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Unsteady Surface Element (USE) methods are applied to a model of a thermocouple 
wire attached to a thin disk. Green's functions are used to develop the
integral equations for the wire and the disk. The model can be used to    
evaluate transient and steady state responses for many types of heat’ flux 
measurement devices including thin skin calorimeters and circular foil (Garden) 
heat flux gages. The model can accomodate either surface or volumetric heating 
of the disk. The boundary condition at the outer radius of the disk can be 
either insulated or constant temperature. Effect on the errors of geometrical 
and thermal factors can be assessed. Examples are given.
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Introduction

The operation of a variety of heat flux sensors and calorimeters involves 
contact temperature measurements on thin plates. Thermocouples are often used 
for this purpose. Estimating and/or correcting the errors involved in making 
these measurements is an important problem in experimental heat transfer. 
Numerous papers have been written on this subject.

For thin skin calorimeters, Burnett (1961) and Larson and Nelson (1969) 
developed approximate models for estimating the magnitude of the errors. 
Henning and Parker (1967) and Keltner (1973,1974) developed analytical models 
for the transient response of intrinsic thermocouples. Keltner and Bickle 
(1976) and Wally (1977) used these response models to correct measurement 
errors. Cassagne et al. (1980), Keltner and Beck (1983), and Litkouhi and 
Beck (1985) developed more accurate transient response models. Kidd 
(1985,1986) developed numerical models and used them for sensitivity analyses.

For the circular foil heat flux gages, which are generally called Garden 
gages after the developer, Garden (1953) described the response in terms of a 
1st order or exponential response. Analyses by Ash (1969) and Kirchoff (1972) 
indicated that the exponential response model was not sufficient for rapid 
transients. Malone (1967) found that accounting for heat transfer to the 
center thermocouple wire could significantly affect the shape of the transient 
response. Keltner and Wildin (1974,1975) developed a response model for the 
gages and used it to estimate measurement errors. Borell and Diller (1987) 
analyzed the response to convective heating and developed convective 
calibration methods.

The errors involved in making temperature measurements with thermocouples 
attached to thin plates may be transient, steady state, or both. The errors 
may result from the thermocouple installation altering the local surface 
temperature distribution or the effects of heat transfer in the 
thermocouple/plate combination. This paper will deal with the latter problem. 
There are many sources of this type of error, but the most significant are:

1. Thermal constriction effects within the plate to which the 
thermocouple is attached

2. Thermal inertia of the thermocouple
3. Imperfect contact between the thermocouple and the surface
4. Heat loss from the thermocouple to the ambient
5. The effective junction location being displaced from the surface.

Keltner and Beck (1983) developed the Unsteady Surface Element (USE) 
methods that are applied to a model of a thin disk attached to a wire.
Green's functions are used to develop the integral equations describing the 
temperature of the wire and the disk. The model can accommodate either 
surface or volumetric heating of the disk. The boundary condition at the outer 
radius of the disk can be either insulated or constant temperature. The model 
can be used to evaluate transient and steady state responses for many types of 
heat flux measurement devices including thin skin calorimeters and circular 
foil heat flux gages. The effect on the errors of geometrical factors, such 
as the disk to wire radius ratio or the ratio of disk thickness to wire 
radius, and thermal factors, such as contact resistance between the wire and 
the disk or heat loss from the wire, can be assessed.



A sketch of the model is shown in Figure 1. The disk portion of the 
model is two dimensional. The thermocouple is modeled as one-dimensional; 
heat conduction occurs only in the axial direction. A fin correction can be 
used to allow for heat loss from the thermocouple. Imperfect thermal contact 
at the interface of the disk and the wire is modeled by a contact heat 
transfer coefficient, h; for perfect contact, h goes to infinity.

The response models are developed for a step change in either the 
initial temperature or the surface heat flux. For surface heating, the initial 
temperature of the disk is the same as that of the wire. For volumetric 
heating, the initial temperature of the disk is different from that of the 
wire and the surface heat flux is zero. The response to a time varying 
condition can be obtained from the step response via convolution.

Mathematical Formation

The heat transfer at the interface of the wire and the disk can be 
expressed:

qO,1 - h(T2(t) - Ti(t)) (1)
where h is the contact heat transfer coefficient. For perfect contact, h is 
infinite.

By energy conservation, the area averaged heat flux entering body 1 at 
the interface is equal to that leaving body 2, or:

qo,i - -qo,2 (2)

The temperature at x-0 for the disk is given by (Beck, et. al. 1988):

TxCr.O.t) - 2*a1[t P (qLAxJGRQjCr.t/r',T)Gx22(0,t/0,T)r'dr'dr 
J r-OJ r'-0

+2xai[ f (qo i(r)/ki)GROj(r,t/r',r)Gx22(0,t/0,r)r'dr'dr (3)
J r-OJ r'-0

+2*1^1^' _0Ti, i GR0j (r, t/r' , 0 ) Gx22 (x, t/0,0) r' dr' dx

The numbering system utilized for the Greens function is that developed 
by Beck and Litkouhi (1988). Gx represents the x-direction Greens function; 
whereas Gr represents the radial direction Greens function. The numeral 
subscripts indicate the boundary conditions: J—0 is an infinite boundary, J—l 
indicates a prescribed temperature boundary condition, and J-2 indicates 
prescribed heat flux boundary condition.



For the purposes of this paper either qL“0 (impulsive, volumetric 
heating) or (surface heating). Without loss of generality, T2t± can be
set equal to zero. For the insulated boundary case, the third term is equal 
to the initial temperature of body 1 (T^i).

The average temperature over the disk/wire interface is the concern of 
this paper. The average temperature over the area 0<r<a can be expressed as:

Ti(t) 1
wa2 dr (4)

The average non-dimensionalized temperature for the case of impulsive, 
volumetric heating is given by:

Tl+(ta+) - -1
+ a^Jra+-oJr“0Jr'-0q0+ ^ r a+ ^ Groj(r >ta+/r',ra+)Gx22C0.ta+/0.»-a+)r'rdr'drdra+ (5a)

+ a^Jx-0 |r-0Jr'-0Groj(r'’ta+/r>0)Gx22(x,ta+/0,0)r'rdr'drdx 

Whereas that for surface heating can be expressed as:
Tl++(ta+) - ~J^+_0J^_0J^'_0GrqJ(r* , ta+/r, ra+)Gx22(L, ta+/0, ra+)r’ rdr,drdra+ (5b)

+ a^Ira+-o|r-oJr'-0qo++(Ta+> GROJ(r'> ta+/r.ra+)Gx22(°.ta+/0,ra+)r'rdr'drdra+

where ta+ - a^t/a^ (6a)
TL+ - (Ti-Tlii)/(Ti|i-T2ii) (6b)
q0+ “ qO,ia/{ki(Tiii - T2(i)} (6c)
T1++ - Ti/(qLa/ki) (6d)
qo^ - qo,i/qL (6e)

The wire is considered to have conduction in the axial direction only. The 
nondimensional temperature of the wire at x=0 can be expressed (Beck, et. al. 1988):

T2+(ta+) - -a !j^+=0qo+(ra+)Gx2l(0.ta+/0.ra+)d»-a+ (7a)

or
T2++(ta+) - -a |fK=0qo++(ra+)Gx2i(O,ta+/0,ra+)dra+ (7b)

where K—k2/k^ and A—a2/a^ (8)



The fin approximation is used to allow for heat loss from the wire (Beck, et. al. 
1988).

T2(ta+) - T2(nl exp(-BiAta+) (9)

where: Bi - 2ha/k2 (10)

Many of the Greens functions are in the form of infinite series; as time 
approaches zero, a very large number of terms are necessary for accurate 
evaluation. Time partitioning allows the use of semi-infinite solutions at 
early times. A more detailed explanation of time partitioning is found in 
Keltner and Beck (1987). The Greens functions are (Beck, et al. 1988):

Gx2l(0,ta+/0,ra+) - A-l/2 i {)r(ta+-ra+))-l/2 for ta+-ra+<.022(i+)2 (11a)
cL

- | J^xp {-cm2(ta+-ra+)/(i+)2} for ta+-ra+>.022(i+)2 (11b)

where: cm - jr(m-l/2) (11c)

Gx22(0.ta+/0,T'a+)
-7 {*(ta+-ra+))-1/2 for ta+-ra+<.l(I+)2 (12a)

Si

- i {l+2exp[-»r2(ta+-ra+)/(L+)2]+2exp[-47r2(ta+-ra+)/(L+)2]) for ta+-ra^. l(L+)2

Gx22(L.ta+/0,ra+)
- 0 for ta+-ra+<.02(L+)2 (13a)

{1+2 i - (-l)mexp[-m2jr2(ta+-ra+)/(L+)2]) for ta+-ra+>.02(L+)2 (13b)
m- j.

Jr-0Jr'-0Gro1^r’ta+/T' >Ta+ ^r*rdr’dr (14a)

- for ta+-ra+<(b+-1)2/12 (14b)

" ^ mil ^3e*P[- ^°^+)2<ta+-fa+) 1 for ta+-ra+>(b+-1)2/12 (14c)

^O(^m) “ Gwhere:



(15a)

Jr'_oJ^-0Gr01(r’ta+/r'>ra+)r'rdr'dr

" T J1”exp(2(ta+-ra+)) [l0 (2(ta+-ra+)] + 11 (2(ta+-ra+)] ] }

for ta+-ra+<(b+-1)2/12
- |=1 exP t" (^mA)+)2(ta+‘ra+) ] for ta+-ra+>(b+-1)2/12 (15b)

Jr-oJr' -0Gro2 (r ’ta+/r' > 'ra+) r' rdr' dr

- 2^: for all ta+-ra+ (16)

Jr-oJr'-0Gro2(r’ta+/r'>T a+)r'rdr'dr

- — {l-exp(2(ta+_Ta+)] [l0 (2(tai.ra+)) + X1 (2(ta+-ra+)) ] }

for ta+-ra+<(b+-1)2/12
a2 A , I“ ^ {b^ + 4 m2]

for ta+-ra+>(b+-l)2/12 
where: Jl(7m) “ 0

kd)} (17a)

a+) ]} (17b)

(17c)
m - 1, 2, 3, 4 . 

The non-dimensional form of Eq. 1 is:

or
q0+ - 1/B{T2+-T1+-1)

q0++ - 1/B{T2++ - T1++}

(18a)

(18b)

The Laplace transforms of Eqs. 5, 7, and 18 are taken; Eqs 5 and 7 are 
substituted into Eq 18. The resulting equation can be solved for heat flux at 
the interface. From this solution and Eq 7, T2+(ta+) or T2++(ta+) can be 
determined. The Gaver-Stehfest method of numerical inversion is used 
(Stehfest, 1970).



A Fortran model was developed using this formulation. Variables effecting 
the behavior of the response of the thermocouple are geometric parameters (b+, 
L+, and i+), thermophysical properties (K and A) and heat transfer 
characteristics (Bi, and 1/B). The effect of varying these parameters can be 
examined with the model.

Case 1 - Volumetrically heated, insulated boundary gage

A gage which undergoes impulsive, volumetric heating or a step change of 
the disk temperature with an insulated boundary at r=b and a very long wire is 
a good model of a flash x-ray calorimeter. Using such a model the effects of 
different parameters can be determined. The error associated with the 
measurement is for this gage is the difference between the value of T2+ and 
unity.

By using very large values of b+ and L+, this model can also be used for a
wire attached to a semi-infinite body which undergoes a step change in
temperature. The semi-infinite response for the present model is compared with 
the response for the same conditions (K-A-l, l/B=Bi=0) from Keltner and 
Beck (1983) in Figure 2. The maximum difference between the responses from the 
two models is 3% which occurs at ta+-0.5.

Figure 3 shows the effect of the ratio of the disk thickness to the wire
radius on the response of the thermocouple. These responses are for the
similar metals (K-A-l) with no heat loss from the wire and perfect contact at 
the interface. The response for L+ values ranging from 0.2 to 5 are compared 
to the response for an ideal intrinsic thermocouple attached to a semi-infinite 
body. The boundary at x-L begins to affect the response of the wire at 
ta+-0.1L+2. The response does not vary significantly from the semi-infinite 
response until approximately an order of magnitude longer, however. For large 
disk-to-wire radius ratios and L+ values greater than 10, the response 
approaches the case of an ideal intrinsic thermocouple attached to a semi­
infinite body; the maximum difference between the response for L+-10 and the 
semi-infinite response is 0.15%.

Eventually, energy conducted from the disk into the wire will affect the 
response. This effect is dependent upon the combination of L+ and b+. One 
method of examining this effect is to hold L+ constant and vary b+. For L+-=2 
and b+ values ranging from 20 to 1000, the heat loss from the disk begins to 
have an effect at approximately ta+-(b+-l)2. Figure 4 shows the response for 
disks with these geometric parameters, with K=A=-1, no contact resistance or 
heat loss from the wire. The temperature of the disk would become equal to 
that of the wire at very late times.

Material property effects are shown in Figure 5 for an ideal intrinsic 
thermocouple (1/B-0) with no heat loss from the wire (Bi*=0) attached to a disk 
with the following geometric properties: L+=2, b+=1000, approaching 
infinity. The response is much slower for larger values of K/iA . The very 
long time response is unity for all values of K/fA , however

Heat lost from the thermocouple will also drive the response to zero. The 
effect of varying rates of heat loss (values of Bi) from the wire for a gage 
with L+-2, b+-100, no contact resistance (1/B-0), and made from similar 
materials (K-A-l) is shown in Figure 6. At early times, the heat loss has 
little effect. As the wire heats, this loss becomes more important and the 
response falls below the zero loss case.



Case 2: Surface Heated, Insulated Boundary Gage

A gage which is heated by a constant flux at its surface (L+-l) and is 
insulated at the radial boundary (r-=b), represents a thin skin calorimeter.
Such calorimeters are frequently used in wind tunnel testing. They have the 
advantage of being easy and inexpensive to construct. The ideal response of 
such is a gage is a linear increase of temperature following a short transient.

One design for a thin skin calorimeter consists of a 36 gage (.127 mm) 
type K thermocouple (chromel/alumel) intrinsically attached to a 1 mm 304 
stainless steel plate. The wire is very long compared to its diameter. (This 
design was taken from Keltner and Bickle (1976).) The resulting value of L+ is 
15.7 with b+ and i+ very large. For the chromel wire, K“1.13 and A-1.27; 
whereas for the alumel wire K-1.75 and A-1.88. The gage is considered to have 
no interfacial resistance to heat flux (1/B-0) or heat loss from the wire 
(Bi—0).

The resulting responses are shown in Figure 7. Also given is the ideal 
temperature or the average non-dimensional temperature for the substrate over 
0^r<a if no wire was present. A value of ta+ of 1000 represents a real time of 
approximately 1 second for this gage design.

The ratio of the actual response to the ideal response is considered to be 
the difference between the error and unity. This value is given in Figure 8.
At ta+-1000, the error is 3% for the chromel wire and 4% for the alumel wire.

Case 3: Surface Heated Constant Temperature Boundary Gage

A thin foil (Garden) heat flux gage can be represented by a gage which 
experiences surface heating and has a constant temperature at the radial 
boundary (r-b). Such gages often consist of a copper wire attached to a 
constantan disk (K-16.1, A-17.0). Typical geometric parameters are L+-1.875, 
b+-45, and 2+-90.6 for a wire radius of 0.0016 in. The response for such a 
gage is compared to the ideal response in Figure 9. The gage achieves a steady 
state response at ta+-3000 which corresponds to an real time of 0.75 seconds. 
For a 30 W/cm^ flux, the steady state value of 215 represents a 120 “C 
temperature difference between the center of the disk and its edge. The ratio 
of the response to the ideal response is shown in Figure 10. The ratio of the 
steady state response to the ideal steady state response is 0.794.

Keltner and Wildin (1974) analyzed a gage with the same parameters. The 
normalized responses (the response divided by the steady state response) are 
compared in Figure 11. Although the normalized are similar, the present model 
predicts a ratio of the steady state response to the ideal steady state 
response of 0.794 compared to a value of 0.830 for Keltner and Wildin (1974). 
The difference in steady state values of 4.3% may be due to the fact that 
Keltner and Wildin (1974) used the centerline temperature the average over the 
interfacial area.

Summary

Using the unsteady surface element method and Greens function integral 
equations, a model has been of a thermocouple attached to a thin disk has been 
developed. The model can be adapted to a variety of heat flux gages by varying 
flux and boundary conditions. Varying a few geometric, thermophysical, or heat 
transfer properties allows to model to be applied to many different situations.



Nomenclature

a - wire radius 
A - thermal diffusivity ratio
- «2/«l

b - disk radius
b+ - disk radius to wire radius ratio

- b/a
B - contact Biot modulus
- ha/ki

Bi - lateral surface Biot modulus
- 2hca/ki 

cm - jr(m-l)
Gr - radial Greens function 
Gx - x-direction Greens function 
h - contact heat transfer coefficient 
hc - lateral heat transfer coefficient 
J - Bessel function 
k - thermal conductivity 
K - thermal conductivity ratio
- k2/k1

£ - wire length
£+ - ratio of wire length to wire radius

- 1/a
L - disk thickness

L+ - ratio of disk thickness to wire radius
- L/a

qO - heat flux at the disk/wire interface 
q+ - dimensionless heat flux, Eq ?? 

q++ - dimensionless heat flux, Eq ?? 
qL - heat flux at surface x**L 
r - radial coordinate 
s - Laplace transform coordinate 

T+ - non-dimensional temperature, Eq. ?
T++ - non-dimensional temperature, Eq. ?

Greek Symbols

a - thermal diffusivity 
/3m - roots of Jo (An)-0 
7m - roots of Jl(7m)“°

Subscripts

1 - related to the disk
2 - related to the wire

j,i - initial value of a parameter for body j 
nl - no heat loss from the wire
nw - value of a parameter if wire is not present 
ss - steady state value of a parameter
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