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Abstract

The parameter-space mapping technique used in most finite element mesh genera-
tion programs requires that the geometry be subdivided into either rectangular areas
in 2-D or rectilinear volumes in 3-D to produce, respectively, quadrilateral or hexahe-
dral elements. Since subdivision occurs in parameter space, the edges bounding the
areas and volumes need not be straight or parallel lines. Simple geometries may be
subdivided easily while irregular features challenge the analyst.

This paper presents the formulation and application of conjoint meshing primitives
that assist the analyst in meshing in and around irregular features. The term conjoint
is applied to these primitives because each is composed of several rectangular areas or
rectilinear volumes. Interval assignments may vary from side to side, within a set of
constraints, for each primitive. Thus, all of them are useful for transitions between
other regular areas or volumes.

In 2-D, the primitive areas are the triangle, pentagon, semi-circle, circle, and rect-
angular transition. These primitives are implemented in the Sandia meshing program
FASTQ and are used in regular production work. They are also the basis for decompo-
sition regions in the developing artificial intelligence Automated M Eshing Knowledge
Systemm, AMEKS.

In 3-D, the primitive volumes are the 2-D primitives extended in depth together
with the tetrahedon and two rectilinear transition volumes. These primitives are the
foundation for extending AMEKS to 3-D.



INTRODUCTION

The finite element method is a fundamental simulation technique widel: used in the engineer-
ing analysis community. This technique is capable of solving partial differential equations
for very complex geometries and problems. However, successful use of the technique still
requires significant expertise and time. Many researchers are investigating ways to further
simplify or automate this modeling technique, thus allowing improved productivity, more
accurate solutions, and use by less trained personnel.

Although there are a number of steps in the finite element modeling technique, often the
most time consuming and expertise-intensive task faced by an analyst is the discretization of
a general geometric definition of the problem into valid finite elements. The parameter-space
mapping technique used in most finite element mesh generation programs requires that the
geometry be subdivided into either rectangular areas in two dimensions (2-D) or rectilinear
volumes in three dimensions (3-D) to produce, respectively, quadrilateral or hexahedral
elements. Since subdivision occurs in parameter space, the edges bounding the areas and
volumes need not be straight or parallel lines.

Not only is the mesh generation task tedious and error prone, but the accuracy and cost of
the analysis directly depends on the size, shape, and number of elements in the mesh. Simple
geometries may be subdivided easily into quadrilaterals or hexahedra while irregular features
challenge the analyst. Experienced analysts mesh difficult geometry regions similarly. If this
expertise can be captured in the definition of additional area and volume primitives, the
productivity of experts and novices and the accuracy of their work would increase.

This paper presents the formulation and application of these additional primitives, con-
joint meshing primitives, that assist the analyst in meshing in and around irregular features
and that simplify the decomposition of complex shapes. The term conjoint is applied to these
primitives because each is composed of several rectangular areas or rectilinear volumes. In-
terval assignments may vary from side to side, within a set of constraints, for each primitive.
Thus, all of them are useful for transitions between other regular areas or volumes.

The body of this paper is organized in the following way. First, the 2-D primitive areas,
the triangle, pentagon, semi-circle, circle, and rectangular transition, are discussed. These
primitives are implemented in the Sandia meshing program FASTQ [1] and are used in
regular production work. They are also the basis for decomposition regions in the developing
artificial intelligence Automated MEshing Knowledge System, AMEKS [2,3,4]. Next,
the 3-D primitive volumes are described. They are the 2-D primitives extended in depth
together with the tetrahedon and two rectilinear transition volumes. These primitives are
the foundation for extending AMEKS to 3-D and are currently being implemented in a new



3-D mesh generation program. Finally, example meshes generated using these 2-D and 3-D
primitives are presented.



Two-Dimensional Primitives

The two-dimensional conjoint primitives described in the following paragraphs are the tri-
angle, pentagon, rectangular transition, semi-circle, and circle. The triangle and pentagon
primitives have unique solutions and are discussed first. The rectangular transition, semi-
circle and circle do not have unique solutions for subdivision and interval assignment. These
are discussed at the end of this section.

Triangle Primitive

Figure 1 shows a triangle subdivided into three quadrilateral subareas. Obviously, a triangle
may always be subdivided in this way to form three quadrilateral elements. This is very
restrictive since each side of the triangle must have only two intervals. A more general inter-
pretation of Figure 1 assigns additional intervals, n,, n; and ns, to each of the quadrilateral
subareas. This allows for a different number of intervals on each of the three sides. The
triangle primitive is then useful as a transition region.

Figure 1 suggests, therefore, the following matrix equation where m;, m, and mj are the
total number of intervals on the three sides of the triangle.

110 71 my
10 1]|¢mn p=q¢m (1)
011 n3 ms
Solving for the unknown n;’s gives:
1 1 1 -1 m ny
5 1 -1 1 mo = ng (2)
-1 1 1 ms T3

Since all of the n;’s must be greater than or equal to one, the following inequalities hold.

my+my; 2> mz+2
my+mz > mg+2 (3)
my+mz 2 my+2

Examining Figure 1 suggests a physical interpretation of Equation 3. The sum of the
intervals of any two sides must be two greater than the number of intervals on the remaining
side.



Figure 1: Triangle Primitive
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A final condition dictated by Figure 1 is that the sum of the intervals must be even since
the sum of m;, m, and mj is equal to twice the sum of ny, n; and ns.

In summary, any triangular area may be mapped into a quadrilateral element mesh if
the following conditions are meet.

1. Each side must have a minimum of two intervals.
2. The sum of the intervals around the perimeter is even.

3. The sum of the intervals for any two sides is two greater than the remaining side.

Pentagon Primitive

The derivation of the pentagon primitive closely follows that of the triangle primitive de-
scribed above. Historically, it was the last of the two-dimensional primitives developed and
is include here because of its similarity to the triangle primitive [5].

Figure 2 shows a pentagon primitive that may occur around a hole in a model. The
pentagon is subdivided into five quadrilateral subareas, and two of these are combined along
the dashed lines to form three meshable subareas.

If the n;’s are the number of intervals on the sides of the subareas, and if the m;’s are
the number of intervals on the sides of the pentagon primitive, then Figure 2 suggests the
following matrix equation.

11000 ny my
00110 Mo me
01001 nz p =4{ M3 (4)
10010 N4 my
0 0101 ng ms
Solving for the unknown n;’s gives:
1 -1 -1 1 1 my ny
1 1 1 1 -1 -1 ma Ny
§ 1 1 -1 -1 1 ma = n3 (5)
-1 1 1 1 -1 my Ny
| -1 -1 1 1 1 ms ng

Since all of the n;’s must be greater than or equal to one, the following inequalities hold.
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my+mg+ms > my+mz-+2
my+mg+my > mg+ms+2
my+me+ms > ma-+mg+2 (6)
my+m3z+mg > my+ms+2
m3+my+ms > my-+mg+2

Examining Figure 2 suggests another physical interpretation of Equation 6 similar to the
one for the triangle. The sum of the intervals of any three adjacent sides must be two greater
than the sum of the remaining two sides.

Like the triangle, a final condition dictated by Figure 2 is that the sum of the intervals
must be even since the sum of the m,’s is equal to twice the sum of the n;’s.

In summary, any pentagon area may be subdivided into quadrilateral elements if the
following conditions are meet.

1. Each side must have a minimum of two intervals.
2. The sum of the intervals around the perimeter is even.

3. The sum of the intervals for any three adjacent sides is two greater than the sum of
the intervals for the remaining two sides.

N-Sided Primitive

The derivation technique used for the triangle and pentagon may be extended to n-sided
polygons. Each of these primitives has one irregular node at the interior point where the
subareas all meet. At the irregular node, the average corner angle is 120° for a triangle
primitive and 72° for a pentagon primitive. The size of this angle will determine whether
other primitives with more sides generate usable meshes.

Rectangular Transition Primitive

Figure 3 shows a rectangular transition region subdivided into six quadrilateral subareas. It
can be thought of as two triangle primitives, back-to-back, with the mid-side point pulled out
to form a corner. This subdivision scheme allows for the greatest flexibility in the assignment
of intervals. Each side may have a different number of intervals as long as the conditions
derived below are met.
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The first two equations below are obvious from a review of Figure 3. The requirement
that the interval assignments on either side of the mid-line must be equal gives us the third
equation.

ny+ny+nz+ng = My (7)
ng+mn3 = mg (8)
ny+mg = ng+m; (9)

Equation 8 is used to write Equation 7 in terms of ny, ng, m;, and m3. Combining this
equation with Equation 9 leads to the solution below for n; and ny.

My + M2 — M3 — My

2
ne = m1+m4-2—m2——m321

The interval assignments for n, and n3 are not unique. The only requirement is that they
sum to mz. On the other hand, a desirable characteristic of the mesh is a nearly vertical
mid-line. If the interval spacing is uniform along the bottom and the top, the ratio below
will force a vertical mid-line.

v

1 (10)

ny =

ny 3]

— == 11

mplaliy (11)
If the ratio of Equation 11 is enforced, then a unique solution exists. In terms of ny, ny4

and mj, n; and n3 are

ny

ng = ma (12)
N + Ny
Tig
ny = ms3
ny + ng

Unfortunately, the exact solution forces n, and n; to be a common multiple of n; and
n4 respectively (see Equation 11). As before, the values of the n;’s must be positive integers
which further limits the utility of an ezact solution. On the other hand, if the vertical mid-
line condition is relaxed so that instead of being equal the ratios are approximately equal, a
useful solution results by rounding the values of n; and n3 to the nearest integer.

In summary, any rectangular transition area may be subdivided into quadrilateral ele-
ments if the following conditions are meet.

11



1. The sum of the intervals around the perimeter is even and is greater than or equal to
eight.

2. The sum of the intervals of the side with the greatest number and of one adjacent side
must be greater than or equal to the sum of the intervals of the other two sides plus
two (see Equation 10).

Semi-Circle Primitive

The semi-circle primitive is a rectangular transition primitive fit into a region with only two
sides. The formulation is very much the same except that where the rectangular transition
required one assumption to solve the problem, the semi-circle requires three. Again the first
two equations are obvious from Figure 4. They are simply the sum of the intervals along
the two lines that bound the semi-circle. The third equation enforces the condition that the
number of intervals on either side of the vertical mid-line must be the same just like the
rectangular transition.

n+ny+nz+mng = My
Nyg+mnz+ns+ng = My (13)
np+nNg = Ng+ns

Since there are six unknowns and only three equations, this system has no unique solution.
Three additional equations can be written that will provide the necessary constraints to solve
for the intervals along the remaining sides. In the equations below, n, and n3 are assumed
to be the average interval assignment if m, is sufficiently large. Remember that there are
eight intervals around the primitive. Otherwise, they are simply half the base less one. The
value of ng is half the difference of m, and n, and ns. These values are all rounded to the
nearest integer.

Let:
mytmy if 3m1 - My > 8
= 8 -
2 { 2L~ 1 otherwise (14)
ng = Ny (15)
e = _f?__;_zn_ (16)

12
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Now that n,, n3 and ng are known, Equation 13 may be rewritten as:

ny+ng = my—2n
ny = my— 2Ny — Ng (17)
Ny —MNg—Ng = =—TNg

Solving for n;, ng and ngs results in the following:

my + my
ny = -——5———— - 27&2 — Ng

my—m
Ng = ——1——2-———2' + ng (18)
ng = Mg — 2712 - N4

In summary, any semi-circle area may be subdivided into quadrilateral elements if the
following conditions are meet.

1. The sum of the intervals around the perimeter is even.

2. The intervals for the side with the great number must be greater than or equal to those
for the other side which must be greater than or equal to four (see Figure 4).

Circle Primitive

The circle primitive is quite simple as seen in Figure 5. In fact, no additional code was
written to implement this primitive in FASTQ whose meshing capabilities are derived from
an earlier code, QMESH [6]. A rectangle is meshed in the circle, and this mesh is then
forced toward the center by adding one or more element necklaces. The only equation for
the primitive is:

2121 -+ 2')’1,2 = mi (19)

Equation 19 requires m; to be even. The values of n; and n, are abritrary but should
be chosen to reflect the general shape of the body being meshed. For example, if the region
being meshed is a perfect circle, then the values of n; and n, should be equal. On the other
hand, if the circle being meshed is squashed, then the values of n; and n, should be adjusted
so that the intervals are evenly distributed in the long and short directions.

14
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The only constraints for circle primitive is as follows:

n321

In other words, the number of rows of elements between the circumference and the interior
rectangle is abritrary. Ifit is greater than or equal to one, then no irregular nodes or ill formed
elements will occur on the region boundary. If n; is large, then the elements in the middle
of the circle become small compared to those on the boundary. A value of two or three for
n3 produces acceptable meshes.

16



Three-Dimensional Primitives

The 3-D primitives described below include all of the 2-D primitives discussed previously
extended in depth together with the purely 3-D primitives. The first set of primitives is
known as 2%—D primitives because they are 2-D except for being translated or rotated through
space.

2%—D Primitives

The 21-D primitives include the wedge (triangle), the cylinder (circle), the half-cylinder
(semi-circle), the regular hexahedral transition (rectangular transition), and the pentagon
sweep (pentagon). No additional equations are necessary to implement these primitives. The
2-D primitives are simply translated and/or rotated as required to generate the requested
number of elements. Examples of the 2%—D primitives are provided later in this paper.

Tetrahedron Primitive

The derivation of the tetrahedron primitive is similar to the derivation of the triangle and
pentagon primitives in 2-D. In Figure 6, p;, p2, ps, and py are the tetrahedron vertices, and
my, mgy, M3, My, ms, and me are the interval numbers on each of the tetrahedron’s sides.
The intervals need not be equal on any of the sides, although other constraints apply, which
makes this primitive useful as a transition region.

Figure 7 shows the tetrahedron divided into four logical hexahedra. They are called
logical because they may have non-planar faces.

Suppose that the proposed subdivision is one like Figure 7 where ny, nz, n3, and n4 are
the interval subdivisions on the respective hexahedra’s sides. A system of six equations in
four unknowns can be derived similar to the 2-D cases described previously.

In matrix form, the equation is:

100 17 my )
0101]|(mn my
001 1| )n|_ ) ms
1100 Yn (T ma (20)
0 110 g ms
_1010_ \m6)

It is known that a system of equations Ax = B has a solution if and only if the rank of
the augmented matrix [A : B] is the same as the rank of the coefficient matrix A [7].

17
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Figure 7: A Tetrahedron Filled with Logical Hexahedra
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Because elementary row operations do not change the row space of a matrix, they are
applied on this system to find its rank value. After these transformations the augmented
matrix is

my+mg—my
2

ma+mg —my
2

2ma+my—my—my

2

my+my—my (21)
2

DD O D
(=Rl
(== e S I e I o }
O - O

My — My + M3z — My
0 0 0 0, mg—mq~+my—my

The coefficient part of the augmented matrix has rank four. This means that there are
two dependent equations in the system that can be represented in terms of the other four.
For the system to be solvable, the B vector must have rank 4 also. Therefore, the following
equations must be satisfied.

Mg -+ My — M3 — My = 0 (22)

meg+myg—mzg—my = 0
From the last two equalities, one can infer that
Mp + My = M3 + Mg = Mg + My (23)

This is one of the compatibility conditions. In other words, if the sum of opposite side
intervals (i.e. through the tetrahedron) are equal, then the tetrahedron may be subdivided
in the proposed manner (see Figure 7).

Solving the reduced system gives

my+mg—my
nq 2
ng ma+mg—my
’ o 2
n - 2mz+mg—my —ma (24)
3 . 2
my-tmy —1my
(7 2
As with the other primitives, the n;’s must be integers.
— mytme—my
ni = 2 2 1
. Matmyg-—-my
Nay = 2 2 1 (25)
— 2m3+mg~my —mz
n3 ) __>_ 1
ng - my+ma—my > 1

2

20



Therefore, if the sum of the intervals around each of the triangular faces of the tetrahedron
are even, Eq. 24 will have a unique solution, and the tetrahedron may be subdivided. This
is the other compatibility condition.

Hexahedral Transition Primitives

This section describes two hexahedral transition primitives. Each primitive is named for the
number of edges whose interval assignment may deviate from that usually associated with
a regular hexahedron. Other transition primitives are surely possible. In fact, the regular
hexahedral transition, a 2%-D primitive, is another example.

One-Edge Hexahedral Transition

A regular hexahedron meshing primitive may have different interval assignments in each of
the three parameteric directions. The one-edge hexahedral transition allows one edge of the
primitive to vary from the norm. Figure 8 shows a one-edge transition primitive. In this
primitive, a smaller hexahedron is centered on the edge that has more intervals than it would
if it were a regular hexahedron. This is the irreqular edge. The interior faces of the smaller
hexahedron are connected to the primitive’s faces by the diagonal lines. Thus, there are five
hexahedrons within the one-edge primitive.

The interval assignments for the primitive are my, m,, ms, and m4. The only unknown is
ny which is the number of intervals on either side of the smaller hexahedron. Since 2n; +m4
must equal the number of intervals along the top edge, n; is simply

ny = mgy — my (26)
2

The only condition for using this primitive is that the difference between the irregular

edge and the other edges in the same parametric direction is equal and even.

Three-Edge Hexahedral Transition

The three-edge or corner hexahedral transition is similar to the one-edge transition except
that the small hexahedron is placed at a corner as shown in Figure 9 This primitive consists
then of four hexahedra. With the smaller hexahedron in the corner, the three edges that
join at the corner may have more intervals assigned to them than in a regular hexahedral
primitive.

21
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Figure 9: A Three-Edge Hexahedral Transition
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The following equations summarize the conditions that must be met to mesh this primi-
tive.

ny+my = Mo
ny+Mmy = M3 (27)
ny+ms = Mg
Solving each of these equations for n; gives
My — My = M3 — My = g — Mg (28)

Therefore, the condition for using this primitive is that the three differences between the
irregular edge and all the other edges in each parameteric direction must be equal.

24



Examples

The examples below illustrate the utility of the various primitives described in the preceeding
paragraphs. The 2-D examples are more complex than the 3-D examples. The 2-D primitives
were implemented in 1987 and early 1988, and as such, they have a much longer history and
track record. On the other hand, the 3-D primitives are just now being implemented and
used.

The 2-D examples were generated and plotted using FASTQ. The 2%-D examples were
generated with FASTQ and GEN3D. GENS3D is a Sandia code for translating and/or
rotating 2-D meshes to form 3-D meshes. The 3-D examples were generated and plotted
with MOVIE-STAR [8,9].

2-D Examples

Figure 10 shows all of the 2-D primitives meshed individually. Each row is a different
primitive, and each column shows the primitive applied to another shape.

The top row shows the standard rectangular mesh produced by FASTQ. Parameter-
space mapping is very adept at meshing such non-rectangular shapes as the ring in the
middle column and the lazy “S” in the right column.

Beginning with the second row, the conjoint primitives are the triangle, the semi-circle,
the circle, the pentagon, and the rectangular transition. Each primitive is easily identified
by the. number of irregular nodes and the number of elements connected to the irregular
node. For example, the triangle has one irregular node where three elements meet while the
pentagon has one irregular node where five elements meet. The semi-circle and the rectan-
gular transition have two irregular nodes where three elements meet. Remember that these
primitives are really just two back-to-back triangles. Finally, the circle Las four irregular
nodes where three elements meet.

The meshes are well formed with few bad corner angles even for areas that certainly do
not fit the geometric definitions of triangle, pentagon, etc. The mesh smoothing algorithms
available in FASTQ are used to provide the best possible mesh for each of these primitives.

Figure 11 shows four different bodies composed of multiple meshing areas. The left col-
umn shows the decomposition of the body into suitable regions. The right column shows the
resulting mesh. The top row shows the triangle and the rectangular transition blending areas
of different intervals together. The second row illustrates the application of the pentagon
primitive around holes as well as the circle primitive.

The body of the third row uses two semi-circle primitives to mesh its upper portion and

25
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the triangle primitive to mesh its lower left corner. All the rest of its areas are meshed
with the standard rectangle. The last object uses the standard rectangle together with two
rectangular transition primitives and a circle primitive. The transition primitives are used to
match the fine mesh around the circle without forcing small elements throughout the model.

1
23-D Examples

Figure 12 illustrates the use of the 2-D primitives in three dimensions. These are the 23-D
primitives. The top row shows a triangle primitive translated, on the left, and rotated, on
the right, to form a wedge. The second row shows a pentagon primitive translated and a
rectanglar transition primitive rotated to form, respectively, a pentagon sweep and a regular
hexahedral transition. The last row shows a semi-circle primitive rotated to form a curved
half-cylinder and a circle primitive translated to form a cylinder.

The rectangular transition and circle primitives are rotated in Figure 13 to generate
a sector of a toroidal object. Many 3-D objects can be modelled using only these 27-D
primitives.

3-D Examples

The 3-D primitives in Figure 14 are not as smooth as those of the sections above. MOVIE-
STAR does not have smoothing algorithms like FASTQ.

The top row shows the tetrahedron primitive, the middle row shows the three-edge hex-
ahedral transition, and the last row shows the one-edge hexahedral transition. The left and
right columns show the subdivided primitive and the resulting mesh with hidden surfaces
removed. Note that the interval assignment differs on each of the visible edges of the meshed
tetrahedron.

Unlike the 2-D primitives where only the number of intervals need match along an edge,
the topology of the matching faces between adjacent 3-D primitives must be the same. In
other words, the derivation of the grid on the face of a tetrahedron must match that of the
wedge with the same interval assignments if these two primitives are to be used together.

Smoothing techniques like those in FASTQ must be adapted to 3-D to improve mesh
quality. Calculation of internal subdivision points and smoothing is more complicated in
3-D since points and nodes must remain on the surface of the model. Obviously, this is not
a consideration in planar, 2-D models.
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Figure 13: Complex 3-D Body Mesh with 21 -D Primitives
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Conclusions

The 2-D primitives derived in this paper have proven useful in production work. They
provide the analyst an easy way of decomposing a body without the necessity of further
subdividing the area into quadrilaterals. The FASTQ smoothing algorithms are applied
to the entire primitive to produce a superior mesh. If an analyst were to subdivide the
region into quadrilaterals without the aid of the conjoint primitives, only the individual
quadrilateral areas would be smoothed. The extension of these primitives to 21-D makes
them useful in modelling a large number of 3-D problems.

The true 3-D primitives have not yet proven their utility since they have only recently
become available. Further work will result in the addition of a hemisphere and a sphere
primitive. A pentahedron primitive is also under investigation.
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