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This paper is intended as an overview on platings for precision finishing
operations. After a briefreview of the two processes (polishing and precision
machining) by which a coating on a part can be converted to a precision surface,
the coatings which work successfully in these applications will be discussed.
Then adhesion and stress aspects of deposits will be covered. Electroless nickel,
which 1s a particularly attractive coating for precision finishing applications, will
be discussed in some detail, from its early years as the "Kanigen" process to the
present. Since microstructural changes in deposits are important for precision
parts, this aspect will be covered for electroless nickel, copper and silver deposits.
Lastly, some words will be directed at potential future electrodeposited coatings
including nickel-phosphorus alloys, and various silver alloys.

Precision Finishing

There are two processes by which a coating on a part can be converted into an
optical surface. These are conventional grinding and polishing and precision
machining. While these processes are quite different the result of their
application is the removal of physical irregularities on the coated surface, the
generation of specific shape required, and the improvement of finish (reduction of
surface roughness) to a level where any resultant scattered radiation is within
tolerable limits.

Polishing

The removal of any material by polishing, be it glass or metal, is roughly a
process of wear(l). Here a polishing or grinding lap base is coated with a
deformable material (these vary greatly in compliance, viscosity and other

* Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract No. W-705-ENG-48.



material properties depending on the application). This lap is placed against the
surface to be worked and continuously fed with a polishing compound, usually a
fine, less than 3 nm diameter particle size metal oxide powder. The lap and
workpiece are moved with respect to one another in a series of rotating and
oscillating motions in a known way. The resultant energy imparted to the surface
by the lap through a combination of mechanical abrasion, chemical attack, and
thermal flow disrupt and remove the material. This process results in surfaces
whose finish characteristics are small compared to the wavelength of light being
applied and whose shape can be controlled to some extent(l).

The advantages of this process with respect to precision machining in general
relate to the wide variety of materials that lend themselves to polishing and the
relatively high quality finishes normally achieved. Optical polishing has been
successfully applied to most all glasses, metals and crystals, as well as most all
hard inorganic materials and semiconductors. It is a process that is insensitive
to mechanical vibration, acoustic coupling, and in most cases, small variations in
temperature(1).

Reflectance data for a number of coatings which had been diamond polished in
silicon oil to 10A RMS surface roughness or better ar shown in Figure 1 for the
range between 0.40 and 2.5 pm wavelengths. Bright nickel and sulfamate nickel
showed approximately 12% higher reflectivities than electroless nickel and tin-
nickel. Although all four ofthee coatings could be optically polished, only
electroless nickel and tin-nickel deposits could be diamond turned without
causing undue degradation of the diamond tool(2).

Precision Machining

Precision machining (also termed single point diamond turning or just diamond
turning) is accomplished by combining the very hard and sharp edges obtained
from certain crystalline (usually diamond) tools with extremely precise machine
tools (either liquid or gas bearing) operating under closely controlled
environmental conditions to produce finished or nearly finished optical surfaces.
This technology removes some of the difficulties in forming optical surfaces
encountered in conventional grinding and polishing, specifically for that family of
materials both physically and chemically compatible with diamond tools.
Because these tools are so hard and sharp, no cutting edge contact area is
presented to the material. This promotes the cutting process by restricting it to a
thin shear plane with a minimum of contact stress or friction and results in a
process that minimizes material deformation. The result is a specular finish
required for optical surfaces and a contour that is an exact copy ofthe tool path(l).

The materials that can be successfully diamond turned are limited in number.
Table 1 lists those compatible with diamond tools and hence considered
machinable. Itis interesting to note that all ofthe metals listed in Table | except
for beryllium-copper can be deposited from aqueous solutions or non-aqueous
solutions (aluminum).
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Figure 1 - Spectral reflectance traces of electrodeposited and electroless nickel plated
coatings on copper substrates. From Reference 2.
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Metals which are carbide formers such as iron, pure nickel, molybdenum,
tungsten and titanium are not amenable to single point diamond turning because
they cause rapid deterioration of the diamond tool. Metals with which carbon has
very low or no solubility, such as aluminum, copper, gold, silver and tin lend
themselves well to single point diamond tuming(3).

Nonferrous
metals

Aluminum®
Brass®

Copper
Beryllium-copper®
Electroless nickel®
Gold

Silver

Tin

Tin-nickel
Platinum

Table 1

Diamond-turned materials*

Infrared-
transmitting materials

Germanium®
Silicon®

Zinc sulfide®

Zinc selenide®
Alkali halide
Lithium niobate
Cedium iodide
Potassium chloride
Calcium fluoride
Cadmium telluride
Mercury cadmium telluride

a Most common lens or mirror materials

* From Reference 3

Adhesion

Polymers

Acrylic®
Nylon®
Polycarbonate
Polystyrene®
Polysulfone
Acetal
Fluoroplastic
Silicone

A wide variety of substrates are used in the manufacture of precision parts. A
number of these such as aluminum, beryllium, beryllium-copper, molybdenum
and glass are not the easiest materials to coat with adherent deposits. Special
processing is required to ensure adhesion of the coating to the substrate. When
properly prepared for plating, adhesion can be quite good as revealed in Figure 2
which shows failure in 7075 aluminum which was overplated with thick nickel.

The origin of the problem for most difficult-to-plate substrates is typically a thin,
naturally forming oxide film that is difficult to remove and that reforms quickly
when a clean surface is exposed to air or water. Techniques that have been used
by electroplaters to prepare difficult-to-plate substrates for coating include:



Figure 2. Cross-section ofnickel dplated 7075 aluminum conical head tensile
specimen after testing (magnified 6X). Failure occurred in the aluminum at

83,000 psi (573 MPa).



etching to allow mechanical keying between the substrate and plated deposit,
mechanical roughening such as glass bead or sand blasting to roughen the
substrate surface, replacing the oxide film with a displacement coating, heating
to allow for the interdiflusion between the substrate and coating, anodic oxidation
of the substrate, and intermediate strike coatings to minimize coefficient of
thermal expansion mismatches. With precision substrates many of these
techniques are not very acceptable since they can noticeably alter the original
surface. For example, chemical or mechanical etching can considerably change
the surface finish and heating can induce distortion.

A relatively new approach that works very well and also eliminates the severe
pickling, mechanical roughening or heating required of the processes just
discussed is the use of augmented energy physical vapor deposition to provide an
initial adherent coating and then electroplating over this to the required final
thickness. Ion plating and hot hollow cathode deposition have been used
successfully for providing the initial, adherent coating. Ring shear data (4) for
three very difficult-to-plate metals, tungsten, molybdenum and titanium are
presented in Table 2. In all cases, the adherence was considerably improved over
that obtained without the use of PVD. Clearly, coupling augmented energy PVD
processes with electroplating provides better adhesion than obtained with wet
processes and also eliminates: 1) the need for roughening the surface chemically
or mechanically, and 2) heating after coating.

Stress

Residual stresses which are inherent in deposition processes can result in distortion
or be the cause of poor adherence of subsequently applied dielectric films (5-8). Some
electroless nickel deposits on beryllium induce significant tensile stresses in the
composite and these stresses can produce unacceptable distortions (5,8). Even room
temperature reliefof silver electroplating stresses can be a problem with optical
parts. For example, a flat brass mirror plated with silver then diamond turned to
better than 0.5 fringe deformed 9 fringes within 15 months after machining.
Removing the silver by machining eliminated the distortion and essentially restored
the original features (9). One technique used to minimize stress problems in these
kinds of'situations with silver and copper plated parts is to heat at 150*C prior to
diamond turning. It is important to note, however, that with some electrodeposits
this treatment could cause recrystallization and grain growth. For example, the
grain size of silver deposited at 21.5 A/m2 (2 asf) in a cyanide solution containing
carbon disulfide increased from 2.36 to 3.22 x 10'6 cm dining a three month storage
period with a corresponding decrease in hardness from 148 to 130 VHN (10).



Table 2

Ring Shear Data Show the Value of Combining PVD with Electroplating for

Coating Difficult-to-Plate Metals

Metal Ring Shear Adhesion (MPa)

Electroplating PVD & Electroplating

Tungsten 48a(Cu)b 173¢(Cu)
Molybdenum 125"(Au) 216¢(Cu)
Titanium 1457(Ni1) 252¢g(Cu)
a) This process included etching in 3 parts HF, 1 part HNO3, and 4 parts H20 for 5 min. at

b)

d)

2)

22'C followed by anodic treatment (1076 A/m”) in 300 g/l KOH at 50‘C for 5 min. prior to
plating.

Metal in parenthesis was that used for building up the thick ring (1.5mm) required for ring
shear testing.

The magnetron ion plating process included sputter etching in vacuum, magnetron ion
plating with 6tim of copper and then electroplating to final thickness. Base pressure of the
system was 5 x 10'® Pa (10"® Torr), etch power was 0.5 watts/cm”, and bias power was 0.078

watts/cm” (but tapered to zero after deposition of about 20,000A of copper).

This process included degreasing in perchlorethylene, firing in dry hydrogen (<2ppm
H20) for 10 min., immersing in a solution containing four parts NH4OH (28%) and one
part H202 (30%) for 8 to 10 seconds at room temperature, rinsing in distilled water, gold
striking to deposit 0.15 to 0.63 mg/cm2 (0.08 to 0.32 pm), rinsing in distilled water, firing
in dry hydrogen at 1000'C for 10 min., and then electroplating to final thickness.

The magnetron ion plating process included sputter etching in vacuum, magnetron ion
plating with 6p of copper and then electroplating to final thickness. Base pressure of the
system was 5 x 10'® Pa (10'® Torr), etch power was 0.5 watts/cm2 and bias power was 0.078

watts/cm2 throughout the coating run.

This process included abrasive blasting, cleaning in hot alkaline solution, pickling in
HC1, bright dipping in a solution containing 10% by vol. of HF (70%), 1% HNO3 and
balance water, followed by anodic etching for 6 min. at 162A/m2 in a 40"C solution
containing 13% by vol HF (70%), 83% acetic acid and 4% water. Then 25 pm of Ni was
plated in a sulfamate solution at 48‘C. Specimens were heated at 480°C for 2 hours and then
plated with approximately 1.5 mm of nickel.

This process included coating with 10 pm of copper by hot hollow cathode deposition and
then electroplating to final thickness. Conditions for the etch cycle included a source
power/rate of I0A/sec, substrate voltage of 2 KY and pressure of3 x 10"4 Torr. Conditions

for the coating cycle were a source power/rate of 100 A/sec, and a pressure of 3 x 10"4 Torr.



By judicious choice of plating operating conditions (e.g., current density, pH, solution
composition, and additive content) it is possible to deposit coatings that are in a
stress-free state. For example, Figure 3 shows deposit stress as a function of current
density for a plating solution used to deposit up to | mm of copper on glass. This plot
defines the current density to use to produce zero stress in the deposit and this
information was utilized to coat neutral density glass substrates (15 cm by 15 cm)
with 1| mm of copper and pyrex optics (22 cm diameter) with 0.4 mm of copper. This
deposit was capable of withstanding single point diamond turning to provide an
optical surface (Figure 4). it was also able to withstand heating at 250°C for four
hours without degradation of the metal-glass bond (11).

One technique utilized to provide for real time control of stress that has been used in
the electroforming of optical components is plating on a strain gage simultaneously
with the actual part (Figure 5). As the plated surface of the gage bends in response to
compressive or tensile forces, an analog is produced. The strain signals are
analyzed by computer programs which vary the output of the power supply up or
down to compressive or tensile bending of the plated surface. Stress control with this
method is reported to have been held sufficiently close to zero so that dimensional
accuracy in optical nickel electroforms was 0.15 |[im (12).

Ifone has the chance to provide input on the substrate material at the design stage,
this can considerably help in minimizing stress problems with subsequent coatings.
An example is Figure 6, which shows the stress in electroless nickel deposits as a
function of phosphorus content for aluminum and brass which have high expansion
coefficients, and steel, beryllium and titanium, which have low expansion
coefficients. Besides showing that the substrate has a very distinct influence on
stress, the curves also show that for each metal, a deposit with zero stress can be
obtained by controlling the amount of phosphoms in the coating (13).
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Figure 3 - Deposit stress as a function of current density for a high copper/low
sulfuric acid solution containing a proprietary brightener. From reference 11.
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Figure 4 - Diamond machined electrodeposited copper on a glass substrate.
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Figure 5 - Strain gage technique for measuring stress in electrodeposits. From
reference 12.
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Figure 6 - Stress in electroless nickel as a function of phosphorus content for metals
with a high expansion coefficient (aluminum and brass) and a low expansion
coefficient (steel, beryllium, and titanium). From reference 13.

Electroless Nickel - A BriefHistory

Abner Brenner and Grace Riddell of the National Bureau of Standards are typically
credited with starting electroless nickel on the road to commercialization (14). Their
work, with solutions containing glycolate and hypophosphite and first reported in
1946, had been preceded by Wurtz in 1844 who reported that nickel metal could be
produced from a solution containing nickel salts and hypophosphite (15) and the first
patented report of thick, adherent nickel deposits in a hypophosphite solution by Roux
in 1916 (16). General American Transportation Company in the mid 1950’s
established the first commercially feasible electroless nickel process, known as the
"Kanigen" process utilizing solutions containing lactate and hypophosphite (17).
They developed stabilizers which prevented dissociation of the solution by masking
catadytically active nuclei (18). Small amounts oflead, tin, arsenic, molybdenum, or
thiourea were effective in stabilizing the solution and this led the way to effective
commercialization of the process.

The Kanigen patents have long since expired and today there are many dozens of
suppliers who market formulations for electroless nickel plating. For that matter,
there are any number of electroless nickel deposits that can be commercially
deposited, including the engineering types with high phosphorus content, the more
decorative middle phosphorus deposits and the recent low phosphorus dep0s1ts for
improved wear resistance. Also, other metals or compounds can be incorporated in
the deposit for enhanced properties in specialized applications. As Stevenson
recently stated, "Today, electroless nickel truly is a family of coatings:" (19), and this
1s shown in Flgure 7.
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Figure 7
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Electroless Nickel-Influence of Phosphorus Content

Electroless nickel deposits for single point diamond turning should contain at least
11% (wgt) phosphorus to minimize tool damage (Figure 8). A stress relief treatment
at 200*C for 2 hours even further enhances the cutting characteristics of deposits
containing greater than 11% phosphorus (20).

Electroless Nickel-Pitting

A general requirement for electroless nickel for optical use is that it have no porosity
s1nce porosity on the finished surface would result in a void on a mirror surface or a
"pip" in the molded surface. Both ofthese are degrading to optical performance (21).

Typically, with precision parts, the plater does not have the luxury of an endless
supply of parts or for that matter sometimes even one practice part that could be used
for characterizing the deposition process. This means that occasionally parts have to
be stripped and re-plated because of defects such as pits in the coating. Obviously,
this is not an ideal situation. What clearly is needed is some manner of
characterizing the plating operation so that when the actual part is coated, the
chance for defects is minimized to the highest degree possible. A methodology for
handling this type of situation is one of the goals of the organizers of this conference.

In the thin film rigid memory disk industry where electroless nickel plays an
important part, much effort has been directed at understanding the cause and
influence of defects (22). Microscopic examination of both as-plated and lightly
polished electroless nickel surfaces has revealed that the surface defects 1%
contributed to yield and magnetic performance problems were pits which could be
classified into two groups. The first type (class A) were small (2-10 pm) circular pits
of varying depths. The second type (class B) were considerably larger (10-30 pm) and
irregularly shaped. Class A pits were found to be the most frequent in number and
process related due to chemical imbalance in the plating solution. Class B pits were
often only one or two per surface and related to prior physical handling damage in
the aluminum substrate and particulate matter in the electroless plating solution.

Another example is random micropits on the surface of computer discs that were
driving electroless platers "buggy". They had prepared solutions carefully, using
deionized water, clean room conditions, carefu%jy cleaned discs, and effective filters.
Still pits of very small size were causing about six percent of the computer discs to be
rejected, with one or more random pits on the surface (23). After much analysis it
was ﬁnally discovered that the pits were caused by a micro-organism that was able to
live in the plating solution. Once this discovery was made, the platers checked the
system and found organlsms in the deionized water. These nematodes were
originally in the "raw" water. As the water went through the ion exchanger they
multiplied and remained in the carbon filters, eventually escaping into the deionized
water. By irradiating the water with UV light, the platers were able to kill the
organisms and eliminate pitting of the discs (23,24).

13
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Figure 8 - Map of diamond tool flank-face wear and damage vs. electroless nickel
phosphorus content and heat treatment conditions, based on scanning electron
microscopy. From reference 20.
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Recently, American Metaseal Corporation of Maryland discovered that in its area of
the country (mid-Atlantic region) electroless nickel plating on aluminum required
DI water. Hard water left mineral deposits in the solution that caused pitting and
roughness on parts (25).

The purpose ofthe above discussion on pitting is to show the insidious nature of the
problem. It can be a very complex issue and require a considerable amount of time
and effort to understand and control.

al Stability of Electroless Nickel Copper and Silver Deposits

A potential problem in using coatings for precision finishing applications is
metallurgical instability. Electroless nickel, copper and silver deposits all have the
possibility of undergoing changes that could seriously affect precision parts.

As-deposited electroless nickel is metastable and undergoes a crystalline transition
at moderate temperature (240 to 400*C). This change causes a rapid increase in the
hardness and wear resistance of the coating while reducing the corrosion resistance
and ductility (26,27). The transition also causes an increase in density and
accordingly a decrease in volume. This volume change, which can vary from 0.1%
to 1.3% (28-30), coupled with differential thermal expansion is the cause for cracking
or fissuring often found in deposits after heat treatment (30). The extent ofthe
crystalline transition is a complex function of a number of factors including: 1)
temperature and time at temperature, 2) heating rate, 3) previous temperature
history, and 4) phosphorus content (31). Figure 9 provides a time/temperature profile
which illustrates the transition from an amorphous to a crystalline structure for
electroless nickel containing 11% phosphorus. Ifthermal exposure is maintained in
the time/temperature envelope below the dotted curve, then the electroless nickel will
remain entirely amorphous. However, if exposure conditions fall above this curve,
then partial or complete crystallization will occur(31).

Copper deposits have been shown to markedly soften after storage at room
temperature for 30 days (32). Interferometric tests on copper mirrors revealed a
change in the optical surfaces over a period of six months. Metallographic analysis
revealed that recrystallization had occurred in the copper, accompanied by a shifting
of the surface along individual grain boundaries(33). In the most extreme cases this
was visible to the eye as an orange-peel effect which scattered the laser beam and
degraded reflectance measurements. Figures 10 and 11 show the roughening of a
single point diamond turned copper electrodeposit as a result of recrystallization.
The 11:l>1r0blem 1s caused by the high density of defects in the electroplated copper, often
much higher than that achieved by cold working. Differential scanning caf)orlmetry
(DSC) showed that copper plated at 5 asfhad a very high recovery energy exotherm of
1.97 J/g at 148.5*C and a much lower recrystallization energy exotherm of 0.529 J/g at
283.8*C (Figure 12). A DSC ofcopper plated at 15 asfappeared to have ajoined
recoveiy/recrystallization energy exotherm of 1.27 J/g at 306.2*C (Figure 13). To

15
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Figure 9 - Time/temperature profile illustrating the transition from an amorphous to
a crystalline structure for electroless nickel containing 11% phosphorus. From
reference 31.
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Figure 10 - Nomarski micrograph of a diamond turned copper surface before
recrystallization (100X). From reference 33.

Figure 11 - Nomarski micrograph of a diamond turned copper surface after
recrystallization (100X). From reference 33.
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Figure 12 - DSC showing exotherm at 14$.5*C and 283.8*C for copper plated at 5 asf.
From reference 33.
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reference 33.

19



(After Heat Treatment — 250°C for 1 Hour)

Heat Flow

Temperature (°C)

Figure 14 - DSC of copper which had been plated at 5 asfand then heat treated. From
reference 33.
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eliminate the problem of recrystallization at room temperature, the low current
density copper is given a low temperature heat treatment (1 hour at 250*0 to remove
the recovery energy without causing recrystallization and grain growth (33). The
DSC oflow current density copper which had been heat treated did not have any
retained recovery energy and the recrystallization energy also appeared to be reduced

(Figure 14).

Silver deposits have also gone through changes on precision parts. This was
discussed earlier in this paper in the section on stress in coatings.

Potential Future Coatings
Electrodeposited Nickel-Phosphorus Alloys

Recently, increased attention has been directed at electrodeposition as an alternate to
electroless deposition for producing Ni-P alloys. The electrodeposition process offers
a number of potential advantages:

1) alloys with 14-15% P which is higher than that obtainable with electroless
nickel are possible, and as shown in Figure 8, higher P means less tool
wear.

2) an order of magnitude greater deposition thickness can be produced.

3) noticeably less expensive than electroless deposition since
electrodeposition 1s not a batch process.

4)  the possibility of reduced porosity

Preliminary work at three different establishments has shown the viability of
substituting electrodeposition for electroless deposition of Ni-P alloys. At LLNL an
electrodeposited Ni-14P coating compared quite favorably with electroless nickel
coatings even after a cutting distance of 25 km (15.3 miles). Figure 15 shows a
collection of surface roughness profiles, 500 microinches in length at cutting
distances from 15 to 60,000 ft. for electroless Ni-13P, illustrating the variety of profile
shapes and amplitudes that occur. Figure 16 shows a similar measurement for
electrodeposited Ni-14P at the end ofthe test after a cutting distance of 81,000 ft.
Comparison of the two figures reveals that for the tools used in these studies, the
electrodeposited Ni-P was not as damaging to the tool as the electroless Ni-P. With
electrodeposited Ni-P, rms roughness after cutting 81,000 ft was 15.7 A versus 83.2 A
for electroless nickel after 60,000 ft of cutting (34).

Researchers at NIST also reported good results with electrodeposited Ni-15P. After
40 km (24.8 miles) of machining, no change in surface finish was noted (35). Recent
results published in Australia also suggest that electrodeposited Ni-P is a viable
alternative to electroless Ni-P in the high quality finishing of mirrors (36).

21
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Figure 15 - Talystep profiles of replication grooves for electroless nickel labeled with
cutting distance in miles. The leading edge ofthe tool is toward the left. From
reference 34.

22



tkr ‘BWHhaa TSo

Figure 16 - Talystep profiles of replication grooves for electrodeposited Ni-P with
cutting distance in miles. The leading edge ofthe tool is toward the left. From
reference 34.
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Lastly, Lashmore and co-workers have reported that pulse plated Ni-P alloys can
contain greater than 20% P with a layer spacing that is much finer and more
uniform in appearance than that in the dc alloy (37,38). This would be an intersting
material to evaluate for diamond turning applications.

Electrodeposited Silver Alloys

Silver, which surpasses other metals in terms of reflectivity in the spectral region
from 15 to 0.4 pm, is widely used in optical instrument manufacture as a mirror
coating. However, silver coatings must be protected in order to prevent a loss of their
reflectivity in air. Some Russian researchers have reported that it is possible to
electroplate alloys of silver-antimony (2.7%) which are about 2 times harder than
pure silver and 10-15 times more abrasion resistant. Tests under natural climatic
conditions for two months with ambient relative humidities of 65 = 15% and
temperatures of 25 + 10*C showed that silver was covered with a continuous black
film after a month, while the silver-antimony coating suffered practically no change
(39). Some work directed at determining the practicality of depositing silver-
antimony alloys and also determining ifthese alloys are diamond tumable might
prove fruitful.

Silver alloys containing 10 to 27% tin also are worth some consideration. Alloys
containing 10% tin reportedly exhibit good ductility and solderability and have a low
coefficient of friction. They also exhibit considerably improved tarnish resistance
when compared with pure silver (40). Another potential coating is the intermetallic
AgaSn (73 Ag-27 Sn). Electrodeposited coatings ofthis alloy could be polished to high
luster and were more resistant to tarnish in sulfide mixtures than pure silver (41).
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