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A b strac t

The parameter-space mapping technique used in most finite element mesh genera­
tion programs requires that the geometry be subdivided into either rectangular areas 
in 2-D or rectilinear volumes in 3-D to produce, respectively, quadrilateral or hexahe­
dral elements. Since subdivision occurs in parameter space, the edges bounding the 
areas and volumes need not be straight or parallel lines. Simple geometries may be 
subdivided easily while irregular features challenge the analyst.

This paper presents the formulation and application of conjoint meshing primitives 
that assist the analyst in meshing in and aroimd irregular features. The term conjoint 
is applied to these primitives because each is composed of several rectangular areas or 
rectilinear volumes. Interval assignments may vary from side to side, within a set of 
constraints, for each primitive. Thus, all of them are useful for transitions between 
other regular areas or volumes.

In 2-D, the primitive areas are the triangle, pentagon, semi-circle, circle, and rect­
angular transition. These primitives are implemented in the Sandia meshing program 
F A ST Q  and are used in regular production work. They are also the basis for decompo­
sition regions in the developing artificial intelligence Autom ated M Eshing Knowledge 
System , A M E K S.

In 3-D, the primitive volumes are the 2-D primitives extended in depth together 
with the tetrahedon and two rectilinear transition volumes. These primitives are the 
foundation for extending A M E K S  to 3-D.



I N T R O D U C T I O N

The finite element method is a fundamental simulation technique widely used in the engineer­
ing analysis community. This technique is capable of solving partial differential equations 
for very complex geometries and problems. However, successful use of the technique still 
requires significant expertise and time. Many researchers are investigating ways to further 
simplify or autom ate this modeling technique, thus allowing improved productivity, more 
accurate solutions, and use by less trained personnel.

Although there are a number of steps in the finite element modeling technique, often the 
most time consuming and expertise-intensive task faced by an analyst is the discretization of 
a general geometric definition of the problem into valid finite elements. The parameter-space 
mapping technique used in most finite element mesh generation programs requires tha t the 
geometry be subdivided into either rectangular areas in two dimensions (2-D) or rectilinear 
volumes in three dimensions (3-D) to produce, respectively, quadrilateral or hexahedrsd 
elements. Since subdivision occurs in param eter space, the edges bounding the areas and 
volumes need not be straight or parallel lines.

Not only is the mesh generation task tedious and error prone, but the accuracy and cost of 
the analysis directly depends on the size, shape, and number of elements in the mesh. Simple 
geometries may be subdivided easily into quadrilaterals or hexahedra while irregular features 
challenge the analyst. Experienced analysts mesh difficult geometry regions similarly. If this 
expertise can be captured in the definition of additional area and volume primitives, the 
productivity of experts and novices and the accuracy of their work would increase.

This paper presents the formulation and application of these additional primitives, con­
jo in t meshing primitives, th a t assist the analyst in meshing in and around irregular features 
and tha t simplify the decomposition of complex shapes. The term conjoint is applied to these 
primitives because each is composed of several rectangular areas or rectilinear volumes. In­
terval assignments may vary from side to side, within a set of constraints, for each primitive. 
Thus, aU of them are useful for transitions betw'een other regular areas or volumes.

The body of this paper is organized in the following way. First, the 2-D primitive areas, 
the triangle, pentagon, semi-circle, circle, and rectangular transition, are discussed. These 
primitives are implemented in the Sandia meshing program FA ST Q  [1] and are used in 
regular production work. They are also the basis for decomposition regions in the developing 
artificial intelligence Autom ated M Eshing Knowledge System, A M E K S  [2,3,4]. Next, 
the  3-D primitive volumes are described. They are the 2-D primitives extended in depth 
together with the tetrahedon and two rectilinear transition volumes. These primitives are 
the foundation for extending A M E K S  to 3-D and are currently being implemented in a new



3-D mesh generation program. Finally, example meshes generated using these 2-D and 3-D 
primitives are presented.



T w o-D im en sion a l P r im itives

The two-dimensional conjoint primitives described in the following paragraphs are the tri­
angle, pentagon, rectangular transition, semi-circle, and circle. The triangle and pentagon 
primitives have unique solutions and are discussed first. The rectangular transition, semi­
circle and circle do not have unique solutions for subdivision and interval assignment. These 
are discussed at the end of this section.

Triangle Prim itive
Figure 1 shows a triangle subdivided into three quadrilateral subareas. Obviously, a triangle 
may always be subdivided in this way to form three quadrilateral elements. This is very 
restrictive since each side of the triangle must have only two intervals. A more general inter­
pretation of Figure 1 assigns additional intervals, n j, ri2 and ns, to  each of the quadrilateral 
subareas. This allows for a diiferent number of intervals on each of the three sides. The 
triangle primitive is then useful as a transition region.

Figure 1  suggests, therefore, the following m atrix equation where m j, m 2 and m 3  are the 
total number of intervals on the three sides of the triangle.

( 1)

■ 1 1 0 ■ r u i
1 0 1 < ri2

. 0 1 1 _ [  ^3 ,

Solving for the unknown n^’s gives:

1
2

1 1 - 1
1 - 1  1

- 1  1 1
( 2 )

Since all of the n ,’s must be greater than or equal to one, the following inequalities hold.

m i -f m 2 >  m 3 -f 2  

mi -I- m 3 >  m 2 +  2

m 2 +  m 3  > m i -f 2

(3)

Examining Figure 1 suggests a physical interpretation of Equation 3. The sum of the 
intervals of any two sides must be two greater than the number of intervals on the remaining 
side.
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Figure 1: Triangle Primitive
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A final condition dictated by Figure 1  is that the sum of the intervals must be even since 
the sum of m i, m 2 and m 3  is equal to twice the sum of rii, t? 2  and 7 1 3 .

In summary, any triangular area may be m apped into a quadrilateral element mesh if 
the following conditions are meet.

1 . Each side must have a minimum of two intervals.

2. The sum of the intervals around the perim eter is even.

3. The sum of the intervals for any two sides is two greater than the remaining side.

Pentagon Prim itive
The derivation of the pentagon primitive closely follows th a t of the triangle primitive de­
scribed above. Historically, it was the last of the two-dimensional primitives developed and 
is include here because of its similarity to the triangle primitive [5].

Figure 2 shows a pentagon primitive th a t may occur around a hole in a model. The 
pentagon is subdivided into five quadrilateral subareas, and two of these are combined along 
the dashed lines to  form three meshable subareas.

If the n ,’s are the number of intervals on the sides of the subareas, and if the m ,’s are 
the num ber of intervals on the sides of the pentagon primitive, then Figure 2 suggests the 
following m atrix equation.

(4)

■ 1 1 0 0 0  ■ n i 7771

0 0 1 1 0 712 m 2

0 1 0 0 1 < ri3 > =  < m 3

1 0 0 1 0 rii 7774

. 0 0 1 0 1 . . «-5 , . "^5 .

Solving for the unknown n ,’s gives:

1
2

■ 1 - 1 — 1 1 1 ■ 777i ✓ V
n i

1 1 1 - 1  - 1 7772 772
1 1 — 1 - 1  1 < 7773 > =  < 773

- 1  1 1 1 - 1 7774 774

- 1  - 1 1 1 1 .

(6)

Since all of the rij’s must be greater than  or equal to one, the following inequalities hold.
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m-i + m 4 +  ms >  +  m 3  +  2

n il +  >  ^ 4  +  iriB +  2
m i +  m 2 + ms >  m 3  +  m 4  +  2  (6 )

+  m 3  +  ni4 >  rrij +  ms +  2
m 3 +  m 4  +  m-s >  m i +  mg +  2

Examining Figure 2 suggests another physical interpretation of Equation 6  similar to the 
one for the triangle. The sum of the intervals of any three adjacent sides must he two greater 
than the sum of the remaining two sides.

Like the triangle, a final condition dictated by Figure 2 is th a t the sum of the intervals 
m ust be even since the sum of the m^’s is equal to twice the sum of the re,’s.

In summary, any pentagon area may be subdivided into quadrilateral elements if the 
following conditions are meet.

1. Each side must have a minimum of two intervals.

2. The sum of the intervals around the perim eter is even.

3. The sum of the intervals for any three adjacent sides is two greater than  the sum of 
the intervals for the remaining two sides.

N -Sided P rim itive
The derivation technique used for the triangle and pentagon may be extended to n-sided 
polygons. Each of these primitives has one irregular node at the interior point where the 
subareas all meet. At the irregular node, the average corner angle is 120° for a triangle 
primitive and 72° for a pentagon primitive. The size of this angle wiU determine whether 
other primitives with more sides generate usable meshes.

R ectangular Transition P rim itive
Figure 3 shows a rectangular transition region subdivided into six quadrilateral subareas. It 
can be thought of as two triangle primitives, back-to-back, with the mid-side point pulled out 
to  form a corner. This subdivision scheme allows for the greatest flexibility in the assignment 
of intervals. Each side may have a different number of intervals as long as the conditions 
derived below are m et.



m
n 2 n 3

n 4

n 4

M4 n 3

M4M4

M2M2

n 3 n4n2n1

M1

M2

Figure 3: Rectangular Transition Primitive

10



The first two equations below' are obvious from a review of Figure 3. The requirement 
th a t the interval assignments on either side of the mid-line must be equal gives us the third 
equation.

+  «2 +  «3 +  ^4 =  (7)
«2 +  ” 3 =  ms (8)

rii -f 7714 =  714 +  rri2 (9)

Equation 8  is used to w'rite Equation 7 in terms of TCj, n^, rrii, and m 3 . Combining this 
equation w'ith Equation 9 leads to  the solution below for tij and 7 1 4 .

m i -f m 2 -  ms -  7774 
n i =  --------------------------- >  1 (10)

m i -f m4 -  m 2 -  ms ^ ,
^---------------> 1

The interval assignments for 773 and 773 are not unique. The only requirement is tha t they
sum to m 3 . On the other hand, a  desirable characteristic of the mesh is a nearly vertical
mid-line. If the interval spacing is uniform along the bottom  and the top, the ratio below
will force a vertical mid-line.

^  (11)
774 77s

If the ratio of Equation 11 is enforced, then a unique solution exists. In terms of 77i, 774 

and ms, TI2 and 7 73 are

ri2 = — 7̂ — ms ( 1 2 )77i -f 774 

rii
7 73 — ----------- ms

77i ■+• 774

Unfortunately, the  exact solution forces 772 and 773 to be a common multiple of 77i and 
774 respectively (see Equation 11). As before, the values of the 77,’s m ust be positive integers 
which further limits the utility of an exact solution. On the other hand, if the vertical mid­
line condition is relaxed so th a t instead of being equal the ratios are approximately equal, a 
useful solution results by rounding the values of 772 and 7 73 to  the nearest integer.

In summary, any rectangular transition area may be subdivided into quadrilateral ele­
ments if the following conditions are meet.
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1. The sum of the intervals around the perim eter is even and is greater than  or equal to 
eight.

2. The sum of the intervals of the side with the greatest number and of one adjacent side 
must be greater than  or equal to the sum of the intervals of the other two sides plus 
two (see Equation 10).

Sem i-C ircle P rim itive
The semi-circle primitive is a rectangular transition primitive fit into a region with only two 
sides. The formulation is very much the same except th a t where the rectangular transition 
required one assumption to  solve the problem, the semi-circle requires three. Again the first 
two equations are obvious from Figure 4. They are simply the sum of the intervals along 
the two lines th a t bound the semi-circle. The third equation enforces the condition th a t the 
num ber of intervals on either side of the vertical mid-line must be the same just like the 
rectangular transition.

n i  H- Ti2 - f  713 - f  Ti4 =  m i

772 +  713 +  71$ -f ri6 =  m 2 (13)
77l +  716 =  774 -f 77s

Since there are six unknowns and only three equations, this system has no unique solution. 
Three additional equations can be w ritten th a t wiD provide the necessary constraints to  solve 
for the intervals along the remaining sides. In the equations below, 773 and 7 7 3 are assumed 
to  be the average interval assignment if rrii is sufficiently large. Remember th a t there are 
eight intervals around the primitive. Otherwise, they are simply half the base less one. The 
value of 776 is half the difference of m 2 and 773 and 7 7 3 . These values are aU rounded to the 
nearest integer.

Let:

if 3m i — m 2 >  8 
=  • otherwise

mi+m2

773 =  772 (15)
m 2 -  2772

776 =   r   (16)

12
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Now th a t 712, W3  and ne are known, Equation 13 may be rewritten as:

rii +  U4 =  777.1 —  2772

775 =  rri2 -  2 7 7 2  -  776 (17)
7 7 1 - 7 7 4 - 7 7 5  =  -776

Solving for 7 7 i, 774 and 775 results in the following:

m i +  7772 .
fl^ —    ~  ^6

m i - m 2 ,
ri4 =  ------------- l-ne (18)

775 =  7772 — 2772 ~  774

In summary, any semi-circle area may be subdivided into quadrilateral elements if the 
following conditions are meet.

1. The sum of the intervals around the perim eter is even.

2. The intervals for the side with the great num ber must be greater than  or equal to those 
for the other side which must be greater than  or equal to four (see Figure 4).

Circle Prim itive
The circle primitive is quite simple as seen in Figure 5. In fact, no additional code was 
written to implement this primitive in F A S T Q  whose meshing capabilities are derived from 
an earlier code, Q M E S H  [6J. A rectangle is meshed in the circle, and this mesh is then 
forced toward the center by adding one or more element necklaces. The only equation for 
the primitive is:

277i  - f  2772 =  7771 ( 1 9 )

Equation 19 requires 777i to be even. The values of n i and 772 are abritrary  but should 
be chosen to  reflect the general shape of the body being meshed. For example, if the region 
being meshed is a perfect circle, then the values of 77i and 772 should be equal. On the other 
hand, if the circle being meshed is squashed, then the values of u i and 772 should be adjusted 
so th a t the intervals are evenly distributed in the  long and short directions.

14
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The only constraints for circle primitive is as follows:

>  1

In other words, the number of rows of elements between the circumference and the interior 
rectangle is abritrary. If it is greater than or equal to one, then no irregular nodes or ill formed 
elements will occur on the region boundary. If ns is large, then the elements in the middle 
of the circle become small compared to those on the boundary. A value of two or three for 
ns produces acceptable meshes.

16



T h ree-D im en sion a l P r im itiv es

The 3-D primitives described below include all of the 2-D primitives discussed previously 
extended in depth together with the purely 3-D primitives. The first set of primitives is 
known as 2 |-D  primitives because they are 2-D except for being translated or rotated through 
space.

2 |- D  Prim itives
The 2 |-D  primitives include the wedge (triangle), the cylinder (circle), the half-cyhnder 
(semi-circle), the regular hexahedral transition (rectangular transition), and the pentagon 
sweep (pentagon). No additional equations are necessary to implement these primitives. The
2-D primitives are simply translated and/or rotated as required to  generate the requested 
number of elements. Examples of the 2 |-D  primitives are provided later in this paper.

Tetrahedron Prim itive
The derivation of the tetrahedron primitive is similar to the derivation of the triangle and 
pentagon primitives in 2-D. In Figure 6 , p i, p2 , pz, and pi are the tetrahedron vertices, and 
TOi, m 2 , m 3 , m 4 , ms, and me are the interval numbers on each of the tetrahedron’s sides. 
The intervals need not be equal on any of the sides, although other constraints apply, which 
makes -this primitive useful as a transition region.

Figure 7 shows the tetrahedron divided into four logical hexahedra. They are called 
logical because they may have non-planar faces.

Suppose tha t the proposed subdivision is one Hke Figure 7 where n i, na, « 3 , and are 
the interval subdivisions on the respective hexahedra’s sides. A system of six equations in 
four unknowns can be derived similar to the 2-D cases described previously.

In m atrix form, the equation is:

(20)

It is known th a t a system of equations A x  =  B  has a solution if and only if the rank of 
the augmented m atrix [A : B] is the same as the rank of the coefficient m atrix  A  [7].

■ 1 0 0 1  ■ m i

0 1 0 1
{ ]

m 2

0 0 1 1 m 3

1 1 0 0 n 3  - rrii
0 1 1 0 I n 4  J m s

. 1 0 1 0  . . ” ^ 6  .
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Figure 6: A Tetrahedron with Non-Uniform Intervals
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Because elementary row operations do not change the row space of a m atrix, they are 
apphed on this system to find its rank value. After these transformations the augmented 
m atrix is

■ 1 0 0 0 2

0 1 0 0
^ 2+ m 4 —m i  

2

0 0 1 0
2 m 3 “f  7714 —TTli —7712 

2

0 0 0 1
m i  - f m s  —m 4 

2
0 0 0 0 "me —  m i  +  m 3  —  m 4

_ 0 0 0 0 m e  —  m i  +  m 2  —  m 4

(21)

The coefficient part of the augmented m atrix has rank four. This means tha t there are 
two dependent equations in the system th a t can be represented in term s of the other four. 
For the system to be solvable, the B vector must have rank 4 also. Therefore, the following 
equations must be satisfied.

'rris +  m i  — m3 — m4 =  0 

me -f m2 — m3 — m4 =  0 

From the last two equalities, one can infer tha t

■+ m i ~  m 3 ■+ m4 = me + m 2

(22)

(23)

This is one of the compatibility conditions. In other words, if the sum of opposite side 
intervals (i.e. through the tetrahedron) are equal, then the tetrahedron may be subdivided 
in the proposed manner (see Figure 7).

Solving the reduced system gives
TO] -frW4 —m2 

2m-2-i-rrn—mi
2

2m3 +rn< —m, —m2 
2mi -fn i2 —rrn 
2

(24)

As with the other primitives, the n^’s m ust be integers.

ni

ri2

nz
ri4

m i + m «  - m 2  >  1

2  —  ^

_  mi+m^-mi >  1
2 —  ^

— - m i  - m ;  ^  1
~  2  —  ^

—  n i l + m 2 - 7 7 1 4  >  j

(26)
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Therefore, if the sum of the intervals around each of the triangular faces of the tetrahedron 
are even, Eq. 24 will have a unique solution, and the tetrahedron may be subdivided. This 
is the other compatibility condition.

H exahedral Transition Prim itives
This section describes two hexahedral transition primitives. Each primitive is named for the 
num ber of edges whose interval assignment may deviate from th a t usually associated with 
a regular hexahedron. O ther transition primitives are surely possible. In fact, the regular 
hexahedral transition, a 2 |-D  primitive, is another example.

O ne-E dge H exahedral T ransition

A regular hexahedron meshing primitive may have different interval assignments in each of 
the three parameteric directions. The one-edge hexahedral transition allows one edge of the 
primitive to vary from the norm. Figure 8  shows a one-edge transition primitive. In this 
primitive, a smaller hexahedron is centered on the edge th a t has more intervals than it would 
if it were a regular hexahedron. This is the irregular edge. The interior faces of the smaller 
hexahedron are connected to  the prim itive’s faces by the diagonal lines. Thus, there are five 
hexahedrons within the one-edge primitive.

The interval assignments for the primitive are m i, m 2 , m 3 , and m 4 . The only unknown is 
Til which is the number of intervals on either side of the smaller hexahedron. Since 2 n i -(- m j 
must equal the number of intervals along the top edge, rii is simply

rri2 -  m tm  = -----    (26)

The only condition for using this primitive is th a t the difference between the irregular 
edge and the other edges in the same param etric direction is equal and even.

T h ree-E d ge H exahedral Transition

The three-edge or corner hexahedral transition is similar to the one-edge transition except 
th a t the small hexahedron is placed at a corner as shown in Figure 9 This primitive consists 
then of four hexahedra. W ith the smaller hexahedron in the  corner, the  three edges tha t 
join at the corner may have more intervals assigned to  them than  in a regular hexahedral 
primitive.

21
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Figure 9: A Three-Edge Hexahedral Transition
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The following equations summarize the conditions th a t m ust be m et to  mesh this primi­
tive.

(27)

Solving each of these equations for n j gives

m 2 — TOi =  TO3  — 77X4  =  TOg — TOg (28)

Therefore, the condition for using this primitive is tha t the  three differences between the 
irregular edge and all the other edges in each param eteric direction m ust be equal.

7?1 + m i =  m 2

rii + m 4 =  m 3

rii + m g =  m e

24



E xam p les

The examples below illustrate the utility of the various primitives described in the preceeding 
paragraphs. The 2-D examples are more complex than the 3-D examples. The 2-D primitives 
were implemented in 1987 and early 1988, and as such, they have a much longer history and 
track record. On the other hand, the 3-D primitives are just now being implemented and 
used.

The 2-D examples were generated and plotted using F A S T Q . The 2 |-D  examples were 
generated with F A S T Q  and G E N 3 D . G E N 3 D  is a Sandia code for translating and/or 
rotating 2-D meshes to form 3-D meshes. The 3-D examples were generated and plotted 
with M O V IE -S T A R  [8,9].

2-D Exam ples
Figure 10 shows all of the 2-D primitives meshed individually. Each row is a different 
primitive, and each column shows the primitive applied to  another shape.

The top row shows the standard rectangular mesh produced by F A S T Q . Parameter- 
space mapping is very adept at meshing such non-rectangular shapes as the ring in the 
middle column and the lazy “S” in the right column.

Beginning with the second row, the conjoint primitives are the triangle, the semi-circle, 
the circle, the pentagon, and the rectangular transition. Each primitive is easily identified 
by the- number of irregular nodes and the number of elements connected to the irregular 
node. For example, the triangle has one irregular node where three elements meet while the 
pentagon has one irregular node where five elements meet. The semi-circle and the rectan­
gular transition have two irregular nodes where three elements meet. Remember tha t these 
primitives are really just two back-to-back triangles. Finally, the circle has four irregular 
nodes where three elements meet.

The meshes are well formed with few bad corner angles even for areas th a t certainly do 
not fit the geometric definitions of triangle, pentagon, etc. The mesh smoothing algorithms 
available in F A S T Q  are used to provide the best possible mesh for each of these primitives.

Figure 11 shows four different bodies composed of multiple meshing areas. The left col­
umn shows the decomposition of the body into suitable regions. The right column shows the 
resulting mesh. The top row shows the triangle and the rectangular transition blending areas 
of different intervals together. The second row illustrates the application of the pentagon 
primitive around holes as well as the circle primitive.

The body of the third row uses two semi-circle primitives to mesh its upper portion and

25
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the triangle primitive to mesh its lower left corner. All the rest of its areas are meshed 
with the standard rectangle. The last object uses the standard rectangle together with two 
rectangular transition primitives and a circle primitive. The transition primitives are used to 
m atch the fine mesh around the circle without forcing small elements throughout the model.

2 |-D  Exam ples
Figure 12 illustrates the use of the 2-D primitives in three dimensions. These are the 2 |-D  
primitives. The top row shows a triangle primitive translated, on the left, and rotated, on 
the right, to form a wedge. The second row shows a pentagon primitive translated and a 
rectanglar transition primitive rotated to form, respectively, a pentagon sweep and a regular 
hexahedral transition. The last row’ shows a semi-circle primitive rotated to form a curved 
half-cylinder and a circle primitive translated to  form a cylinder.

The rectangular transition and circle primitives are rotated in Figure 13 to generate 
a sector of a toroidal object. Many 3-D objects can be modelled using only these 2 |-D  
primitives.

3-D Exam ples
The 3-D primitives in Figure 14 are not as smooth as those of the sections above. M O V IE - 
S T A R  does not have smoothing algorithms like F A S T Q .

The top row show’s the tetrahedron primitive, the middle row shows the three-edge hex­
ahedral transition, and the last row shows the one-edge hexahedral transition. The left and 
right columns show the subdivided primitive and the resulting mesh wdth hidden surfaces 
removed. Note tha t the interval assignment differs on each of the visible edges of the meshed 
tetrahedron.

Unlike the 2-D primitives where only the number of intervals need match along an edge, 
the topology of the matching faces between adjacent 3-D primitives must be the same. In 
other words, the derivation of the grid on the face of a tetrahedron must match tha t of the 
wedge w’ith the same interval assignments if these two primitives are to be used together.

Smoothing techniques like those in F A S T Q  must be adapted to  3-D to improve mesh 
quahty. Calculation of internal subdivision points and smoothing is more complicated in
3-D since points and nodes must remain on the surface of the model. Obviously, this is not 
a consideration in planar, 2-D models.
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Figure 13: Complex 3-D Body Mesh with 2 |  -D Primitives
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Figure 14: Three Dimensional Meshed Primitives
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C onclusions

The 2-D primitives derived in this paper have proven useful in production work. They 
provide the analyst an easy way of decomposing a body without the necessity of further 
subdividing the area into quadrilaterals. The F A S T Q  smoothing algorithms are applied 
to the entire primitive to produce a superior mesh. If an analyst were to subdivide the 
region into quadrilaterals without the aid of the conjoint primitives, only the individual 
quadrilateral areas would be smoothed. The extension of these primitives to 2 |-D  makes 
them  useful in modelling a large number of 3-D problems.

The true 3-D primitives have not yet proven their utility since they have only recently 
become available. Further work will result in the addition of a hemisphere and a sphere 
primitive. A pentahedron primitive is also under investigation.
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