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1. Introduction

In a wake field accelerator & high current driving bunch injected into a struc-
ture or plasma produces intense induced fields, which are in turn used to accel-
erate a trailing charge or bunch., The driving bunch and the accelerated bunch
may or may not follow the same path through the structure. An important con-
cept is the go-called transformer ratio. The driving bunch induces a retarding
field within the bunch as the kinetic energy of the bunch ia tranzformed into
electromagnetic energy in the wake field. The maximum absolute value of this
retarding field ia denoted by E,. The transformer ratio is then R = E%/E;,
where E}Y = E, iz the maximum accelerating gradient seen by a test chargc
moving behind the driving bunch on the same or on a parallel path. The re-
tarding and accelerating fields are assumed to be averaged over the length of the

structure, ar over one period if the atructure is periodic.

In a sense, almost all accelerators are wake field acceleratozs. For example, in
a conventional rf-driven accelerator a high current, low voltage beam induces an
1l voltage in the output cavity of a klystron. The induced electromagnetic wave
(the wake field) then travels through a waveguide to the accelerating structure. In
this lecture, however, we consider only wake field acceleration in the conventional
sense, in which a driving bunch is injected into a metallic cavity or structure.
A close relative of this type of wake field accelerator is the plasma wake field
accelerator. In this device a driving bunch is injected into a plasma, setting
up strong longitudinal plasma oscillations which can be used to accelerate a
following bunch, The plasma wake field accelerator is treated elsewhere in these

proceedings.!
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2. Basic Concepts

Consider & point charge g moving in free space with a velacity close to that
of light. The electric and xﬁa.gneti: field lines will lie nearly in a transverse
plane, with an GPEniﬁg angle given approximately by 1/v. Suppose now that

\ the charge moves past a perturbing metallic obstacle, which is displaced from
" the puth.of the charge by a distance b 25 shown in Fig. 1, and that it passes the
point r=0att=0" Scnttgred ﬁdiation will tend to fill in behind an expanding
spherical wavefront, traveling at the velocity of light, as shown schematically in

. the figure. Suppose a test particle follows the same path along the = axis as the
driving charge g, but at a fixed distance s behind. At time t = (b* + s)/2cs,

; the scattered field will begin to reach’the axis at position z. = 2 — 5 producing

) ;bdth longitudinal and transverse forces acting on the test particle. The intensity
:’"’,‘of the forces due to these awake fields™ is proportional to the magnitude of the

- "“clriving charge. Furthermore, the wake field forces can. be greatly enhanced By,

1éntin:,ly surrounding the axis with an appropriately shaped metallic boundary.
The driving charge can in addition be a shaped charge distribution, and the test
charge need not follow the same path as the driving charge.

The goal of wake field accelerator design is to adjust the structure geome-
W the shape of the driving charge distribution and the paths of the driving
{md accelerated charges to strike an optimum balance among the following four

éua.ntitie.s:
R=—— (1)
n=— (2)
kp=-2% 3

ko= —=—— . (1)
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Figure 1. Figure showing the radiation field from a perturbing metallic cbject
excited by the field of a relativistic charge moving along the z-axis.
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_~ Given n driving Bunchin which all the electrons have the same energy eVp, then
Eq (1) states that the maximum eniergy that ¢ar- be attained by an clectron
folluwing behind the drlving bunch is eRVg, assuming electrons in the driving
bnnr.h wluc‘h mpu'ience thie maximum ntudmg field are just brought to rest.

Equnﬂun ). is I.he emeimcy for the’ tranufer of energy from the driving bunch to
enuy uper unlt leugth of structure in the wake felds. Equation (3) is a figure of
merll for the cnnvemon ot' ﬁe!d energy per unit length into accelerating gradient.

The pmmetu ke scale mvensely 29.the square ‘of the transverse dimensions of
the structure. - In Eq.- (4) ks i8, another figure of merit giving the accelerating
gradient pwduud per unit driving charge. Note that it is inconsistent to have
: bof.h & high trlnlformer ratio and alarge k5. A third loss parameter can also be
deﬂned ky = u/q’ Thz three. loss parameters are related by k2 = kiky. Fora
. single of mnde ke = ko = ky, and all three loss parameters are jdentically equal
- to the rf loss panmgter as umally deﬁned

Let 28 next consider the waka ﬁe]ds set up by some su'nple metallic boundary
d.ucunt[mutla blvmg cylindrical symmetry In Fig. Z(a) a charge moving in free
ten along the axis of a sectior of perfectly conducting pipe
with mﬁmkly ﬂlm wn.llu The ﬂeld lines are not perturbed by the pipe in the
. lum’l. '7 - no, elthe.r \:pon entermg or leavmg. and consaquently no wake fields are

produced The situatiun is dlﬂ'ereut for the conﬁguratmn shown in Fig. 2(b). Here

It is lnumzd thu.t thn ﬁalda ﬁ'oln the dmrge have been confined inside the pipe
' l' ' < 0. Al th.e chuge ex..h fmm the plpe at z = %, a toroidal radiation feld is
) ut up u slwwn. by the duhed Ims. The surface charge sph!.s into two portions,
“a chl.rge Q1 on the biitside of the plpe and a charge Qs on the inside, with Q) +
E ‘Qg eqnll to the dnvmg tlmrge Q. The initial ratic Qz/Q] can be determined by
Q:=@Q/2,
Howaver, r.umpu’l.er limulauons on similar problems indicate that the radiation
"Reld nny not be conﬂned to a delta-function wavefront expanding at the velocity

mlnﬁnllmg the. energy in the radmtum fteld,? giving in this case @ =

Lief light, but rather might be smeared out over the region behind the wavefront

< ih‘a ‘complicatéd wey. In addition, the ritio Qz/@) does not seem to remain
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Figure 2. Fields excited by a point charge moving with v = ¢ past several
cylindrically symmetric discontinuities.
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.- constant in tin:.u. Very probably, the total charge on the inside of the pipe
de:mse‘u'with'mmulixg time. - This ingly simple boundary value probl
has not huwever" been solved ana.lytxcu.lly.

F'&“l‘ﬂ 2(:), 2(d) and 2(e) show some additional elementary geometries, with

‘ thelr assocla.!-ed loroldal wake Felds. Agam, it should be emphasized that these
appammly elenta.ry boundary value’ problems have not been solved analyt-
) ] mally The deta.lts the radlahon ﬁeld mdlca.ced only schematically by the
dashed lma, n.re m fact the anbject of some com.rovemy Hand-waving argu-

- ‘heve be n uaed to prové that the rad:atlon ‘field is, or is not, confined to a
' slmrp wavel'ront. Ir. k a!so been a.rgm:,t"l’l Lhat in these three cases there are no

,,:wake ﬂeldu at u.ll

€ l'eglu r < a, where P ls the radius of the aperture.

. The sltuatxon is dlﬂ'erem for the ciise of Fig. 2(f), which shows a point charge

. pming bctween two pamllel metn.lllc plntes This case is important in that two

' pa:ra.llel pla.nes g:ve the same wake flelds asa plllbox cavity for distances behind
the drivmg cba.rge such that s <3 where

s0= (g +46%)V3 — g

‘ Here b is the cavity radius and g the gap spacing between the faces of the pill-

box. In other words, if 8 < ag the signal induced by a driving charge as it enters -

- through the first face of the pillbox can propagate to the outer cylindrical wall, be
. mﬂmte.d and return to the axis to influence a trailing test charge before the test

2 charge exita throngh the second face of the pillbox. The pillbox cavity is impor-

: tant because it can often serve as a primitive model for an accelerating structure.

The wake fields for the case of Fig. 2{f) have been calculated analytically (see,
 for example, Ref. 4).

. Of cautse, the detailed behavior of the wake fields in time and space ia not
" the festure ‘of main interest. What we really want to know is the net emergy
3 pl.n or the net transverse kick integrated through a structure for a test particle
following at ' fixed distance behind the driving charge, assuming that both the

7

driving charge and the test particle are traveling at v == c. The longitudinal wake
paotential per unit driving charge is then defined by

w‘(s) - ...%jdz [E‘l(zi"l}]‘=(l+’)!‘ (50)

assuming both driving and test charges are traveling parallel to the z axis. Here
23—z is the region over which the wake fields are appreciable for a finite structure,
or the periodic length for a periodic structure. A similar expression holds for the

iransverse wake potential:
1 7
Wil =3 f dz [By+ (v X B))i_prnye - (58)

In the above expressions the position of the driving charge is assumed to be
z = ct, and the wake fields are integrated in a frame of reference moving with

the test particle,

As mentioned alove, analytic expressions have been obtained for the wake
fields (the transition radiation) generated by a point charge entering and leaving
the tegion between two parallel metallic planes. Using the E, field component
derived in Ref. 4, K. Bane® has carried out the integration in Eq. (5a) to obtain

the delta function wake potential for this case:

27eqWe(s) = 26(s) In [g] ~ Zi 6(2ng—a8) In {__"z—__]

= (s +9Ms -9}

Z1ls s L L
["]m * g [‘F i +1

Here g is the separation between the planes and I means the integer part of

(6)

the term in brackets. This function is shown in Fig. 3. Note that the wake

8
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perpendicular to two parallel metallic planes.

Figure 8. Longitudinal delta-function wake potential for & point charge maving

is accelerating (W < 0} for all & > 0. However, the wake seen by ths driving
charge itself at 6 = 0 is retarding, and the transformer ratio &8 defined praviously
s always less than one.

A similar situntion ia encountered in the case of a point driving charge moving
at v =4 € on the axis of a hollow tube with resistive walls, Again, the wake is
accelerating behind the driving charge, except for a very small region within a
critical distance (.01 m:m for a point charge moving in copper tube 8 cm in radius)
immediately behind the charge. It can be shown that for such & resistive wall
tube the transformer ratio is less than 1/\/x (see Ref. 6, Sec. 3.2),

Onee the wake potuntlal for a nnit point charge is known, the potential at
any point withia or behind an arbitrary charge distribution with line density p(s)
can be computed by

V(s) = —fW,(s' —38) pld) dd' . n
The total loss paramoter &, is then obtained from

ky =$_£ V(o) pla) ds . ()
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3. Wake Potentials for Closed Cavities and Periodic Structures

Consider a driving-charge Q moving at velocity v through a closed cavity
‘with perfectly conducting walls, as shown in Fig. 4. A lest charge 2also moves
at the same velocity, but on a path which parallel 1o that of the driving charge
andata longitu@inal'di_gpa“q‘ces-bghind_. Qur goal is to caleulate the longitudinal
-and transilerse'_infa’.ke pol;:;tiah experiencad by the test charge in the limit v ~ c.
For v 3 ¢ the expressions for the wake potentials are in gencral much more
complicated and the wake potential concept is less usclul.

Under certain rnthl'ér general conditions, which will be spelled out in detail
later, it can be shown®? that the longitudinal and transverse wake potentials

can be written in terms of the properties of the normal modes of the charge-free

cavity in a relatively simple way:

Wa(r',r,8) = 25 (s) 3 kalr',r) cos 9:—5 (9q)
ﬁv; (t',r,8) = 2H{s) z kny (r',r)sin E:—s (9b)
where
D s<0D
H| (a) = 1/2 s=0D
1 a>0
and
kalr) = R ELVA) (r;lur‘(') (10a)
knl(r',r) = L"')V_J-ﬂ'ﬂ (llJb)

dUpwa/c

Here wy is the angular frequency the nth mode, and Vi(x) is the vollage that
would be gained by a nonperturbing test particle crossing the cavity in which

11

/T\//\ﬂ;

Wit N

-
v
L\D
Vo, ) 2
14 | Xe
s
1-85
4998A17

Figure 4. A driving charge @, moving at constant velocity v parallel to the z-
axis, enters a ¢losed cavity at A (r',z = 0) at £ = 0 and Jeavesat B (r',z= L}. A
non-perturbing test particle T' also mo™es at the same velocity v, but at transverse
position + and at longitudinal distance s behind Q.
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energy U, is stored in the nth mode. Assuming the electric field for the nt*
mode varies with time as exp(iw!) and the position of the test particle is given

by z = et, this voltage is’
Valr) = ] dz Eq(r,z) exp (’_"’c'i) . (11)
n

The conditions under which Egs. {9) are valid for the longitudinal and trans-
verse wake functions are discussed in detail in Refs. 8 and 7, and are summarized
in Table I. We see that if the driving charge and test particle follow different
paths in a closed cavity of arbitrary ehape, neither Eq. (92) not (9b) give a valid
description of the wake potentials. If the particles follow the same path in a
closed cavity of arbitrary shape, Eq. {9a) is valid for the longitudinal wake po-
tential but Eq. (9b) does not correctly describe the transverse wake potential.
Formal expressions can indeed be written down for the non-valid cases, but the
integrals are much more complicated, and the wake patentials for a given mode
do not sepirnte neatly into a product of an s-dependent factor and a factor which

’ depends only on r.

Note that Eqgs. (9a) and (9b) are related by

oW

s =V, W: . (12)

This rclationrbetween the longitudinal and transverse wakes is sometimes termed
the Panofsky-Wenzel theorem.® It was originally derived to calculate the trans-
verde momentum kick received by a nonperturbating charge traversing a cavity

excited in a smgle rf mode.

The wake potential formalism, using properiies of the charge-free cavity
modes, makes it possible to calculate useful quantities for the charge-driven cav-

ity. An important example is the longitudinal wake potential for the case in

13

Table 1
Cases for which Eqgs. (9a) and {9b) give the wake potentials in the limit v =z ¢

Case Eg. (92) Valid Eq. (9b) Valid
for W, for W
(a) Test charge and driving ¢harge No No

follow different paths in a closed
cavity of arbitrary shape.

{b) Test charge and driving charge Yes Na
follow the seme path in cavity of
arbitrary shape.

(c) Velacity v is in the direction Yes Yes
of symmetry of a right cylinder
of arbitrary cross section.

(d) Both driving charge and test Yes Yes
charge move in the beam tube
region of an infinite repeating
structure of arbitrary cross section.

e} Both particles move near the Yes Yes
axis of any eylindrically
symmetric cavity.

which the test charge and driving charge follow the same path. Equations (9a)
and (10a) reduce to

0 a<0
We(r,s) = Zk,.(r) ca:;.‘x‘i":—'s x4l s=0
" 2 s3>0 (13)
{Va(e)?
k =
") =,
The potential seen by the charge itself is
V(£,0) = —g We{r,0) = —¢3_ knlr) (14a)
n

14




Vn(l',n) = Vn(ﬂ) =—qks . [ldb)

. The etiergy left behind in the n'* mode after the driving charge has left the cavity
Is .

- Up=—gq Va(0) = q: kn . (1s) .

er lon fl:tur. '

) NP‘G ﬁon Eq. (18) that an infinitesimal dist behind a driving point
- thl?ll'l'hl potential is ratarding for the nth mode with magnitude

W

Val0*) = 2Va(0) = —2 kn - (160)

Al a fun:tinn of dllhnu 8 bahmd the driving charge, the potential varies as

Peo Vn(‘] = pn(o'i-) cmﬂ!ﬂ = —Zq kn cos-“:—a . (168)

. quntlon (16!) @xpreases what is sometimes termed the fundamentai theorem of
bum hldlnl“ ‘the volhge induced in & normat mode by a.point charge is exactly
Mu thl l!tl.l‘dlng 'ﬂlﬁlg! geen by thie charge itself. The transformer ratio for a
) pﬂlnl l:hup uciﬂn; a l‘n;'le mode is then also exactly equal to two. It is readily
: .Mn ‘that’ thil factat of two followa directly from conservation of energy.® In
: Su:. [} wl w;ll show that this restriction on the transformer ratio for a point
, dlu'l! dog! not neceasarily apply to an extended driving charge distribution.

: A phyzlcal wake for a real cavity is a summation over many modes. Perhaps
‘llu mod- might add up to produce a transformer ratio greater than two, even

" for a point charge. We note, however, that the wake for each mode varies with
s l! Wa == 2kncos(was/c). At 8 = 0* the wakes all add in phase, and the sum
af the wakes for sll the modes gives a retarding potential which is exactly twice

5

the retarding potential zeen by the driving charge itself at 8 = 0, At any value of
5 where the net wake is accelerating, the casine wakes for the individual modes
can never do hetter than add exactly together in phase, as they do 2t » = 07,
Thus

Wia)| <) Wals =0} =2) Wo(a=0) , 17

and the transformer ratio for a real eavity with many modes, driven by a point
charge, is equal to or less than twa. In practice it will be considerably less than
two, since the modes will never come clase to adding in phase anywhere except
at s =07%.

It is easy to show that Eq. (17) also {ollows from conservation of anergy.

Consider a point driving charge g1 which lases energy
U= q% W (0) (l&n)

to the wake fields in a cavity (remember that W{0) is always positive by deflni-
tion). The accalerating potential at position s is —g,W(s). By superposition the

energy gained by a charge g; at position s is
Ur=—qin W)+ WD) . (188)

Assume first that @1 and ¢ have the same sign. By conservation of energy
Uz < Uy, and wsing Eqs. [18a) and (18b) the transformer ratio R = —W"(s)/W (0)
is

g+ed_1+a?

“nn e

R<

where a = g2/q1 is positive. This inequality must hold for any value of &, in
particular for @ = 1 which minimizes the right-hand side, leadingto R < 2. If gy
and g2 ere oppaosite in sign, the transformer ratio is redefined as R = ~R, e in

replaced by —|x|, and the nbove expression ngain gives ' < 2,

16
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If the driving é]mrge and the accelerated charge follow different paths through
the cavity, the situation becomes more complicated, We fiyst note from Eqgs. (9)
and {10) that the lobgitudinal wake potential is unchanged if the paths of the
driving charge and the test charge are interchanged. This symmetry with respect
to the interebaige of r and r' Is also an slternative expression of the Lorents
reciprocity theorem, derived in standard texts on microwave theory.!? I we now
ipply conservation of energy. to two cherges g; and gy following different paths,
we can show that

Wia(e)| = [Wa(s)| < 2W1(0) Wa (o), 09)
where Wig(s) is the wake along path 2 produced by a chasge travelling on path 1,
and so forth. If we define a transformer ratio Ry3 by

[Wia(s)|

Ru(s) = D)

. end aimilarly for Ry, then for any value of &

. e
Wa(0) ll’ Y kalra))
R,, <2 W:(o)] [E - J (20a)
12 T kalra)] 2
RN .
) and
Ry R <4 . {20¢)

The case of a periodically repeating structure is of obvions importance in
accelerator design. Although real periodic structures are of course never infinite,
practical structures at least a few periads in length seem to fulfill condition {d) of

17

Table I. Thus the wake potentials can be computed by a summation over normal
modes. For the case of a cylindrically symmetric structure, all modes depend
on the azimuthal angle ¢ as ¢™*, The wake potentials can then be written® for
s>0,

Wen =2 (E) " (i)” cosmng ; k,(,‘.'& cos ‘i':i {21a)

W=t (3) (57 s dinme)

x ;w:ﬁe../e slnﬂ:"—‘ . (218)

Here 7 and & are unit vectors and () is the loss factor per unit length calculated
at r = a, where ¢ is the radius of the beam tube region. That is

k(u] = [Eunfr = a)}?
4un

where up, is the energy per unit length in the n'® mode. The longitudinal cosine-
like wake potential per period for the SLAC structurc is shown in Fig. 5. Note
the very rapid fall-off in the wake immediately behind the driving charge, from a
peak wake of B V/pC per period at time ¢ = a/c = 0+, The wake seen by a point
charge would be just one half of this wake, or 4 V/pC. The sine-like tranverse
dipole (m = 1) wake potentiu] for the SLAC structure is shown ir Fig. 6. This
figure illustrates the Jact that the total wake potential is obtained by summing
a finite number of modes that can be obtained using a reasenable camputation
time, and then adding on a so-called analytic extension to take into account the
contribution from very high frequency modes. Details are discussed in Ref. 11.

I the dimensions of a particular str are scaled by a factor F, the
frequencies of the normal modes scale as F~1, The amplitude of the longitudinal
wake potential per unit length of structure scales ag F~? at time Ft, or in terms

18
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of the modal frequencies »g wi. The am litude of the dipole wake potential per
unit length at time F¢ scales as F-2, or 28 w3.

4. Wake Potentials on a Collinear Path with a Charge Distribution

. I ,?.lullurl_lcﬁ.nq, thewaks potentials due to 8 point driving charge traversing
a closed :ivlty%uc considered under rather general conditions. In this section
we confins our attention to the case in which the driving charge and test particle
Jollow the same poth thropgh 'a cavity or structure, but we allow the driving
charge o ba a distribution such that the line density is given by p(s) = I(t)/c.
The potential at time ¢ = o/ is then

i i - ‘
‘ Vi) =~ j Iy Wt — ') dt' . (22)

For n point charge we found praviously that
V(t) =—2¢) kn cosuwnt
n

I such & charge having initial energy Vo is just brought to rest by the retarding
wake potential at ¢ = 0, then Vo = ¢ 3, ks and
' "

2Vy' Y ky coswyt
V() = I ; (23)

.

If the structure supports only & single made, then V (2) = —2V5 coswat. However,
a physical bunch, sven a very short bunch, consists of a large number of individual

. -charges which are not rigidly connected, Thus the leading charge in such a

physically rea] bunch will experience na deceleration, while the trailing charge
will expariance the full induced voltage, or twice the average retarding voltage

21
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per particle (assuming the bunch length is short compared to the wavelangths of
all modes with appreciable values of &), The wake potential for a short charge
distribution extending from £ = 0 to ¢ = T, inleracting with a single mode, Is

" illustzated in Fig. 7(a). Within the bunch the potential is given by

t
2V
vig=-22f ey ar (24)
q .0/

where Vp is the average energy loss per particle in the distribution. Thiz can be
scen by substituting Eq. (24) in

T
V0=V(t)=% f V) I &
o

and working out the double integral. Note from Eq, (24) that for ¢ = T at the
end of the distribution V(T) = —2Vo. Therefore ¥V} =2V, V5 = | ~ 2V} = 2W
and the transformer ratio is R =V} V- = 1.

The potential in and behind a long charge distribution is shown schematically
in Fig. T(b). We consider first the case for a single mrde. From Eq, (22) with
W, (t) = 2kn coswnt,

. .
Va(t) = -2k, f I(¢') coswa(t —t7) dt' . (25)

Assume now that the bunch extends in time from =T to +T. Within the bunch
(=T < ¢ < T) the retarding potential is

L t
() = —2ka [cnsu,.l / I{') coswnt’ dbf + sinw,t / I{t') elnwnt! a’] . (28}
-r -r

22
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Flgure 4. Potential in and behind a :halgé distribution interacting with a single
mode for {8} a short bunch, and (b) a long bunch.

Following the bunch (i > T) the accclerating potential is

T T
Vik(t) = 2kn [coaw,.i / I(t") coswpt! dr’ +sinu,.l/ I(t') sinwyi’ dl'] . (27)
=T ~T

IF the burch is symmetric about ¢ = 0, the second integral in Eq. {27) vanishes,

and V"’(t] reachea p maximum value given by
T
Vi = 2k,./ I(t") coswnt' di' . (28)
-T
‘The retarding potential at the center of such a symmetric bunch is given by
[
v-{0) = —zk,./ ") cosw,t' dt' = —% vE oL (29)
-r

1f V~(0) happens also to be the maximum (absolute) value of the retarding po-
tential, then [V=(0)| = V;, and the transformer ratio is R = V1/V; =2. If
V=(0) iy not at the peak of the retarding potential, then V. > |V—(0)| and
R < 2. Thus for symmetric bunches interacting with a single mode, the trans.
former ratio cannot exceed two. This upper limit is reached only if the maximum
retarding potential is reached at the center of symmetry of the distribution. Oth-
erwise, the transformer ratio is Jess than two. If the bunch is not symmetric, the
preceding argument does not apply, The transformer ratio can then in principle

be arbitrarily large, as we will see shortly.

Even for symmetric bunches in a physical structure, which has many modes,
the limitation R < 2 tends to apply. For example, Fig. B shows potentials for
a Gaussian distribution interacting with the SLAC accelerating structure for
geveral valuss of bunch length. Note that, for a bunch length such that the

peak retarding potential is reached neat the center of symmetry of the bunch
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Figure 8, Potential in and behind a gaussian bunch interacting with the lon-
. gitudinal modes of the SLAC structure. The transformer ratio for o/ = 0.05,
' 10.20 and .40 are 1.4, 1.9 and 1.4 respectively.
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e = s mmin 2t

(¢/A0 = 0.2), the transformer ratio is approximately equal to two, while for both
longer and shorter bunch lengths the transformer ratio is considerzbly iess than
two. It can be shown?® that for & Gaussian bunch interacting with a single mode
the loss parameters k, = u/q? and k, = E,/2q are related to the loss parameter
ke = E3/4u by

ko = ks P ke =-4:’ﬂ’l.\= (30a)

ko = keemv30 2 = g, 200 (a0b)

for each mode. Thus as the bunch length increases, coupling to higher modes
is rapidly suppressed by the exponential factor. For the SLAC etructure, kg =
0.70 V/pC/cell for the fundamental mode, where p is the cell length. The ampli-
tude of the accelerating mode voltage per cell excited by a Gaussian bunch with
total charge q is therefore

% =%kap=140 MR V/pCleell

For «/Ag = 0.05, 0.20 and 0.40, this gives V;/q = 1.33, 0.64 and 0.08 V/pC/cel).

These values agree well with the computer calculatior shown in Fig. 8.

* The plot for 6/4g = 0.4 in Fig. § also illustrates the phenomenon: of auto-
acceleration, in which fields induced by particles at the front of the bunch can

accelerate particles at the tail of the same bunch.

It is possible in principle to design a structure in which the accelerating
potentials for several modes superimpose maximally at some point behind the
bunch to produce R > 2. Consider, for example, a two-mode structure with loss

factors kg and ki and frequencies wg and wy related by wy = 3w + 6, where & /wo

is a small quantity (if § = O the maxima of the wakes for the two modes would

never superimpose). Assume a rectangular bunch extending from —T to T" with

constant current I(t) = I. From Eq. (22), using also W,(t) = 2k,coswnt, the
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retarding patentlal within tha bunch is
V@)= -2f [5‘# ;lnwo(t +T)+ 5 aw(e+ 'r)] (31a)
L ™ w ] .

- _B..dih'idlthe busich (¢ > 79, -
V) e —ar [E conuntainunT + 2 mthsin“l'f] )

I wedlme wyT = /2 and k1 = ko, we find the minimum potential inside the
bunql-f and the maximum potentlal behind the bunch are

8 k!l

- 16 kol
—_— + = = 22D
anm and V7 3

< (32

‘and therefore R s 2v2.

This calculation can be generalized to structures with many modes related
:by wn = (2n 4 1)wo + &a, IF the loss factora are equal for all of the modes, it is
straightforward to show :

2 () (4 2020)

"It can be argued that such a structure is unphysical. On ihe other hand, there is
10 resson to believe that the iwo mode atructure described ehove is not realizable.
The +/Z gain in transformer ratio over the single mode. case is, however, quite
‘modest. )

Let us now return to the case of an asymmetric driving bunch. Take as
. an example a triangular current ramp in a single mode cavity. Let I{t) = Iuwt
-'bi-&g t < T and I{t) = O otherwize. For simplicity let the bunch length be

uw

T = 2xN/w, where N is an integer. Then within the bunch
f kI
V={t) = 2kIw f Y eonwft — 1) dt' = —%— (1 - coswt) (33a)
[}
whereas behind the bunch
7
vH) = zkl'u/t'couw(t ~t') dt) = 2kIT sinwt . (a3s)
o

Thus V5 = 4kJfw, Vi = 286IT = dxkIN[w and

Re Yﬂ: . :u.rrent ramp, (34)
Vo single mode

The wake potentials for a current ramp of [ength /VV = 2 interacting with a single
mode are shown in Fig, 9{a).

In a real structure with many modes, one might expect that the transformer
ratio will be Jess than that given by Eq. (34). The potential axeited jn the
SLAC structure by a current ramp with N = 2 is shown In Fig. 10. Within the
bunch the retarding potential has a behavior closs to the aingle mode caleulation,
V—(t) ~ 1 — coswt. However, some energy goes into higher modes, as is gvident
by ripples on the cosine wave behind the bunch. This causes a degradation of
the tranafermer ratio from the single mode prediction R = 2» to R = 4.86. The
degradation worsens as the bunch gets longer, as can be seen In Fig. 11.

The efficiency for energy extraction from a driving bunch extording from
t=0to i =T in which all of the electrons have the same energy ¢¥p = ¢V, is

T
1 -
n=—e ! V@ d . (35)

For a lincay current ramp interacting with a single mede, substitution of Eq, {33a)
together with appropriate expressions for I(t), V;; and ¢ into Eq. (38} gives an
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Flgure 0. The voltage induced by three different asymmetric current distribu-

tions interacting with a single mode.
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Figure 10. The potentiel induced by a linear current ramp interacting with the
modes in the SLAC structure.
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Figure 11. The transformer ratio for a linear current ramp in the SLAC struc-
ture a8 a function of bunch length. The dashed line gives single mode resulis.

a

efficiency of 0.5 if wT' = 27N, A higher cfficiency and a higher transformer ratio
could be obtained if the retarding potential could be made as flat as possible
across the current distribution. In the limit V™ (t) = V|7 = coastant, Eq. (35)
gives an efficiency of 100%. In Ref. 12 it is proven that the potential can be
exactly flat only for a current distribution whick conslsts of a delta function
followed by a linear current ramp, where the proper relation exists between the
value of the delta function and the slope of the current ramp. In this limit the
transformer ratio is given by??

Delta function plus
R=(1+(22N)?] 12 current ramp, . {(36)

single mode

Here N = wT/2x = eI/, and M can now take non-integer values. For large N
the transformer ratia approaches R = 27N and the efficiency approaches 100%.
The transformer ratio for the delta function alone (N — 0) is R = 1, as weknow is’
the case for all short bunches, and the efficiency is 0.5. An approximation to this
distribution, in which the wake potential is driven negative by an exponentially
decaying spike and then held constant by a rising current ramp, is illustrated in
Fig. 9(c}.

A third distribution of intereat is a linear current ramp preceded by a quarter
wavelength rectangular pulse. ‘The response to this distribution is shown in
Fig. 9(b). The transformer ratio in the case of this “doorstep” distribution is'?

i/2 Daoratep plus

2
R= I-l + (l - 725 + 21rN) ] current ramp, . (37)

* single mode

In the limit of large N the transformer ratio again approaches R & 2xN. For long
bunches the transformer ratio and the efficiency are again approximately twice
that for the linear current ramp alone. Except for particles in the first quarter
wavelength of the bunch, all particies experience the same retarding potential.
At the ead of the doorstep (N = 1/4), R =2 and n = 2/m.
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As a numerical example, consider an accelerator operating at A = 1 cm with
& desired gradmnt ol' 200 mv, [m. A SLAC-type structure at this wnvlength would
have a loss para.meter on the urder 2x 10' V/ C-m. Wlth a transformer ratio of

20, driving bunches wnth an energy of 100 MeV wuuld need to be injected every

_ten meters. The cha:ge per bunch aa ngen by Eq. (4] is

xEAR.v--
Im & OSuC .

' assuming that most of tl;e energy goes into a single mode and that the efficiency

is close to 100%. The Bu.l}chrlengt.h is, ap’pmﬂmataly‘ﬂklzyr = 3.2 cm or 100 ps,
and the peak cul_'rené at the and of thii bunch is 10 kA. Many practical quesiions
must be addressed, such as the feasibility of creating propiri}" shaped bunches
with very high peak qurljenf;s.<’.rhe deflecting Belds induced if the driving bunch

wa.nders off the exis of the ‘stnié:tu;e are also a serious problem.

' 5. Ring Beams in Cylindrically Symmetric Structures

In’ this section we corisider ;:ylindricélly symuetric structures excited by a
bea.m in the form of 2 rmg, or hollow cylmder with thin “walls". A sunplc case

pillbox cavity having a thin BFI uthal slot at radius rp, as shown in Fig., 12.
If the slot in located near the oi;t‘er'p,etimglter of the cavity, we might expect a
large tmafomer ratio. In qualitative terms, a driving bunch entering the cavity
generates a wave pm:liet which travels toward the axis. The volumn of the wave
pan"."et decrease r;)u_ghly as +~1, and the electric and magnetic field strengths
tmust therefore mcrease approximately as r—1/2, A second bunch can then be
accelerated along the axis of the eavity. In a practical sfructure, the effect of the

axial beam tube and the azimuthal slot on the wake potentials must be taken

_into account.

'The a.dvantage’ of a ring beam over a line beam at the same radius is thq.t

hiﬂlu order azimuthal modes (m > D) are not excited. Since a ring beam
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Figure 12. Qualitative picture of the field induced by a ring bunch passing
through a pillbox cavity.
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is & EUPEI‘PNI"OI\ of an infinite number of line beams at the same radius, the
transformer ratio for a nng beam ml:h radius ro and a line beam at radius ro
Witk the same axial chuge dlstr:butmn would be the same il azimuthally varying
modes'nre :gnored Inclusion of these modes would degrade the transformer ratio,
and in addition a dcﬂect.mg wake would be generated on the axis of the pillbox.

Ir unly the Iuwes'. frequency TMom mode in a pillbox cavity is excited by
the ring driving bunch, the Ira.nsformer ruho for a ring bunch with axial extent
Al‘,:— 0 can be obtained from Eq. (20a) as ’

" &(0) ]1/1 2
B R=2 = m—m—— 38
["("ol Jo{parra/b) #9)
where bis th‘e.outex radius of the cavity and pg; = 2.405 is the first root of Jo. In
practic'e, a ]onq buncii-excites predominately the lowest frequency mode. Fora

. "‘ﬂat currént distribution (rectangular bunch) of length Az, Eqs. (312) and (31h)

" can be used to show that the above transformer ratio must be multiplied by a

bunch form factor

_ sinf{r Az/Ao) Az 1
= Gagm b))’ o i
: (39)
F = sia(r Az/Aq) , % > 1

where Ap is the wavelength of the fundamental mode. Mitrovich et al.’® have
computed the energy going into higher mades for a pillbox cavity with g/ = 0.1
.and Az/Ag = 0.425 as a function of the beam radius ro. For this driving bunch
" length, more than 90% of total energy deposited in all modes goes into the
fun&mental mode for 0.15 < ro/b < 0. 72. At the upper end of this range, the
tranafo:mer ratio is 6.1, Higher tra.nst‘ormer ratios could of course be reached by
makmg ro/b closer to one. Howeve., more energy then goes into higher modes.
In addition, the dtwlng bunch distribution could be shaped, as discussed in the

PI'GV ious gection.
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A wake field “transformer,” which consists essentially of a series of pillbox
cavities with a ring gap near the ovter radiuvs and a hole on the axis for the ac-
celerated beam, has been propused by Voss and Weiland. M5 An experiment1617
is in progress at DESY to test the concept by injecting an 8 MeV, 1 2C beam
into the structure shown schematically in Fig. 13. Also shown are the wake fields
calculated at eight time steps by T. Weiland using his code TBCL!# Note that
the outer boundary of the structure has been shaped to enhance the transfer of
energy into the radially propagating wake fields. After the wave reaches the axis
it is reflected and travels back to the outer boundary, There i% iz refected ance
again, travels back to the axis, and produces a second high field pulse. This
second pulse has the inverse sign and can be used to accelerate positrons.

Figure 14 shows the longitudinal potential due to these fields for the driving
beam and for an accelerated beam on the axis. The maximum decelerating wake
potential seen by the particles in the driving beam is computed to be 17T mV/m,
but on the axis a gradient of 170 mV/m is produced. Thus the transformer ratio

for this particular structure is 10.

Some important observations can be made concerning the deflecting wake
fields in the driving beam. For the usual cavity with no metal between the beam

and the axis, recall that the dipole wake potential can be written as
c[F dt = £ W,(s) cos ¢+ $Wy(s) sind = W (s) (x" casp~ & sin¢) s

where Wy(s) = —Wy(s). We now find, when there is metal between  hollow beam
and the axis, that the deflecting forces cannot be described by a gingle transverse
wake function.’® Two functions are now required at a given fixed radius for the

ring beam (and four if the position of the ring beam is allowed to vary):
¢ /FJ_[r, $)dt = £ W,{s) con d + $We(s) sing .

where We(s} # —Wy(s). As an example, Fig. 15 shows the dipole wake poten-
tials for the inner bunch (Wy = Wy) and the outer bunch (W, s —W,) for the
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Figure 13. Electric ficld at eight time steps generated by a hollow driving beam

in a seven—cell pillbox transformer. Figure 13 (Continued)
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Figure 14. Longitudinal potential for the wake field transformer shown in
Fig. 13. (1) Driving beam density; (2) decelerating potential inside driving beam;
{3) accelerating potential ou axis; (4) density of the )] 3 beam; (5) self
potential of the accelerated beam; {6] accelerating potential after reflection from
onter wall.

39

[ TR

1.0 S

parbicle gynsity
high apErgy bunth
05|
0.0 ———— 7\,,{
. N, ST
N, arimuthat /
woke potentiol \ ;"
0.5 TB9kevim 3 /
=0.5 ¢ \ / 4
\ /
\ /
-1 0 e L !
-5.0 -25 00 25 50
———————— gusfance lrom tunch center FF emy
1 0 T | I
pacticle density
dnwng suneh
a5
0.0

L wake potentiol

-0.5 T kevim
A0, L ot . !

-5.0 -25 00 25 50
1284 ——————— gutance f1om bunchcenterfarm PLLAPY)

Figure 15. Transverse wake potential on the axis (top) and at the outer driving
ring beam (bottom) generated by a 0.1 mm offset of the driving beam in the
structure shown in Fig. 13. The parameters of the driving beam are oy = 2 mm,

Q@ =1uCand rg=>5cm.
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o ltrucl.nn In Fig. ia. rhh behavior of the wake potentiuls makes the study of
' bnm dymmlﬂ ln the drlvln' Bunch mlu‘]tmnl! complicated. A related result

M dlo of- Impm'hnee far such ttmcturu cylindrically symmetric fieids (m =

mndu) cm ddlech '.I.'lll! is nof- l-he we far tlw more usual single-region cavities.

Oﬂlﬂ' lh‘llciufa hlve been nmpuul“v“ which do not need a hollow driving
'bllm, for. mple the' elllpth:ll ctrutul'e ‘shown In - Fis 16 and the multi-beam
:tu-trmfornnr lhm in Fig. i In the elliptical geumetry one makes use of
‘the ;property that tlue peui wake yotentl&l depends on the size of the beaia hole.
In the star tnnll'onur wake fietds from the driving beams propagate toward the
axis and comblnein l. ltn!ghtl'orwud manner. A transformer ratio on the order
of BN. ‘whers N s the nu.mbu- of dnvi.ng heuns, might be expected.

An experiment at Osaka Unwerulty“ u:mg t‘he elliptical wake field trans-
former hu already been: perfarmgd. The eomputed transformer ratio in this
upulmlnt is 1.3, The deﬂe:llng wake fields’ for this structure have also been
coxnputad. and were found to be'very high (~ 1/3 of the accelerating field).
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Figure 16. Two-beam elliptical pillbox acting as a wake field transformer.
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