
LBL—27267 

DE89 014893

States of Oxygen Ordering in YBa-Cu^O
it O Z

D. de Fontaine

Department of Materials Science and Mineral Engineering 
University of California

and

Materials and Chemical Science Division 
Lawrence Berkeley Laboratory 

1 Cyclotron Road 
Berkeley, California 94720

May 1989

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsi­
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer­
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



STATES OF OXYGEN ORDERING IN YBaiCusQz

D. de Fontaine
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and Mineral Engineering 
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INTRODUCTION

The compound YBa2Cu30z (1-2-3) was the first one whose 
superconducting transition temperature exceeded the technologically important 
temperature of 77K1. Actually, the 1-2-3 compound at close to oxygen 
stoichiometry z=7 became superconducting at about TC=90K, with Tc dropping by 
increments as z decreased from the value 7.

In this compound, the transition temperature is closely related to the oxygen 
content but is also thought to be influenced by the arrangement of occupied and 
vacant oxygen sites in the CuOi mirror plane of the structure, i.e. the plane located 
between Ba ions. In the 90K superconducting phase, occupied sites form O-Cu-O 
chains, and the resulting three-dimensional structure has orthorhombic symmetry. 
When available sites in the mirror plane are occupied statistically by O ions, the 
resulting structure has tetragonal symmetry and the material is non­
superconducting. It thus appears that the tetragonal to orthorhombic transition in 
the 1-2-3 compound can be modeled by an order-disorder transition in the mirror 
plane. It is the object of this paper to review the properties of this transition and to 
derive appropriate phase diagrams pertaining to oxygen ordering in the plane. 
Much pertinent information concerning oxygen ordering in 1-2-3 is reviewed in a 
recent paper by Beyers and Shaw2.

THE MODEL

It follows from the foregoing that attention must be focussed on the mirror 
plane, a schematic representation of which is shown in Fig. I3. Open circles 
denote oxygen sites which may be vacant or occupied; black dots refer to Cu ion 
positions, assumed to be always occupied. The oxygen sites form two
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Fig. 1. Model for perovsldte mirror plane with effective pair interactions V„ 
indicated.

interpenetrating square lattices and, if the Cu ions did not break the symmetry, the 
filled/empty oxygen network could be treated as a classical two-dimensional Ising 
model.

To simplify the thermodynamics, only three effective pair interactions (EPI) 
will be considered: Vi which couples the two sublattices, V2 which is a second 
neighbor interaction mediated by Cu, and V3 which is the other next neighbor 
interaction. These three EPFs are expected to be the dominant ones.

EPFs are defined formally by

Vn = l(W<g + Wgtj - 2Wqq) (n = 1,2,3)

where, for given pair spacing (n), Wjj* represents the total energy of an otherwise
disordered solution of O (oxygen) and □ (vacancies) on the plane but containing 
the designated U pair at the specified sites. These energies can be calculated in 
principle by performing electronic band structure calculations. Such calculations 
have not yet been performed but plausibility arguments4 indicate that Vi must be 
positive, V2 negative, of comparable magnitude, and V3 negative but of lesser 
magnitude. FromEq. (1), it is seen that positive interactions favor unlike pairs, 
and negative interactions like pairs.

Several remarks concerning these EPFs are in order. Firstly, the Vn are 
effective interactions and must not be confused with pair potentials. Equation (1) 
clearly indicates that the EPI are calculated by taking differences of total energies. 
Actually, although pair potentials converge slowly with pair spacing, if at all, EPFs 
converge rapidly in metals^, as if the long-range interactions canceled out by taking 
differences. Secondly, although the thermodynamic model proposed is a two­
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dimensional one, the full three-dimensional character of the system is introduced in 
the Vn interactions. Finally, it is important to allow second neighbor asymmetry: 
V2 *V3. Other proposed models which assume V2=V3 are clearly deficient since 
they neglect the presence of Cu in the mirror plane, clearly a serious omission.

GROUND STATE ANALYSIS

Regardless of the values of the Vn's, it is instructive to perform a stability 
analysis of a completely disordered solid solution of oxygen and vacant sites. Die 
second order term of a Landau expansion of the system's free energy in terms of 
amplitudes of oxygen "concentration waves” must have extrema at "special 
positions" in k-space which, in the present case, are points <0,0>, <1/2,0> and 
<1/2>V2>'3 Which of these points present an actual minimum depends on the ratios 
x=V2/V 1 and y=V3/V 1. Results of the stability analysis are shown in Fig. 2: in 
each sector of the (x,y) plane is indicated which special point produces a free 
energy minimum. In particular, the <0,0> special point indicates that an 
oxygen/vacancy wave of infinite wavelength modulates one of the sublattices and 
another, 180° out of phase with the first (because of Vi>0) modulates the other 
sublattice. In other words, one sublattice is filled by oxygen atoms and the other 
remains empty. The familiar chain structure of the orthorhombic phase results.

Actual ground states of order can also be investigated for all possible values 
of the ratios x, y. The results are indicated in Fig. 36. For this range of EPFs, 
ordered structures are found only at stoichiometries Cosl/2 or V4 (or 3/4), where Cq 
is the oxygen atom fraction in the mirror plane. In Fig. 3a (c0=1/2)» the familiar 
chain structure is depicted in the <0,0> instability region. More complicated 
structures are found in other regions but for x,y ratios which are not relevant to the 
present system according to the qualitative discussion given above. At c0al/4, 
complete phase separation is predicted for (x,y) in the fourth quadrant (Fig. 3b), 
and two new cell doubling structures (p2mm) are found in the second and third 
quadrants. Actually, the structure with "b" O-Cu-O and Q-Cu-Q chain alternating 
along "a" has been observed experimentally in YBa2Cu30z for s6.57*13, which 
corresponds to c0=V4 if it is assumed that all oxygen depletion occurs within the 
mirror plane. Gearly, if the EPFs are weakly dependent on concentration, the 
conditions for stability at low temperatures for both the single-chain structure, now 
called Ortho I, and the alternating chain structure, now called Ortho n, are Vi>0,
V2<0 and 0<V3<^V 1.

PHASE DIAGRAMS

The basic premise on which the present model rests is that the true three- 
dimensional order-disorder (oxygen-vacancy) phase transformations which occur in 
a2Cu30z can be mapped onto a two-dimensional Ising model which is isotropic in 
the first-neighbor interactions and anisotropic in the second-neighbor interactions. 
The two-dimensional Ising model on a square lattice with first-neighbor interaction 
in zero field can be solved exactly but, when higher interactions are introduced, or 
when the applied field (magnetic, chemical potential difference) is non-zero, no 
closed form solution exists so that approximate methods must be used. Square 
lattice phase diagrams for first and second neighbor interactions have been
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Fig. 2. Ordering instability map for Vi>0 (ordering first-neighbor interaction 
Coordinates are the ratios x=V2/Vi, y=V3/Vi. Open circles indicate 
parameter ratios for which phase diagrams were calculated previously by 
other methods. Closed circles (numbered) indicate parameters chosen for 
present calculations.
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Fig. 3. Ground states as a function of x=V2/Vi, y=V3/Vi, at oxygen 
concentration: (a) 0.50 (b) 0.25.
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calculated previously by renormalization group14 and Monte Carlo15 techniques. 
Recently16'17, it was found that the suggested assymmetric model belonged to the 
same universality class as the Ashkin-Teller model18 for which certain global phase 
diagrams have been derived19. This latter model considers a square lattice whose 
sites may be occupied by four types of objects in equal abundance with two distinct 
EPFs: one between like and one between unlike neighbors.

For the present calculations, the cluster variation method (CVM) of 
Kikuchi20 was adopted. First, a test case was computed, that corresponding to
V2=V3=-jVi (Vi>0) since previous phase diagram calculations were available14*15 
for these "symmetric'' values of parameters. Results of the calculation have been 
reported earlier21 and details of the CVM applied to this case were described 
elsewhere22. The representative point characterizing this phase diagram in 
parameter space is shown in Fig. 2 as "point #1" by a dot (our calculations) inside 
an open circle (previous calculations pertaining to symmetric cases).

The CVM phase diagram agreed closely with renormalization group14 and 
Monte Carlo15 results: a line of second order transitions separates the disordered 
(Tetragonal, planar point group 4mm) from the ordered (Ortho I, planar point group 
mm) phases and this line terminates at a tricritical point below which complete 
phase separation occurs. For the renormalization group and Monte Carlo 
calculations, the second-order transition line tends to be steeper just above the 
tricritical point and the top of the miscibility gap is also flatter than it is for the CVM 
calculations. The latter discrepancy is due to due fact that the CVM is, itself, a mean 
Held theory, though a considerably improved one, and it tends to give classical 
exponents at transitions. It is known, however, that tricritical exponents are highly 
non-classical in two-dimensions.

CVM calculations performed for parameter ratios at point #2 on the stability 
map (Fig. 2), away from the diagonal x=y, produce a phase diagram which is very 
similar to that described above, and requires no further discussion. When V3 is 
made to change from negative to small positive values, however, qualitative 
changes occur a cell doubling phase. Ortho n, appears near stoichiometry c0sl/4, 
as predicted by ground states analysis. Two phase diagrams have been computed 
with representative point #3 and #4 on the stability map.

The phase diagrams corresponding to point #4 is shown in Fig.4 24. In this 
figure, the phase boundary lines were terminated when the CVM free energy 
minimization failed to converge numerically. The most prominent feature of this 
diagram is the Ortho II phase region pertaining to a new, stable, equilibrium 
ordered phase, for which there is now ample experimental evidence.

Experimentally determined Tetra.<-> Ortho. I transition points have also 
been plotted on the phase diagram of Figs. 4 (closed circles). These points were 
constructed as follows: the data, obtained by a group from the Oak Ridge National 
Laboratory25 give Tetra.<-> Ortho. I transition temperatures as a function of oxygen 
concentration at five different oxygen partial pressures. The data point for po2=0.2
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Fig. 4. Phase diagram calculated for x=-0.75, y=+0.50. Dashed lines are 
second order transitions, full lines are first order phase boundaries. Riled 
circles are order-disorder transition points determined experimentally 
(Ref. 25).

atm. was placed on the calculated order-disorder transition line, thereby fixing the 
temperature scale, i.e. fixing the value of the first EPI Vi. All other points at 
5xlO*3, lO1, 2xl(h1 and 1 atm. then fell very nicely on the calculated curve. By 
this method, an estimated temperature scale could be constructed (right hand scale). 
An oxygen content scale, measured by the oxygen stoichiometry index z, is also 
shown at the top portion of Fig. 4. Oxygen partial pressure curves are also shown 
in Fig. 4; these were calculated by making use of two points from the Oak Ridge 
data, as explained elsewhere24.

Very recently, Kikuchi and Choi26 have extended to low temperatures our 
previous phase diagram calculation27 for the case V2 = - 0.5Vi, V3 = + 0.5Vi

boundaries were incorrect The Kikuchi-Choi (KC) phase diagram is reproduced in
Fig. 5 (redrawn with our earlier temperature scales27) with four of the Oak Ridge 
data points shown. The superconductivity transition temperature as a function of 
oxygen content is also indicated (lower dashed curve). As in the earlier 
calculation27, the line of second order Tetragonal (T) to Orthorhombic (OI) 
transition terminates in a bicritical point below which the Ortho. II (Oil) phase is 
stable. The OI<-» Oil transition is found to be second-order down to absolute zero 
of temperature while the T 4-> Oil transition is first order. The upper dashed line is
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Fig. 5. CVM phase diagram according to Kikuchi and Choi (Ref. 26) calculated 
for x = -0.50, y = +0.50. Filled circles are order-disorder transition 
points determined experimentally (Ref. 25)

the metastable extension, though the Oil phase region, of the T <-+ OI line of 
second order transitions. This line emerges from the Oil region at a critical end 
point to produce an "anti-Ortho. I" (OI) phase region at low temperatures and 
oxygen concentrations. The narrow two-phase region to the left of On (horizontal 
shading) appears to terminate at a tricritical point at low temperature.

The OI phase has the well-known "chain" structure (lower left sector of Fig. 
3a) with occasional missing oxygen rows. The OI phase is, in a sense, the 
converse: now the concentration of missing rows is much greater that that of filled 
rows. Between OI and OI, On is characterized by double-cell long range order 
(LRO) (upper left panel of Fig. 3b: every other chain missing). Phase OI differs 
from die Tetragonal (T) in that the former has parallel chain LRO on one sublattice 
only, T has fluctuating short chains on both oxygen sublattices, therefore along two 
orthogonal directions; T has tetragonal, OI has orthorhombic symmetry. At low 
enough temperature, an infinitesimal amount of oxygen will form long chains on a 
single sublattice, thereby breaking the tetragonal symmetry. Recent transfer matrix 
calculations16 on the very same system indicate that the T <-+ Oil transition is a 
second-order one with critical exponents depending on concentration, as in the
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Ashkin-Teller model. The other transitions are confirmed to be Ising-like and 
second-order.

The 60K superconductivity transition temperature plateau shown in Fig. 5 
fits fairly well inside the On phase boundaries at around 400K, where the oxygen 
configurations must be "frozen in". This suggests that On is indeed the observed 
60K superconductor.

ONE-DIMENSIONAL STATES OF ORDER

Monte Carlo simulations were also performed28*29 with the same EPI 
ratios, i.e. those corresponding to point #3 on the parameter map of Fig. 2. At high 
temperatures, agreement with previous CVM calculations12 was quite satisfactory. 
At low temperature simulations, around t s ksT/V i = 0.2 (ksT has its usual 
"Boltzmann constant, absolute temperature" meaning), spurious specific heat 
maxima occurred in and around the On phase field. Examination of computer 
printouts revealed that these specific heat anomalies corresponded to states of 
somewhat irregularly spaced parallel O-Cu-O chains.

A typical partially ordered structure is shown in Fig. 6a where black dots 
denote Cu atoms, shaded circles are oxygen atoms and open circles are vacant sites. 
This structure was obtained by performing a Monte Carlo simulation on a 64 x 64 
square network of oxygen sites at fixed chemical potential field (normalized by V})
of |i = -4.7. Oxygen coverage in the plane is Cq = 0.2265 or stoichiometry index z 
= 6.453. The system was "quenched" from a high temperature of t = 5.0 and the 
iteration was pursued to 1200 Monte Carlo steps per site. O-Cu-O chains are seen 
to be fully formed and are stacked in such a way as to form regions of Ortho, n 
separated by slabs of "Ortho. Ill" (full-empty-empty-full cell tripling structure). 
The corresponding intensity pattern, i.e. the amplitude-squared of the Fourier 
transform, or oxygen structure factor of Fig. 6a, is shown in Fig. 6b. Diffraction 
maxima are located at <00>, <20> and <11> which are the "Bragg peaks" in planar
reciprocal space notation, and at <10> which are the Ortho. I "reflections". The
<j0> reflections are split into satellite peaks at <^±q,0>, with q not necessarily a 
simple fraction. At an earlier stage of the simulation (500 Monte Carlo steps/site), 
the chains were often faulted and both a and (3 oxygen sublattice occupancy 
domains were observed (see Fig. 7). Chain formation dynamics is discussed in 
more detail by Burmester and Wille.29

Another mode of "sample preparation" also was used in the simulations: 
first Ortho. I was produced at p. = -2.0, then oxygen was extracted by imposing a 
chemical potential field of |i. = -3.2., this procedure being equivalent to reducing 
the partial pressure of Oxygen. After 8000 Monte Carlo steps/site, a structure 
consisting of mixed Ortho. II and Ortho. I slabs was obtained as seen in Fig. 8. 
The average planar oxygen concentration was c0 = 0.297, corresponding to 
stoichiometry z = 6.594. Once again the chains were fully formed but the OI and 
Oil mixing was rather irregular, giving rise to a diffraction pattern consisting of a
diffuse streak centered on <^0> along the a direction. It is easy to rationalize how
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Fig. 6a. Chain configuration for Monte Carlo system quenched from x = 0.2 at 
constant H = -4-7, after 1200 Monte Carlo steps/site. Closed circles 
denote oxygen ions, open circles are vacant sites, and small dots (perhaps 
not readily visible) indicate Cu ions. Concentration is c0 = 0.2265 or 
oxygen stoichiometry index z = 6.453. Structure is one of mixed On and
OI domains.

Fig. 6b. Fourier transform (amplitude squared) of configuration of Fig. 6a 
showing characteristic split (1/2,0) peaks and (1,0) streaks of intensity.
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Fig. 7. Chain configuration for Monte Carlo system of Fig. 6a but at an early 
stage of iteration (500 Monte Carlo steps/site).

Fig. 8. Chain configuration for a Monte Carlo system initially in Ortho. I state, 
equilibrated at |i = -3.2. Configuration is c0 = 0.297 or z = 6.594. 
Structure is one of mixed OI and OH domains.
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such a structure could come about Because of periodic boundary condidons, 
complete O-Cu-O chains are infinite and thus very robust Eventually a chain is 
broken by action of the chemical potential field and it subsequently dissolves, 
thereby creating a slab of Ortho, n. The process is then repeated but in such a way 
that, at least for Co > 0.25, no two empty chains form adjacent to one another. The 
reason for that is as follows: fully formed chains on a single sublattice interact only 
through the effective V3 interaction which is repulsive (V3 > 0), thus favoring 
unlike nearest neighbor parallel chains. Hence a mixed state of OI and Oil domains 
results. For Cq <_0.25 (z < 6.5), the situation is slightly different: the mixing is 
between OH and OI domains.

This quasi one-dimensional admixture of domains, OH + OI for c0 > 0.25, 
OH + OI for c0 < 0.25, gives rise, locally, to structures resembling the Magneli 
phases described by Khachaturyan and Morris (KM). Superficially, it may appear 
that the present findings confirm the KM model of "transient homologous 
structures". In point of fact, quite the opposite is true, as will now be shown. First 
note that the "method of concentration waves" as used by KM to construct the 
reported phase diagrams30*31 here reduces exactly to a two dimensional Bragg- 
Williams model with first and second neighbor effective pair interactions. A simple 
back-Fourier transform of the KM mean field internal energy, for their chosen star 
values of V(0) and V(ki), immediately yields the required values (in our notation) 
of Vi and V2 (=V3), with ratio V2/V1 = -0.4286.....'nie representative point of this 
ratio is indicated by a cross (x) on the diagonal in Fig. 2, near point #1. This ratio, 
inserted into the Bragg-Williams model, as expected, reproduced exactly the KM 
phase diagram.32

Next consider the "Magneli" structures proposed by KM: [(OQ)J O] where 
O and □ represent filled and empty chains on the a sublattice respectively, where 
the square brackets denote periodic repetition and where the parentheses indicate 
that the Ortho. II element is to be repeated j times. Such structures are actually a 
subset of the well-known ground states of the one-dimensional Ising model and are 
stabilized by dominant positive (i.e. repulsive) first neighbor pair interaction Ji 
along the Ising line33*34 which is the a direction in orthorhombic 1-2-3. But, as 
mentioned above, for fully formed chains the only relevant interaction is the 
interchain repulsive interaction V3 which is precisely Ji. Hence the presence of 
"Magneli" structures, stable or metastable, necessarily requires Ji 3 V3 > 0. The 
KM phase diagram, however, is constructed with V2 = V3 < 0 so that this model is 
actually internally inconsistent, as was already noted earlier4. A check was 
performed by a Monte Carlo simulation employing the "symmetric" KM interaction 
parameters V2 = V3 = -0.4286Vi and, as expected, no Magneli-like ordered states, 
stable or otherwise, were found From the foregoing it is thus clear that the 
presence of states of partial one-dimensional order necessarily implies that 
Ortho. II must be a stable phase in the system.

At low temperature, the behavior of the proposed model with V2 > 0 and V3 
< 0 is highly unusual: at x » 0.2, the interchain 0-0 correlation length is 
expected to become greater than the dimension of the Monte Carlo periodic cell so 
that spurious results may occur as discussed for example by Selke35 in the context 
of the two dimensional ANNNI model. The system essentially can be mapped onto
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a one-dimensional Ising model with nearest neighbor Jj interaction for which only 
three ground states exist: the "ferromagnetic" (OI and OI) and the 
"antiferromagnetic" (OH). Moreover, for Ji s V3 > 0, any mixing of "ferro." and 
"andfeiro." domains at fixed average O-concentration yields the same energy so that 
complete degeneracy prevails.

The mixing of domains appears to be not completely random, however. 
Indeed, at intermediate temperatures when the full two-dimensional character of the 
system is recognized by the Monte Carlo simulation, OI, OI or On long range 
order (LRO) is observed at equilibrium, as expected from the phase diagram. At 
low-temperature, the two-dimensional character of the model is not totally absent, 
especially during the early stages of chain formation (see Fig. 7) so that effective 
long-range (entropy driven) interchain repulsion may occur. Resulting structures 
and their Fourier transforms are clearly reminiscent of ordered structures and 
diffraction patterns observed from 1-2-3 samples annealed at low temperatures for 
long periods of time under reducing conditions with final oxygen stoichiometry 
between about z s 6.25 and 6.75 split diffraction peaks and diffuse streaks are 
seen about the [1/2,0] positions, but rather sharp peaks at positions [1/3,0] and 
[2/3,0] indicate, however, that actual longer-range repulsive interactions, beyond 
V3( may be present along the a direction.

DISCUSSION

Results from phase diagram calculations and Monte Carlo simulation appear 
to be in close agreement with experimental findings. Indeed, at this same 
conference. Professor Amelinckx37 showed some remarkable high resolution 
electron micrographs and diffraction patterns which confirm the general picture 
which emerges from theoretical findings. The close agreement was undoubtedly 
facilitated by the Antwrp group's37 use of a sample preparation technique featuring 
very slow cooling of YBasCusOz samples at constant oxygen content z (through 
use of a feedback control on a thermo gravimetric balance). In this way, low 
temperature equilibrium at fixed z could be achieved which previous_quenching 
methods could not With this technique, one-dimensional OI, Oil and OI domains 
were seen in the micrographs37, just as observed in the simulations.

Moreover, Ortho. II was clearly shown to be a stable phase. In earlier dark 
field electron microscopy work on quenched samples11, only small volume 
fractions of Ortho. II were reported, but it was argued elsewhere4*22 that this was 
probably the result of poor correlation of mirror planes along the c direction: On 
domains phase shifted from plane-to-plane will project as OI thereby causing 
appreciable underestimation of the areal fraction of On on each plane. With 
constant-concentration slow cooling, however, the plane-to-plane correlation could 
be made almost perfect with only occasional antiphase shifts13. This result may 
appear somewhat surprising in view of the fact that 0-0 effective interactions 
between mirror planes along c must be heavily screened by intervening ions. Close 
to the critical point for two dimensional ordering however, correlation lengths in 
each plane become infinite so that effective ordering interactions between planes 
may become arbitrarily large with respect to the one-dimensional faulting tendency
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due to entropy17. Thus, by slow constant-z cooling, nearly perfect three- 
dimensional On ordering may be attained. For Ortho. I there is no problem: elastic 
strains due to orthorhombicity make the exchange of a and b axes orientations far 
too costly.

The asymmetry of the proposed Ising model (V2 < 0, V3 > 0) guarantees 
the formation of very long chains along the b axis at low temperature, thereby 
leading to quasi one-dimensional states of order. High one-dimensional degeneracy 
also results at very low temperature as demonstrated by Monte Carlo simulation, 
and in agreement with the low temperature CVM calculation of Kikuchi and Choi26: 
it is seen in Fig. 5 that all low temperature transitions are second order so that a 
complete series of domain mixing can obtain, in no violation of the third law of 
thermodynamics, recent claims to the contrary notwithstanding30*31.

The Kikuchi-Choi phase diagram appears to be the most complete to date 
although there are indications that more complex ordered phases may become stable 
at low temperatures8*36. Indeed, recent Monte Carlo simulations performed with 
V4/V1 = 0.25 (V4 being the next nearest interchain interaction, beyond V3) lead to 
stability of OOO and OQ □ "Magneli" phases39. It is important to note, 
however, that the existence of these and other states of order is incompatible with 
"symmetric" (V2 = V3) miscibility gap models. With large enough V4 (and 
beyond), the phase diagram of Fig. 5 of course would have to be modified.
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