
to
 »

VC
 D

C a a. n n
►T3 U> o s o

►T3

B9

O
<S
 3

’
s s <
31

<w

?
 W

2

p-
!

lg ft

s

a

2
^

3

G
 S

’
0 W
 S

H-
k

*^
1
^

H-t
 t

o
1 (-
* 'O I >

90 o C/1 05 O
—
 C

r
CD

VI
d
o

n (? ft

9 CA O 3 a
. •z

c a n VO 00 V
O

;> p o cr D o’ 09

P

B3 9 a

CA o o ft

O
 o

QJ

OS

tx.
 (—

►
M

w
00 ft

ft
3

3
S

60

M

S
eg
 ^

g
s

a
o

ft

&
g

l’
f

a
 o

 *
O

to

1
ft

OS

9
ft >
0 3 ft 9

N OS O 9

2
o

“

M
s

w

D W oo vo 00 u
>

« \ D W W 0 1 I 00 o

■K
l'JR

S’H
 r , •

R-
'-tf

aK
ra-

 j
 *

^
.

'

m
:

D
IS

C
L

A
IM

E
R

Th
is
 r

ep
or

t
w

as
 p

re
pa

re
d

as
 a

n
ac

co
un

t
of

 w
or

k
sp

on
so

re
d

by
 a

n
ag

en
cy

 o
f

th
e

U
ni

te
d

St
at

es
e
m

IT

r
'

"
 ‘

he
 U

ni
tC

d
S‘

at
eS

 G
”

-
‘

"o
r

an
y

ag
en

cy
 t

he
re

of
 n

o;
 a

ny
 o

f t
h

S

em
pl

oy
ee

s
m

ak
es

 a
ny

 w
ar

ra
nt

y,
 e

xp
re

ss
 o

r
im

pl
ie

d,
 o

r
as

su
m

es
 a

ny
 l

eg
al
 l

ia
bi

lit
y

or
 r

es
po

ns
i-

D
r^

f°
d

hf
„
^

Ur
aC

y’
C°

m
pl

et
en

CS
S’
 o

r
us

ef
ul

ne
ss
 o

f
an

y
in

fo
rm

at
io

n,
 a

pp
ar

at
us

pr
od

uc
t

or

pr
oc

es
s

di
sc

lo
se

d,
 o

r
re

pr
es

en
ts
 t

ha
t

its
 u

se
 w

ou
ld
 n

ot
 i

nf
rin

ge
 p

riv
at

el
y

ow
ne

d
rig

ht
s

R
ef

er
en

ce
 h

er
ei

n
to

 a
ny

 s
pe

ci
fic

 c
om

m
er

ci
al
 p

ro
du

ct
,

pr
oc

es
s,

or
 s

er
vi

ce
 b

y
tr

ad
e

na
m

tr
ad

em
a^

m
e
n
d
S

™
’
7

u*

001
 n

eC
eS

Sa
ril

y
CO

nS
tit

ut
e

or
 i

m
pl

y
iU

 e
nd

ow
m

en
t

r^
m

,

.
. ’
 0

r
av

on
ng

 b
y

th
e

U
ni

te
d

St
at

es
 G

ov
er

nm
en

t
or

 a
ny

 a
ge

nc
y

th
er

eo
f

Th
e

vi
ew

s
U

ni
tJ

su
0^

^

her
Cin

 d
°
^

^

un
ite

d
St

at
es

 G
ov

er
nm

en
t o

r
an

y
ag

en
cy

 th
er

eo
f.

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image

products. Images are produced from the best available

original document.

CONTENTS

ABSTRACT.. iv

1. INTRODUCTION.. 1

2 DISTRIBUTED DATABASE ARCmTECTURES.. 5

3. VTEK’S SCRIPT PROCESSING CAPABUJITES .. 7
3.1 SCRIPT COMMAND SYNTAX... 7
32 SCRIPT DATA FILES .. 9

4. IMPROVEMENTS TO VTEK’S SCRIPT PROCESSING ... 11

5. FUTURE DISTRIBUTED DATABASE SOLUTIONS.. 13

6. REFERENCES.. 15

APPENDIX A: EXISTING FEATURES OF VTEK...

APPENDIX B: EXAMPLE VTEK EMULATOR EXERCISES...

APPENDIX C: VDE: A VIRTUAL DATA ENTRY TERMINAL EMULATOR.................

APPENDIX D: VDE C LANGUAGE SOURCE..

APPENDIX E: VDE ASSEMBLER LANGUAGE SOURCE CODE.....................................
ASONTJVSM..
DSINTLASM ..

GLOSSARY...

m

ABSTRACT

Two separate approaches were used to develop a prototype for entering data into a
remote host computer in an automated manner. In the first approach, revisions were
implemented in the IBM PC’s* terminal emulator VTEK 4.2’*. These revisions allowed
pre-written script files to be processed to the host-based operating system and applications
software as if the script file information had been entered on the keyboard. The script
processing capability was implemented taking advantage of existing user-defined key capability
and the DEC VT100*” asynchronous terminal emulation of VTEK communications software.

At present the script command and data files must be manually created at the PC using
an editor or word processor. The script processing capability works with any host-based
operating system or application software that interacts with a DEC VT100 terminal. An
example is provided where VTEK script processing is used to automatically interact with a
VAX"*-based Database Management System (DBMS), INGRES,”” appending PC-resident data
records to an INGRES table, creating a default report, aborting to VMS,”’ and disposing of the
report ... all without touching a key.

An appendix is provided which discusses the second approach of developing a prototype
VT100 emulator specifically designed for data entry to a remote host computer system. This
software loads data automatically into a Vax Datatrieve database. It provides an alternative
method of prototype development.

The challenges for future development are identified and discussed. The use of the
programmable terminal emulator for data control in the case of distributed database applications
is also discussed.

'IBM PC is a trademark of IBM Corporation.

“VTEK is a trademark of Scientific Endeavors Corporation.

’"DEC, VAX, VMS, and VT100 are trademarks of Digital Equipment Corporation.

’"’INGRES is a trademark of Relational Technology, Inc.

iv

1. INTRODUCTION

A common computing need of organizations/projects is that of processing data that is
distributed across heterogeneous computing environments.' Solutions are being sought which
would allow different vendors’ hardware and software to work together harmoniously and
transparently, without reprogramming or loss of investment in existing databases and/or file
structures. This current project at the Pacific Missile Test Center (PMTC) was undertaken for
the Information Resources Management Office (IRMO) in order to investigate two possible
approaches to solving these problems.

The obstacles to overcoming this common computing need are often tied to lack of
mature standards in computing technology, competition for market share among
hardware/platform and software vendors, the highly developmental and complex nature of
computing technology, the U.S. government’s ADP* procurement regulations, politics existing
within organizations, and presently inherent in many organizations to evolve systems and
database designs once specified and developed. At present there is no single vendor product or
collection of products that allows global solutions to such distributed database problems. For
example, some limited successes have been recently reported.^

There are many developments which offer this promise of building global solutions,
though it may be 2 to 5 years before their impact will be widely felt. Such developments
include the following:

- Advancements in commercial distributed Relational Database Management System
(RDBMS) software (e.g., INGRES and ORACLE”) that enable applications to access
data from various vendors’ databases and file management systems; distributed data
managers that allow access to multiple databases simultaneously (even if on separate
computers); and products that allow transparent access to remote computer systems
connected through networking,

- Advances in Fourth Generation Languages (4GLs) such as improved query optimizers,

- Acceptance of Structured Query Language (SQL) as a data definition and
manipulation standard (at the base of most 4GLs),

- Development of analysis and design support software such as Computer-Aided
Software Engineering (CASE) tools,

- Development and refinement of configuration management software,

'All acronyms are defined in the Glossary.

"ORACLE is a trademark of Oracle Corporation.

1

2

- Integration of DBMS, CASE, and configuration management software into consistent
single-product combinations,

- Improvements in data dictionaries and the development of international standards for
dictionary systems,

- Development and utilization of advanced communication protocol and networking
standards; examples include Ethernet, TCP/IP, GOSIP, DECnet', SNA,** and NFS,***

- Development of artificial intelligence (expert system) links to DBMSs such as in query
optimization, natural language query tools, reality checking (Quality Assurance) to
avoid erroneous data entry, and intelligent interfaces to overcome incompatibilities in
data forms/formats eliminating the need to recode data, among others,

Increasing computing speeds and decreasing cost for all classes of platforms, from
microcomputers to mainframes,

- Development of advanced microcomputers that allow multitask operating systems such
as OS/2** or UNIX****, and workstations allowing multiple DOS’*’** sessions under
UNIX,

- The broader acceptance of UNIX as an OS standard, and

- Additional successful developments in computing standards possibly due to vendor
cooperation (OSF and X/Open) and/or to government insistence (CALS and OSI).

There are several additional developments which are likely to drive more DBMS
applications to a distributed environment. Among these are the following:

- Implementation of available networking-communications technology such as the
widespread use of broadband fiber optics for connectivity,

- The influx of microcomputer database technology,

- The further development of economical mass storage for microcomputers, such as
optical disks,

‘DECnet is a trademark of Digital Equipment Corporation.

"SNA and OS/2 are trademarks of IBM Corporation.

’"NFS is a trademark of Sun Microsystems, Inc.

""UNIX is a trademark of AT&T Corporation.

""’DOS is a trademark of Microsoft, Inc.

3

- Proliferation of inexpensive "UNIX workstations" from vendors such as SUN, DEC,
and IBM, among many others,

- Successful developments in computing technology standards, particularly the POSIX
and X Windows standards, and

- Proliferation of Local Area Networks (LANs), particularly those composed of
micro/minicomputer UNIX workstations, and the further development of networking
technology to produce general acceptance/utilization of Wide Area Networks (WANs).

Generic solutions to distributed database problems may or may not evolve in the near
term; no individual or organization can forecast the database future with much confidence.
Meanwhile certain specific distributed database needs are being addressed by vendors, systems
developers, and systems integrators who are succeeding, to various degrees, in grounding the
developing technology in real-world requirements and constraints. One example is the current
PMTC IRMO task to support development and demonstration of a virtual-data-entry terminal
emulator which is a building block to a broader implementation of distributed database
technology.

The reason such a primitive tool, as the one developed in our first approach, is
important is its immediate capability to penetrate the heterogeneous computing environment
allowing entry into "closed" DBMSs without vendor involvement other than the "universal"
compliance with three very basic concepts or standards: (1) interactive terminal-to-host database
transaction processing, (2) VT100 terminal service, and (3) asynchronous communication/net­
working support. The current efforts demonstrate the concept of controlling heterogeneous
database environments using a "foreign" coordinating node and form the beginnings of a possible
expandable distributed database solution.

The product of this effort is a microprocessor-based terminal emulator computer
program that contains a powerful script language allowing "virtual" interactive terminal-to-host
sessions. The sessions are virtual because the script conducts them interactively as though there
were a terminal operator interacting with the application program, yet no terminal operator is
needed to read the incoming screens or to strike the appropriate keyboard responses to achieve
transaction processing. To accomplish the virtual session a script command file is prepared on
the microprocessor that resembles a series of instructions of the form "wait for a certain host-
supplied prompt, then supply the prearranged response." The command file must be
constructed to match an exact sequence of desired interactions with the host-based application
program. The prearranged responses may be supplied in either of two ways, as syntactically
appropriate: first, they may be in-line-coded in the command file; or second, they may pre-exist
as records in a microprocessor data file and simply be pointed to (read and supplied) by the
script.

A second approach to the PMTC IRMO task was to develop a prototype VT100
emulator designed specifically for virtual data entry. In its current state, it has the ability to
automatically load data into a VAX Datatrieve database but could be expanded to include
additional computers and DBMS’s. It is discussed in Appendix C.

The remainder of this report is divided into five sections and five appendices. Section 2
will examine the various forms that distributed databases might have and suggest an architecture
which would be desirable for allowing successful distributed DBMS applications. Section 3 fully
describes the script processing capabilities of the terminal emulator computer program discussed

above. Section 4 discusses limitations of the current approach and suggests improvements and
extensions. Section 5 discusses other future developments that could eventually produce very
powerful distributed database coordinations. Section 6 contains the references. In Appendix A,
the terminal emulator software VTEK used in this study is fully described. An example script-
controlled data entry session is presented in Appendix B along with other example script
command files for various terminal-to-host sessions. Appendix C discusses a prototype VT100
emulator specifically designed for data entry. Appendices D and E contain the complete source
code listings. Finally, a glossary of terms is provided for reference.

4

2. DISTRIBUTED DATABASE ARCHITECTURES

Distributed database technology is a comparatively recent development within the overall
database field. The term distributed database has no common definition, but, typically, is a
database that is not stored in its entirety at a single physical location, but rather is spread across
a network of computers that are geographically dispersed and connected via communication
links/

There are at least two distributed architectures. The first may be called central
processing where dispersed users ship their local database to a central node/computer for
processing. Under this architecture all centralized data is available for retrieval by any user, and
the combined data give a more informative report than one available on the local node only.
Each local database is always up-to-date; the central node is periodically updated. The second
may be called a partitioned database with zero overlap where data tables and files are scattered
in various locations/nodes connected by a network. Data are linked using appropriate data keys.
Applications for the second type of architecture can be run on any node; furthermore,
applications may call for information from any of the locations, without having to write explicit
instructions that describe data residence.

The current efforts of this PMTC IRMO project are aimed at helping automate an
architecture like the first described above. The "shipping" process is managed by a script
running on a PC which moves data from the PC to the central computer by virtual data entry.
The architecture which has the most desirability and which appears to be evolving in the
commercial sector is more like the second described above. The decentralization process is
being pushed along by many technological developments such as those described in Section 1:
Introduction.

More desirable attributes of a distributed database or DBMS include the following:

1. It allows users to connect dispersed data into a single unified information source.
2. It transparently ties together data across dispersed systems enabling users to cross-

reference data dynamically.
3. It eliminates the need to modify existing applications running on different platforms

(Central Processing Units or CPUs) and extends use of all system resources.
4. It provides full read and update support along with replication and partitioning.
5. It isolates the user and the database application from communication activities.
6. It allows strategic balancing of process workloads across multiple systems.
7. It allows database segmentation and storage on multiple systems.
8. It allows data with high availability requirements to be replicated in mirror-image

copies at multiple locations and ensures that replicas are synchronized to produce
data integrity.

9. It allows for backup-critical functions even if all but one of the database copies
becomes inoperable.

10. It allows monitoring of activity profiles and revamping of storage strategies as activity
suggests.

This list, while possibly of great importance and desirability, describes a situation that
cannot be achieved presently for heterogeneous computing environments. At present, it is

5

6

theoretically possible to achieve such a situation but only if homogeneous software and
hardware are involved in the distributed database system. The requirements for such a system
possibly could be established through a formal life-cycle management approach that would result
in a single-vendor distributed RDBMS software procurement. All distributed CPUs would also
have to be networked through common communications software such as TCP/IP or SNA. All
CPUs would require multitasking Operating Systems (OSs) that supported the RDBMS and the
network communications.

Such solutions for the RDBMS include INGRES and ORACLE, for examples, each with
a SQL star-distributed architecture as the enabling technology. DEC/VAX computers are a
possible hardware choice/ One admitted drawback is the proliferation of processes that is
necessary to coordinate the various nodal database activities resulting in the requirement of fast
multiprocessing CPUs with large memories. If need were establishable and funds available, it
should be possible to purchase a distributed RDBMS solution from such commercial vendors.

3. VTEK’S SCRIPT PROCESSING CAPABILITIES

A script processing capability was added to the PC terminal emulator VTEK. A series
of script commands can be prepared on the PC which amount to a program for the PC to
follow as if it were emulating a terminal to a host-based application. The script essentially
eliminates the need for a terminal operator and can be used to achieve virtual data entry to the
host. Data on the PC can be entered into the host database in this fashion.

The script files are PC resident and are either command files or data files. The
command files automate the interactive terminal-to-host process as though all information and
data were keyboard entered through a DEC VT100 terminal. At present the script files must
be created with the PC’s word processor or editor. This preparation is quite straightforward
with the possible exception of the necessity to insert control characters in the script data file.

It should be clearly noted that VTEK-beta (in its current development status) can be
programmed to participate in any well-defined interactive session. Script command files can be
written for any session where the prompts/questions/error-conditions from the host’s OS or
applications software are a priori known; then legitimate responses can be included in the script.
Error processing, though theoretically possible, remains an exercise for follow-on activities.

To aid in the preparation of a script file, advantage can be taken of the VTEK Alt-w
command which captures all VT100 mode characters from the host into a designated PC dump
file. Upon disconnection from a host, the file can be replayed using the Ctrl-F3 command and
can be echoed to the printer for further study. Using this method an actual interactive session
can be captured, studied, and then manually modeled into an equivalent script.

3.1 SCRIPT COMMAND SYNTAX

The precise script command syntax for the current VTEK-beta is given below. There
are but 18 script commands necessary for the complete script language. In the following
definitions (and in the key macros), the " ~" is the caret character, ASCII 94. "STRING"
represents a string of characters of length less than 100 characters. The lower 128 ASCII
(7-bit) characters are acceptable with control based on escape sequences not currently
accommodated. The "##" represents a string of decimal integers, one per # sign.
"FILENAME" is a data file obeying DOS naming conventions. The definitions are given below
without great detail; many are further illustrated in the examples of Appendix B.

~(A-Z)

~! COMMENT ^!
~###

~=##

y\
b
d##STRING/vd

send a control character where uppercase A-Z represents
the desired character
embed comment in script; skip to end of comment
delay of ### hundredths of a second; this most
nonspecific type of delay may be necessary to avoid buffer
overflow such as during script data file send operations
wait for at least ## characters to be received from the
host (on-line only)
beep (such as for an error message)
delay until pause, matching STRING in last ## chars
(online only)

7

8

label

^FILENAME'
'g(a-z)
'k%

'l(a-z)
mSTRING' TIME

= extract data from data file and send to host till Ctrl-A or
Ctrl-B is encountered. Send data to host. If Ctrl-B, close
data file and jump to label (online only)

= open data file (online only) (CRs in file are " ^ n")
= goto label (26 labels allowed)
= send VT100 keypad key (online only)

% is given by: 0-9 . , - e pi p2 p3 p4 u d 1 r - for Enter,
PF1-PF4 keys, and the up, down, left, and right arrows,
respectively

= label
SUCCESS LABEL ~m =

^ n
~p-.~p

/vs##STRING/v label =

/’v v..„ ^ V =
^w%

match the string. Parse the input stream for TIME
seconds. If the string is matched, flush the input buffer
and go to SUCCESS_LABEL. If timeout or failure, go to
the next step
send a carriage return
send enclosed characters to the PC’s printer
quit and end script macro
match STRING with last ## chars received (at a halt). If
match, goto label (a-z). Else parse next character,
execute VTEK command (or key macro) till a second ~ v
wait for a character(%) from the host (online only)

only keys valid in a ^
~aF#
~cF#
~sF#
~upa
~dna
~lfta
~m#

~n
"rgta
^t###

^ a(a-z)
~oSTRING~o
/vu##STRING'

w

v line:
= Alt-F# key
= Ctrl-F# key
= Shift-F# key
= up arrow
= down arrow
= left arrow
= use VTEK communications selection # (= 1,2 or 3)
= send carriage return to VTEK
= right arrow
= wait ### minutes before proceeding
= alt key (see partial list below)
= output a string to the terminal (i.e., a user prompt)

Mabel##STRING~ label ~u =
accept user input, compare ## chars. If matched, go to
label (a-z)

= toggle CtrlPrtScr printer echo

Since the script processor can be used to execute most of the pre-programmed VTEK
commands (the ALT keys), a partial list of those commands of likely utility for scripting is

9

reviewed. Very brief descriptions are provided here; reference to the VTEK User’s Manual6 or
the help utility of VTEK will supply more detailed information. The VTEK commands of likely
utility are as follows:

Alt-b

Alt-d

Alt-i

Alt-q

Alt-u

Alt-w

Alt-x

Alt-z

Ctrl-PrtSc

send short BREAK, such as used by some computer systems to interrupt a
host operation or stop the host from sending,
perform DOS utilities, such as COPY, DEL, RENAME, etc., and run other
PC programs without exiting from VTEK,
lock keyboard while in use, such as might be desired to protect you from
wrecking a job with inadvertent key pushes and/or to prevent unauthorized
access to the PC during a prolonged script,
send long BREAK which when used with properly configured modems
causes both the local and remote data sets to disconnect,
upload ASCII file to host, which might be useful to send a stream of ASCII
characters into a host program such as an editor program,
output to PC disk file, which might be useful for capturing parts/all of a
script session for later study, particularly in testing/development phases,
exit, close all files, exit from VTEK, turn off the serial port, and return to
DOS, and
Kermit and XMODEM protocols, which will usually be necessary to give
access to file transfer protocols.
printer echo, which will cause all ASCII traffic to be echoed to the PC
printer until Ctrl-PrtSc is entered a second time.

These Alt-key commands are abbreviated for placement in the script file between " ^ v" (caret-v)
characters. For example, Alt-u should appear as "''v^au^v*.

3.2 SCRIPT DATA FILES

The script data file, while not required, may prove quite useful for multiple record entry;
it is likewise PC resident. It can be of any length containing as many records as desired. The
data file contains ASCII characters/keystrokes preformatted with Ctrl-A as end-of-record and
Ctrl-B as end-of-file. Many available PC editors allow insertion of control characters; any one
may be used to construct appropriate data files for scripting.

The best method to convey details of the data file is simply to illustrate with an example.
Below is the simple script data file employed in the first example of Appendix B.

John Doe'A
Betty Smith‘A
Alan Bridges'A
Lloyd Bridges'A
James Jones'B

1st record of "John11, "tab", "Doe" plus Ctrl-A
2nd record ending in Ctrl-A
3rd record ending with Ctrl-A
4th record ending with Ctrl-A
5th and last record ending with Ctrl-B

In this example, five names (one per record) are separated by Ctrl-A Ctrl-B follows the last
name signifying end-of-file to the script processor. The likely method to employ such multiple-
record PC files is through a script "LOOP", using the goto command, /vg(a-z), with record
extraction and entry to the host through the extract-and-send command, ~ e ~ lab. It should be

clear that the data file contains actual control characters, not implied characters. This PC script
data file has the name "NAMES.DAT" as is seen in the first example of Appendix B. It is
opened for reading with the command, ^ fNAMES.DAT ^ f.

10

4. IMPROVEMENTS TO VTEK’S SCRIPT PROCESSING

Discussion in this section is limited to possible extensions and/or improvements to the
script processing. Possible uses for the script capability range from simple to complex. The
examples provided in Appendix B, though only moderately complex, illustrate much of the
power of the script. The dominant script-controlled tasks coming to mind when one considers
the distributed database problem are transfer of data among host computers using the PC as
intermediary, and periodic updating of host-resident data tables from more current information
maintained on the PC or in LANs (virtual data entry). Both are illustrated in the Appendix B
examples.

Two desired major improvements to the VTEK script as it stands are in the areas of
error handling and interfacing. Scripting will currently fail upon occurrence of any error for
which an appropriate response has not been programmed. Explicit processing of errors is
possible without VTEK modification. For example, one could write a script that handled error
conditions from Kermit because these are well known and because legitimate responses are
known/understood and can be programmed for all conditions. The Kermit example relies on
deductive logic only. It would be possible through the extension of VTEK’s capabilities to
include inference measures (inductive logic) such as in the case of an expert system. This is
considered a challenging exercise given the limitation of current PC hardware and the DOS
operating system. (It is recommended that such a development be delayed until the PC
operating system OS/2 is more mature.)

At present VTEK script data file format is rigid as described in Sect. 3.2. To allow PC
application file formats such as from LOTUS' or dBASE" to be used, either a translation
program that runs as a preprocessor to VTEK must be developed or expanded script capabilities
for understanding additional formats must be developed.

It is not clear how to drastically improve the interface for preparation of the script
command file; perhaps preparation through a "keystrokes remembered" capability as in
SYMPHONY* could be added to VTEK. However, it appears likely that some need for manual
preparation will be necessary to accomplish any complex interactive session. Because it is
anticipated that scripts will have their greatest utility for repetitive data entry tasks, once the
command file is prepared and debugged, it will require no maintenance until the entry task itself
is altered.

In the introduction an explanation was offered for the choices of asynchronous
communications and VT100 emulation for the current exercise. However, there are many other
choices available that could be implemented using the PC. Script capabilities are a distinct
portion of the terminal emulation software which must be added in all cases regardless of the
communication protocol and/or type of terminal being emulated.

The asynchronous protocol was the obvious starting point because it is the only method
to accomplish PC communications using the standard COM ports. (VTEK allows all available
asynchronous flexibility by providing port selection, speed and parity setting, flow control, full

'LOTUS and SYMPHONY are trademarks of Lotus Development Corporation.

"dBASE is a trademark of Ashton-Tate.

11

12

duplex and half duplex, etc.) While asynchronous communication is the only protocol currently
addressed by VTEK, the PC, with hardware extensions (cards), can be made to communicate
using synchronous nodes such as SNA/SDLC, for example. And certainly the PC, again with
added hardware, can function in an Ethernet LAN running TCP/IP, if desired. VTEK could be
modified to include software drivers for the various protocols of communication. Concerning
terminal emulation, the VT100 emulation (ANSI compatible) is a very broadly employed
standard which is an acceptable terminal definition for most host applications, including the host
OS itself. Most commercial software (applications, run-time libraries of the OS, utilities, screen
management systems software such as DEC/ACMS, etc.) automatically handles the VTlOO’s
screen operations such as cursor movement and scrolling regions at a very high software layer.
But, VT100 is not the only terminal type with broad applications. Another equally popular
terminal, particularly for DBMS applications, is the IBM 3270-type terminal. Though it is
certainly possible to modify VTEK to add 3270 emulation, it might be wiser to start with an
existing successful emulator and then add script capabilities on top of the emulation, if desired.
Lastly, it should be noted that the 3270 terminal is almost always host-supported in a
synchronous communication mode.

5. FUTURE DISTRIBUTED DATABASE SOLUTIONS

As mentioned in the introduction, distributed RDBMSs are evolving with no mature
system identifiable at present. The future success of expanding distributed RDBMSs to
heterogeneous environments will probably hinge on various vendors’ selection to introduce links
to open systems7 through compliance in OS and applications software with X Windows and SQL
standards as an example workable approach. The vendors seem to be selecting the OSI
communications standards (TCP/IP, then GOSIP) without much debate; thus, the networking
selection is likely not a roadblock. Also, network file services such as NFS from SUN
Microsystems are being broadly accepted to allow remote directory and file access on a network
of workstations. Hopefully, consortiums such as X/Open and OSF will lead to the open systems
that encourage joint accomplishments without severely impeding the speed of the necessary
developments. The U.S. commercial sector offers the best chance for successful evolution of a
general distributed RDBMS solution. Time will tell.

A further explanation concerning the importance of X Windows and SQL is offered. X
Windows, often called simply "X", was developed by MIT Project Athena with the participation
of DEC and other workstation vendors. X was developed with portability in mind, and is both
hardware-independent and network-transparent. If applications programs such as RDBMSs
abided by the X Windows standard, then a windowed environment would be possible that is
independent of the operating system, independent of hardware constraints, and transparent to
the networks, thus allowing the application to be used both locally and remotely. This is the
essence of the star architecture of distributed RDBMSs. If the various vendors of database
software abided by X, then a giant step toward the heterogeneous distributed solution would
result. Coordinating nodes running under one vendor’s software would be able to establish
back-end processes on another vendor’s software.

The importance of SQL is even more apparent. Processes written in SQL potentially
run on all vendors’ RDBMSs, and thus SQL is the universal language of the distributed system.
The present differences in the versions of SQL of the various vendors offer a problem. It is
possible that differences will be resolved due to vendor cooperation or through strict adherence
to a mature SQL standard sometime in the future. Another solution would be the emergence
of a natural language query tool using Artificial Intelligence (AI) to provide transparent access
to heterogeneous SQLs.

One downside of the heterogeneous multi-vendor solution is the likely inability to
interact across the distributed system’s nodes at the dictionary layers of the various RDBMSs,
which will limit the effectiveness of applications design tools such as CASE. It seems clear that
very broad software compliances, those reaching the dictionary and design layers, will come to
the software market much later than standards such as X, SQL, and OSI.

On the positive side, X is fast becoming the de facto window-management standard,
particularly for UNIX workstations. X is also gaining support on a growing number of
operating systems. For example, efforts are under way to provide X support on VMS and MS-
DOS.

X Windows would be useful in expanding the current terminal emulation activities to
produce a "communications platform." If the PC were replaced by a UNIX workstation in a
TCP/IP network, for example, then it would be possible to multitask communications using
different windows of the workstation as virtual terminals to mainframes or to other workstations

13

of the network. Scripts could "orchestrate" multiple simultaneous virtual data entry sessions
and/or pipe database files to appropriate destinations in the distributed system. Such a mode
for distributed database control would still require manual preparation of scripts and data files
and would interact across the DBMSs only at high-level applications layers and/or at
communications layers.

14

6. REFERENCES

1. E. H. Sibley, ed., ACM Computing Surveys: Special Issue: Data-Base Management Systems.
8(1), (March 1976).

2. B. Y. Forman and J. Fegreus, "Populating INGRES’ Universe," Digital Review 4(13),
29-30 (June 29, 1987).

3. N. Margolis, "INGRES Database Extends Reach into RMS, dBase," Digital Review 4(21),
1-6, (November 9, 1987).

4. C. J. Date, An Introduction to Database Systems. Volume 1. Addison-Wesley Publishing
Co., Reding, Massachusetts, ISBN 0-201-14471-9 (1982).

5. K. L. Kannan, Evaluation of Relational Database Products for the VAX. ORNL/TM-9696
(November 1985).

6. Anon., VTEK 4.2 - DEC VT102/VT100/VT52 and Tektronix 4105/4010/4014 Terminal
Emulation. Scientific Endeavors Corp., Kingston, TN (September 1988).

7. A S. Tanenbaum and R. V. Renesse, "Distributed Operating Systems," ACM Computing
Surveys. 17(4), 419-70 (December 1985).

15

APPENDIX A:

EXISTING FEATURES OF VTEK

VTEK was selected as the software vehicle for this exercise because of its existing wide
range of features and because a site license for the commercially-vended product can be
obtained for a relatively modest fee which allows the licensing organization access to the
C-based source code and rights to generate virtually unlimited copies of the executables. VTEK
source was modified in the current exercise under an existing site license to produce the
preliminary script processing capability. The resulting "beta" version is available for
demonstration and study purposes. The remainder of Appendix A describes features of VTEK,
many of which are not important to the current exercise.

VTEK allows the IBM PC or clone (such as Zenith Z-248) to emulate DEC VT100,
VT102, or VT52 terminals as well as Tektronix 4105, 4010, or 4014 terminals. Within the
hardware limitations of the PC, all interactive features of these terminals have been supported.

VTEK is especially suited for high resolution graphics found on many modern graphics
cards. For example, the 640x350 resolution of the IBM Enhanced Graphics Adapter is
efficiently supported. In addition, pictures are rerasterized to yield the highest resolution
available on selected printers and plotters.

The memory required by VTEK depends upon setup options and particular hardware.
For most systems, 256 Kb of memory is needed. Saving the graphics screen can use up to 128
Kb of extra memory. Color printer dumps also require an additional 256 Kb of memory. Since
memory is dynamically allocated and de-allocated as it is required, the amount of memory in use
will vary as a function of time. Two floppy disk drives can be used, but a hard disk is better.

In Tektronix 4010/4014 emulation mode, VTEK will correctly plot the usual 1024x780
pixel resolution and the super high 4096x3133 pixel Tektronix formats.

Tektronix 4105 emulation allows full color plotting by VTEK on high resolution 16 color
graphics boards. Color output is available on pen plotters, ink-jet printers, and some dot matrix
printers. A VT100 text window on the graphics screen is supported.

Twenty keys (Alt-Fl through Alt-FlO and Shift-Fl through Shift-FlO), may be
user-defined. They may be programmed to send long strings, such as logon sequences and
command strings, to the computer. These keys may be redefined at any time, even when
connected to the host computer. User-defined keys are callable from within the script command
file, and script command files are callable from user-defined keys.

VTEK offers password protection if desired. If this feature is activated, a password will
be required to run VTEK Also, it is possible to lock the keyboard, preventing unwanted key
pushes or terminal access. The key definition file is encoded so that confidential access codes
are protected. VTEK allows files to be downloaded from the host to the PC, and uploaded
from the PC to the host. There are three methods of doing this. If the host computer
supports the XMODEM or Kermit protocols, VTEK can be used to send and receive ASCII
and binary files with error checking. Otherwise, ASCII files can be transferred without error
checking if there is an editor on the host computer that will accept a character stream with
carriage returns at the end of each line.

Both full and half duplex communication protocols are supported by VTEK The
COM1 or COM2 ports can be used.

2

For speed, VTEK uses only integer arithmetic in its terminal emulation modes.
However, in zoom mode VTEK does use floating point arithmetic. VTEK will automatically
detect the presence of a numeric coprocessor and use it.

VTEK has implemented all of the numeric keypad and PF keys of the VT100. The new
enhanced keyboard is supported using the keys on the numeric keypad together with the Home,
End, PgUp, and PgDn keys for PF1-PF4. On regular keyboards, the F1-F10 and Alt-l-Alt-8
keys have been used. The correct mapping is displayed on the screen by entering Ctrl-Fl. A
second help screen (Ctrl-F2) can be edited to match a particular application program or host
editor.

The VT102 printer control commands have been implemented. They allow the host to
control the PC-based printer directly. The host can turn printer echo on and off, print a
screen, send a file to the printer without echoing to the screen (saves time), and send escape
sequences to the printer.

APPENDIX B:

EXAMPLE VTEK EMULATOR EXERCISES

Five example exercises are provided. The first is extensive and illustrates virtual data
entry from a PC-resident script data file. The remaining four example exercises are simpler
script command sequences that illustrate the variety of activities possible with the script
language.

In the example files provided, the CR character has been used to separate the
commands and/or the records for the sake of clarity and readability. However, the CR is not
required by the script processor and may be omitted if desired.

In all examples the script execution is begun using VTEK’s Alt-K - option 4 selection.

Example 1: Virtual Data Entry

The following example script command file (referred to as ITSTSCR)
has the function of automatically interacting with a VAX-based INGRES
database called "MIS". It is designed to illustrate automation of a process that
requires interactive responses and does not show the most efficient method for
updating databases. In some cases, DBMS’s (INGRES, in this example) have the
ability to process data in batch mode which can reduce on-line processing time
and would, therefore, be more efficient than an interactive method.

ITSTSCR Script Command File

Scriot Figure Explanation

rtingres MlS^n B.l Supply "rtingres MIS" plus CR to
VMS starting INGRES. The
INGRES command menu appears.

^ dlOtem. ^ d ~ ke B.2 Delay until in last 10 chars "tern." is
found then supply keypad "Enter"
which selects QUERY.

^dlldef name ~ d B.3 Delay until in last 12 chars "def
name" is found. At this point the
QUERY menu is on the screen.

NAMESTAB ~ ke B.3 Supply "NAMESTAB", (name of the
table) and keypad "Enter". The
QBF-Execution Phase submenu of
Fig. B.4 to appear.

~ d40Execution Phase ~ d B.4 Delay until in last 40 chars
"Execution Phase" is found.

2

^dlO^d B.4 Delay for prompt at end of QBE
submenu.

~kl B.4 Supply keypad "1" designating the
Append function.

^ fnames.dat ^ f “ Open data file "names.dat" on the
PC for upload.

^ d301ast: ^ d B.5 Delay until in last 30 chars "last:" is
found. This is the prompt for a
record to be appended to the
"NAMESTAB" target table.

~la - Label "a" for goto.
B.6 Extract data and send to host; at

end of data, jump to "b".8<u< B.6 Supply keypad "Enter". Delay 1 full
sec (though not necessary).

^ga - Goto label "a" and get more data.
^ lb - Label "b" for goto.
~ ke ^ 050 B.7 Supply keypad "Enter" to complete

last record. Delay 1/2 sec.
^ kp3 ^ dlO: ^ d B.7 Supply keypad "PF3" to append

rows. Then delay for of Fig. B.8.
^ kp4^ dlOtem. ^d B.8 Supply keypad "PF4" to exit QBF

Menu. Then delay for "tem." from
the INGRES command menu as in
Fig. B.9.

^ kd B.9 Move cursor with keypad
"downarrow" to REPORT from
command menu.

^ ke B.9 Supply keypad "Enter".
^dlOREPORT^d B.10 Delay until in last 10 chars

"REPORT" is found in the
REPORT Information submenu.

NAMESTAB table B.ll Supply "NAMESTAB", "tab", then
"table" to select table-option report.
Supply "tab", "tab", and "tab" to
default other report options.

rptdat ^ ke B.ll Supply "rpt.dat" followed with keypad
"Enter" to specify the report name.

~ d20ready ^ d ^ n B.12 Delay for "ready" then supply CR to
complete the INGRES REPORT
process.

^kp4 B.13 Supply keypad "PF4" to exit
INGRES.

type rptdat''a B.14 Supply "type rptdat" and CR to
VMS causing the default report to
be typed to screen.

"q - Quit and end script macro.

B.1

EDIT:Alt~c HELP:Alt-h EXIT:Alt-x

MKMXKXKXXmtKXKXXMXKXKKXMKKXXMXXMXXXMXKXKMXMXKXKXK

* UNCLASSIFIED SVSTEH *
« x
XXXXKXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXKXXXXKXXXX

MIS

Initial OS prompt and command to begin the INGRES interactive session.
(INGRES)

3

R2

INGPES/HENU
EDITSfllt-c HELP:fllt-h EXITlfllt-x

Database: mis

To ran a highlighted cowiand, place the cursor over it and
select the "Go11 nenuBETfl

CoMnands Description

QUER?
REPORT
GRAPH
QBF
IT
G!__
ABF

QUEL
SREPORT

RUN sixple or saved QUER!! to retrieve, Modify or append data
RUN default or saved REPORT
RUN saved GRAPH
se QUERV-BT-FORNS to develop and te;t query definitionsis HfSrrSK:«iHimi n pk KEsrt!
se GRAPH-BS-FORMS to design, Modify or test graphs
se flPPLICATIONS-BV-FORHS to design and test applications

ENTER interactive QUEL statexents
SAVE REP0RT-HRI1ER coMM&nds in the reports catalog

mssiHis ory(2) CoMMandNode(3) DBswitch(4) Shell(5) Help(PF2) Quit(PF4)

INGRES screen and commands to begin QUERY for appending data.
(INGRES)

4

R3

INGRES/MENU
EDII:Alt-c HELP:Alt-h EXII:AIt-x

Database! mis

QUEBV Infornation

Enter a table nane, a qbfnawe, or a joindef! nane

Select the "Go11 wenu iten to start QUER!/.

Go(Enter) Help(PF2) End(PF3)

The QUERY submenu and commands to designate the table NAMESTAB.
(INGRES)

5

B.4

QBF - Execution Phase
EDIT:Alt-c HELP:Alt-h EXITlAltx

Appentl(l) Retrieve(2> Update(3) HelP(PF2) Quit<PF4) Bi

The INGRES QBF commands to append data.
(INGRES)

6

R5

EDII:ftlt-c HELPlAlt-h EXIT:fllt-x

Query Target Hane is

TABLE IS Mi=ii''iEs-ri=»B

first: lastI

Append(Enter) Help(PF2> EndKPFS)

Designation of the query target as NAMESTAB.
(INGRES)

7

B.6

EHT:Alt-c HELPiAlt-h EXIT:Alt-x

Query Target Mane is

TABLE IS M«MES-r«=iB
first: ■_lc=>f'-iri last: U’cn-s-

Append(Enter) Help(PF2) EncKPF3)

Ncime number one appended to NAMESTAB from the PCs data file, NAMES.DAT.
(INGRES)

8 .

B.7

EDII:Alt-c HELP:Alt-li EXIT:Alt-x

Query Target Nane is tv*=,ME:s-r»=)B

TABLE IS

first Janes last: Jones

AppenJ(Enter) EnJ(PF3)

The last name appended to NAMESTAB.
(INGRES)

9

R8

QGF - Execution Phase
El>II:Alt-c HELPlAlt-h EXIT:Alt-x

Append(i) Retrieve(2) Update(3) Help(PF2) Quit(PF4)

Quitting the INGRES QBF execution phase.
(INGRES)

10

B.9

INGEES/MENU
ESII:AIt-c HELP:Alt-h D(IT:Alt-x

Database!mis

To run a highlighted cowiand, place the cursor over it and
select the "Go” Menu

Cowtands Description

QUEEV
REPORT
GRAPH
||

ABF

QUEL
SREPORI

RUN simple or saved QUER1! to retrieve, Hodify or append data
RUN default or saved REPORT
RUN saved GRAPH
se
it
se

UERV... BV-FORMS to develop and te?tH-fp is hni sr nslih
HTBhFORMS .to.design, nodify o esse flPPLlCATIONS-iv-FORHs'lo’desi^anS test applications

guery definitions
FSS .

graphs
llCi

ENTER interactive QUEL stateMents
SAVE REPORT-HEIIEE cowands in the reports catalog

His ory(2} CoiwandNodeCB) DBsuitch(4) ShelKS) Help(PF2) Quit(P '4)

INGRES screen and commands to generate a report
(INGRES)

11

RIO

INGRES/MENU
EDIT:Alt-c HELPlAlt-Ji EXIT:Alt-x

Database: mis

REPORT Information

Enter a table nane or a report nane:

Change default options if desired:

Type ("report", "table", "any"): any

Suppress REPORT status messages ("y", "n")? n

Select the "Go" nenu iten to start REPORT

Go(Enter) Help(PF2) End(PF3)

INGRES submenu for report information.
(INGRES)

12

B.11

INGRES/MENU
EDIT:Alt-c HELP:Alt-1) EXIT:Alt-x

Database: mis

REPORT Information

Enter a table nane or a report nane:

Change default options if desired:

Type ("report-, “table", “any")

Suppress REPORT status Messages

table

("y", "n")? n
Wi JS!* V*l» JIWI 5l?ISi t

File Nev
> to

Output^_____
(Report goes

ine rpt.dattk . mamujia A ,, , v
o terninal if blank)

Select the "Go" nenu iten to start REPORT.
Go(Entpp) Help(PF2) End(PF3)

Answer to INGRES prompts for report characteristics designation.
(INGRES)

13

B.12

EDIT:Alt-c HELP:Alt-h EXIT!Alt-x

HdRfS REPORT -- Copyright (c) 1981. 1986 Relational Technology Inc.
ett^ng.up default report...
etmving and sorting data...

Press RETURN whenISBSi

Completion of the INGRES report.
(INGRES)

14

R13

GSII:Alt-c HELF:Alt-h D(I1:Alt-x
IHGEES/HENU Database: mis

To run a highlighted coiwand. place the cursor over it and
select the "Go" Menu iten.

CoMMands Description

mm
REPORT
GRAPH

RUN siMple or saved QUEffl! to retrieve, Modify or append data
RUN default or saved REPORT
RUN saved GRAPH

se QUERV-DV-FORNS to develop and te;t wry definitions;; fira-fnSli ts sr nlih stri!
se GRAPH-3Y-F0RNS to design, Modify or test graphs
se APPLICATIONS-BHORHS to design and test applications

m

QUEL
SREPORT

database

ENTER interactive QUEL stateMents
SAVE REPORT-WRITER coMMands in the reports catalog

Go(Enter) History(2) CoiwandModeO) DBsMitch(4) Shell(S) Help(PF2) Quit(PF4

The INGRES exit to OS.
(INGRES)

15

B.14

EDII:ftlt-c HELPlftlt-Ji EXIT:ftlt-x

I- pZ't.Czl
14:33:09

REPort" on Table!

First

C3 ~~n_|lr^

Be-ttuj
rtlsr-i
LloLjd

Last

Srv-iitk^
Qt—idges-ss
Bi—idg«s

Typing the INGRES report to PC screen at the OS level of the VAX.
(INGRES)

17

Example 2: Demon Dialer

The script DD.SCR uses the Hayes command set to dial a number repeatedly until
successful connection has been established.

*! DD.SCR - Script to repeatedly dial a number until a successful connection *!
'! has been established. *!
"v
"! Select the second set of conmunications parameters from the Setup *!
m2*!
V

Menu.

la"! Label A *
! If you do not have a touch tone phone, replace ATDT with ATOP *!
100ATDTyour_phone_number‘n"100‘! Using the Hayes command set, dial the phone.*!
=07‘s07BUSY"a*! If a busy signal is encountered, wait 1 second and try again.*!
q

Example 3: Kermit Download of a Host File

*! KMITDN.SCR - Script to download ascii files to PC. Substitute '!
*! appropriate filename for *.dat *!
kermit‘n*w2‘! Invoke Kermit on the host; wait for kermit prompt '!
send *.dat‘n‘! Send all files with the extension DAT from the host*!
‘v‘az12n*n‘n‘v*! Tell VTEK's Kermit to receive ascii file(s) to *!
*! default directory. Enter CR after completed xfer. *!
Z! Exit host Kermit *!
q! End of script *!

Example 4: Kermit Upload of a PC Hie

*! KMI TUP.SCR - Script to upload ascii files to host. Substitute *!
*! appropriate filename for *.dat *!
kermit*n‘w2*> Invoke Kermit on the host; wait for kermit prompt. *!
receive'n*! Tell host Kermit to receive file(s). *!
*v*az11n*.dat*n*n*v*! Tell VTEK's Kermit to send all files ending in DAT *!
*! from default directory. File type is ascii. *!
*! Enter CR after completed transfer. *!
‘Z*! Exit host Kermit. *!
q! End of script.

18

Example 5: Interaction with VMS MATT.

•» GETHAIL.SCR - Script to execute VMS MAIL and print any new messages on
a local PC printer

MAIL*n‘d10MAIL>'d‘!
"s25new‘a‘!
exifn'q"!
‘la*!
select newmail‘n‘w>‘!
extract/all outfile.tmp'n*!
* i

Invoke MAIL program
Search for message indicating new mail
If not found, exit mail and quit script
Label a. Starts new mail selection process.
Choose the newmail folder.
Extract all new messages and place in a
temporary file.

*w>move/all/noconfirm MAIL‘n‘• Move all the extracted messages to folder MAIL.
‘w>exit‘n‘!
‘wStype outfile.tmp‘n‘!
‘d04.tmp*d‘v‘w‘v‘!
*w$‘!
*v‘w‘v‘!
del outfile.tmp;*‘n‘!
‘q'-1

Wait for the prompt then exit MAIL.
Wait for the VMS S prompt and type temp. file.
Turn on printer echo.
Wait for VMS prompt
Turn off printer echo.
Delete temporary file containing mail messages.
Quit script.

APPENDIX C:

VDE: A VIRTUAL DATA ENTRY TERMINAL EMULATOR

The purpose of this component of the VDE project was to create a terminal emulator
that, running on a PC, can enter data into a host-resident program as if it were a person sitting
at a terminal keyboard entering the data. To this end, a program was written for an original
(non-VTEK) program to implement VDE. The approach taken with the VDE program itself
was to first write a generic VT100 emulator and then add features necessary for the virtual data
entry ability. In this way one would avoid code and features, including possible side effects (or "
bugs") that could accompany the use of an already existent terminal emulator that was not
originally written with the virtual data entry in mind. A parallel benefit, to the project, is
intimate familiarity with the resulting code.

Thus, a general DEC VT100 terminal emulator was written that has about 3/4ths of the
functionality of a real VT100. It would require little work to bring VDE up to 90% VT100
functionality, ignoring features that are basically difficult or irrelevant on a PC. However, a
closer emulation of the VT100 could be unneeded for its basic goal of performing virtual data
entry. In its present state VDE works with such DEC VAX software as EDT, DEBUG, and
DTR (Datatrieve) - which is probably enough. Response to additional escape sequences can be
easily added in any case. It should also be noted that in its present state the program has a lot
of temporaiy fixes and "make-do’s" that would be taken care of in a final product.

VDE must get characters streaming from the host at nearly a thousand characters per
second. To deal with this rush of data an interrupt service routine(ISR), written in assembly
language, is activated for each incoming character. The ISR ‘ascint’ puts these characters in a
buffer that it shares with ‘vde.c’ - see lines 13 and 16 of VDE. This is a circular buffer and its
large size of 40% characters and the messy code gyrations between lines 127 and 147 are to
make sure it doesn’t lose any data. Incidently the ISR ‘ascint’ is enabled by the subroutine
‘ascenb’ - see line 89 and 283 through 323. At line 121 the subroutine ‘vtputch’ is called to put
the fetched character on the screen. Between lines 595 and 655 ‘vtputch’ checks the character
extensively and sets flags, pointers and calls subroutines as appropriate. Especially important is
the shifting back and forth between the VTlOO’s regular character set ‘GO’ and its graphic
character set ‘GT, and the all-important processing of escape sequences. The escape sequence
processing in ‘vtputch’ can be viewed as entering various ‘escape states’ according to the second
character in the escape sequence. At line 628 the character finally leaves ‘vtputch’ only to be
further checked and processed by ‘myputchar’ (lines 451 - 519).

We have looked at the processing of the incoming character stream, we shall now
examine how characters get from the keyboard to the host. An important aside at this point is
to note that the program consists of three independently running "sub-tasks" that reside within a
"do-forever" loop between lines 94 through 150. From 96 through 105 is the keyboard "sub-task",
lines 107 through 110 (also see 101 - 103) do the virtual data entry "task call", and lines 112
through 149 process incoming host data. The keyboard "sub-task" is activated at line 96 when a
key is hit. At line 98 ‘getvtlOO’ is invoked to return a ‘VT100’ character or escape sequence.
From lines 348 through 397 we see that keyboard processing is pretty straight-forward compared

1

2

to incoming data processing. The most involved and important is mapping certain special PC
keys to VT100 keyboard escape sequences between lines 364 and 389 - thus implementing the
VTlOO’s function keys and cursor keys.

But all of the above VT100 functionality is only a necessary foundation for the real job -
which is the virtual data entiy. At this point in time ‘VDE’ is at the "proof of principle" stage -
though it has a veiy good start. At present the code between lines 1094 and 1276 implements a
‘hard-coded’ virtual data entry that actually enters real data into a pre-existent VAX Datatrieve
application that was written in 1985, over two years ago. This Datatrieve application was NOT
modified in any way for this test and when originally written was never envisioned to be used in
this manner. Tlie fact that for now the virtual data entry is hard-coded should not be seen as
detracting from the program - for the logic in ‘do_virt’ as well as its supporting subroutines
(‘send’, ‘waitfor’, ‘getdata’, etc.) is exactly that which could be done in a good, usable first
version of the real VDE. First, note that ‘do_virt’ must allow the other major "sub-tasks" -
keyboard, and host data, to co-process with it. Also, and this is very important, ‘do_virt’
co-processes within itself. This means it is not locked into a rigid response sequence to the
incoming host data stream - i.e. it could respond properly with the right data even if some host
prompts came out of sequence or repeated or didn’t come at all. To this end a "pseudo
instruction pointer" (variable ‘pip’ in code) is used to control the flexible execution of ‘do_virt’.

As can be seen from all of the above, this "proof of principle" stage VDE is an excellent
basis for an actual functioning VDE to use with STAFS or other host (or PC) resident systems.
The VT100 emulation is essentially complete for our purposes and the general approach to the
virtual data entry (as well as some code) is done. The next step is to define a flexible
easy-to-use english-like script language that a general computer-literate user could use to govern
his virtual data entry requirements. VDE would read and ‘compile’ this VDE Script Language
(VSL) into its own internal data structures and then govern its own behavior and response to
the host appropriately. Sophisticated pattern matching and error responses could be specified by
the user via a few simple english-like VSL commands. These commands would be like: "SEND",
"WAITFOR", "TIMEOUT, "ON ERROR", "OPEN FILE", "MATCH PATTERN", etc. A
similar script language, complete with conditional branching ("IF ... THEN") and special data
types/objects was defined and realized by Johnson, 1984, for a large FORTRAN program that
he did that simulated the ‘hot-line’ rolling of aluminum. The VDE VSL and its execution would
be in some ways similar. As new VDE requirements and customer needs became apparent they
could be added to and accommodated by this structure.

In conclusion, the present "proof-of-principle" VDE is ready to be made into a
functioning product and performed the task at hand to provide an optional platform for future
system development.

APPENDIX D:

VDE C LANGUAGE SOURCE

2

1:
2:
3:
4:
5:
6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:

/* vde.c = virtual data entry terminal emulator */
#include <stdio.h>
#include <dos.h>
^include <signal.h>
#include <stdlib.h>
#include <ctype.h>
#include <dtypes.h>
#include <rs232.h>
#include <keycodes.h>
#define VIDEO 10 0x10
#define RS232~IO 0x14
#define KEYBD_IO 0x16
#define RSBUFSIZ 4096
#def i ne xon 17
#define xoff 19
unsigned char rsbuffer[RSBUFSIZ];
int count;
int head;
union REGS inregs, outregs;
struct SREGS segregs;
FILE *virtfile = NULL;
nt virtmode = NULL;
nt pip = 0;
nt look_flag = NULL; /
nt mymy_flag = NULL;
nt cs_savef ip_save;
nt save_row(save_col;
nt esc_state * NULL;
nt esc_lbrack = NULL;
nt esc_lparen = NULL;
nt esc_rparen = NULL;
nt esc_pound = NULL;
nt esc_pstate - NULL;

char esc_seq[32];

/* handle for virtual entry file */
/* flag for virtual entry mode */
/* 'pseudo instruction pointer1 for do_virt */

flag to turn 'lookee1 to prn on & off */
/* flag to turn 'lookmy1 to prn on & off */

/* save old rs232 ISR cs:ip here */
/* save row and column here when DECSC */

/* set when have received ascii escape
set when recvd '[• as 2nd char in esc seq */

as 2nd char in esc seq */
set when recvd ')• as 2nd char in esc seq */
set when recvd '#■ as 2nd char in esc seq */

as 2nd char in esc seq */

/*
r
I*
/*
/* set when recvd 'P1

/* save escape sequence here for 'release* */

unsigned char *save_ch_set;/* save char set pointer here in DECSC */
unsigned char ukset7l28], usset[128]f spset[128], *g0_set, *g1_setf *ch_set;
unsigned char special[32] =

C 32, 4, 178, 231, 232, 234, 233, 248,
241, 237, 251, 217, 191, 218, 192, 197,
196, 196, 196, 95, 95, 195, 180, 193,
194, 179, 243, 242, 227, 215, 156, 205

/* remap ...*/
/* vtlOO gl.*/
/* set to PC*/

>; /* ...chars */

int vt_top, vt_bot, pc_top, pc_bot, vt_org; /* beg & ending rows, cols

BYTE decckm
BYTE decanm
BYTE deceolm
BYTE decsclm
BYTE decscnm
BYTE decom
BYTE decawm
BYTE decarm

= NULL;
= "NULL;
= NULL;
= NULL;
= NULL;
= NULL;
= NULL;
= "NULL;

BYTE attr = OxOf;
BYTE save_attr;

/* flag for set cursor key mode */
/* flag for set ANSI/VT52 mode = ANSI*/
/* flag for set column mode = 132 */
/* flag for set scroll mode to smooth*/
/* flag for set screen to reverse vid*/
/* flag for set origin mode */
/* flag for set auto wrap mode */
/* flag for set auto repeat mode */

/* display attribute - init bright white
/* save attribute here when DECSC */

char curupseq[4], curdnseq[4], currtseq [4], curltseq[4]; /* cursor esc

char host lined 29];
int host_cnt = 0;

mainO

/* accumulate host output line here */
/* count of # of characters in host line */

seqs*/

3

65: {
66: int result, i=0, j, ascintO, outcomO, restoreO;
67: int xoff_flag=0, xon_flag=0, metric;
68: unsigned char ch, Ichl;
69: char statbuff[80], tempbuff[80], keybdseq[4];
70:
71: initpgmO; /* initialize program parameters */
72:
73: /* initialize the rs232 port - 9600 baud, 8 data bits, 1 stop, no
74: inregs.h.ah = 0;
75: inregs.h.al = 0xe3;
76: inregs.x.dx = 0;
77: result = int86(RS232_I0, Sinregs, Soutregs);
78: if(outregs.x.cflag)
79: i
80: printfC'Can not init serial port - error %d\n", result);
81: exit(1);
82: >
83:
84: segreadf&segregs);
85: count = segregs.ds;
86: dsinitO;
87: count = 0;
88: head =0;
89: ascenbC ascint);
90: onexit(restore); /* when exit restore old ISR */
91: signaKSIGINT, SIGJGN);
92: systemC'cls");
93: /* main loop of program - see if KB char, if yes pump out; else check ser.*/
94: for(;;)
95: C
96: if(biokbhit() == MULL)
97: <
98: ch = getvt100(keybdseq);
99: if(ch == DexitO;
100: if(ch == 2)system("command");
101: if(ch == 4)virtmode = NULL; /* ctrl-D means disable virt. mode*/
102: if(ch == 5)virtmode = “NULL; /* ctrl-E means enable virt. mode */
103: if(ch == 5)openvirt(); /* open virtual file */
104: if(ch != 2 && ch != 5)sendhost(keybdseq);
105: >
106:
107: if(virtmode != NULL)
108: <
109: do virtO;
110: } ~
111:
112: if(head != count)
113: {
114: khl = rsbuffer[head++];
115: head s head & RSBUFSIZ - 1 ;
116: if(count >= head)
117: metric = count - head;
118: else
119: metric = head + RSBUFSIZ - count;
120: if(khl == xoff) khl = 233;
121: vtputch(khl);
122: hostline [host_cnt] = khl;
123: hostline [++host_cnt] = NULL;
124: if(host cnt > 127) host_cnt = 0;
125: >“
126:
127: if(
128: ((count > head && (head+RSBUFSIZ - count) < RSBUFSIZ/4) ||
129: (count < head && (head - count) < RSBUFSIZ/4)) &&

parity */

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

4

(xoff_flag == 0)
)

<
outcome xoff);
xoff_flag = 1;
xon flag = 0;
>

if<
((count > head && (head+RSBUFSIZ - count) > RSBUFSIZ/2) 11 (count < head && (head - count) > RSBUFSIZ/2) |j
(count == head)) &&
(xon_flag == 0)

)
(
outcome xon);
xon_flag =1;
xoff_flag = 0;
>

>
>

/* initpgm = func to initialize program parameters */
int initpgmO
(

makesetsO; /* create char sets */
pc_top = 0;
pc_bot = 23;
vt_top = 1;
vt_bot = 24;
ckm_set(); /* cursor key mode(DECCKM) set */

int ckm set()
(

strcpy(curupseq, "XxIbCA")
strcpy(curdnseq, "XxIbtB11)
strcpy(currtseq, "XxIblC")
strcpy(curltseq, "NxIblD")

>

/* func for cursor key mode(DECCKM) set */

int ckm_off()
<

strcpy(curupseq,
strcpy(curdnseq,
strcpy(currtseq,
strcpy(curltseq.

/* func for cursor key mode(DECCKM) reset*/

"\x1bOA");
"\x1bOB");
"\x1bOC");
"XxIbOO");

>

int anm_set()
(
>

int anm_off()
(
>
int colm set()
(
>
int colm_off()

/* func for ANSI/VT52 mode set = ANSI */

/* func for ANSI/VT52 mode set = ANSI */

/* func for set column mode to = 132 */

/* func for ANSI/VT52 mode set = ANSI */

5

195:
196:
197:
198:
199:
200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:
211:
212:
213:
214:
215:
216:
217:
218:
219:
220:
221:
222:
223:
224:
225:
226:
227:
228:
229:
230:
231:
232:
233:
234:
235:
236:
237:
238:
239:
240:
241:
242:
243:
244:
245:
246:
247:
248:
249:
250:
251:
252:
253:
254:
255:
256:
257:
258:
259:

>

int scl(n_setO J* func for set scroll mode to smooth */
{
>
int sclm off<) /* func for reset scroll mode to jump */
<
>
int scnm_set() /* func to set screen mode reverse video*/
<

int i;
char far ‘video;

attr=((attr & 0x70) » 4) | /*old forgrnd -->bakgrnd*/
((attr & 0x07) « 4) | /‘old bakgrnd -->forgrnd*/
(attr & 0x80) | /* keep blink bit */
(attr & 0x08) ; /* keep hi-intensity bit*/

video = OxbSOOOOOO;
for(i=0;i<1920;i++) video[2‘i+1] = attr;

int scnm off()
C

scnm set();
>

int om setO

>

int om_offO
{
>

/* func for reset screen mode regular */

/* reverse of reverse = regular */

/* func for set origin mode (DECOM) */

/* func for reset origin mode (DECOM) */

int awm set() /* func for set autowrap mode (DECOM) */
C
>

int awm off() /* func for reset autowrap mode (DECOM) */
<
>
int arm_set() /* func for set autowrap mode (DECOM) */
{
>
int arm off() /* func for reset autowrap mode (DECOM) */
<
>

/* makesets = func to create vtlOO character sets */
int makesetsO
{

int i;

for(i=0; i<128; i++) /* assign standard ascii values to chars */

uksetti] = i;
usset [i] = i;
spsetti] = i;

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324

6

>
ukset[35] = 156; /* fix up U.K. set with pound sign - currency */
for(i=95; i<127; i++) spsetCi] = specialti - 95]; /‘special & line fix */
g0_set = usset; /* make gO set to be U.S. set */
g1_set = spset; /* make gl set to be special & line drawing */
ch~set = g0_set; /* pick U.S. set as standard */

/* outcom = func to write char to rs232 port V
outcom (ch)
int ch;
(

int j;

for(j=0;j<10000;j++)
<
if((inp(C0MM_STAT) & 0x60) != 0 } break;
>

outp(COMM DATA, ch);
>

/* ascenb = func to enable my rs232 interrupt service routine */
ascenb(serial_isr)
int (*serial_isr)();
{.

unsigned char pmask, imask;
char far * longptr;
int result=0;

/* save old rs232 communications ISR address */
inregs.h.ah = 0x35;
inregs.h.al = COMJNT;
result=intdosx(&inregs, Soutregs, Ssegregs);
if(outregs.x.cflag)

<
printf("Can't save old serial isr - error 5ld \n", result);

exit(l);
>
cs_save = segregs.es;
ip_save = outregs.x.bx;

/* set up new rs232 ISR = 'ascint' */
longptr = (char far *) serial_isr;
inregs.h.ah = 0x25;
inregs.h.al = C0M_INT;
inregs.x.dx = FP_OFF(longptr);
segread(Ssegregs);
segregs.ds = segregs.es;
result=intdosx(&inregs, Soutregs, Ssegregs);
if(outregs.x.cflag)

<
printfC'Can't set up serial isr - error %d \n", result);
exit(1);
>

outp(COMN_MCR, 0x0b);
outp(COMM_IER, 1);
pmask = inp(PIC_MASK);
imask = INT_MASK;
imask = “imask;
pmask = pmask S imask;
outp(PIC_MASK, pmask);

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

7

/* restore = func to old rs232 interrupt service routine, disable
restoreO
C

unsigned char pmask, imask;
int result=0;

inregs.h.ah = 0x25;
inregs.h.al = C0M_INT;
inregs.x.dx = ip_save;
segregs.ds = cs_save;
result=intdosx(&inregs, &outregs, Ssegregs);
ifloutregs.x.cflag)

printfC'Can't restore serial isr - error %d \n", result);
>

outp(C0HM_MCR, 0x0b);
outp(COMM~IER, 0);
pmask = inp(PIC_MASK);
imask = INT_MASk;
pmask = pmask | imask; /* dis-able this interrupt */
outp(PIC_MASK, pmask);

interrupts */

/* getvtlOO = function to read PC keybd and return vtlOO escape seq */
int getvt100(escapeseq)
char *escapeseq;
C

int key, getkeyO;
char c;

key = getkey(Sc); /* get PC key press */
escapeseq[0] = c; /* stick it in string */
escapeseq[1] = 'NO'; /* terminate string */
if(key < 128) return(key); /* reg. ascii - return */

/* if come here was extended ascii - function key,etc */

switch(key)

case UPARROU : strcpyf escapeseq. curupseq);break; /* cursor up*/
case DNARROU : strcpyl escapeseq. curdnseq);break; /* cur. down*/
case RTARROW : strcpyl escapeseq. currtseq);break; /* cur right*/
case HARROW : strcpy(escapeseq. curltseq);break; /* cur. left*/

case SFT 0 : strcpyl escapeseq. "NxIbOp");break; /* keypad 0 */
case sft‘ 1 : strcpyf escapeseq. "\xlbOq");break; /* keypad 1 */
case sft''2 : strcpy(escapeseq. "NxIbOr");break; /* keypad 2 */
case sft'‘3 : strcpyf escapeseq. "NxIbOs");break; /* keypad 3 */
case SFT 4 : strcpyf escapeseq. "\xlbOt");break; /* keypad 4 */
case SFf'5 : strcpyf escapeseq. "\xlbOu");break; /* keypad 5 */
case sft' 6 : strcpyf escapeseq. "NxIbOv" };break; /* keypad 6 */
case SFT 7 : strcpyC escapeseq. "\xlbOw");break; /* keypad 7 */
case SFT "8 : strcpy(escapeseq. "\xlbOx");break; /* keypad 8 */
case SFT y • strcpyf escapeseq. "\xlbOy");break; /* keypad 9 */

case SFT .MINUS: strcpyf escapeseq. "NxIbOm");break; /* keypad - */
case F5 strcpyf escapeseq. "\xlbOl");break; /* keypad , */
case SFT .DEL : strcpyC escapeseq. "\xlbOn");break; /* keypad 9 */
case sft'‘PLUS : strcpyC escapeseq. "\xlbOM");break; /* kpd enter*/
case FI strcpyC escapeseq. "NxIbOP");break; /* PF1 */
case F2 strcpyC escapeseq. "\xlbOO");break; /* PF2 */
case F3 strcpyC escapeseq. "NxIbOR");break; /* PF3 */
case F4 strcpyC escapeseq. "NxIbOS");break,■ /* PF4 */
case F9 strcpyC escapeseq. "\0\0“); look_flag= ‘look_flag;break;
case F8 strcpyC escapeseq. "\0\0");mymy_flag= 'mymy_flag;break;

390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454

8

default: strcpyC escapeseq, "NOVO");/* return nulls for ignored keys*/
>

key = escapeseq [0];
return(key);

/* getkey = function to read keys from keybd */
int getkey(c)
char *c;
{

union REGS inregs, outregs;
int result;
unsigned char khar, scan;

inregs.h.ah = 0;
result = int86(KEYBD_IO, &inregs, Soutregs);
khar = outregs.h.al;
scan = outregs.h.ah;
*c = < (char) khar & 0x7f);

/* 1st case - khar == 0 implies is "extended ascii" char (like fun keys)*/
if(khar == 0) return(scan « 8);

/* 2nd case - khar != 0 and scan > 0x46 implies shifted numeric keypad */
if(scan > 0x46) return((scan « 8) + khar);

/* default case - is standard ascii character - return it */
return(khar);

/* sendhost = func to send chars (inc. escape seqs) to host */
int sendhost(string)
char ‘string;
(

int i=0, j;

while(*string != NULL && i < 80)
i
for(j=0;j<100;j++);
outp(COMM_DATA, *string++);
i++;
>

/* send_dos = func to send chars (inc. escape seqs) to ansi.sys & dos */
int send_dos(string)
char ‘string;
C

int i=0, j;

while(*string != NULL && i < 80)
C
putchar(*string++);
i++;
>

/* myputchar = func to "putchar1 without auto cr/lf */
int myputchar(ch)
unsigned char ch;
(

9

455: int old_row, old col, new row, new_col;
456:
457: biogetcurpos(Sold row. Sold col);
458:
459: if< ch == 0 || ch == 127) return;
460:
461: if(ch == 5)
462: {
463: sendhost("ANSWERBACK MESSAGE");
464: return;
465: >
466:
467: if(ch == 7)
468: {
469: printf("\a");
470: return;
471: }
472:
473: if(ch == 8)
474: C
475: printf("\b");
476: return;
477: >
478:
479: if(ch == 9)
480: <
481: new_col = ((old_col » 3) + 1) « 3;
482: biosetcurpos(old_row, new_col);
483: return;
484: >
485:
486: if(ch ==10 || ch ==11 || ch ==12)
487: (
488: new row = old row+1;
489:
490: if(new row > pc bot)
491: C “
492: new_row = pc_bot;
493: bioscrolldn(T, pc top, 0, pc_bot, 79, attr); /* do scroll »/
494: >
495: biosetcurpos(new_row, old_col);
496: return;
497: >
498:
499: if(ch == 13)
500: <
501: biosetcurposC old_row, 0);
502: return;
503: >
504:
505: if(ch ==24 || ch == 26)
506: C
507: ch = 178;
508: esc state = NULL;
509: >
510:
511: /*putchar(ch);*/
512: /* put char to video via bios call - so no auto cr/lf/scroll */
513: lookiny(ch);
514: bioputch(0, 1, ch, attr);
515: if(old col == 79) return;
516:
517: biosetcurpos(old row, old col+1);
518:
519: >

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584

10

int biogetcurpos(row, col) /* use bios call to get cursor posn */
int *row, *col;

inregs.h.ah = 3;
int86(VIOEO_IO, Sinregs, fcoutregs);
•row » outregs.h.dh;
*col ■ outregs.h.dl;

>

int biosetcurposC row, col) /* use bios call to set cursor posn */
int row, col;
<

inregs.h.ah = 2;
inregs.h.bh = 0;
inregs.h.dh = row;
inregs.h.dl = col;
int86(VIDE0_10, Sinregs, &outregs);

>

int bioscrolldnC ntines, beg_row, beg_col, end_row, end_col, attr) /*scrl
int nlines, beg_row, beg_col, end_row, end_col, attr;

inregs.h.ah = 6;
inregs.h.al = nlines;
inregs.h.ch = beg_row;
inregs.h.cl = beg_col;
inregs.h.dh = end_row;
inregs.h.dl = end_col;
inregs.h.bh = attr;
int86(VIDEO_IO, &inregs.

/* bios video scroll down */
/* number of lines to scroll*/
/* beginning row for scroll */
/* beginning column */
/* ending row for scroll */
/* ending column for scroll */

/* attribute for new line */
Soutregs); /* do it - bios video call */

>

int bioscrollupC nlines, beg_row, beg_col, end_row, end_cot, attr) /*scrl
int nlines, beg_row, beg_col, end_row, end_col, attr;
<

inregs.h.ah = 7;
inregs.h.al = nlines;
inregs.h.ch = beg_row;
inregs.h.cl = beg_col;
inregs.h.dh = end_row;
inregs.h.dl = end_col;
inregs.h.bh = attr;

/*
/*
/*
/*
/*
/*

bios video scroll 'up' */
number of lines to scroll*/
beginning row for scroll */
beginning column */
ending row for scroll */
ending column for scroll */

/* attribute for new line */
int86(VIDE0_I0, Sinregs, Soutregs); /* do it - bios video call */

biosetcurposC beg_row, beg_col);
}
int bioputchC page, ntimes, khar, attr) /* bios put character &
int page, ntimes, khar, attr;
C

lookmyCkhar);
inregs.h.ah = 9;
inregs.h.bh = page;
inregs.x.cx » ntimes;
inregs.h.al s khar;
inregs.h.bl * attr;
int86CVIDE0_I0, &inregs, Soutregs);

>

int biogetchC page, khar, attr) /* bios get character &

dn*/

up*/

attribute*/

attribute*/

585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

11

int page, *khar, *attr;
l

fnregs.h.ah = 8;
inregs.h.bh = page;
int86(VIDEO_IO, &inregs, ioutregs);
*khar = outregs.h.al;
*attr = outregs.h.ah;

/* vtputch = function to put out a vtlOO char */
int vtputch(khar)
unsigned char khar;
(

unsigned char ch, so = 14, si = 15, esc = 27;
char string[2];

ch = khar;
lookee(ch);
if(!esc_state) /* if not in escape state do...*/

C
if(ch ■« esc) /* char = ESCape */

esc_state = "NULL;
strcpy(esc_seq, "Vxlb");
return;
>

iff ch == so) /* char = SO <ctrl-N> turn on G1 char set */

ch_set = g1_set;
return;
>

iff ch == si) /* char = SI <ctrl-0> turn off G1 char set */
C
ch_set = g0_set;
return;
>

ch = ch_set[ch]; /* map char into proper char set */

myputcharfch); /* and put it out via own function */
return;
>

/* if come here we are in an escape state - i.e. processing esc sequence*/
stringfO] * ch; /* make char into a null terminated string*/
stringfl] « '\0';
strcatfesc_seq, string); /* ...continue escape sequence */

iffesc_lbrack)
iffesc_lparen)
iffesc_rparen)
iffesc_pound)
iffesc_pstate)

< do_lbrackfch); return; >
{ do_lparenfch); return;)
{ do_rparenfch); return; >
{ do_poundfch); return; >
{ do_pstatefch); return; >

/* go into left
/* go into left paren.
/* go into right paren
/* go into # sign
/* go into ‘P1 esc

bracket proc.*/
proc.*/
proc*/
processing*/
proc. */

/* if come here not currently in a specific escape seq state */
iff ch == '[') f esc_lbrack = 'NULL; return;> /* goto Ibrack state */
iff ch == "f1) { esc_lparen = “NULL; return;} /* goto Iparen state */
iff ch == ')') { esc_rparen = 'NULL; return;} /* goto rparen state */
iff ch == '#•) { esc_pound = 'NULL; return;} /* goto pound state */
iff ch == ‘P1) f esc_pstate = "NULL; return;} /* goto pstate state */

12

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

/* if have gotten to here we are dealing with single char esc seq */

6o_esc_°ne(ch);
return;

int looklook(ch_in)
unsigned char ch_in;
<

static int i;
unsigned char ch;

ch = ch in;
if (ch“== 27) ch=172;
if (ch < 32)

<
ch=ch+224;
>

if (i<0) i=0;

if(i++ > 70)
{
i = 0;
fprintf(stdprn, "\nH);
>
fprintf(stdprn, "Xc", ch);

int lookee(ch_in)
unsigned char ch in;
{

if(look flag) looklookCch in);
>
int lookmy(ch_in)
unsigned char ch_in;
{

ifCmyniy flag) looklook(ch_in);
>

int do_lbrack(ch) /* func to deal with ‘C escape sequence*/
char ch;
<
/* for now will release escape state and let ANSI.SYS deal with it */

if(!isalpha(ch)) return; /* accum esc sequence til get alpha
esc_state = NULL; /* ...then remove escape state */
esc_lbrack = NULL;

if(ch ==
if(ch ==
if(ch ==
if(ch ==
if(ch ==
iff ch ==

send_dos(escseq);
esc_seq[0] = '\0';

h*) < do_h_seq(); return; > /* esc seq ending with 'h'
l') f do_l_seq(); return; > /* esc seq ending with 'l'

/* then send it to ansi.sys for interpret.
/* ...and null escape string

int do_pound(ch)
char ch;
<

/* ignore for now */
esc_state = NULL;

/* func to deal with '#' escape seq*/

char... */

*/
*/
*/
*/
*/
*/

*/

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779

13

esc_pound = NULL;
esc_seq[0] = '\0';

>

int do_pstate(ch)
char ch;
<

/* ignore for now */
esc_state = NULL;
esc_pstate = NULL;
esc_seq[0] = '\0';

>

/* ...and null escape string */

/* func to deal with "P1 escape seq*/

/* ...and null escape string V

int do_esc_one(ch) /* func to deal with 'ESC X1 esc seq*/
char ch;
C

esc_state = NULL;
esc_seq[03 = "XO1; /* ...and null escape string */

if(esc_seq[1] == 'M1) {revindexO; return;> /* reverse index up a line */
if(esc_seq[1] == '0') LindexO; return;> /* index down a line */
if(esc_seq[1] -- 'E') {nextlineO; return;> /* go to start of next line*/
if(esc_seq[1] == '7') LsavecursO; return;> /* save cursor-OEC private */
if(esc_seq[1] == '8') {restcursO; return;> /* restore cursor-DEC priv.*/

>
int revindexO /* do reverse index */
<

int row, col;

biogetcurposC &row, &col);
if(row <= pc top)

{
bioscrollup(1, pc_top, 0, pc_bot, 79, attr); /* do scroll */
return;
>
biosetcurpos(--row, col);

>

int indexO /* do index */
<

int row, col;

biogetcurposl &row, &col);
if(row >= pc bot)

<
bioscrolldn(1, pc_top, 0, pc_bot, 79, attr); /* do scroll */
return;
>
biosetcurpos(++row, col);

int nextlineO

int row, col;

biogetcurpos(&row, &col);
col = 0;
if(row >= pc bot)

<

/* do NEL */

780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

14

bioscroltdnO, pc_top, 0, pcjsot, 79, attr); /* do scroll
biosetcurpos(row, col);
return;
>
biosetcurpos(++row, col);

int savecursO
<

biogetcurposC &save_row, &save_col);
save_attr « attr;
save_ch_set = ch_set;

/* save cursor - DEC private DECSC */

int restcursO
<

biosetcurposC save_row, save_col);
attr = save_attr;
ch_set = save_ch_set;

/* restore cursor - DEC private DECSC */

int do_lparen(ch) /* func to deal with '(' escape sequence*/
char ch;
/* left parenthesis escape sequences are a sub-set of Select Character
/* (SCS) ends. All Iparen seqs are 3 bytes long - we are on last

esc_state = NULL;
esc_lparen = NULL;
esc_seq[0] = '\0';

/* release the escape state */

/* ...and null escape string

/* "ESC (A" designates the UNITED KINGDOM char set as gO */
iff ch == 'A') C g0_set = ukset; return;}

/* "ESC (B" designates the UNITED STATES char set as gO */
if(ch == ‘B1) { g0_set = usset; return;}

/* "ESC (0" designates the special char set as gO
if(ch == '0') { g0_set = spset; return;}

/* "ESC) 1" designates the 'alternate ROM standard1 char set as gO
if(ch == '1') { g0_set * usset; return;}

/* "ESC) 2" designates the 'alternate ROM special1 char set as gO */
if(ch == '2') < g0_set = spset; return;}

int do_rparen(ch) /* func to deal with ')' escape sequence*/
char ch;
/* right parenthesis escape sequences are a sub-set of Select Character
/* (SCS) cmds. All Iparen seqs are 3 bytes long - we are on last
(

esc_state = NULL; /* release the escape state */
esc_rparen = NULL;
esc_seq[0] = '\0'; /* ...and null escape string

/* "ESC (A" designates the UNITED KINGDOM char set as gl */
if(ch == 'A') < g1_set = ukset; return;}

/* "ESC < B" designates the UNITED STATES char set as gl */
ifC ch == 'B') (g1_set = usset; return;}

Set */
character */

*/

*/

Set */
character */

*/

15

845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909

/* "ESC (0" designates the special char set as g1
if(ch == 'O’) { g1_set = spset; return;}

/* "ESC) 1" designates the 'alternate ROM standard1 char set as g1
if(ch == ‘I1) { g1_set = usset; return;}

/* "ESC) 2” designates the 'alternate ROM special1 char set as gl
if(ch == '2') { g1_set = spset; return;}

}
int do_r seqO /* func to perform scroll escape sequence ('r1) */
(

char *seq;

seq = esc_seq + 2;
esc_seq [0] = '\0'; /*

vt_top = strtoK seq, &seq, 10);
if(vt_top <= 0) vt_top =1; /*
if(vt_top > 24) vt_top = 24; /*

vt_bot = strtoK ++seq, &seq, 10);
if(vt_bot <* 0) vt_bot = 24; /*
if(vt_bot > 24) vt_bot = 24; /*

pc_top = vt_top - 1; /*
pc_bot = vt_bot - 1; /*

home_up();

/* point past "<ESC>["
null out old string */

/* get top vtlOO row for scroll
make sure is legal */
= 1 to 24 inclusive */

/* get bottom vt row for scroll
make sure is legal */
= 1 to 24 inclusive */

top pc row is 0,... */
top vtlOO row is 1 */

/* home up cursor

int home upO /* func to home up cursor */

if(decom)
biosetcurpos (pc_top, 0);
else

biosetcurpos (0, 0);

/* origin mode set?... */
/* ...yes, go margin */

/* ...no, go 1,1 */

}

int do_h seqO /* decode DEC private mode set state esc seq('h')
{

char *seq;
int i;

seq = esc_seq +1; /* point past "<ESC>"
esc_seq [0] = '\0'; /* null out old string */

for(i=0; i < strlen(seq); i++) /* make '?' into ';' so easy decode
C
if(seq[i] == '?') seqli] = ';' ;
}
while (*seq != NULL)

<
i = strtoK ++seq, &seq, 10); /* get next set mode option */
switch(i)

L
case 1:decckm ='NULL;ckm_set() ;break;/*set cursor key mode */
case 2:decanm ='NULL;anm_set() ;break;/*set ANSI/VT52 mode = ANSI*/
case 3:deccolm="NULL;colm_setO;break;/*set column mode = 132 */
case 4:decsclm=''NULL;sclm_set();break;/*set scroll mode to smooth*/
case 5:decscnm=-NULL;scnm_set();break;/*set screen to reverse vid*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974

16

case 6:decom ="NULL;om_set(); brealc;/*set origin mode */
case 7:decawni =~NULl;awm_setO; break;/*set auto wrap mode V
case 8:decarm ='NULL;arm setO; break;/*set auto repeat mode */
>

>
int do l_seq() /* decode DEC private mode reset state esc seq('l1)
<

char *seq;
int i;

seq = esc_seq +1; /* point past '^ESO" */
esc_seq [0] = '\0'; /* null out old string */

for(i=0; i < strlen(seq); i++) /* make '?■ into so easy decode
<
if(seq[i] == '?•) seqti] = ;
>

while (*seq != NULL)
C
i = strtoK ++seq, &seq, 10); /* get next set mode option */
switch(i)

(
case 1:decckm =NULL;ckm_off() ;break;/*reset cursor key mode */
case 2:decanm =NULL;anm_off() ;break;/*reset ANSI/VT52 mode=ANSI*/
case 3:deccolm=NULL;colm_offO;break;/*reset column mode = 132 */
case 4:decsclm=NULL;sclm_off();break;/*reset scroll mode smooth */
case 5:decscnm=NULL;scnm_off();break;/*reset screen reverse vid */
case 6:decom =NULL;om_offO; break;/*reset origin mode */
case 7:decawm =NULL;awm_off(); break;/*reset auto wrap mode */
case 8:decarm =NULL;arm offO; break;/*reset auto repeat mode */
>

>

int do m seqO /* decode Set Graphic Rendition (SGR) esc seqs('m')
{

char *seq;
int i;
BYTE fc=0xf8, bc=0x8f; /* fc = foregrnd clear, be = backgrnd clear

BYTE blk=0, red=4, grn=2, yel=6, blu*1, mag=5, cyn=3, wht=7; /*

seq = esc_seq +1; /* point past "<ESC>" */
esc_seq [0] = '\0'; /* null out old string */

for(i=0; i < strlen(seq); i++) /* make *?' into so easy decode
f
if (seqli] == '?') seqli] = ;
>
while (*seq != NULL && *seq != "m1)

C
i = strtoK ++seq, Sseq, 10); /* get next set mode option */
switch(i)

<
case 0: attr=0x07 ;break; /* attrbutes off wht/blk*/
case 1: attr=attr I 0x08 .-break; /* bold on - hi intens. */case 5: attr=attr | 0x80 ;break; /* blink on - set bit */
case 7: attr=((attr & 0x70) » 4) | /*old forgrnd -->bakgrnd*/

((attr & 0x07) « 4) | /*old bakgrnd -->forgrnd*/
(attr & 0x80) | /* keep blink bit */
(attr 8 0x08) ; /* keep hi-intensity bit*/

*/

*/

7

colors*/

*/

975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

17

break; /* ...thus reverse video*/
case 8: attr=0 ;break; /* cancelled on - invis.*/
case 30:attr=attr & fc blk ;break;/* black foreground */
case 31:attr=attr & fc red ;break;/* red foreground */
case 32:attr=attr 8 fc grn ;break;/* green foreground */
case 33:attr=attr & fc yel ;break;/* yellow foreground */
case 34:attr=attr & fc blu ;break;/* blue foreground */
case 35:attr=attr & fc mag ;break;/* magenta foreground */
case 36:attr=attr & fc cyn ;break;/* cyan foreground */
case 37:attr=attr & fc wht .•break;/* white foreground */
case 40:attr=attr & be (blk«4) ;break;/* black background */
case 41:attr=attr & be (red«4);break;/* red background */
case 42:attr=attr & be (grn«4);break;/* green background */
case 43:attr=attr & be (yel«4);break;/* yellow background */
case 44:attr=attr & be (blu«4) .•break;/* blue background */
case 45:attr=attr & be (mag«4);break;/* magenta background */
case 46:attr=attr & be (cyn«4);break;/* cyan background */
case 47:attr=attr & be (wht«4) ;break;/* white background */
>

/‘fprintf(stdprn, "%s %d %x\n", seq, i, attr);*/

/* flip hi-intensity state */
if((attr & 8) » 0)

attr = attr | 8;
else

attr = attr & 0xf7;

>
int do j seqO /* decode & do Erase in Display(ED)esc seqs(cap 'J') */
<

char *seq;
int i, row, col, ntimes;

seq = esc_seq +1; /* point past "<ESC>" */
esc_seq [0] = '\0'; /* null out old string */

i = strtoK ++seq, &seq, 10); /* get ED option */
switch(i)

C

case 0: /* erase from cursor to end of the screen */
biogetcurpos(&rou, &col); /* save present row and column */
ntimes = (23 - row) * 80 + (80 - col); /* # of blanks */
if(ntimes < 0) ntimes = 0;
bioputch(0, ntimes, * attr); /* erase */
biosetcurpos(row, col);
break;

case 1: /* erase from beg of screen to cursor */
biogetcurpos(&row, &col); /* save present row and column */
ntimes = row * 80 + col; /* # of blanks to put out to video */
if(ntimes < 0) ntimes = 0;
biosetcurpos(0, 0);
bioputch(0, ntimes, * ', attr); /* erase */
biosetcurpos(row, col);
break;

case 2: /* erase all of screen do not move cursor */
biogetcurpos(&row, &col); /* save present row and column */
ntimes = 1920; /* # of blanks to put out to VT100 screen */
biosetcurpos(0, 0);
bioputch(0, ntimes, ' ’, attr); /* erase */
biosetcurpos(row, col);

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

18

break;

>

>

int do_k seq() /* decode & do Erase in Line(EL)esc seqs(cap 'K')
{

char *seq;
int i, row, col, ntimes;

seq = esc_seq +1; /* point past "<ESC>" */
esc_seq tO] = '\0'; /* null out old string */

i = strtoK ++seq, &seq, 10); /* get ED option *!
suitch(i)

{

case 0: /* erase from cursor to end of the line */
biogetcurposC &row, &col); /* save present row and column */
ntimes = 80 - col; /* # of blanks */
ifCntimes < 0) ntimes = 0;
bioputchC 0, ntimes, ’ ', attr); /* erase */
biosetcurposC row, col);
break;

case 1: /* erase from beg of line to cursor */
biogetcurposC &row, &col); /* save present row and column */
ntimes = col; /* # of blanks to put out to video */
ifCntimes < 0) ntimes = 0;
biosetcurposC 0, 0);
bioputchC 0, ntimes, ' ', attr); /* erase */
biosetcurposC row, col);
break;

case 2: /* erase all of the line do not move cursor */
biogetcurposC &row, &col); /* save present row and column */
ntimes = 80; /* # of blanks to put out to VT100 screen */
biosetcurposC 0, 0);
bioputchC 0, ntimes, ’ ', attr); /* erase */
biosetcurposC row, col);
break;

>

>

int openvirtC) /* func to open virtual input file */

ifC virtfile != NULL) return;
virtfile = fopenC'virtfile.txt", "r");

>

int do virtC) /* do virtual input - open coded sub*/
C

static char strptrs [20] [32]; /* host strings to load */
static char ctrly[2];

ifCpip == 0)
<
ctrly[0] = 25;
ctrly[1] = 13;
strcpyCstrptrsMT], ,,,,);
*hostline = NULL;

*/

19

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169

host cnt = 0;
>

switch(pip)
{
case
case
case
case
case
case
case

0: pip += sendCDTR"); return;
1: pip += waitfor(hostline, ,,DTR>M); return;
2: pip += send(,,:GO_CDASM); return;
3: pip += waitfor(hostline, "DTR>"); return;
4: pip ■*■= send(":PUT"); return;
5: pip += waitfor(hostline, "NEXT CLASSIFIED DOCUMENT");return
6: pip++;

if(getdata(virtfile, strptrs) == NULL) pip = -1;
return;

case 7: pip++;
if(strstr(hostline, "Document Number") != NULL) t
do_send(strptrs, 0); pip = 7;> return;

case 8: pip++;
if< strstr(hostline, "Requester ") != NULL) {
do_send(strptrs, 32); pip = 7;> return;

case 9: pip++;
if(strstr(hostline, "Date Ordered ") != NULL) t
do_send(strptrs, 64); pip = 7;> return;

case 10: pip*-+;
if(strstr<hostline, "Ordered From ") != NULL) {
do_send(strptrs, 96); pip = 7;> return;

case 11: pip++;
if(strstr(hostline, "Date Received ") != NULL) {
do_send(strptrs, 128); pip = 7;> return;

case 12: pip*+;
if(strstr(hostline, "Copy Series Num") != NULL) C
do_send(strptrs, 160); pip = 7;> return;

case 13: pip*-+;
if(strstr(hostline, "Ordered By(HHL ") != NULL) {
do_send(strptrs, 192); pip = 7;> return;

case 14: pip++;
if(strstr(hostline, "Date Returned F") != NULL) C
do_send(strptrs, 224); pip = 7;> return;

case 15: pip4"*-;
if(strstr(hostline, "Loaned To ") != NULL) {
do_send(strptrs, 256); pip = 7;) return;

case 16: pip*+;
if(strstr(hostline, "Date Loaned ") != NULL) {
do_send(strptrs, 288); pip = 7;> return;

case 17: pip++;
if(strstr(hostline, "Date Returned T") != NULL) {
do_send(strptrs, 320); pip = 7;> return;

case 18: pip*+;
if(strstr(hostline, "Returner ") != NULL) {
do_send(strptrs, 352); pip = 7;> return;

case 19: pip4"*-;
if(strstr(hostline, "Received Until ") != NULL) <
do_send(strptrs, 384); pip = 7;> return;

case 20: pip4-*;
if(strstrlhostline, "Loaned Until ") != NULL) {
do_send(strptrs, 416); pip = 7;> return;

case 21: pip4"4;
if(strstrlhostline, "Record Entry Pe") != NULL) <
do_send(strptrs, 448); pip = 7;> return;

case 22: pip4"4;
if(strstr(hostline, "Remarks ") != NULL) t
do_send(strptrs, 480); pip = 7;> return;

case 23: pip = 7;
if(strstr(hostline, "Continue Puttin'1) != NULL) {
send("Y");*hostline=NULL;host_cnt=0;pip = 6;> return;

20

1170: break;
1171:
1172: default: send(ctrly);
1173: sendC'lo");
1174: virtmode = NULL;
1175:
1176: >
1177:
1178: }
1179:
1180: int do_send(strptrs, offset) /* help 'do_virt' */
1181: char strptrs 120] [32];
1182: int offset;
1183: <
1184: char *place;
1185:
1186: place = strptrs;
1187: place += offset;
1188: send(place);
1189: /*fprintf(stdprn, 11 Xs %s %s %d %d\n", place, strptrs, hostline, host_cnt,
1190: offset);*/
1191:
1192: *hostline = NULL;
1193: host cnt * 0;
1194:
1195: >
1196:
1197: int send(string) /* send "string" and <carr.ret> to host*/
1198: char ‘string;
1199: <
1200: char cr string[2];
1201:
1202: sendslou(string);
1203: cr_stringt0]*13;
1204: cr stringM]* NULL;
1205: waTt(l);
1206: sendslou(cr_string);
1207: return(l);
1208:
1209: }
1210:
1211: /* sendslow = func to send chars to host slowly */
1212: int sendslow(string)
1213: char ‘string;
1214: C
1215: long i=0, j;
1216:
1217: uhile(‘string != NULL &4 i < 80)
1218: <
1219: for(j=0;j<1000;j++);
1220: if(*string != 10) outp(COMM_DATA, *string++);
1221: if(‘string == 10) string++;
1222: i++;
1223: >
1224: }
1225:
1226: int waitfor(stringl, string2) /* see if "string2" in "stringl" */
1227: char ‘stringl, ‘string2;
1228: C
1229: int val = 0;
1230: if(strstrCstringl, string2) != NULL)
1231: <
1232: ‘stringl = NULL;
1233: host cnt = 0;
1234: val =1;

21

* 1235: >
1236: return(val);
1237:
1238: >
1239:
1240: int getdata(infile, strary) /* get data from virtual file*/
1241: FILE *infile;
1242: char strary [20] [32];
1243: <
1244: int i;
1245: char string[96];
1246: char *place;
1247:
1248: for(i=0; i < 17; i++)
1249: *strary[i] = NULL;
1250:
1251: for(i=0; i < 17; i++)
1252: {
1253: if(fgetslstring, 90, infile) == NULL) return(NULL);
1254: place * strary;
1255: place += i*32;
1256: strcpyf place, string);
1257: >
1258:
1259: while(fgets(string, 90, infile) != NULL
1260: && strcmp(string, "******»*») == NULL)
1261:
1262:
1263: returnCNULL);
1264:
1265: }
1266:
1267: int wait(nsecs) /* function to wait 'nsecs' seconds */
1268: int nsecs;
1269: <
1270: long start, now;
1271:
1272: start = timeO;
1273: now = timeO;
1274: while ((now - start) < nsecs) now = timeO;
1275:
1276: >

APPENDIX E:

VDE ASSEMBLER LANGUAGE SOURCE CODE

ASCINT.ASM AND DSINITASM

2

ASONT.ASM

1: TITLE ascint
2: PAGE , 132
3: .287
4: TEXT SEGMENT BYTE PUBLIC ‘CODE'
5: _TEXT ENDS
6: "data SEGMENT WORD PUBLIC 'DATA'
7: "data ENDS
8: CONST SEGMENT WORD PUBLIC 'CONST'
9: CONST ENDS
10: _BSS SEGMENT WORD PUBLIC ’BSS'
11: ~BSS ENDS
12: DGROUP GROUP CONST, _BSS, _DATA
13: ASSUME CS: _TEXT, DS: DGROUP
14: EXTRN _count:WORD
15: EXTRN "rsbuffer:BYTE
16: EXTRN storeds:WORD
17: TEXT SEGMENT

SS: DGROUP,

18:
19:
20:
21:

*** extern Int count;
*** extern unsigned char rsbuffer[4096];
*** ascintO
*** ^

ES: DGROUP

22:
23:
24:
25:

kb_f l ag_1
hold state

equ
equ

18h
08h

26: PUBLIC _ascint
27: ^ascint PROC NEAR
28: push ax ;save registers we use
29: push bx
30: push dx
31: push ds
32: mov ax,cs:storeds ;get VDE's data segment...
33: mov ds,ax ;...stored by dsinit...
34: ;|*** rsbuffer[count**] = inpCCOMM DATA); ;... so can get
35: mov dx,3f8h ;. ..address of COM1 data reg
36: in al,dx ; get character
37: mov bx,_count ; get circular buffer pointer
38: inc _count ; inc pointer
39: mov 5YTE PTR _rsbuffer[bx] ; stick char in buffer
40: mov ax,_count ; get ptr again
41: and ax,4095 ! wrap it at 4095 to zero
42: mov _count,ax ; thru with actual get char
43: mov ax,40h ; address segment at 400 hex
44: mov ds,ax
45: mov bx, kb_flag_1 ; get keyboard ISR flags
46: and byte ptr ds:[bx], not hold_.state; disable CTRL-BREAK
47: mov al,20h ; reset interrupt...
48: out 20h,al ; ...chip
49: pop ds ; restore regs
50:
51:
52:

pop
pop
pop

dx
bx
ax

53: iret
54: _ascint ENDP
55: TEXT ENDS
56: END

'count1

; bye till next rs232 interupt

3

DSINTT.ASM

1: TITLE dsinit
2: PAGE ,132
3: .287
4: TEXT SEGMENT BYTE PUBLIC 'CODE'
5: TEXT ENDS
6: DATA SEGMENT WORD PUBLIC ‘DATA1
7: “data ENDS
8: CONST SEGMENT WORD PUBLIC 'CONST'
9: CONST ENDS

10: _BSS SEGMENT WORD PUBLIC BSS1
11: “bss ENDS
12: DGROUP GROUP CONST, BSS, DATA
13: ASSUME CS: TEXT, DS : DGROUP, SS: DGROUP, ES
14: EXTRN count:WORD
15: EXTRN storeds :WORD
16: _TEXT SEGMENT
17: PUBLIC dsinit
18: _dsinit PROC NEAR
19: push ax

DGROUP

20: mov
21: mov

axf_count
cs:storeds,ax

; count presently has its (&VDE's) data segment
; store ds in code segment for ascint use

22: pop ax
23: ret
24: dsinit ENDP
25: 'TEXT ENDS
26: END

GLOSSARY

4GL - Fourth Generation Language - a very high level language for applications programming.
Such a language is more sophisticated than third generation languages like FORTRAN,
C, dBASE, or Cobol. The 4GL of most DBMSs combines SQL and high-level
constructs or extensions including access to the operating system, set functions, Boolean
functions, arithmetic operators, string operators/functions, and report generation
functions. 4GLs are not standardized and are usually vendor-proprietary.

ADP - Automated Data Processing - computers, networks, software, etc.

ANSI - American National Standards Institute.

CALS - Computer-Aided Acquisition and Logistics Support - a DoD program that will use the
OSI protocol suite to let the military electronically access maintenance and specification
information including graphical database forms.

CASE - Computer-Aided Software Engineering - modem software tools for software planning,
design, analysis, and maintenance based on popular methodologies of DeMarco, Gane
and Sarson, and Yourdon, among others. The CASE tools generally include
diagramming tools, screen and report painters for specification and prototyping,
dictionaries, specification-checking tools, code generators, and documentation generators,
among others. CASE is generally utilized on large and/or complex software projects.
Distributed database system applications developments are likely candidates for CASE

Configuration Management Software - software used to track and control software system
development for activities such as tracking what changes were made to software, and
when and why these changes are made. By identifying and controlling all versions of an
application throughout its life cycle, earlier versions can be easily reconstructed while
parallel versions are still maintained.

Data Dictionary - a means to specify both the DBMS contents and the integrity constraints that
apply to each data element. Traditionally the Data Dictionary is used to protect
consistency of the database. Data Dictionaries offer features such as structured storage
media, automated documentation, integration of separately developed projects, impact
analysis, and change control for maintaining live systems. Standards are under
development such as Information Resource Dictionary System (IRDS).

DBMS - Data Base Management System - a software system for data storage, retrieval, and
presentation usually composed of elements such as the user interface, screen painter,
report generator, query optimizer, 4GL, network-communications interface, and data
manager/engine. The DBMS’s may be based on hierarchical, relational, codasyl, or
object models of design.

DEC - Digital Equipment Corporation.

2

DEC/ACMS - Application Control and Management System.

DECnet - a communications and file transfer protocol for LAN’s and WAN’s provided by DEC.
The first version of OSI was essentially a copy of DECnet.

Ethernet - CSMA/CD, a carrier sense multiple access collision detection protocol for
networking. The standard is IEEE 802.3.

Expert System - software that uses a rulebase and a database to infer (compute) conclusions. It
is the dominant application for artificial intelligence, at present.

GOSIP - Government Open Systems Interconnection Profile - a developing protocol standard
that will replace, TCP/IP. It is the U.S. Government’s implementation of the developing
interconnection standard, OSI. Two current shortcomings of GOSIP are its deficient
gateway-to-gateway protocol and its lack of a virtual terminal capability.

LAN - Local Area Network - a local area collection of computers that are connected by either
baseband coaxial cables, or twisted-wire pairs, or broadband coaxial or fiber optics cables.
The LAN may have a star, ring, or distributed bus network topology. The access rules
may be of many types including token passing (Token Ring, IEEE 802.5) or carrier
sense multiple access including collision detection (Ethernet IEEE 802.3), as examples.
Communications and file transfer protocols may include DECnet and TCP/IP.

MS-DOS - the original single-tasking operating system for the IBM PC or clones. It also runs
on the PS/2. MS stands for Microsoft.

NFS - Network File System of SUN Computer, Inc. - NFS is a de facto file transfer
networking standard supported by more than 60 vendors. The software allows remote
files on servers to be accessed over a network as though the files were present on the
local node’s disk system.

OS - Operating System.

OSA2 - the new multitasking operating system developed by Microsoft for the IBM PS/2 or for
other AT-class (or higher) PCs.

OSF - Open Software Foundation - a consortium of private companies including IBM, DEC,
HP, Apollo, and many others with the goal of providing open, vendor-independent
software.

OSI - the seven-layer Open Systems Interconnection reference model of the International
Standards Organization.

POSDC - Federal computing interface standard FIPS 151 based on IEEE 1003.1 - developed to
promote applications portability across heterogeneous hardware and OSs. POSIX
provides a migration path of existing UNIX applications to non-UNIX OSs.

3

RDBMS - Relational Database Management System - advanced form of DBMS where all data
are stored in relations and manipulated using relational operations such as union,
intersection, and difference.

SNA - System Network Architecture of IBM - standard for the design and fabrication of
communication products. SNA controls the protocol used in IBM communication
networks (a form of SDLC, Synchronous Data Link Control). DEC has a DECnet/SNA
gateway allowing direct channel attachment from DECnet LANs to IBM mainframes.

SQL - Structured Query Language - an advanced language that has become an ANSI standard.
Grown out of the theories of relational calculus, the language consists of numerous
commands for adding, deleting, modifying, and reporting information/data.

TCP/IP - Transmission Control Protocol/Interaet Protocol - a mature communication protocol
that has become an industry standard. TCP/IP was originally developed by the Defense
Advanced Research Projects Agency (DARPA) for its ARPANET communications
network in the 1960s. It is the protocol of the Department of Defense Data Network
(DDN). TCP/IP runs on most vendors’ hardware platforms and under many different
operating systems.

UNIX - a dominant multitasking operating system originally developed at AT&T Bell
Laboratories. UNIX has the distinction of being able to run on most vendors’ hardware
platforms and is becoming increasingly mandatory in the federal government.

VMS - the dominant DEC operating system for the VAX.

VT100 - a terminal standard based on DEC terminal hardware.

WAN - Wide Area Network.

X/Open - a common applications environment consortium that brands products as conforming or
nonconforming with computing standards.

X Windows - a window system for multitasking operating systems; developed at MIT with
participation of DEC and other workstation vendors. X-compliance allows applications
the portability and network-transparency required for open systems. It is the de facto
window-management standard, particularly for UNIX workstations.

K/DSRD-80

INTERNAL DISTRIBUTION

1. T. D. Anderson 38. R. P. Leinius
2. J. M. Barnes 39. A. S. Loebl
3. A. L. Beckwith 40. R. C. Lushbaugh
4. M. A. Bjerke 41. G. S. McNeilly
5. P. G. Bohanan 42. J. R. Merriman
6. D. W. Bradford 43. J. D. Morris
7. W. A. Bratten 44. B. J. Noble
8. B. K. Bryan 45. L. W. Owen
9. R. D. Burris 46. M. R. Patterson

10. D. N. Clark 47. C. E. Penland
11. L. A. Clinard 48. R. W. Reid
12. J. M. Corum 49. G. D. Robbins
13. J. G. Craven 50. M. C. Salmons
14. G. A. Dailey 51. D. D. Schmoyer
15. C. O. Doty 52. F. L. Sexton
16. L. D. Duncan 53. K. E. Shaffer
17. R. C. Durfee 54. V. A. Singletary
18. M. L. Emrich 55. C. E. Snyder
19. W. E. Ford III 56. B. Thomas, Jr.
20. V. M. Forsberg 57. R. E. Tittsworth
21. J. F. Francis 58. H. E. Trammell
22. S. J. Freeney 59. V. M. Voorhees
23. C. E. Hammons 60. C. F. Weber
24. B. H. Handler 61. G. W. Westley
25. R. E. Haney 62. G. T. Yahr
26. D. S. Hartley 63-72. J. A. Clinard
27. P. B. Hartman 73-82. J. T. Phillips
28. M. B. Heath 83-92. J. J. Robinson
29. O. W. Hermann 93. ORGDP Plant Records
30. D. M. Hetrick 94. ORNL Records
31. B. M. Horwedel 95. ORGDP Plant Records-RC
32. J. E. Hough 96. ORNL Records-RC
33. R. L. Huddleton 97. Enrichment Technology Library
34. G. L. Johnson 98. Central Research Library
35. K. L. Kannan 99. DSRD Library
36. K. L. Kruse 100-102. A. S. Quist
37. D. K. Lee

EXTERNAL DISTRIBUTION

103-112. R. Blackburn, Pacific Missile Testing Center, Code 0300, Point Mugu, CA 93042
113. F. Malabarba, Pacific Missile Testing Center, Code 0300, Point Mugu, CA 93042
114. Office of Assistant Manager for Energy Research and Development, Department of Energy,

Oak Ridge Operations Office, Oak Ridge, TN 37831

