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An event-driven, time-based stochastic simula­
tion model may be modified in a straightforward man­
ner eo sgtisfy the aY iom~ of a discrete atate , con­
tinuous-time Markov chain. The method requires 
casting the probability distribution of each random 
variable representing a time interval of the process 
i nto the form of a series of exponentially-distrib­
uted stages. An algorithm for this transformation 
has been developed. The technique is demonstrated 
via a simple example of a computer system simula­
tion. The Markov chain representation of the sim­
ulation can be solved numerically, providing an in­
dependent verification of the logic of the simula­
tion. 

1. INTRODUCTION 

Many problems can be approached by either sim­
ulation modellins or •IL•alydc modelling. Each meth­
od has its advantages. For simulation, there is 
precision, and the power to describe complex proc­
esses. Ananlalytic model requires simplicity in 
i ts assumptions, and yields clarity and mathemati­
cal certainty of the demonstrated relationships. 

For each approach there is a highly developed 
discipline. Modelers therefore tend to be of one 
type or the other, and modelling efforts that make 
use of both techniques are rare. Yet the advan­
tages of the analytical techniques should be avail­
able to simulation modelers. In many cases, a sim­
ulation model is an elaboration and a refinement of 
a developed analytic model . It includes second and 
third order effects -- parameters deemed not to 
bear significantly on the essential analytical re­
sults. At the least, the analytic model can be 
used to validate the more complex simulation model. 
If the results of the two modelling efforts are not 
comparable, an inquiry into the source of the dis­
parity is well advised. 

In the following sections, we explore the 
relationship between a time-based stochastic sim-

discrete-state, continuous-parameter Markov process 
(or Markov chain). We offer a general description 
of each model, and discuss their essential dif­
ferences. The, using a simple computer system 
model as an example, we show the structure of the 
simulator, and how it may be reduced to the Markov 
chain. The technique involves the decomposition 
of general probability distributions. When the sim­
ulation model is made to conform to the assumptions 
of the Markov chain its results can be compared with 
the numerical equilibrium solutions of the Markov 
chain. Thus, an i rdependent verification of the logic 
of the simulator is obtained. In principle, as long 
as all of the simulation random variables that are 
not discrete are time intervals of the process, the 
reduction to the Markov chain conditions can be at­
tained without reducing the power of the simulat i on. 
However, several practical constraints will limit 
the applicab U ity of the ter.hnirtue_ In practice, 
several different homomorphic mappings from the sim­
ulation model to the Markov process may be realized, 
allowing validation of the simulation in various 
modes ofoperation. 

In the next sections, we outline the form of 
the event-driven simulation, then review the defin­
i tion of the Markov chain. We then present the 
elementary computer system model, and discuss the 
transformation from simulation to Markov chain. 

2. OUTLINE OF THE STOCHASTIC SIMULATION 

We consider event-driven stochastic simulations 
of the following general form. Processing, or op­
eration of the model, takes place at discrete points 
in simulated time, represented by the clock variable 
T. The events that are simulated at these discrete 
times are scheduled on the Future Events chain (FE) 
which is a list of (time, event) pairs, ordered by 
time. The main simulator loop removes the first 
item ( t . e . ) on FE, updates T to the event time t i 
and theff'p~ocesses the model for the particular 
event tvpe e.• Generally, during the processing of 
event type e~ it is possible to schedule its 
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The Reduction of a Discrete Event Simulation ••• (continued) 

consequences," in the form of events e e (in­
cluding, possibly, ei)' to occur at ajfuthre time. 
The time of the future event e is generally de­
termined by sampling the probadility distribution 
of the random variable T • Then the entry 
(T+T e ) is inserted injits proper location on FE. 
[Ref~' j(9), pg. 152 ff.J 

We distinguish between the model state at 
clock time T, and the state of the simulation. The 
.mode 1 state M is simply the vee tor of all the var­
iables that describe the model under simulation, 
after those variables have· been updated by the 
processing at clock timeT.· The simulation state 
S is M and FE. The fact that the process being 
modeled is approaching a particular future event 
cannot be determined by observing M, but can be 
seen in the more general simulation state s. 

3 • THE MARKOV CHAIN 

The discrete state, continuous-parameter 
Markov process consists of a set of model states 
(M

1 
M

2 
.•• }, and, for each pair of model states 

(Mi'MjJ a rate oij of transition from Mi to Mj. 
(ReL (3 ,4) • ] 

The transition rate o . is an instantaneous 
conditional probability ra~J: given that the model 
is in state M at time t, the probability that it 
will enter st1te Mj during the interval (t,t+~), 
for small ~t, is p ~t. Let the random variable 

!£a~=p~~se;~v!~et~!~i~h~sp~~c~s~ w!!lar~::!:q!:nce 
of the l, assumption of constan! conditional trans­
ition probability rates, Ti will have the exponen­
tial probability density function 

fi(t) "'pie-pit 

where pi = E. ~i" the summation being over all 
model states M j,j~i. Furthermore, when the 
transition outj6f M. is taken, the model enters 
state Mj with probaSility Pi/Pi • . 

The Markov chain model includes no concept of 
a future events chain. At any time T, the model 
state M must embody all that needs to be known of 
the hisEory of the process, so that the future of 
the model is determined (stochastically) only by 
the fixed transition probability rates pij" 

We wish to consider the changes necessary to 
the simulation model in order that it satisfy the 
assumptions of the Markov chain. Rather than 
consider the matter in the abstract (which will be 
ambiguous, given the vagueness of the concept of 
the model state), we provide a simple example of 
a simulation, and refer to it throughout. 

4. A SIMULATION EXAMPLE 

As an elementary example, consider the .sim­
ulation of the computer system model shown in 
Figure 1, c.onsisting of a CPU and a single I/0 de­
vice. We assume that the jobs in the system will 
be able to overlap CPU arid I/O processings. Upon 
gaining access to the CPU, a job computes for an 

Figure 1 

interval T and then requires an I/O operation. 
Then whilec~he I/O operation takes time T CPU 
processing continues for time T • Initiatly, Tg 
is overlapped with T : when boeR the I/O and ov r­
lap period are compl~te, the computation period Tc 
may begin again. T T and T are independent 
random variables. lf anly a ~ingle job is in the 
system, these timing variables fully determine the 
system operation, as shown in Figure 2. 

We propose to simulate the system with the 
following simple scheduling rules: both CPU and I/0 
device are allocated on a first-come, first-served 
basis, and are held until they can no longer be 
used. (Note that a job may hold the CPU indefin­
itely under this rule, if T

0
>Ti, always.) 

We assume further that T Ti and T have 
probability density functions~£ f an3 f which . c, i, o, 
are identical for all JObs. 

A natural data structure for the model state 
is a pair of ordered lists of job numbers -- the 
CPU queue and the I/O queue. If either queue is 
empty, the corresponding device is idle; ot~erwise, 
the first job on the queue is using the devLce. 
This model state is used to describe the simulation 
process. Later, it will be seen that for the anal­
ysis of the simulation a more refined specification 
is necessary. 

The simulation state consists of the model 
state and the future events chain. There are three 
event types, each identified with the end of a 
processing period. Event c, at the end of a 
compute period, indicates a request for an I/0 op­
eration, and the beginning of the overlap period. 

Figure .2 
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Event o, at the end of the overlap period, indicates 
that 'further CPU processing must wait until com­
pletion of the I/O operation. Event i, at the end 
of the I/O period, indicates that a new compute 
period may begin, if, or as soon as, the overlap 
period is done. 

A few steps of the simulation are shown in 
Figure 3, for the case when only two jobs are in 
the modelled system. Each event is subscripted by 
the number of the associated job. The model states 
are labled (CPUQ/IoQ). The leftmost job on each 
queue occupies the device. Thus, at T=t0 M=(l2/-), 
indicating that job one is on the CPU, jo6 two is 
waiting for the CPU, and the I/O device is idle. 

Note that the events are placed on the future 
· events chain only when their position in absolute 

simulation time can be conveniently calculated. 
For example, at time t 4 job two requests an I/O 
operation, which will r~quire sampling the distrib­
utions for T

0 
and Ti. The time of the o2 event is 

immediately computed as t 4 + T and added to FE. 
But the I/O operation may not g~gin immediately be­
cause the I/O device is unavailable. Therefore, · 
the computation of Ti and the addition of the i 2 event to FE, is postponed until the i 1 event. 

A flow chart for the simulation system is 
shown in Figure 4. At the beginning of the main 
loop, the next event (t, e. h) is taken off FE. 
The clock time T is updatecf 0 f"o the event time t, 
and the index j becomes the job number for the 
event. Then the subroutine determined by the event 
type is called to perform the specific queueing 
actions. 

The State Diagram Representation of the Simulation 

In n'l:'det" to exp-r.:esR the sirn!Jllltion system in 
a form similar to that of the Markov chain, we may 
list the model states and show the transitions 
among them that correspond to the various possible 
events. Attempting this for the simulation example, 
we find that from model state alone (in the form 
chosen), it cannot be known which future events are 
actually possible. From state (12/-), for example, 

event c is possible only if job one is in a compute 
period, and the o event is possible only if it is 
in an overlap period. The distinction was not 
necessary in the model state chosen for the sim­
ulation, because the appropriate termination event 
was in every case posted on FE. 

For consistancy with the Markov chain form, M 
must more fully express the instantaneous state of 
the model. It is therefore modified as follows. 
When job j is on the CPU, it will be designated in 
M as either j or j depending on whether it is in 
the compute o~ overlap period. (Because of the 
FCFS CPU scheduling, the designation is not neces­
sary for the :emaining jobs on the CPU queue.) 

The model state transition diagram can now 
be drawn. An example, for the case of two jobs in 
the system, is shown in Figure 5. 

The state diagram representation does not 
completely describe the simulation. It shows pos­
sible transitions, but does not show how the sim­
ulator determines ·which transition from a given 
model state M is actually taken. In the simulation, 
the -transition events would have been placed on FE 
by sampling the dis-tributions for T T and T • 
It is essential to note that this simpl~ng woutd 
generally have taken place in states occupied prior 
to the arrival at M, at the event corresponding to 
the beginning of each period. But without the 
future event chain, the sampling for the next event 
after each state M must take place at M, and this 
sampling must be done with conditional probability 
distributions. 

For example, referring back to Figure 3, it is 
seen that at time t 2 when the model enters M•(2/ 1), 
the time of event c2 •can be computed by evaluating 
the random variable T • But if the time of event 
i were to be calculaEed from M at t one would 
hAve to use the conditional distribu~ion for Tt 
given that time te = t 2-t1 has expired. As se~d 
in Figure 6, the evaluation of the conditional ran­
dom variable is in general a quite different com­
putation from the original random variable. It is· 
therefore seen to be possible to describe the 

Figure 3 
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T=t 4 . 
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The Reduction of a Discrete Event Simulation ••• (continued) 

FE=> (t,ejob) 

t .. T 

job .. j 

Figure 5 

Figure 4 

c :compute done 

= tPuQ 

(T+T cj) c, 

=FE 

(T+T oj) o, 

=>FE 

Figure 6 
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simulation without FE, but at the expense of both 
the additional computation for the conditional ran­
dom variables, and the necessity to record the time 
elapsed since the occurrence of certain past events. 
In other words, the future events chain can be 
elUninated if it is replaced by a 'past events chain'. 

ElUninating the Future Events Chain 

We now consider the special case that all of 
the times T T and T are exponentially dis­
tributed rafidom0 'variabies. The exponential dis­
tribution has the well-known 'memoryless' property: 
if T is exponentially distributed, the conditional 
distribution of random variable T' m T-t given 
that T>t is exactly that of T. (Example shown in 
Figure 7~! Accordingly, it will no longer be neces­
sary to know how long an operation has been in prog­
ress in order to compute the random time of its 
termination. At each state in Figure 5, one may 
sample the exponential distribution for each pos­
sible future event, in order to determine which 
will occur first. The transition to the next state 
is made in processing that event. The times until 
the remaining future events· are again determined by 
sampling their distributions -- it is not necessary 
to remember the results of the previous sampling. 

With the assumption of exponentially distributed 
intervals, the state diagram of Figure 5 becomes a 
Markov chain. The labels on the transitions must 
now be taken. to signify not only the event on the 
transition, but the probability rate of the event. 
Thus if M. = (1 2/-) and K • (1 2/1), then ojkac. J c -~ 0 .. 

5. REDUCING GENERAL DISTRIBUTIONS TO EXPONENTIAL 
DISTRIBUTIONS 

If the d-istributions of the random variables 
occurring in the simulation are not exponentially 
distributed it is still po3sible to achieve a 
Harkov Chain representation of the process. The 
technique requires an expansion in partial fractions 
o.i the Laplace transform of the nonexponential 
probability distribution. In [(2)], Cox showed 
that a rational distribution (a function whose 
Laplace transform is a ratio of polynomials) can 
be expressed as series of exponentially dis­
tributed stages. A nonrational function can be 
approximated arbitrarily closely by a rational 
function. 

Figure 7 

p.d.f. for r •. v. -~t 
f(t)""Ue ' 
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Suppose a nonexponential probability density 
function f(t} has a Laplace transform 

* . !..{& 
f (s) = Q(s) ( 1) 

where P and Q are polynomials in S, of degree m 
and n, respectively, with mSn. Then f*(s) can be 
written 

where a ... ,a are probabilities, and 1-11 , ... ,l-In 
are roo~~ of Q~s). 

(2) 

fl. 
The form ~ is recognised as the Laplace 

transform of ans+~-~j exponential density function, 
and the product of such forms as the ·probability 
density function of the sum of exponentially dis· 
tributed independent random variables. The general 
random variable is therefore seen to be the sum of 
up ton exponentially distributed stages, as shown 
in Figure 8. The conditional probability rate of 
leaving stage i is 1-1-· Upon completing stage i, 
the next stage is enfered with probability a. and 
the entire nonexponentially distributed periBd is 
completed with probability 1-ai. 

We show a simple example of the use of the 
partial fraction expansion to convert a nonexponen­
tial distribution into a series of exponential 
stages. Suppose T is assumed to have the hyper­
exponential probability density function 

f (t) = 2( l+e •3 t)e -J t 
c 

The Laplace transform of this function is 

4s+l8 
'1. 

s +9s+l8 

(3) 

which can be expressed, through the partial fraction 
expansion (2), as 

(4) 

The distribution takes the form of Figure 8, 
with two exponential stages, with probability' rates 
1-1

1
=6, ~=3, and a

1
=l/3. (The hyperexponential 

dLstribution has a more natural representation as 
two parallel exponential stages. However, it also 
serves as a simple example of the standard form.) 

The state representation of the entire sim­
ulation, as shown in Figure 5, is a Markov chain 
representation of the simulation only if each of 
the random variables T T and T. has an ex­
ponential distribution~· sSt if T 

1
has the two­

stage distribution (3), the statecdiagram must be 

Figure 8 
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The Reduction of a Discrete Event Simulation ••• (continued) 

expanded to show states for each of the two stages 
of T wherever the random variable T is in effect. 
Thes~'are the states for which the joS using the 
CPU is in the compute phase. We therefore designate 
T and T to be the two stages of T and replace 
e~ch sta~e for which j is on the CPu, with states 
in which ja and jb arecon the CPU. 

The resulting state diagram, shown in Figure 
9, is a Markov chain repreaentation for the s im­
ulation, in which T has the probability density 
function given by (3). State (1 2/-) is replaced 
by (1 2/-) and (lb2/-). The pro5ability rate of 
leavi~g (1 2/-) is ~1=6. Upon completing stage T 
the proces~ continues to state 0,2/-) with prob-a' 
ability a

1
=1/3, and enters state (1 2/1) with 

probabiliEy 2/3. 
0 

We note that for this example, the conversion 
of one random variable from an exponential to a 
two-stage distribution has increased the number of 
states from twelve to sixteen. 

The reduction of a general probability dis­
tribution to a series of exponential stages can 
be done without actually obtaining the Laplace 
transform of the distribution. In (1), Bux and 
Herzog present an algorithm for obtaining the 
parameters of the exponential stages for an ap­
proximation, to any desired degree of accuracy, 
of any general distribution. With this method, 
the first and second moments of the approximate 
distribution (the exponential stages) may be ex­
actly that of the required distribution, and, by 
increasing the number of stages, the approximate 
distribution may be brough arbitrarily close to 
the general distribution, throughout the range of 
the random· variable. 

Figure 9 

6. USE OF THE MARKOV CHAIN IN VALIDATION 

The reduction of each general probability 
distribution to a series of exponential stages 
entails an increase in the number of model states. 
For each independent time random variable that is 
in effect throughout the simulation period, the 
number of model states is multiplied by the nnmber 
of stages required. The increase in the number 
of model states limits the practical appiication 
of the technique. 

However, the equilibrium balance equations of 
the Markov chain are a system of linear equations. 
The numerical solution of such systems has received 
much attention. It is possible to solve systems 
of linear equations when the number of variables 
is in the tens of thousands. The practical limit 
of the expansion of the state space is not quickly 
reached. 

It is not proposed that the Markov chain 
reduction should replace the simulation, for the 
simulation technique will always be capable of 
greater complexity than the theoretical model. 
Rather, it should be possible to design the sim­
ulator to be capable of reduced mode configurations 
compatible with the assumptions of the Markov chain. 
A reduced mode configuration would assign ex­
ponential distributions to a subset of the random 
variables representing time intervals of the process 
(even if such distributions do not represent 
realistic cases) and would assign exponential-stage 
distributions, algoritmically constructed from 
the numerical values of the actual distributions, 
to other random variables. Other discrete para­
meters of the simulations must be selected to 
limit the total number of states. The logic of 
the simulation system may be validated by comparing 
the results of the simulation in the reduced mode 
with the numerical solutions of the equilibrium 
equations of the equivalent Markov chain. Although 
each such run will be only a partial test of the 
validity of the simulation, it will result from an 
independent computation, and hence will be free of 
the errors that other (integrated)validation efforts 
may carry over from the simulator itself. 
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