OAK RIDGE
NATIONAL
LABORATORY

MANAGED BY

MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

ORNL/TM-11814

A Supernodal Cholesky Factorization
Algorithm for Shared-Memory
Multiprocessors

E. G. Ng
B. W. Peyton

(0] - <<

DI sTRIBUTION OF M:® L. CUMENT

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Techni-
cal Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615)
576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S.
Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, com-
pleteness, or usefulness of any information, apparatus, product, or process dis-
closed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily consti-
tute or imply its endorsement, recommendation, or favoring by the United States
Government or any agency thereof. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

ORNL/TM—11814

DE91 011255

Engineering Physics and Mathematics Division

Mathematical Sciences Section

A SUPERNODAL CHOLESKY FACTORIZATION ALGORITHM FOR
SHARED-MEMORY MULTIPROCESSORS

Esmond G. Ng
Barry W. Peyton

Mathematical Sciences Section
Oak Ridge National Laboratory
P.O. Box 2009, Bldg. 9207-A
Oak Ridge, TN 37831-8083

Date Published: April 1991

Research was supported by the Applied Mathematical Sci-
ences Research Program of the Office of Energy Research,
U.S. Department of Energy.

Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831
Managed By
MARTIN MARIETTA ENERGY SYSTEMS, INC.
for the
U.S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-840R21400

Di R!3UT10N OF THIS DOCUMENT IS UNLIMIT!

3

Contents

I INErOAUCTION. ..ttt sttt sttt s b e e 1
2 Background material........ccccooiiiiiiiiiiii e 2
2.1 Notation and termMINOLOZY......ccceviiriiriiiierieriee et 2
2.2 Sequential sparse Cholesky factorization..........ccccoevvervienininiinincncneennn. 3
2.3 Sources of paralleliSm ccoociiiiiiiiiee e 5
2.4 Parallel sparse Cholesky factorizationc.ccccoeevvieiininiieneneneienee, 8
3 Supernodal Cholesky factorization algorithms...........cccocieiiiiiiiiiiiiiiiiceeee 10
3.1 Notion Of SUPEINOAES....cccieiuiiiiiiiieiieieere ettt ettt eee e 10
3.2 Sequential supernodal Cholesky factorization...........ccccceccverveiveseeneeninnns 12
3.3 Parallel supernodal Cholesky factorization..........ccccceeceviirienieenieniencennenne 14
3.4 Scheduling column tasKs........cocooiivininiiiiiinncceeeee e 18
4 Numerical EXPETIIMENTS.cceeiuiiiiiiiieiiieie ettt ettt ete ettt te st e st esaeeseesseesseesaeens 19
4.1 TeSt PrODIEIMS. ..ceiiiieiieieeeee ettt ettt et et sae s 19
4.2 Numerical results on an IBM RS/6000ccocviiiiiiiniinniiininiecrcneene 21
4.3 Numerical results on a Sequent Balance 8000ccocceeiiniieiinienieeneens 22
4.4 Numerical results on a Cray Y-MP.....ccocciriiiiiiiiiiiieeeeeeeeee 23
5 Concluding remMarKscocceveiiiieieieeee et 26
0 RETEICIICES. .. .eiiitiiiiiiieeee ettt sttt 27

-in -

A SUPERNODAL CHOLESKY FACTORIZATION ALGORITHM FOR
SHARED-MEMORY MULTIPROCESSORS

Esmond G. Ng
Barry W. Peyton

Abstract

This paper presents a new left-looking parallel sparse Cholesky factorization al-
gorithm for shared-memory MIMD multiprocessors. The algorithm is particularly
well-suited for vector supercomputers with multiple processors, such as the Cray
Y-MP. The new algorithm uses supernodes in the Cholesky factor to improve per-
formance by reducing indirect addressing and memory traffic. Earlier factorization
algorithms have also used supernodes in this manner. The new algorithm, how-
ever, also uses supernodes to reduce the number of system synchronization calls,
often by an order of magnitude or more in practice. Experimental results on a
Sequent Balance 8000 and a Cray Y-MP demonstrate the effectiveness of the new
algorithm. On eight processors of a Cray Y-MP, the new routine performs the fac-
torization at rates exceeding one Gflop for several test problems from the Harwell
Boeing test collection, none of which are exceedingly large by current standards.

1. Introduction

Large sparse symmetric positive definite systems arise frequently in many scientific
and engineering applications. One way to solve such a system is to use Cholesky
factorization. Let v4 be a symmetric positive definite matrix. The Cholesky factor
of A, denoted by L, is a lower triangular matrix with positive diagonal such that
A = LLz. When A is sparse, fill occurs during the factorization; that is, some of
the zero elements in 4 will become nonzero elements in X. In order to reduce time
and storage requirements, only the nonzero positions of L are stored and operated on
during sparse Cholesky factorization. Techniques for accomphshing this task and for
reducing fill have been studied extensively (see [16] for details). In this paper we restrict
our attention to the numerical factorization phase. We assume that the preprocessing
steps, such as reordering to reduce fill and symbolic factorization to set up the compact
data structure for X, have been performed. Details on the preprocessing can be found
in [16].

In recent years, because of advances in computer architectures, there has been much
interest in the solution of large sparse linear systems on high performance computers.
In particular, there have been investigations into the solution of such problems on com-
puters with multiple processors [18]. Basically, multiprocessor systems can be classified
by how their memory is organized. In a shared-memory multiprocessor system, every
processor has direct access to a globally shared memory. In this case, the processors
can read from or write into the same memory location simultaneously. Of course, for
data integrity, writing into the same memory location at any time by more than one
processor must be synchronized. Examples of shared-memory multiprocessor systems
include the Cray Y-MP, Encore Multimax, Sequent Balance, and Sequent Symmetry.
Another way of organizing the memory in a multiprocessor system is to give each pro-
cessor its own memory to which the owner alone has direct access. For one processor
to access data in another processor’s memory, the two processors must communicate
with each other, for example, by message passing. Examples of distributed-memory
multiprocessor systems include the NCUBE 3200 and 6400, and the Intel iPSC/2 and
iPSC/i860. It should be noted that there are also hybrid multiprocessor systems in
which both local and shared memory are available, such as the BBN Butterfly.

In this paper, we are concerned with the factorization of a sparse symmetric positive
definite matrix A on a shared-memory multiprocessor system. This paper can be re-
garded as a sequel to [15], in which a parallel implementation of a sequential algorithm
from [16] was described. We will show however that the number of synchronization
operations (i.e., locking and unlocking operations) required by the parallel algorithm
in [15] is relatively high; it is proportional to the number of nonzeros in the Cholesky
factor X. The object of our paper is to describe a new version of the algorithm that
reduces the amount of synchronization overhead by exploiting the supernodal struc-
ture found in the sparsity pattern of X. (The notion of supernodes will be introduced

-2

in Section 3.) The role of supernodes in improving both left- and right-looking sparse
Cholesky factorization algorithms is well documented [1,3,5,12,25,28]. The new parallel
algorithm uses supernodes to reduce memory traffic and indirect indexing operations
as previous algorithms have done, which is particularly important on vector supercom-
puters [1,3,5]. The primary contribution of the paper is the way supernodes are used
to improve the parallel efficiency of a left-looking algorithm.

An outhne of the paper is as follows. Section 2 reviews the sequential and parallel
factorization algorithms discussed in [15]. Section 3 describes the notion of supern-
odes and their usefulness in a sequential sparse Cholesky factorization algorithm. A
parallel supernodal Cholesky factorization algorithm will be presented in Section 3 as
well. Section 4 provides experimental results on an IBM RS/6000, a Cray Y-MP, and
a Sequent Balance 8000. Finally, Section 5 contains a few concluding remarks and
discusses possible future work.

2. Background material

2.1. Notation and terminology

Assume that A is an n X n symmetric and positive definite matrix, and let L denote the
Cholesky factor of 4. We use and Zi~ to represent respectively the y-th column
and Tth row of L. The sparsity structures of column 7 and row i of L (excluding the
diagonal entry) are denoted by Struct”~L”j) and Struct(Li”), respectively. That is,

Struct(L*j) — (5 j.Ilsj "™ 0},
Struct{Li®) = {t<i:Ilpt" 0}.

Assume that 7% 0 and suppose that Z"j is not the last nonzero in column j of
L. The function next(k,j) returns the row index of the first nonzero beneath Z"j in
the column [15]. If lkj is the last nonzero in then we define next(k,j) to be
n+ 1.

The two computational tasks occurring at each step in the Cholesky factorization
are scaling a vector and subtracting a multiple of a vector from another vector. These
two tasks will be denoted by cdiv and cmod, respectively [14].

cdiv(j):
1

(n \1r2

fori=j+1to7ldo

L4
end for

cmod(j, k), k < j:
fori =j to n do
ai,j ai,j ~ hk

end for

Finally, if M is an m X ra matrix, then \M| denotes the number of nonzero elements
in M.

2.2. Sequential sparse Cholesky factorization

We begin our discussion by first reviewing a sequential general sparse Cholesky fac-
torization algorithm, details of which can be found in [16]. The algorithm is column-
oriented and is a lefi-looking algorithm. That is, when column is to be computed,
the algorithm modifies column with multiples of the previous columns of L, namely
L*k [< k <j— 1. Of course, sparsity will be exploited when A is sparse. We will
assume throughout that the nonzeros of 4 and L are stored by columns. The sequen-
tial factorization algorithm is given in Figure 2.1. This algorithm and its variations are
widely used in many sparse matrix packages, such as SPARSPAK [7].

forj = 1ton do
for £ G Struct(Ljm) do
cmod(j, k)
end for
cdiv(j)
end for

Figure 2.1: A sequential sparse Cholesky factorization algorithm.

Since the algorithm in Figure 2.1 is column-oriented and the nonzeros of L are stored
by columns, its implementation is quite straightforward except for the determination
of the structure ofrow 7 of L (i.e., Struct(Ljt*)). Instead of computing the structure of
every row of L prior to the factorization, the factorization algorithm itself can efficiently
generate these sets during the factorization, as shown in Figure 2.2. For each column
T*j, we maintain a set .Sj of column indices, which will contain precisely the column
indices belonging to Struct(Lj”) when the column is computed.

After has been computed, 7 is inserted into Sg, where ¢ is the row index
of the first nonzero beneath the diagonal in column ; (i.e., ¢ = next(j,j)). When
the algorithm is ready to compute T»19, it will examine .Sy to find the columns of L
needed to modify A*ig. Among those columns it will find X»j, and thus it will perform
cmod(q,j) as required. It is easy to see that the next column of 4 that L+; will modify

forj =1tondo
end for

forj = 1 ton do
for k£ G s7 do
cmod(j, k)
p — next(j, k)
ifp <7 then
Sp «— Sp U {&}
end if
end for
cdiv(j)
q < next(jj)
irq < n then
Sq <r- SqU 7}
end if
end for

Figure 2.2: A sequential sparse Cholesky factorization algorithm, with the generation
of row structure.

-5

is given by p — next(q,j). Hence, the algorithm puts 7 in Sp for use when it later
computes More informally, immediately after L*; has been computed it begins
“migrating” from one column of 4 to another as determined by the values of nexz(*,)
(or equivalently the structure of The columns visited by are exactly those
that must be modified by X,j. At any point during the factorization, S, C\Sj — 9 for
i ©~j. Consequently, the sets Sj (I <j < n) can be stored economically as linked lists
using a single integer array of length n. This is the primary reason for generating the
sets Struct{Lj”) in this manner.

2.3. Sources of parallelism

As indicated in [15], there are two sources of potential parallelism in sparse Cholesky
factorization. The first one is in performing cmod operations with the same “updating”
column. Suppose Struct(L*j) — {ix,72,..., fp}, with j < i\ < ii < ... < ip. When

has been computed, columns i, i2, ..., ip of A have to be modified by X*j. These
cmod's are independent: they can be performed simultaneously or in any order. Thus,
if there are enough processors and if the nonzero entries of L+; are available to these
processors, the operations cmod(ii,j), cmod(i2,j),..., cmod(ip,j) can be performed
concurrently. The independence of cmod’s using the same updating column but dif-
ferent target columns has nothing to do with the sparsity of X; indeed, they are the
primary source of parallelism in a dense column-based factorization.

Sparsity in X gives rise to large-grained parallelism that is not available in a dense
factorization. Consider columns X*” and X,,j where j > k. We shall say that Xj
depends on X* if X*j cannot be completed until after X,~ has been completed. When
neither X,,j depends on X*" nor X** depends on X*j, the two columns are said to be
independent of one another. The column dependencies are very simple when X is
dense: since computation of X*j requires modification of by a multiple of every
column X,™ where k <j, X*j depends on every such column X*”. To identify column
dependencies in the sparse case, we introduce elimination trees.

Consider the Cholesky factor X. For each column X*j having off-diagonal nonzero
elements, we define parent/j] to be the row index of the first off-diagonal nonzero in
that column; that is, parent[j] = next(j,j). For convenience, we define parent/j] to
be j when column X*j has no off-diagonal nonzeros. The elimination forest of X is a
graph 7" with {1,2,...,n} as its node set, and an edge connecting i and ;7 if and only
if j = parent[i] and i ™ j [21,26]. It is also easy to show that 7 is & tree if and only
if the matrix 4 is irreducible. Without loss of generality, we will assume from now on
that the given matrix A4 is irreducible, so that T is indeed an elimination tree. We
assume familiarity with the standard terminology associated with rooted trees: e.g.,
root, parent, child, ancestor, and descendant. We use the notation 7/i/ to denote the
subtree rooted at node i, that is, 7/i] is a tree consisting of i and all of its descendants
in T.

X
XXX
X
X
XXX
X XX XX

XXXXXXXX
XX XX »XX
X

XXX

X
XXX
X XX XX
X% XXXXX
XXN»XX
X« XX - Xe==X
20 Xe XeeeXX X *XeeXX
21 XeeeX X eXeee*XX
22 X
23 X
24 XXX
25 X
26 X

2 XXX
28 X XX XX
KXXXXXXX
XX xXxX»XX

OO NNNPRWIN=S OISR bo—

o e et e o ek

X
XXX
X
X
XXX
X XX XX
XX XXXXXX
XX XX«XX
X e XX - X ==X
Xe X eeeXX X X «XX
42 X o= =X X X e «=XX
43 X Xco» eeeX X PR p—
44 XXX cee XXX PR cee XXX
45 XX -eX XX PR S5 55 X XK
46 Xew=- X eeccece-- X X» X - e e e X33 XX
47 X Xeee== X X X e =X * FeeeXX
48 XXX O » 33> XXX eeecccccces XX
49 DO, Gulau iR e XX eecececccccecee XX

BB LILILILILILILILILILIN
— OO0 NRWN—OO 00

- 3 4
1234567890123456789012345678901234567890123456789

Figure 2.3: A matrix example defined on a 7 X 7 nine-point grid ordered by nested
dissection, (each X and e refers to a nonzero in 4 and a fill entry in L, respectively.)

Consider the example in Figure 2.3, which contains the matrix and Cholesky factor
associated with a 7 X 7 nine-point grid ordered by the nested dissection algorithm [13].
In the figure, each X is a nonzero entry in the matrix 4, and each + is a fill entry in
the Cholesky factor L. The reader may verify that the tree shown in Figure 2.4 is the
elimination tree of the matrix L shown in Figure 2.3.

One of the many uses of elimination trees in sparse matrix computation is the anal-
ysis of column dependencies in sparse Cholesky factorization. (A survey of elimination
trees and their applications in sparse matrix computations is contained in [22].) A key
observation [21,26] is that Struct(Ljif) C T[j]\ that is, every k £ Struct(Ljt*) is a
descendant of / in the elimination tree. Of course, column_j of L cannot be completed
until all columns in Struct(Lj”) have been completed. Recursive application of this ob-
servation to the descendants of; demonstrates that column ;7 of L cannot be completed
until the columns associated with a/l descendants ofy (i.e., all members of T[j] — {j})
have been completed. Moreover, /*" does not depend on any other columns. Hence,
columns i and 7 are independent if and only if 7/i] and 7/j] are disjoint subtrees. For

Figure 2.4: Elimination tree for the matrix shown in Figure 2.3.

-8 -

example, column 41 in Figure 2.4 depends on columns 22 — 40, and depends on no
other columns of the matrix. Columns 41 and 21 are independent because T[41] and
T[21] are disjoint subtrees.

2.4. Parallel sparse Cholesky factorization

We now describe an algorithm for shared-memory multiprocessor systems that exploits
these two sources of parallelism. (The algorithm was introduced in [15].) The task
of computing column is referred to as a column task in the computation and is
denoted by 7Tcol(j). More precisely,

Tcol(G) {cmod(j,k) | k G Struct(L*j)} U {cdiv(j),.

The parallel algorithm maintains a pool of column tasks, and each processor will be
responsible for performing a subset of these column tasks. The assignment of column
tasks to processors is dynamic. When a processor is free, it will get a column task from
the pool, perform the necessary cmod operations, and then carry out the required cdiv
operation. When the processor has finished a column task, it will get another column
task from the pool. Efficient implementation of this dynamic scheduling strategy re-
quires that the pool of tasks be made available to all processors. This is particularly
appropriate for shared-memory multiprocessor systems. This approach usually results
in good load-balancing, as might be expected.

The parallel algorithm in [15] is presented in Figure 2.5. A few comments on the
parallel algorithm are in order. First, note that it is quite similar to the algorithm in
Figure 2.2. Second, we assume that the data reside in a globally-shared memory so
that every processor can access the entire set of data. Third, since every processor will
access the pool of'tasks O, popping a column task from Q is a critical section and must
be performed in a synchronized manner.

Fourth, updating an index set Sp requires another critical section since Sp may be
simultaneously updated by more than one processor. In Figure 2.5, we have used two
primitives, lock and unlock, to synchronize this operation. The first primitive, lock,
signals the beginning of a critical section and allows only one processor to proceed. If
there is already a processor executing the critical section, a second processor attempting
to enter the same section must wait until the first processor has exited the section.
The second primitive, unlock, signals the end of a critical section, and its execution by
one processor permits another processor to enter the critical section. The number of
synchronization operations required to maintain the pool of tasks is O(n). It is easy to
see that the number of synchronization calls required to update each set <S, is 0(|Z/jt*)).
Thus, the total number of synchronization calls required in the parallel algorithm is
0{\L\).

Global initialization:
0 <- {Tcol(),Tcol(2),... ,Tcol(n)}
for " =1 to 7 do
Sy 0
end for

Work performed by each processor:
while Q ~ 0 do

pop Tcol(j) from Q

while column 7 requires further cmod's do
if s; = 0 then

wait until s7 ™ 0
end if
lock
obtain k from .sj
qg next(j, k)
if ¢ < n then
Sq «— Sq U {fc}

end if
unlock
cmod(j, k)

end while

cdiv(j)

q <- next(j.j)

ifq <71 then
lock
Sq+-SqU {j}
unlock

end if

end while

Figure 2.5: A parallel sparse Cholesky factorization algorithm for shared-memory mul-
tiprocessor machines.

- 10 -

3. Supernodal Cholesky factorization algorithms

Although the results reported in [15] indicated that the parallel algorithm in Figure 2.5
achieved good speed-up ratios, the algorithms in Figures 2.2 and 2.5 are far from
optimal for at least two important reasons. First, both the sequential and parallel
algorithms are poor at exploiting some of the hardware features available on advanced
computer architectures, in particular, the pipehned arithmetic units on current vector
supercomputers. Second, the number of synchronization operations connected with
critical sections in the parallel algorithm is relatively high.

In this section, we discuss the notion of supernodes in the Cholesky factor of a
sparse symmetric positive definite matrix, and show how these supernodes can be used
to improve the algorithms in Figures 2.2 and 2.5. In particular, we show how both
difficulties with the algorithm in [15] can be dealt with by taking advantage of the
supernodal structure.

3.1. Notion of supernodes

In the Cholesky factor of a sparse symmetric positive definite matrix, columns with the
“same” sparsity structure are often clustered together. Such a grouping of columns is
referred to as a supernodel. We define a supernode of a sparse Cholesky factor L to be
a contiguous block of columns in X, {p,p-\- 1,...,p-t-q' — 1}, such that

Struct(L*,p) — Struct"L+'p+q-x) U {p+ 1,...,p+q-1}.

It is quite easy to show that for p<<*<<p-fq — 2, Struct(L*ti) = Struct(L"p"q-i) U
{i+1,...,p+q—1}. (For details consult [23,24]). Thus, the columns of the supernode
{p.p+1l,....p+ g—1} have a dense diagonal block and have identical structure below
row p -f g — 1. Figure 3.1 shows a set of supernodes for the matrix of Figure 2.3.
The partition of the columns of L into supernodes is often referred to as a supernode
partition.

Apparently, the term “supernode” first appeared in [5], although the basic idea
behind the term was used much earlier. For example, the notion of supernodes has
played an important role in improving the efficiency of the minimum degree ordering
algorithm [17] and the symbolic factorization process [27]. More recently, supernodes
have been used to organize sparse numerical factorization algorithms around matrix-
vector or matrix-matrix operations that reduce memory traffic, thereby making more
efficient use of vector registers [3,5] or cache [1,25]. They play such a role in both the
serial and the new parallel Cholesky factorization algorithms presented in this section.

Note that supernode partitions are not uniquely specified in our definition. Indeed,
the choices of a supernode partition depend heavily on the maximal sets of contiguous

Tt is convenient to denote a column L,.J belonging to a supernode by its column index j. It should
be clear by context when j is being used in this manner.

-11 -

- XX
- XX
. eX X oo
eeX X oo
. X e e e XX

- XX
X e
X e e o« XX
oo
X e e eXX
e e XX
X e

i Ea— 3
1234567890123456789012345678901234567890123456789

Figure 3.1: Fundamental supernodes in the matrix given in Figure 2.3. (Each x and -
represents a nonzero in 4 and a fill in Z, respectively. Numbers over diagonal entries

label supernodes.)

- 12 -

columns that can be supernodes and from which one or more supernodes can be formed.
We have used so-called fundamental supernodes in our algorithms. The set K —
ip.p+ I,...,p+ g — 1} is a fundamental supernode if if is a maximal subset of
contiguous columns that forms a supernode for which the following holds: for i = 1,
2.,..g— 1, the node p+i— 1 is the sole child of p+ 1 in the elimination tree. The
notion of fundamental supernodes was introduced in [4] and was discussed extensively
in [23]. The fundamental supernodes for our model problem are shown in Figure 3.1.
Associated with any supernode partition is a supernodal elimination tree, which is
obtained from the elimination tree essentially by collapsing the nodes (columns) in
each supernode into a single node. The supernodal elimination tree for the partition
in Figure 3.1 is shown in Figure 3.2, superimposed on the underlying elimination tree.

The primary reason for using the fundamental supernode partition in this appli-
cation was pointed out in [23]: it is the coarsest supernode partition for which the
supernode dependencies can be observed in the supernode elimination tree in a man-
ner strictly analogous to the way the column dependencies are observed in the nodal
elimination tree. Consequently, a fundamental supernode partition can be used more
cleanly and naturally in a parallel factorization algorithm, where data dependencies
are of great practical importance. Liu et al. [23] contains a full discussion of this point.

Given the matrix A4, the supernode partition can be obtained by several means.
When the ordering of the columns and rows of A is a minimum degree or nested
dissection ordering, the partition can be obtained easily as a natural by-product of
the reordering step. Otherwise, the supernode partition can be obtained directly from
the structure of L afier the symbolic factorization; it can also be obtained before the
symbolic factorization using the algorithm given in [23].

3.2. Sequential supernodal Cholesky factorization

In this section we describe a left-looking sequential sparse Cholesky factorization al-
gorithm that exploits the supernodal structure in L. The algorithm is not new; its
variants have appeared in [5] and [25]. Let K = {p,p+ 1,....,p+g— 1} bea supernode
in L. Consider the computation of L.j for some j > p + ¢ — /. Suppose column A*j
has to be modified by L*it where i £ K. It follows from the definition of supernodes
that column will be modified by a/l columns of JC In other words, a column
J > p +q— 1 is either updated by no column of K or every column of K. This
observation has some important ramifications for the performance of sparse Cholesky
factorization. Loosely speaking, the columns in a supernode can now be treated as
a single unit in the computation. Since the columns in a supernode have the same
sparsity structure below the dense diagonal block, modification of a particular column
J=p + g— | by these columns can be accumulated in a work vector using dense
vector operations, and then applied to the target column using a single sparse vector
operation that employs indirect addressing. Moreover, the use of loop unrolling in the

- 13 -

10012 13(15 18(24 2127 25(33 28(36

Figure 3.2: Supernodal elimination tree induced by the fundamental supernodes of the
matrix shown in Figure 2.3. Ovals enclose supernodes that contain more than one
node; nodes not enclosed by ovals are singleton supernodes. Bold-face numbers label

supernodes.

- 14 -

accumulation, as described in [9], further reduces memory traffic. These issues have
been addressed in detail in [1,3,5,25].

In Figure 3.3, we present a supernodal Cholesky factorization algorithm, which
is quite similar to the one in Figure 2.2. In Figure 2.2, 7 identifies the columns of
L needed to modify when is computed. Incorporating supernodes into the
algorithm, we exploit the fact that columns in the same supernode update the same
set of columns outside the supernode. Thus, s will identify the supernodes needed to
modify 4+j when X*j is to be computed. In Figure 3.3, we have adopted the following
notation. Supernodes are denoted by bold capital letters, and in order to keep the
notation simple K is to be interpreted in one of two different senses, depending on the
context in which it appears. In one context, K is interpreted as the set of columns
composing the supernode, i.e., K = {p,p + 1,...,p + <1 — 1}e In other lines of the
algorithm, the supernodes are treated as an ordered set of loop indices 1, 2, ..., K,
«ees IV, where K < J if'and only if p < p’, where p and pl are the first columns
of K and J, respectively. This dual-purpose notation is illustrated in Figure 3.1,
where the supernode labels are written over the diagonal entries, yet we can still write
30 = {40,41,42}, for example. We denote both the last supernode and the number of
supernodes by V.

Suppose K = {p,p+ 1,....p+<I—1}. Wheneverj > p+¢—1[and 7 0, the
task cmod(j, K) consists of the operations cmod(j, k) where k = p,p-\-1,...,p + g—I.
If, however, j 6 K, then cmod(j, K) consists of the operations cmod(j, k), for k =
p.p+ 1,.. ..j — 1. Suppose is the last column in a supernode K and let Jite ™ 0.
Then next(j, K) is defined to be next(j,i). Similarly, we define next(K K) to be
next(%£, £).

To reiterate the advantage of exploiting the supernodal structure of X, we note that
the operation cmod(j, K) for j & K can be accumulated in work storage by a sequence
of dense vector operations (saxpy using the BLAS terminology [19]), after which the
accumulated column modifications can be applied to the target column X*j using a
single column operation that requires indirect addressing. Execution of the operation
cmod(j, J) forj £ J is even easier, requiring no work storage or indirect addressing. In
both cases, loop unrolling can be employed to reduce memory traffic, thereby improv-
ing the utilization of pipelined arithmetic units, especially on vector supercomputers.
These capabilities are not available in the “nodal” Cholesky factorization algorithm in
Figure 2.2.

3.3. Parallel supernodal Cholesky factorization

As far as we know, the first attempt to parallelize a supernodal Cholesky factorization
algorithm was described in [28]. Using the notation in Figure 3.3, the basic idea in
[28] is to partition the work in cmod(j, K) and cmod(j, J) evenly among the available
processors. This approach is similar to that employed in the LAPACK project [2],

- 15 -

for 7=1 to iV do
AN +_0
end for

for J =1 to iV do
for 7 £ J (in order) do

for K 6 Sj do
cmod(j, K)
q — next(j, K)
ifqg < n then
<§9 <Sg U ¢{K}
end if
end for
cmod(j, J)
cdiv(j)
end for
q — next(J,J)
irq < n then
Sq *— SqU {J}
end if
end for

Figure 3.3: A sequential supernodal Cholesky factorization algorithm.

- 16 -

where, in the interest of software portability and reliability, use of multiple processors
occurs strictly within each call to some computationally intensive variant of a matrix-
matrix multiply (BLASS) or matrix-vector multiply (BLAS2) kernel subroutine. Hence
each call to the kernel involves a fork-and-join operation. For large dense matrices,
where the vectors are quite long and each call to the kernel routine typically involves
a substantial amount of work, this approach is quite effective [§]. For sparse matrices,
however, short vectors and a limited amount of work within a typical call to the kernel
routine make it quite difficult to implement this approach in an effective manner.
The performance of the code in [28] apparently suffers from these defects, and the
stripmining technique used to distribute the tasks cmod(j, K) and cmod(j, J) among
the processors greatly shortens the vector lengths, which is quite detrimental on the
target machine, a Cray Y-MP multiprocessor.

In this section, we describe a different way to parallelize the supernodal Cholesky
factorization algorithm in Figure 3.3. Our parallel version, shown in Figure 3.4, exploits
far more of the potential parallelism than the technique used in [28].

A few comments on the algorithm in Figure 3.4 are in order. First, note that a
supernode J is inserted into Sgq, where ¢ — next(J, J), only after the last column of
J has been completed. Thus, when a processor working on column ¢ obtains .J from
Sq, all columns of the supernode J are available for updating column ¢ of A. This
is potentially inefficient, as the columns of J are not made available to update other
columns of 4 as soon as they have been completed. An alternative to this approach is
to insert J into S§ as soon as the first column of the supernode has been completed.
Of course, when a processor working on column ¢ obtains J from Sg, not all columns
of J are necessarily available. Some flags must be maintained so that the processor can
determine which columns of J have been completed. This approach attempts to make
every column of L available to update other columns as soon as it has been completed.
We have implemented both approaches. Preliminary tests indicate that the difference
in performance for these two approaches is extremely small. We have chosen to use the
approach shown in Figure 3.4 because it is much simpler to describe and it simplifies
our implementation, especially the incorporation of loop unrolling into the code.

Another remark concerns the cmod(j, K) operations. As in the sequential case,
since all the columns in K share the same sparsity structure below the diagonal entry of
the last member of K, these operations can be accumulated in work storage using dense
vector operations. Extra care is required however when performing the cmod(j, J)
operation. Since some of the columns 7’ < j belonging to J may not be completed, a
flag has to be associated with each column to record the column’s current status. The
flag for a particular column is set immediately after the column has been completed.
Since the flag for a particular column is set only by the processor that computes the
column, synchronization is not needed.

The number of lock and unlock synchronization operations required in the parallel
supernodal Cholesky factorization algorithm is often much smaller than that required

.17 -

Global initialization:
0 ™ {Tco/(1),rco/(2),...,rco/(n)}
for T =1 to TV do

end for

Work performed by each processor:
while Q 7" 0 do
pop Tcol(j) from QO
let J be the supernode containing column ;
while column ; requires further cmod's do
ifsj = 0 then
wait until s7 ™0
end if
lock
obtain K from .sy
q — next(j, K)
\ig < n then
S, N UK}
end if
unlock
cmod(j, K)
end while
cmod(j, J)
cdiv(j)
ii j is the last column of supernode .J then
q — next(J,J)
ii ¢ < n then
lock
Sq — U {J}
unlock
end if
end if
end while

Figure 3.4: A parallel supernodal Cholesky factorization algorithm for shared-memory
multiprocessor machines.

- 18 -

in the nodal version, as the following discussion shows. One of the key features in
Figures 3.3 and 3.4 is that each set Sj contains supernodes, rather than columns as it
did in Figures 2.2 and 2.5. It is easy to see in Figure 3.3 that each supernode .J has to be
inserted into 0(|Z,*"|) sets, where F*/ is the last column of .J. Consequently, the total
number of synchronizations required in Figure 3.4 depends on the number of compressed
subscripts [27], which is basically the number of nonzero entries in the last columns of
all supernodes. To illustrate the reduction in the amount of synchronization, consider a
model mxm grid problem using either a 5-point or a 9-point operator. Suppose the grid
points are labelled using the nested dissection algorithm [13]. It is easy to show that the
number of nonzeros in L is O(m?2log m) [13] and the number of compressed subscripts
is O(m?2) [27]. Thus, the amount of synchronization in the parallel supernodal Cholesky
factorization is reduced by a factor of logm. Experimental results in the next section
show the reductions in a collection of test problems.

3.4. Scheduling column tasks

Our discussion thus far has ignored an important issue: the scheduling of the column
tasks 7col(j) on the available processors. While we have found this issue to be less
important on shared-memory machines than it is on distributed-memory machines,
it nonetheless deserves some attention, and is likely to be of more consequence as
shared-memory machines with substantially more processors become available in the
future. Again, the column-dependency information contained in the elimination tree is
indispensable in dealing with this problem.

We use the following simple technique to schedule the column tasks. Before the
factorization begins, all columns are placed into the column task pool in the order in
which they will be selected from the pool. Thus, the pool of tasks can be viewed as a
static queue. A scheduling, then, is essentially the order in which the column tasks are
placed in the static queue.

The goal of the heuristic we use to order the column tasks in the queue is to exploit
as much as possible the high-level parallelism available for sets of independent columns.
Recall that Tcol(i) and Tcol(j) are independent column tasks if i and 7 belong to two
disjoint subtrees in the elimination tree. Consider the example in Figure 2.4. Columns
associated with the leaves of the elimination tree (1, 2, 4, 5, 10, 11, 13, 14, 22, 23, 25,
26, 31, 32, 34 and 35) are independent, since they belong to disjoint subtrees. If there
are enough processors available, the corresponding column tasks can be performed in
parallel with no delays due to data-dependencies. Similarly, columns 9, 18, 30 and 39
are independent. Thus, 7col(9), Tcol(l8), Tcol(30) and Tcol(39) can be carried out
concurrently if the column tasks associated with the subtrees T[8], T[17], T[29] and
T[38] have already been completed. The elimination tree therefore provides a natural
way to schedule the column tasks. The order in which the column tasks are placed in
the work pool Q is generated by a breadth-first, bottom-up traversal of a post-ordered

- 19 -

version of the elimination tree. The same strategy was used in [15].

4. Numerical experiments

4.1. Test problems

problem brief description

BCSSTK13 Stiffness matrix - fluid flow generalized eigenvalues

BCSSTK14 Stiffness matrix - roof of Omni Coliseum, Atlanta

BCSSTK15 Stiffness matrix - module of an offshore platform

BCSSTK16 Stiffness matrix - Corp. of Engineers dam

BCSSTK17 Stiffness matrix - elevated pressure vessel

BCSSTKI18 Stiffness matrix - R.E.Ginna nuclear power station

BCSSTK23 Stiffness matrix - portion of a 3D globally triangular bldg
BCSSTK24 Stiffness matrix - winter sports arena

BCSSTK25 Stiffness matrix - 76 story skyscraper

BCSSTK29 Stiffness matrix - buckling model of the 767 rear bulkhead
BCSSTK30 Stiffness matrix - off-shore generator platform (MSC NASTRAN)
BCSSTK31 Stiffness matrix - automobile component (MSC NASTRAN)
BCSSTK32 Stiffness matrix - automobile chassis (MSC NASTRAN)
BCSSTK33 Stiffness matrix - pin boss (auto steering component), solid elements
NASA1824 Structure from NASA Langley, 1824 degrees of freedom
NASA2910 Structure from NASA Langley, 2910 degrees of freedom
NASA4704 Structure from NASA Langley, 4704 degrees of freedom
NASASRB Structure from NASA Langley, shuttle rocket booster

Table 4.1: List of test problems.

Most of the test problems used in our numerical experiments were taken from the
Harwell-Boeing Test Collection [11]. A brief description of the problems is given in
Table 4.1. In the experiments, each matrix was initially ordered using an implemen-
tation of the minimum degree algorithm due to Liu [20], followed by a postordering
of the elimination tree [22]. The reason for postordering the elimination tree is that
the algorithms in [23] were used to compute the fundamental supernodes and the sym-
bolic factorization, and they require such a postordering. Some statistics, such as the
size of each matrix, nonzero counts for both 4 and L, number of subscripts required
to represent the supernodal structure of L (denoted by /i(L)), the number of funda-
mental supernodes in L, and the number of floating-point operations) are provided in
Table 4.2.

2 A single floating-point operation is either a floating-point addition or a floating-point multiplication,
and is denoted by “flop”.

- 20 -

problem n 1 \L\ p(L) N flops
BCSSTKI13 2,003 83,883 271,671 28,621 599 58,550,598
BCSSTK14 1,806 63,454 112,267 17,508 503 9,793,431

BCSSTKI5 3948 117816 651,222 61,614 1295 165,035,094
BCSSTK16 4,884 290,378 741,178 50,365 691 149,100,948
BCSSTK17 10,974 428,650 1,005,859 94225 2595 144,269,031
BCSSTKIS 11,948 149,000 662,725 116807 7438 140,907,823
BCSSTK23 3,134 45178 420311 49,018 1,522 119,155,247
BCSSTK24 3,562 159910 278,922 22331 414 32,429,194
BCSSTK25 15439 252241 1416568 205513 7288 283,732,315
BCSSTK29 13,992 619488 1,694,796 174,770 3231 393,045,158
BCSSTK30 28924 2,043,492 3843435 229,670 3,689 928,323,809
BCSSTK31 35588 1,181,416 5308247 330,896 8304 2,550,954,465
BCSSTK32 44,609 2,014,701 5246353 374,507 6,927 1,108,686,016
BCSSTK33 8,738 591,904 2,546,802 124,532 1201 1203,491,786
NASA1824 1,824 39208 73,699 12,587 527 5,160,949
NASA2910 2910 174296 204,403 25170 599 21,068,943
NASA4704 4,704 104756 281472 35339 1245 35,003,786
NASASRB 54,870 2,677,324 11,904,998 592,254 8,027 4,672,895,526

Table 4.2: Characteristics of test problems.
Legend:
n: number of equations,
IT]: number of nonzeros in 4,
IL\: number of nonzeros in L, including the diagonal,
n(L): number of row subscripts required to represent the supernodal structure of L,

N: number of fundamental supernodes in L,
flops: number of floating-point operations required to compute L.

- 21 -

Throughout this section, we use colfct to refer to the column-based approach to
Cholesky factorization used in Figures 2.2 and 2.5. Likewise, we use supfct to refer
to supernode-based approach used in Figures 3.3 and 3.4. For each approach there
are two distinct but similar routines: a serial routine and a parallel routine. Thus,
there are four routines, each implementing one of the algorithms found in Figures 2.2,
2.5, 3.3, and 3.4. It is worth noting that the serial colfct routine is a version of
SPARSPAK’s gsfct routine that has been slightly modified for fair comparison with
the other routines, which were written from scratch.

4.2. Numerical results on an IBM RS/6000

The primary purpose of Table 4.3 is to show the impact on performance of various levels
of loop unrolling in the supfct routines. The kernel subroutine called by both the serial
and parallel supfct routines is capable of unrolling the outer loop of a column-oriented
matrix-vector multiply, as in [9]. (The loop unrolling performs multiple saxpy’s in
a single loop.) Such loop unrolling cannot be introduced into the colfct routines
because they are not cognizant of the supernode structure on which the technique
depends. Loop unrolling levels * = 1, 2, 4, and § have been tried on several machines.

supfct with loop unrolling
problem colfct =1 =2 =4 [=%
BCSSTK13 986 739 598 545 523
BCSSTK14 174 133 107 1.02 1.00
BCSSTK18 24.02 1859 1517 1393 13.60
BCSSTK23 1991 1488 1194 10.74 10.52
BCSSTK24 559 410 327 3.02 295
NASA1824 94 74 62 59 S8
NASA2910 368 283 232 213 213
NASA4704 6.09 453 371 342 337

Table 4.3: Factorization times in seconds for various levels of loop-unrolling on an IBM
RS/6000 (model 320).

Table 4.3 records the results of these tests on an IBM RS/6000 workstation (model
320). Our double precision Fortran code was compiled using the IBM Fortran compiler
x1f with optimization turned on (i.e., xIf -0). The results for some of the smaller
problems in our test set are reported in Table 4.3.

The first thing to note is that supfct with no loop unrolling (*=1) is significantly
faster than colfct. We believe the improvement is due to better use of the cache by
supfct, which is due, in turn, to the reduction in indirect addressing and increased
locality of the data references obtained via supernodes and careful attention to cer-
tain implementation details. On other machines we have tried, supfct with no loop
unrolling generally runs no faster than colfct, and quite often runs slightly slower.

The improvements due to loop unrolling shown in Figure 4.3 are fairly typical of

- 22 -

what we have observed on other machines, too. While the benefits of loop unrolling
levels higher than £=4 are minimal on the IBM RS/6000, the point of diminishing
returns is usually higher on other machines. Experience has shown £=8 to be a good
overall choice for the machines we have worked with. In all subsequent experiments,
sequential and parallel supfct use loop unrolling to level £=8.

4.3. Numerical results on a Sequent Balance 8000

Next, we compare the performance of parallel colfct with that of parallel supfct on
a Sequent Balance 8000, a shared-memory multiprocessor with 12 processors and 16
Mbytes of memory. The parallel routines used Sequent Fortran compiler directives to
access the parallel capabilities of the machine and to perform the necessary synchro-
nization operations. The Sequent’s Fortran preprocessor transformed these compiler
directives into appropriate Fortran code, which, in turn, issued the required system
subroutine calls. The Fortran source code was compiled using the Fortran compiler
fortran with the optimization and preprocessing options turned on (i.e., fortran
-04 -mp).

Table 4.4 contains factorization times and speed-up ratios (enclosed in parentheses)
for runs on some of the smaller problems in our test set. Since we are interested
primarily in comparing the ability of colfct and supfct to exploit multiple processors,
each speed-up ratio is formed by dividing the time required for a parallel run into the
time required for a serial run of the same method. Note that the serial time is quite
distinct from the time required by the parallel algorithm on a single processor, which
is always greater.

parallel
problem method serial P=I p=2 p=4 p=7 p=10
BCSSTK13 colfct 1147.2 1299.4 (0.88) 652.2 (1.8) 333.7(3.4) 195.6 (5.9) 140.7 (8.2)
supfct 874.4 878.3 (1.00) 440.3 (2.0) 2259 (3.9) 132.0 (6.6) 93.7 (9.3)
BCSSTK 14 colfct 195.2 225.6 (0.87) 114.2 (1.7) 58.7 (3.3) 34.8 (5.6) 25.5 (7.7)
supfct 155.4 157.5 (0.99) 79.6 (2.0) 40.4 (3.8) 23.4 (6.6) 16.8 (9.3)

BCSSTKI8 colfct 27909 31523 (0.89) 1589.7 (1.8) 810.0 (3.4) 477.3 (5.8) 3463 (8.1)
supfct 21444 21793 (0.98) 1097.9 (2.0) 556.7 (3.9) 3262 (6.6) 234.8 (9.1)
BCSSTK23 colfct 23288 2627.9 (0.89) 13225 (1.8) 670.2 (3.5) 387.0 (6.0) 275.1 (8.5)
supfct 1755.1 1776.8 (0.99) 893.1 (2.0) 447.5 (3.9) 259.1 (6.8) 182.6 (9.6)

BCSSTK24 colfct 640.3 733.8 (0.87) 371.6 (1.7) 188.8 (3.4) 110.7 (5.8) 80.2 (8.0)
supfct 493.9 500.4 (0.99) 250.6 (2.0) 126.8 (3.9) 73.1 (6.8) 52.1 (9.5)
NASA1824 colfct 104.9 122.4 (0.86) 62.0 (1.7) 32.0 (3.3) 19.4 (5.4) 147 (7.1)
supfct 84.8 86.8 (0.98) 439 (1.9) 224 (3.8) 13.2 (6.4) 9.6 (8.8)
NASA2910 colfct 417.0 482.7 (0.86) 2425 (1.7) 124.1 (3.4) 732 (5.7) 533 (7.8)
supfct 330.0 337.0 (0.98) 167.6 (2.0) 855 (3.9) 49.5 (6.7) 352 (9.4)
NASA4704 colfct 691.9 791.8 (0.87) 401.3 (1.7) 2042 (3.4) 119.8 (5.8) 86.6 (8.0)
supfct 539.4 5425 (0.99) 274.6 (2.0) 1387 (3.9) 802 (6.7) 57.0 (9.5)

Table 4.4: Factorization times in seconds (and speed-ups) on a Sequent Balance 8000.

Comparing the factorization times for the two methods in the last column (p=10)
clearly indicates the superiority of supfct over colfct. Indeed the differences in their
performance on these problems are large and remarkably consistent, ranging from a

- 23 -

low of 47.5%3 to a high of 57.8%. Two observations largely account for the superior
performance of supfct. First, the loop unrolling discussed in the previous section is
quite valuable on the Sequent also. The effects of loop unrolling are apparent in the
serial runs, and they are quite consistent among the problems, with improvements in
performance ranging from a low of 23.7% to a high of 32.7%. The benefits of loop
unrolling are largely preserved in the parallel implementation of supfct.

Second, supfct’s speed-up ratios are consistently better than coifct’s; for colfct
they range from 7.1 to 8.5, and for supfct they range from 8.8 to 9.6. The “speed-up”
ratios for parallel runs on a single processor (p=1) suggest that one of the primary rea-
sons for coifct’s inferior speed-up ratios is the high synchronization overhead incurred
by the method. Since there is no contention for access to the critical sections of the
code when the parallel codes are run on a single processor, it is likely that the relative
difference in synchronization overhead costs is significantly greater on 10 processors.
The speed-ups for colfct on 10 processors are nonetheless quite respectable (7.1-8.5).

4.4. Numerical results on a Cray Y-MP

Finally, we compare parallel colfct and parallel supfct on a Cray Y-MP, a powerful
vector supercomputer with 8 processors and 128 Mwords of memory. The code run
on this machine was the same code run on the Sequent, with a few minor changes re-
quired to take care of machine-dependent constructs for exploiting parallelism. Again,
the loop unrolling level used by supfct was f=8, and Fortran compiler directives were
used to exercise the machine’s parallel capabilities and to perform the necessary syn-
chronization operations. The code was compiled using the Fortran compiler cf77 with
optimization (the default) and preprocessing options on. (i.e., cf77 -Zu).

The top half of Table 4.5 reports factorization times and speed-up ratios (enclosed
in parentheses) for both methods applied to some small problems in our test set. The
bottom half of the table records performance data for supfct on the remaining prob-
lems in our test set.

Not surprisingly, supfct performs much better than colfct on this machine. Loop
unrolling is more effective on the Cray Y-MP than it is on the Sequent. Comparing
the serial runs for the two methods, we find differences in performance ranging from a
low of 53% to a high of 132%, due to loop unrolling and reduced indirect indexing in
supfct. Similar results have been reported previously in [5]. We also find that supfct
parallelizes much better than colfct. For example, on eight processors (p==8) the
speed-up ratios for supfct range from a low of 6.0 to a high of 6.9, which is quite good,
especially on such small problems. The speed-up ratios for colfct, however, are very
poor, ranging from a low of 2.0 to a high of 3.7. As was the case on the Sequent, the
“speed-ups” obtained on a single processor indicate that the high synchronization costs

3The base for each percentage is the smaller of the two times. This applies to percentages presented
later in this section as well.

- 24 .

parallel
problem method serial P=I p=2 p=4 p=06 p=8
BCSSTK13 colfct 929 1.347 (.69) .685 (1.4) 379 (2.5) 314 (3.0) 301 (3.1)
supfct 439 1493 (.89) .249 (1.8) 128 (3.4) .089 (4.9) .069 (6.4)
BCSSTK 14 colfct 238 391 (.61) 203 (1.2) 126 (1.9) 121 (2.0) 121 (2.0)
supfct 156 185 (.84) .093 (1.7) .048 (3.2) .033 (4.7) .026 (6.0)
BCSSTKI15 colfct 2.485 3.471 (.72) 1.770 (1.4) 962 (2.6) 768 (3.2) 728 (3.4)
supfct 1.071 1.172 (91) .594 (1.8) 299 (3.6) 204 (5.2) 157 (6.8)
BCSSTK16 colfct 2.444 3.549 (.69) 1.814 (1.3) 995 (2.5) 834 (2.9) 812 (3.0)
supfct 1.067 1.178 (91) .590 (1.8) 299 (3.6) 202 (5.3) 154 (6.9)
BCSSTK17 colfct 2.712 4.121 (.66) 2.142 (1.3) 1.223 (2.2) 1.104 (2.5) 1.094 (2.5)
supfct 1.373 1.540 (.89) 773 (1.8) 392 (3.5) 267 (5.1) 206 (6.7)
BCSSTK18 colfct 2.288 3.284 (.70) 1.675 (1.4) 928 (2.5) 767 (3.0) 729 (3.1)
supfct 1.314 1.481 (.89) 741 (1.8) 382 (3.4) 265 (5.0) 213 (6.2)
BCSSTK23 colfct 1.755 2.408 (.73) 1.219 (1.4) 652 (2.7) 514 (3.4) 473 (3.7)
supfct 798 879 (.91) 441 (1.8) 224 (3.6) 153 (5.2) 125 (6.4)
BCSSTK24 colfct 674 1.071 (.63) 551 (1.2) .329 (2.0) 302 (2.2) 301 (2.2)
supfct 338 381 (.89) .190 (1.8) .096 (3.5) .065 (5.2) .050 (6.8)
BCSSTK25 supfct 2.580 2.872 (.90) 1.433 (1.8) 731 (3.5) 504 (5.1) .394 (6.5)
BCSSTK29 supfct 2.939 3.195 (.92) 1.602 (1.8) .810 (3.6) 547 (5.4) 421 (7.0)
BCSSTK30 supfct 5.816 6.301 (.92) 3.154 (1.8) 1.590 (3.7) 1.073 (5.4) 815 (7.1)
BCSSTK31 supfct 12.607 13.299 (.95) 6.653 (1.9) 3.330 (3.8) 2.249 (5.6) 1.706 (7.4)
BCSSTK32 supfct 7.773 8.491 (.92) 4.249 (1.8) 2.134 (3.6) 1.442 (5.4) 1.100 (7.1)
BCSSTK33 supfct 5.831 6.146 (.95) 3.074 (1.9) 1.539 (3.8) 1.040 (5.6) 788 (7.4)
NASA1824 supfct 114 137 (.83) .069 (1.7) .036 (3.2) .025 (4.6) .019 (6.0)
NASA2910 supfct 287 331 (.87) 166 (1.7) .084 (3.4) .058 (4.9) .045 (6.4)
NASA4704 supfct 429 483 (.89) 243 (1.8) 124 (3.5) .085 (5.0) .065 (6.6)

NASASRB supfct 23.563 24.850 (.95) 12.404 (1.9) 6.202 (3.8) 4.179 (5.6) 3.164 (7.4)

Table 4.5: Factorization times in seconds (and speed-ups) on a Cray Y-MP.

incurred by colfct seriously degrade its parallel performance. Indeed, on this machine
the overhead appears to be considerably higher than it was on the Sequent. This high
overhead, combined with the fast floating-point computational rates on this machine,
probably account for most of the degradation in parallel performance of colfct.

The performance of supfct on the large problems in the bottom half of the table
is consistently good. Ignoring the three smallest problems in this portion of the table
(NASA1824, NASA2910, and NASA4704), speed-up ratios range from a low of 6.5 to a
high of 7.4. On six out of seven of these problems the speed-up ratio is 7.0 or greater,
with the 6.5 speed-up ratio reserved for the problem requiring the least work, namely
BCSSTK25.

Table 4.6 compares the performance of supfct with the parallel supernodal factor-
ization algorithm used in [28], which we will designate as supfct-SVY. The performance
figures are expressed in Mflops4, as is commonly done for vector supercomputers such
as the Cray Y-MP. We report the performance of both codes on those problems in our
test set for which results for supfct-SVY were available to us. The performance data
for supfct-SVY were obtained from an unpublished manuscript [29].

Consider the results obtained on 8 processors (p=8). On six of the twelve prob-

4Mflops (megaflops) are millions of floating-point operations per second. Gflops (gigaflops) are
billions of floating-point operations per second.

problem
BCSSTK15

BCSSTK16
BCSSTK23
BCSSTK24
BCSSTK30
BCSSTK31
BCSSTK32
BCSSTK33
NASA1824
NASA2920
NASA4704

NASASRB

.25 -

method
supfct
supfct-SVY
supfct
supfct-SVY
supfct
supfct-SVY
supfct
supfct-SVY
supfct
supfct-SVY
supfct
supfct-SVY
supfct
supfct-SVY
supfct
supfct-SVY
supfct
supfct-SVY
supfct
supfct-SVY
supfct
supfct-SVY
supfct
supfct-SVY

serial
154.1
197.8
139.7
190.8
149.3
191.6
95.9
139.4
159.6
212.2
202.3
251.4
142.6
193.5
206.4
258.4
45.3
64.3
73.4
97.5
81.6
117.0
198.3
250.6

Table 4.6: Factorization computational rates

parallel

p=4 p=8
551.9 1051.2
301.1 320.8
498.6 968.2
287.5 297.4
531.9 953.2
2933 315.1
337.8 648.5
168.2 168.7
583.8 1139.0
350.0 375.0
766.0 14953
566.3 689.2
519.5 1007.9
291.4 307.0
782.0 15273
593.1 717.2
143.3 271.5

69.8 69.8
250.8 468.1
121.6 121.4
282.3 538.4
143.5 143.5
753.4 1476.9
531.6 625.2

(Mflops) on a Cray Y-MP.

- 26 -

lems, supfct performs the factorization at over a Gflop, with highs of 1.48 Gflops on
NASASRB, 1.50 Gflops on BCSSTK31, and 1.53 Gflops on BCSSTK33. For two oth-
ers problems, the computational rate is nearly a Gflop: .97 Gflop on BCSSTK16 and
.95 Gflop on BCSSTK23. Thus, for 8 out of 12 of the problems, supfct computed
the factorization at nearly a Gflop or more. Table 4.2 indicates that the remaining
four problems (NASA1824, NASA2910, NASA4704, and BCSSTK?24) are quite small.
Moreover, in Table 4.5 we see that serial supfct requires less than half a second to
factor any of these matrices.

The performance of supfct-SVY is much poorer due to the problems with this
approach mentioned earlier in Section 3.3. The code runs at less than a Gflop on
every problem, despite having significantly higher serial efficiency due to assembly
language programming of the compute-intensive kernel routines and other machine-
specific optimizations. Our parallel implementation of supfct is a Fortran 77 code,
with no machine-specific optimizations.

5. Concluding remarks

We have implemented a new parallel sparse Cholesky factorization algorithm for shared-
memory multiprocessors. This new left-looking algorithm uses techniques from [5] and
[15]: it uses supernodes to reduce indirect addressing and memory traffic [5], and
it decomposes the computation into column tasks 7co/(j) and schedules these tasks
dynamically on the available processors [15]. Incorporation of supernodes into the
algorithm in [15] reduces the synchronization overhead required to manage the row
structure sets .Sy from 0{\L\) to 0(/i(T)), where /r(X) is the number of row subscripts
required to represent the supernodal structure of L. In practice, n(L) is often much
smaller than |L|; consequently, contention for the critical sections is likely to be much
higher in colfct than in supfct. Since the algorithms use a single lock variable for
the critical sections, the sections are executed serially. Thus, the serial component of
supfct is in practice much smaller than that of colfct. Our tests indicate that this is
the single most important factor contributing to the new algorithm’s superior parallel
performance.

Right-looking sparse Cholesky algorithms (i.e., multifrontal algorithms) for shared-
memory multiprocessors have appeared in [6,10,29]. These algorithms exploit supern-
odes in much the same way that the new parallel left-looking algorithm does. Par-
allelizing the multifrontal algorithm however is considerably more complicated than
parallelizing the simpler left-looking algorithms. For instance, parallel multifrontal
Cholesky for shared-memory machines can no longer use a simple and efficient stack to
manage the “update” matrices required by the method. Methods for dealing with this
fragmented component of work storage are necessarily more complicated and storage
inefficient [10,29]. On the other hand, supfct requires only a modest amount of work
storage, which can be determined before the numerical factorization begins. Break-

- 27 -

ing multifrontal Cholesky factorization into tasks and scheduling these tasks on the
available processors is also more complicated than it is for the left-looking algorithms.
The additional complexity has lead to parameterized implementations, where the per-
formance of the code is quite sensitive to parameter selection (see [10] and especially
[29]).

There are however significant advantages enjoyed by the multifrontal method; e.g.,
it is a superior out-of-core method and is better able to improve performance by loading
and reusing data in cache. It appears to us that the multifrontal method very likely will
always be the method of choice for out-of-core sparse Cholesky factorization. However,
we think that a block-to-block left-looking algorithm may be quite competitive with the
multifrontal method at exploiting cache to improve performance. Such an algorithm
would be built around a crmod(J,K) operation that updates the appropriate subset of
columns from supernode .J with all the columns of the updating supernode K. With
the rising importance of cache memory on recent supercomputers and workstations,
exploring this approach on current serial and parallel machines is a promising area for
future work.

6. References

[1] P.R. Amestoy and L.S. Duff. Vectorization of a multiprocessor multifrontal code.
Internat. J. Supercomp. Appi, 3:41-59, 1989.

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-
baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A portable
linear algebra library for high-performance computers. In Proceedings of Super-
computing '90, pages 1-10. IEEE Press, 1990.

[3] C. Ashcraft. A vector implementation of the multifrontal method for large sparse,
symmetric positive definite linear systems. Technical Report ETA-TR-51, En-
gineering Technology Applications Division, Boeing Computer Services, Seattle,
Washington, 1987.

[4] C. Ashcraft and R. Grimes. The influence of relaxed supernode partitions on the
multifrontal method. ACM Trans. Math. Software, 15:291-309, 1989.

[5] C.C. Ashcraft, R.G. Grimes, J.G. Lewis, B.W. Peyton, and H.D. Simon. Progress
in sparse matrix methods for large linear systems on vector supercomputers. /7-
ternat. J. Supercomp. Appl, 1:10-30, 1987.

[6] R.E. Benner, G.R. Montry, and G.G. Weigand. Concurrent multifrontal methods:
shared memory, cache, and frontwidth issues. Internat. J. Supercomp. Appl, 1:26-
44, 1987.

[7]

[10]

(1]

[12]

[16]

[17]

(18]

[19]

[20]

[21]

- 08 -

E.C.H. Chu, A. George, J. W-H. Liu, and E. G-Y. Ng. User’s guide for
SPARSPAK-A: Waterloo sparse linear equations package. Technical Report CS-
84-36, University of Waterloo, Waterloo, Ontario, 1984.

J.J. Dongarra, 1.S. Duff, J. Du Croz, and S. Hammarling. A set of level 3 basic
linear algebra subprograms. ACM Trans. Math. Software, 16:1-17, 1990.

J.J. Dongarra and S.C. Eisenstat. Squeezing the most out of an algorithm in Cray
Fortran. ACM Trans. Math. Software, 10:219-230, 1984,

LS. Duff. Multiprocessing a sparse matrix code on the Alliant FX/8. J. Comput.
Appl. Math., 27:229-239, 1989.

LS. Duff, R.G. Grimes, and J.G. Lewis. Sparse matrix test problems. 4CM Trans.
Math. Software, 15:1-14, 1989.

LS. Duff and J.K. Reid. The multifrontal solution of indefinite sparse symmetric
linear equations. ACM Trans. Math. Software, 9:302-325, 1983.

A. George. Nested dissection of a regular finite element mesh. SIAM J. Numer.
Anal., 10:345-363, 1973.

A. George, M.T. Heath, and J. W-H. Liu. Parallel Cholesky factorization on a
shared-memory multiprocessor. Linear Alg. Appl., 77:165-187, 1986.

A. George, M.T. Heath, J. W-H. Liu, and E. G-Y. Ng. Solution of sparse pos-
itive definite systems on a shared memory multiprocessor. [Internat. J. Parallel
Programming, 15:309-325, 1986.

A. George and J. W-H. Liu. Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1981.

A. George and D.R. Mclntyre. On the application of the minimum degree algo-
rithm to finite element systems. SIAM J. Numer. Anal., 15:90-111, 1978.

M.T. Heath, E. Ng, and B.W. Peyton. Parallel algorithms for sparse linear sys-
tems. SIAM Review, 1991. (To appear).

C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic linear algebra subpro-
grams for Fortran usage. ACM Trans. Math. Software, 5:308-371, 1979.

J. W-H. Liu. Modification of the minimum degree algorithm by multiple elimina-
tion. ACM Trans. Math. Software, 11:141-153, 1985.

J. W-H. Liu. A compact row storage scheme for Cholesky factors using elimination
trees. ACM Trans. Math. Software, 12:127-148,1986.

[22]

[23]

(28]

[29]

- 29 -

J. W-H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix
Anal. Appl., 11:134-172, 1990.

JJW.H. Liu, E. Ng, and B.W. Peyton. On finding supernodes for sparse matrix
computations. Technical Report ORNL/TM-11563, Oak Ridge National Labora-
tory, Oak Ridge, TN, 1990.

A. Pothen. Simplicial cliques, shortest elimination trees, and supernodes in sparse
Cholesky factorization. Technical Report CS-88-13, Department of Computer Sci-
ence, The Pennsylvania State University, University Park, Pennsylvania, 1988.

E. Rothberg and A. Gupta. Fast sparse matrix factorization on modern worksta-
tions. Technical Report STAN-CS-89-1286, Stanford University, Stanford, Cali-
fornia, 1989.

R. Schreiber. A new implementation of sparse Gaussian elimination. ACM Trans.
Math. Software, 8:256-276, 1982.

A.H. Sherman. Orn the efficient solution of sparse systems of linear and nonlinear
equations. PhD thesis, Yale University, 1975.

H.D. Simon, P.A. Vu, and C.W. Yang. Sparse matrix at 1.68 Gflops. Technical
report, Boeing Computer Services, Seattle, Washington, 1989.

C. Yang. A vector/parallel implementation of the multifrontal method for sparse
symmetric definite linear systems on the Cray Y-MP. Cray Research Inc., Mendota
Heights, MN, 1990.

23] -

ORNL/TM-11814

INTERNAL DISTRIBUTION

1. B. R. Appleton 26. T. H. Rowan
2-3. T. S. Darland 27-31. R. F. Sincovec
4. E. F. D’Azevedo 32-36. R. C. Ward
5. J.J. Dongarra 37. P. H. Worley
6. G. A. Geist 38. Central Research Library
7. E. R. Jessup 39. ORNL Patent Office
8. M. R. Leuze 40. K-25 Plant Library
9-13. E. G. Ng 41. Y-12 Technical Library /
14. C. E. Oliver Document Reference Station
15-19. B. W. Peyton 42. Laboratory Records - RC
20-24. S. A. Raby 43-44. Laboratory Records Department

25. C. H. Romine

EXTERNAL DISTRIBUTION
45. Cleve Ashcraft, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346

46. Donald M. Austin, 6196 EECS Bldg., University of Minnesota, 200 Union St.,
S.E., Minneapolis, MN 55455

47. Robert G. Babb, Oregon Graduate Institute, CSE Department, 19600 N.W. von
Neumann Drive, Beaverton, OR 97006-1999

48. Lawrence J. Baker, Exxon Production Research Company, P.O. Box 2189, Hous-
ton, TX 77252-2189

49. Jesse L. Barlow, Department of Computer Science, Pennsylvania State University,
University Park, PA 16802

50. Edward H. Barsis, Computer Science and Mathematics, P. O. Box 5800, Sandia
National Laboratories, Albuquerque, NM 87185

51. Chris Bischof, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439

52. Ake Bjorck, Department of Mathematics, Linkoping University, S-581 83 Linkop-
ing, Sweden

53. Jean R. S. Blair, Department of Computer Science, Ayres Hall, University of
Tennessee, Knoxville, TN 37996-1301

54. Roger W. Brocket!, Wang Professor of Electrical Engineering and Computer Sci-
ence, Division of Applied Sciences, Harvard University, Cambridge, MA 02138

55. James C. Browne, Department of Computer Science, University of Texas, Austin,
TX 78712

56. Bill L. Buzbee, Scientific Computing Divisibri,'rational Centdr fori~thiiosphericj? -
Research, P.O. Box 3000, Boulder, CO 80301 i ..,

57.

S8.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

- 32.

Donald A. Calahan, Department of Electrical and Computer Engineering, Univer-
sity of Michigan, Ann Arbor, MI 48109

John Cavallini, Acting Director, Scientific Computing Staff, Applied Mathematical
Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC
20585

Ian Cavers, Department of Computer Science, University of British Columbia,
Vancouver, British Columbia V6T 1W5, Canada

Tony Chan, Department of Mathematics, University of California, Los Angeles,
405 Hilgard Avenue, Los Angeles, CA 90024

Jagdish Chandra, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

Eleanor Chu, Department of Computer Science, University of Waterloo, Waterloo,
Ontario, Canada N2L 3Gl

Melvyn Ciment, National Science Foundation, 1800 G Street N.W., Washington,
DC 20550

Tom Coleman, Department of Computer Science, Cornell University, Ithaca, NY
14853

Paul Concus, Mathematics and Computing, Lawrence Berkeley Laboratory, Berke-
ley, CA 94720

Andy Conn, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown Heights,
NY 10598

John M. Conroy, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

Jane K. Cullum, IBM T. J. Watson Research Center, P.O. Box 218, Yorktown
Heights, NY 10598

George Cybenko, Center for Supercomputing Research and Development, Univer-
sity of Illinois, 104 S. Wright Street, Urbana, IL 61801-2932

George J. Davis, Department of Mathematics, Georgia State University, Atlanta,
GA 30303

Tim A. Davis, Computer and Information Sciences Department, 301 CSE, Uni-
versity of Florida, Gainesville, Florida 32611-2024

John J. Doming, Department of Nuclear Engineering Physics, Thornton Hall,
McCormick Road, University of Virginia, Charlottesville, VA 22901

lain Duff, Numerical Analysis Group, Central Computing Department, Atlas Cen-
tre, Rutherford Appleton Laboratory, Didcot, Oxon OX11 0QX, England

Patricia Eberlein, Department of Computer Science, SUNY at Buffalo, Buffalo,
NY 14260

Stanley Eisenstat, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

Lars Elden, Departrpent-of Mathematics, Linkoping University, 581 83 Linkoping,
Sweden
sLn

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.
87.

88.

89.

90.

91.

92.

93.
94.

9s.

96.

97.

- 33 .

Howard C. Elman, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

Albert M. Erisman, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seat-
tle, WA 98124-0346

Geoffrey C. Fox, Department of Physics, Room 229.1, Syracuse University, Syra-
cuse, NY 13244-1130

Paul O. Frederickson, NASA Ames Research Center, RIACS, M/S T045-1, Moffett
Field, CA 94035

Fred N. Fritsch, L-300, Mathematics and Statistics Division, Lawrence Livermore
National Laboratory, P.O. Box 808, Livermore, CA 94550

Robert E. Funderlic, Department of Computer Science, North Carolina State Uni-
versity, Raleigh, NC 27650

K. Gallivan, Computer Science Department, University of Illinois, Urbana, IL
61801

Dennis B. Gannon, Computer Science Department, Indiana University, Blooming-
ton, IN 47405

Feng Gao, Department of Computer Science, University of British Columbia, Van-
couver, British Columbia V6T 1W5, Canada

David M. Gay, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

C. William Gear, Computer Science Department, University of Illinois, Urbana,
IL 61801

W. Morven Gentleman, Division of Electrical Engineering, National Research
Council, Building M-50, Room 344, Montreal Road, Ottawa, Ontario, Canada
KIA ORS8

J. Alan George, Vice President, Academic and Provost, Needles Hall, University
of Waterloo, Waterloo, Ontario, Canada N2L 3G1

John R. Gilbert, Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto CA 94304

Gene H. Golub, Department of Computer Science, Stanford University, Stanford,
CA 94305

Joseph F. Grcar, Division 8331, Sandia National Laboratories, Livermore, CA
94550

John Gustafson, Ames Laboratory, lowa State University, Ames, IA 50011

Per Christian Hansen, UCI*C Lyngby, Building 305, Technical University of Den-
mark, DK-2800 Lyngby, Denmark

Richard Hanson, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd.,
Houston, TX 77042-3020

Michael T. Heath, Center for Supercomputing Research and Development, 305
Talbot Laboratory, University of Illinois, 104 South Wright Street, Urbana, 1
61801-2932

Don E. Heller, Physics and Computer Science Department, Shell Development
Co., P.O. Box 481, Houston, TX 77001

4 1a!

'

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.
109.

110.

111.

112.
113.

114.

115.

116.

117.
118.

119.

- 34 -

Nicholas J. Higham, Department of Mathematics, University of Manchester, Grt
Manchester, M13 9PL, England

Charles J. Holland, Air Force Office of Scientific Research, Building 410, Bolling
Air Force Base, Washington, DC 20332

Robert E. Huddleston, Computation Department, Lawrence Livermore National
Laboratory, P.O. Box 808, Livermore, CA 94550

Use fpsen, Department of Computer Science, Yale University, P.O. Box 2158 Yale
Station, New Haven, CT 06520

Lennart Johnsson, Thinking Machines Inc., 245 First Street, Cambridge, MA
02142-1214

Harry Jordan, Department of Electrical and Computer Engineering, University of
Colorado, Boulder, CO 80309

Barry Joe, Department of Computer Science, University of Alberta, Edmonton,
Alberta ToG 2H1, Canada

Bo Kagstrom, Institute of Information Processing, University of Umea, 5-901 87
Umea, Sweden

Malvyn H. Kalos, Cornell Theory Center, Engineering and Theory Center Bldg.,
Cornell University, Ithaca, NY 14853-3901

Hans Kaper, Mathematics and Computer Science Division, Argonne National Lab-
oratory, 9700 South Cass Avenue, Bldg. 221, Argonne, IL 60439

Linda Kaufman, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974

Robert J. Kee, Applied Mathematics Division 8331, Sandia National Laboratories,
Livermore, CA 94550

Kenneth Kennedy, Department of Computer Science, Rice University, P.O. Box
1892, Houston, TX 77001

Thomas Kitchens, Department of Energy, Scientific Computing Staff, Office of
Energy Research, ER-7, Office G-236 Germantown, Washington, DC 20585

Richard Lau, Office of Naval Research, 1030 E. Green Street, Pasadena, CA 91101

Alan J. Laub, Department of Electrical and Computer Engineering, University of
California, Santa Barbara, CA 93106

Robert L. Launer, Army Research Office, P.O. Box 12211, Research Triangle Park,
NC 27709

Charles Lawson, MS 301-490, Jet Propulsion Laboratory, 4800 Oak Grove Drive,
Pasadena, CA 91109

Peter D. Lax, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012

James E. Leiss, 13013 Chestnut Oak Drive, Gaithersburg, MD 20878

John G. Lewis, Boeing Computer Services, P.O. Box 24346, M/S 7L-21, Seattle,
WA 98124-0346 '

Jing Li, IMSL Inc., 2500 Park West Tower One, 2500 City West Blvd., Houston,
TX 77042-3020

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.
130.
131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

- 35 -

Heather M. Liddell, Center for Parallel Computing, Department of Computer
Science and Statistics, Queen Mary College, University of London, Mile End Road,
London EI 4NS, England

Armo Liegmann, c/o ETH Rechenzentrum, Clausiusstr. 55, CH-8092 Zurich, Switzer-
land

Joseph Liu, Department of Computer Science, York University, 4700 Keele Street,
North York, Ontario, Canada M3J 1P3

Robert F. Lucas, Supercomputer Research Center, 17100 Science Drive, Bowie,
MD 20715-4300

Franklin Luk, Electrical Engineering Department, Cornell University, Ithaca, NY
14853

Thomas A. Manteuffel, Department of Mathematics, University of Colorado -
Denver, Campus Box 170, P.O. Box 173364, Denver, CO 80217-3364

Paul C. Messina, Mail Code 158-79, California Institute of Technology, 1201
E. California Blvd., Pasadena, CA 91125

James McGraw, Lawrence Livermore National Laboratory, L-306, P.O. Box 808,
Livermore, CA 94550

Neville Moray, Department of Mechanical and Industrial Engineering, University
of Illinois, 1206 West Green Street, Urbana, IL 61801

Cleve Moler, The Mathworks, 325 Linfield Place, Menlo Park, CA 94025
Brent Morris, National Security Agency, Ft. George G. Meade, MD 20755

Dianne P. O’Leary, Computer Science Department, University of Maryland, Col-
lege Park, MD 20742

James M. Ortega, Department of Applied Mathematics, Thornton Hall, University
of Virginia, Charlottesville, VA 22901

Chris Paige, Department of Computer Science, McGill University, 805 Sherbrooke
Street W., Montreal, Quebec, Canada H3A 2K6

Roy P. Pargas, Department of Computer Science, Clemson University, Clemson,
SC 29634-1906

Beresford N. Parlett, Department of Mathematics, University of California, Berke-
ley, CA 94720

Merrell Patrick, Department of Computer Science, Duke University, Durham, NC
27706

Robert J. Plemmons, Departments of Mathematics and Computer Science, Box
7311, Wake Forest University Winston-Salem, NC 27109

Jesse Poore, Department of Computer Science, Ayres Hall, University of Ten-
nessee, Knoxville, TN 37996-1301 P p ; eLIf-'1.
Alex Pothen, Department of ComButer Science, -Perthsylvania State Uwirersity,
University Park, PA 16802 Vst v v .

t.i'v .
Yuanchang Qi, IBM Ewnropean Petroleum Aptilicatioa Ce@iW*vO. gox 585, N-
4040 Hafrsfjord, Norway \\\/

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

- 36 -

Giuseppe Radicati, IBM European Center for Scientific and Engineering Comput-
ing, via del Giorgione 159, 1-00147 Roma, Italy

John K. Reid, Numerical Analysis Group, Central Computing Department, Atlas
Centre, Rutherford Appleton Laboratory, Didcot, Oxon 0X11 0QX, England

Werner C. Rheinboldt, Department of Mathematics and Statistics, University of
Pittsburgh, Pittsburgh, PA 15260

John R. Rice, Computer Science Department, Purdue University, West Lafayette,
IN 47907

Garry Rodrigue, Numerical Mathematics Group, Lawrence Livermore Laboratory,
Livermore, CA 94550

Donald J. Rose, Department of Computer Science, Duke University, Durham, NC
27706

Edward Rothberg, Department of Computer Science, Stanford University, Stan-
ford, CA 94305

Axel Ruhe, Dept, of Computer Science, Chalmers University of Technology, S-
41296 Goteborg, Sweden

Joel Saltz, ICASE, MS 132C, NASA Langley Research Center, Hampton, VA
23665

Ahmed H. Sameh, Center for Supercomputing R&D, 1384 W. Springfield Avenue,
University of Illinois, Urbana, IL 61801

Michael Saunders, Systems Optimization Laboratory, Operations Research De-
partment, Stanford University, Stanford, CA 94305

Robert Schreiber, RIACS, Mail Stop 230-5, NASA Ames Research Center, Moffet
Field, CA 94035

Martin H. Schultz, Department of Computer Science, Yale University, P.O. Box
2158 Yale Station, New Haven, CT 06520

DavidS. Scott, Intel Scientific Computers, 15201 N.W. Greenbrier Parkway, Beaver-
ton, OR 97006

Lawrence F. Shampine, Mathematics Department, Southern Methodist University,
Dallas, TX 75275

Andy Sherman, Department of Computer Science, Yale University, P.O. Box 2158
Yale Station, New Haven, CT 06520

Kermit Sigmon, Department of Mathematics, University of Florida, Gainesville,
FL 32611

Horst Simon, Mail Stop T045-1, NASA Ames Research Center, Moffett Field, CA
94035

Anthony Skjellum, Lawrence Livermore National Laboratory, 7000 East Ave., L-
316, P.O. Box 808 Livermore, CA 94551

Danny C. Sorensen, Department of Mathematical Sciences, Rice University, P. 0. Box

1892, Houston,,Tf(7-71251
| —ai

G. W. Stewart, Computer Science. Departmbnt Umverﬁty of Maryland, College

Park ‘MD 20742 11

111 ft

162.

163.

l164.
165.

166.

167.

168.

169.

170.
171.

172.

173.

174.

175.

176.

177.

178-187.

- 37 -

Paul N. Swartztrauber, National Center for Atmospheric Research, P.O. Box 3000,
Boulder, CO 80307

Philippe Toint, Dept, of Mathematics, University of Namur, FUNOP, 61 rue de
Bruxelles, B-Namur, Belgium

Bernard Tourancheau, LIP, ENS-Lyon, 69364 Lyon cedex 07, France

Hank Van der Vorst, Dept, of Techn. Mathematics and Computer Science, Delft
University of Technology, P.O. Box 356, NL-2600 AJ Delft, The Netherlands

Charles Van Loan, Department of Computer Science, Cornell University, Ithaca,
NY 14853

Jim M. Varah, Centre for Integrated Computer Systems Research, University of
British Columbia, Office 2053-2324 Main Mall, Vancouver, British Columbia V6T
1WS5, Canada

Udaya B. Vemulapati, Dept, of Computer Science, University of Central Florida,
Orlando, FL 32816-0362

Robert G. Voigt, ICASE, MS 132-C, NASA Langley Research Center, Hampton,
VA 23665

Phuong Vu, Cray Research, Inc., 655F Lone Oak Drive, Eagan, MN 55121

Daniel D. Warner, Department of Mathematical Sciences, 0-104 Martin Hall,
Clemson University, Clemson, SC 29631

Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O. Box
1892, Houston, TX 77251

Andrew B. White, Computing Division, Los Alamos National Laboratory, P.O. Box
1663, MS-265, Los Alamos, NM 87545

Margaret Wright, Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ
07974

David Young, University of Texas, Center for Numerical Analysis, RLM 13.150,
Austin, TX 78731

Earl Zmijewski, Department of Computer Science, University of California, Santa
Barbara, CA 93106

Office of Assistant Manager for Energy Research and Development, U.S. Depart-
ment of Energy, Oak Ridge Operations Office, P.O. Box 2001 Oak Ridge, TN
37831-8600

Office of Scientific & Technical Information, P.O. Box 62, Oak Ridge, TN 37831

I\

A

