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INTRODUCTION

The compound YBazCu3O; (1-2-3) was the first one whose
superconducting transition temperature exceeded the technologically important
temperature of 77Kl. Actually, the 1-2-3 compound at close to oxygen
stoichiometry z=7 became superconducting at about T,=90K, with T dropping by
increments as z decreased from the value 7.

In this compound, the transition temperature is closely related to the oxygen
content but is also thought to be influenced by the arrangement of occupied and
vacant oxygen sites in the CuO7 mirror plane of the structure, i.e. the plane located
between Ba ions. In the 90K superconducting phase, occupied sites form O-Cu-O
chains, and the resulting three-dimensional structure has orthorhombic symmetry.
When available sites in the mirror plane are occupied statistically by O ions, the
resulting structure has tetragonal symmetry and the material is non-
superconducting. It thus appears that the tetragonal to orthorhombic transition in
the 1-2-3 compound can be modeled by an order-disorder transition in the mirror
plane. It is the object of this paper to review the properties of this transition and to
derive appropriate phase diagrams pertaining to oxygen ordering in the plane.
Much pertinent information concerning oxygen ordering in 1-2-3 is reviewed in a
recent paper by Beyers and Shaw2.

THE MODEL

It follows from the foregoing that attention must be focussed on the mirror
plane, a schematic representation of which is shown in Fig. 13. Open circles
denote oxygen sites which may be vacant or occupied; black dots refer to Cu ion
positions, assumed to be always occupied. The oxygen sites form two
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Fig. 1. Model for perovskite mirror plane with effective pair interactions Vp
indicated.

interpenetrating square lattices and, if the Cu ions did not break the symmetry, the
filled/empty oxygen network could be treated as a classical two-dimensional Ising
model.

To simplify the thermodynamics, only three effective pair interactions (EPI)
will be considered: V3 which couples the two sublattices, V2 which is a second
neighbor interaction mediated by Cu, and V3 which is the other next neighbor
interaction. These three EPI's are expected to be the dominant ones.

EPI's are defined formally by

Va= LWGo + WL - 2WR) @ = 123)

where, for given pair spacing (n), W?;) represents the total energy of an otherwise

disordered solution of O (oxygen) and Q (vacancies) on the plane but containing
the designated LJ pair at the specified sites. These energies can be calculated in
principle by performing electronic band structure calculations. Such calculations
have not yet been performed but plausibility arguments* indicate that V1 must be
positive, V7 negative, of comparable magnitude, and V3 negative but of lesser
magnitude. From Eq. (1), it is seen that positive interactions favor unlike pairs,
and negative interactions like pairs.

Several remarks concerning these EPI's are in order. Firstly, the V, are
effective interactions and must not be confused with pair potentials. Equation (1)
clearly indicates that the EP! are calculated by taking differences of total energies.
Actually, although pair potentials converge slowly with pair spacing, if at all, EPI's
converge rapidly in metals, as if the long-range interactions canceled out by taking
differences. Secondly, although the thermodynamic model proposed is a two-



dimensional one, the full three-dimensional character of the system is introduced in
the Vj, interactions. Finally, it is important to allow second neighbor asymmetry:
V2 #V3. Other proposed models which assume V2=V3 are clearly deficient since
they neglect the presence of Cu in the mirror plane, clearly a serious omission.

GROUND STATE ANALYSIS

Regardless of the values of the Vy's, it is instructive to perform a stability
analysis of a completely disordered solid solution of oxygen and vacant sites. The
second order term of a Landau expansion of the system's free energy in terms of
amplitudes of oxygen "concentration waves" must have extrema at "special
positions" in k-space which, in the present case, are points <0,0>, <1/2,0> and
<l/5,1/2>.3 Which of these points present an actual minimum depends on the ratios

=V2/V1 and y=V3/V1. Results of the stability analysis are shown in Fig. 2: in
each sector of the (x,y) plane is indicated which special point produces a free
energy minimum. In particular, the <0,0> special point indicates that an
oxygen/vacancy wave of infinite wavelength modulates one of the sublattices and
another, 180° out of phase with the first (because of V1>0) modulates the other
sublattice. In other words, one sublattice is filled by oxygen atoms and the other
remains empty. The familiar chain structure of the orthorhombic phase resuits.

Actual ground states of order can also be investigated for all possible values
of the ratios x, y. The results are indicated in Fig. 36. For this range of EPI's,
ordered structures are found only at stoichiometries co=1/2 or 1/4 (or 3/4), where co
is the oxygen atom fraction in the mirror plane. In Fig. 3a (co=1/2), the familiar
chain structure is depicted in the <0,0> instability region. More complicated
structures are found in other regions but for x,y ratios which are not relevant to the
present system according to the qualitative discussion given above. At co=1/4,
complete phase separation is predicted for (x,y) in the fourth quadrant (Fig. 3b),
and two new cell doubling structures (p2mm) are found in the second and third
quadrants. Actually, the structure with "b" O-Cu-O and Q-Cu-Q chain alternating
along "a" has been observed experimentally in YBaCu30; for z=6.57-13, which
corresponds to ¢ o=1/4 if it is assumed that all oxygen depletion occurs within the
mirror plane. Clearly, if the EPI's are weakly dependent on concentration, the
conditions for stability at low temperatures for both the single-chain structure, now
called Ortho I, and the alternating chain structure now called Ortho I, are V>0,

V2<0 and 0<V3<.2 Vi.

PHASE DIAGRAMS

The basic premise on which the present model rests is that the true three-
dimensional order-disorder (oxygen-vacancy) phase transformations which occur in
a2Cu30; can be mapped onto a two-dimensional Ising model which is isotropic in
the first-neighbor interactions and anisotropic in the second-neighbor interactions.
The two-dimensional Ising model on a square lattice with first-neighbor interaction
in zero field can be solved exactly but, when higher interactions are introduced, or
when the applied field (magnetic, chemical potential difference) is non-zero, no
closed form solution exists so that approximate methods must be used. Square
lattice phase diagrams for first and second neighbor interactions nave been
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Fig. 2. Ordering instability map for V>0 (ordering first-neighbor interaction
Coordinates are the ratios x=V2/V1, y=V3/V1. Open circles indicate
parameter ratios for which phase diagrams were calculated previously by
other methods. Closed circles (numbered) indicate parameters chosen for

present calculations.
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Fig. 3. Ground states as a function of x=V3/V}, y=V3/Vi, at oxygen
concentration: (a) 0.50 (b) 0.25.



calculated previously by renormalization groupl4 and Monte Carlo15 techniques.
Recently!6.17, it was found that the suggested assymmetric model belonged to the
same universality class as the Ashkin-Teller model!8 for which certain global phase
diagrams have been derived!9. This latter model considers a square lattice whose
sites may be occupied by four types of objects in equal abundance with two distinct
EPI's: one between like and one between unlike neighbors.

For the present calculations, the cluster variation method (CVM) of
Kikuchi20 was adopted. First, a test case was computed, that corresponding to

V2=V3=-;-V1 (V1>0) since previous phase diagram calculations were available14.15
for these "symmetric" values of parameters. Results of the calculation have been

reported earlier2! and details of the CVM applied to this case were described

elsewhere22, The representative point characterizing this phase diagram in
parameter space is shown in Fig. 2 as "point #1" by a dot (our calculations) inside
an open circle (previous calculations pertaining to symmetric cases).

The CVM phase diagram agreed closely with renormalization group!4 and
Monte Carlo!3 results: a line of second order transitions separates the disordered
(Tetragonal, planar point group 4mm) from the ordered (Ortho I, planar point group
mm) phases and this line terminates at a tricritical point below which complete
phase separation occurs. For the renormalization group and Monte Carlo
calculations, the second-order transition line tends to be steeper just above the
tricritical point and the top of the miscibility gap is also flatter than it is for the CVM
calculations. The latter discrepancy is due to the fact that the CVM i, itself, a mean
field theory, though a considerably improved one, and it tends to give classical
exponents at transitions. It is known, however, that tricritical exponents are highly
non-classical in two-dimensions.

CVM calculations performed for parameter ratios at point #2 on the stability
map (Fig. 2), away from the diagonal x=y, produce a phase diagram which is very
similar to that described above, and requires no further discussion. When V3 is
made to change from negative to small positive values, however, qualitative

changes occur: a cell doubling phase, Ortho 11, appears near stoichiometry co=/4,
as predicted by ground states analysis. Two phase diagrams have been computed
with representative point #3 and #4 on the stability map.

The phase diagrams corresponding to point #4 is shown in Fig.4 24, In this
figure, the phase boundary lines were terminated when the CVM free energy
minimization failed to converge numerically. The most prominent feature of this
diagram is the Ortho II phase region pertaining to a new, stable, equilibrium
ordered phase, for which there is now ample experimental evidence.

Experimentally determined Tetra.«> Ortho. I transition points have also
been plotted on the phase diagram of Figs. 4 (closed circles). These points were
constructed as follows: the data, obtained by a group from the Oak Ridge National
Laboratory?S give Tetra.«> Ortho. I transition temperatures as a function of oxygen
concentration at five different oxygen partial pressures. The data point for po=0.2
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Fig. 4. Phase diagram calculated for x=—0.75, y=+0.50. Dashed lines are
second order transitions, full lines are first order phase boundaries. Filled
circtl_es2 5a)ro.z order-disorder transition points determined experimentally
(Ref. 25).

atm. was placed on the calculated order-disorder transition line, thereby fixing the
temperature scale, i.e. fixing the value of the first EPI V. All other points at
5x10-3, 10-1, 2x10-1 and 1 atm. then fell very nicely on the calculated curve. By
this method, an estimated temperature scale could be constructed (right hand scale).
An oxygen content scale, measured by the oxygen stoichiometry index z, is also
shown at the top portion of Fig. 4. Oxygen partial pressure curves are also shown
in Fig. 4; these were calculated by making use of two points from the Oak Ridge
data, as explained elsewhere24,

Very recently, Kikuchi and Choi26 have extended to low temperatures our
previous phase dlagram calculauon27 for the case V2 = - 0. 5V1, V3 =+ 0.5V
boundaries were incorrect. The Kikuchi-Choi (KC) phase diagram is reproduced in
Fig. 5 (redrawn with our earlier temperature scales27) with four of the Oak Ridge
data points shown. The superconductivity transition emperature as a function of
oxygen content is also indicated (lower dashed curve). As in the earlier
calculation?’, the line of second order Tetragonal (T) to Orthorhombic (OI)
transition terminates in a bicritical point below which the Ortho. II (OII) phase is
stable. The Ol OII transition is found to be second-order down to absolute zero
of temperature while the T «> OII transition is first order. The upper dashed line is
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Fig. 5. CVM phase diagram according to Kikuchi and Choi (Ref. 26) calculated
for x = -0.50, y = +0.50. Filled circles are order-disorder transition
points determined experimentally (Ref. 25)

the metastable extension, though the OII phase region, of the T < OI line of
second order transitions. This line emerges from the OII region at a critical end
point to produce an "anti-Ortho. I" (OI) phase region at low temperatures and
oxygen concentrations. The narrow two-phase region to the left of OII (horizontal
shading) appears to terminate at a tricritical point at low temperature.

The OI phase has the well-known “chain" structure (lower left sector of Fig.
3a) with occasional missing oxygen rows. The OI phase is, in a sense, the
converse: now the concentration of missing rows is much greater that that of filled
rows. Between OI and Ol, OII is characterized by double-cell long range order
(LRO) (upper left panel of Fig. 3b: every other chain missing). Phase OI differs
from the Tetragonal (T) in that the former has parallel chain LRO on one sublattice
only, T has fluctuating short chains on both oxygen sublattices, therefore along two
orthogonal directions; T has tetragonal, OI has orthorhombic symmetry. At low
enough temperature, an infinitesimal amount of oxygen will form long chains on a
single sublattice, thereby breaking the tetragonal symmetry. Recent transfer matrix
calculations!6 on the very same system indicate that the T « OII transition is a
second-order one with critical exponents depending on concentration, as in the



Ashkin-Teller model. The other transitions are confirmed to be Ising-like and
second-order.

The 60K superconductivity transition temperature plateau shown in Fig. 5
fits fairly well inside the OII phase boundaries at around 400K, where the oxygen
configurations must be "frozen in". This suggests that OII is indeed the observed
60K superconductor.

ONE-DIMENSIONAL STATES OF ORDER

Monte Carlo simulations were also performed28.29 with the same EPI
ratios, i.e. those corresponding to point #3 on the parameter map of Fig. 2. At high
temperatures, agreement with previous CVM calculations!? was quite satisfactory.
At low temperature simulations, around t = kgT/V) = 0.2 (kgT has its usual
"Boltzmann constant, absolute temperature” meaning), spurious specific heat
maxima occurred in and around the OII phase field. Examination of computer
printouts revealed that these specific heat anomalies corresponded to states of
somewhat irregularly spaced parallel O-Cu-O chains.

A typical partially ordered structure is shown in Fig. 6a where black dots
denote Cu atoms, shaded circles are oxygen atoms and open circles are vacant sites.
This structure was obtained by performing a Monte Carlo simulation on a 64 x 64
square network of oxygen sites at fixed chemical potential field (normalized by V1)

of 4 =-4.7. Oxygen coverage in the plane is ¢q = 0.2265 or stoichiometry index z
= 6.453. The system was "quenched” from a high temperature of © = 5.0 and the
iteration was pursued to 1200 Monte Carlo steps per site. O-Cu-O chains are seen
to be fully formed and are stacked in such a way as to form regions of Ortho. II
separated by slabs of "Ortho. III" (full-empty-empty-full cell tripling structure).
The corresponding intensity pattern, i.c. the amplitude-squared of the Fourier
transform, or oxygen structure factor of Fig. 6a, is shown in Fig. 6b. Diffraction
maxima are located at <00>, <20> and <11> which are the "Bragg peaks" in planar

reciprocal space notation, and at <10> which are the Ortho. I "reflections”. The

<%0> reflections are split into satellite peaks at <21:tq,0>, with q not necessarily a

simple fraction. At an earlier stage of the simulation (500 Monte Carlo steps/site),
the chains were often faulted and both & and B oxygen sublattice occupancy
domains were observed (see Fig. 7). Chain formation dynamics is discussed in
more detail by Burmester and Wille.?

Another mode of "sample preparation” also was used in the simulations:
first Ortho. I was produced at 4 = -2.0, then oxygen was extracted by imposing a
chemical potential field of u = -3.2., this procedure being equivalent to reducing
the partial pressure of Oxygen. After 8000 Monte Carlo steps/site, a structure
consisting of mixed Ortho. II and Ortho. I slabs was ottained as seen in Fig. 8.
The average planar oxygen concentration was co = 0.297, corresponding to
stoichiometry z = 6.594. Once again the chains were fully formed but the OI and
OI mixing was rather irregular, giving rise to a diffraction pattern consisting of a

diffuse streak centered on <2-1-0> along the a direction. It is easy to rationalize how



Fig. 6a. Chain configuration for Monte Carlo system quenched from T = 0.2 at
constant i = —4.7, after 1200 Monte Carlo steps/site. Closed circles
denote oxygen ions, open circles are vacant sites, and small dots (perhaps
not readily visible) indicate Cu ions. Concentration is ¢o = 0.2265 or
oxygen stoichiometry index z = 6.453. Structure is one of mixed OII and

OI domains.
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Fig. 6b. Fourier transform (amplitude squared) of configuration of Fig. 6a
showing characteristic split (1/2, 0) peaks and (1,0) streaks of intensity.
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Fig. 7. Chain configuration for Monte Carlo system of Fig. 6a but at an early
stage of iteration (500 Monte Carlo steps/site).

Fig. 8. Chain configuration for a Monte Carlo system initially in Ortho. I state,
equilibrated at p = -3.2. Configuradon is ¢ = 0.297 or z = 6.594.
Structure is one of mixed OI and OU domains.

10



such a structure could come about. Because of periodic boundary conditions,
complete O-Cu-O chains are infinite and thus very robust. Eventually a chain is
broken by action of the chemical potential field and it subsequently dissolves,
thereby creating a slab of Ortho. II. The process is then repeated but in such a way
that, at least for co > 0.25, no two empty chains form adjacent to one another. The
reason for that is as follows: fully formed chains on a single sublattice interact only
through the effective V3 interaction which is repulsive (V3 > 0), thus favoring
unlike nearest neighbor parallel chains. Hence a mixed state of OI and OII domains
results. For cg < 0.25 (z < 6.5), the situation is slightly different: the mixing is
between OII and OI domains.

This quasi one-dimensional admixture of domains, OII + OI for co > 0.25,
OIl + QI for co < 0.25, gives rise, locally, to structures resembling the Magneli
phases described by Khachaturyan and Morris (KM). Superficially, it may appear
that the present findings confirm the KM model of "transient homologous
structures”. In point of fact, quite the opposite is true, as will now be shown. First
note that the "method of concentration waves" as used by KM to construct the
reported phase diagrams30-31 here reduces exactly to a two dimensional Bragg-
Williams model with first and second neighbor effective pair interactions. A simple
back-Fourier transform of the KM mean field internal energy, for their chosen star
values of V(0) and V(k}), immediately yields the required values (in our notation)
of V1 and V3 (=V3), with ratio V2/V] = -0.4286.....The representative point of this
ratio is indicated by a cross (x) on the diagonal in Fig. 2, near point #1. This ratio,
inserted into the Bragg-Williams model, as expected, reproduced exactly the KM
phase diagram,32

Next consider the "Magneli" structures proposed by KM: [(OQ)i O] where
O and Q represent filled and empty chains on the & sublattice respectively, where
the square brackets denote periodic repetition and where the parentheses indicate
that the Ortho. II element is to be repeated j times. Such structures are actually a
subset of the well-known ground states of the one-dimensional Ising model and are
stabilized by dominant positive (i.e. repulsive) first neighbor pair interaction Jy
along the Ising line33.34 which is the a direction in orthorhombic 1-2-3. But, as
mentioned above, for fully formed chains the only relevant interaction is the
interchain repulsive interaction V3 which is precisely J;. Hence the presence of
"Magneli” structures, stable or metastable, necessarily requires J; = V3 > 0. The
KM phase diagram, however, is constructed with V2 = V3 < 0 so that this model is
actually internally inconsistent, as was already noted earlier*. A check was
performed by a Monte Carlo simulation employing the "symmetric" KM interaction
parameters V2 = V3 =-0.4286V and, as expected, no Magneli-like ordered states,
stable or otherwise, were found. From the foregoing it is thus clear that the
presence of states of partial one-dimensional order necessarily implies that
Ortho. II must be a stable phase in the system.

At low temperature, the behavior of the proposed model with V3 >0 and V3
< 0 is highly unusual: at t = 0.2, the interchain O — O correlation length is
expected to become greater than the dimension of the Monte Carlo periodic cell so

that spurious results may occur as discussed for example by Selke? in the context
of the two dimensional ANNNI model. The system essentially can be mapped onto
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a one-dimensional Ising model with nearest neighbor J; interaction for which only
three ground states exist: the "ferromagnetic" (OI and OI) and the
"antiferromagnetic” (OII). Moreover, for J1 = V3 > 0, any mixing of "ferro." and
"antiferro." domains at fixed average O-concentration yields the same energy so that
complete degeneracy prevails.

The mixing of domains appears to be not completely random, however.
Indeed, at intermediate temperatures when the full two-dimensional character of the
system is recognized by the Monte Carlo simulation, OI, Of or OIl long range
order (LRO) is observed at equilibrium, as expected from the phase diagram. At
low-temperature, the two-dimensional character of the model is not totally absent,
especially during the early stages of chain formation (see Fig. 7) so that effective
long-range (entropy driven) interchain repulsion may occur. Resulting structures
and their Fourier transforms are clearly reminiscent of ordered structures and
diffraction patterns observed from 1-2-3 samples annealed at low temperatures for
long periods of time under reducing conditions with final oxygen stoichiometry
between about z = 6.25 and 6.75 36: split diffraction peaks and diffuse streaks are
seen about the [1/2,0] positions, but rather sharp peaks at positions [1/3,0] and
[2/3,0] indicate, however, that actual longer-range repulsive interactions, beyond
V3, may be present along the a direction. .

DISCUSSION

Results from phase diagram calculations and Monte Carlo simulation appear
to be in close agreement with experimental findings. Indeed, at this same
conference, Professor Amelinckx37 showed some remarkable high resolution
electron micrographs and diffraction patterns which confirm the general picture
which emerges from theoretical findings. The close agreement was undoubtedly
facilitated by the Antwrp group's37 use of a sample preparation technique featuring
very slow cooling of YBaCu3O, samples at constant oxygen content z (through
use of a feedback control on a thermogravimetric balance). In this way, low
temperature equilibrium at fixed z could be achieved which previous quenching
methods could not. With this technique, one-dimensional OI, OII and OI domains

were seen in the micrographs37, just as observed in the simulations.

Moreover, Ortho. II was clearly shown to be a stable phase. In earlier dark
field electron microscopy work on quenched samples!!, only small volume
fractions of Ortho. II were reported, but it was argued elsewhere422 that this was
probably the result of poor correlation of mirror planes along the ¢ direction: OII
domains phase shifted from plane-to-plane will project as OI thereby causing
appreciable underestimation of the areal fraction of OII on each plane. With

- constant-concentration stfow cooling, however, the plane-to-plane correlation could
be made almost perfect with only occasional antiphase shifts!3. This result may
appear somewhat surprising in view of the fact that O-O effective interactions
between mirror planes along ¢ must be heavily screened by intervening ions. Close
to the critical point for two dimensional ordering however, correlation lengths in
each plane become infinite so that effective ordering interactions between planes
may become arbitrarily large with respect to the one-dimensional faulting tendency
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due to entropyl7. Thus, by slow constant-z cooling, nearly perfect three-
dimensional OII ordering may be attained. For Ortho. I there is no problem: elastic
strains guc to orthorhombicity make the exchange of a and b axes orientations far
too costly. :

The asymmetry of the proposed Ising model (V2 <0, V3 > 0) guarantees
the formation of very long chains along the b axis at low temperature, thereby
leading to quasi one-dimensional states of order. High one-dimensional degeneracy
also results at very low temperature as demonstrated by Monte Carlo simulation,

and in agreement with the low temperature CVM calculation of Kikuchi and Choi26:
it is seen in Fig. 5 that all low temperature transitions are second order so that a
complete series of domain mixing can obtain, in no violation of the third law of

thermodynamics, recent claims to the contrary notwithstanding30-31,

The Kikuchi-Choi phase diagram appears to be the most complete to date
although there are indications that more complex ordered phases may become stable
at low temperatures3.36. Indeed, recent Monte Carlo simulations performed with
V4/V1 = 0.25 (V4 being the next nearest interchain interaction, beyond V3) lead to
stability of OOQ and OO O "Magneli" phases39. It is important to note,
however, that the existence of these and other states of order is incompatible with
"symmetric" (V2 = V3) miscibility gap models. With large enough V4 (and
beyond), the phase diagram of Fig. 5 of course would have to be modified.
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