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1. Introduction 

In a wake field accelerator a high current driving bunch injected into a struc­
ture or plasma produces intense induced fields, which are in turn used to accel­
erate a trailing charge or bunch. The driving bunch and the accelerated bunch 
may or may not follow the same path through the structure. An important con* 
cept is the so-called transformer ratio. The driving bunch induces a retarding 
field within the bunch as the kinetic energy of the bunch is transformed into 
electromagnetic energy in the wake field. The maximum absolute value of this 
retarding field is denoted by E^> The transformer ratio is then R = Efc/E^ 
where E+ = J?0 is the maximum accelerating gradient seen by a test charge 
moving behind the driving bunch on the same or on a parallel path. The re­
tarding and accelerating fields are assumed to be averaged over the length of the 
structure, or over one period if the structure is periodic. 

In a sense, almost all accelerators are wake field accelerators. For example, in 
a conventional rf-driven accelerator a high current, low voltage beam induces an 
rf voltage in the output cavity of a klystron. The induced electromagnetic wave 
(the wake field) then travels through a waveguide to the accelerating structure. In 
this lecture, however, we consider only wake field acceleration in the conventional 
sense, in which a driving bunch is injected into a metallic cavity or structure. 
A close relative of this type of wake field accelerator is the plasma wake field 
accelerator. In this device a driving bunch is injected into a plasma, setting 
Up strong longitudinal plasma oscillations which can be used to accelerate a 
following btmch. The plasma wake field accelerator is treated elsewhere in these 
proceedings.1 
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2. Basic Concepts 

Consider a point charge q moving in free space with a velocity close to that 
of light. The electric and magnetic field lines will lie nearly in a transverse 
plane, with an opening angle given approximately by 1/7. Suppose now that 
the charge moves past a perturbing metallic obstacle, which is displaced from 
the path of the charge by a distance 6 as shown in Fig. 1, and that it passes the 
point z = 0 at t = 0/ Scattered radiation will tend to £11 in behind an expanding 
spherical wavefront, traveling at the velocity of light, as shown schematically in 
the figure. Suppose a test particle follows the same path along the z axis as the 
driving charge o, but at a fixed distance s behind. At time t w [b2 + s 2)/2cs, 
the scattered field will begin to reach'the axis at position z e = Zq — s producing 
both longitudinal and transverse forces acting on the test particle. The intensity 

"; of the forces due to these "wake fields" is proportional to the magnitude of the 
driving charge. Furthermore, the wake field forces can be greatly enhanced by 
'entirely Burrounding the axis with an appropriately shaped metallic boundary. 
The driving charge can in addition be a shaped charge distribution, and the test 
charge need not follow the same path as the driving charge. 

The goal of wake field accelerator design is to adjust the structure geome­
try, the shape of the driving charge distribution and the paths or the driving 
and accelerated charges to strike an optimum balance among the following four 
quantities: 

(1) 

(2) 
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DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United Stales 
Government. Neither the United States Government nor any agency thereof, nor any of iJieir 
employees, makes any warranty, express or implied, nr assumes any legal liability or responsi­
bility far the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark, 
mnnufaciurer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect Ibosc of the 
United States Government or any agency thereof. 

F i g u r e 1. Figure showing the radiation field from a perturbing metallic object 
excited by the field of a relativisttc charge moving along the z-axis. 
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Given a driving bunch' In which all the electrons have the same energy eVb, then 
Eq. (1) states that the maximum energy that can be attained by on electron 

: following behind the driving bunch la eflVb,assuming electrons in the driving 
bunch which experience the maximum retarding Geld are just brought to rest. 
Equation (2) Is the efficiency for the transfer of energy from the driving bunch to 

, energy u per unit length of structure in the wake Gelds. Equation (3) is a. figure of 
-merit for the conversion of field energy per unit length into accelerating gradient. 
• The parameter Jc* scales inversely as the square of the transverse dimensions of 
~the structure. In Eq. (4) fo> is another figure of merit giving the accelerating 
' gradient produced per unit driving charge. Note that.it is inconsistent to have 

both a high transformer ratio and a large fc». A third loss parameter can also be 
: defined: k% H u/o 3 . The three loss parameters are related by fcj = kiku. For a 

''•. single rf mode kt = ka — k*, and ail three loss parameters are identically equal 
; to the rf loss parameter as usually defined. 

Let us next consider the wake fields set up by some simple metallic boundary 
ducontinuitieshavin? cylindrical symmetry. In Fig. 2(a) a charge moving in free 
space at u « . c enters along the axis of a section of perfectly conducting pipe 
with infinitely thin wails. The field lines are not perturbed by the pipe in the 

;- '.limit f —» oo, either upon entering or leaving, and consequently no wake fields are 
'.•• produced. Theeituatloni8dinTerentfdrtheconSgurationshowninFig.2(b). Here 
'... it is assumed that the fields from the charge have been confined inside the pipe 

for z < 0. As the charge exits from the pipe at z = ft, a toroidal radiation field is 
set up as shown, by the dashed lines. The surface charge splits into two portions, 
a charge Qi on the outside of the pipe and a charge Qi on the inside, with Qi + 
Qi equal to the driving charge Q. The initial ratio Q2/Q1 can be determined by 
minimising the energy in the ra.diation field,2 giving in this case Qi = Qi = Q/2. 
However, computer simulations on similar problems indicate that the radiation 
field may not be confined to a delta-function wavefront expanding at the velocity 

i of light, but rather might be smeared out over the region behind the wavefront 
'-' hva complicated way. In addition, the ratio QifQx does not seem to remain 
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Figure 2. Fields excited by a. point charge moving with v w e past several 
cylindrically symmetric discontinuities. 
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constant in time. Very probably, the total charge on the inside of the pipe 
decreases with increasing time. This seemingly simple boundary value problem 
has ne4, howeveri been solved analytically. 

Figures 2(c), 2(d) and 2(e) show some additional elementary geometries, with 
their associated toroidal wake fields. Again, it should be emphasized that these 
apparently elementary boundary value problems have not been solved analyt­
ically. The details of the radiation field, indicated only schematically by the 
dashed lines, are in fact the subject of some controversy. Hand-waving argu-

T — ^rgents-h&ve^bgehrTised to prove that the radiation field is, or is not, confined to a 
• ' sharp wavefrbnt. It has also been argued3 that hi these three cases there are no 

...wake fields at all in the region r < a, where a is the radius of the aperture. 

The situation is different for the case of Fig. 2(f), which shows a point charge 
:<., passing between two parallel metallic plates. This case is important in that two 

parallel planes give the same wake fields as a pillbox cavity for distances behind 
[.; the driving charge such that s < so where 

*0 = (o J + 4 o s ) , / ! 1 - s . 

Here 6 is the cavity radius and g the gap spacing between the feces of the pill-
box. In other words, if * < so the signal induced by a driving; charge as it enters 
through the first face of the pillbox can propagate to the outer cylindrical wall, be 

, reflected* and return to the axis to influence a trailing test charge before the test 
'charge exits through the second face of the pillbox. The pillbox cavity is impor­

tant because it can often serve as a primitive model for an accelerating structure. 
' ' The wake fields for the case of Fig. 2(f) have been calculated analytically (see, 

for example, Ref. 4). 

.Of course, the detailed behavior of the wake fie Ms in time and space ia not 
the feature of main interest. What we really want to know is the net energy 
gain or the net transverse kick integrated through a structure for a test particle 
following at a fixed distance behind the driving charge, assuming that both the 
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driving charge and the test particle are traveling at v =•• c. The longitudinal wake 
potential per unit driving charge is then defined by 

— Ml 

assuming both driving and test charges arc traveling parallel to the z axis. Here 
zs—zi is the region over which the wake fields are appreciable for a finite structure, 
Or the periodic length for a periodic structure. A similar expression holds for the 
transverse wake potential: 

W ± W = i y ^ ! E x + ( v x B K I ( = ( i + , ) / c . (5A) 

In the above expressions the position of the driving charge is assumed to be 
z = ct, and the wake fields are integrated in a frame of reference moving with 
the test particle. 

As mentioned akove, analytic expressions have been obtained for the wake 
fields (the transition radiation) generated by a point charge entering and leaving 
the region between two parallel metallic planes. Using the Bx field component 
derived in. Ref. 4, K. Bane5 has carried out the integration in Eq. (5a) to obtain 
the delta function wake potential for this case: 

2 ^ . W = 2«(.) In [ f ] - * £ *(2„ 9 - , ) in [ [ a + g ^ _ g ) ] 

~*\[i]lP + t~ [&]„ + * + !) 

(6) 

Here g is the separation between the planes and IP means the integer part of 
the term in brackets. This function is shown in Fig. 3. Note that the wake 
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FlgUM 8. Longitudinal detta-function wake potential for a point chaise 
perpendicntaxto two parallel metallic planes. 

is accelerating (W, < 0) for all « > 0. E K K W I the wake seen by the driving 
charge Itself at« » 0 is retarding, and the transformer ratio aa defined previously 
is alwayB less than one. 

A similar situation is encountered in the cue of a point driving charge moving 
at B ra e on the axil of a hollow tube with resistive walls. Again, the wake is 
accelerating behind the driving charge, except for a very smalt region within a 
critical distance (.01 mm for a point charge moving in copper tube 8 cm in radius) 
immediately behind the charge. It can be shown that for such a resistive wall 
tube the transformer ratio is less than 1/V» (see Bef. 6, Sec 3.2). 

Once the wake potential for a unit point charge is known, the potential at 
any point within Of behind an arbitrary charge distribution with line density p[») 
can be computed by 

00 

vto--yV,fy-*)«(«»)«v . (7) 

a 

The total loss panunator ft. is then obtained from 
ta 

* s - p / v W p W * • (B) 
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3 . Wake Potentials for Closed Cavities and Periodic Structures 

Consider a driving charge Q moving at velocity v through a closed cavity 
with perfectly conducting walls, as shown in Fig. 4. A test charge also moves 
at the same velocity, hut on a path which parallel to that or the driving charge 
and at a iongitudinal distances behind. Our goal is to calculate the longitudinal 
and transverse wake potentials experienced by the test charge in the limit v ~ c. 
For v s£ c the expressions for the wale potentials are in general much more 
complicated and the wake potential concept is less useful. 

Under certain rather general conditions, which will be spelled out in detail 
later, it can be shown 6' 7 that the longitudinal and transverse wake potentials 
can be written in terms of the properties of the normal modes or the charge-free 
cavity in a relatively simple way: 

W I(r',r,s) = 2 1 / ( s ) ^ * r , ( r ' , r ) c o s ^ f>) 
n 

Wlfr' .r , . ) = 2 f f W ^ f e „ 1 ( r ' , r ) B ! n ^ (96) 

where 

and 

TO 5 < D 

JT(s) s { 1/2 a = 0 
i l s > 0 

^ . j s M s a {10o) iV*. 

Here v* is the angular frequency the nth mode, and Vn(r) is the voltage that 
would be gained by a nonpcrturbing test particle crossing the cavity in which 

Figure 4. \ driving charge Q, moving at constant velocity v parallel to the z-
axis, enters a closed cavity at A (r', z = 0) at t = 0 and leaves at 3 (r1, z = L). A 
non-perturbing test particle T also mo'rss at the same velocity V, but at transverse 
position r and at longitudinal distance s behind Q. 
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energy Un is stored in the nth mode. Assuming the electric field for the n l l t 

mode varies with time as exp(iuii) and the position of the test particle is given 
by z = etr this voltage is 

) = JdzE,[r,z)eXP(^j . V „ ( r ) = / d r B , C r , z ) « p = S i . (11) 

The conditions under which Eqs. (9) axe valid for the longitudinal and trans­
verse wake functions axe discussed in detail in Refs. 6 and 7, and are summarized 
in Table I. We see that if the driving charge and test particle follow different 
paths in a closed cavity of arbitrary shape, neither Eq. (9a) nor (9b) give a valid 
description of the wake potentials. If the particles follow the same path in a 
closed cavity of arbitrary shape, Eq. (9a) is valid for the longitudinal wake po­
tential but Eq. (9b) does not correctly describe the transverse wake potential. 
Formal expressions can indeed be written down for the non-valid cases, but the 
integrals are much more complicated, and the wake potentials for a given mode 
do not separate neatly into a product of an s-dependent factor and a factor which 
depends only on r. 

Note that Eqs. (9a) and (9b) are related by 

^ • ' ^ . • ( » ) 

This relation between the longitudinal and transverse wakes is sometimes termed 
the Panofsky-Wenzel theorem.8 It was originally derived to calculate the trans-
veue momentum kick received by a nonperturbating charge traversing a cavity 
excited in a single rf mode. 

The wake potential formalism, using properties of the charge-free cavity 
modesf makes it possible to calculate useful quantities for the charge-driven cav­
ity. An important example is the longitudinal wake potential For the case in 

Table I 
Cues for which Eqs. (9a) and (9b) give the wake potentials in the limit vac 

Case Eq. (9a) Valid Eq. (9b) Valid 
for Wt for Wj. 

(a) Test charge and driving charge No No 
follow different paths in a closed 
cavity of arbitrary shape. 

(b) Test charge and driving charge Yes No 
follow the same path in cavity of 
arbitrary shape. 

(c) Velocity v is in the direction Yes Yes 
of symmetry of a right cylinder 
or arbitrary cross section. 

(d) Both driving charge and test Yes Yes 
charge move in the beam tube 
region of an infinite repeating 
structure of arbitrary cross section. 

(e) Both particles move near the Yes Yes 
axis of any cylindrically 
symmetric cavity. 

which the test charge and driving charge follow the same path. Equations (9a) 
and (10a) reduce to 

{ 0 s < 0 
1 s = 0 
2 o > 0 (13) 

The potential seen by the charge itself is 

V(r,0) = - , H ' « { p , 0 ) = - « ^ t „ ( r ) (Ha) 

14 



V.(r 1 0)=V ) l (0) = - , * „ . (146) 

The energy left behind in the n t t mode after the driving charge has left the cavity 
is 

V„ = - 9 V„(0) = 0» *„ . (IS) 

The p inas ter $R is the constant of proportionality between the energy lost to 
the nth mode and the square of the driving charge, hence the name loss parameter 
or less factor. 

Note from Bq. (13) that on'infinitesimal distance behind a driving point 
charge the potential is retarding for the nth mode with magnitude 

V B (0+)=2V„(0)=-2 5 fc„ . (16a) 

As a function of distance s behind the driving charge, the potential varies as 
I i J ' , . '•*• .;, - ' , ' . 

»«f i )=KfO + ) cos — = - 2 j t „ c o s S ^ . ( 1 6 J) 
c c 

Equation (16a) expresses what is sometimes termed the fundamental theorem of 
' beam loading9: 'the voltage Induced in a normal mode by a.point charge is exactly 

twice the retarding voltage seen by the charge itself. The transformer ratio for a 
'point charge exciting a single mode is then also exactly equal to two. It is readily 

. shown that this factor of two follows directly from conservation of energy.9 In 
, S*C. 4 we will show that this restriction on the transformer ratio for a. point 
' charge does not necessarily apply to an extended driving charge distribution. 

A physical wake for a real cavity is a summation over many modes. Perhaps 
the modes might add up to produce a. transformer ratio greater than two, even 
for a point charge. We note, however, that the wake for each mode varies with 
a as Tra •» 2Jtn cos(u 5s/c). At a = D + the wakes all add in phase, and the sum 
of the wakes for all the modes gives a retarding potential which is exactly twice 

is 

the retarding potential seen by the driving charge itself at s a 0, At any value of 
j where the net wake is accelerating, the cosine wakes for the individual modes 
can never do better than add exactly together in phase, as they do at s s 0+# 
Thus 

|WWI<£ W »( . s = 0 +> = 2 X > * < i , ' ! 0 ) , (IT) 
n n 

and the transformer ratio for a real cavity with many modes, driven by a point 
charge, is equal to or less than two. In practice it wilt be considerably less than 
two, since the modes will never come close to adding in phase anywhere except 
at s = 0+. 

It is easy to show that Eq. (17) also follows from conservation of energy. 
Consider a paint driving charge oi which loses energy 

tA l ==gJW(0) (18a) 

to the wake fields in a cavity (remember that W{0) is always positive by defini­
tion). The accelerating potential at position s is —q\W{s). By superposition the 
energy gained by a charge g2 at position s is 

U2 = -q2\q1W(S)+q2W(0)\ , (iSb) 

Assume first that 91 and rj2 have the same sign. L!y conservation of energy 
Vz < Uu and atiing Eqs. (18a) and (lBb) the transformer retifr R - -\Y[&)fW[Q) 
is 

* < £±2! = i±?! 
0192 « 

where a s 92/9, is positive. This inequality must hold for any value of o, in 
particular for a = 1 which minimizes the right-hand side, leading to R £ 2. If q\ 
and 92 are opposite in sign, the transformer ratio is redefined as R! = —J2, a is 
replaced by —|a|, and the above expression ngain gives JV < 2. 

16 
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If the driving charge and tile accelerated charge follow different paths through 
the cavity, the situation becomes mote complicated. We first note from Eos. (9) 
and (10) thai the longitudinal wake potential is unchanged if the paths of the 
driving charge and the teat charge are interchanged. This symmetry with respect 
to the interchange of r and r" is also an alternative expression of the Lorentz 
reciprocity theorem, derived in standard texts on microwave theory.10 If we now 
apply conservation' of energy to two charges oj and oj fallowing different paths, 
we can show that 

IVVHMI = |W*iO)| < B|IV,(0) !Vj,(0)l'/s , (19) 

where W«(*) is the wake along path 2 produced by a charge travelling on path 1, 
and so forth. If we define a transformer ratio r?u by 

and similarly for Rn, then for any value of s 

-"R8T-
EM'*)! 1 ' 2 

E*k(rt)J 

E W 

(20a) 

[20b) 

BnR2i<4 • (20c) 

The case of a periodically repeating structure is of obvious importance in 
accelerator design. Although real periodic structures are of course never infinite, 
practical structural at least a lew periods in length seem to fulfill condition (d) of 

Table I. Thus the wake potentials can be computed by a summation over normal 
modes. For the case of a cylindrically symmetric structure, all modes depend 
on the azimuthal angle 4> as «*m*. The wake potentials can then be written0 for 

W j . m =2m ( ~ 1 (-) (t cos m0 - ^ sin mai) 

x V ; _ ^ - a t n i i ! l ! l i . (214) 

Here f and $ are unit vectors and k£i is the loss factor per unit length calculated 
at r = a, where a is the radius of the beam tube region. That is 

Kn = ' :—- ' 

where u„ is the energy per unit length in the n l h mode. The longitudinal cosine­
like wake potential per period for the SLAC structure is shown in Fig. 5. Note 
the very rapid fall-off in the wake immediately behind the driving charge, from a 
peak wake of 8 V/pC per period at time I = s/c = 0 + . The woke seen by a point 
charge would be just one half of this wake, or A V/pC. The sine-like tranverse 
dipole (m = 1) wake potential for the SLAC structure is shown in Fig. G. This 
figure illustrates the fact that the total wake potential is obtained by summing 
a finite number of modes that can be obtained using a reasonable computation 
time, and then adding on a so-called analytic extension to take into account the 
contribution from very high frequency modes. Details are discussed in Ref. 11. 

If the dimensions of a particular structure are scaled by a factor F, the 
frequencies of the normal modes scale as F~'. The amplitude of the longitudinal 
wake potential per imi'C length of structure scales as F~ a at time Ft, or in terms 

IB 
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of the modal frequencies as w|. The am Slitude of the dipole wale potential per 
unit length at time Ft scales as F~', or as wjj. 

4 . Wake Potentials o n a Collinear Path with a Charge Distribution 

. Ill the last-section, the wake potentials due to a point driving charge traversing 
a closed cavity were considered under rather general conditions. In this section 
WB eonfina our attention to the case in which the driving charge and test particle 
fellow (As same path through:a cavity 01 structure, but we allow the driving 
charge to ha a distribution such that the line density is given by p(j) — I(t)/c. 
The potential at time t « t j c is then 

t 

V{t) = -fl{t')W,(t-t')dl' . (22) 
—Oft 

For a point charge we found previously that 

n 

If such a charge having initial energy eV0 is just brought to rest by the retarding 
wake potential at t ™ 0, then Vb = y £ fc„ and 

2Vb2fc n eosu„t 
V M - ; *Y£ • (23) 

If the structure supports only a single mode, then V(t) = -2Vocosu nt. However, 
a physical bunch, even a very short bunch, consists of a large number of individual 
charges which are not rigidly connected. Thus the leading charge in such a 
physically real bunch will experience no deceleration, while the trailing charge 
will experience the full induced voltage, or twice the average retarding voltage 
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per particle (assuming the bunch length is short compared to the wavelength* of 
all modes with appreciable values of k„). The wake potential for a short charge 
distribution extending from * = 0 to I = T, interacting with a single mode, Is 
illustrated in Fig. 7(a). Within the bunch the potential is given by 

1 

V{t) = -^Jl(t')4t' , (24) 
o 

where Vb is the average energy loss per particle in the distribution. This can be 
seen by substituting Eq. (24) in 

T 

Vb = F(t) = i / v ( t ) / W * , 
o 

and working out the double integral. Note from Eq, (24) that for t s T at the 
end of the distribution V(T) = -2Vb. Therefore V+ = 2Vo, V~ = \ - 2VB\ = 2Ve 

and the transformer ratio is R = V*JV~ = I, 

The potential in and behind a long charge distribution is shown schematically 
in Fig. 7(b). We consider first the case for a single mrde. From Eq. (22) with 
H r«(0=2t»cosw„t, 

t 

V„(t) = -2fc„ J I(t') cosu„(t - (') «V , (25) 
—BO 

Assume now that the bunch extends in time from —T to +T. Within the bunch 

{-T < t < T) the retarding potential is 

V~[t) = -2fc„ COSbfnf 

t I I 

/ I[t'} cosu,.t' dl' +sinw„« / /(«') tlnuin? a'\ . (26) 
-T -T J 



f i gure 7. Potential in and behind a charge distribution interacting with a single 
mode for (a) a short bunch, and (b) a long bunch. 

Following the bunch' (i > T) the accelerating potential m 

V„+(t) = 2ft„ coaw„t I /((') cosw„(' dt' +sin<j„t / /((') sinw n( ' dl' (27) 

IF the bunch is symmetric about t = 0, the second integral in Eq. (27) vanishes, 
and V+[t) reaches a maximum value given by 

T 

V+ = 2fc. / /•((') cosu„l' dt' . (28*) 
-T 

The retarding potential at the center of such a symmetric bunch is given by 

o 
^-(O) = -2fc„ / /(I 1) cosu n ( ' dl' = - i V,+ . (29) 

- T 

If V " (0) happens also to be the maximum (absolute) value of the retarding po­
tential, then |V~(0)| = V^, and the transformer ratio is R = V+/K" = 2. If 
V~(0) is not at the peak of the retarding potential, then V^ > |V"~(0)| and 
R < 2. Thus for symmetric bunche3 interacting with a single mode, the trans­
former ratio cannot exceed two. This upper limit is reached only if the maximum 
retarding potential is reached at the center of symmetry of the distribution. Oth­
erwise, the transformer ratio is less than two. If the bunch is not symmetric, the 
preceding argument does not apply. The transformer ratio can then in principle 
be arbitrarily large, as we will see shortly. 

Even for symmetric bunches in a physical structure, which has many modes, 
the limitation R < 2 tends to apply. For example, Fig. 8 shows potentials for 
a Gaussian distribution interacting with the SLAC accelerating structure for 
several values of bunch length. Note that, for a bunch length such that the 
peak retarding potential is reached near the center of symmetry of the bunch 
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Figure 8. Potential in and behind a gaussian bunch interacting with the lon­
gitudinal modes of the SLAC structure. The transformer ratio for ff/Ao = 0.05, 
0.20 and 0.40 are 1.4,1.9 and 1.4 respectively. 
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(tf/Ao = 0.2), the transformer ratio is approximately equal to two, while for both 
longer and shorter bunch lengths the transformer ratio is considerably less than 
two. It can be shown9 that for a Gaussian bunch interacting with a single mode 
the loss parameters kn = u /q 2 and fcfl = Ea/2q are related to the loss parameter 
** =£2/411 by 

Jt„ = ki *-»'-"'P = k[ C-<'VIX (30a) 

K = kt *-"&'/*' = Jfe, e - 2 ' V / « (304) 

for each mode. Thus as the bunch length increases, coupling to higher modes 
is rapidly suppressed by the exponential factor. For the SLAC etract'.re, kgp = 
0.70 V/pC/cell for the fundamental mode, where p is the cell length- The ampli­
tude of the accelerating mode voltage per cell excited by a Gaussian bunch with 
total charge q is therefore 

^ = 2ka p = 1,40 e ~ t e v / « V/pC/cell . 
9 

For<r/A0 = 0.05, 0.20 and 0.40, this gives Vxfq = 1.33, OM and 0.06 VfpCfceW. 
These values agree well with the computer calculation shown in Fig. 8. 

' The plot for tr/Ao — 0.4 in Fig. 3 also illustrates the phenomenon of auto-
acceleration, in which fields induced by particles at the front of the bunch can 
accelerate particles at the tail of the same bunch. 

It is possible in principle to design a structure in which the accelerating 
potentials for several modes superimpose maximally at some point behind the 
bunch to produce R > 2. Consider, for example, a two-mode structure with loss 
factors fro and k\ and frequencies uiq and <jj related by ui = 3WQ + St where 8/wa 
is a small quantity (if 6 = 0 the maxima oF the wakes for the two modes would 
never superimpose). Assume a rectangular bunch extending from —T to T with 
constant current I(t) = / . From Eq. (22), using also Wx[t) ~ 2fc»cosu„c, the 
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retarding potential within the bunch b 

V-(i) = - 2 / | ^ r i B M ( , { < + T ) + * L B t a U l ( , + r)] . (si.) 

Behind the bunch (< > 7), 

V+(t) • - 4 / f * £ eoswotsmw»T + ^- coswitsinwirl . (31*) 
L<JO wi J 

IT we choose woT m JT/2 and *i = fco, we find the minimum potential inside the 
bunch and the maximum potential behind the bunch are 

and therefore R « 2i/2. 

This calculation can be generalised to structures with many modes related 
;by u , = (2n + l)wo + fii. If the loss factors are equal for all of the modes, it is 
straightforward to show 

-e)H+s+~) • 
It can be argued that such a structure is unphysical. On the other hand, there is 
no reason to believe that the two mode structure described, above is not realizable. 
The y/2 gain in transformer ratio over the single mod*, case is, however, quite 
modest. 

Let ua now return to the case of an asymmetric driving bunch. Take as 
an example a triangular current ramp in a single mode cavity. Let 7(t) = Jut 
for 0 < ( < T and /(*) = 0 otherwise, for simplicity let the bunch length be 

T = Zx-JV/u, where N is an integer. Then within the bunch 

t 
V-[t) = 2kIu)ft'aau(t-t')dl' = -^-{l-aaat) , (33o) 

D 

whereas behind the bunch 
T 

V+(t) = 2fc/u / t'coaw(t -1' ) dt' = 2kIT sinwl . (336) 
a 

Thus V - = 4fcJ/w, V+ = 2klT = tokTN/u and 

V+ ( current Tamp. 1 R = £.„„N / ' . (34) 
Vm [ single mode J 

The wake potentials far a current ramp of length N = 2 interacting with a single 
mode are shown In Fig. 9(a). 

In a real structure with many modes, one might expect that the transformer 
ratio will be less than that given by Eq. (34). The potential excited in the 
SLAC structure by a current ramp with ff = 2 Is shown In Fig. 10. Within the 
bunch the retarding potential has a behavior dose to the single mode calculation, 
V~{t) ~ 1 — cosut. However, some energy goes into higher modes, as is evident 
by ripples on the cosine wave beiiind the bunch. This causes a degradation of 
the transformer ratio from the single mode prediction R = 2* to R m 4.8S. The 
degradation worsens as the bunch gets longer, as can be seen in Fig. 11. 

The efficiency for energy extraction from a driving bunch extending from 
t = Q to t = T in which all of the electrons have the same energy eV0 m (V^ is 

T 
* = ~ / i - ( t ) K - ( t ) d t . (35) 

0 

For a linear current ramp interacting with a single mode, substitution of Eg. 133a) 
together with appropriate expressions for / ( ( ) , V£ and q into Eq. (34) gives an 
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Figure 10. The potential induced by a linear current ramp interacting with the 
modes in the SLAC structure. 
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Figure 11. The transformer ratio for a linear current ramp in the SL AC struc­
ture as a function of bunch length. The dashed line gives single mode results. 

efficiency of 0.5 if wT = 27rJV. A higher efficiency and a higher transformer ratio 
could be obtained if the retarding potential could be made as flat zs possible 
across the current distribution. In the limit V~(t) = V£ = constant, Eq. (3S) 
gives an efficiency of 100%. In Ref. 12 it is proven that the potential can be 
exactly flat only for a current distribution which consists of a delta function 
followed by a linear current ramp, where the proper relation exists between the 
value of the delta function and the slope of the current ramp. In this limit the 
transformer ratio is given by 3 2 

{ Delta function plus } 
current ramp, \ . (36) 

single mode ) 
Here N — uT/2ir = cT/X, and N can now take non-integer values. For large JV 
the transformer ratio approaches R a 2srJV and the efficiency approaches 100%, 
The transformer ratio for the delta function alone (AT -+ 0) is R = 1, as we know is 
the case for all short bunches, and the efficiency is 0.5. An approximation to this 
distribution, in which the wake potential ia driven negative by an exponentially 
decaying spike and then held constant by a rising current ramp, is illustrated in 
Fig. 9(c). 

A third distribution of interest is a linear current ramp preceded by a quarter 
wavelength rectangular pulse. The response to this distribution is shown in 
Fig. 9(b). The transformer ratio in the case of this "doorstep" distribution i s u 

i/2 f D a o r a t e P P | u s ] 
R - | l - f ( l - ™ + 2?rJv) < current ramp, > - (37) 

{ single mode ) 

In the limit of large JV the transformer ratio again approaches R «/ 2TN. For long 
bunches the transformer ratio and the efficiency are again approximately twice 
that for the linear current ramp alone. Except Tor particles in the frrst quarter 
wavelength of the bunch, all particles experience the same retarding potential. 
At the *>nd of the doorstep (AT =* 1/4), R = \ft and rf ~ 2/ir, 
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As a numerical example, consider an accelerator operating at A — 1 cm with 
a desired gradient of 200 mV/m. A SLAC-type structure at this wavlength would 
have a loss parameter on the order 2 x 10 1 E V/C-m. With a transformer ratio of 
20, driving bunches with an energy of ,100 MeV would need to he injected every 
ten meters. The charge per bunch as given by Eq. (4) is 

';.;;••.; ; ; : : t * ? ^ * " > c • 
assuming that most of the energy goes into a single mode and that the efficiency 
is close to 100%. The bunch length is approximately RX/2jr ~ 3.2 cm or 100 pa, 
and the peak current at the end of the bunch is 10 kA. Many practical quesLions 
must be addressed, such as the feasibility of creating properly shaped bunches 
With very high peak currents. The deflecting Gelds induced if the driving bunch 
wanders off the axis of the structure are also a serious problem. 

5. Ring Beams in Cylindrical]y Symmetric Structures 

In this section we consider cylindrically symmetric structures excited by a 
beam in the form of a ring, or hollow cylinder with thin "walls" J A simple case 
for which the beam-structure interaction can be computed analytically is the 
pillbox cavity having a thin azimuthal slot at radius i*o, as shown in Fig. 12. 
If the slot is located near the outer perimeter of the cavity, we might expect a 
large transformer ratio. In qualitative terms, a driving bunch entering the cavity 
generates a wave packet which travels toward the axis. The volumn of the wave 
packet decrease roughly &s r - 1 , and the electric and magnetic field strengths 
must therefore increase approximately as r~1'2. A second bunch can then be 
accelerated along the axis of the cavity. In a practical structure, the effect of the 
axial beam tube and the azimutha.1 slot on the wake potentials must be talfcn 
into account. 

The advantage of a ring beam over a line beam at the same radius is that 
higher order azimuth a) modes (m > 0) are not excited. Since a ring beam 
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Figure 12. Qualitative picture or the field induced by a ring bunch passing 
through a pillbox cavity. 



•• a , superposition or an Infinite number of line beams at the tame radius, the 
transformer ratio for a ring beam with radius r 0 and a line beam at radius ro 
witli the same axial charge distribution would be the same if azimuthally varying 
modes are ignored, Inclusion Dr these modes would degrade the transformer ratio, 
and In addition a deflecting wake would be generated on the axis of the pillbox. 

If only the lowest frequency TMpio mode in a. pillbox cavity is excited by 
the ring driving bunch, the transformer ratio for a ring bunch with axial extent 
At = 0 can be obtained from Eq. (20a) as 

L M r°) J •'oCPoiro/i) 

where 6 is this outer radius of the cavity and poi = 2.405 is the first root of J0- In 
practice, a Ion; bunci, excites predominately the lowest frequency mode. For a 
Bat current distribution (rectangular bunch) of length As, Eqs. (31a) and (31b) 
can be used to show that the above transformer ratio must be multiplied by a 
bunch form factor 

_ sin(jr Az/Ap) AZ 1̂  
sin(2ir AS/AD) ' A0 4 

(39) 
F = s'in(jrAz/Ao) , T - > T 

AQ 4 

where AD is the wavelength of the fundamental mode. Mitrovich et at.13 have 
computed the energy going into higher modes for a pillbox cavity with ff/Ao = 0.1 
, and Az/Aa = 0.425 as a function of the beam radius ro. For this driving bunch 
length, more than 90% of total energy deposited in all modes goes into the 
fundamental mode For 0.15 < rajb < 0.72. At the upper end of this range, the 
transformer ratio is 5.1. Higher transformer ratios could of course be reached by 
making ro/6 closer to one. However, more energy then goes into higher modes. 
In addition, the driving bunch distribution could be shaped, as discussed in the 
previous section. 
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A wake field ''transformer," which consists essentially of a series of pillbox 
cavities with a ring gap near the outer radius and a hole on the axis for the ac­
celerated beam, has been propuscd by Voss and Weiland.1 4'1 5 An experiment1 6'1 7 

is in progress at DESY to test the concept by injecting an 8 MeV, 1 JIC beam 
into the structure shown schematically in Fig. 13. Also Bhown are the wake fields 
calculated at eight time steps by T. Weiland using his code TBCI." Note that 
the outer boundary of the structure has been shaped to enhance the transfer of 
energy into the rcdially propagating wake fields. After the wave reaches the axis 
it is reflected and travels back to the outer boundary. There it is re@*cted once 
again, travels back to the axis, and produces a second high field pulse. This 
second pulse has the inverse sign and can be used to accelerate positrons. 

Figure 14 shows the longitudinal potential due to these fields for the driving 
beam and for an accelerated beam on the axis. The maximum decelerating wake 
potential seen by the particles in the driving beam is computed to be 17 mV/m, 
but on the axis a gradient of 170 mV/m is produced. Thus the transformer ratio 
for this particular structure is 10. 

Some important observations can be made concerning the deflecting wake 
fields in the driving beam. For the usual cavity with no metal between the beam 
and the axis, recall that the dipole wake potential can be written as 

c J Fdt = f Wr[s) co5^ + ^ty,i(s) oin# =ffj.(s) (f cos<6-£s in^) , 

whereWr(s) = —W^(s). Wenowiind, when there is metal between a hollow beam 
and the axis, that the deflecting forces cannot be described by a single transverse 
wake function.18 Two functions are now required at a given fixed radius for the 
ring beam (and four if the position of the ring beam is allowed to vary): 

c JF1.[r,<j))dt = tWr{s) cos fl + fW^s) sintf , 

where Wr(s) ^ —W$(s). As an example, Fig. 15 shows the dipole wake poten­
tials for the inner bunch {WT = W$) and the outer bunch {W, 56 -Wf) for the 

36 



SB. 

* 
a 

: 'II fs 
: l \W\ l \ l \ l \ l \ L_ 

U'J PS 

N V M _ 
.'iw i". , , an pri 

. 

! 7~W\>VW\/£1 —MAAA'A'A/V— A/\AAAAA— — \ A A A A A A A 

HI 

o o s 

jNNNsKlMSCr ZZl^^^fsTNlSlIZ 

•̂  j r . ; I 

N\N\J>J>i \ l —NNMMMMU 

» \AAAAAAA— 

.-:-.-;a.s:-

- • • •-•. th~ w 
V\— —\AA7\AWiA— Z3AA2&£rzn~, 

file:///aaaaaaa
file:///AAAAAAA
file:///AA7/AWiA


# ^ j U ^ ; -

/ 

1S-B4 
48B8A11 

100 200 300 400 500 
xlO" 1 2 sec 

Figure 14. Longitudinal potential for the wake field transformer shown in 
Fig. 13. (1) Driving beam density; (2) decelerating potential inside driving beam; 
(3) accelerating potential ou axiB; (4) density of the accelerated beam; (5) self 
potential of the accelerated beam; (6] accelerating potential after reflection from 
outer wall. 
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Figure IS. Transverse wake potential on the axis (top) and at the outer driving 
ring beam (bottom) generated by a 0.1 mm offset of the driving beam in the 
structure shown in Fig. 13. The parameters of the driving beam are at = 2 mm, 
Q = 1 /iC and r 0 = 5 cm. 



structure in Fig. 13. This behavior of the woke potentials makes the study of 
beam dynamics in the driving bunch much more complicated. A related result 
is alio of importance for such structures: cylindrically symmetric fieids (m = 0 
modes) can deflect. This Is not the case for the more usual single-region cavities. 

Other structures have been proposed1 4'1' which do not need a hollow driving 
beam, for example the elliptical structure shown in Fig. 16 and the multi-beam 
star-transformer shown la Fig. 17. In the elliptical geometry one makes use of 
the property thai the peak wake potential depends on the size of the beam hole. 
In the star transformer wake fields from the driving beams propagate toward the 
axis and combine In a straightforward manner. A transformer ratio on the order 
of 2N, where AT la the number of driving beams, might be expected. 

An experiment at Osaka University19 using the elliptical wake field trans­
former has already bean performed. The computed transformer ratio in this 
experiment is 1.3. The deflecting wale fields'for this stmcture have also been 
computed,2 0 and wen found to be very high (~ 1/3 of the accelerating field). 
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