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Abstract — Nonlinear rate-dependent effects in crack run- 
arrest events in ductile materials are being investigated 
through development and applications of viscoplastic-dynamic 
finite element analysis techniques. This paper describes a 
portion of these studies wherein various viscoplastic 
constitutive models, dynamic crack-propagation algorithms, and 

proposed nonlinear fracture criteria have been installed in 
the general purpose ADINA finite element computer program. 

The predictive capabilities of the nonlinear techniques are 
evaluated through analyses of crack-arrest tests of 

nonisothermal wide-plate specimens. Values of fracture param­
eters calculated by elastodynamic and viscoplastic dynamic 

techniques are compared to assess the impact of including
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viscoplastic effects in the computational models. Mesh 

refinement studies are presented that examine whether the 
proposed fracture parameters converge to nonzero values in 
viscoplastic dynamic analyses or whether they are controlled 
by element dimensions. Plans are reviewed for additional 
computational studies to assess the utility of viscoplastic 
analysis techniques in constructing a dynamic inelastic 
fracture mechanics model for ductile steels.

1. INTRODUCTION

In pressurized-thermal-shock (PTS) scenarios, inner surface cracks 
of reactor pressure vessels (RPVs) have the greatest propensity to pro­
pagate because they are located in the region of highest thermal stress, 
lowest temperature and greatest irradiation damage. If such a crack 
begins to propagate radially through the vessel wall, it will extend 
into a region of higher fracture toughness due to the higher tempera­

tures and less irradiation damage. The Heavy-Section Steel Technology 
(HSST) Program at the Oak Ridge National Laboratory (ORNL) under the 
sponsorship of the Nuclear Regulatory Commission (NRC) is conducting 

experimental and analytical studies aimed at the circumstances that 
would initiate the growth of an existing crack in an RPV and the condi­
tions that can lead to the arrest of a propagating crack.

Fracture models used in these integrity assessments are developed 
in part from small-specimen crack-arrest data that can include signifi­

cant dynamic effects (e.g., stress waves reflected back to the running 

crack tip). Prior studies of crack arrest have focused on reducing 
these dynamic effects and on developing dynamic analysis capabilities
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for interpreting small-specimen data. Small specimens, however, provide 

limited constraint of deformation in the crack-plane region and permit 
only the generation of data at temperatures below those where arrest is 

likely to occur in some PTS scenarios. Recently, the HSST program has 
generated crack-arrest data over an expanded temperature range through 
tests of large wide-plate specimens [1—3]. This paper addresses the 

development of computational analysis methods incorporating nonlinear 
and dynamic effects for interpreting crack run-arrest behavior in these 
ductile materials.

Two viscoplastic constitutive models and several proposed nonlinear 
fracture criteria have been installed in the ADINA [4] finite element 
program at ORNL. ■ An effective-stress algorithm described by Kojic and 
Bathe [5] is used to integrate the constitutive equations. The 
capabilities of these nonlinear techniques for modeling dynamic fracture 
events in ductile RPV steels are illustrated for one of the HSST wide- 
plate crack-arrest experiments [1]. Mesh refinement studies are 
summarized that examine the dependence of the proposed fracture 

parameters on element dimensions within the crack-tip region. Finally, 

alternative fracture parameters and computational techniques selected to 
circumvent stringent requirements on crack-tip mesh refinement in 
inelastic analyses are reviewed.

2. IMPLEMENTATION OF A VISCOPLASTIC CONSTITUTIVE FORMULATION
Until recently, linear elastic fracture mechanics (LEFM) concepts 

have been dominant in applications of dynamic analysis techniques to 
crack-arrest studies (e.g., Ref. 2). However, except for very short 

crack jumps, LEFM assumptions may not be valid characterizations of
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rapid crack propagation [6]. In particular, a wake of residual 

plasticity left behind the moving crack tip can violate the Kj - 
dominance requirement of LEFM. An indication that LEFM conditions are 
not satisfied occurs when elastodynamic analyses of crack run-arrest 
data lead to geometry-dependent fracture toughness relations (e.g., 
Ref. 7). Dahlberg et al. [7] performed elastodynamic fracture analyses 
using crack run-arrest data from tests of single-edge-notched (SEN) ten­
sion panel specimens of different lengths. Their results for different 

panel lengtns coincide for low crack velocities, but snow a definite 
geometry dependence at higher velocities where strain-rate effects are 
more pronounced. However, Brickstad [8] has demonstrated that this 
geometry dependence can be removed through application of an inelastic 
fracture model that incorporates plasticity and strain-rate effects 

(i.e., viscoplasticity).
These studies indicate that strain-rate effects (~10l+ sec-1) can be 

important for rapid-loading situations such as cleavage crack propaga­

tion events in ductile RPV steels. The HSST Program research efforts at 
ORNL and several subcontracting groups are developing viscoplastic- 
dynamic finite element analysis techniques and validating their utility 
through the analysis of data from carefully performed crack-arrest 
experiments [9]. The first two viscoplastic constitutive models selec­
ted for examination were the Bodner-Partom [10] model with strain­
hardening and a variation of the Perzyna [11] model with linear strain­

hardening. The functional forms of these viscoplastic models implemen­
ted in ADINA are summarized below.
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2.1 Bodner-Partom Constitutive Model

The implementation of the Bodner-Partom [10] viscoplastic model in 
ADINA is based on the formulation described by Kanninen et al. [12] and 
is summarized in Table 1. Kanninen et al. [12] obtained and used dyna­

mic stress-strain data from tensile and split — Hopkinson bar tests to 
derive constants for the Bodner-Partom constitutive model appropriate 
for A533 grade B class 1 (A533B) steel at the test temperatures listed 
in Table 2. Dynamic stress-strain curves computed by the Bodner-Partom 
model at temperature T = 100°C and strain rates 550 s-1 and 0.001 s-1 
are compared with measured data in Fig. 1. Temperature dependence of 
the material properties is taken into account principally through the 
dependence of n, Z0 and on temperatures as indicated in Table 2.

2.2 Perzyna Constitutive Model

The viscoplastic model of Perzyna [11] has been implemented in fin­
ite element formulations by Thakkar and Stagg [13] and used in dynamic 
crack-propagation studies by Brickstad [8]. The Perzyna formulation 

adopted for the HSST studies is based on the von Mises yield criterion 
with linear strain hardening and is summarized in Table 3. Material 

parameters for the Perzyna constitutive model (Table 4) were developed 
by Brickstad [14] using the same dynamic stress-strain data for A533B 

steel obtained by Kanninen et al. [12].

2.3 Finite Element Formulation of the Viscoplatic
Solution Algorithm

The viscoplastic formulations of Tables 1-4 were installed in ADINA 

at ORNL through modification of the thermo-elastoplastic and creep model 
(material model 10) employed in ADINA and described by Kojic and Bathe
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[5]. The modified formulation of equilibrium and constitutive equations 

can be expressed in vector form at time t + At as

Jv BT t+Ata dV = t+AtR , (1)

t+At t+AtE (t+At _ P
- . .t+At ^ } »1+ v

(2)

t+At „ t+At , t P fv = ef - e (3)

t+At t+At:E ^t+At t+At thv
=---;vA ^ ( e - e )m , _t+At m1-2 v

(4)

where for time t+At
JB = the total strain-displacement transformation matrix, 

t+Ata = the stress tensor,

t+AtR = the nodal point external load vector,

t+At = deviatoric stress tensor, o
= t+At t+At x= a.. - ao..,ij m ij ’

t+Ate, = deviatoric strain tensor,

_ t+At t+At .e. , - e o. . ij m ij
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t+^ta = mean stress = t+^ta../3, 
m ix' ’

t+Ate = mean strain = t+^te../3, m ix' *

t+^t^ = viscoplastic strain tensor,

t+Atg^ t+Aty _ young’s modulus and Poisson's ratio corresponding to 
temperature t+^t0,

= thermal strain,

= t+Atu (t+At0 - 0 .),m ref ’
t+Atam = mean coefficient of thermal expansion,

0re£ = reference temperature

Assuming that solution variables are known at time t, the visco­
plastic strain increment is determined using the a-method [5] and the 
formulation given by

AeP = AtTeF J (5)

where

T* P e = Vs , (6)

and

TS = (1 - a) tS + a t+AtS (7)

In Eq. (7), a is an integration parameter satisfying 0 < a < 1. The 

fully explicit and fully implicit integration schemes are represented
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by a = 0 and a = 1, respectively. The functional form of the scalar 
in Eq. (6) is determined by the choice of the viscoplastic constitutive 
model.

For the Bodner-Partom model of Table 1, the function Ty has the

form

Y = 1/2 exp 1 /V \ Tn
2 VTj2/

(8)

where

— /I \ t ^ , t*^*AtnZ = (1 - a) Z + a Z,
t+At7 _ t+At™ . /t+At™ t+At„ v / t+AtTT \Z = Zx + ( Z0 - Zj) exp (-mi Wp) ,
t T _ 1 T™ T_J2 " 2 Sij Sij ’

and temperature dependent parameters are evaluated from 

T0 = (1 - a) t0 + a t+At0 .
i

The accumulated plastic work t+AtWp in Eq. (10) is determined from the 

relation

(9)

(10)

(ID

(12)

t+AtWp = tWp + AWp , (13)

where

AWp = T Wp At = 2 Ty TJ2 At. (14)

For the Perzyna model of Table 3, the function Ty has the form

(o V 2/ if ^ < To
(15)
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I /

where

fx— T— \ Na - a
T./T—v / o♦( °) ■ ! T_

CT
(16)

T— ,-T.1/2a = (3 J2) , (17)

Tao = ayI(T0) + r(T0) ^ » (18)

T-pe = (1 - a) + a t+At-^p (19)

and where the effective plastic strain is determined from
1/2

iP = (-eP eP ^
\3 ij ij/ (20)

Equations (2) through (7) represent a one-parameter system of equa­
tions in the effective stress, which is obtained as the solution 
of the zero of the effective stress function f(t+At'a) given by Eq. 

(2.32) of Ref. 5 with the rate-independent plasticity terms deleted. In 

ADINA, a bisection procedure with an acceleration scheme is used to 
solve the effective stress function for t+Ata, from which the updated 

stress tensor components are determined.

2.4 Numerical Example

The viscoplastic constitutive formulation implemented in the ORNL 

version of ADINA has been applied to a fixed-end beam subjected to a 

suddenly applied uniformly distributed load as depicted in Fig. 2. The 

problem was previously studied by Thakker and Stagg [13] and by
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Brickstad [8] using the Perzyna model with a von Mises yield criterion, 
no strain hardening and a linear flow-rate function [i.e. , H" = 0 in 

Eq. (18) and N = 1 in Eq. (16)]. Material and geometric parameters 
defining the problems are given as follows: Young's modulus E = 
68954.7 MN/m2, Poisson's ratio v = 0.3, density p = 2672 Kg/m3, yield 
stress 0^ = 276 MN/m2, length L = 0.508 m, height h = 0.0254 m, and dis­

tributed load pQ = 43.78 kN/m. The two-dimensional plane stress finite 
element model employed by Brickstad [8] was duplicated for the analyses 

of the present study. It consists of 200 four-noded bilinear element 
with ten elements through the thickness and utilizes symmetry to model 
one-half of the beam.

Dimensionless time histories for the central deflection of the beam 
are given in Fig. 2 for a range of values of the fluidity param­
eter, B. The static elastic deflection 6 = 0.003174 m (smallo
deflection theory) and the period of the first natural mode Tq = 

0.00196028 s were used to normalize the vertical and horizontal axes, 
respectively. Values of a = 0 and a = 1 for the integration parameter 
were investigated in this study, as well as explicit (central differ­

ence) and implicit (Newmark) time integration schemes for the equations 
of motion. The results presented in Fig. 2 are for cases where all of 

these schemes yielded identical results. All solution cases utilized a 

lumped-mass matrix. Figure 2 indicates that as the value of the fluid­
ity parameter 8 increases, the viscoplastic solutions approach the rate- 

independent plasticity response; the linear elastic (8 = 0) and elasto- 
plastic (8 00) solutions represent limiting cases of the viscoplastic 
response. Note that the viscoplastic solution for 8 = 10000 s_1

10



essentially coincides with the elastoplastic response. The solutions of 

Fig. 2 are in good agreement with those presented previously in Refs. 8 

and 13.

Results presented in Fig. 3 compare viscoplastic solutions for $ = 
10000 s-1 obtained from the fully implicit integration parameter (a = 

1), the Newmark time integration scheme, and a sequence of increasing 
time steps. These solutions are compared with the fully explicit (a = 
0) result obtained using a time step of AtR = 0.45 ps and the central 

difference time integration scheme. The reference time step AtR = 
0.45 ps was selected to be slightly below the calculated critical time 

step A tcr = 0.5 ps for which the central difference scheme becomes 
unstable. Here Atcr is approximated by the ratio dm/c, where dm is the 
smallest element dimension in the mesh and c = /E7"p the phase velocity 
of longitudinal waves in a beam. The solutions in Fig. 3 illustrate 

that, while the fully implicit scheme is unconditionally stable, the 
accuracy of the solution degenerates with increasing time step size.

3. FINITE-ELEMENT IMPLEMENTATION OF PROPOSED FRACTURE PARAMETERS

3.1 Path-Area Integrals

Two path-area integrals have been incorporated into ADINA for eval­

uation as potential fracture parameters in crack-arrest studies. For 
dynamic crack problems formulated in terms of elastoplastic or elasto- 
viscoplastic material models, Atluri et al. [15] have derived the T*- 
integral to serve as a measure of the intensity of the crack-tip 

fields. The T*-integral is expressed as an incremental parameter which 
is evaluated at time step N according to the relations (for the xi - 

coordinate component)
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N
E

n=l
(21)*Tl *ATi

where

ATX = lim / 
e-»-0

AH..n.dS - / lj J J AH. . . IJ »J dVr + r vr - v£
and

(22)

AH.. = (AW + AK)6. . - (a,, + Aa..)Au. - Ao.. u. ,, lj lj Ij ij i >1 ij i,l
AH . . = - Act. . (e. . n + i Ae. . . ) + Ae. . (ct. . , + -i Act, . . ) 

lj,J ij ij.l 2 ij ,1 ij ij,l 2 ±2,1'

(23)

(24)

- p(u.+ Au.) Au. , + p(u. + Au.)Au. ^ ,

- pAUj.u^j + ,

AW = (cr. . + -i- Act. .) Ae. . ,v ij 2 ij' ij (25)

and

• 1 # #AK = p(uj. + -j Aui)Aui . (26) •

• ••

In Eqs. (23) - (26), the terms ct^ , e^^^ui> ^ represent the compo­

nents of stress, strain, displacement, velocity and acceleration, res­

pectively, at time step n; the symbol A denotes an increment from step n 
to step n+1. The integrals of Eq. (22) are evaluated on the far-field 

path F, the crack-face path F , and the enclosed domain Vr - V using 
smoothed nodal stress and strain tensor fields. These smoothed fields 

are generated from a bilinear least squares mapping [16] of the element 

Gauss point values to the nodal points of the element. The individual
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element contributions to each node are then summed and averaged to give 
a unique nodal value.

The second path-area integral considered in HSST studies is 
the J-integral proposed by Kishimoto et al. [17],

J = lim 
e+0 r + r T.u. .dS + i x,l V „ 0. . ,dV + fTrV£ ij ij,l Jvr- V PUiUi,ldV

e
(27)

The J-integral given by Eq. (27) is evaluated using the same smoothing 
procedure for the stress and strain fields as that described for the 
T*-integral.

A3.2 The Energy Function y
In the crack-growth modeling techniques employed in ADINA, the ele­

ment immediately ahead of the crack tip is divided into subeleraent divi­
sions. During propagation, the tip is moved through these subelements 
along the crack plane in discrete jumps. The position of the crack tip 

relative to these subelement divisions is determined from restraining 

forces which are placed on the crack-plane nodes of the element adjacent 
to the crack tip (see Fig. 4); these forces are released incrementally 

as the tip propagates through the element. The restraining forces are 

postulated to vary with the crack-tip location according to the relation

Fi R= [1 - a(t)/AX]R , (28)
oi
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where £S the force at node "i", F0f is the force at node "i" just 
prior to node release, and "a" is the length of the crack in the element 
of length AX. In HSST studies, the exponent in Eq. (28) has been assig­
ned the values R = 0.5, 1.0, and 1.5.

Following Brickstad [8] , the energy flow to the crack-tip region 
per unit area of crack extension, y , is approximated by calculating the 

work performed by the forces Fi (£ = if2) according to the relation

Y
2 t' + At
Z / [F.(t) u (t) ]dt

1=1 t' 1 1 (29)

In Eq. (29), h denotes the thickness of the plate. At the time interval 

required for the crack-tip to traverse the element of length AX, t' the 
initial time for release of the element, and u^ the velocity component 
of node "i” normal to the crack plane. When conditions of LEFM pertain, 

the function y represents an approximation of the strain energy release 
rate.

4. APPLICATIONS TO DYNAMIC FRACTURE STUDIES

The predictive capabilities of the nonlinear techniques described 

in the previous sections are being evaluated through applications of 

ADINA to analyses of HSST wide-plate crack-arrest experiments. In the 

following, the program is applied to one specific wide-plate test (WP- 
1.2) from the HSST WP—1 series [1].

4.1 Viscoplastic-Dynamic Analysis of a Wide-Plate Experiment

The SEN plate specimen (1 x 1 x 0.1 m) used in wide-plate test WP-
1.2 [1] is shown schematically in Fig. 5. The plate was cooled on the
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notched edge and heated on the other edge to give a linear temperature 

gradient (T,^ = -97°C, Tmax * 207°C) along the plane of crack

propagation. Upon initiating propagation of the crack in cleavage, 
arrest was intended to occur in the higher-temperature ductile region of 
the specimen. The specimen had an initial crack depth-to-plate width 
ratio (a/w) of 0.2. The specimen was welded to pull-plates which have a 
pin-to-pin length of 9.6 m to minimize stress wave effects. Material 
properties of the wide-plate material are described in Ref. 1.

The two-dimensional (2-D) plane stress finite element model of one- 
half of the wide-plate configuration used in the analyses and depicted 
in Fig. 6 consists of 2377 nodes and 715 eight-noded isoparametric ele­
ments. The exponent in the node release function [Eq. (28)] was set at 
R = 1.0 for elastic and R = 1.5 for viscoplastic material models. For 
the dynamic analyses, the applied load was fixed at the value that pre-

■i

vailed at crack initiation (F£n = 18.9 MN). The Gauss point rule selec-
. ■ t

ted for integration of the finite element model was 2x2 for the stiff-
1

ness matrix and 3x3 for the consistent mass matrix. The time step was 

set at At = 4 ys for the elastodynamic analyses and at At = 2 ys for the 
viscoplastic dynamic analyses; the Newmark time integration scheme was 
used for all cases. For the viscoplastic analyses, the Bodner-Parton 
equations summarized in Tables 1 and 2 were integrated using the para­
meter a = 1; global equilibrium interations were performed during each 
time step.

Generation-mode analyses of test WP-1.2 were performed using the 
estimate of crack position vs. time [Fig. 7(a)] constructed in part from 

strain-gage data recorded at the crack-line strain-gage locations in
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Fig. 5. (In a generation-mode analysis, the crack-tip is propagated 

incrementally according to a prescribed crack position vs time 

relation.) Figure 7(a) shows the two measured crack arrests at a£mi = 

0.55 m and at afm2 " 0 .65 m which occurred at times tml = 0.96 ms and at 
tm2 = 2.7 ms after crack initiation, respectively. Results from visco­
plastic analyses of the first 3 ms of the dynamic event using the 
Bodner-Partom model are presented in Figs. 7(b) - (c). The interval of 
crack arrest beginning at time t » 1 ms [Fig. 7(a)] coincides with a 
sharp drop in the maximum effective viscoplastic strain rate

A[Fig. 7(b)]. In Fig. 7(c), the time histories of the functions T*, J,
A

and y are expressed in terms of pseudo-Kj values (K-j- = /ET*, E = 206.9 
GPa) for purposes-of comparison with elastodynamic values. The results 
given in Fig. 7(c) indicate generally good agreement between the func-

A A

tions T*, J, and y» f°r both the elastic and inelastic cases, the T*
A

and J calculations coincide. The difference in energy flow to the crack 
tip region in the viscoplastic case is due primarily to dissipation pro­
cesses occurring in the developing plastic zone around the propagating 
crack tip. When the viscoplastic analysis was repeated using the 
Perzyna model summarized in Tables 3 and 4, the resulting time histories 
of the fracture parameters were not significantly different from the 
Bodner-Partom values in Fig. 7(c).

4.2 Model-Dependent Effects in Viscoplastic Fracture Analysis

Results obtained thus far from viscoplastic-dynamic fracture anal­
yses of HSST wide-plate tests exhibit a significant dependence on finite 

element mesh refinement. Figure 8 compares results from generation-mode 
viscoplastic analyses of wide-plate test WP-1.2 obtained from models
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having different mesh refinements along the crack plane. The results 

are expressed in terms of pseudo—Kj values computed from the rate-of-
A

work function y [Eq. (29)] and plotted vs. crack length for the first 
run-arrest event. The characteristic mesh size is defined as the ratio 
of the crack-path element width to the plate width. The ORNL analysis 
results shown in Fig. 8 for mesh sizes 1/22, 1/40 and 1/50 were obtained 
from ADINA analyses described in Refs. 18 and 9 and in the previous sec­
tion of this paper, respectively. Also shown in Fig. 8 are results 

obtained by Brickstad [14] using mesh sizes 1/40 and 1/80 and the 
Perzyna viscoplastic model described in Tables 3 and 4. These combined 
results indicate that the dynamic viscoplastic solutions of the wide- 
plate test expressed in terms of the parameters T*, J, and y have not 
yet converged for the mesh refinements employed thus far in these 
studies.

Insight into the difficulties associated with modeling rapid crack 
propagation events in RPV steels exhibiting viscoplastic behavior are 

provided by two recent studies. Sheu [19] studied the mode-I plane 

strain problem of dynamic steady-state crack growth in A533B steel using 
the Bodner-Partom model summarized in Tables 1 and 2 of this paper and 
the assumption of small-scale yielding. Focusing on the immediate area 
surrounding the elastic-plastic boundary, Sheu [19] resolved the near 
crack-tip singular fields using a finite element model with element 
dimensions approximately 0.1% of the elastic-plastic zone size. (For 

the Bodner-Partom model, the stress field is singular and the 
elastic strain rates dominate the plastic strain rates near the crack 
tip.) Popelar [20] has elaborated further on the study of Sheu [19] by

17



showing that the zone of dominance becomes smaller for increasing values 
of the limiting plastic strain rate. Do, and is approximately 0.1% of 
the plastic zone size for Do = 10® s“l. Furthermore, for A533B steel 

over a temperature range from -60 to 100°C and a crack speed of one-half 

the Rayleigh wave speed, Popelar [20] estimates that the zone of 
dominance extends from ~5 to 55 pm compared to an inelastic region with 
dimensions 0.1 to 15 mm. Given that the computational capacity were 
available to resolve such a small region using finite elements, it is 

clear that elements of this size invade the micro-heterogeneity of the 
material and broach the limits of isotropic continuum analysis.

Several techniques are being explored to circumvent these stringent 
requirements on crack-tip mesh refinement and related difficulties asso­
ciated with possible violations of continuum assumptions. Nishioka [21] 
has proposed an exclusion zone technique that obviates the need for 
highly-refined crack-tip elements. In this technique, a small rectang­
ular domain of height 2e is defined around the crack tip to approximate 
a finite fracture process zone. During the dynamic analysis, this rec­
tangle is extended in length (but not in height) to include a portion of 

the plastic wake behind the advancing crack. Nishioka [21] advocates 

excluding the integration of a portion of the volume term of the 

T*-integral [see Eq. (22)] from this extending exclusion zone. Accord­

ing to a study by Nishioka [21], the T*-integral should be essentially 
invariant with respect to the size of this extending domain provided 

e is sufficiently small. To investigate the potential of the foregoing 
technique for characterizing fracture behavior, O'Donoghue [22] has per­

formed studies of the geometry independence of the two-component
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parameter (T*, e) using a center-cracked panel problem. Results of 
these analyses indicate that the time history of T* is relatively insen­

sitive to mesh refinement for a given height of the exclusion zone. 
Based on these preliminary calculations, further studies will be conduc­
ted in the HSST program on the geometry independence of the (T*, e) 
parameter when applied to small- and large-specimen crack run-arrest 
data.

Moving singular-element formulations represent an alternative tech­
nique for achieving convergent fracture parameter solutions in the con­
text of viscoplastic-dynamic fracture analysis. A review of the various 
computational methods that have employed singular elements in elasto­

dynamic fracture applications is given by Nishioka and Atluri [23]. Two 
aspects associated with moving singular-element formulations may improve
convergence characteristics in inelastic fracture applications. The

}
first is the influence of including singular functions in the solution

ispace of the Ritz-Galerkin approximation. The second, possibly more
I

subtle aspect, is the capability of maintaining a node positioned 
precisely at the moving discontinuity. (Current nodal-relaxation tech­

niques do not specify the exact position of the crack tip except when 
the tip is located at an interelement boundary.) In preliminary work, 

Thesken and Gudmundsson [24] have implemented a variable-order singular 
element proposed by Akin [25] into an elastodynamic finite-element 
formulation and have illustrated its advantages in modeling stationary 

cracks subjected to dynamic loading. More recently, Thesken and 
Gudmundsson [26] have incorporated a moving element formulation which 

allows an adjustable region of convecting elements (including the
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variable-order singular element) to be embedded at the crack tip within 

a finite body. The latter technique permits the order of the crack-tip 
singularity to be specified by a variable parameter for dynamic crack 
growth problems. This technique has shown good agreement with known 

analytic elastodynamic solutions. Work is currently under way in the 
HSST Program to update the moving element formulation to accommodate 
viscoplastic material behavior. The resultant formulation will be 
investigated for its potential in resolving the near crack-tip singular 

fields of the Bodner-Partom constitutive model while remaining in the 
size regime of a continuum element.

5. CONCLUSION

This paper has described a portion of the HSST crack-arrest studies 

wherein various viscoplastic constitutive models and several proposed
i

nonlinear fracture criteria were installed in the ORNL version of the■4ADINA finite element computer program. Modifications implemented in
i

ADINA allow integration of the viscoplastic constitutive equations using 

the effective stress function algorithm of Kojic and Bathe [5]. The 
modified formulation was found to be effective in applications to visco­

plastic dynamic problems that utilize the Bodner-Partom and the Perzyna 
constitutive models.

The capabilities of the nonlinear fracture techniques installed in 
ADINA were evaluated through applications to the HSST wide-plate crack- 
arrest experiment WP-1.2. Results from generation-mode viscoplastic- 
dynamic fracture analyses of the WP-1.2 experiment indicated good agree-

A A
ment among the fracture parameters T*, J and y. Apparently, it is 

sufficient to focus on the T*-integral in future studies as 
representative of this class of energy-based fracture parameters.
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Viscoplastic-dynamic fracture analyses of the wide-plate tests, 

when expressed in terms of the fracture parameters (T*, etc.), exhibited 

a strong dependence on mesh refinement. These results, combined with 
asymptotic studies by Sheu [19] and Popelar [20], indicate that resolu­
tion of the crack-tip singular fields in viscoplastic models of 
engineering structures using conventional finite element formulations is 
apparently not within reach currently for practical mesh sizes, even in 
a super-computer environment. Alternative techniques are being investi­
gated that include a two-component parameter (T*, e ) to exclude the 
high-strain-rate region from a portion of the calculations and a moving 
variable-order singular element formulation to build the crack-tip sing­
ularity into the finite element approximation.
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Table 1. Summary of relations for the Bodner-Partom constitutive 
model with isotropic hardening and without thermal recovery

1. Flow Law:

e. .

ij

. e . pe. . + e. . 1J iJ
* s-•5 ij kk

with sij a. . — — 6. .a. . ij 3 ij kk

2. Kinetic Equation:

^2^ = exP iLV
. 3Jo

with Z = Z1

_ p 1 . p . pD2 = 2 eij eij

J2 2 Sij Sij

A2 = D2P/J2
• i
1

3. Evolution Equation of Isotropic Hardening Internal Variable: 

Z1 = mjCZi- Z1) Wp

with Z (0) = Z : W = S e.?; W (0) = 0 o’ p ij ij p

4. Material Constants:

D ZQ, Zi, mi, n, and elastic constants
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Table 2. Constants for the Bodner-Partom 
constitutive model representation for 

A533 grade B class 1 steel
Dq = 108 S"1, m1 = .059 MPa-1

Temperature
(°C)

n Z
(MPa)

Zl
(MPa]

-60 1.62 1772 2224
-10 1.68 1491 1992
50 1.75 1379 1804
65 1.93 1223 1616
85 2.23 1035 1390
100 2.57 907 1236
175 2.77 827 1112

'ii

J
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Table 3. Summary of relations for the Perzyna constitutive model
with linear strain hardening

1. Flow Law:

e pe.. + e.. ij ij

e.?
ij

2/J^ 1J

0

if a > a

if a < a

with S..= a.. - 6 . .a, .ij ij 3 ij kk
(— — \Na — ao<()(a) =
\ no

- i/2a = (3 J2) '

_
a = a + H> e" P o yl
a T = initial yield stress in uniaxial tension yl
"e p = accumulated effective plastic strain

2. Material Constants:

g, N, and elastic constants
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Table 4. Constants for the Perzyna 
constitutive model representation of 

A533 grade B class 1 steel

N = 2.5
6 = 10000 (s-1)
E = 2.0684 (GPa)

E^i = E/75 (linear strain hardening) 
H' = E EX/(E + Et) 
a - 449 - 0.3535 T (MPa) 
where units of T are deg C.
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Figure Captions

Fig. 1. Comparison of Bodner-Pattom constitutive model with mea­
sured stress-strain data for A533 grade B class 1 steel at a temperature 
of 100°C and strain rates of 550 s-1 and 0.001 s-1.

Fig. 2. Variation of response with fluidity parameter for clamped 
beam subjected to a suddenly applied load.

Fig. 3. Variation of response with time step size for clamped beam 
subjected to a suddenly applied load.

A
Fig. 4. Crack-propagation model for calculation of y.
Fig. 5. Wide-plate assembly and crack-arrest specimen: (a) pull- 

plate assembly; (b) specimen with strain-gage locations.
Fig. 6. Finite element model of wide-plate assembly.
Fig. 7. Time histories of crack-depth ratio, maximum effective 

viscoplastic strain rate, and fracture parameters from analysis of wide- 
plate test WP-1.2. (a) Crack-depth ratio, (b) maximum effective visco­
plastic strain rate, (c) fracture parameters.

A

Fig. 8. Comparison of results [Kj(y) vs crack depth] from genera­
tion-mode viscoplastic-dynamic analyses of test WP-1.2 for four crack 
path mesh refinements.
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