicate that the difference 
in performance for these two approaches is extremely small. We have chosen to use the 
approach shown in Figure 3.4 because it is much simpler to describe and it simplifies 
our implementation, especially the incorporation of loop unrolling into the code.

Another remark concerns the cmod(j, K) operations. As in the sequential case, 
since all the columns in K share the same sparsity structure below the diagonal entry of 
the last member of K, these operations can be accumulated in work storage using dense 
vector operations. Extra care is required however when performing the cmod(j, J) 
operation. Since some of the columns j' < j belonging to J may not be completed, a 
flag has to be associated with each column to record the column’s current status. The 
flag for a particular column is set immediately after the column has been completed. 
Since the flag for a particular column is set only by the processor that computes the 
column, synchronization is not needed.

The number of lock and unlock synchronization operations required in the parallel 
supernodal Cholesky factorization algorithm is often much smaller than that required
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Global initialization:
Q ^ {Tco/(l),rco/(2),...,rco/(n)}
for 7 = 1 to TV do

end for

Work performed by each processor: 
while Q 7^ 0 do

pop Tcol(j) from Q
let J be the supernode containing column j 
while column j requires further cmod's do 

if Sj = 0 then
wait until Sj ^ 0 

end if 
lock
obtain K from Sj 

q <— next(j, K)
\i q < n then

<5, ^ U {K} 
end if 
unlock 
cmod(j, K) 

end while 
cmod(j, J) 
cdiv(j)
ii j is the last column of supernode J then 

q <— next(J, J)
ii q < n then 

lock
Sq <— U {J} 
unlock 

end if 
end if 

end while

Figure 3.4: A parallel supernodal Cholesky factorization algorithm for shared-memory 
multiprocessor machines.
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in the nodal version, as the following discussion shows. One of the key features in 
Figures 3.3 and 3.4 is that each set Sj contains supernodes, rather than columns as it 
did in Figures 2.2 and 2.5. It is easy to see in Figure 3.3 that each supernode J has to be 
inserted into 0(|Z,*^|) sets, where F*/ is the last column of J. Consequently, the total 
number of synchronizations required in Figure 3.4 depends on the number of compressed 
subscripts [27], which is basically the number of nonzero entries in the last columns of 
all supernodes. To illustrate the reduction in the amount of synchronization, consider a 
model mxm grid problem using either a 5-point or a 9-point operator. Suppose the grid 
points are labelled using the nested dissection algorithm [13]. It is easy to show that the 
number of nonzeros in L is 0(m2 log m) [13] and the number of compressed subscripts 
is 0(m2) [27]. Thus, the amount of synchronization in the parallel supernodal Cholesky 
factorization is reduced by a factor of log m. Experimental results in the next section 
show the reductions in a collection of test problems.

3.4. Scheduling column tasks

Our discussion thus far has ignored an important issue: the scheduling of the column 
tasks Tcol(j) on the available processors. While we have found this issue to be less 
important on shared-memory machines than it is on distributed-memory machines, 
it nonetheless deserves some attention, and is likely to be of more consequence as 
shared-memory machines with substantially more processors become available in the 
future. Again, the column-dependency information contained in the elimination tree is 
indispensable in dealing with this problem.

We use the following simple technique to schedule the column tasks. Before the 
factorization begins, all columns are placed into the column task pool in the order in 
which they will be selected from the pool. Thus, the pool of tasks can be viewed as a 
static queue. A scheduling, then, is essentially the order in which the column tasks are 
placed in the static queue.

The goal of the heuristic we use to order the column tasks in the queue is to exploit 
as much as possible the high-level parallelism available for sets of independent columns. 
Recall that Tcol(i) and Tcol(j) are independent column tasks if i and j belong to two 
disjoint subtrees in the elimination tree. Consider the example in Figure 2.4. Columns 
associated with the leaves of the elimination tree (1, 2, 4, 5, 10, 11, 13, 14, 22, 23, 25, 
26, 31, 32, 34 and 35) are independent, since they belong to disjoint subtrees. If there 
are enough processors available, the corresponding column tasks can be performed in 
parallel with no delays due to data-dependencies. Similarly, columns 9, 18, 30 and 39 
are independent. Thus, Tcol(9), Tcol(l8), Tcol(30) and Tcol(39) can be carried out 
concurrently if the column tasks associated with the subtrees T[8], T[17], T[29] and 
T[38] have already been completed. The elimination tree therefore provides a natural 
way to schedule the column tasks. The order in which the column tasks are placed in 
the work pool Q is generated by a breadth-first, bottom-up traversal of a post-ordered
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version of the elimination tree. The same strategy was used in [15].

4. Numerical experiments

4.1. Test problems

problem
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK29
BCSSTK30
BCSSTK31
BCSSTK32
BCSSTK33
NASA1824
NASA2910
NASA4704
NASASRB

brief description
Stiffness matrix - fluid flow generalized eigenvalues 
Stiffness matrix - roof of Omni Coliseum, Atlanta 
Stiffness matrix - module of an offshore platform 
Stiffness matrix - Corp. of Engineers dam 
Stiffness matrix - elevated pressure vessel 
Stiffness matrix - R.E.Ginna nuclear power station 
Stiffness matrix - portion of a 3D globally triangular bldg 
Stiffness matrix - winter sports arena 
Stiffness matrix - 76 story skyscraper
Stiffness matrix - buckling model of the 767 rear bulkhead 
Stiffness matrix - off-shore generator platform (MSC NASTRAN) 
Stiffness matrix - automobile component (MSC NASTRAN)
Stiffness matrix - automobile chassis (MSC NASTRAN)
Stiffness matrix - pin boss (auto steering component), solid elements 
Structure from NASA Langley, 1824 degrees of freedom 
Structure from NASA Langley, 2910 degrees of freedom 
Structure from NASA Langley, 4704 degrees of freedom 
Structure from NASA Langley, shuttle rocket booster

Table 4.1: List of test problems.

Most of the test problems used in our numerical experiments were taken from the 
Harwell-Boeing Test Collection [11]. A brief description of the problems is given in 
Table 4.1. In the experiments, each matrix was initially ordered using an implemen­
tation of the minimum degree algorithm due to Liu [20], followed by a postordering 
of the elimination tree [22]. The reason for postordering the elimination tree is that 
the algorithms in [23] were used to compute the fundamental supernodes and the sym­
bolic factorization, and they require such a postordering. Some statistics, such as the 
size of each matrix, nonzero counts for both A and L, number of subscripts required 
to represent the supernodal structure of L (denoted by /i(L)), the number of funda­
mental supernodes in L, and the number of floating-point operations2 are provided in 
Table 4.2.

2 A single floating-point operation is either a floating-point addition or a floating-point multiplication, 
and is denoted by “flop”.
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problem n 1^1 \L\ p(L) N flops
BCSSTK13 2,003 83,883 271,671 28,621 599 58,550,598
BCSSTK14 1,806 63,454 112,267 17,508 503 9,793,431
BCSSTK15 3,948 117,816 651,222 61,614 1,295 165,035,094
BCSSTK16 4,884 290,378 741,178 50,365 691 149,100,948
BCSSTK17 10,974 428,650 1,005,859 94,225 2,595 144,269,031
BCSSTK18 11,948 149,090 662,725 116,807 7,438 140,907,823
BCSSTK23 3,134 45,178 420,311 49,018 1,522 119,155,247
BCSSTK24 3,562 159,910 278,922 22,331 414 32,429,194
BCSSTK25 15,439 252,241 1,416,568 205,513 7,288 283,732,315
BCSSTK29 13,992 619,488 1,694,796 174,770 3,231 393,045,158
BCSSTK30 28,924 2,043,492 3,843,435 229,670 3,689 928,323,809
BCSSTK31 35,588 1,181,416 5,308,247 330,896 8,304 2,550,954,465
BCSSTK32 44,609 2,014,701 5,246,353 374,507 6,927 1,108,686,016
BCSSTK33 8,738 591,904 2,546,802 124,532 1,201 1,203,491,786
NASA1824 1,824 39,208 73,699 12,587 527 5,160,949
NASA2910 2,910 174,296 204,403 25,170 599 21,068,943
NASA4704 4,704 104,756 281,472 35,339 1,245 35,003,786
NASASRB 54,870 2,677,324 11,904,998 592,254 8,027 4,672,895,526

Table 4.2: Characteristics of test problems.

Legend:

n: number of equations,
IT]: number of nonzeros in A,
\L\: number of nonzeros in L, including the diagonal,
n(L): number of row subscripts required to represent the supernodal structure of L, 
N: number of fundamental supernodes in L,
flops: number of floating-point operations required to compute L.
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Throughout this section, we use colfct to refer to the column-based approach to 
Cholesky factorization used in Figures 2.2 and 2.5. Likewise, we use supfct to refer 
to supernode-based approach used in Figures 3.3 and 3.4. For each approach there 
are two distinct but similar routines: a serial routine and a parallel routine. Thus, 
there are four routines, each implementing one of the algorithms found in Figures 2.2,
2.5, 3.3, and 3.4. It is worth noting that the serial colfct routine is a version of 
SPARSPAK’s gsfct routine that has been slightly modified for fair comparison with 
the other routines, which were written from scratch.

4.2. Numerical results on an IBM RS/6000

The primary purpose of Table 4.3 is to show the impact on performance of various levels 
of loop unrolling in the supfct routines. The kernel subroutine called by both the serial 
and parallel supfct routines is capable of unrolling the outer loop of a column-oriented 
matrix-vector multiply, as in [9]. (The loop unrolling performs multiple saxpy’s in 
a single loop.) Such loop unrolling cannot be introduced into the colfct routines 
because they are not cognizant of the supernode structure on which the technique 
depends. Loop unrolling levels ^ = 1, 2, 4, and 8 have been tried on several machines.

problem colfct
supfct with loop unrolling
t=l 1=2 i=A l=%

BCSSTK13 9.86 7.39 5.98 5.45 5.23
BCSSTK14 1.74 1.33 1.07 1.02 1.00
BCSSTK18 24.02 18.59 15.17 13.93 13.60
BCSSTK23 19.91 14.88 11.94 10.74 10.52
BCSSTK24 5.59 4.10 3.27 3.02 2.95
NASA1824 .94 .74 .62 .59 .58
NASA2910 3.68 2.83 2.32 2.13 2.13
NASA4704 6.09 4.53 3.71 3.42 3.37

Table 4.3: Factorization times in seconds for various levels of loop-unrolling on an IBM 
RS/6000 (model 320).

Table 4.3 records the results of these tests on an IBM RS/6000 workstation (model 
320). Our double precision Fortran code was compiled using the IBM Fortran compiler 
xlf with optimization turned on (i.e., xlf -0). The results for some of the smaller 
problems in our test set are reported in Table 4.3.

The first thing to note is that supfct with no loop unrolling (^=1) is significantly 
faster than colfct. We believe the improvement is due to better use of the cache by 
supfct, which is due, in turn, to the reduction in indirect addressing and increased 
locality of the data references obtained via supernodes and careful attention to cer­
tain implementation details. On other machines we have tried, supfct with no loop 
unrolling generally runs no faster than colfct, and quite often runs slightly slower.

The improvements due to loop unrolling shown in Figure 4.3 are fairly typical of
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what we have observed on other machines, too. While the benefits of loop unrolling 
levels higher than £=4 are minimal on the IBM RS/6000, the point of diminishing 
returns is usually higher on other machines. Experience has shown £=8 to be a good 
overall choice for the machines we have worked with. In all subsequent experiments, 
sequential and parallel supfct use loop unrolling to level £=8.

4.3. Numerical results on a Sequent Balance 8000

Next, we compare the performance of parallel colfct with that of parallel supfct on 
a Sequent Balance 8000, a shared-memory multiprocessor with 12 processors and 16 
Mbytes of memory. The parallel routines used Sequent Fortran compiler directives to 
access the parallel capabilities of the machine and to perform the necessary synchro­
nization operations. The Sequent’s Fortran preprocessor transformed these compiler 
directives into appropriate Fortran code, which, in turn, issued the required system 
subroutine calls. The Fortran source code was compiled using the Fortran compiler 
fortran with the optimization and preprocessing options turned on (i.e., fortran 
-04 -mp).

Table 4.4 contains factorization times and speed-up ratios (enclosed in parentheses) 
for runs on some of the smaller problems in our test set. Since we are interested 
primarily in comparing the ability of colfct and supfct to exploit multiple processors, 
each speed-up ratio is formed by dividing the time required for a parallel run into the 
time required for a serial run of the same method. Note that the serial time is quite 
distinct from the time required by the parallel algorithm on a single processor, which 
is always greater.

problem method serial
parallel

p=i p=2 p=4 p=7 p=10
BCSSTK13 colfct 1147.2 1299.4 (0.88) 652.2 (1.8) 333.7 (3.4) 195.6 (5.9) 140.7 (8.2)

supfct 874.4 878.3 (1.00) 440.3 (2.0) 225.9 (3.9) 132.0 (6.6) 93.7 (9.3)
BCSSTK14 colfct 195.2 225.6 (0.87) 114.2 (1.7) 58.7 (3.3) 34.8 (5.6) 25.5 (7.7)

supfct 155.4 157.5 (0.99) 79.6 (2.0) 40.4 (3.8) 23.4 (6.6) 16.8 (9.3)
BCSSTK18 colfct 2790.9 3152.3 (0.89) 1589.7 (1.8) 810.0 (3.4) 477.3 (5.8) 346.3 (8.1)

supfct 2144.4 2179.3 (0.98) 1097.9 (2.0) 556.7 (3.9) 326.2 (6.6) 234.8 (9.1)
BCSSTK23 colfct 2328.8 2627.9 (0.89) 1322.5 (1.8) 670.2 (3.5) 387.0 (6.0) 275.1 (8.5)

supfct 1755.1 1776.8 (0.99) 893.1 (2.0) 447.5 (3.9) 259.1 (6.8) 182.6 (9.6)
BCSSTK24 colfct 640.3 733.8 (0.87) 371.6 (1.7) 188.8 (3.4) 110.7 (5.8) 80.2 (8.0)

supfct 493.9 500.4 (0.99) 250.6 (2.0) 126.8 (3.9) 73.1 (6.8) 52.1 (9.5)
NASA1824 colfct 104.9 122.4 (0.86) 62.0 (1.7) 32.0 (3.3) 19.4 (5.4) 14.7 (7.1)

supfct 84.8 86.8 (0.98) 43.9 (1.9) 22.4 (3.8) 13.2 (6.4) 9.6 (8.8)
NASA2910 colfct 417.0 482.7 (0.86) 242.5 (1.7) 124.1 (3.4) 73.2 (5.7) 53.3 (7.8)

supfct 330.0 337.0 (0.98) 167.6 (2.0) 85.5 (3.9) 49.5 (6.7) 35.2 (9.4)
NASA4704 colfct 691.9 791.8 (0.87) 401.3 (1.7) 204.2 (3.4) 119.8 (5.8) 86.6 (8.0)

supfct 539.4 542.5 (0.99) 274.6 (2.0) 138.7 (3.9) 80.2 (6.7) 57.0 (9.5)

Table 4.4: Factorization times in seconds (and speed-ups) on a Sequent Balance 8000.

Comparing the factorization times for the two methods in the last column (p=10) 
clearly indicates the superiority of supfct over colfct. Indeed the differences in their 
performance on these problems are large and remarkably consistent, ranging from a
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low of 47.5%3 to a high of 57.8%. Two observations largely account for the superior 
performance of supfct. First, the loop unrolling discussed in the previous section is 
quite valuable on the Sequent also. The effects of loop unrolling are apparent in the 
serial runs, and they are quite consistent among the problems, with improvements in 
performance ranging from a low of 23.7% to a high of 32.7%. The benefits of loop 
unrolling are largely preserved in the parallel implementation of supfct.

Second, supfct’s speed-up ratios are consistently better than coifct’s; for colfct 
they range from 7.1 to 8.5, and for supfct they range from 8.8 to 9.6. The “speed-up” 
ratios for parallel runs on a single processor (p=l) suggest that one of the primary rea­
sons for coif ct’s inferior speed-up ratios is the high synchronization overhead incurred 
by the method. Since there is no contention for access to the critical sections of the 
code when the parallel codes are run on a single processor, it is likely that the relative 
difference in synchronization overhead costs is significantly greater on 10 processors. 
The speed-ups for colfct on 10 processors are nonetheless quite respectable (7.1-8.5).

4.4. Numerical results on a Cray Y-MP

Finally, we compare parallel colfct and parallel supfct on a Cray Y-MP, a powerful 
vector supercomputer with 8 processors and 128 Mwords of memory. The code run 
on this machine was the same code run on the Sequent, with a few minor changes re­
quired to take care of machine-dependent constructs for exploiting parallelism. Again, 
the loop unrolling level used by supfct was f=8, and Fortran compiler directives were 
used to exercise the machine’s parallel capabilities and to perform the necessary syn­
chronization operations. The code was compiled using the Fortran compiler cf77 with 
optimization (the default) and preprocessing options on. (i.e., cf77 -Zu).

The top half of Table 4.5 reports factorization times and speed-up ratios (enclosed 
in parentheses) for both methods applied to some small problems in our test set. The 
bottom half of the table records performance data for supfct on the remaining prob­
lems in our test set.

Not surprisingly, supfct performs much better than colfct on this machine. Loop 
unrolling is more effective on the Cray Y-MP than it is on the Sequent. Comparing 
the serial runs for the two methods, we find differences in performance ranging from a 
low of 53% to a high of 132%, due to loop unrolling and reduced indirect indexing in 
supfct. Similar results have been reported previously in [5]. We also find that supfct 
parallelizes much better than colfct. For example, on eight processors (p=8) the 
speed-up ratios for supfct range from a low of 6.0 to a high of 6.9, which is quite good, 
especially on such small problems. The speed-up ratios for colfct, however, are very 
poor, ranging from a low of 2.0 to a high of 3.7. As was the case on the Sequent, the 
“speed-ups” obtained on a single processor indicate that the high synchronization costs

3The base for each percentage is the smaller of the two times. This applies to percentages presented 
later in this section as well.
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problem method serial
parallel

p=i p=2 p=4 p=6 p=8
BCSSTK13 colfct .929 1.347 (.69) .685 (1.4) .379 (2.5) .314 (3.0) .301 (3.1)

supfct .439 .493 (.89) .249 (1.8) .128 (3.4) .089 (4.9) .069 (6.4)
BCSSTK14 colfct .238 .391 (.61) .203 (1.2) .126 (1.9) .121 (2.0) .121 (2.0)

supfct .156 .185 (.84) .093 (1.7) .048 (3.2) .033 (4.7) .026 (6.0)
BCSSTK15 colfct 2.485 3.471 (.72) 1.770 (1.4) .962 (2.6) .768 (3.2) .728 (3.4)

supfct 1.071 1.172 (.91) .594 (1.8) .299 (3.6) .204 (5.2) .157 (6.8)
BCSSTK16 colfct 2.444 3.549 (.69) 1.814 (1.3) .995 (2.5) .834 (2.9) .812 (3.0)

supfct 1.067 1.178 (.91) .590 (1.8) .299 (3.6) .202 (5.3) .154 (6.9)
BCSSTK17 colfct 2.712 4.121 (.66) 2.142 (1.3) 1.223 (2.2) 1.104 (2.5) 1.094 (2.5)

supfct 1.373 1.540 (.89) .773 (1.8) .392 (3.5) .267 (5.1) .206 (6.7)
BCSSTK18 colfct 2.288 3.284 (.70) 1.675 (1.4) .928 (2.5) .767 (3.0) .729 (3.1)

supfct 1.314 1.481 (.89) .741 (1.8) .382 (3.4) .265 (5.0) .213 (6.2)
BCSSTK23 colfct 1.755 2.408 (.73) 1.219 (1.4) .652 (2.7) .514 (3.4) .473 (3.7)

supfct .798 .879 (.91) .441 (1.8) .224 (3.6) .153 (5.2) .125 (6.4)
BCSSTK24 colfct .674 1.071 (.63) .551 (1.2) .329 (2.0) .302 (2.2) .301 (2.2)

supfct .338 .381 (.89) .190 (1.8) .096 (3.5) .065 (5.2) .050 (6.8)
BCSSTK25 supfct 2.580 2.872 (.90) 1.433 (1.8) .731 (3.5) .504 (5.1) .394 (6.5)
BCSSTK29 supfct 2.939 3.195 (.92) 1.602 (1.8) .810 (3.6) .547 (5.4) .421 (7.0)
BCSSTK30 supfct 5.816 6.301 (.92) 3.154 (1.8) 1.590 (3.7) 1.073 (5.4) .815 (7.1)
BCSSTK31 supfct 12.607 13.299 (.95) 6.653 (1.9) 3.330 (3.8) 2.249 (5.6) 1.706 (7.4)
BCSSTK32 supfct 7.773 8.491 (.92) 4.249 (1.8) 2.134 (3.6) 1.442 (5.4) 1.100 (7.1)
BCSSTK33 supfct 5.831 6.146 (.95) 3.074 (1.9) 1.539 (3.8) 1.040 (5.6) .788 (7.4)
NASA1824 supfct .114 .137 (.83) .069 (1.7) .036 (3.2) .025 (4.6) .019 (6.0)
NASA2910 supfct .287 .331 (.87) .166 (1.7) .084 (3.4) .058 (4.9) .045 (6.4)
NASA4704 supfct .429 .483 (.89) .243 (1.8) .124 (3.5) .085 (5.0) .065 (6.6)
NASASRB supfct 23.563 24.850 (.95) 12.404 (1.9) 6.202 (3.8) 4.179 (5.6) 3.164 (7.4)

Table 4.5: Factorization times in seconds (and speed-ups) on a Cray Y-MP.

incurred by colfct seriously degrade its parallel performance. Indeed, on this machine 
the overhead appears to be considerably higher than it was on the Sequent. This high 
overhead, combined with the fast floating-point computational rates on this machine, 
probably account for most of the degradation in parallel performance of colfct.

The performance of supfct on the large problems in the bottom half of the table 
is consistently good. Ignoring the three smallest problems in this portion of the table 
(NASA1824, NASA2910, and NASA4704), speed-up ratios range from a low of 6.5 to a 
high of 7.4. On six out of seven of these problems the speed-up ratio is 7.0 or greater, 
with the 6.5 speed-up ratio reserved for the problem requiring the least work, namely 
BCSSTK25.

Table 4.6 compares the performance of supfct with the parallel supernodal factor­
ization algorithm used in [28], which we will designate as supf ct-SVY. The performance 
figures are expressed in Mflops4, as is commonly done for vector supercomputers such 
as the Cray Y-MP. We report the performance of both codes on those problems in our 
test set for which results for supfct-SVY were available to us. The performance data 
for supfct-SVY were obtained from an unpublished manuscript [29].

Consider the results obtained on 8 processors (p=8). On six of the twelve prob-

4Mflops (megaflops) are millions of floating-point operations per second. Gflops (gigaflops) are 
billions of floating-point operations per second.
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parallel
problem method serial p=4 p=8
BCSSTK15 supfct 154.1 551.9 1051.2

supfct-SVY 197.8 301.1 320.8
BCSSTK16 supfct 139.7 498.6 968.2

supfct-SVY 190.8 287.5 297.4
BCSSTK23 supfct 149.3 531.9 953.2

supfct-SVY 191.6 293.3 315.1
BCSSTK24 supfct 95.9 337.8 648.5

supfct-SVY 139.4 168.2 168.7
BCSSTK30 supfct 159.6 583.8 1139.0

supfct-SVY 212.2 350.0 375.0
BCSSTK31 supfct 202.3 766.0 1495.3

supfct-SVY 251.4 566.3 689.2
BCSSTK32 supfct 142.6 519.5 1007.9

supfct-SVY 193.5 291.4 307.0
BCSSTK33 supfct 206.4 782.0 1527.3

supfct-SVY 258.4 593.1 717.2
NASA1824 supfct 45.3 143.3 271.5

supfct-SVY 64.3 69.8 69.8
NASA2920 supfct 73.4 250.8 468.1

supfct-SVY 97.5 121.6 121.4
NASA4704 supfct 81.6 282.3 538.4

supfct-SVY 117.0 143.5 143.5
NASASRB supfct 198.3 753.4 1476.9

supfct-SVY 250.6 531.6 625.2

Table 4.6: Factorization computational rates (Mflops) on a Cray Y-MP.
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lems, supfct performs the factorization at over a Gflop, with highs of 1.48 Gflops on 
NASASRB, 1.50 Gflops on BCSSTK31, and 1.53 Gflops on BCSSTK33. For two oth­
ers problems, the computational rate is nearly a Gflop: .97 Gflop on BCSSTK16 and 
.95 Gflop on BCSSTK23. Thus, for 8 out of 12 of the problems, supfct computed 
the factorization at nearly a Gflop or more. Table 4.2 indicates that the remaining 
four problems (NASA1824, NASA2910, NASA4704, and BCSSTK24) are quite small. 
Moreover, in Table 4.5 we see that serial supfct requires less than half a second to 
factor any of these matrices.

The performance of supfct-SVY is much poorer due to the problems with this 
approach mentioned earlier in Section 3.3. The code runs at less than a Gflop on 
every problem, despite having significantly higher serial efficiency due to assembly 
language programming of the compute-intensive kernel routines and other machine- 
specific optimizations. Our parallel implementation of supfct is a Fortran 77 code, 
with no machine-specific optimizations.

5. Concluding remarks

We have implemented a new parallel sparse Cholesky factorization algorithm for shared- 
memory multiprocessors. This new left-looking algorithm uses techniques from [5] and
[15]: it uses supernodes to reduce indirect addressing and memory traffic [5], and 
it decomposes the computation into column tasks Tcol(j) and schedules these tasks 
dynamically on the available processors [15]. Incorporation of supernodes into the 
algorithm in [15] reduces the synchronization overhead required to manage the row 
structure sets Sq from 0{\L\) to 0(/i(T)), where /r(X) is the number of row subscripts 
required to represent the supernodal structure of L. In practice, n(L) is often much 
smaller than |L|; consequently, contention for the critical sections is likely to be much 
higher in colfct than in supfct. Since the algorithms use a single lock variable for 
the critical sections, the sections are executed serially. Thus, the serial component of 
supfct is in practice much smaller than that of colfct. Our tests indicate that this is 
the single most important factor contributing to the new algorithm’s superior parallel 
performance.

Right-looking sparse Cholesky algorithms (i.e., multifrontal algorithms) for shared- 
memory multiprocessors have appeared in [6,10,29]. These algorithms exploit supern­
odes in much the same way that the new parallel left-looking algorithm does. Par­
allelizing the multifrontal algorithm however is considerably more complicated than 
parallelizing the simpler left-looking algorithms. For instance, parallel multifrontal 
Cholesky for shared-memory machines can no longer use a simple and efficient stack to 
manage the “update” matrices required by the method. Methods for dealing with this 
fragmented component of work storage are necessarily more complicated and storage 
inefficient [10,29]. On the other hand, supfct requires only a modest amount of work 
storage, which can be determined before the numerical factorization begins. Break­
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ing multifrontal Cholesky factorization into tasks and scheduling these tasks on the 
available processors is also more complicated than it is for the left-looking algorithms. 
The additional complexity has lead to parameterized implementations, where the per­
formance of the code is quite sensitive to parameter selection (see [10] and especially 
[29]).

There are however significant advantages enjoyed by the multifrontal method; e.g., 
it is a superior out-of-core method and is better able to improve performance by loading 
and reusing data in cache. It appears to us that the multifrontal method very likely will 
always be the method of choice for out-of-core sparse Cholesky factorization. However, 
we think that a block-to-block left-looking algorithm may be quite competitive with the 
multifrontal method at exploiting cache to improve performance. Such an algorithm 
would be built around a cmod(J,K) operation that updates the appropriate subset of 
columns from supernode J with all the columns of the updating supernode K. With 
the rising importance of cache memory on recent supercomputers and workstations, 
exploring this approach on current serial and parallel machines is a promising area for 
future work.
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