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THE REDUCTION OF A DISCRETE EVENT SIMULATION TO A MARKOV CHAIN #*
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An event-driven, time-based stochastic simula-
tion model may be modified in a straightforward man-
ner to satisfy the axioms of a discrete-astate, con-
tinuous-time Markov chain. The method requires
casting the probability distribution of each random
variable representing a time interval of the process
into the form of a series of exponentially-distrib-
uted stages. An algorithm for this transformation
has been developed. The technique is demonstrated
via a simple example of a computer system simula-
tion. The Markov chain representation of the sim-
ulation can be solved numerically, providing an in=-
dependent verification of the logic of the simula-
tion.

1. INTRODUCTION

Many problems can be approached by either sim-
ulation modelling or aualycic modelling., Each meth-
od has its advantages. For simulation, there is
precision, and the power to describe complex proc-
esses. Ananlalytic model requires simplicity in
its assumptions, and yields clarity and mathemati-
cal certainty of the demonstrated relationships.

For each approach there is a highly developed
discipline. Modelers therefore tend to be of one
type or the other, and modelling efforts that make
use of both techniques are rare. Yet the advan-
tages of the analytical techniques should be avail-
able to simulation modelers. In many cases, a sim-
ulation model is an elaboration and a refinement of
a developed analytic model. It includes second and
third order effects — parameters deemed not to
bear significantly on the essential analytical re=-
sults. At the least, the analytic model can be
used to validate the more complex simulation model.
If the results of the two modelling efforts are not
comparable, an inquiry into the source of the dis=-
parity is well advised.

In the following sections, we explore the
relationship between a time-based stochastic sim-

Andrew S. Noetzel

Applied Mathematics Department
Brookhaven National Laboratory

and
Elaine J. Weyuker

The Courant Institute of Mathematical Sciences, ‘1&5ﬁ D
0

— r'NeW'?ork~Hnive;sity__‘_h“““__*____—__s\
and -

Software Research Group, Sperry Univac Corp.>a

N

<=0 o,

ulation, and a well-known analytic model — the
discrete-state, continuous-parameter Markov process
(or Markov chain). We offer a general description
of each model, and discuss their essential dif-
ferences. The, using a simple computer system

model as an example, we show the structure of the
simulator, and how it may be reduced to the Markov
chain. The technique involves the decomposition

of general probability distributions. When the sim-
ulation model is made to conform to the assumptions
of the Markov chain its results can be compared with
the numerical equilibrium solutions of the Markov
chain. Thus, an irdependent verification of the logic
of the simulator is obtained. In principle, as long
as all of the simulation random variables that are
not discrete are time intervals of the process, the
reduction to the Markov chain conditions can be at-
tained without reducing the power of the simulation.
However, several practical constraints will limit
the applicability of the technique. 1In practice,
several different homomorphic mappings from the sim-
ulation model to the Markov process may be realized,
allowing validation of the simulation in various
modes of operation.

In the next sections, we outline the form of
the event-driven simulation, then review the defin-
ition of the Markov chain. We then present the
elementary computer sSystem model, and discuss the
transformation from simulation to Markov chain.

2. OUTLINE OF THE STOCHASTIC SIMULATION

We consider event-driven stochastic simulations
of the following general form. Processing, or op-
eration of the model, takes place at discrete points
in simulated time, represented by the clock variable
T. The events that are simulated at these discrete
times are scheduled on the Future Events chain (FE)
which is a list of (time, event) pairs, ordered by
time. The main simulator loop removes the first
item (t, e,) on FE, updates T to the event time t
and thefn’processes the model for the particular
event type e,. Generally, during the processing of
event type e, it is possible to schedule its
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The Reduction of a Discrete Event Simulation ... (coatinued)

consequences, in the form of events e, e (in-
cluding, possibly, e,), to occur at ajfuthre time.
The time of the future event e, is generally de-
termined by sampling the probaﬂility distribution
of the random variable T,. Then the entry

(T4T, e,) is inserted injt:s proper location on FE.
Crefd* 3(9), pg. 152 ££.1"

We distinguish between the model state at
clock time T, and the state of the simulation. The
model state M is simply the vector of all the var-
iables that describe the model under simulation,
after those variables have been updated by the
processing at clock time T. The simulation state
S is M and FE. The fact that the process being
modeled is approaching a particular future event
cannot be determined by observing M, but can be
seen in the more general simulation state S.

3. THE MARKOV CHAIN

The discrete state, continuous-parameter
Markov process consists of a set of model states
[Ml M, .+.}, and, for each pair of model states

)} a rate p,, of transition from M, to M,.

("M
[Reé.j(a,a).] 4 i :

The transition rate p, . Is an instantaneous
conditional probability raéé: given that the model
is in state M, at time t, the probability that it
will enter s:&ce M, during the interval (t,t+Ay),
for small At, is pJ At. Let the random variable
T, represent the tige the process will remain in
state M, given that it is in M,. As a consequence
of the =’ assumption of constant conditional trans-
ition probability rates, T, will have the exponen-
tial probability density fiunction

o 5 e Pyt
£,(6) = pe Pt

where p, = 2.;£ the summation being over all
model states M j’jﬁi. Furthermore, when the
transition out“df M., is taken, the model enters
state Mj with probability pij/pi .

The Markov chain model includes no concept of
a future events chain. At any time T, the model
state M, must embody all that needs to be known of
the hiséoty of the process, so that the future of
the model {s determined (stochastically) only by
the fixed transition probability rates Pyjt

We wish to consider the changes necessary to
the simulation model in order that it satisfy the
assumptions of the Markov chain. Rather than
consider the matter in the abstract (which will be
ambiguous, given the vagueness of the concept of
the model state), we provide a simple example of
a simulation, and refer to it throughout.

4, A SIMULATION EXAMPLE

As an elementary example, consider the sim-
ulation of the computer system model shown in
Figure 1, consisting of a CPU and a single I/0 de-
vice. We assume that the jobs in the system will
be able to overlap CPU and I/0 processings. Upon
gaining access to the CPU, a job computes for an

Figure 1
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interval T and then requires an I/0 operatilon.
Then while®the I/O operation takes time T,k CPU
processing coatinues for time T . Initiaily, T

is overlapped with T, : when botf the 1/0 and over-
lap period are compléte, the computation period T
may begin again. T T, and T are independent
random variables. 1f only a Single job is in the
system, these timing variables fully determine the
system operation, as shown in Figure 2.

We propose to simulate the system with the
following simple scheduling rules: both CPU and I/0
device are allocated on a first-come, first-served
basis, and are held until they can ao longer be
used. (Note that a job may hold the CPU indefin-
itely under this rule, if T°>Ti’ always.)

We assume further that T T, and T_ have
probability deasity functions“f fi and fo which
are identical for all jobs. ’ ’ ’

A natural data structure for the model state
is a pair of ordered lists of job numbers — the
CPU queue and the I/0 queue. If either queue is
empty, the corresponding device is idle; otherwise,
the first job on the queue is using the device.
This model state is used to describe the simulation
process. Later, it will be seen that for the anal-
ysis of the simulation a more refined specification
is necessary.

The simulation state consists of the model
state and the future events chain. There are three
event types, each identified with the end of a
processing pericd. Event c, at the end of a
compute period, indicates a request for an I/0 op-
eration, and the beginning of the overlap period.

Figure .2
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Event o, at the end of the overlap period, indicates

that further CPU processing must wait until com-
pletion of the I/0 operation. Event i, at the end
of the I/0 period, indicates that a new compute
period may begin, if, or as soon as, the overlap
period is done.

A few steps of the simulation are shown in
Figure 3, for the case when only two jobs are in
the modelled system. Each event is subscripted by
the number of the associated job. The model states
are labled (CPUQ/IOQ). The leftmost job on each
queue occupies the device. Thus, at Tet, M=(12/-),
indicating that job one is on the CPU, joB two is
waiting for the CPU, and the I/0 device 13 idle.

Note that the events are placed on the future
- events chain only when their position in absolute
simulation time can be conveniently calculated.
For example, at time t, job two requests an I/0
operation, which will réquire sampling the distrib-
utions for T and T,. The time of the o, event is
immediately 8ompuceé agst, + T and added to FE.
But the I/0 operation may not gégin impediately be-
cause the I/0 device is unavailable. Therefore,
the computation of T, and the addition of the i
event to FE, is postpdned until the 11 event,

A flow chart for the simulation system is
shown in Figure 4, At the beginning of the main
loop, the next event (t, e, . ) 1is taken off FE.
The clock time T 1is updace@o o the event time t,
and the index j becomes the job number for the
event. Then the subroutine determined by the event
type 1s called to perform the specific queueing
actions. .

The State Diagram Representation of the Simulation

In order to express the simanlation system in
a form similar to- that of the Markov chain, we may
list the model states and show the transitioms
among them that correspond to the various possible
events., Attempting this for the simulation example,
we find that from model state alone (in the form
chosen), it cannot be known which future events are
actually possible. From state (12/-), for example,

event ¢ is possible only {f job ome is in a compute
period, and the o event is possible only if it is
in an overlap period. The distinction was not
necessary in the model state chosen for the sim-
ulation, because the appropriate termination event
was in every case posted oa FE.

For consistancy with the Markov chain form, M
must more fully express the instantaneous state of
the model. It is therefore modified as follows.
When job j is on the CPU, it will be designated in
M as either j_ or j_ depending on whether it is in
the compute or overlap period. (Because of the
FCFS CPU scheduling, the designation is not neces-
sary for the remaining jobs on the CPU queue.)

The model state transition diagram can now
be drawn. An example, for the case of two jobs in
the system, is shown in Figure 3.

The state diagram representation does not
completely describe the simulation. It shows pos-
sible transitions, but does not show how the sim-
ulator determines which transition from a given
model state M is actually taken. In the simulation,
the transition events would have been placed oan FE
by sampling the distributions for T ,Z T and T .

It {s essential to note that this simplng would
generally have taken place in states occupied prior
to the arrival at M, at the event corresponding to
the beginning of each period. But without the
future event chain, the sampling for the next event
after each state M must take place at M, and this
sampling must be done with conditional probability
digtributions.

For example, referring back to Figure 3, it is
seen that at time t, when the model enters M=(2/1),
the time of event c,’can be computed by evaluating
the random variable T . But if the time of event
i, were to be calculafed from M at t one would
h%ve to use the conditional distribu%ion for T
given that time t = t,-t has expired. As seda
in Figure 6, the evaluation of the conditional ran-
dom variable is in general a quite different com-
putation from the original random variable. It is
therefore seen to be possible to describe the

Figure 3
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The Reduction of a Discrete Eveat Simulation ...(continued)

Figure 4
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simulation without FE, but at the expense of both

the additional computation for the coanditional ran-
dom variables, and the necessity to record the time
elapsed since the occurrence of certain past events.
In other words, the future events chain can be
eliminated if it is replaced by a 'past events chain'.

Eliminating the Future Events Chain

We now consider the special case that all of
the times Tc To and T, are exponentially dis-
tributed random ’variables. The exponential dis-
tribution has the well-known 'memoryless’' property:
if T is exponentially distributed, the conditional
distribution of random variable T = T-t given
that T>t_ is exactly that of T. (Examplé shown in
Figure 7?! Accordingly, it will no longer be neces-
sary to know how long an operation has been in prog-
ress in order to compute the random time of its
termination. At each state in Figure 5, one may
sample the exponential distribution for each pos-
sible future event, in order to determine which
will occur first. The transition to the next state
is made in processing that event, The times until
the remaining future events are again determined by
sampling their distributions — it is not necessary
to remember the results of the previous sampling.

With the assumption of exponentially distributed
intervals, the state diagram of Figure 5 becomes a
Markov chain. The labels on the transitions must
now be taken to signify not only the event on the
transition, but the probability rate of the event.
Thus if Mj = (1c2/-) and Mk = (102/1), theﬁ pjkﬂc.

5. REDUCING GENERAL DISTRIBUTIONS TO EXPONENTIAL
DISTRIBUTIONS

If the distributioas of the random variables
occurring in the simulation are not exponentially
distributed it is still poasible to achieve a
Markov Chain representation of the process. The
technique requires an expansion in partidal fractions
of the Laplace transform of the nomexporneatial
probability distribution. Ia [(2)], Cox showed
that a rational distribution (a function whose
Laplace transform is a ratio of polynomials) can
be expressed as series of exponentially dis-
tributed stages. A nonrational function can be
approximated arbitrarily closely by a rational
function. '

Figure 7

p.d.f. for r.v. T
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conditional p.d.f. for
T’=T-t_ given T>t_ =f(t
e, 8 e, (e)

Suppose a nonexponential probability density
function f£(t) has a Laplace transform

) = £ W

where P and Q are polynomials in S, of degree m
and n, respectively, with m%a. Then £*(s) can be

written
£%(s) = ; a ...a, (l-a)) ﬁ -Jii 2)
isl 1 i-1 i j=1 s+uj
where a_ ...,a_ are probabilities, and u, ...,u
are rooés of Q(s). L a
The form -—Ei is recognised as the Laplace

transform of an’ “j exponential deasity function,
and the product of such forms as the -probability
density function of the sum of exponentially dis-
tributed independent random variables. The general
random variable is therefore seen to be the sum of
up to n exponentially distributed stages, as shown
in Figure 8. The conditional probability rate of
leaving stage i is u,. Upon completing stage i,
the next stage is entered with probability a. and
the entire nonexponentially distributed period is
completed with probability l-ai.

We show a simple example of the use of the
partial fraction expansion to convert a nonexponen-
tial distribution into a series of exponential
stages. Suppose T 1is assumed to have the hyper-
exponential probability density function

£.(0) = 2(14e 38ye 3¢ 3)
The Laplace transform of this function is

£¥(s) = —oti8
¢ s +9s+18

which can be expressed, through the partial fraction
expaansion (2), as

% 2 6 1 6 3
£08) =355 * 3 6% 348 )

The distribution takes the form of Figure 8,
with two exponential stages, with probability races
u.=6, u,=3, and al=l/3. (The hyperexponential
distribution has 3@ more natural representation as
two parallel exponeatial stages. However, it also
serves as a simple example of the standard form.)

The state representation of the entire sim-
ulation, as shown in Figure 5, is a Markov chain
representation of the simulation only if each of
the random variables T T and T, has an ex-
ponential distributionS’ B3t if T "has the two-
stage distribution (3), the state diagram must be

Figure 8




The Reduction of a Discrete Event Simulation...(continued)

expanded to show states for each of the two stages
of T wherever the random variable T is in effect.
Thesé’are the states for which the job using the

CPU is in the compute phase. We therefore designate
T and T, to be the two stages of T  and replace
edch stage for which j_is on the CPU, with scates
in which ja and jb are on the CPU.

The resulting state diagram, shown in Figure
9, is a Markov chain represeatation for the sim-
ulation, in which T_ has the probability density
function given by (S). State (1 2/-) is replaced
by (laZ/-) and (1b2/-). The progability rate of
leaving (1_2/-) is u1=6. Upon completing stage T
the procesg continues to state 2/-) with prob-"’
ability a,=1/3, and eaters state (102/1) with
probabtliky 2/3.

We note that for this example, the coaversion
of one random variable from an exponential to a
two-stage distribution has increased the number of
states from twelve to sixteen.

The reduction of a general probability dis-
tribution to a series of exponential stages can
be done without actually obtaining the Laplace
transform of the distribution. In (1), Bux and
Herzog present an algorithm for obtainiag the
parameters of the exponential stages for an ap-
proximation, to any desired degree of accuracy,
of any general distribution. With this method,
the first and second moments of the approximate
distribution (the exponential stages) may be ex-
actly that of the required distribution, and, by
increasing the number of stages, the approximate
distribution may be brough arbitrarily close to
the general distribution, throughout the raage of

the random varidble,

Figure 9

6. USE OF THE MARKOV CHAIN IN VALIDATION

The reduction of each general probability
distribution to a series of exponential stages
entails an increase in the number of model states.
For each independent time random variable that is
in effect throughout the simulation period, the
anumber of model states is multiplied by the number
of stages required. The increase in the_ number
of model states limits the practical application
of the technique.

However, the equilibrium balance equations of
the Markov chain are a system of linear equations.
The aumerical solution of such systems has received
much attention. It is possible to solve systems
of linear equations when the number of variables
is in the tens of thousands. The practical limit
of the expansion of the state space is not quickly
reached.

It is not proposed that the Markov chain
reduction should replace the simulation, for the
simulation technique will always be capable of
greater complexity than the theoretical model.
Rather, it should be possible to design the sim-
ulator to be capable of reduced mode configurations
compatible with the assumptions of the Markov chain.
A reduced mode configuration would assign ex-
ponential distributions to a subset of the random
variables representing time intervals of the process
(even if such distributions do not represent
realistic cases) and would assign exponential-stage
distributions, algoritmically constructed from
the numerical values of the actual distributions,
to other random variables. Other discrete para=-
meters of the simulations must be selected to
limit the total number of states. The logic of
the simulation system may be validated by comparing
the results of the simulation in the reduced mode
with the numerical solutions of the equilibrium
equations of the equivalent Markov chain. Although
each such run will be only a partial test of the
validity of the simulation, it will result from an
independent computation, and hence will be free of
the errors that other (integrated)validation efforts
may carry over from the simulator itself.
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