

DOE/ID/12772-1

(DE89009028)

Distribution Category UC-310

EVALUATION OF COMMERCIAL ENHANCED
TUBES IN POOL BOILING

Topical Report

by
C. Jung
A. E. Bergles

March 1989

Work Performed Under Contract No. DE-FC07-88ID12772

Prepared for
U. S. Department of Energy
Idaho Operations Office, Idaho Falls, Idaho
Conservation and Renewable Energy
Office of Industrial Programs
Washington, DC

Prepared by
Rensselaer Polytechnic Institute
Troy, New York 12180-3590

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

50272-101

REPORT DOCUMENTATION PAGE		1. REPORT NO. DOE/ID/12772-1	2.	3. Recipient's Accession No.
4. Title and Subtitle EVALUATION OF COMMERCIAL ENHANCED TUBES IN POOL BOILING		5. Report Date March 1989		6.
7. Author(s) C. Jung, A. E. Bergles		8. Performing Organization Rept. No. HTL-2		10. Project/Task/Work Unit No.
9. Performing Organization Name and Address Heat Transfer Laboratory Department of Mechanical Engineering, Aeronautical Engineering and Mechanics Rensselaer Polytechnic Institute Troy, New York 12180-3590		11. Contract(C) or Grant(G) No. (C) DE-FC07-88ID 12772 (G)		13. Type of Report & Period Covered Topical
12. Sponsoring Organization Name and Address U.S. Department of Energy Idaho Operations Office Idaho Falls, Idaho		14.		
15. Supplementary Notes				
16. Abstract (Limit: 200 words) In support of a study of shellside boiling with enhanced tubes, a pool boiling apparatus was developed and used to test single tubes with various structured boiling surfaces in R-113. The basic design of the tube-bundle test section was carried out and certain critical design features were tested experimentally. Copper tubes, 3/4 in. o.d. and 4 in. long, were selected with 1/4 in. diameter cartridge heaters. Four thermocouples were inserted in 3/32 in. diameter, 2 in. long holes.				
The pool boiling characteristics of a plain tube agree well with previous tests. Wolverine Turbo-B tubes with small, medium, and large features performed identically for a heat flux greater than 20 kW/m ² . For lower heat flux, however, the Turbo-B S was slightly superior. In general, the Wolverine Turbo-B tubes had more favorable boiling characteristics than the single Wieland Gewa-T tube that was tested. The test procedure is deemed entirely adequate for screening enhanced tubes to see which ones should be used in the tube-bundle test section.				
Three different ways of mounting the tubes were tested in R-113 at 65°C and 5 bar gage pressure. As all three constructions sealed well, the simplest design is recommended in which a snap ring fixes the tube to the wall and an O-ring seals against the pressure. The general design features of the tube bundle test chamber are also presented.				
17. Document Analysis a. Descriptors Shell-and-tube heat exchangers Shellside boiling Enhanced tubes Pool boiling				
b. Identifiers/Open-Ended Terms				
c. COSATI Field/Group				
18. Availability Statement		19. Security Class (This Report) Unclassified	21. No. of Pages 135	20. Security Class (This Page) Unclassified
			22. Price	

Acknowledgments

This study was carried out for the U.S. Department of Energy under Grant DE-FC07-88ID 12772. The project monitors were Mr. Gary Peterson of the DOE Idaho Operations Office and Dr. Manohar Sohal of EG&G Idaho. Additional financial support and general assistance was provided by the RPI Heat Transfer Laboratory.

The work was submitted as a Diplomarbeit for the degree Diplom-Ingenieur at the Technical University of Munich, Federal Republic of Germany.

The authors are grateful to Mr. Petur Thors of Wolverine Tube, Inc. and to Mr. Klaus Menze of Wieland-Werke AG for providing the enhanced surfaces.

Table of Contents

	<u>page</u>
Abstract	2
Acknowledgments	3
Nomenclature	7
Introduction	9
I. <u>Construction Elements for a Pool-Boiling and a Tube Bundle Test Section</u>	14
1. The Instrumentation and the Heating of a Copper Tube	14
1.1. Given Variables	14
1.2. The Instrumentation with Thermocouples	15
1.2.1. Requirements	15
1.2.2. Constructions	15
1.3. The Heating with a Cartridge Heater	18
1.2.1. Requirements	18
1.2.2. Constructions	20
1.2.3. Commercial Cartridge Heater	21
2. The Mounting of a Tube to a Wall	22
2.1. Given Variables	22
2.2. Requirements	23
2.3. Constructions	23
3. The Chamber for the Tube Bundle in the Test Section	26
3.1. Given Variables	26
3.2. Requirements	28
3.3. Constructions	28

II. <u>Experiments</u>	32
1. The Pool-Boiling Experiment	32
1.1. Apparatus	32
1.2. Procedure	35
1.3. Tested Enhanced Tubes	38
1.4. Tested Arrangements	43
1.5. Results	47
1.6. Conclusions	67
2. Pressure Tests with Different Mountings of a Tube to a Wall	68
2.1. Apparatus	68
2.2. Procedure	68
2.3. Results and Conclusions	69
III. <u>References</u>	70
IV. <u>Appendix</u> (Pool-Boiling Experiment)	72
1. The Influence of the Power Supply, AC or DC	72
2. Calibration	72
2.1. Temperature	73
2.2. Low AC-Voltage	74
2.3. High AC-Voltage	76
3. Locating the Thermocouples	77
4. Error Analysis	80
4.1. The Uncertainty of the Heat Flux	81
4.2. The Uncertainty of the Wall Superheat	82
5. Properties of R-113	85
6. Software	86
7. Data A1 to A14	107

Nomenclature

A	tube surface area
AZ	arrangement Z of the pool boiling test section
d	tube diameter, including a surface enhancement
dT_{av}	uncertainty of the average tube surface temperature
$dT_{i,r}$	uncertainty of the temperature measurement with thermocouple i
dT_{pp}	uncertainty of the conduction temperature drop
g	$= 9.81 \text{ m/s}^2$, acceleration of gravity
H	height of liquid above the tube axis
I	current through the cartridge heater
L	tube length
q''	heat flux at tube surface, referred to diameter d
$q''_{\text{max,bundle}}$	maximum heat flux in the bundle
$q''_{\text{max,pool-b}}$	maximum heat flux in pool boiling
q''_{CHF}	critical heat flux
P	power dissipated in the cartridge heater
P_{max}	maximum required power of the cartridge heater
P_{atm}	atmospheric pressure
P_{hydr}	hydrostatic pressure
r	distance from thermocouple bead to tube axis
R	radius of the tube without surface enhancement
r_1	radius of the hole for the thermocouple
r_2	radius of the rod

r_{tcpl}	= 0.38 mm, radius of the thermocouple bead
R_{ch}	resistance of the cartridge heater
T_i	tube surface temperature, $i=1,..4$
$T_{i,r}$	measured thermocouple temperature (radius r), $i=1-4$
T_{av}	average temperature of the tube surface
T_{bath}	temperature of the water bath
T_{pool}	temperature of the pool
T_{sat}	saturation temperature of R-113
T_{WSH}	wall superheat
U	voltage measured at the cartridge heater
U_s	voltage measured at the shunt to determine I
U_{true}	true voltage at the cartridge heater
$U_{s,true}$	true voltage at the shunt to determine I

Introduction

The Overall Project

Shell-and-tube heat exchangers with shellside boiling are widely used in the process and air conditioning industries. Because the thermal resistance of hydrocarbons and refrigerants is quite low, even when boiling, it is desirable to use tubes with external structured boiling surfaces. Toward this end, the DOE Office of Industrial Programs has sponsored a program directed at the assessment of typical enhanced boiling surfaces.

Several commercial tubes are to be evaluated to enhance the common heat transfer modes that occur together or individually in shell-and-tube heat exchangers.

One issue is to systematically investigate the relationship between the performance of a single enhanced tube in pool boiling and in a tube bundle. In tube bundles, the convective crossflow through the bundle can increase the boiling heat transfer coefficients in the upper part of the bundle by as much as a factor of ten compared to a single tube in pool boiling. This "bundle effect" and other items, such as the initiation of boiling or the manner boiling spreads in a bundle, are to be explored to adapt basic data from a single tube and enable a scale-up (see Fig. 1). Bundles with both enhanced and plain surface tubes will be tested to optimize the ratio of the overall heat transfer coefficient to the pressure drop. It is planned to test three different tube types, the plain tube, the Linde High Flux and the Wolverine Turbo-B. The bundle consists of 68 tubes, arranged in a pitch (= distance between two tube axes/tube diameter)

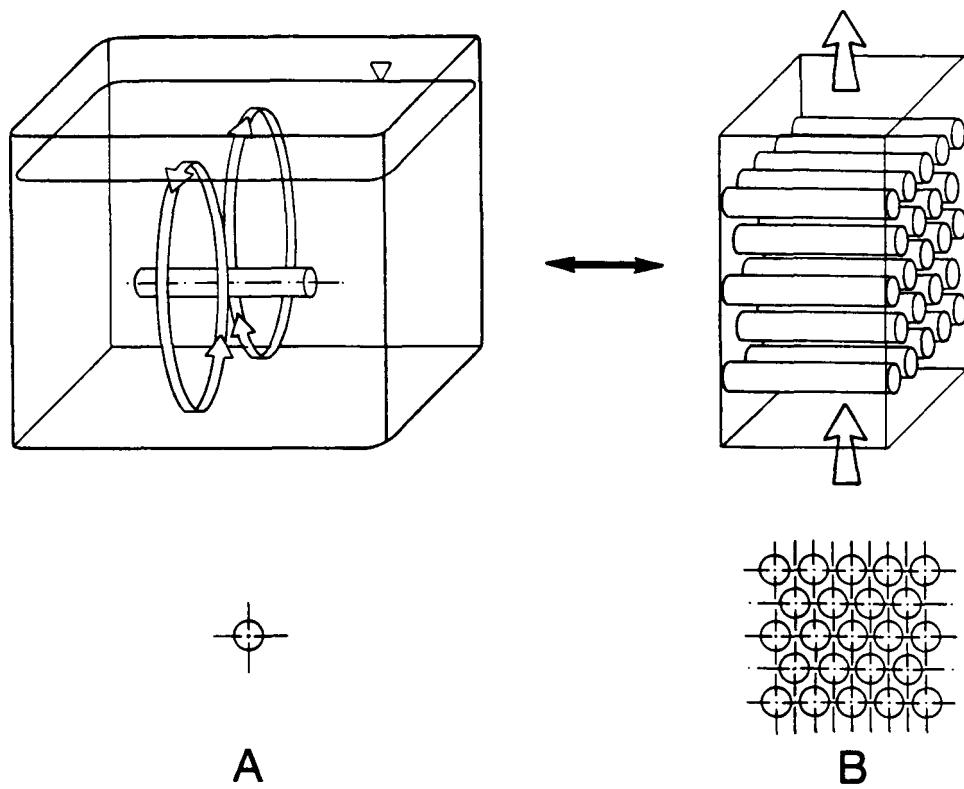


Fig. 1. Comparison of the flow pattern in pool boiling (A) and in a tube bundle (B)

of 1.17 or 1.5. The experience obtained in this study should result in a design algorithm (computer code) that can predict the performance of a full scale bundle.

Shellside boiling with multicomponent mixtures, typical for most industrial heat exchange processes, is to be investigated subsequently. Enhanced tubes maintain their advantage over plain tubes when boiling mixtures; however, the characteristics change. No studies have been performed so far to quantitatively determine the behavior of enhanced surfaces, especially in a mixture of volatile fluids.

Pool boiling fouling tests are conducted simultaneously to examine the problem of fouling, which is encountered in almost any industrial application. Contradictory former results and the inability to "design" a surface that would prevent or minimize fouling substantially impedes the commercialization of structured boiling surfaces.

Present Study

In this preliminary study some of the construction problems of the aforementioned project are delineated, and solutions are proposed and experimentally investigated.

This work has three goals:

1. to determine the best instrumentation method for a tube
2. to design and optimal mounting arrangement of a tube
3. to obtain reference data for single tubes in pool boiling.

Relative to goal 1, several methods of instrumenting a tube with thermocouples and an industrial cartridge heater have been used

in former, similar experiments [2,6,7]. However, none of them can be considered absolutely satisfying. Looking forward to three (or more) different sets of 68 tubes for each bundle, the question is, how expensive does the instrumentation method need to be to provide good results? Or, basically, do the thermocouples in the tube wall affect the steady state temperature measurements significantly? Also, is it worthwhile to provide an "optimal" contact between the cartridge heater and the tube to obtain a uniform radial heat flux, or is the heat flux from the cartridge heater too non-uniform already?

Relative to goal 2, in the tube bundle test section the tubes are mounted onto one wall, which makes it possible to handle them as a unit (see Fig. 2). Only two walls, for the two different pitches, will be manufactured. Therefore, the tubes should be easy to change. The mounting has to seal against pressure and the machining should be inexpensive and must not affect the structured tube surface. So the question is, how to mount the tube to a wall?

Finally, relative to goal 3, the pool boiling experiment provides the basic data for the aforementioned project. One setup is needed to obtain reference data for the bundle tests and a second one is required to run the fouling tests. Again, experience is available [2,6], but not completely satisfying. The test section must allow a controlled experiment to be conducted with perfect visual observation. The tubes must be exchanged easily. In general, the design should be flexible to allow modifications.

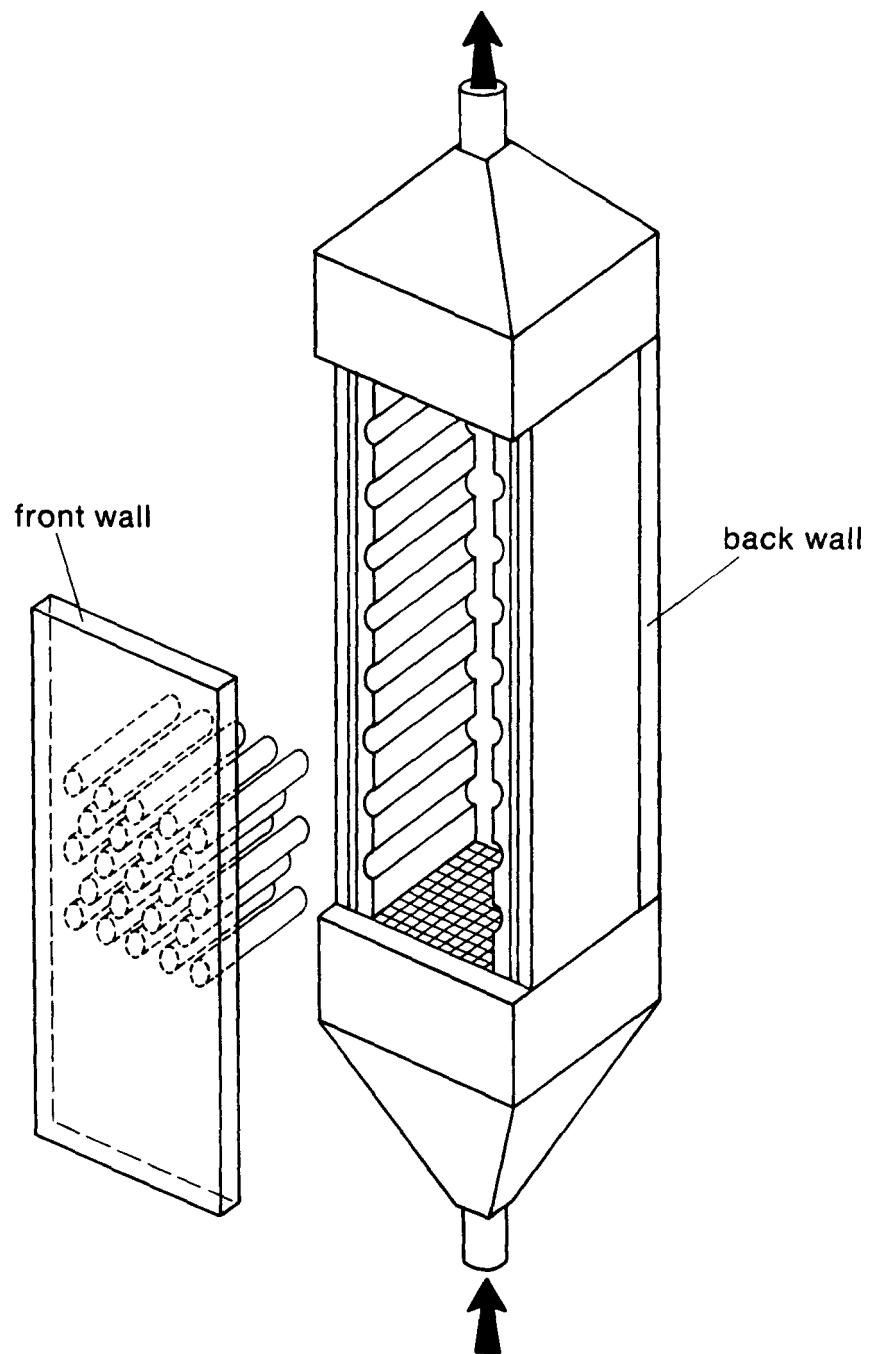


Fig. 2. Concept of the tube bundle test section

I Construction Elements for a Pool Boiling and a Tube Bundle Test
Section

1. The Instrumentation of a Copper Tube

1.1. Given Variables

The copper tube is 4" long and measures 3/4" o.d.

To achieve a uniform temperature distribution, the tube should have a thick wall. An inner-diameter-to-outer-diameter ratio of 2 is desired [1]. Therefore, a 1/4" or 3/8" diameter cartridge heater will be used.

The cartridge heater is press-fitted to provide a good heat transfer to the tube. Conductive grease may be added to fill a remaining gap. For a removal of the heater the tube must be open at both ends.

Four thermocouples in 12/3/6/9 o'clock positions measure the temperature in the middle of the tube wall. The thermocouple beads are located 2" deep so that the temperature readings are free from end effects.

The thermocouple wire necessitates a minimum 0.035" diameter hole.

1.2. The Instrumentation with Thermocouples

1.2.1. Requirements

The thermocouples should be as close as possible to the surface.

The holes for the thermocouple wires should be small to (1) prevent distortion of the heat flow in the copper and (2) to position the thermocouple beads accurately for a correction of the radial temperature drop to the tube surface.

The construction should provide easy, repeatable and cheap machining. The tube surface must not be affected.

1.2.2. Constructions

The general problem is the difficulty to drill a 2" deep, straight hole with a diameter smaller than 3/32" into copper.

Next listed are five different ways of instrumenting a copper tube:

- a. Two tubes are hard-soldered into each other. A groove, machined on the outside of the inner tube, accommodates the thermocouple (Fig. 3a) [3].
- b. Two tube halves are cut with wire-EDM (electric discharge machining). The grooves for the thermocouples are machined and

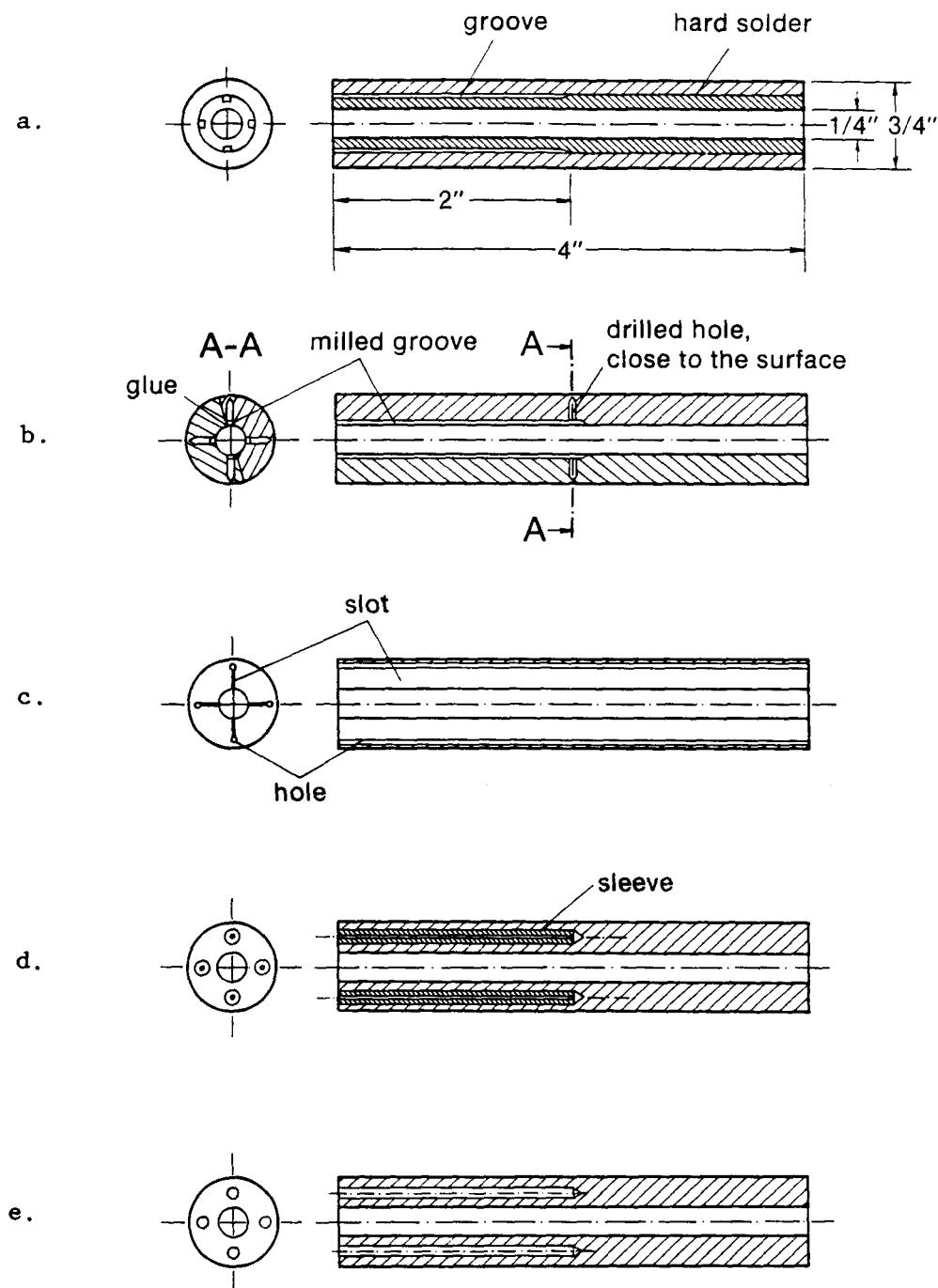


Fig. 3. Constructions for instrumenting a copper tube with four thermocouples

the halves are soldered or glued together (Fig. 3b).

- c. A thin gap and a hole for the thermocouples is cut from the inside of the tube with wire-EDM. Optionally, the gap can be closed afterwards by pressing in a piece of copper or by soft-soldering (Fig. 3c).
- d. The thermocouple lies in a plain well drilled into the tube wall (Fig. 3d) [4].
- e. A hole is drilled into the tube wall. It accommodates a small copper tube with the thermocouple inside (Fig. 3d).

To achieve good thermal conductance, the tubing can be

- soldered,
- inserted with a snug fit, and, optionally,
 - press-fitted for the first 1/4"
 - wetted with conducting grease.

The following table shows a comparison of the aforementioned constructions.

<u>feature</u>	<u>\ construction</u>	<u>a</u>	<u>b</u>	<u>c</u>	<u>d</u>	<u>e</u>
experience available		P	N	N	P	P
tube surface not affected	P1	N2	P	P	P	P
good circumferential thermal conductance		P	P	P3	P4	P
good radial thermal conductance	N5	P	P	P	P	P
good radial positioning	P	P	P	N	P	
thermocouple close to surface	N	P	P	N	N	
doesn't require wire-EDM	P	N6	N	P	P	
doesn't require soldering	N	P7	P7	P	P7	

index: P positive feature
N negative feature

1 must be soldered in
vacuum oven

2 nucleation sites in the contact area of the two halves

3 gap must be closed

4 only if hole is very thin

5 non-uniform soldering probable

6 could be manufactured out of two tubes, if not cut with
a wire-EDM

7 can also be soldered

Constructions c., d. and e. are chosen to be investigated in the
pool-boiling tests.

1.3. The Heating with a Cartridge Heater

1.3.1. Requirements

The cartridge heater used for the tests with R-113 is 4" long
and 1/4" in diameter. For later tests with water, we might have to
switch to 3/8" diameter to get higher power.

In the tube bundle the maximum heat flux $q''_{\max, \text{bundle}}$ through the tube surface will be in the intermediate range of nucleate boiling, whereas in the pool-boiling experiment this heat flux $q''_{\max, \text{pool-b.}}$ should be almost critical (q''_{CHF}) to obtain the full characteristic of the surface.

$$q''_{\max, \text{bundle}} = 4 \times 10^4 \text{ W/m}^2$$

$$q''_{\max, \text{pool-b.}} = q''_{\text{CHF}} = 2 \times 10^5 \text{ W/m}^2$$

Both values are taken from former pool boiling experiments with R-113 [2,7].

With a surface area A

$$A = d\pi L = 0.75\pi 4 \times 0.0254^2 = 0.00608 \text{ m}^2$$

the required maximal power P_{\max} of the cartridge heater can be calculated as

$$P_{\max} = q''_{\text{CHF}} A = 1216 \text{ W}$$

The heater can be ordered with 120V or 240V nominal voltage. A heater designed for a low voltage has three advantages:

- The coil is wound out of a thicker wire, which gives more security against a burn out.
- It is easier to overload the heater when the nominal power is

not sufficient.

- The insulation of the heater wire is less critical.

In particular, for the tube bundle tests the heater must be durable.

A cold area in the middle of the cartridge heater, as observed in former investigations [1], cannot be tolerated, because of the location of the thermocouples.

The contact to the tube should be

- thermally good, to keep the heater on a low temperature level and increase its lifetime
- uniform, to prevent hot spots.

The mounting arrangement must allow an easy exchange of the heater.

1.2.2. Constructions

There are three different possibilities to accommodate the heater inside the tube:

- a. The heater is press-fitted into the tube.
- b. Conductive grease is used between the heater and the tube wall.
- c. The heater is soldered into the tube.

The following table compares the constructions.

<u>feature \ construction</u>	<u>a</u>	<u>b</u>	<u>c</u>
thermally good, uniform contact	N1	P	P
easy to install/exchange heater	P	P	N2

index: P positive feature

N negative feature

- 1 the heater usually varies in diameter and is slightly crooked, which causes a non-uniform contact to the tube
- 2 requires a vacuum furnace to insure the tube surface does not oxidize during the soldering process.

Construction a. and b. will be checked in the pool-boiling tests.

The preference is for a.

1.2.3. Commercial Cartridge Heater

We checked two brands of 1/4" cartridge heaters, 4" long, with the highest power rate available:

- Indeeco, 400W and
- Durex, 500W.

Both heaters are designed for 120 volts. Pool-boiling tests with the plain heaters show a uniform temperature distribution in the middle, and cold ends about 1/4" long.

Three out of four Indeeco heaters burned at a power level even below the nominal maximal value. The problem seemed to be the

connection between the resistor wire inside the cartridge and the lead wire going out of the cartridge. Durex solved this problem by extending the resistor wire out of the cartridge and connecting it there to the lead wire. However, the stiff resistor wire tends to break when it is bent.

The Durex heaters could easily handle 750W power. Even a higher power might be possible if the temperature of the heater stays below approximately 150 °C.

2. The Mounting of a Tube to a Wall

2.1. Given Variables

One basic idea of the design of the tube bundle test section is to mount all tubes to one wall and handle this arrangement as a unit (as shown in Fig. 2).

The tubes must be positioned accurately and mounted perpendicular to the wall to insure a constant gap size between the tubes. The bundle with the smallest pitch of 1.17 limits the maximum available space for the mounting arrangement.

During the experiment the mounting must seal in R-113 up to 5 bar gage pressure.

The mounting arrangement used in the pool-boiling test section needs not fulfill the aforementioned criteria. However, a similar design is desirable. This would allow direct testing of a tube of

the bundle in the pool-boiling test section. The behavior of the liquid at the mounting could be studied in the pool, too.

2.2. Requirements

The tube must be easy to exchange.

Virtually any connection between a tube and a wall requires reduction of the tube diameter at that point. This diameter loss should be as small as possible to give room for the thermocouples, and enable use of a 3/8" cartridge heater (for later tests with water, which require a heater with higher power).

The sealing, featuring an O-ring or a gasket, should always be on the liquid side of the wall. Otherwise liquid trapped in the mounting starts boiling there.

The tube should be thermally insulated from the wall to minimize heat loss.

Facing approximately 4 sets of 68 tubes and 2 different walls (for 2 different pitches), the machining should be inexpensive.

2.3. Constructions

Four classes of constructions are listed next:

- a. The tube is threaded and is sealed with an O-ring (Fig. 4).

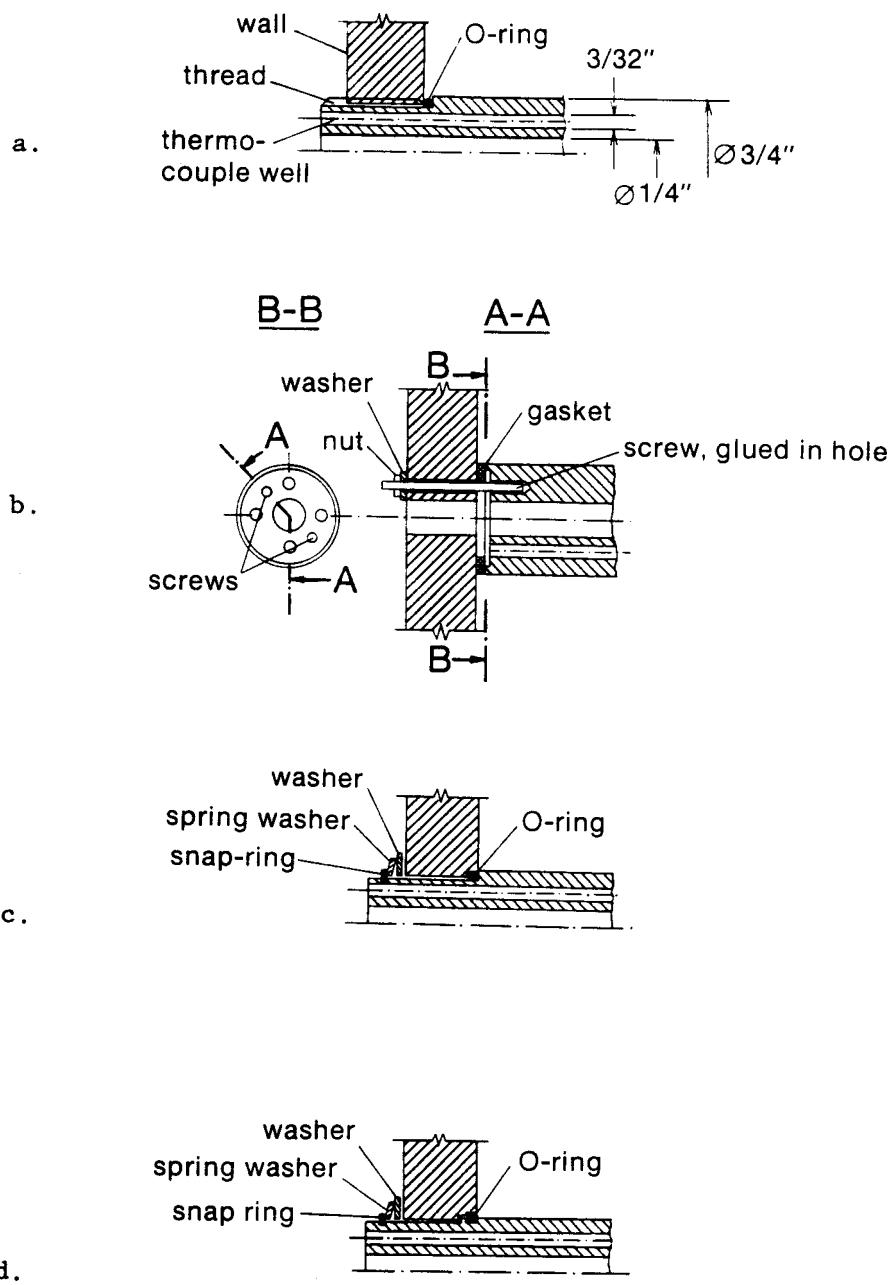


Fig. 4. Constructions for mounting a tube to a wall

- b. Screws are glued into two (or four) small holes at the front side of the tube. Nuts tighten the tube to the wall. A gasket provides the sealing (Fig. 4b).
- c. A snap ring pulls the tube against the wall. Thin washers are used to adjust the spacing. A machined groove in the wall accommodates an O-ring (Fig. 4c).
- d. Similar to c., a snap ring is used, however the arrangement of the features is different (Fig. 4d).

The following table shows a comparison of the aforementioned constructions.

<u>feature</u>	<u>\ construction</u>	<u>a</u>	<u>b</u>	<u>c</u>	<u>d</u>
accurate positioning		P	P	P	P
perpendicular to wall		P	N1	P	P
easy to exchange the tube		P	P	P	P
small diameter loss		N2	P	P	P3
no liquid trapped		P	P	N	P
tube thermally insulated		N	P	N	N
easy to machine the tube		N	P	P	P
easy to machine the wall		N	N	P	N

index: P positive feature

N negative feature

- 1 the tube sits undefined on the soft gasket material
- 2 can be improved using a very fine thread
- 3 smallest diameter loss possible

Construction b. is chosen for the pool-boiling tests. It provides a well defined area of the heat transfer from the tube to the liquid. The heat loss to the wall can be neglected. The positioning of the tube is not critical in this experiment.

For the tube bundle test section construction c. is considered best. According to an O-ring manufacturer the critical dimensions of the construction are shown in Fig. 5.

3. The Chamber for the Tube-Bundle in the Test Section

This chapter presents a basic concept of the tube bundle test section design. The construction element "side wall" is discussed briefly.

3.1. Given Variables

A staggered bundle of 68 ($=8*5+7*4$) tubes is mounted to one wall and inserted as a unit into the open box of the test section (Fig. 2).

The far tube ends contact the box to guarantee a proper flow

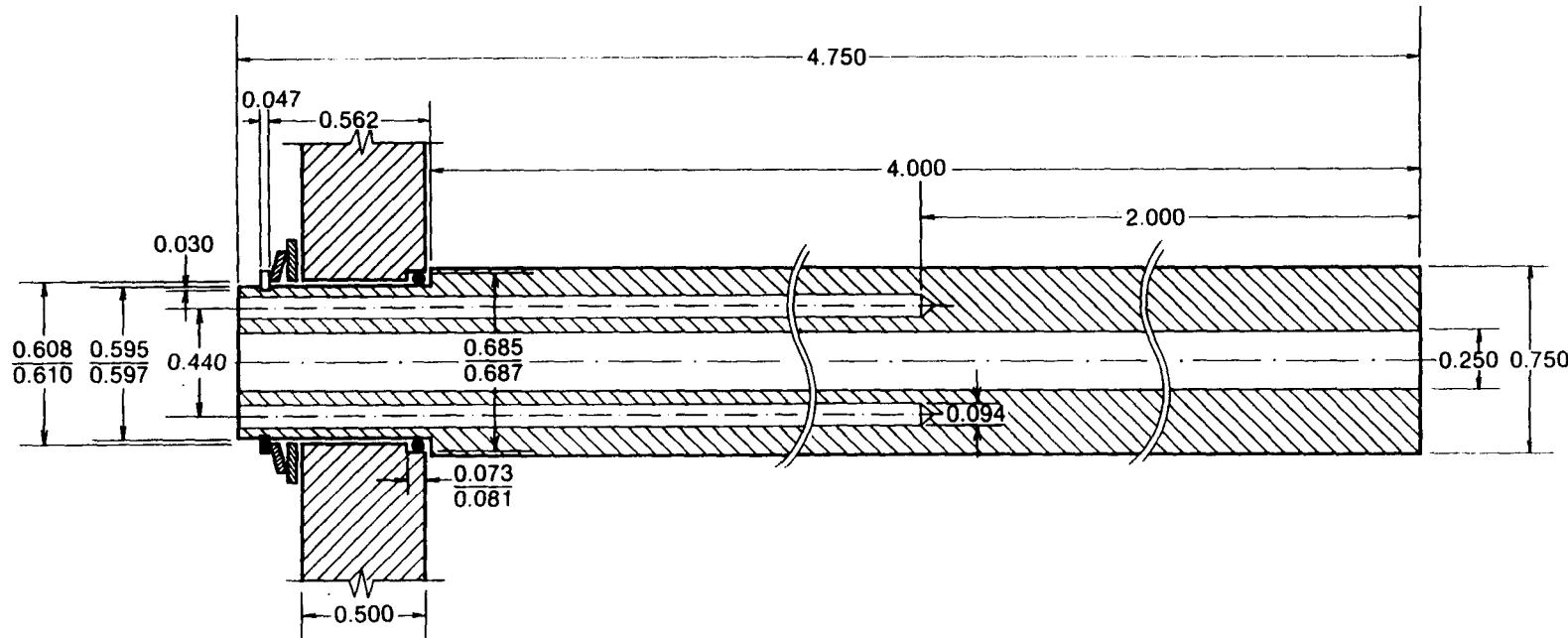


Fig. 5. Dimensions (in inches) of a mounting arrangement,
featuring an O-ring and a snap ring

pattern.

The working fluid is R-113. The chamber must withstand 5 bar gage pressure.

3.2. Requirements

The side walls of the box cover half of the outside tubes and reduce or prevent a flow between the tube and the wall. This should minimize wall effects.

The side walls should be adjustable to different tube diameters and should work with rough, enhanced tube surfaces. Slightly crooked mounted tubes should be tolerated. Thermal insulation is desirable.

Windows, which allow an observation of the flow pattern, should be built in, at least at the back side of the chamber.

3.3. Constructions

The chamber consists of a containment and two exchangeable side walls (as shown in Fig. 6). These side walls separate the problems (1) to seal the chamber and (2) to adjust for different tube types and pitches:

1. The containment, together with the wall for the tube bundle, forms the pressure vessel.

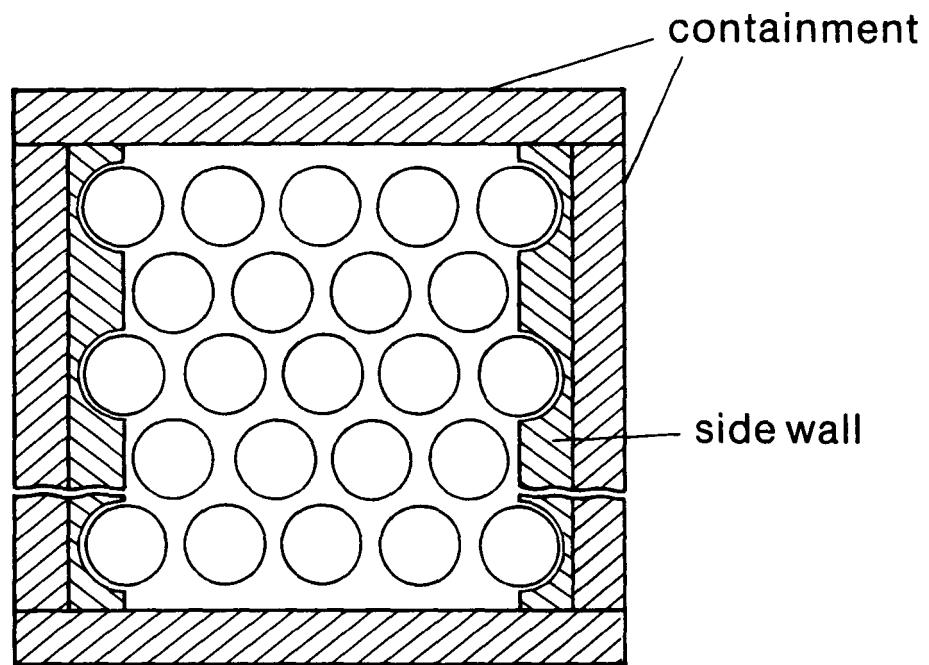


Fig. 6. The chamber of a tube bundle test section

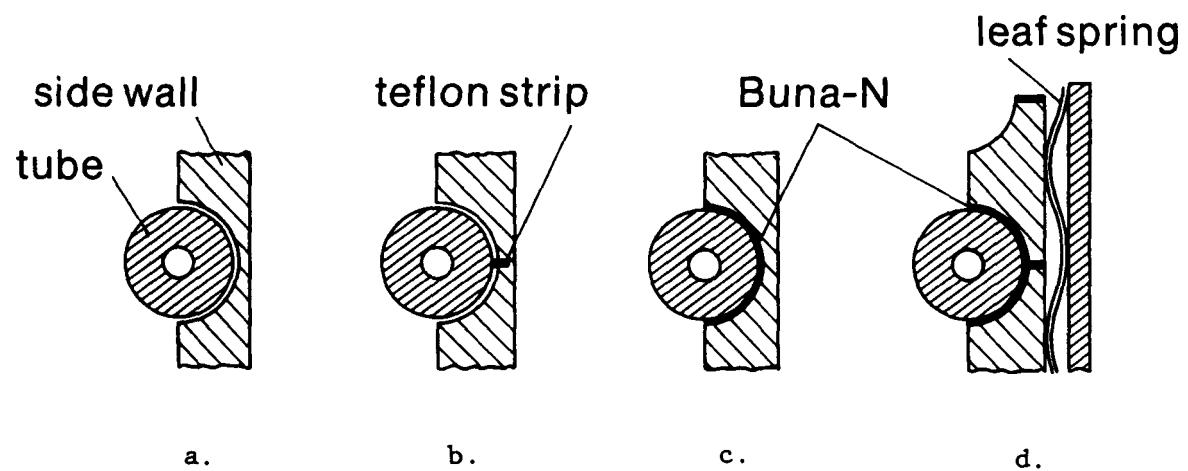


Fig. 7. Construction a.-d. of the side wall of the chamber

2. The side walls cover half of the tubes and produce the proper flow inside the chamber. They can be exchanged for different tube types and different pitches. A construction feature that moves the wall provides an easy insertion of the bundle and subsequent snug fit to the outer tubes.

Four possible constructions for the side walls are mentioned here:

- a. The tubes reach into side walls with plain half-round shaped grooves (Fig. 7a).
- b. Similar to a., but with adjustable teflon strips (Fig. 7b).
- c. Similar to a., but with a layer of a soft gasket material (e.g. Buna-N) (Fig. 7c). In this construction the side walls must be movable.
- d. Similar to c., but designed as a chain with soft joints (out of Buna-N), leaf springs and a second plate (Fig. 7d).

The following table shows a comparison of the side wall constructions.

<u>feature</u>	<u>\ construction</u>	<u>a</u>	<u>b</u>	<u>c</u>	<u>d</u>
no flow between tube and wall		N	P	P	P
no liquid between tube and wall		N	N	P	P
side wall needs not to be movable		P	P	N	N
tolerates crooked mounted tubes		N	N	N	P

index: P positive feature

N negative feature

Construction d. is the most sophisticated one, which, however, might cause problems to manufacture. We recommend to start with construction a. and, if necessary, modify this approach.

The parts are manufactured out of 3/8" thick stainless steel or brass plates to prevent bending under pressure and to withstand corrosion in the hot freon.

The front wall, carrying the tubes, is screwed to the rest of the containment, which is soldered together. An O-ring, pressed into a groove, provides sealing.

One option could be to manufacture the back wall out of a transparent plate. If tempered glass is too expensive, a softer material like Lexan could be used, having a metal support grid in addition.

On the far end of every tube a soft disc with the same diameter as the tube is glued on. This disc seals the gap between the tube and the back wall of the chamber. The material could be Buna-N.

II. Experiments

1. Pool-Boiling Experiment

1.1. Apparatus

The plain copper tube is horizontally attached to a plate, which is positioned inside a pool filled with R-113 (as shown in Fig. 8). The pool sits in a bath where water circulates in a loop with an external, temperature controlled source. Both chambers, the pool and the bath, are made out of glass (Pyrex, 238x181x324 mm, cat# 6944-11L and 308x308x305 mm, cat# 6944-23L), to allow perfect visual observation. A coil (20 windings of a 1/4" copper tubing, 40 mm in diameter), cooled with tap water on the tube side, is installed underneath the cover of the pool to condense the freon vapor. An open Graham condenser (Pyrex, Krackeler Scientific, Inc., cat.# 2540-300) at the top insures atmospheric pressure in the chamber vapor space.

The freon level must be at least 4 cm underneath the copper coil to guarantee that no liquid directly cools down when the pool is highly agitated.

The tube, 3/4" o.d., 4" long, is heated with a 1/4" cartridge heater (Durex, 500W, 120V) supplied with AC power. A press fit, with 0.002"-0.004" tolerance, provides a good, homogenous heat transfer without soldering. However, it requires the tube to be open at two

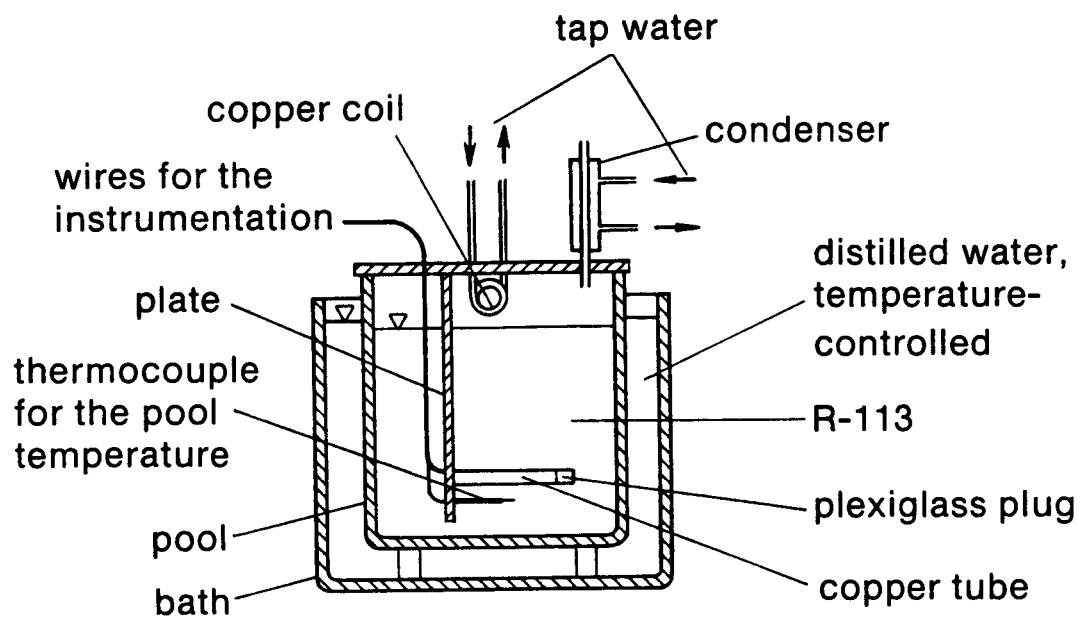


Fig. 8. Pool boiling test section schematic

ends for removal of the heater. The tube is mounted to the plexiglass plate with two screws (as shown in Fig. 3b). A plexiglas plug, 1" long, 3/4" o.d., insulates the far end and extends the tube to prevent turbulences. This design insures a well-defined area for the heat transfer to the liquid. The heat loss through the tube endings is negligible. The entrances of all holes are closed with epoxy (Devcon Corp., 5 Minute Epoxy) to keep the freon out.

Prior to running, the test section is cleaned with alcohol to ensure cleanliness.

A HP-3241 data acquisition system together with a HP-310 personal computer read the data:

- 4 temperatures in the tube wall: $T_{1,r}$, $T_{2,r}$, $T_{3,r}$ and $T_{4,r}$, located in the 12/3/6/9 o'clock positions
- the pool temperature T_{pool} , measured under the tube
- the bath temperature T_{bath}
- the voltage U at the cartridge heater
- the voltage U_s at the shunt, which is in series with the cartridge heater to measure the current I .

The data acquisition system is calibrated for temperatures, the voltage U and the voltage U_s (as described in IV.2). Temperatures are measured with copper-constantan thermocouples (ANSI type T, Teflon insulated, AWG 36, Omega Engineering, cat# TT-T-36).

The atmospheric pressure in the room is determined with a precision mercury manometer. A second precision manometer verifies that the gage pressure between the room and the freon vapor inside the tank is negligible.

1.2. Procedure

First the system must be degassed. To achieve this, the pool is heated up to saturation temperature through the temperature controlled water jacket and the tube pre-boils with a heat flux of about $3 \times 10^4 \text{ W/m}^2$ for at least half an hour.

Next, we turn the power of the heater off and wait until the thermocouples in the tube wall indicate that the saturation temperature of the freon and the system is stable.

Then the experiment starts. The heat flux is increased stepwise from 0 to $1.4 \times 10^5 \text{ W/m}^2$, and then is decreased again to get data points for the pool-boiling curve: heat flux q'' versus average wall superheat T_{WSH}

$$q'' = (UI)/A$$

$$T_{WSH} = T_{av} - T_{sat}$$

$$T_{av} = (T_1 + T_2 + T_3 + T_4)/4$$

$$T_i = T_{i,r} - [q''R/k] \ln(R/r) \quad , \quad i = 1, \dots, 4$$

$$T_{sat} = f(p = p_{atm} + p_{hydr})$$

$$p_{hydr} = \rho g H$$

The power UI , dissipated in the cartridge heater, divided by the surface area A of the tube gives the heat flux q'' . T_{av} is the average value of the tube surface temperatures T_1 to T_4 , which are obtained by correcting each thermocouple temperature $T_{1,r}$ to $T_{4,r}$ for the radial temperature gradient between the thermocouples and the tube surface. As a simplification one-dimensional conduction is assumed. The distance between the thermocouple bead and the tube axis is estimated as r and the radius of the tube surface without enhancement as R . The saturation temperature T_{sat} , a function of pressure (atmospheric plus hydrostatic), refers to freon at the level of the tube axis, a height H beneath the liquid surface.

Data are taken when the system is stable, which is defined that none of the measured variables (see I.1.1.) changes more than 0.1% within 30 seconds. This check also makes sure the fluctuations of the data acquisition system readings are small.

Note, there is a steady, "blind" heat flow from the water bath to the freon to the environment. This occurs because the condenser always tends to cool too much, to make sure no freon vapor is leaking. The "blind" heat flow should be as small as possible. It can be regulated by (1) the temperature of the water bath and (2) the flow rate of the tap water running through the condensers (copper coil and Graham condenser). These two parameters determine the pool temperature, which adjusts at a level to equal the heat

flow from the bath and the heat flow to the environment (tap water and air). The pool temperature can be below or even above the saturation temperature of the freon. If the bath temperature is too high, or the flowrate is too low, the pool can superheat several degrees. This is possible, because the smoothness of the glassy pool wall impedes the liquid to find nucleation sites and remove the heat by evaporating. It is found that a bath temperature of about 1.5 °C above the saturation temperature of the freon and a tap water flow rate of 0.1 l/min establish saturation inside the pool.

1.3. Tested Enhanced Tubes

In the present study four different enhanced surfaces are tested, the Wolverine Turbo-B S, M, L and the Wieland Gewa-T Bl. The tubes are made out of copper.

The surfaces of the Turbo-B tubes are provided by successive cross-grooving and rolling operations performed after finning. The general appearance is a grid of rectangular flattened blocks that are wider than the fins and separated by narrow openings between the fins and narrow grooves normal thereto [13]. The finning and the cross-grooving operations are supposed to be the same for the three tube types manufactured especially for this study. The final rolling operation, however, is different for the Turbo-B S, M and L and provides small, medium or large mushroom-shaped fins, respectively. The resulting openings are supposed to be both larger and smaller than the optimum minimum pore size for nucleate boiling of freon.

Fig. 9a and Fig. 9b show photo-micrographs of typical cross sections of the tube surfaces cut in the axial direction and normal thereto, respectively. A statistical analysis of the important dimensions could not be done in this study because the produced surfaces are rather irregular.

The Wieland Gewa-T is manufactured by a somehow similar process; however, compared to the Turbo-B, it does not have cross grooves, the number of fins per unit length is less and the fin geometry appears to be very regular. This standard surface from Wieland has been rather thoroughly investigated in former studies

[11,14]. The surface structure is shown in Fig. 9c [11].

Below are listed the measured major dimensions for the aforementioned enhanced tubes. The data for the Turbo-B tubes pertain to the cross sections shown in Fig. 9a and Fig. 9b.

<u>type</u>	<u>o.d. (mm)</u>	<u>r.d. (mm)</u>	<u>gap (mm)</u>	<u>fins/m</u>	<u>g.d. (mm)</u>	<u>cross g.</u>
Turbo-B S	19.14	18.06	0-0.11	1890	0.16	80
Turbo-B M	19.14	18.04	0-0.11	1890	0.13	78
Turbo-B L	19.16	17.96	0-0.11	1660	0.13	83
Gewa-T B1	18.88	17.24	0.25	770	-	-

Here, the following comments apply:

- o.d. outer diameter of the tube including the enhancement
- r.d. maximum (root) diameter of the tube without the enhancement
- gap distance between the fins at the fin mouth
- fins/m number of fins (windings) per m, axially measured
- g.d. depth of the cross grooves
- cross g. number of cross grooves per winding, circumferentially measured

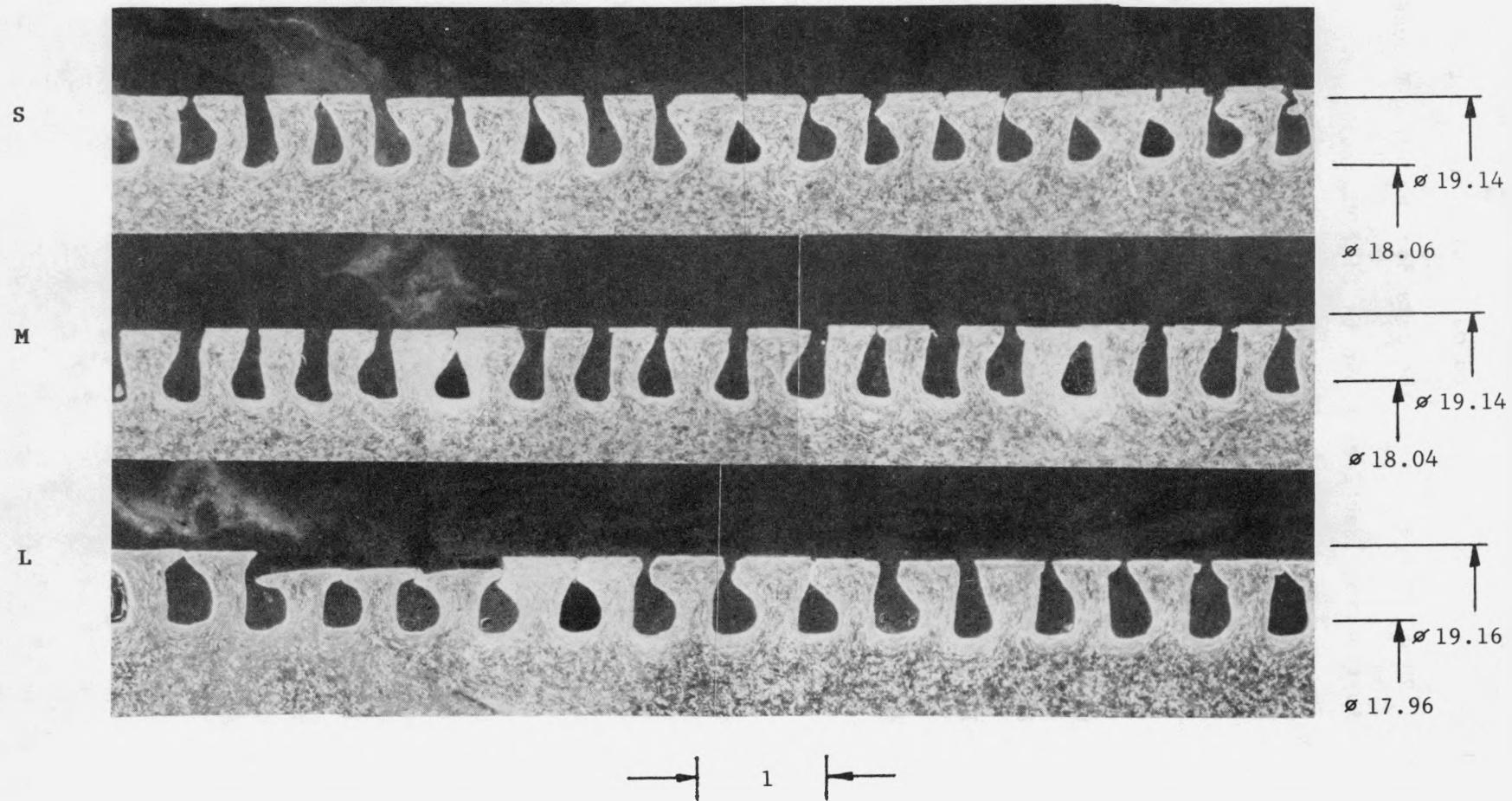
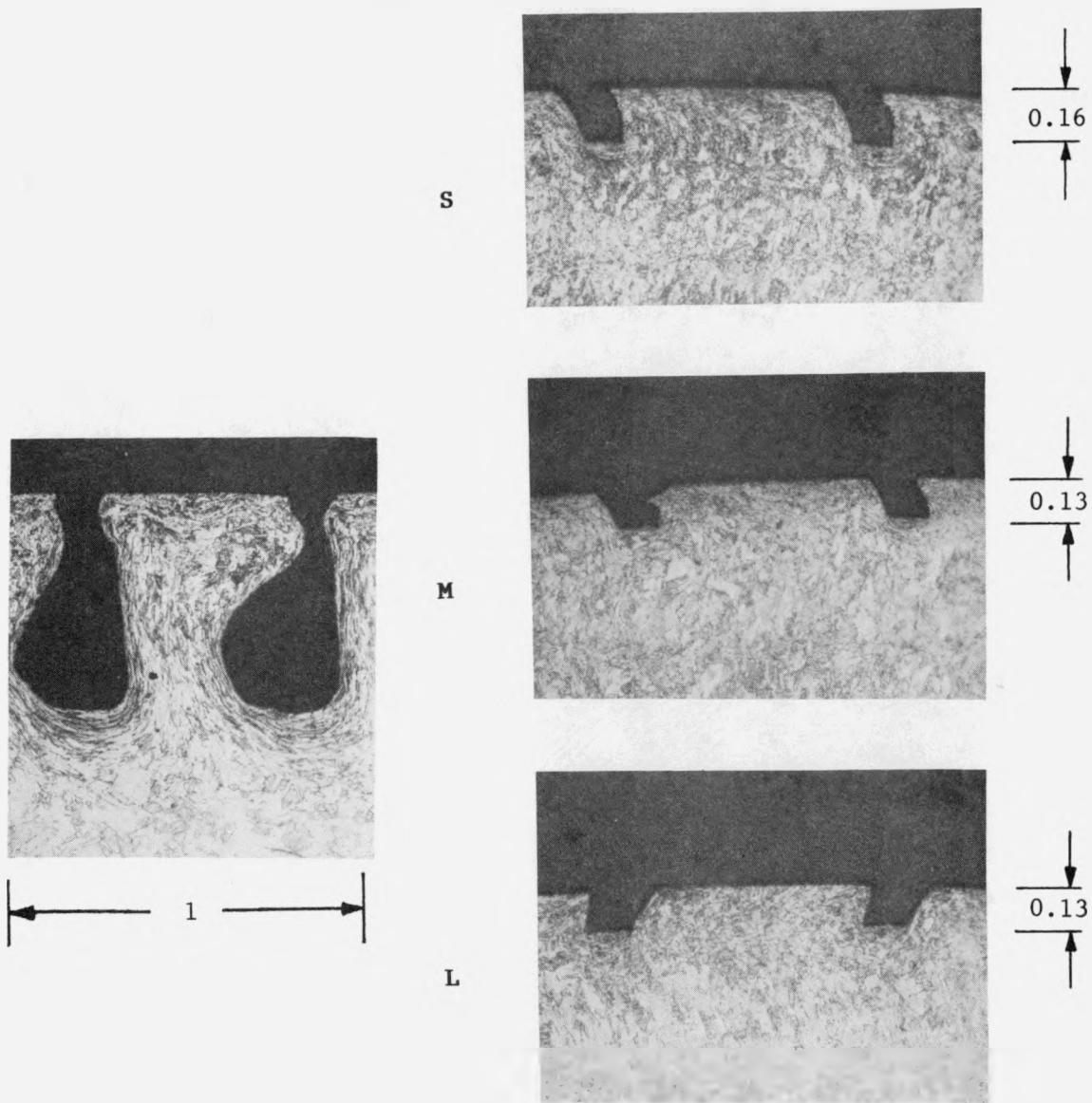



Fig. II.1.3.a.: Cross section of the Turbo-B S, M and L cut
axially (enlarged 20x)

Fig. II.1.3.b.: Cross section of the Turbo-B S, M and L cut normal to the axes, compared to an axial cut of the Turbo-B M (all enlarged 50x)

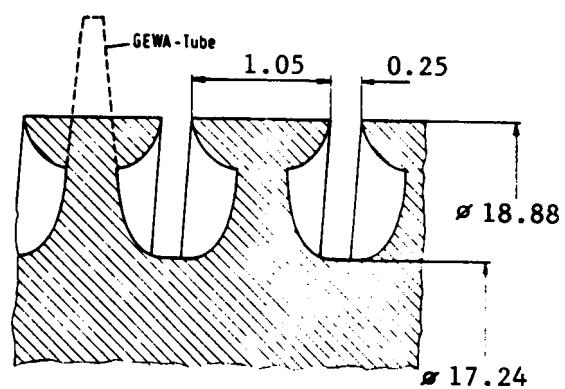


Fig. 9c. Cross section of the Gewa-T B1 cut axially

1.4. Tested Arrangements

A plain tube is tested with 10 different arrangements:

- A1 One tube end is fixed to a plate; the far end has an extension plug and is free. The thermocouples lie in copper sleeves (1/8" o.d., 1/16" i.d.), which snugly fit into the tube wall (as shown in Fig. 3c). The tube surface is polished with 600 grit paper.
- A2 Similar to A1, but a second plate is placed symmetrical to the first one, at the far end of the tube (as shown in Fig. 10) to force a two-dimensional flow pattern.
- A3 Similar to A1, but the tube surface is polished with a 100 grit paper.
- A4 Similar to A1, but the thermocouples are accommodated in plain wells with 3/32" diameter. No sleeves are used (as shown in Fig. 3d).
- A5 Similar to A4, but the tube surface is highly polished with Crocus paper.
- A6 Similar to A4, but with conductive grease between the heater and the tube.
- A7 Same as A4.
- A8 Similar to A1, but the thermocouples lie in slots, which are almost touching the tube surface (as shown in Fig. 3c).

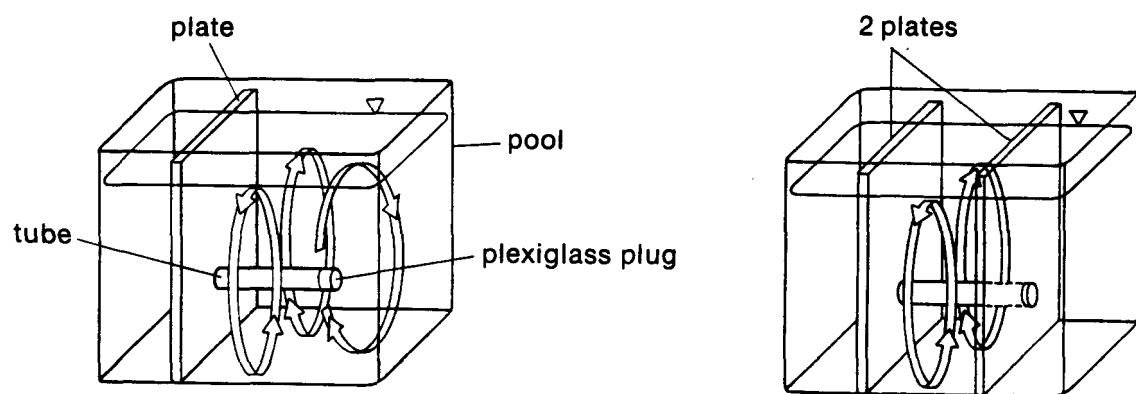


Fig. 10. Flow pattern in pool boiling with one plate and two plates

The slots are left open.

A9 Similar to A8, but the slots are closed with solder.

A10 Similar to A9, but the tube is rotated for 180 degrees around its axis.

Four different enhanced tubes, the Wolverine Turbo-B S, M, L and the Wieland Gewa-T B1 are tested in the present study. The arrangement chosen for the Wolverine Turbo-B tubes is similar to A1; however, the sleeves used to accommodate the thermocouples measure 0.093" o.d. and 0.036" i.d..

A11 Turbo-B S

A12 Turbo-B S

A13 Turbo-B L

The Wieland Gewa-T B1 has slots machined with wire-EDM, which, different from the plain tubes (A8-A10), only reach into the middle of the tube wall.

A14 Gewa-T B1

All tests are conducted with the same equipment. We assume an exchange of the cartridge heater may change the temperature distribution, but not the average temperature of the tube wall.

The wells for the thermocouples in arrangement A4-A7 could be drilled with a thinner drill bit than 3/32". However, we found out

that to use a significantly thinner drill bit, like a 3/64", e.g., takes much more time to drill, causes a much higher risk to break the drill bit and often produces a crooked hole.

The wells for the Turbo-B tubes (arrangement A11-A13) are drilled in two stages. For the first 1.5" depth we use a #40 drill bit, which is slightly bigger than 3/32". The remaining 0.5" is drilled with a 3/32" drill bit. This method allows a faster in/out movement of the drill bit when drilling the second part of the well.

The thermocouples are accommodated in custom-made sleeves with 0.093" o.d. and 0.036" i.d., mainly to provide an accurate positioning of the thermocouple bead to reduce the uncertainty of the temperature measurement (as explained in IV.5.). These sleeves have not been available for earlier tests with plain tubes. However, the improvement there is not that crucial because the plain tube operates at a higher temperature (compared to the enhanced tube), thus the relative error of the temperature reading is smaller.

The inner diameter of the Turbo-B S, M and L tubes measure 0.266", 0.261" and 0.261", respectively, instead of 0.249", the diameter we ordered. A 0.005" thick copper sleeve (of shim stock) reduces the inner diameter of these tubes and provides a proper heat transfer from the cartridge heater.

The silicon-based thermal conductive grease (Omega Engineering, Inc., Conductive Grease Omegatherm 201, cat# OT-201), as used for arrangement A6, requires enlargement of the inner tube diameter for about 0.002" to achieve a similar tight fit.

In arrangements A8-A10 the geometry of the hole and the slot

(as shown in Fig. 3c), is dimensioned so that the thermocouple bead fills out the hole and cannot slide into the slot.

The thermocouples of arrangement A10 are directly soldered into the holes. A tin-based soft solder with a melting point of 220 °C, provides 25 °C "security" to the melting point of the Teflon insulation of the thermocouples. The soldering operation requires a temperature-controlled furnace.

1.5. Results

Most of the results refer directly to an interpretation of the pool-boiling curve of the tested arrangement. Our main interest is to recognize trends in the range of nucleate boiling and the transition from natural convection. Data of plain and enhanced tubes in natural convection are recorded to establish the characteristics of the specific surfaces, not to investigate their detailed behavior at this flow pattern.

Next listed are the results, summarized in 14 items. The expression "data A1" for example, refers to results obtained with arrangement "A1" (as explained in II.1.4.). The exact data of the experiments are listed in the appendix (IV.7.).

R1 Concerning the accuracy of the experiments, the results agree well with former investigations [2,6,7,9,14]. A comparison of the data for the plain tube with 3/4" o.d. and a

surface polished with a 600 grit paper (data A1) is shown in Fig. 11. In Fig. 12 the present data for the Turbo-B S tube (data A11) are plotted together with results obtained for a Turbo-B tube boiling R-114 [8]. A comparison for the Gewa-T is given in Fig. 13 [14].

R2 Data of the same test section setup can be reproduced virtually identically.

R3 A comparison of data A4 and data A6 shows that the temperature deviation in the tube wall cannot be smoothed out by filling the air gap between the cartridge heater and the tube with conductive grease. The non-uniformity must be due to the heater itself.

The temperature profile due to the flow pattern is always clouded by the temperature profile of the heater.

R4 The temperature deviations among the thermocouples in the tube wall continuously rise with increasing heat flux. The maximum spread, depending on the tube arrangement, is 1.2 °C to 2.6 °C at about 70 °C average wall temperature and $1.4 \times 10^5 \text{ W/m}^2$ heat flux (nucleate boiling).

The temperature variation in the tube wall can be interpreted as the superposition of two effects:

- The rising liquid cools the bottom of the tube better than the top (E1).

Pool Boiling Experiment

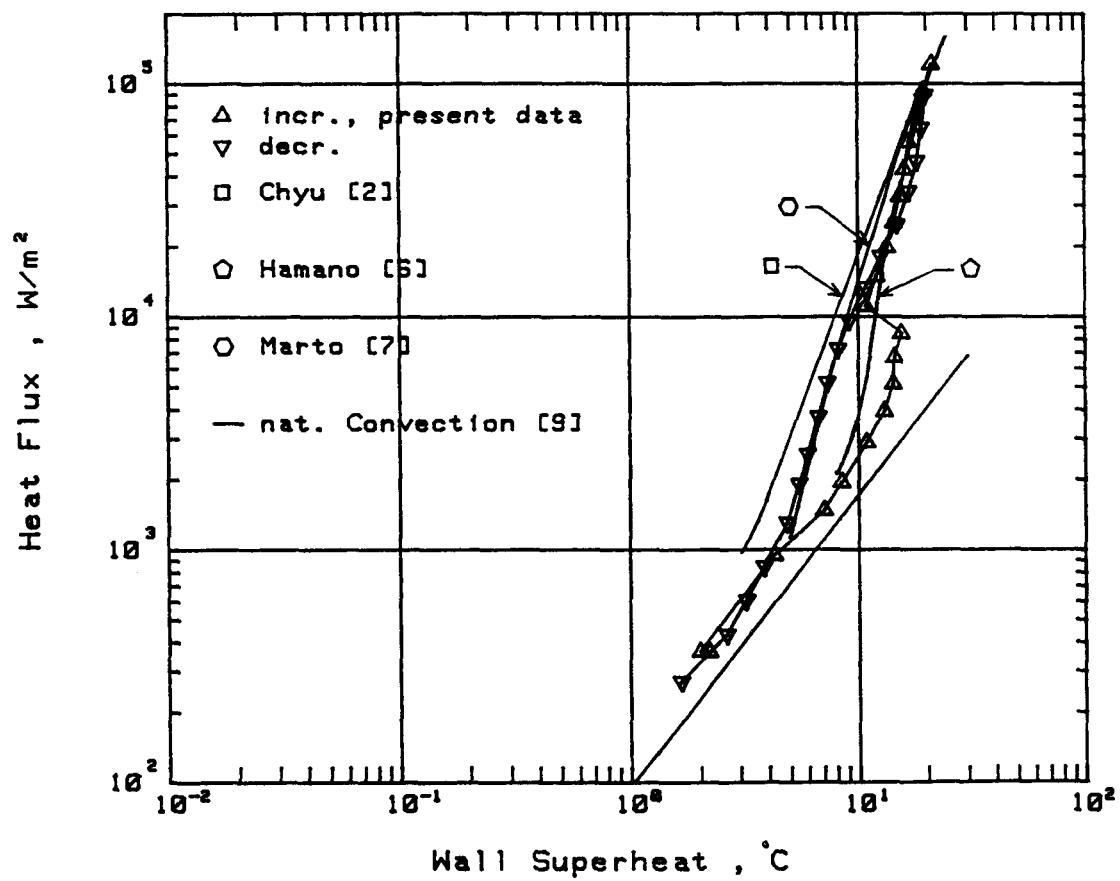


Fig. 11. Pool boiling curves of a plain, polished tube in R-113

Pool Boiling Experiment

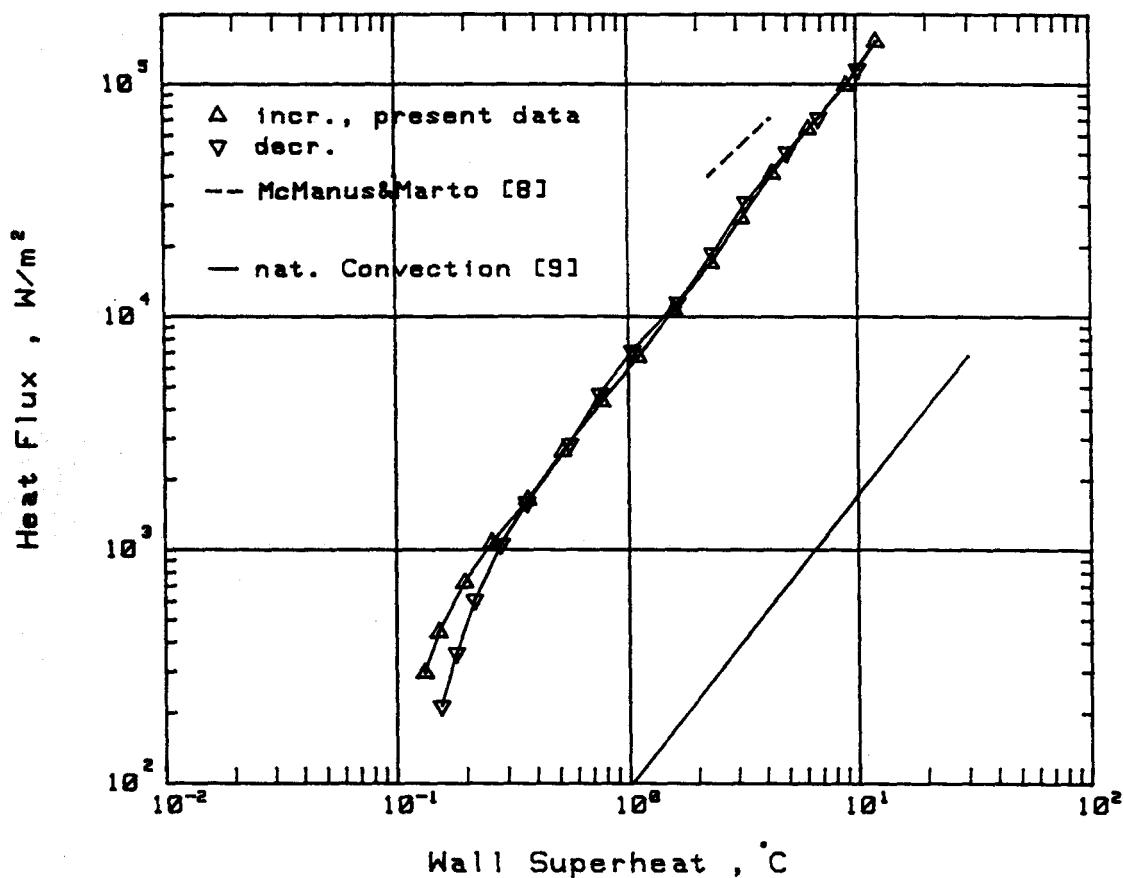


Fig. 12. Pool boiling curves of a Turbo-B S tube in R-113 (All) and of a Turbo-B tube in R-114 [8]

Pool Boiling Experiment

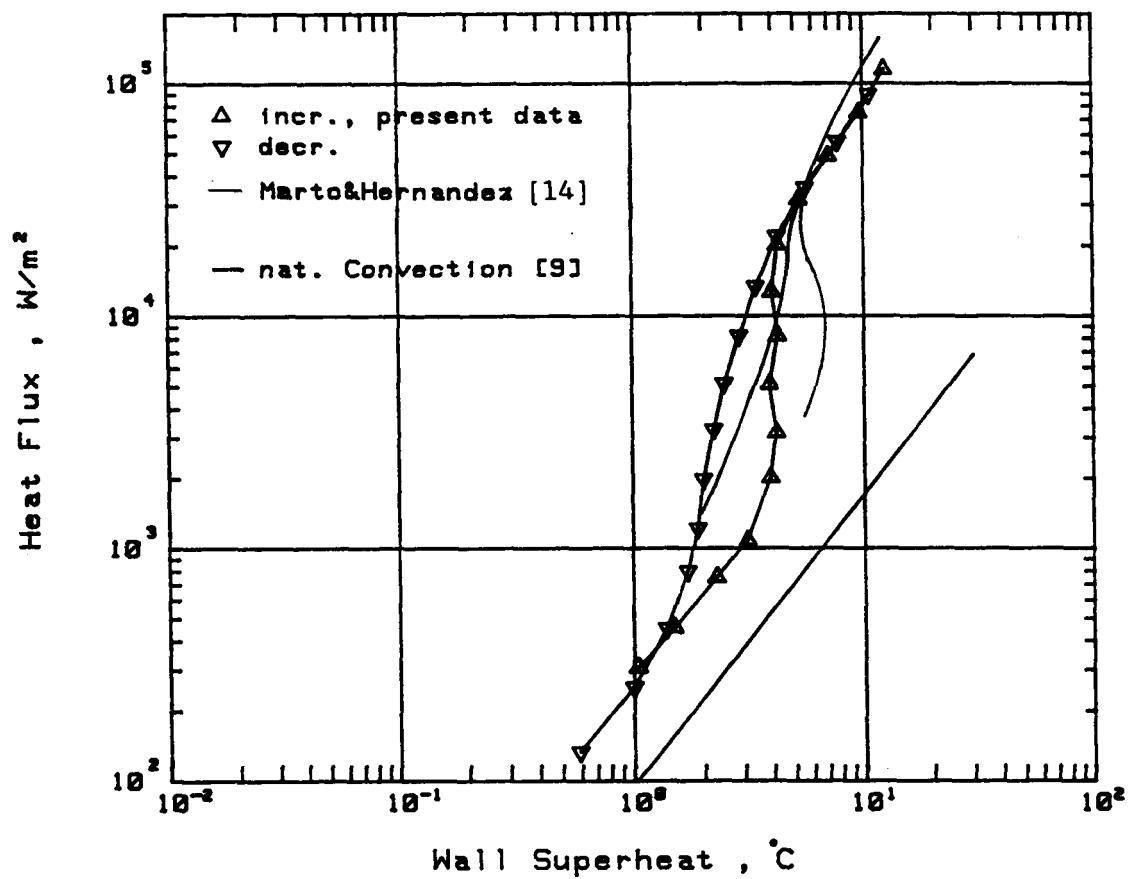
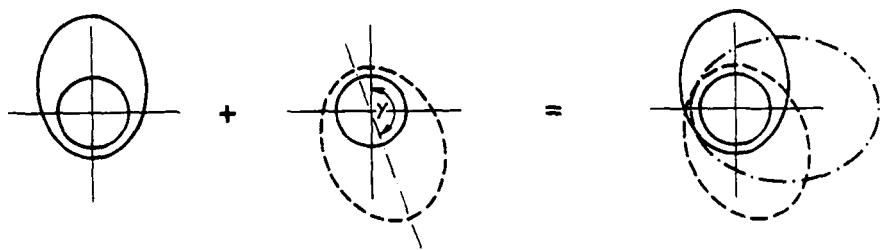


Fig. 13. Pool boiling curves of a Gewa-T B1 tube in R-113

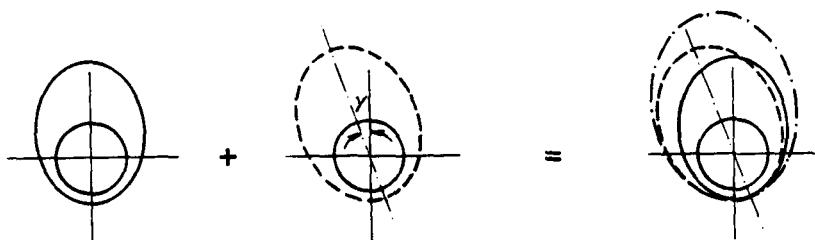
- The cartridge heater distributes the heat non-uniformly (E2).

The temperature profile of E1 has a fixed orientation, whereas the profile of E2 depends on the particular mounting. Both effects increase with rising heat flux. They are assumed to be of the same order of magnitude.

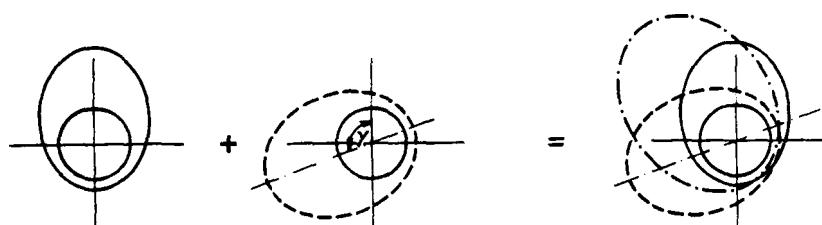
With T1, T2, T3 and T4 as the tube wall temperatures in the 12/3/6/9 o'clock positions, we observe the following combinations of the hottest/coldest temperatures: T1/T2, T1/T3, T1/T4, T2/T3, T2/T4 and T3/T4 (at about 1.3×10^5 W/m² heat flux).


Two examples are mentioned next to explain these temperature distributions with a superposition of effects E1 and E2. γ is defined as the angle between the maximum temperatures as related to temperature profile caused by E1 and E2:

- In Data A9 we find the combination T2/T4, whereas in data A10 (same arrangement as A9, but the tube is turned 180 degrees around its axis) this combination is T1/T3.


Fig. 14a and Fig. 14b show the temperature profiles for both data sets as a superposition of the temperature profiles from E1 and E2 with $\gamma=150$ degree and $\gamma=150-180-30$ degree shifts, respectively.

- Data A7 gives information about the temperature distribution in the tube wall during the transition between nucleate boiling and film boiling (at 1.9×10^5 W/m² heat flux).


Here, E2 dominates E1 because of the less effective heat

a. $\gamma = 150$ degree shift

b. $\gamma = 180 - 150 = 30$ degree shift

c. $\gamma = 60$ degree shift

Fig. 14. Superposition of the temperature profiles due to the fluid mechanics and the non-uniformity of the cartridge heater

transfer process at the tube surface. The temperature combination at this regime is T_4/T_2 , compared to T_1/T_2 , at nucleate boiling ($1.3 \times 10^5 \text{ W/m}^2$ heat flux). The temperature distribution T_4/T_2 at the high heat flux ($1.9 \times 10^5 \text{ W/m}^2$ heat flux) "detects" the hot spot of the cartridge heater. The temperature maximum, due to effect E2 is located near to the thermocouple for T_4 . If we superpose a T_4/T_2 temperature profile to the temperature profile, caused by effect E1, we can obtain T_1/T_2 , the temperature profile of the tube wall at nucleate boiling (as shown in Fig. 14c).

R5 According to Bier and Goetz [3] the average heat transfer coefficient can be calculated from the average wall superheat. The error caused by this simplification is negligible if there are "enough" temperature measurements available. Only the average wall temperature is important, not the deviation.

Data A8, Data A9 and Data A10, for example, refer to tubes with slots in the tube wall (wire-EDM, Fig. 3c). With this instrumentation method the tube is divided into 4 sections. The slots in the tube of A8 are left open, whereas the slots of A9 and A10 are closed with a soft solder. All tubes have the same surface quality.

As expected, the temperature deviations in A8 is greater than in A9 and in A10 (2.6°C compared to 1.5°C and 1.3°C at $1.3 \times 10^5 \text{ W/m}^2$ heat flux), because of the retarding

of the circumferential thermal conductance by the slots. The temperature profiles of A9 and A10 are altered by about 90 degrees (as explained in R4). However, the three boiling curves, using the average wall temperature, are essentially the same (as shown in Fig. 15).

R6 Having the tube fixed to one plate only, we observe a 3-dimensional flow in the pool. One convection plane is perpendicular to the tube axis, the second plane is parallel to the tube axis. In the tube bundle, as in an "ideal", infinitely long pool-boiling test section, the liquid mainly flows perpendicular to the tube axis (2-dimensional). To check the influence of the flow pattern in the pool-boiling experiment, we placed a second plate symmetrical to the first one (as shown in Fig. 10) to obtain a 2-dimensional convection. Regarding data A1 (one plate) and data A2 (two plates) one can see the second plate has no significant influence (as shown in Fig. 16). The boiling curve seems to be insensitive to this small variation of the pool geometry.

R7 Three different constructions, featuring a copper sleeve (A1), a plain well (A4) and a slot (A9), are tested to find out whether the instrumentation method affects the readings of the tube temperature. The plain well obviously is the simplest way, while the slot, machined with wire-EDM and soldered, is the

Pool Boiling Experiment

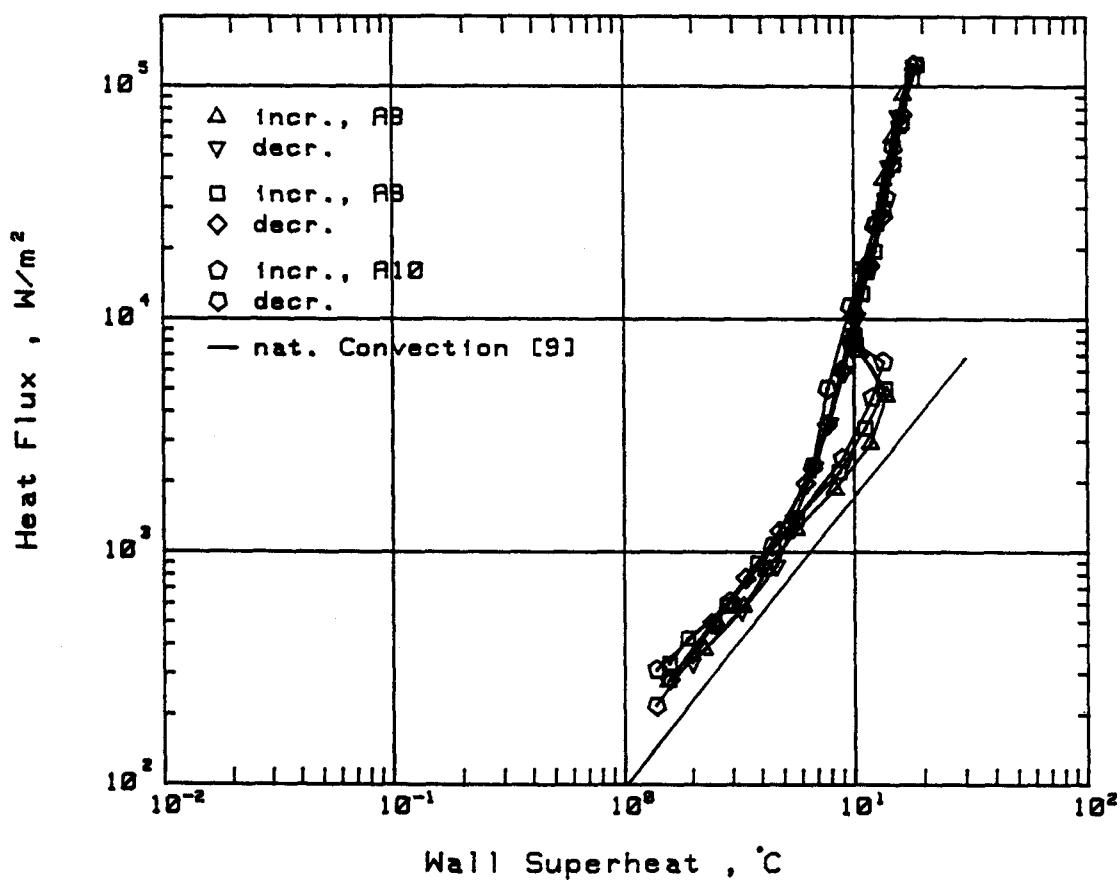


Fig. 15. Pool boiling curves of tubes with the same surface quality and different temperature profiles

Pool Boiling Experiment

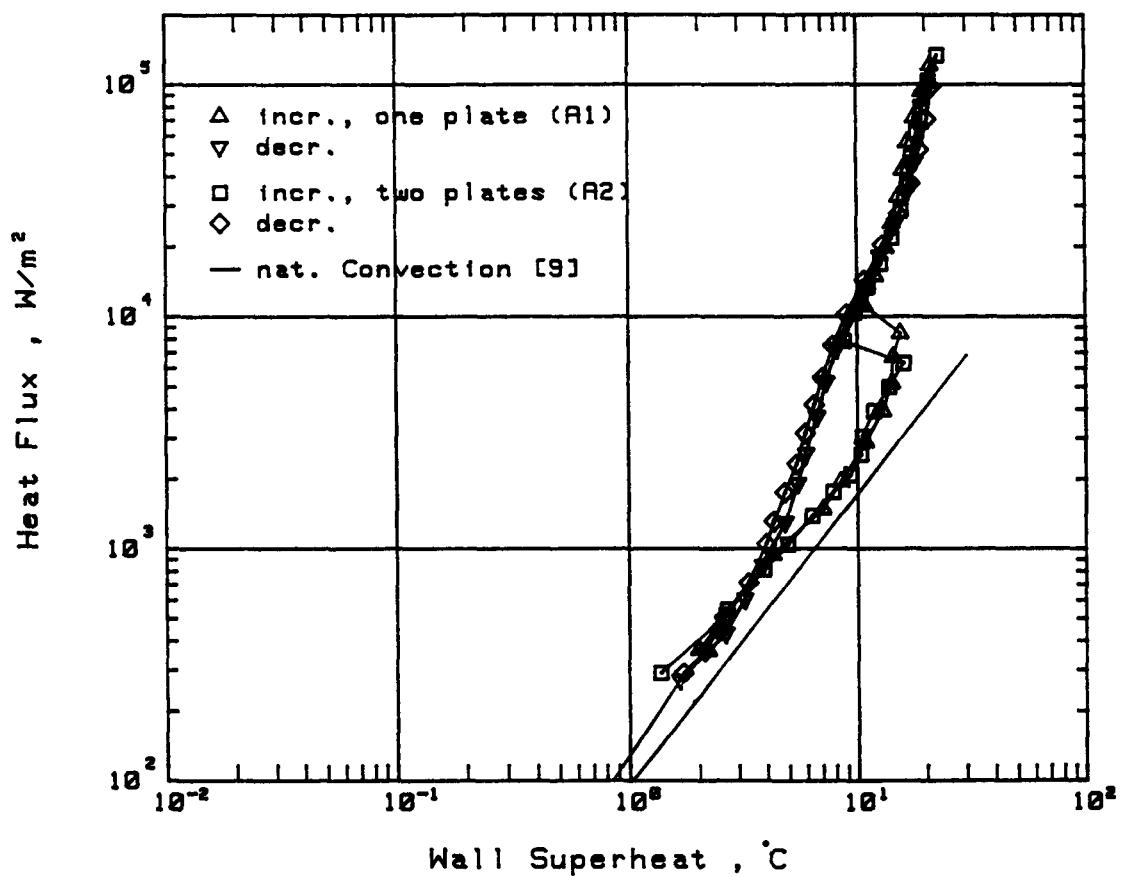


Fig. 16. Boiling curve of a plain tube in a pool with 3-dimensional (A1) and 2-dimensional (A2) flow pattern

most difficult way to accommodate the thermocouples in the tube wall.

The boiling curves of the three arrangements are not significantly different (as shown in Fig. 17).

R8 A noticeable shift of the boiling curve in the region of nucleate boiling is obtained by changing the surface roughness. Using 600 or 100 grit paper (as in A1 or A3) instead of Crocus paper (A5) reduces the average wall superheat about 2 °C or 4 °C, respectively (Fig. 18).

R9 A high temperature overshoot, followed by a sudden change of regimes from natural convection to nucleate boiling during an increase of power is not observed. The reasons for this are different for (1) the enhanced tubes and (2) the plain tubes.

Relative to 1, the Turbo-B tubes immediately start boiling when the power of the heater is turned on. The onset of nucleate boiling occurs below 300W/m^2 heat flux and cannot be determined in this experiment (see IV.2. calibration).

Relative to 2, on plain tubes, rogue sites trigger boiling at both tube ends and activate nucleation sites which settle on parts of the surface. Two heat transfer mechanisms, natural convection and nucleate boiling, can be seen at the same time in a steady system. The first rogue sites appear at a low heat flux of 500W/m^2 , far before the expected onset of nucleate boiling (ONB). Increasing the heat flux, the area covered with

Pool Boiling Experiment

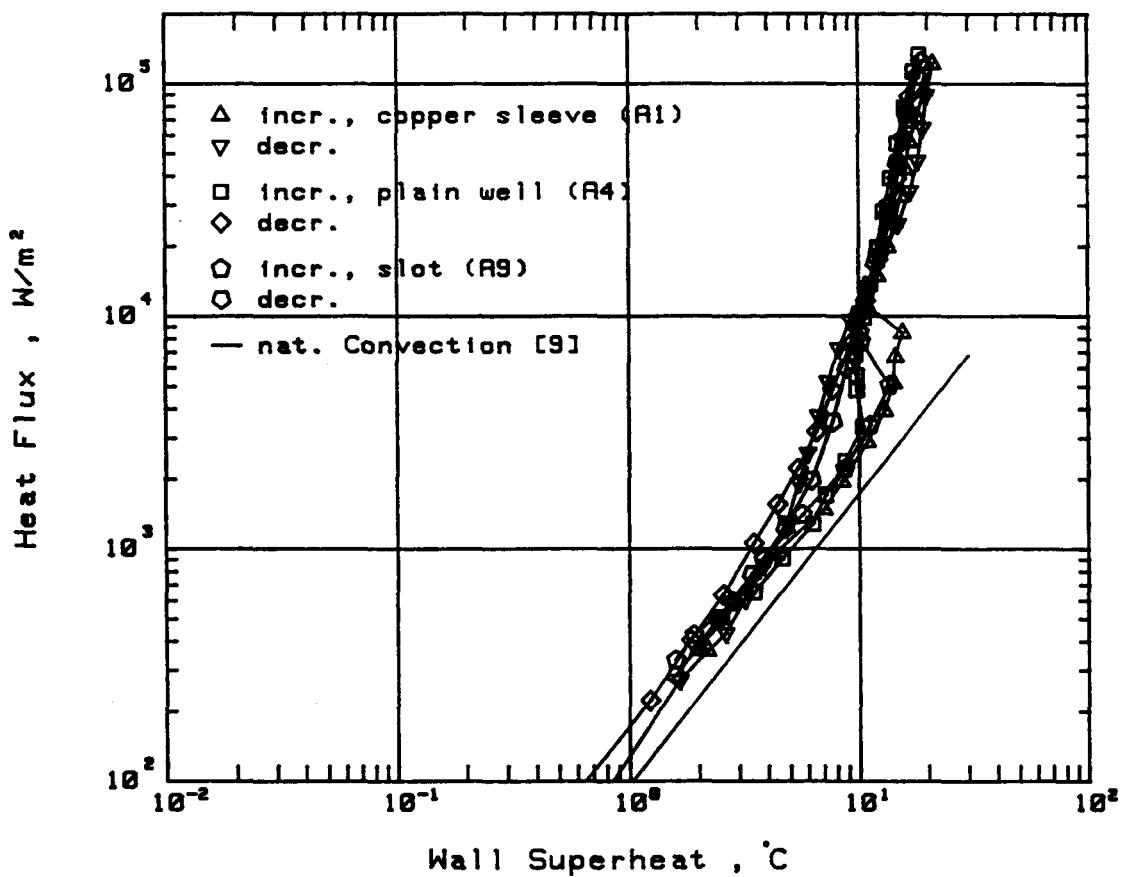


Fig. 17. Pool boiling curves of plain tubes with different instrumentation methods, featuring a copper sleeve (A1) a plain drilled well (A4) and a wire-EDM slot (A9)

Pool Boiling Experiment

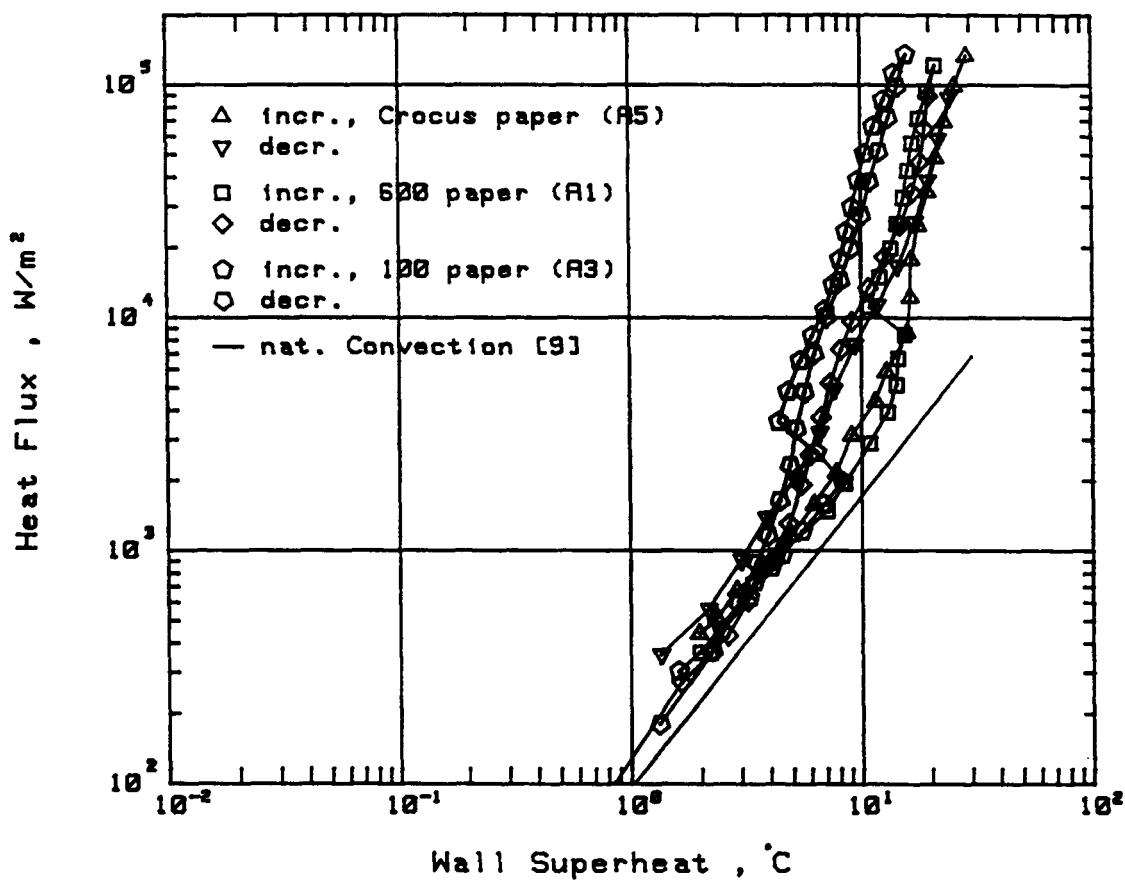


Fig. 18. Pool boiling curves of plain tubes polished with Crocus paper (A5), 600 paper (A1) and 100 paper (A3)

activated nucleation sites enlarges, sometimes up to half of the tube surface. The tube middle, where the thermocouples measure the temperature is cooled according to two effects:

- The bubbles due to rogue sites increase the convection velocity of the circulating liquid (E1).
- The areas with nucleate boiling (rogue sites, mainly at the tube ends) remove heat from the area with natural convection, through the thick copper wall (E2).

These two effects shift the apparent natural convection curve to a lower temperature (E1) and to a lower heat flux (E2) (as shown in Fig. 19). Therefore, the boiling curve for increasing power does not strictly follow the predicted natural convection curve [9] up to ONB. Getting closer to ONB, it slightly bends to a lower temperature.

R10 The spread of the nucleation sites seems to depend on the surface quality. Increasing the heat flux a polished surface (fine Crocus paper, A5) gets an increasing number of small, isolated nucleation sites all over the tube surface, whereas a rough surface (100 paper, A3) develops well defined, compact areas of nucleate boiling, which spread from both ends towards the middle.

R11 To preserve the cartridge heaters, critical heat flux is only examined twice. A value of $1.8 \times 10^5 \text{ W/m}^2$ is obtained

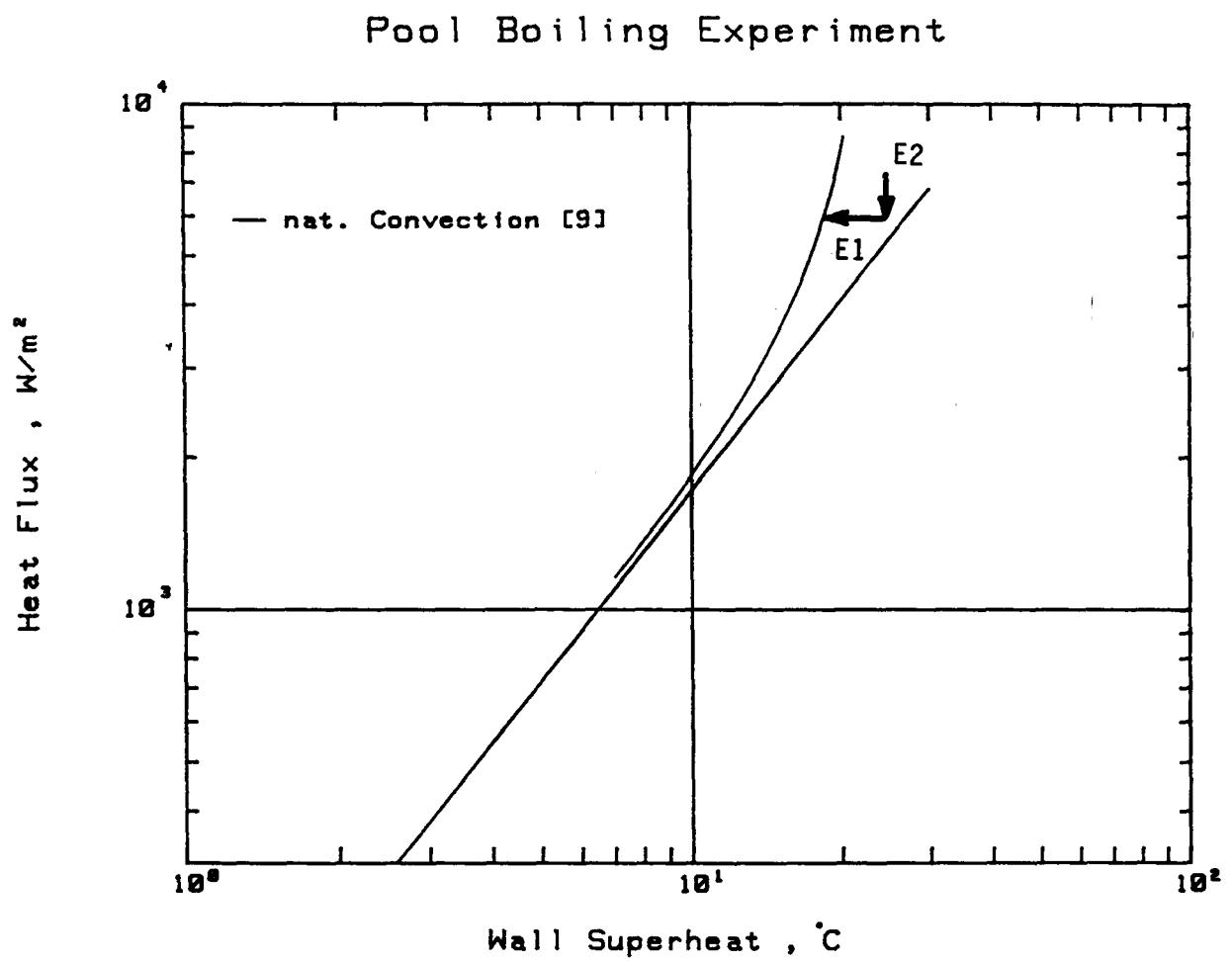


Fig. 19. Reduction of (E1) the wall superheat and (E2) the radial heat flux because of rogue sites

twice for the plain tube polished with a 600 paper (Data A4, Data A8).

R12 The pool temperature, measured beneath the tested tube (as shown in Fig. 8), decreases continuously during an increase of the heat flux and vice versa. The maximum temperature drop is about 0.5°C (e.g., Data A4).

This effect can be explained as follows:

Freon vapor condenses, subcools and mixes with the liquid. The higher the heat flux, the more freon evaporates and the more subcooled liquid is returned and reduces the pool temperature.

We measured the temperature distribution inside the pool during an experiment with a heat flux of $2*10^4 \text{ W/m}^2$ (nucleate boiling). The liquid right underneath the condenser (copper coil) is about 0.2°C cooler than the liquid in the rest of the pool. The condensed freon cools the pool. However this temperature drop only appears at a high heat flux with a high wall superheat, where a slight subcooling of the pool is not that critical.

R13 The Wolverine Turbo-B tubes start boiling at a heat flux below 300 W/m^2 . A classical temperature overshoot cannot be detected in this experiment. In the range between 10^3 W/m^2 and 10^4 W/m^2 type S has a slightly higher heat transfer coefficient than type M and type L, while in the range between

10^4 W/m^2 and 10^5 W/m^2 the performance of the three tubes is similar (as shown in Fig. 20).

R14 The Wieland Gewa-T B1 tube has a hysteresis similar to the hysteresis of the plain tube (as shown in Fig. 21). Boiling starts at the top of several channels at a low heat flux of $2*10^3 \text{ W/m}^2$ and spreads first circumferentially ($q''=3*10^3 \text{ W/m}^2$) and then axially ($q''=4*10^3 \text{ W/m}^2$). Compared to the Wolverine tubes the wider fin tips seem to impede the activation of nucleation sites in adjacent grooves. At a heat flux greater than $2*10^4 \text{ W/m}^2$ the tube surface is completely covered with nucleation sites.

Over the whole tested range the Gewa-T B1 tube has a smaller heat transfer coefficient than the Turbo-B (as shown in fig. II.1.5.14.). It is emphasized that both types of surfaces are specified for R-113 at atmospheric pressure.

Pool Boiling Experiment

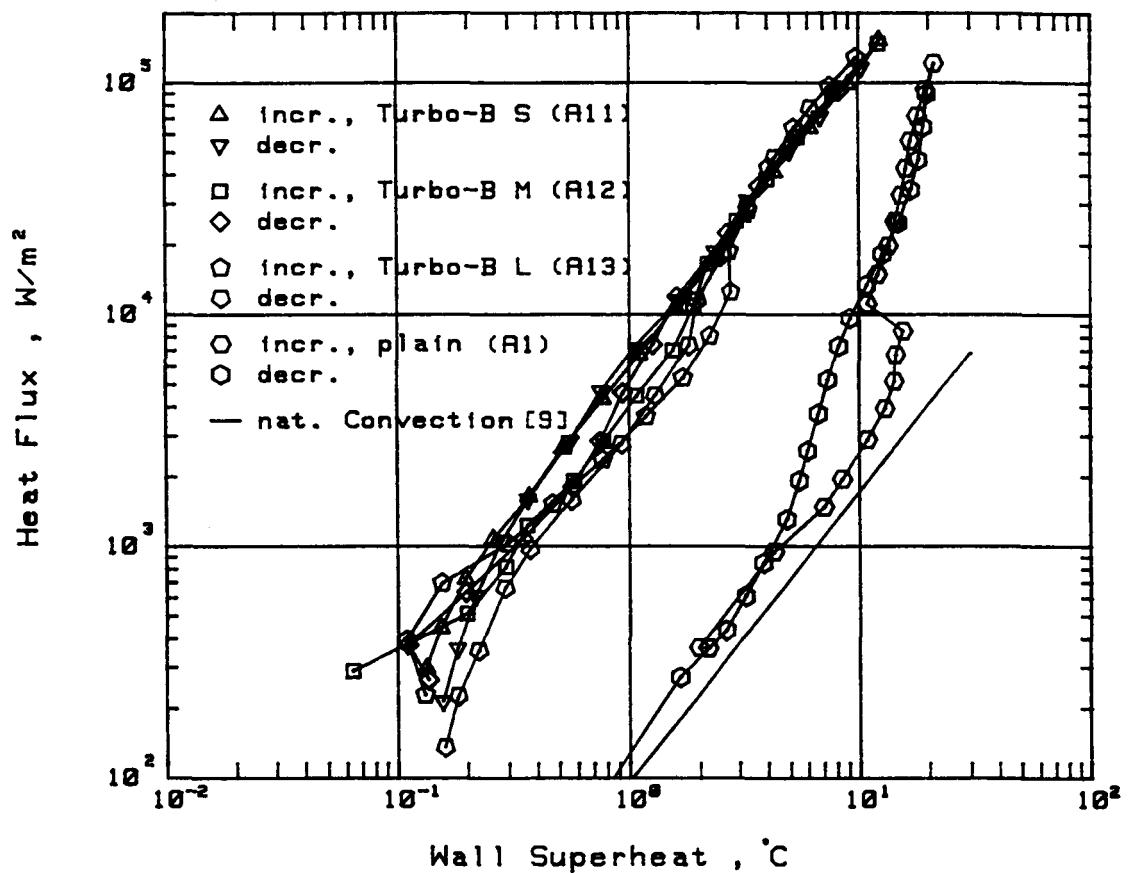


Fig. 20. Pool boiling curves of the Wolverine tubes Turbo-B S (A11), M (A12) and L (A13)

Pool Boiling Experiment

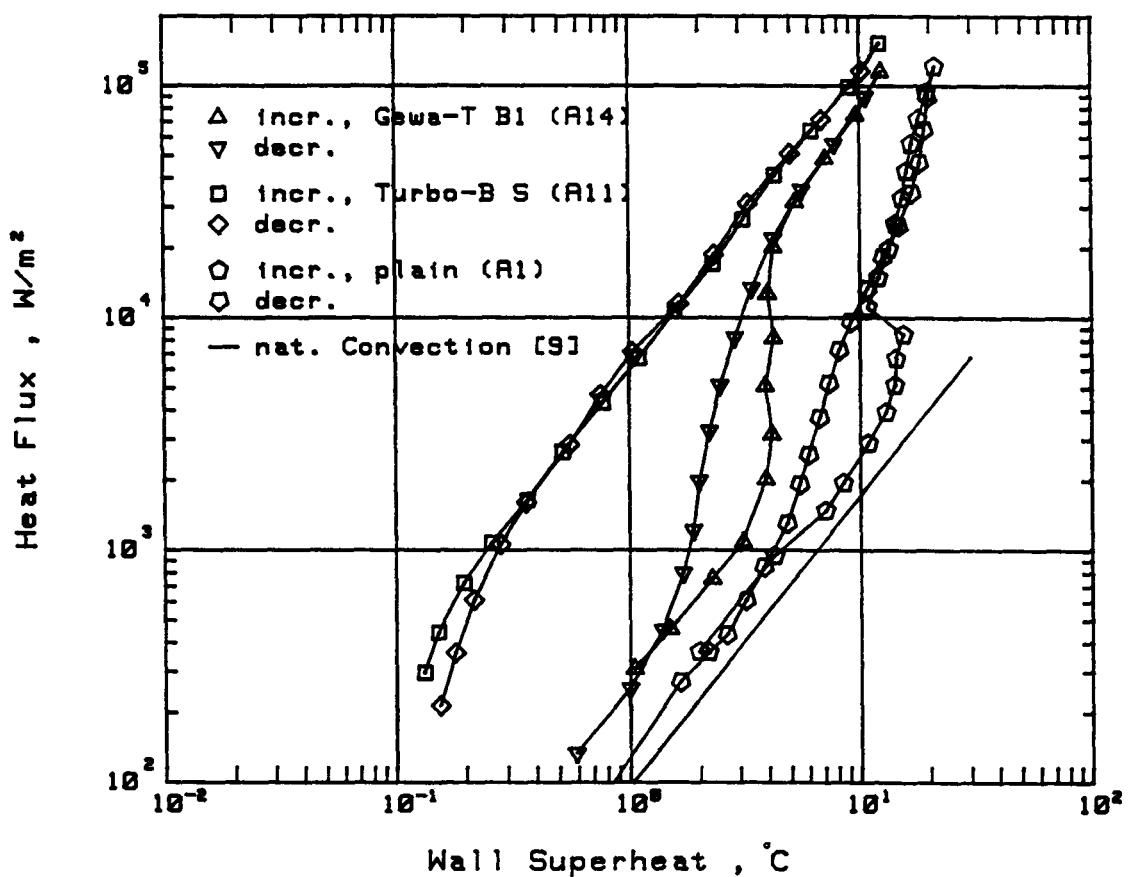


Fig. 21. Pool boiling curves of the Turbo-B S (A11) and the Gewa-T B1 (A14) in R-113

1.6. Conclusions

Considering the data gathered during this investigation for pool boiling with R-113, the following conclusions are reached:

- C1 The heat transfer coefficient of a single tube in pool boiling is not sensitive to the instrumentation of the tube with thermocouples and the method of installing the cartridge heater. A circumferentially distorted temperature profile in the tube wall can be tolerated if enough thermocouples are employed.
- C2 The Wolverine Turbo-B tubes start boiling at a heat flux below 300 W/m^2 . In the range between 10^3 W/m^2 and 10^4 W/m^2 type S has a slightly higher heat transfer coefficient than type M and type L, while in the range between 10^4 W/m^2 and 10^5 W/m^2 the performance of the three tubes is similar.
- C3 Over the whole tested range the three Turbo-B tubes performed with a higher heat transfer coefficient than the tested Wieland Gawa-T tube.

Note, other, more efficient Gawa tubes are available, but they could not be tested in the present study because of time constraints.

2. Pressure Tests with Different Mountings of a Tube to a Wall

2.1. Apparatus

Three tubes are mounted to a 3/8" thick plate on the inside of a stainless-steel pressure vessel.

The constructions used are (according to I.2.3.):

- a threaded tube, sealed by an O-ring (Fig. 4a)
- a tube, tightened with two screws, sealed by a gasket (Fig. 4b)
- a tube, fixed with a snap ring, sealed by an O-ring (Fig. 4c)

The vessel filled with R-113 is connected to a pressure gauge and can be pressurized with air.

2.2. Procedure

For two full days, the vessel is pressurized with 5 bar to check whether the tube mountings seal. In addition, the vessel is heated up to 65 °C (and held at 5 bar gage pressure) for a period of two hours.

To prove no freon is leaking through the mountings, we wetted the outside parts with a special soap that produces bubbles at the site of a leak.

2.3. Results and Conclusions

None of the mountings leaked during the tests.

III. References

- 1 Chyu, M.-C., and Bergles, A. E., "Thermal Analysis of the Electrically Heated Cylindrical Test Section for Heat Transfer Experiments", *Experimental Thermal and Fluid Science*, Vol. 1, 1988, pp. 19-27
- 2 Bergles, A. E., and Chyu, M.-C., "Characteristics of Nucleate Pool Boiling From Porous Metallic Coatings", *Journal of Heat Transfer*, Vol. 104, 1982, pp. 279-285
- 3 Bier K., and Goetz J., "Zum Einfluss des Umfangswinkels auf den Waermeuebergang beim Blasensieden an Horizontalen Rohren", *Waerme- und Stoffuebertragung*, Vol. 15, 1981, pp. 159-169
- 4 Chyu, M.-C., "Falling Film Evaporation on Horizontal Tubes with Smooth and Structured Surfaces", PhD dissertation, Iowa State University, Ames, Iowa, 1984
- 5 Chyu, M.-C., "Boiling Heat Transfer from a Structured Surface", M.S. Thesis, Iowa State University, Ames, Iowa, 1979
- 6 Hamano, Y., and Chujo, Y., "Nucleate Boiling Heat Transfer on the Grooved Surface", Anan College of Technology, Minobayashi, Anan, Tokushima 774, Japan
- 7 Marto, P.J., and Lepere, V.J., "Pool Boiling Heat Transfer From Enhanced Surfaces to Dielectric Fluids", *Journal of Heat Transfer*, Vol. 104, ASME, 1982, pp. 292-299
- 8 McManus, S.M., Marto, J.P., Wanniarachchi, A.S., "An Evaluation of Enhanced Heat Transfer Tubing for Use in R-114 Water

Chillers", Heat Transfer in Air Conditioning and Refrigeration Equipment, HTD Vol. 65, ASME, 1986, pp.11-19

9 McAdams, W. H., Heat Transmission, 3rd Ed., New York: McGraw-Hill Book Company, Inc., 1954, p.176

10 Mueller J., and Hahne E., "Boiling Heat Transfer in Finned Tube Bundles", Heat Transfer - Soviet Research, Vol.13, No.6, 1981, pp. 19-25

11 Stephan K., "Heat Transfer in Natural Convective Boiling of Refrigerants and Refrigerant-Oil-Mixtures of T-shaped Finned Tubes", Advances in Enhanced Heat Transfer, HTD Vol.18, ASME, 1981, pp.131-148

12 ASHRAE Handbook, "Fundamentals", ASHRAE Inc., 1985, p. 17.91

13 Cunningham, J.L., and Campbell, B.J., " Heat Transfer Tube Having Internal Ridges, and Making Same", United States Patent, Number 4,660,630; 1987, pp.11-19

14 Marto, P.J., and Hernandez, B., "Nucleate Boiling Characteristics of a Gewa-T Surface in Freon-113", AIChE Symposium Series, Vol.79, No.225, 1983

IV. Appendix

1. The Influence of the Power Supply, AC or DC

The cartridge heater consists of a wound coil and, therefore, has an electrical inductance. As we use an AC power supply for the cartridge heater, this inductance may cause a phase shift between the voltage and the current. The impedance has an imaginative component, which causes an imaginary power dissipation.

To estimate this imaginary power dissipation of the coil (and the shunt) the test section was run with direct current.

The measured impedance ($R_{ch}=U/I$) using a DC power supply increased only 0.4% compared to using an AC power supply (see IV.4.). The error in the power dissipation ($P=U*I-U^2/R_{ch}$) can be neglected.

2. Calibration

All data measured in the pool boiling experiment are directly taken by the HP3421 data acquisition system and sent to the HP310 personal computer. There are three different types of readings listed next together with the maximum ranges of the observations:

- temperature: $40^{\circ}\text{C} < T < 90^{\circ}\text{C}$
- low AC voltage (shunt): $14\text{ mV} < U_s < 450\text{ mV}$
- high AC voltage: $5\text{ V} < U < 200\text{ V}$

Each type of reading requires a calibration to get information about the accuracy of the obtained data and to minimize the systematic error.

2.1. Temperature

Two special features are integrated in the HP3421 data acquisition system:

- the simulation of the ice-point temperature and
- the conversion of the voltage of a type-T thermocouple (copper-constantan) to a temperature value.

With these two features data for temperatures can be directly provided.

A calibration conducted in a former experiment shows the temperature readings are accurate within ± 0.3 $^{\circ}\text{C}$, including the error of the thermocouple wire. This "high" uncertainty limits the accuracy of the whole experiment.

To make sure the characteristic of the data acquisition system did not shift since that calibration, we measured the temperature of ice water. An average temperature reading of 0 $^{\circ}\text{C}$ with a fluctuation less than 0.1 $^{\circ}\text{C}$ proved that the data acquisition system works still accurately.

Note, the simulation of the ice point temperature is reliable even when the room temperature, and, therefore, the temperature of

the data acquisition system, is changing. Measuring a constant reference temperature (ice water) with the data acquisition system and a thermocouple, we changed the room temperature by turning the room air-conditioning on and off. The temperature readings were not affected by this.

The thermocouples are not directly connected to the data acquisition system, but are interrupted by a junction board. This board needs to be thermally insulated, otherwise the fluctuation of a temperature reading increases by about 0.1 °C.

A higher accuracy of the temperature readings could be obtained by using an ice point reference junction and calibrating the thermocouples individually. This, however, is considered as not necessary for this experiment.

2.2. Low AC Voltage

The HP-3421 data acquisition system is designed to measure low DC voltage with high resolution. It also can handle AC voltage; however, the accuracy is less.

The weakest point of the data acquisition used in the pool boiling experiment is the AC voltage measurement at the shunt (U_s), which determines the current through the cartridge heater. At a heat flux of 400 W/m^2 , for example, 0.28 ampere current induces only 0.0187 volts in the shunt with a precise resistance of $1/15 \text{ ohm}$. This AC voltage is below the recommended range of the data acquisition system.

A former calibration proved the resistance of the shunt to be an absolutely constant 1/15 ohms over the range from 0 to 5 amperes.

Reference data of a HP3468A multimeter for the shunt voltage U_s show the data acquisition system measures too low values. Both the systematic error (bias) and the random error (uncertainty), diminish with increasing the voltage.

A quadratic polynomial is taken to fit the data:

$$y(x) = b_0 + b_1 x + b_2 x^2$$

where x is the indicated temperature, and $y(x)$ the error between the indicated value and the true value. The least-squares criterion requires

$$b_0 n + b_1 \sum_{j=1}^n x_j + b_2 \sum_{j=1}^n x_j^2 = \sum_{j=1}^n y_j$$

$$b_0 \sum_{j=1}^n x_j + b_1 \sum_{j=1}^n x_j^2 + b_2 \sum_{j=1}^n x_j^3 = \sum_{j=1}^n x_j y_j$$

$$b_0 \sum_{j=1}^n x_j^2 + b_1 \sum_{j=1}^n x_j^3 + b_2 \sum_{j=1}^n x_j^4 = \sum_{j=1}^n x_j^2 y_j$$

where n is the total number of data points. The parameters b_0 , b_1 and b_2 are obtained from these equations. The least-squares fit of the 230 calibration data points for the voltage U_s measured at the shunt is

$$U_{s, \text{true}} - U_s = -0.001523 - 0.001789 U_s - 0.005196 U_s^2$$

where voltages are in volts and $U_{s, \text{true}}$ denotes the true voltage at the shunt.

Correcting the shunt voltage with this expression, the uncertainty of the readings is

- < 1.5% for $14 \text{ mV} < U_s < 70 \text{ mV}$
- < 0.6% for $70 \text{ mV} < U_s$.

Assuming the shunt resistance is perfectly constant (as calibrated in former tests), these values also represent the uncertainty of the current I through the heater.

For comparison, the shunt voltage of 70 mV is associated with a heat flux q'' of about 5000 W/m^2 .

2.3. High AC Voltage

The maximum voltage drop at the cartridge heater is about 200 volts. The data acquisition system in its standard version is limited to 30 volts maximum. With a special resistor plugged in the circuit board, measurements up to 300 volts can be taken. However, the data acquisition system then starts to become non-linear in the range below 20 volts.

A calibration with a subsequent least-squares fit, analogous to IV.2.2, provides the equation

$$U_{\text{true}} - U = -0.3667 - 8.9054U - 0.000743U^2$$

where voltages are in volts, U_{true} denotes the true voltage at the heater and U the voltage measured by the data acquisition system.

Including this correction, the uncertainty of the voltage measurement at the cartridge heater is

- < 1% for $6 \text{ V} < U < 10 \text{ V}$
- < 0.3% for $10 \text{ V} < U$.

Again for comparison, a voltage of 10 volts at the cartridge heater induces a heat flux q'' of about 500 W/m^2 .

3. Locating the Thermocouples

As there is a radial temperature gradient in the tube wall, due to the heat flow from the inside to the outside, it is necessary to locate the thermocouples precisely. With R as the radius of the tube surface and r as the radial distance between the thermocouple junction and the tube axis, the ratio R/r must be determined (as required in II.2.). Knowing this ratio, we can calculate the temperature drop, which corrects the measured temperature to obtain the true surface temperature.

To accommodate the thermocouples the tested tubes are either (1) machined with a wire-EDM or (2) drilled.

1. The geometry of the holes, machined with a wire-EDM is constant over the tube length. Measuring one cross section with

a venier caliper provides the location of the thermocouple bead precisely.

2. If drilled wells are used to imbed the thermocouples (or the sleeves with the thermocouples inside) the radial distance r may change over the well depth, because the well can be curved.

With the following method [4], using two rods, the radial distance between the bottom of the well and the tube surface can be determined easily (as shown in Fig A1). This consists of inserting a rod down to the bottom of the hole, estimating the slope of the rod with a gauge in alignment with the tube surface, and calculating the distance between the surface and the bottom of the hole. As shown in Fig. A1a., the rod A is placed in the hole, and B is the gauge in contact with the tube surface. The rod A must have a diameter considerably smaller than the hole and it must be pushed outwards radially, so that one end of the rod is in contact with the lateral surface of the hole. The other point of contact is at the mouth of the hole. There should be only two points of contact, even if the hole is slightly curved.

An arbitrary point P is taken on gauge B, and d , d_2 , and l_2 are measured, as shown in Figs. A1b. and A1c.. A venier caliper with a resolution of 0.02 mm is used in the present measurement. By considering the exaggerated geometry as shown, the ratio R/r can be expressed as

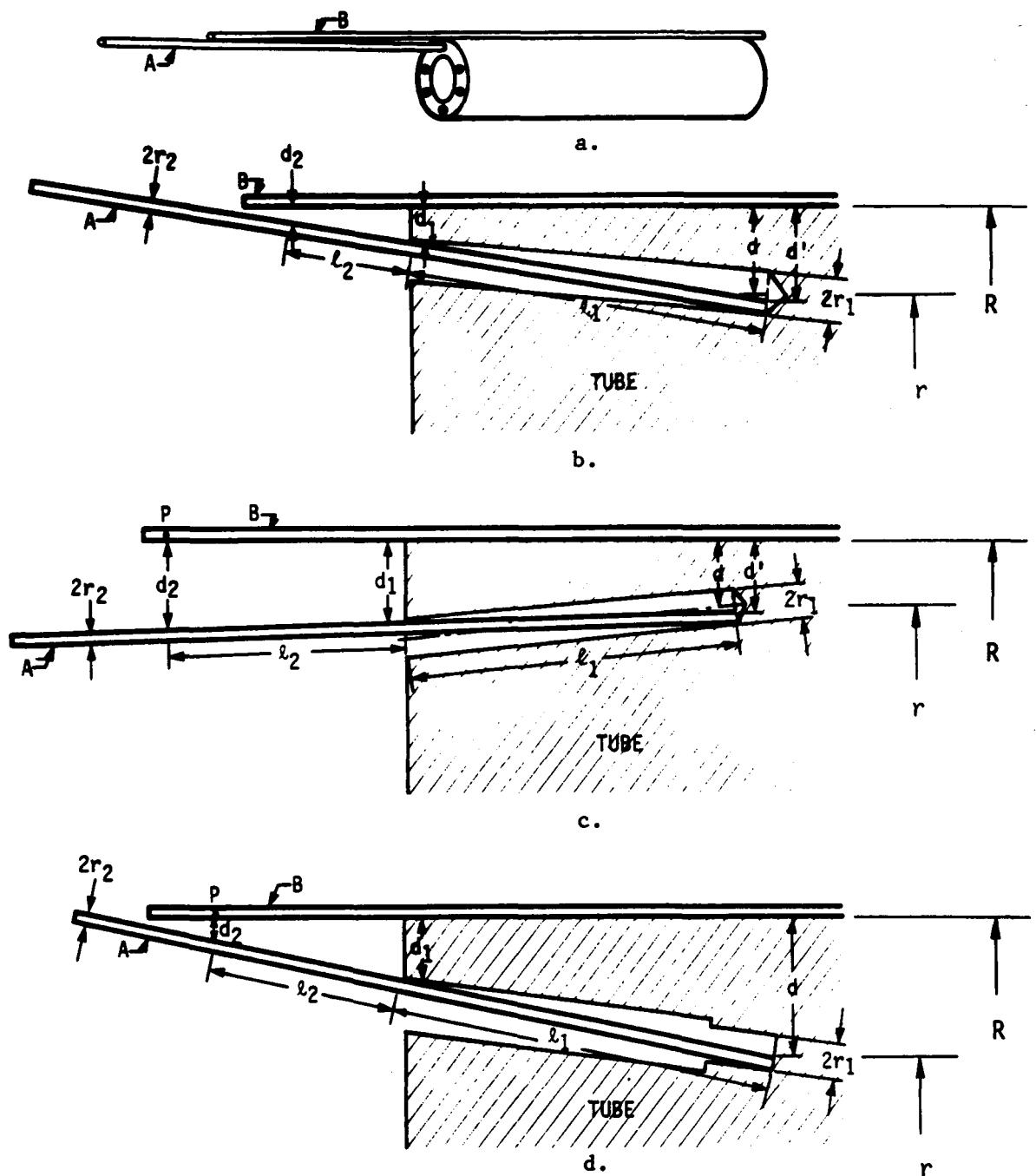


Fig. A1. Technique to measure the radial distance between the bottom of thermocouple well and the tube surface (not to scale)

$$R/r = R/(R - d)$$

$$d = (d_1 - d_2)(l_1/l_2) + d_1 - r_1 + 2r_2$$

with r_1 and r_2 the radius of the hole and the rod, respectively. This equation is valid for the hole drifting radially either inwards or outwards, as shown in Figs. Alb. and Alc., respectively.

For those thermocouple wells prepared by two stages of drilling, as shown in Fig. Ald., the equation is still valid. Note that the radius of the bottom instead of the mouth should be taken as r_1 in this case.

4. Error Analysis

The total error of the measurement process is composed of the systematic error and the random error. Once the system has been calibrated, the systematic error can be removed; the random error, however, always exists. To estimate the total uncertainty of the experimental data a propagation-of-error analysis must be conducted. The analysis for the heat flux q'' and the wall superheat T_{WSH} is presented here.

The expression used to calculate the uncertainty W associated with any quantity Z is

$$w_Z = \left(\sum_{i=1}^n \left(\left[\frac{\partial Z}{\partial x_i} \right] w_{xi} \right)^2 \right)^{1/2}$$

where x_i is any of the n parameters of which the quantity Z is a function. The contribution of each error source to the total uncertainty is determined by a weighing factor, $\partial Z / \partial x_i$.

4.1. The Uncertainty of the Heat Flux

The heat flux data presented are calculated from the equation

$$q'' = (UI)/A$$

The uncertainty of the tube surface area A , measured with a vernier caliper, is assumed to be smaller than 0.2%. The errors of the voltage U and of the current I reduce for increasing values. Combining typical values, as listed in IV.4.2.-3., we can finally estimate the uncertainty in the heat flux q'' as

- < 1.9% for $200 \text{ W/m}^2 < q'' < 500 \text{ W/m}^2$
- < 1.6% for $500 \text{ W/m}^2 < q'' < 5000 \text{ W/m}^2$
- < 0.8% for $5000 \text{ W/m}^2 < q''$

4.2. The Uncertainty of the Wall Superheat

The data for the wall superheat T_{WSH} is calculated from the equations

$$T_{WSH} = T_{av} - T_{sat}$$

$$T_{av} = (T_1 + T_2 + T_3 + T_4) / 4$$

$$T_i = T_{i,r} - [q''R/k] \ln(R/r) \quad , \quad i = 1, \dots, 4$$

$$T_{sat} = f(p = p_{atm} + p_{hydr})$$

$$p_{hydr} = \rho g H$$

The uncertainty $dT_{i,r}$ of measuring the temperatures $T_{i,r}$ in the tube wall is estimated as smaller than $0.3 \text{ } ^\circ\text{C}$ (as described in IV.2.1.). The conductive temperature drop $T_{i,r} - T_i$ depends on the radii R and r , and is linear with the heat flux q'' . The uncertainty in the radial positioning r of the thermocouples consists of two components: (1) the positioning of the end of the well (see IV.4.), assumed as $\pm 0.05 \text{ mm}$ and (2) the play ($-r_1 - r_{tcp1}$) of the thermocouple in the well, which depends on the instrumentation method. We define the uncertainty dT_{pp} for the play of the thermocouple in the hole and the inaccurate positioning of the well end. Combining this uncertainty dT_{pp} with the uncertainty of the

temperature readings $dT_{i,r}$, we obtain the uncertainty dT_{av} of the average tube surface temperature.

The uncertainty for the average wall temperature T_{av} is listed next for

- two different heat fluxes:

- $q''_1 = 10^4 \text{ W/m}^2$

- $q''_2 = 10^5 \text{ W/m}^2$

- four typical instrumentation methods (arrangements):

- A1, 1/8" drilled well with a 1/16" i.d. sleeve

- A4, 3/32" drilled well without a sleeve

- A11, 3/32" drilled well with a 0.036" i.d. sleeve

- A9, 0.036" hole, machined with a wire-EDM

arrangement	$dT_{pp}(q''_1)$	$dT_{pp}(q''_2)$	$dT_{av}(q''_1)$	$dT_{av}(q''_2)$
A1	0.02	0.16	0.3	0.34
A4	0.03	0.31	0.3	0.43
A11	0	0.03	0.3	0.3
A9	0	0.03	0.3	0.3

where dT_{pp} and dT_{av} are in $^{\circ}\text{C}$.

The saturation temperature T_{sat} , calculated by an expression fitting data from the steam tables [12], requires the local pressure at the tube axis, which is composed of the atmospheric plus the hydrostatic pressure.

The atmospheric pressure p_{atm} at the tube surface is measured with two manometers, one for the absolute pressure in the room, a second

one for the gage pressure between the room and the pool surface. The variation of the atmospheric pressure during the experiment plus the uncertainty of the measurement are estimated to be less than 120 N/m².

The uncertainty for the hydrostatic pressure p_{hydr} is assumed to be 80 N/m², which corresponds to a 5 mm change of the liquid height H .

Combining the deviations for the hydrostatic and the atmospheric pressure, the uncertainty of the saturation temperature is 0.04 °C and, therefore, can be neglected.

Based on the uncertainties obtained for the two terms T_{av} and T_{sat} , it is noticed that the total uncertainty in the tube surface superheat is predominated by the temperature measurement which is estimated as 0.3 °C.

The uncertainty in the conductive temperature drop becomes important, too, when an arrangement with large holes ($r_1 > 0.03"$) for the thermocouples is used at high heat flux ($q''_2 = 10^5 \text{ W/m}^2$). Then the uncertainty for the tube surface superheat increases to about 0.45 °C.

5. Properties of R-113

Next listed are properties of liquid R-113 at saturation temperature corresponding to standard atmospheric pressure (as listed in [12]).

$T_{sat} = 47.6 \text{ } ^\circ\text{C}$	saturation temperature
$\mu = 516*10^{-6} \text{ Ns/m}^2$	dynamic viscosity
$k = 0.0705 \text{ W/mK}$	thermal conductivity
$\rho = 1507.3 \text{ kg/m}^3$	density
$c_p = 984 \text{ J/kgK}$	specific heat
$\beta = 0.00163 \text{ k}^{-1}$	thermal expansion coefficient

These data are required for the pool boiling experiment to determine (1) the natural convection curve [9] and (2) the saturation temperature of the freon at the level of the tube axis.

6. Software

The software listed next is written to run the pool boiling tests, using a HP3421 data acquisition system.

```
10  ====== CHRISTIAN JUNG ======OCTOBER 31,1988=====
20
30  This is a program to run a pool boiling experiment with a
40  HP 3421A data acquisition system
50
60 =====
70  PARAMETERS
80
90  ----- EXPERIMENTAL
100
110 Limit=.001
120 Stabtime=10
130 Tubediameter=.75*.0254
140 Tubelength=4*.0254
150 Rr=1.5
160 Kcopper=386
170 Stabmode$="LIST"
180 Stabgraphs="N"
190 Check=.00044
200 Burncrit=.0018
210 Burnout=0.
220 Chf=0.
230 Patmos=760
240 Height=.17
250 Gravity=9.81
260 Rhofreon=1507
270 Media$="S"
280 Rohm=28
290 Graphstep=5
300
310 ----- GRAPHIC
320
330 Xmin=-2
340 Xmax=2
350 Ymin=2
360 Ymax=5.3
370 Psize=.04
380 Dx=1
390 Dy=1
400 C_nc=.5064
410 N_nc=.2507
420
430 -----
440 REAL Q(50),Delta(50)
450 -----
460
470  PROGRAM START
480
490 Start:C$=CHR$(255)&"K"
500 OUTPUT 2 USING "#,K";C$
510 PRINT ""
520 PRINT ""
530 PRINT ""
```

```
540 PRINT " The time now is ";TIME$(TIMEDATE);";DATE$(TIMEDATE)
550 PRINT ""
560 PRINT " This is a program to run a pool boiling experiment with a"
570 PRINT " HP 3421A data acquisition system"
580 PRINT ""
590 PRINT " _____ CHRISTIAN JUNG _____"
600 PRINT ""
610 PRINT ""
620 PRINT ""
630 PRINT ""
640 PRINT ""
650 PRINT ""
660 PRINT ""
670 PRINT ""
680 PRINT ""
690 PRINT " Start the program with F2 !"
700 PAUSE
710 !
720 Today$=DATE$(TIMEDATE)
730 Today$=UPC$(Today$)
740 !-----
750 ! MAIN MENU
760 !
770 Mnmenu:C$=CHR$(255)&"K"
780 OUTPUT 2 USING "#,K";C$
790 ASSIGN @Path TO #
800 OFF ERROR
810 Dfcheck=0
820 PRINT " M A I N M E N U "
830 PRINT ""
840 PRINT " Enter # to :"
850 PRINT ""
860 ON ERROR GOTO 910
870 ASSIGN @Path TO Today$
880 Dfcheck=1
890 Day$=Today$
900 GOTO 920
910 PRINT " 1 create a file with the name of today's date ?"
920 OFF ERROR
930 PRINT ""
940 PRINT " 2 use the file with the name of today's date ?"
950 PRINT ""
960 PRINT " 3 create a new file ?"
970 PRINT ""
980 PRINT " 4 use an old file ?"
990 PRINT ""
1000 PRINT " 5 list records ?"
1010 PRINT ""
1020 PRINT " 6 plot records ?"
1030 PRINT ""
1040 PRINT ""
1050 PRINT " C check topical data !"
1060 PRINT " E end !"
1070 Slect:LINPUT File$
1080 PRINT ""
```

```
1090 !
1100 !-----.
1110 IF Dfcheck=1 AND File$="1" THEN Slect
1120 SELECT File$
1130 !-----1-----
1140 CASE "1"
1150     Day$=Today$
1160     CREATE BDAT Day$,50
1170     ASSIGN @Path TO Day$
1180     PRINT ""
1190     PRINT "    The new file is created !"
1200     WAIT 1
1210     Nrun=i
1220     GOSUB Setparam
1230     GOTO Tubetype
1240 !-----2-----
1250 CASE "2"
1260     Day$=Today$
1270     GOSUB Rrecords
1280     GOSUB Setparam
1290     IF Tubetype$="no_tube_type" THEN Tubetype
1300     GOTO Datainput
1310 !-----3-----
1320 CASE "3"
1330     LINPUT "    Put in the name of the file, you want to create : ",Day$
1340     Day$=UPC$(Day$)
1350     PRINT ""
1360     ON ERROR GOTO 1450
1370     CREATE BDAT Day$,50,200
1380     ASSIGN @Path TO Day$
1390     OFF ERROR
1400     PRINT "    A new file is created !"
1410     WAIT 1
1420     Nrun=1
1430     GOSUB Setparam
1440     GOTO Tubetype
1450     OFF ERROR
1460     PRINT "    The file already exists !"
1470     PAUSE
1480     GOSUB Rrecords
1490     GOTO Mnmenu
1500 !-----4-----
1510 CASE "4"
1520     LINPUT "    Which file you want to use ? ",Day$
1530     Day$=UPC$(Day$)
1540     GOSUB Rrecords
1550     GOSUB Setparam
1560     IF Tubetype$="no_tube_type" THEN Tubetype
1570     GOTO Datainput
1580 !-----5-----
1590 CASE "5"
1600     LINPUT "    Which file you want to list ? ",Day$
1610     Day$=UPC$(Day$)
1620     LINPUT "    Enter P to print on the printer, RETURN to print on the screen ! ",Media$
```

```
1630  Arragenr=0
1640  IF Media$="P" THEN
1650    INPUT " Enter arrangement # (i.e., 9 for arrangement A9)",Arragenr
1660  END IF
1670  GOSUB Records
1680  GOTO Mnmenu
1690 !-----6-----
1700 CASE "6"
1710  GOSUB Datashow
1720  GOTO Mnmenu
1730 !-----C-----
1740 CASE "C"
1750  GOSUB Setparam
1760  GOSUB Datacheck
1770  GOTO Mnmenu
1780 !-----E-----
1790 CASE "E"
1800  GOTO Ende
1810 !-----
1820 CASE ELSE
1830  GOTO Select
1840 END SELECT
1850 !-----
1860 !    TUBE TYPE
1870 !
1880 Tubetype: !
1890 C$=CHR$(255)&"K"
1900 OUTPUT 2 USING "#,K";C$
1910 PRINT ""
1920 PRINT "    T U B E    T Y P E "
1930 PRINT "    (change the subroutine 'Tubecheck:' for a new type !)"
1940 PRINT ""
1950 PRINT "    Enter # to select :"
1960 PRINT ""
1970 !-----LIST TUBETYPES
1980 Tube=i
1990 LOOP
2000  GOSUB Tubecheck
2010 EXIT IF Tubetype$="no_tube_type"
2020  PRINT "    ";Tube;"    ";Tubetype$
2030  PRINT ""
2040  Tube=Tube+1
2050 END LOOP
2060 !-----
2070 INPUT Tube
2080 GOSUB Tubecheck
2090 IF Tubetype$="no_tube_type" THEN Tubetype
2100 !-----
2110 !    THE FILE, THE RECORD AND THE TUBE TYPE IS CHOSEN
2120 !
2130 Datainput:C$=CHR$(255)&"K"
2140 OUTPUT 2 USING "#,K";C$
2150 GOSUB Vstart12
2160 PRINT "
```

```
2170 !
2180 PRINT ""
2190 PRINT "      NOW ALL DATA IS REFERED TO THE FILE :  ";Days
2200 PRINT ""
2210 PRINT "                      THE RECORD :  ";Nrun
2220 PRINT ""
2230 PRINT "                      THE USED TUBE IS :  ";Tubetype$
2240 PRINT "
2250 PRINT "      Enter :"
2260 PRINT ""
2270 PRINT "      OR          to choose another record !"
2280 PRINT "      M          to go back to the main menu !"
2290 SELECT Stabmode$
2300 CASE "PLOT"
2310   PRINT "      L          to list data during the stabilization check
!
2320 CASE "LIST"
2330   PRINT "      P          to plot data during the stabilization check
!
2340 END SELECT
2350 PRINT "      S          to start with the readings of the topical val
ues !"
2360 PRINT ""
2370 PRINT "      any other key to adjust the voltage to ";Vstart1;"V or ";V
tart2;"V and"
2380 PRINT "          S T A R T the readings then !"
2390 LINPUT Orstart$
2400 SELECT Orstart$
2410 CASE "M"
2420   GOTO Mnmenu
2430 CASE "OR"
2440   INPUT "      The new record number is : ",Nrun
2450   GOTO Datainput
2460 CASE "L"
2470   Stabmode$="LIST"
2480   GOTO Datainput
2490 CASE "P"
2500   IF Nrun<>1 THEN Stabmode$="PLOT"
2510   GOTO Datainput
2520 CASE "S","."
2530   GOTO Burnout
2540 CASE ELSE
2550   PRINT ""
2560   PRINT "      1. Adjust the voltage until you hear a beep      or"
2570   PRINT "      2. hit any alphabet                      to acquisit
ata !"
2580 PRINT ""
2590 !-----CHECK VOLTAGE AT THE DATAACQUISITION SYSTEM
2600 ON KBD GOTO 2730                      ! INTERRUPT
2610 OUTPUT 709;"CLS12"                      ! CHANNEL FOR VOLTAGE
2620 OUTPUT 709;"Z1F2N4"
2630 LOOP
2640   OUTPUT 709;"T2"
2650   ENTER 709;Vadj
```

```
2660      Vadjust=Vadj+.36668+8.9054*Vadj+.000743*Vadj^2
2670      PRINT "    Current voltage: ";PROUND(Vadjust,-1);"V, Target voltage:
  ";Vstart1;"V or  ";Vstart2;"V"
2680      Adjcheck1=ABS(Vadjust-Vstart1)           ! VOLTAGE DIFFERENCE TO ADJUS
2690      Adjcheck2=ABS(Vadjust-Vstart2)
2700      EXIT IF Adjcheck1<.5 OR Adjcheck2<.5
2710      END LOOP
2720      BEEP
2730      OFF KBD
2740      -----
2750      GOTO Burnout
2760      END SELECT
2770      !
2780      -----
2790      !      CHECK BURNOUT
2800      !
2810      Burnout:C$=CHR$(255)&"K"
2820      OUTPUT 2 USING "#,K";C$
2830      !
2840      OUTPUT 709;"CLS13"           ! TOP OF TUBE IS CHECKED !
2850      OUTPUT 709;"Z0F1N4T2"
2860      ENTER 709;Chf
2870      !
2880      IF Chf<Burncrit THEN Stabcheck           ! NO BURNOUT CHECK NECESSARY
2890      !
2900      PRINT ""
2910      PRINT "    Check Burnout !           Time: ";TIME$(TIME$)
2920      PRINT ""
2930      PRINT ""
2940      !
2950      FOR I=1 TO 5
2960      OUTPUT 709;"T2"
2970      ENTER 709;Burnout
2980      Diff=Burnout-Chf
2990      IF Diff>Check THEN
3000      !-----DATA ACQUISITION
3010      OUTPUT 709;"ACV12,19"
3020      ENTER 709;St1(1),St1(2)
3030      OUTPUT 709;"TEM13-18"
3040      ENTER 709;St1(3),St1(4),St1(5),St1(6),St1(7),St1(8)
3050      GOSUB Correct
3060      OUTPUT @Path,Nrun;Uv,Ia,Tav,T1,T2,T3,T4,St1(7),St1(8),Q(Nrun),Delta(\n
un),Tube,Tsat,Surfarea,Tubediameter,Br
3070      Nrun=Nrun+1
3080      !-----
3090      BEEP
3100      PRINT ""
3110      PRINT "    B U R N O U T !      shut power off !"
3120      PRINT ""
3130      PRINT "    The data was taken !  Press F2 to continue !"
3140      PAUSE
3150      GOTO Datataken
3160      END IF
3170      Chf=Burnout
```

```
3180 NEXT I
3190 PRINT "      No burnout."
3200 PRINT ""
3210 PRINT ""
3220 !
3230 !-----.
3240 !      CHECK STABILITY
3250 !
3260 Stabcheck: !
3270 Stabgraphs$="Y"
3280 PRINT ""
3290 PRINT "      The program checks data of test run ";Nrun;" until stable conc
tions exist."
3300 PRINT "      The criteria is : (D2-D1)/D1 < ";Limit
3310 !
3320 OUTPUT 709;"ACV12,19"
3330 ENTER 709;St1(1),St1(2)
3340 OUTPUT 709;"TEM13-18"
3350 ENTER 709;St1(3),St1(4),St1(5),St1(6),St1(7),St1(8)
3360 !
3370 SELECT Stabmode$
3380 !
3390 CASE "LIST"
3400 PRINT "      (Hit:      S          to interrupt and show data
!""
3410 PRINT "                  any other key          to force the data acquisit
on!)"
3420 PRINT ""
3430 PRINT "      Uv          Ia          Tav          T1          T2          T3          T4
pool
q"
3440 PRINT "
"
3450 PRINT "      [V]          [A]          [C]          [C]          [C]          [C]          [C]
C]          [W/m^2]"
3460 PRINT ""
3470 !
3480 CASE "PLOT"
3490 Ncurve=2
3500 Curverun=1
3510 Curve$(1)=Day$
3520 Pcurve(1)=3
3530 Lcurve$(1)=Day$
3540 Bolt$="ON"
3550 Natcurve$=""
3560 Stabgraphs$="Y"
3570 CLEAR SCREEN
3580 GINIT
3590 PLOTTER IS CRT,"INTERNAL"
3600 GOSUB Datagraph
3610 END SELECT
3620 !
3630 ON KBD GOTO 4100
3640 Stable=i
3650 !
3660 LOOP
```

```
3670      GOSUB Correct
3680      SELECT Stabmodes
3690      CASE "LIST"
3700      PRINT USING 3710;Uv,Ia,Tav,T1,T2,T3,T4,St1(7),Q(Nrun)
3710      IMAGE 3X,DDD.DDD,X,DDD.DDD,5X,DDD.D,3X,DDD.D,3X,DDD.D,3X,1
D.D,3X,DDD.D,3X,D.DESZ
3720      CASE "PLOT"
3730      IF Delta(Nrun)<=0 OR Q(Nrun)<=0 THEN 3790          ! LOG>0, Q>Q(I
TAAQUMIN)
3740      PDIR -150                                         ! GOING UP
3750      IF Q(Nrun)<Q(Nrun-1) THEN PDIR -90                ! GOING DOWN
3760      MOVE LGT(Delta(Nrun)),LGT(Q(Nrun))
3770      POLYGON Psize,3,3
3780      END SELECT
3790      !
3800      EXIT IF Stable=0
3810      !
3820      WAIT Stabtime                                     ! TIME INCREMENT
3830      FOR I=1 TO 8
3840      St2(I)=St1(I)
3850      NEXT I
3860      !
3870      OUTPUT 709;"ACV12,19"                           ! READ DATA FROM HP3421
3880      ENTER 709;St1(1),St1(2)                         ! Uv,Ia
3890      OUTPUT 709;"TEM13-18"
3900      ENTER 709;St1(3),St1(4),St1(5),St1(6),St1(7),St1(8) ! T1-T4,Tpool,Tbat
3910      !
3920      Stable=0
3930      FOR I=1 TO 7                                     ! CHECK STABILITY
3940      IF St1(I)=0 THEN 4020
3950      Dst=(St1(I)-St2(I))/St1(I)
3960      Dst=ABS(Dst)
3970      IF Dst>Limit THEN
3980      Stable=Stable+1
3990      !                                         PRINT I,St1(I),St2(I),Tsat
4000      END IF
4010      !                                         PRINT I,St1(I),St2(I),Tsat,Dst,Stable
4020      NEXT I
4030      !
4040      END LOOP
4050      !
4060      BEEP
4070      PRINT ""
4080      PRINT "      Now all data was S T A B L E within a ";Limit*100;" * limit
4090      !
4100      IF KBD$="S" THEN                                ! INTERRUPT WITH S AND PLOT BOIL.CU
4110      ! Curvefile$=Days
4120      Ncurve=2
4130      Curverun=1
4140      Curve$(1)=Days$
4150      Pcurve(1)=3
4160      Lcurve$(1)=Days$
```

```
4170  Bolt$="ON"
4180  Natcurve$=""
4190  CLEAR SCREEN
4200  GINIT
4210  PLOTTER IS CRT,"INTERNAL"
4220  GOSUB Datagraph
4230  CLEAR SCREEN
4240  GOTO Stabcheck
4250  END IF
4260 !
4270  OFF KBD
4280  IF Stabmode$="PLOT" THEN CLEAR SCREEN
4290 !-----
4300 !      DATA ACQUISITION
4310 !OUTPUT @Path,Nrun;Uv(Nrun),Ia(Nrun),Tav(Nrun),T1(Nrun),T2(Nrun),T3(Nrun),
4320 !                                ,T4(Nrun),Tpool(Nrun),Tbath(Nrun),Q(Nrun),Delta(Nrun)
4330 !                                ,Tube,Tsat,Surfarea,Tubediameter,R/r
4340 !
4350 !OUTPUT @Path,Nrun;Uv,Ia,Tav,T1,T2,T3,T4,St1(7),St1(8),Q(Nrun),Delta(Nrun),
Tube,Tsat,Surfarea,Tubediameter,Rr
4360 !
4370 PRINT "      The data of test run ";Nrun;" was taken at ";TIME$(TIMEDATE
4380 Nrun=Nrun+1
4390 !
4400 !-----
4410 !      THE DATA WAS TAKEN
4420 !
4430 Dataken:PRINT ""
4440 PRINT ""
4450 PRINT "      Enter alphabet : "
4460 PRINT ""
4470 PRINT "      L      to list records !"
4480 PRINT "      S      to show data !"
4490 PRINT "      M      to go back to MAINMENU !"
4500 PRINT "      R      to repeat the last test run!"
4510 PRINT ""
4520 PRINT "      RETURN      to run next measurements !"
4530 LINPUT Dataken$
4540 SELECT Dataken$
4550 CASE "L"
4560     GOSUB Rrecords
4570 CASE "S"
4580     GOSUB Datashow
4590 CASE "M"
4600     GOTO Mnmenu
4610 CASE "R"
4620     Nrun=Nrun-1
4630     GOTO Stabcheck
4640 CASE ""
4650     GOTO Datainput
4660 CASE ELSE
4670     GOTO Dataken
4680 END SELECT
4690 GOTO Dataken
```

```
4700 !
4710 !
4720 !
4730 !=====
4740 !=====
4750 !      SUBROUTINE VSTART12
4760 !
4770 Vstart12:!
4780 IF Nrun=1 THEN
4790   Vstart1=0
4800   Vstart2=0
4810   RETURN
4820 END IF
4830 !
4840 Qgraph=Q(Nrun-1)
4850 IF Qgraph<10^Ymin+100 THEN Qgraph=10^Ymin+100           ! START AND I
MIT
4860 !
4870 Vstart1=SQRT(Rohm*Surfarea*10^(LGT(Qgraph)+1/Graphstep))
4880 Vstart2=SQRT(Rohm*Surfarea*10^(LGT(Qgraph)-1/Graphstep))
4890 Decimal=0
4900 IF Vstart2<15 THEN Decimal=-1
4910 Vstart1=PROUND(Vstart1,Decimal)
4920 Vstart2=PROUND(Vstart2,Decimal)
4930 !
4940 RETURN
4950 !
4960 !-----
4970 !      SUBROUTINE RCORDS
4980 !
4990 RCORDS:ON ERROR GOTO 5030
5000 ASSIGN @Path TO Days
5010 GOTO 5070
5020 !
5030 PRINT "      This file is not on the disc.  Press F2 to continue !"
5040 PAUSE
5050 GOTO Mnmenu
5060 !
5070 OFF ERROR
5080 C$=CHR$(255)&"K"
5090 OUTPUT 2 USING "#,K";C$
5100 IF Media$="P" THEN PRINTER IS 9
5110 PRINT "I  Uv(I)      Ia(I)      Tav(I)  T1(I)  T2(I)  T3(I)  T4(I)  Tp
ol(I) q(I)"
5120 PRINT "_____"
5130 PRINT "      [V]      [A]      [C]      [C]      [C]      [C]      [C]      [C]
[W/m^2]"
5140 PRINT ""
5150 !
5160 FOR I=1 TO 50
5170   ON ERROR GOTO 5220
5180   ENTER @Path,I;Uv,Ia,Tav,T1,T2,T3,T4,Tpool,Tbath,Q(I),Delta(I),Tube,Tsat
Surfarea,Tubediameter,Rr
5190   PRINT USING 5200;I,Uv,Ia,Tav,T1,T2,T3,T4,Tpool,Q(I)
```

```
5200 IMAGE DD,2X,DDD.DDD,X,DDD.DDD,4X,DDD.D,3X,DDD.D,3X,DDD.D,3X,DD
.D,3X,DDD.D,3X,D.DESZ
5210 NEXT I
5220 OFF ERROR
5230 Nrun=I
5240 PRINT ""
5250 PRINT ""
5260 GOSUB Tubecheck
5270 IF Rr<1 OR Rr>2 THEN Rr=1.5 ! FOR OLD RECORDS
5280 IF Tubediameter<.01 OR Tubediameter>.025 THEN Tubediameter=.01905 ! FOR
LD RECORDS
5290 PRINT " The file ";Days;" contains ";Nrun-1;" records."
5300 PRINT " A ";Tubetype$;" tube with a surface area of 0";PROUND(Surfa
a,-7);"m^2, an outer"
5310 PRINT " diameter of 0";PROUND(Tubediameter,-5);"m and a correction ra
io R/r of ";PROUND(Rr,-4);" was"
5320 PRINT " tested in freon with a saturation temperature of ";Tsat;" C."
5330 IF Arragenr<1 THEN 5380
5340 PRINT ""
5350 PRINT ""
5360 PRINT " data A";Arragenr
5370 PRINT ""
5380 PRINTER IS CRT
5390 PRINT "
o continue !"
5400 PAUSE
5410 C$=CHR$(255)&"K"
5420 OUTPUT 2 USING "#,K";C$
5430 RETURN
5440 !
5450 !-----.
5460 ! SUBROUTINE TUBECHECK
5470 !
5480 Tubecheck:ON ERROR GOTO 5600
5490 ON Tube GOTO 5500,5520,5540,5560,5580 ! ADD LINE# FOR TTYPES
5500 Tubetype$="plain" ! TUBE 1
5510 GOTO 5620
5520 Tubetype$="plain WIELAND" ! TUBE 2
5530 GOTO 5620
5540 Tubetype$="Turbo-B, S" ! TUBE 3
5550 GOTO 5620
5560 Tubetype$="Turbo-B, M" ! TUBE 4
5570 GOTO 5620
5580 Tubetype$="Turbo-B, L" ! TUBE 5
5590 GOTO 5620
5600 Tubetype$="no_tube_type"
5610 !
5620 OFF ERROR
5630 RETURN
5640 !
5650 !-----.
5660 ! SUBROUTINE DATACHECK
5670 !
5680 Datacheck:C$=CHR$(255)&"K"
5690 OUTPUT 2 USING "#,K";C$
5700 PRINT " Tsat = ";Tsat;" C"
```

5710	PRINT "	5720	PRINT "	5730	PRINT "	5740	PRINT "	5750	PRINT "	5760	Morecheck: !	5770	OUTPUT 709;"ACV12,19"	5780	ENTER 709;St1(1),St1(2)	5790	OUTPUT 709;"TEM13-18"	5800	ENTER 709;St1(3),St1(4),St1(5),St1(6),St1(7),St1(8)	5810	!	5820	GOSUB Correct	5830	!	5840	IF Tav>10000 THEN	5850	PRINT USING 5900;Uv,Ia,0,0,0,0,0,Tpool,Q(Nrun)	5860	GOTO 5920	5870	END IF	5880	!	5890	PRINT USING 5900;Uv,Ia,Tav,T1,T2,T3,T4,Tpool,Q(Nrun)	5900	IMAGE 3X,DDD.DDD,X,DDD.DDD,5X,DDD.D,3X,DDD.D,3X,DDD.D,3X,DDD.D,3X,DDD.I	3X,DDD.D,3X,D.DESZ	5910	!	5920	LINPUT " Enter M to go back to the main menu, any other key to check data once more !",Checkmore\$	5930	IF Checkmore\$<>"M" THEN Morecheck	5940	RETURN	5950	!	5960	-----	5970	! SUBROUTINE CORRECT DATA	5980	!	5990	Correct: !-----VOLTAGE AT THE HEATER Uv, 10:1 DIVIDOR IN DATA ACQU	6000	Corrv=-.36668-8.9054*St1(1)-.000743*St1(1)^2	6010	Uv=St1(1)-Corrv	6020	!-----VOLTAGE SHUNT Ua	6030	Corra=-.001523-.001789*St1(2)-.0051955*St1(2)^2	6040	Ua=St1(2)-Corra	6050	!-----	6060	Ia=15*Ua	! SHUNT RESISTOR 1/15 OHM	6070	P=Ia*Uv	! POWER DISSIPATED	6080	Q(Nrun)=P/Surfarea	! HEAT FLUX	6090	!-----TEMPERATURE GRADIENT BETW. THERMOCPLES AND TSURFACE	6100	T1=St1(3)-LOG(Rr)*Q(Nrun)*Tubediameter*.5/Kcopper	6110	T2=St1(4)-LOG(Rr)*Q(Nrun)*Tubediameter*.5/Kcopper	6120	T3=St1(5)-LOG(Rr)*Q(Nrun)*Tubediameter*.5/Kcopper	6130	T4=St1(6)-LOG(Rr)*Q(Nrun)*Tubediameter*.5/Kcopper	6140	!-----	6150	Tav=(T1+T2+T3+T4)/4	! AVERAGE WALL TEMPERATURE AT SURFACE	6160	Delta(Nrun)=Tav-Tsat	! AVERAGE WALL SUPERHEAT	6170	Tpool=St1(7)	6180	RETURN	6190	!
------	---------	------	---------	------	---------	------	---------	------	---------	------	--------------	------	-----------------------	------	-------------------------	------	-----------------------	------	---	------	---	------	---------------	------	---	------	-------------------	------	--	------	-----------	------	--------	------	---	------	--	------	---	--------------------	------	---	------	--	------	------------------------------------	------	--------	------	---	------	-------	------	---------------------------	------	---	------	--	------	--	------	-----------------	------	------------------------	------	---	------	-----------------	------	--------	------	----------	---------------------------	------	---------	--------------------	------	--------------------	-------------	------	---	------	---	------	---	------	---	------	---	------	--------	------	---------------------	---------------------------------------	------	----------------------	--------------------------	------	--------------	------	--------	------	---

```
6200 ! -----
6210 !      SUBROUTINE SET PARAMETERS
6220 !
6230 Setparam:C$=CHR$(255)&"K"
6240 OUTPUT 2 USING "#,K";C$
6250 PRINT ""
6260 PRINT "      Enter :"
6270 PRINT ""
6280 PRINT "      - atmospheric pressure ,      default : patmos = ";Patmos;" mm
g"
6290 INPUT Patmos
6300 PRINT "                               new : patmos = ";Patmos;" mm
g"
6310 PRINT "      - freon above tube ,      default : height = ";Height;" m
6320 INPUT Height
6330 PRINT "                               new : height = ";Height;" m
6340 PRINT ""
6350 Ptube=Patmos*.0001333+Rhofreon*Gravity*Height*.000001           ! [ N
a ]
6360 Tsat=320+(Ptube-.09896)/(.10575-.09896)*2-273.16+.02           ! [ C], COF
+.02
6370 Tsat=DROUND(Tsat,4)
6380 PRINT "                               ==>      Tsat = ";Tsat;" C"
6390 PRINT ""
6400 PRINT "      - tube diameter,      default:      D = ";Tubediameter
" m"
6410 INPUT Tubediameter
6420 PRINT "                               new:      D = ";Tubediameter
" m"
6430 PRINT "      - tube length      default:      L = ";Tubelength;
" m"
6440 INPUT Tubelength
6450 PRINT "                               new:      L = ";Tubelength;
" m"
6460 Surfarea=Tubediameter*PI*Tubelength           ! SURFACE AREA [m^2]
6470 PRINT "      - tube o.r. / thermcpl.r.      default:      R/r = ";Rr
6480 INPUT Rr
6490 PRINT "                               new:      R/r = ";Rr
6500 WAIT 1
6510 RETURN
6520 !
6530 ! -----
6540 !      SUBROUTINE SHOW DATA  Q VERSUS DELTA T
6550 !
6560 Datashow:C$=CHR$(255)&"K"
6570 OUTPUT 2 USING "#,K";C$
6580 Stabgraph$="N"
6590 Ncurve=1
6600 !
6610 PRINT "      S H O W   D A T A"
6620 PRINT ""
6630 PRINT ""
6640 PRINT "      Enter :"
```

```
6650 PRINT ""
6660 !
6670 LOOP
6680 IF Ncurve=1 AND Days<>"" THEN
6690   PRINT "    the name of the ";Ncurve;". file, you want to plot !  Defa
lt: ";Days
6700   LINPUT Curvefile$
6710   Curvefile$=UPC$(Curvefile$)
6720   IF Curvefile$="" THEN
6730     Curvefile$=Days
6740   END IF
6750   GOTO 6820
6760 END IF
6770 PRINT "    the name of the ";Ncurve;". file, you want to plot !"
6780 LINPUT "    RETURN to finish the file selection !",Curvefile$
6790 Curvefile$=UPC$(Curvefile$)
6800 EXIT IF Curvefile$=""
6810 !----- CHECK EXISTENCE OF FILE
6820 ON ERROR GOTO 6860
6830 ASSIGN @Path TO *
6840 ASSIGN @Path TO Curvefile$
6850 GOTO 6900
6860 PRINT "    This file is not on the disc.  Press F2 to continue !"
6870 OFF ERROR
6880 PAUSE
6890 GOTO 7070
6900 OFF ERROR
6910 !-----
6920 Curve$(Ncurve)=Curvefile$
6930 LINPUT "    the label of the plot !"                               Default: filenam
",Lcurve$(Ncurve)
6940 IF Lcurve$(Ncurve)="" THEN
6950   Lcurve$(Ncurve)=Curvefile$
6960 END IF
6970 Pcurve(Ncurve)=Ncurve+2
6980 INPUT "    the number of sides of the polygon !"                  Default:  # plot
"2",Pcurve(Ncurve)
6990 LINPUT "    any alphabet to fill the polygon !"                  Default: not fili
d",Pfill$(Ncurve)
7000 IF Pfill$(Ncurve)<>"" THEN
7010   Pfill$(Ncurve)="filled"
7020 END IF
7030 PRINT ""
7040 PRINT "    ->    file : ";Curve$(Ncurve);",  label : ";Lcurve$(Ncurve
", polygon : ";Pcurve(Ncurve);"  ";Pfill$(Ncurve)
7050 PRINT ""
7060 Ncurve=Ncurve+1
7070 END LOOP
7080 !----- NATURAL CONVECTION CURVE
7090 Natcurve$=""
7100 LINPUT "    RETURN / N ,  to plot/not to plot  the natural convection
urve!",Natcurve$
7110 IF Natcurve$<>"N" THEN
7120   PRINT ""
7130   PRINT "    ->    Natural Convection Curve"
```

```
7140 END IF
7150 !----- FIGURE #
7160 Fignumber$=""
7170 LINPUT " Enter figure# , or RETURN to plot no figure label!",Fignumber
7180 PRINT ""
7190 PRINT " -> Figure ";Fignumber$
7200 !----- EXTENDS OF THE PLOT
7210 Plotwindow$=""
7220 LINPUT " RETURN / N , to keep/to change the default plotting winc
w !",Plotwindow$
7230 IF Plotwindow$<>"" THEN GOSUB Plotwindow
7240 !----- CHOOSE MEDIA
7250 C$=CHR$(255)&"K"
7260 OUTPUT 2 USING "#,K";C$
7270 PRINT " Enter # to show data :"
7280 PRINT ""
7290 PRINT " 1 on screen"
7300 PRINT ""
7310 PRINT " 2 on printer ?"
7320 PRINT ""
7330 PRINT " 3 on plotter"
7340 PRINT ""
7350 PRINT ""
7360 PRINT " Enter M to go back to MAIN MENU !"
7370 LINPUT " Default : 1",Datanr$
7380 !
7390 Bolt$="ON" ! PRINTS "POOL..." BOLT
7400 SELECT Datanr$
7410 CASE "2"
7420   CLEAR SCREEN
7430   GINIT
7440   PLOTTER IS 9,"INTERNAL"
7450   GOSUB Datagraph
7460 CASE "3"
7470   PRINT ""
7480   PRINT " Turn plotter on !" Press F2 to conti
ue !
7490   PAUSE
7500   CLEAR SCREEN
7510   GINIT
7520   PLOTTER IS CRT,"INTERNAL"
7530   GOSUB Datagraph
7540   Bolt$="OFF"
7550   GINIT
7560   PLOTTER IS 705,"HPGL"
7570   OUTPUT 705;"VS10"
7580   GOSUB Datagraph
7590 CASE "M"
7600   GOTO Mnmenu
7610 CASE ELSE
7620   CLEAR SCREEN
7630   GINIT
7640   PLOTTER IS CRT,"INTERNAL"
7650   GOSUB Datagraph
```

```
7660 END SELECT
7670 !
7680 GRAPHICS OFF
7690 C$=CHR$(255)&"K"
7700 OUTPUT 2 USING "#,K";C$
7710 !
7720 RETURN ! RETURN TO MNMENU
7730 !
7740 !+++++ SUB-PROGRAM OF A SUBROUTINE
7750 ! SUBROUTINE DATAGRAPH, GRAPHIC OF : Q VERSUS DELTA T
7760 !
7770 Datagraph: -----
7780 Xrange=Xmax-Xmin
7790 Yrange=Ymax-Ymin
7800 !----- CORRECTION TO PLOT SQUARES
7810 Xstretchcorr=.82432*Xrange/3 ! NORMALIZED TO A SQUARE
7820 Ystretchcorr=Yrange/2.5 ! NORMALIZED TO A SQUARE
7830 IF Xstretchcorr>Ystretchcorr THEN
7840   Ystretchcorr=Ystretchcorr/Xstretchcorr
7850   Xstretchcorr=1
7860 END IF
7870 IF Ystretchcorr>=Xstretchcorr THEN
7880   Xstretchcorr=Xstretchcorr/Ystretchcorr
7890   Ystretchcorr=1
7900 END IF
7910 !----- PLOT LABEL
7920 GRAPHICS ON
7930 X_gdu_max=100*MAX(1,RATIO)
7940 Y_gdu_max=100*MAX(1,1/RATIO)
7950 !
7960 IF Fignumbers<>"" THEN
7970   CSIZE 3
7980   LORG 3
7990   DEG
8000   LDIR 270
8010   MOVE .05*X_gdu_max,Y_gdu_max*.35
8020   Figure$="Figure "&Fignumbers
8030   LABEL Figure$
8040   LDIR 0
8050 END IF
8060 !
8070 CSIZE 4.5
8080 LORG 6
8090 !
8100 MOVE .5*X_gdu_max,Y_gdu_max*Ystretchcorr
8110 LABEL "Pool Boiling Experiment"
8120 IF Bolt$="OFF" THEN 8180
8130 FOR I=-.1 TO .1 STEP .2
8140   MOVE .5*X_gdu_max+I,Y_gdu_max*Ystretchcorr
8150   LABEL "Pool Boiling Experiment"
8160 NEXT I
8170 !
8180 DEG
8190 LDIR 90
8200 CSIZE 3.5
```

```
8210 MOVE (.5-.5*Xstretchcorr)*X_gdu_max,Y_gdu_max*Ystretchcorr/2
8220 LABEL "Heat Flux , W/m"
8230 CSIZE 2
8240 MOVE (.5-.5*Xstretchcorr)*X_gdu_max,.67*Y_gdu_max*Ystretchcorr
8250 LABEL "2"
8260 !
8270 CSIZE 3.5
8280 LORG 4
8290 LDIR 0
8300 MOVE .5*X_gdu_max,.01*Y_gdu_max*Stretchcorr
8310 LABEL "Wall Superheat , C"
8320 !
8330 LDIR 0
8340 !----- PLOT FRAME
8350 VIEWPORT (.5-.35*Xstretchcorr)*X_gdu_max,(.5+.49*Xstretchcorr)*X_gdu_max,
1*Y_gdu_max,.9*Y_gdu_max*Ystretchcorr
8360 FRAME
8370 WINDOW Xmin,Xmax,Ymin,Ymax
8380 !----- GRID
8390 FOR Xgrid=PROUND(Xmin+.501,0) TO Xmax-.001
8400     MOVE Xgrid,Ymin
8410     DRAW Xgrid,Ymax
8420 NEXT Xgrid
8430 FOR Ygrid=PROUND(Ymin+.501,0) TO Ymax-.001
8440     MOVE Xmin,Ygrid
8450     DRAW Xmax,Ygrid
8460 NEXT Ygrid
8470 !----- SCALE X-AXIS
8480 Xstart=PROUND(Xmin-.49,0)
8490 FOR Decade=Xstart TO Xmax
8500     FOR Units=1 TO 1+8*(Decade<Xmax)
8510         X=Decade+LGT(Units)
8520         MOVE X,Ymin
8530         DRAW X,Ymin+.02*Yrange
8540         MOVE X,Ymax-.02*Yrange
8550         DRAW X,Ymax
8560     NEXT Units
8570 NEXT Decade
8580 !----- SCALE Y-AXIS
8590 Ystart=PROUND(Ymin-.49,0)
8600 FOR Decade=Ystart TO Ymax
8610     FOR Units=1 TO 1+8*(Decade<Ymax)
8620         Y=Decade+LGT(Units)
8630         MOVE Xmin,Y
8640         DRAW Xmin+.01*Xrange,Y
8650         MOVE Xmax-.01*Xrange,Y
8660         DRAW Xmax,Y
8670     NEXT Units
8680 NEXT Decade
8690 !----- LABEL X-AXIS
8700 CLIP OFF
8710 Xstart=PROUND(Xmin+.49,0)
8720 FOR X=Xstart TO Xmax STEP Dx
8730     LORG 6
8740     CSIZE 3
```

```
8750 MOVE X,Ymin-Yrange*.01
8760 LABEL USING "#,K";"10"
8770 CSIZE 2
8780 LORG 1
8790 MOVE X+Xrange*.02,Ymin-Yrange*.03
8800 LABEL USING "#,K";X
8810 NEXT X
8820 !----- LABEL Y-AXIS
8830 Ystart=PROUND(Ymin+.49,0)
8840 FOR Y=Ystart TO Ymax STEP Dy
8850 CSIZE 3
8860 LORG 8
8870 MOVE Xmin-Xrange*.03,Y
8880 LABEL USING "#,K";"10"
8890 CSIZE 2
8900 LORG 1
8910 MOVE Xmin-Xrange*.025,Y+Yrange*.01
8920 LABEL USING "#,K";Y
8930 NEXT Y
8940 CLIP ON
8950 !----- PLOT DATA
8960 FOR Curverun=1 TO Ncurve-1
8970 !----- READ DATA
8980 IF Stabgraph$="Y" THEN 9080 ! DATA ALREADY AVAILABLE, STABCHEC
8990 ASSIGN @Path TO *
9000 ASSIGN @Path TO Curve$(Curverun)
9010 FOR I=1 TO 50
9020 ON ERROR GOTO 9060
9030 ! ENTER @Path,I;Uv,Ia,Tav,T1,T2,T3,T4,Tpool,Tbath,Q(I),Delta(I),Tube,Ts
t,Surfarea,Tubediameter,Rr
9040 ENTER @Path,I;Ff,Ff,Ff,Ff,Ff,Ff,Ff,Ff,Ff,Q(I),Delta(I)
9050 NEXT I
9060 OFF ERROR
9070 Nrun=1
9080 !----- PLOT LABEL OF CURVE
9090 LORG 2
9100 MOVE Xmin+.06*Xrange,.98*Ymax-.1*Yrange*Curverun
9110 PDIR -90-180/Pcurve(Curverun)
9120 SELECT Pfill$(Curverun)
9130 CASE ""
9140 POLYGON Psize,Pcurve(Curverun),Pcurve(Curverun)
9150 CASE ELSE
9160 POLYGON Psize,Pcurve(Curverun),Pcurve(Curverun),FILL
9170 END SELECT
9180 MOVE Xmin+.1*Xrange,.98*Ymax-.1*Yrange*Curverun
9190 CSIZE 3
9200 LABEL "incr., "&Lcurve$(Curverun)
9210 !
9220 MOVE Xmin+.06*Xrange,.98*Ymax-.1*Yrange*(Curverun+.4)
9230 PDIR -90
9240 SELECT Pfill$(Curverun)
9250 CASE ""
9260 POLYGON Psize,Pcurve(Curverun),Pcurve(Curverun)
9270 CASE ELSE
```

```
9280      POLYGON Psize,Pcurve(Curverun),Pcurve(Curverun),FILL
9290  END SELECT
9300  PDIR 0
9310  MOVE Xmin+.10*Xrange,.98*Ymax-.1*Yrange*(Curverun+.4)
9320  LABEL "decr."
9330  !----- PLOT CURVE
9340  Plotstart=1
9350  LOOP                                     ! LOG>0, Q>Q(DATAAQUMIN
9360  EXIT IF Delta(Plotstart)>0 AND Q(Plotstart)>0 !10^Ymin ! 1.POINT
9370  Plotstart=Plotstart+1
9380  END LOOP
9390  MOVE LGT(Delta(Plotstart)),LGT(Q(Plotstart))
9400  FOR I=Plotstart TO Nrun-1
9410  IF Delta(I)<=0 OR Q(I)<=0 THEN 9520          ! LOG>0, Q>Q(DATAAQUL
IN)
9420  PLOT LGT(Delta(I)),LGT(Q(I)), -1
9430  PENUP
9440  PDIR -90-180/Pcurve(Curverun)           ! GOING UP
9450  IF Q(I)<Q(I-1) THEN PDIR -90           ! GOING DOWN
9460  SELECT Pfill$(Curverun)
9470  CASE ""
9480  POLYGON Psize,Pcurve(Curverun),Pcurve(Curverun)
9490  CASE ELSE
9500  POLYGON Psize,Pcurve(Curverun),Pcurve(Curverun),FILL
9510  END SELECT
9520  NEXT I
9530  PDIR 0
9540  !
9550  NEXT Curverun
9560  !----- PLOT NATURAL CONVECTION CURVE
9570  IF Natcurve$<>" " THEN 10110
9580  !
9590  LORG 2
9600  MOVE Xmin+.05*Xrange,.98*Ymax-.1*Yrange*Curverun
9610  PLOT Xmin+.08*Xrange,.98*Ymax-.1*Yrange*Curverun, -1
9620  PENUP
9630  MOVE Xmin+.1*Xrange,.98*Ymax-.1*Yrange*Curverun
9640  CSIZE 3
9650  LABEL "nat. Convection [9]"
9660  !
9670  Delta_nc=1                                ! LOWER LIMIT OF THE CURV
9680  Q_nc=C_nc*3.7*6804901.4^N_nc*Delta_nc^(N_nc+1)
9690  MOVE LGT(Delta_nc),LGT(Q_nc)
9700  Delta_nc=30                                ! UPPER LIMIT OF THE CURV
9710  Q_nc=C_nc*3.7*6804901.4^N_nc*Delta_nc^(N_nc+1)
9720  PLOT LGT(Delta_nc),LGT(Q_nc), -1
9730  PENUP
9740  !-----+
9750  !
9760  IF Stabmode$="PLOT" AND Stabgraph$="Y" THEN RETURN
9770  !
9780  PAUSE
```

```
9790 LINPUT " RETURN to continue / W to change the window !",Window$  
9800 Window$=UPC$(Window$).  
9810 IF Window$<>"W" THEN RETURN  
9820 GRAPHICS OFF  
9830 GOSUB Plotwindow  
9840 CLEAR SCREEN  
9850 GINIT  
9860 GOTO Datagraph  
9870 !+++++  
9880 ! SUBROUTINE PLOTWINDOW  
9890 !  
9900 Plotwindow: !  
9910 C$=CHR$(255)&"K"  
9920 OUTPUT 2 USING "#,K";C$  
9930 PRINT " The default plotting window is :"  
9940 PRINT ""  
9950 PRINT " log(T-Tsat)_min = ";Xmin  
9960 PRINT " log(T-Tsat)_max = ";Xmax  
9970 PRINT ""  
9980 PRINT " log(q')_min = ";Ymin  
9990 PRINT " log(q')_max = ";Ymax  
10000 !  
10010 PRINT ""  
10020 PRINT ""  
10030 PRINT " The new plotting window is :"  
10040 PRINT ""  
10050 INPUT " log(T-Tsat)_min = ? , RETURN to keep the de  
ault value !",Xmin  
10060 PRINT " log(T-Tsat)_min = ";Xmin  
10070 INPUT " log(T-Tsat)_max = ? , RETURN to keep the de  
ault value !",Xmax  
10080 PRINT " log(T-Tsat)_max = ";Xmax  
10090 INPUT " log(q')_min = ? , RETURN to keep the de  
ault value !",Ymin  
10100 PRINT ""  
10110 PRINT " log(q')_min = ";Ymin  
10120 INPUT " log(q')_max = ? , RETURN to keep the de  
ault value !",Ymax  
10130 PRINT " log(q')_max = ";Ymax;" Press F  
to continue !"  
10140 PAUSE  
10150 RETURN  
10160 !+++++  
10170 !  
10180 !-----  
10190 !  
10200 Ende: !  
10210 C$=CHR$(255)&"K"  
10220 OUTPUT 2 USING "#,K";C$  
10230 CAT  
10240 !  
10250 END
```

7. Data A1 to A9 (Pool-Boiling Experiment)

The data listed next refer to the pool-boiling tests with arrangements as explained in chapter II.1.4.

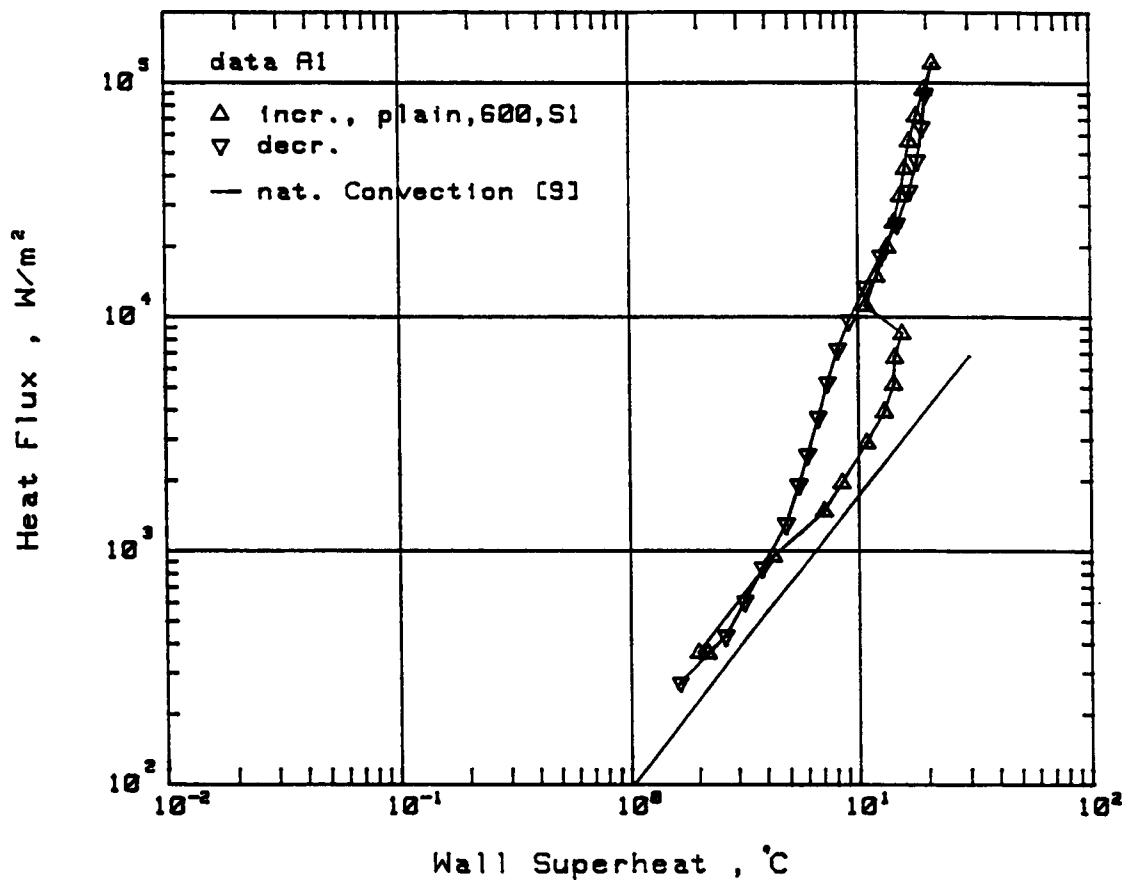
In the plots, a brief description of the arrangement is given with a code in the format: {tube type, surface quality, instrumentation}, where the parameters are denoted as follows:

- tube type: "plain", for a plain tube
"plain-W", for a plain Wieland tube (wire-EDM)
"Turbo-B", for a Wolverine Turbo-B tube
- surface quality: "100", for a surface polished with 100 paper
"600", for a surface polished with 600 paper
"Crocus", for a polishing with Crocus paper
- instrumentation: "S1", for a 1/8" o.d., 1/16" i.d., copper
sleeve, which accommodates the thermocouple in a
drilled well.

"S2", for a 0.093" o.d., 0.036" i.d., copper
sleeve, which accommodates the thermocouple in a
drilled well.

"sold.", for a plain Wieland tube, where the
slots are soldered

" ", if the thermocouple is accommodated in a
3/32" well without a sleeve, or in a slot which
is not soldered.

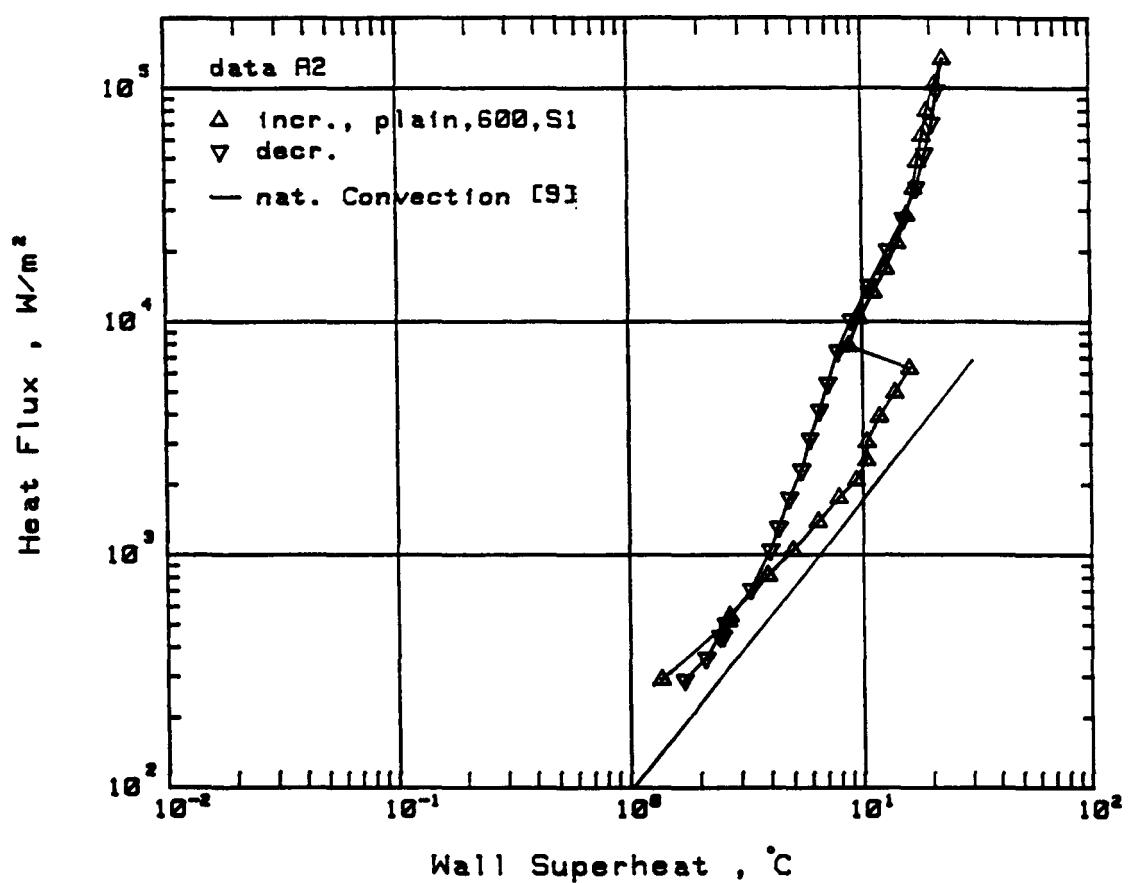

I	Uv(I)	Ia(I)	Tav(I)	Ti(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	8.015	.275	50.6	50.7	50.7	50.6	50.5	47.9	3.6E+2
2	8.022	.277	50.4	50.5	50.5	50.4	50.3	48.0	3.7E+2
3	12.829	.450	52.7	52.7	52.8	52.7	52.6	48.0	9.5E+2
4	15.990	.562	55.5	55.5	55.6	55.5	55.4	48.1	1.5E+3
5	18.332	.647	56.9	57.0	57.0	56.9	56.8	48.1	1.9E+3
6	22.324	.788	59.3	59.4	59.4	59.2	59.2	48.1	2.9E+3
7	25.977	.920	61.4	61.5	61.4	61.4	61.3	48.0	3.9E+3
8	29.731	1.054	62.7	62.8	62.7	62.6	62.5	48.0	5.2E+3
9	34.054	1.195	62.8	62.9	62.9	62.9	62.7	48.1	6.7E+3
10	38.315	1.346	63.9	63.9	64.0	64.1	63.8	47.9	8.5E+3
11	43.866	1.541	59.3	59.3	59.5	59.4	59.0	48.0	1.1E+4
12	50.904	1.782	60.6	60.6	60.8	60.8	60.2	48.0	1.5E+4
13	58.735	2.053	62.0	61.9	62.3	62.3	61.5	48.0	2.0E+4
14	66.270	2.324	62.9	62.8	63.2	63.3	62.4	47.9	2.5E+4
15	75.492	2.640	63.9	63.7	64.1	64.3	63.4	47.9	3.3E+4
16	86.402	3.016	64.6	64.4	64.8	65.1	64.2	47.8	4.3E+4
17	98.999	3.453	65.3	65.2	65.3	65.9	65.0	47.8	5.6E+4
18	111.996	3.905	66.6	66.4	66.5	67.2	66.3	47.8	7.2E+4
19	127.972	4.447	68.1	67.9	67.9	68.8	67.8	47.8	9.4E+4
20	146.137	5.051	69.7	69.6	69.5	70.6	69.3	47.8	1.2E+5
21	125.193	4.342	68.4	68.3	68.2	69.0	67.9	47.8	8.9E+4
22	106.241	3.694	67.7	67.6	67.8	68.2	67.2	47.8	6.5E+4
23	90.171	3.137	66.7	66.6	67.0	67.2	66.1	47.8	4.7E+4
24	77.575	2.700	65.4	65.3	65.7	65.8	64.7	47.9	3.4E+4
25	65.973	2.294	63.4	63.4	63.7	63.6	62.9	47.9	2.5E+4
26	56.356	1.963	61.2	61.2	61.4	61.3	60.8	47.9	1.8E+4
27	48.524	1.677	59.4	59.4	59.6	59.4	59.0	47.9	1.3E+4
28	41.190	1.421	57.7	57.8	57.9	57.7	57.4	48.0	9.6E+3
29	35.639	1.241	56.7	56.8	56.8	56.7	56.5	48.0	7.3E+3
30	30.032	1.059	55.9	55.9	56.0	56.0	55.7	48.0	5.2E+3
31	25.372	.893	55.2	55.3	55.3	55.3	55.1	48.0	3.7E+3
32	21.149	.741	54.5	54.6	54.6	54.6	54.4	48.1	2.6E+3
33	18.254	.639	54.0	54.1	54.1	54.0	53.9	48.0	1.9E+3
34	15.086	.526	53.4	53.5	53.5	53.4	53.3	48.0	1.3E+3
35	12.205	.423	52.4	52.5	52.5	52.4	52.3	48.0	8.5E+2
36	10.369	.356	51.8	51.8	51.8	51.7	51.7	48.0	6.1E+2
37	8.785	.299	51.2	51.3	51.3	51.2	51.1	48.0	4.3E+2
38	6.992	.236	50.2	50.3	50.3	50.2	50.1	48.1	2.7E+2
39	.370	.023	48.6	48.7	48.7	48.6	48.5	48.0	1.4E+0

The file 15SEP1988 contains 39 records.

A plain tube with a surface area of 0.0060805 m^2, an outer diameter of 0.01905 m and a correction ratio R/r of 1.5 was tested in freon with a saturation temperature of 48.57 C.

data A 1

Pool Boiling Experiment

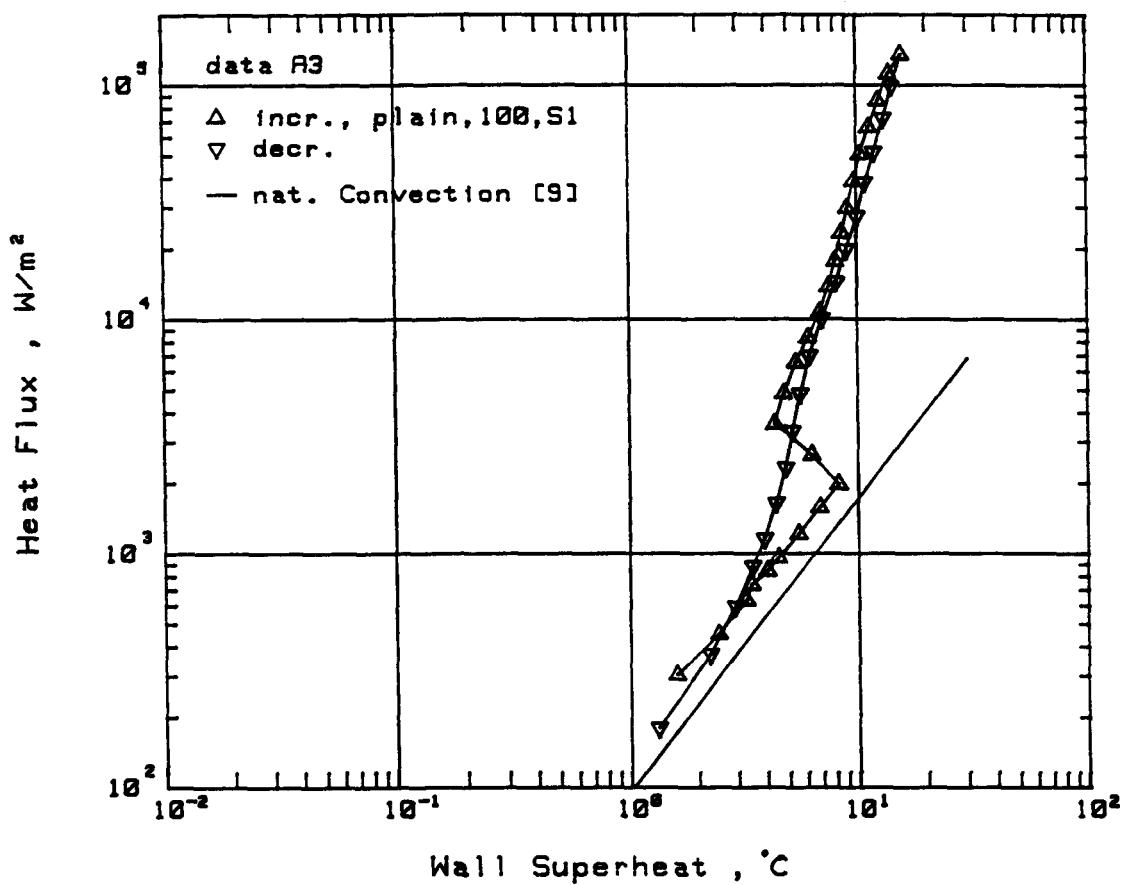

I	Uv(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.367	.023	48.1	48.2	48.2	48.1	48.0	47.9	1.4E+0
2	7.223	.245	49.7	49.6	49.8	49.7	49.6	47.9	2.9E+2
3	9.582	.329	50.9	50.7	51.1	51.0	50.9	47.8	5.2E+2
4	8.899	.305	50.8	50.6	50.9	50.9	50.8	47.8	4.5E+2
5	8.896	.305	50.7	50.5	50.9	50.8	50.7	47.8	4.5E+2
6	9.836	.338	51.0	50.7	51.1	51.1	51.0	47.8	5.5E+2
7	11.947	.415	52.2	51.9	52.3	52.3	52.2	47.8	8.2E+2
8	13.518	.471	53.3	53.0	53.4	53.4	53.2	47.9	1.0E+3
9	15.541	.543	54.7	54.4	54.8	54.8	54.6	47.9	1.4E+3
10	17.469	.612	56.1	55.9	56.3	56.2	56.1	47.8	1.8E+3
11	19.049	.668	57.6	57.4	57.8	57.7	57.6	47.8	2.1E+3
12	21.025	.738	58.7	58.5	58.8	58.8	58.6	47.8	2.6E+3
13	22.967	.807	58.8	58.6	58.9	58.9	58.7	47.8	3.0E+3
14	26.004	.917	60.1	60.0	60.3	60.2	60.0	47.8	3.9E+3
15	29.276	1.033	62.1	61.9	62.3	62.2	62.0	47.8	5.0E+3
16	33.261	1.150	64.3	64.2	64.5	64.4	64.3	47.8	6.3E+3
17	37.225	1.286	57.1	57.0	57.3	57.1	56.9	47.8	7.9E+3
18	42.676	1.481	58.1	58.0	58.4	58.2	57.9	47.8	1.0E+4
19	48.425	1.677	59.5	59.3	59.8	59.6	59.2	47.8	1.3E+4
20	54.175	1.887	61.0	60.9	61.4	61.2	60.7	47.8	1.7E+4
21	61.710	2.143	62.6	62.4	63.0	62.9	62.2	47.7	2.2E+4
22	70.534	2.459	64.0	63.7	64.4	64.4	63.5	47.7	2.9E+4
23	80.451	2.805	65.1	65.0	65.4	65.6	64.6	47.6	3.7E+4
24	92.055	3.197	65.8	65.6	66.0	66.3	65.4	47.6	4.8E+4
25	104.753	3.634	66.8	66.6	66.8	67.3	66.4	47.6	6.3E+4
26	118.346	4.101	67.6	67.5	67.5	68.2	67.4	47.6	8.0E+4
27	134.920	4.674	69.2	69.0	68.9	69.9	68.9	47.6	1.0E+5
28	153.384	5.292	71.0	71.0	70.5	71.7	70.5	47.5	1.3E+5
29	131.049	4.523	69.8	69.8	69.5	70.4	69.3	47.5	9.7E+4
30	111.599	3.860	68.7	68.8	68.7	69.2	68.2	47.5	7.1E+4
31	95.825	3.317	67.2	67.2	67.4	67.7	66.6	47.6	5.2E+4
32	80.947	2.805	65.6	65.6	65.9	65.9	65.1	47.6	3.7E+4
33	69.245	2.414	63.6	63.6	63.9	63.7	63.0	47.6	2.7E+4
34	59.528	2.068	61.3	61.3	61.6	61.4	60.8	47.7	2.0E+4
35	50.011	1.737	59.1	59.1	59.3	59.1	58.7	47.7	1.4E+4
36	42.280	1.466	57.3	57.3	57.4	57.3	57.0	47.8	1.0E+4
37	36.234	1.256	56.1	56.2	56.3	56.2	55.9	47.8	7.5E+3
38	30.783	1.075	55.4	55.4	55.5	55.3	55.2	47.8	5.4E+3
39	26.796	.947	54.8	54.8	54.9	54.8	54.7	47.7	4.2E+3
40	23.290	.822	54.2	54.2	54.3	54.2	54.1	47.8	3.2E+3
41	20.009	.705	53.7	53.8	53.8	53.7	53.6	47.7	2.3E+3
42	17.394	.612	53.1	53.1	53.1	53.1	53.0	47.8	1.8E+3
43	15.072	.529	52.6	52.7	52.7	52.6	52.5	47.8	1.3E+3
44	13.493	.472	52.3	52.3	52.3	52.3	52.2	47.8	1.0E+3
45	11.179	.388	51.6	51.7	51.7	51.6	51.5	47.8	7.1E+2
46	9.436	.326	50.9	50.9	50.9	50.9	50.8	47.8	5.1E+2
47	7.988	.274	50.1	50.5	50.5	50.4	50.3	47.8	3.6E+2
48	7.195	.245	50.0	50.1	50.1	50.0	49.9	47.8	2.9E+2

The file 19SEP1988 contains 48 records.

A plain tube with a surface area of 0 .0060805 m^2, an outer diameter of 0 .01905 m and a correction ratio R/r of 1.5 was tested in freon with a saturation temperature of 48.3 C.

data A 2

Pool Boiling Experiment

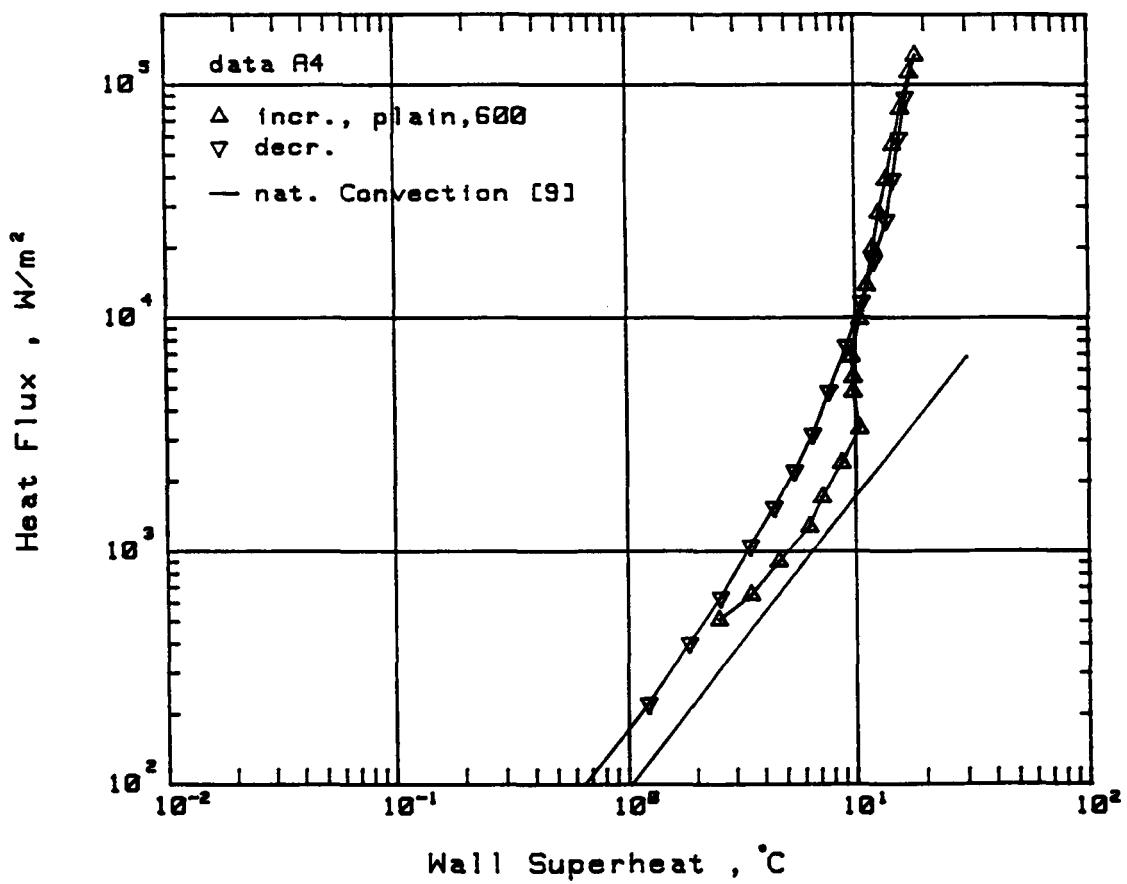


I	Uv(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.367	.023	48.2	48.2	48.2	48.1	48.1	48.0	1.4E+0
2	7.341	.251	49.8	49.8	49.9	49.8	49.7	47.9	3.0E+2
3	8.935	.308	50.6	50.5	50.8	50.7	50.6	47.9	4.5E+2
4	10.521	.365	51.4	51.3	51.6	51.5	51.4	47.9	6.3E+2
5	11.340	.396	51.6	51.4	51.8	51.7	51.6	47.9	7.4E+2
6	12.132	.424	52.2	52.0	52.4	52.3	52.2	47.9	8.5E+2
7	12.929	.453	52.7	52.5	52.8	52.8	52.6	47.9	9.6E+2
8	14.508	.510	53.7	53.5	53.9	53.8	53.7	47.9	1.2E+3
9	16.510	.582	55.0	54.8	55.2	55.2	55.0	47.9	1.6E+3
10	18.478	.651	56.4	56.2	56.6	56.5	56.4	47.8	2.0E+3
11	21.311	.753	54.5	54.5	54.6	54.5	54.5	47.7	2.6E+3
12	24.825	.878	52.6	52.5	52.7	52.6	52.4	47.7	3.6E+3
13	28.800	1.021	53.0	52.9	53.2	53.0	52.8	47.7	4.8E+3
14	33.657	1.180	53.6	53.5	53.9	53.7	53.4	47.7	6.5E+3
15	38.216	1.331	54.3	54.2	54.6	54.4	54.1	47.7	8.4E+3
16	43.271	1.511	55.1	55.0	55.4	55.2	54.8	47.7	1.1E+4
17	49.218	1.707	55.7	55.7	56.0	55.8	55.4	47.6	1.4E+4
18	55.860	1.933	56.3	56.2	56.6	56.2	56.0	47.6	1.8E+4
19	64.089	2.218	56.8	56.9	57.0	56.7	56.5	47.6	2.3E+4
20	72.319	2.504	57.3	57.4	57.5	57.2	57.1	47.6	3.0E+4
21	82.534	2.866	57.9	58.1	58.0	57.8	57.7	47.5	3.9E+4
22	94.138	3.272	58.6	58.8	58.5	58.5	58.4	47.5	5.1E+4
23	107.729	3.739	59.6	59.9	59.4	59.5	59.4	47.5	6.6E+4
24	123.109	4.252	60.7	61.1	60.5	60.6	60.5	47.4	8.6E+4
25	140.478	4.854	62.1	62.6	61.9	62.1	61.9	47.4	1.1E+5
26	154.675	5.322	64.0	64.7	63.7	64.1	63.5	47.4	1.4E+5
27	131.843	4.553	62.6	63.3	62.4	62.5	62.3	47.4	9.9E+4
28	112.690	3.890	61.4	61.9	61.2	61.3	61.1	47.5	7.2E+4
29	95.428	3.287	60.1	60.5	60.1	60.1	59.8	47.5	5.2E+4
30	82.038	2.836	59.1	59.4	59.1	59.0	58.8	47.5	3.8E+4
31	69.443	2.399	58.2	58.4	58.3	58.2	57.9	47.5	2.7E+4
32	59.033	2.038	57.2	57.4	57.4	57.2	56.9	47.6	2.0E+4
33	50.408	1.737	56.3	56.4	56.5	56.3	56.0	47.7	1.4E+4
34	42.082	1.451	55.2	55.3	55.4	55.2	54.9	47.7	1.0E+4
35	35.045	1.210	54.4	54.5	54.5	54.4	54.2	47.7	7.0E+3
36	28.845	1.012	53.8	53.9	53.9	53.8	53.6	47.7	4.8E+3
37	24.041	.842	53.4	53.5	53.5	53.4	53.2	47.7	3.3E+3
38	20.116	.702	53.1	53.1	53.1	53.1	52.9	47.7	2.3E+3
39	16.927	.589	52.6	52.6	52.7	52.6	52.5	47.7	1.6E+3
40	14.240	.495	52.1	52.1	52.2	52.1	52.0	47.8	1.2E+3
41	12.476	.432	51.7	51.7	51.7	51.7	51.5	47.8	8.9E+2
42	10.254	.352	51.1	51.2	51.2	51.1	51.0	47.8	5.9E+2
43	8.153	.277	50.4	50.5	50.5	50.4	50.3	47.8	3.7E+2
44	5.731	.191	49.5	49.6	49.6	49.5	49.4	47.8	1.8E+2

The file 19SEP2988 contains 44 records.

A plain tube with a surface area of 0 .0060805 m^2, an outer diameter of 0 .01905 m and a correction ratio R/r of 1.5 was tested in freon with a saturation temperature of 48.19 C.

Pool Boiling Experiment

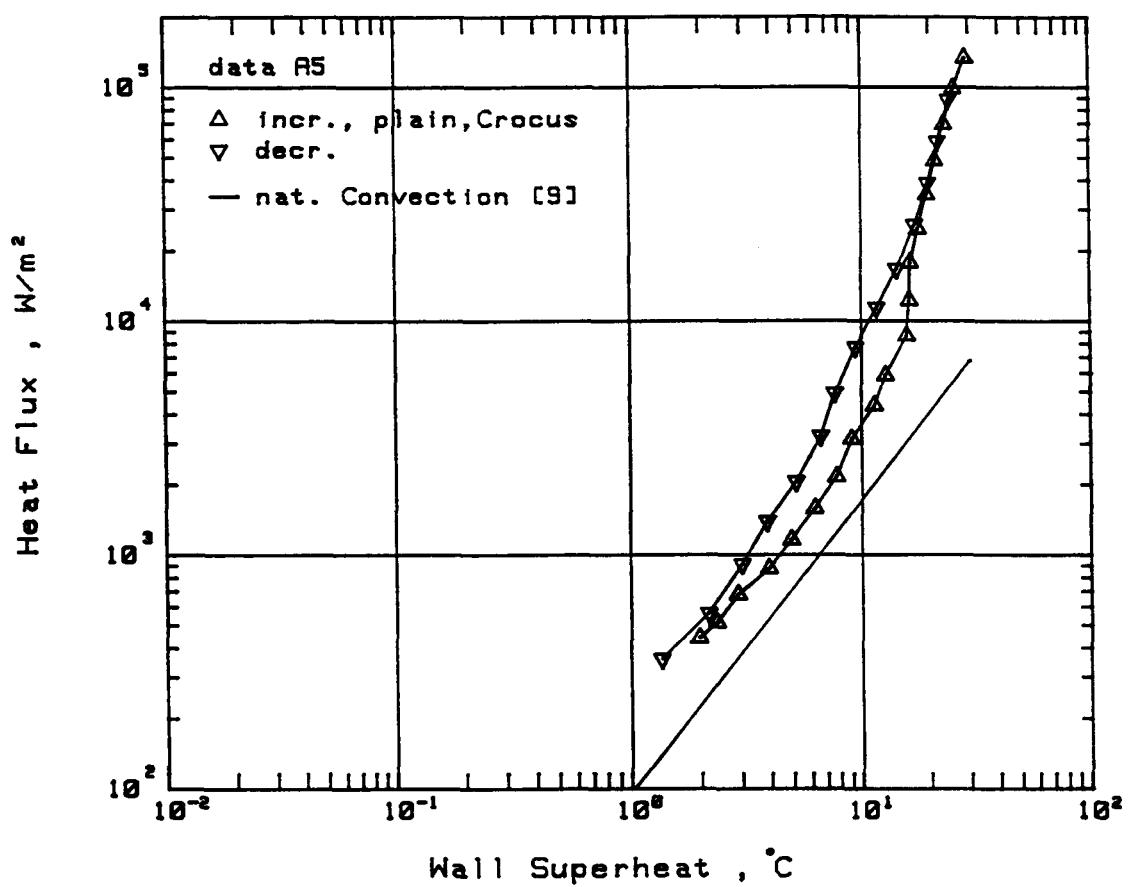

I	Uv(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.368	.023	47.7	47.8	47.7	47.7	47.6	47.5	1.4E+0
2	9.522	.323	50.4	50.5	50.4	50.3	50.3	47.4	5.1E+2
3	10.776	.367	51.3	51.5	51.4	51.3	51.2	47.4	6.5E+2
4	12.670	.435	52.5	52.6	52.5	52.4	52.4	47.5	9.1E+2
5	14.995	.517	54.1	54.3	54.1	54.1	54.0	47.5	1.3E+3
6	17.336	.598	55.0	55.2	55.0	54.9	54.9	47.5	1.7E+3
7	20.478	.710	56.5	56.8	56.5	56.4	56.4	47.5	2.4E+3
8	24.262	.844	58.3	58.6	58.2	58.0	58.2	47.5	3.4E+3
9	29.027	1.010	57.6	57.8	57.6	57.5	57.6	47.4	4.8E+3
10	31.576	1.075	57.7	57.8	57.6	57.6	57.6	47.4	5.6E+3
11	34.747	1.195	57.5	57.8	57.5	57.3	57.4	47.3	6.8E+3
12	41.784	1.436	58.4	58.7	58.4	58.2	58.2	47.3	9.9E+3
13	49.516	1.692	59.1	59.5	59.0	58.8	59.0	47.3	1.4E+4
14	59.231	2.038	59.9	60.3	59.8	59.5	59.8	47.2	2.0E+4
15	70.534	2.429	60.6	61.1	60.5	60.3	60.5	47.2	2.8E+4
16	83.228	2.866	61.6	62.1	61.4	61.4	61.6	47.1	3.9E+4
17	98.801	3.408	62.6	63.0	62.3	62.5	62.5	47.1	5.5E+4
18	118.148	4.071	63.7	64.2	63.3	63.7	63.7	47.1	7.9E+4
19	141.570	4.854	65.2	65.9	64.7	65.1	65.1	47.0	1.1E+5
20	153.880	5.277	66.2	67.1	65.7	66.1	66.1	47.1	1.3E+5
21	124.995	4.297	64.5	65.1	64.1	64.4	64.4	47.1	8.8E+4
22	101.975	3.513	63.5	64.0	63.2	63.4	63.4	47.1	5.9E+4
23	83.228	2.866	62.6	63.1	62.4	62.3	62.5	47.1	3.9E+4
24	68.154	2.339	61.6	62.2	61.5	61.3	61.5	47.2	2.6E+4
25	55.761	1.917	60.0	60.5	59.9	59.7	59.8	47.2	1.8E+4
26	45.650	1.556	58.5	59.0	58.5	58.3	58.4	47.3	1.2E+4
27	36.730	1.256	57.0	57.4	57.0	56.8	56.9	47.3	7.6E+3
28	29.108	1.012	55.5	55.8	55.5	55.4	55.4	47.4	4.8E+3
29	23.655	.819	54.4	54.6	54.3	54.2	54.2	47.4	3.2E+3
30	19.732	.683	53.3	53.5	53.3	53.1	53.1	47.3	2.2E+3
31	16.537	.570	52.3	52.5	52.3	52.2	52.2	47.4	1.6E+3
32	13.681	.469	51.3	51.5	51.3	51.2	51.2	47.4	1.1E+3
33	10.633	.362	50.4	50.5	50.4	50.3	50.3	47.4	6.3E+2
34	8.523	.287	49.7	49.8	49.7	49.6	49.6	47.4	4.0E+2
35	6.367	.212	49.1	49.2	49.1	49.0	48.9	47.4	2.2E+2
36	3.647	.116	48.3	48.4	48.4	48.3	48.2	47.4	7.0E+1

The file 23SEP1988 contains 36 records.

A plain tube with a surface area of 0.0060805 m^2, an outer diameter of 0.01905 m and a correction ratio R/r of 1.5 was tested in freon with a saturation temperature of 47.84 C.

data A 4

Pool Boiling Experiment

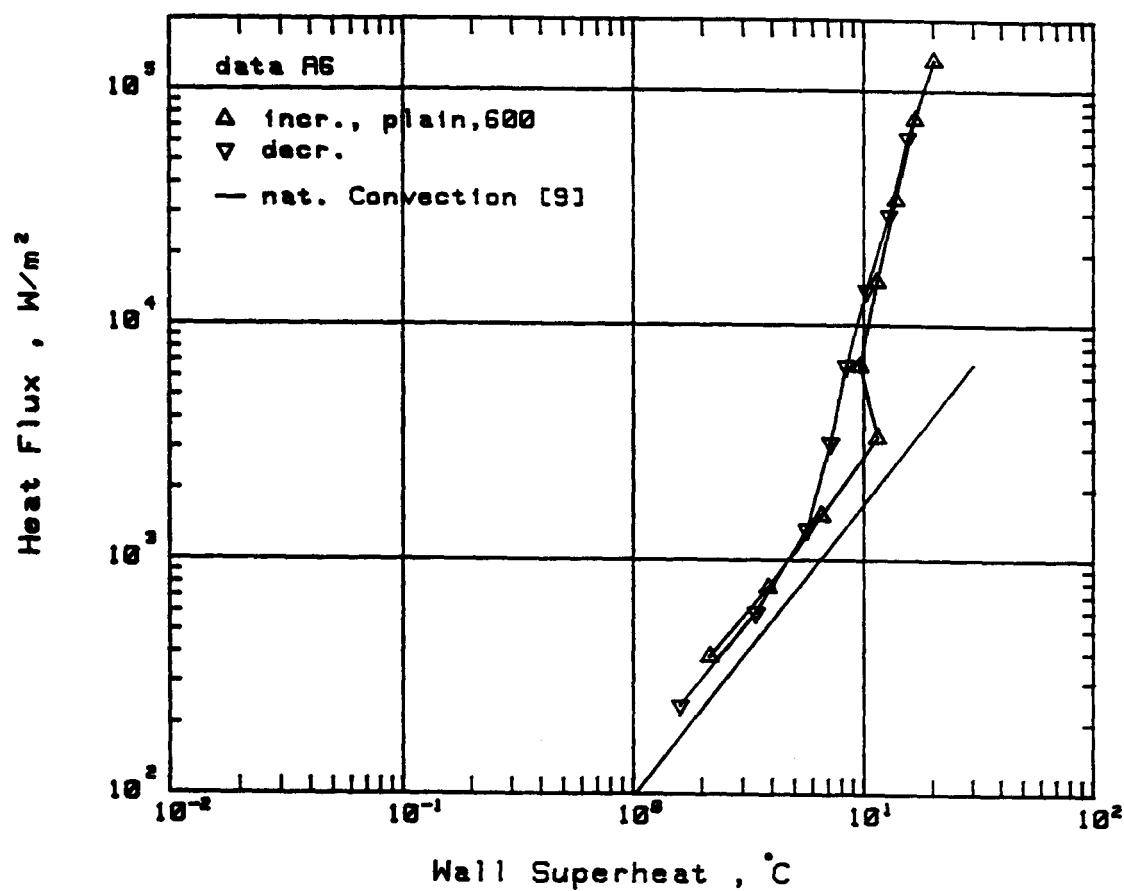


I	Uv(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.368	.023	48.1	48.1	48.1	48.1	48.0	47.9	1.4E+0
2	8.857	.302	50.2	50.4	50.3	50.0	50.1	47.9	4.4E+2
3	9.551	.326	50.6	50.8	50.7	50.4	50.5	47.9	5.1E+2
4	10.948	.376	51.1	51.4	51.3	50.9	51.0	47.8	6.8E+2
5	12.431	.429	52.2	52.5	52.4	51.8	52.1	47.9	8.8E+2
6	14.276	.495	53.2	53.6	53.4	52.6	53.2	47.9	1.2E+3
7	16.641	.579	54.4	54.9	54.8	53.7	54.5	47.9	1.6E+3
8	19.427	.677	56.0	56.6	56.4	55.0	56.0	47.9	2.2E+3
9	23.350	.816	57.3	57.6	57.4	57.2	57.0	47.8	3.1E+3
10	27.557	.964	59.7	60.0	59.8	59.7	59.4	47.8	4.4E+3
11	32.270	1.105	61.0	61.4	61.2	60.9	60.6	47.8	5.9E+3
12	39.108	1.346	64.1	64.5	64.3	64.0	63.7	47.7	8.7E+3
13	46.542	1.602	64.6	65.1	64.8	64.5	64.1	47.7	1.2E+4
14	55.959	1.933	64.8	65.4	64.9	64.6	64.2	47.6	1.8E+4
15	66.171	2.279	66.1	66.7	66.1	65.9	65.5	47.6	2.5E+4
16	78.269	2.700	67.8	68.5	67.7	67.5	67.3	47.5	3.5E+4
17	92.551	3.197	69.5	70.2	69.4	69.3	69.0	47.5	4.9E+4
18	110.904	3.815	71.5	72.2	71.3	71.4	70.9	47.4	7.0E+4
19	132.438	4.553	74.0	74.9	73.7	73.9	73.4	47.4	9.9E+4
20	153.880	5.277	77.2	78.6	76.9	76.8	76.5	47.3	1.3E+5
21	124.995	4.297	72.6	73.5	72.4	72.5	72.1	47.4	8.8E+4
22	101.876	3.498	70.1	70.9	70.0	69.9	69.7	47.4	5.9E+4
23	82.732	2.851	67.9	68.7	67.9	67.7	67.5	47.5	3.9E+4
24	67.361	2.324	65.5	66.2	65.5	65.2	65.0	47.6	2.6E+4
25	54.274	1.872	62.7	63.3	62.8	62.4	62.3	47.6	1.7E+4
26	44.857	1.541	60.0	60.5	60.1	59.8	59.6	47.6	1.1E+4
27	36.829	1.271	57.7	58.1	57.7	57.4	57.3	47.7	7.7E+3
28	29.268	1.022	55.9	56.2	56.0	55.7	55.6	47.7	4.9E+3
29	23.737	.826	54.8	55.2	54.9	54.7	54.6	47.7	3.2E+3
30	19.007	.659	53.4	53.7	53.5	53.3	53.2	47.7	2.1E+3
31	15.623	.541	52.1	52.3	52.2	52.0	51.9	47.7	1.4E+3
32	12.693	.438	51.3	51.4	51.3	51.2	51.1	47.7	9.1E+2
33	10.015	.341	50.4	50.6	50.5	50.3	50.3	47.8	5.6E+2
34	8.037	.271	49.6	49.8	49.7	49.4	49.5	47.8	3.6E+2

The file 22SEP1988 contains 34 records.
 A plain tube with a surface area of 0.0060805 m^2, an outer diameter of 0.01905 m and a correction ratio R/r of 1.5 was tested in freon with a saturation temperature of 48.25 C.

data A 5

Pool Boiling Experiment



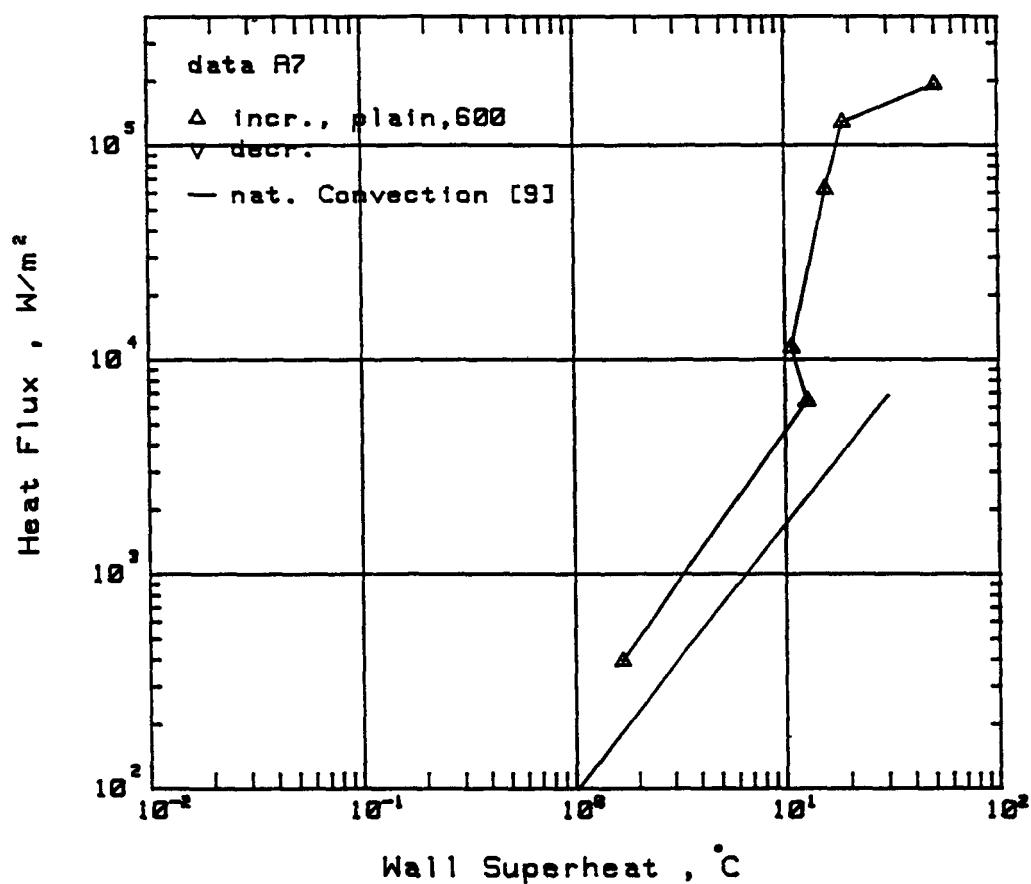
I	Uv(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.367	.023	48.5	48.6	48.6	48.5	48.4	48.1	1.4E+0
2	8.030	.292	50.7	50.8	50.7	50.7	50.6	48.2	3.9E+2
3	11.219	.414	52.4	52.5	52.4	52.4	52.3	48.2	7.6E+2
4	15.898	.591	55.1	55.2	55.1	55.1	55.0	48.2	1.5E+3
5	23.269	.871	60.0	60.1	60.1	60.0	60.0	48.1	3.3E+3
6	33.261	1.225	58.2	58.3	58.2	58.2	58.1	48.0	6.7E+3
7	50.111	1.857	60.0	60.1	59.9	60.1	59.9	48.0	1.5E+4
8	75.195	2.775	62.4	62.5	62.4	62.5	62.0	47.9	3.4E+4
9	112.293	4.101	65.3	65.4	65.7	65.6	64.4	47.8	7.6E+4
10	151.498	5.412	68.8	68.8	69.5	69.2	67.5	47.7	1.3E+5
11	103.463	3.709	64.1	64.2	64.4	64.3	63.4	47.8	6.3E+4
12	70.435	2.534	61.4	61.6	61.4	61.6	61.2	47.9	2.9E+4
13	48.822	1.752	58.8	58.9	58.8	58.9	58.7	48.0	1.4E+4
14	33.756	1.210	56.9	57.0	56.9	56.9	56.8	48.0	6.7E+3
15	22.928	.836	55.7	55.8	55.8	55.7	55.6	48.1	3.2E+3
16	15.075	.546	54.2	54.2	54.2	54.2	54.1	48.1	1.4E+3
17	10.081	.359	52.0	52.0	52.0	52.0	51.9	48.1	6.0E+2
18	6.444	.224	50.2	50.2	50.2	50.1	50.1	48.1	2.4E+2

The file 7OCT1988 contains 18 records.
 A plain tube with a surface area of 0.0060805 m^2, an outer diameter of 0.01905 m and a correction ratio R/r of 1.5 was tested in freon with a saturation temperature of 48.54 C.

data A 6

Pool Boiling Experiment

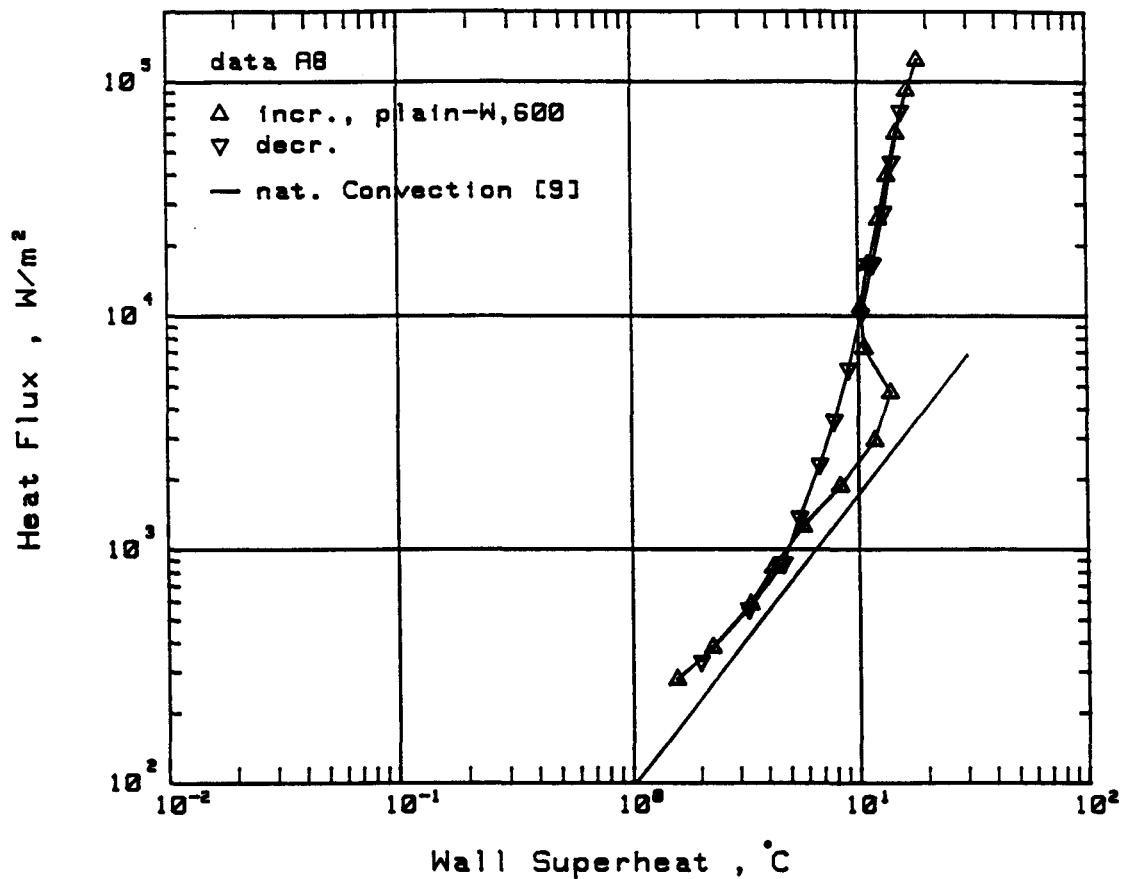
I	Uv(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	8.394	.284	50.0	50.1	50.1	50.0	49.9	47.9	3.9E+2
2	33.855	1.150	61.0	61.2	61.0	60.8	61.0	47.8	6.4E+3
3	44.857	1.541	59.1	59.4	59.1	58.8	59.0	47.7	1.1E+4
4	104.753	3.604	63.9	64.4	63.7	63.7	63.7	47.5	6.2E+4
5	150.703	5.171	67.0	67.9	66.5	66.9	66.9	47.5	1.3E+5
6	183.076	6.393	98.5	90.6	92.4	96.4	114.7	47.4	1.9E+5


The file 27SEP1988 contains 6 records.

A plain tube with a surface area of 0.0060805 m^2, an outer diameter of 0.01905 m and a correction ratio R/r of 1.5 was tested in freon with a saturation temperature of 48.37 C.

data A 7

Pool Boiling Experiment

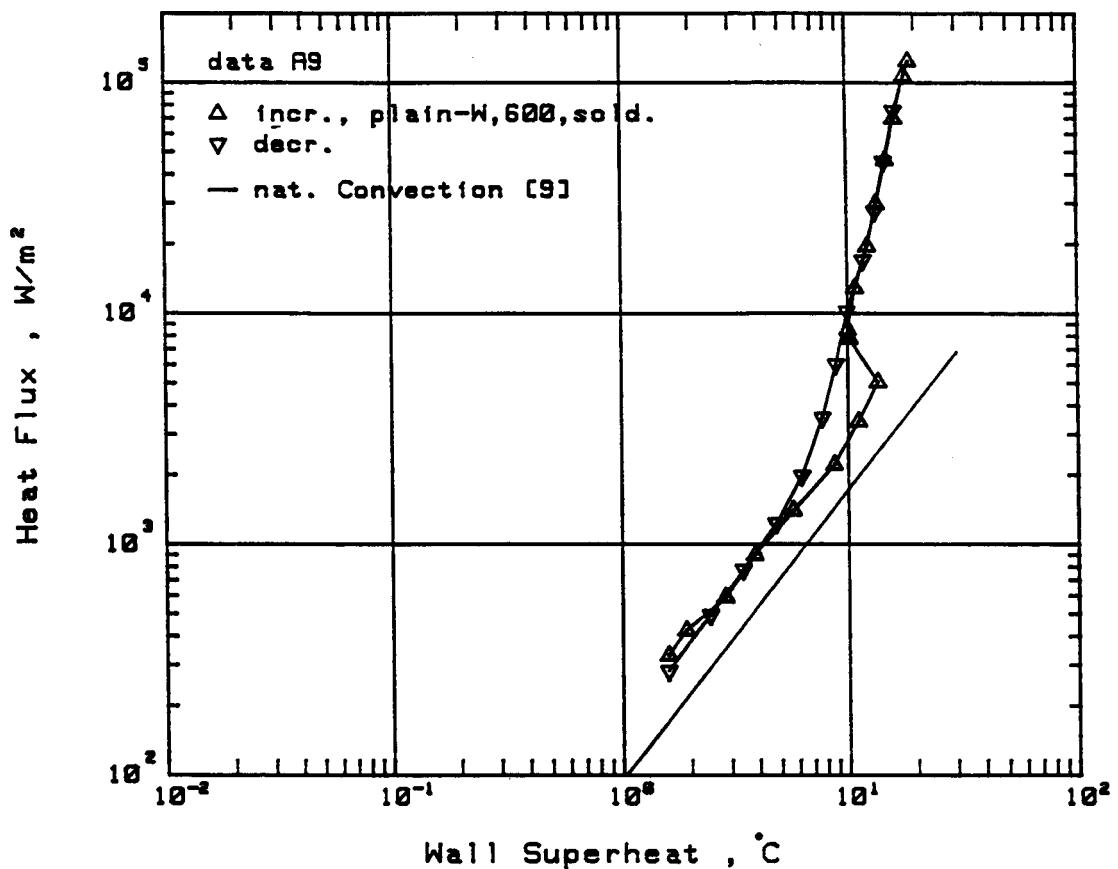


I	Uv(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.367	.023	48.4	48.5	48.5	48.4	48.3	48.2	1.3E+0
2	7.163	.245	50.3	50.3	50.2	50.2	50.2	48.2	2.8E+2
3	8.336	.289	51.0	51.0	51.0	50.9	50.9	48.3	3.8E+2
4	10.286	.359	52.0	52.1	52.1	52.0	51.9	48.3	5.9E+2
5	12.300	.432	52.9	53.0	52.9	52.8	52.8	48.3	8.4E+2
6	14.992	.529	54.4	54.5	54.4	54.3	54.3	48.2	1.3E+3
7	18.235	.647	57.0	57.1	57.1	57.0	56.9	48.2	1.9E+3
8	22.858	.812	60.5	60.6	60.6	60.4	60.4	48.2	2.9E+3
9	28.889	1.028	62.5	62.6	62.6	62.4	62.3	48.2	4.7E+3
10	36.135	1.271	59.3	59.5	59.4	59.0	59.4	48.1	7.3E+3
11	44.361	1.556	59.0	59.1	58.8	58.7	59.2	48.1	1.1E+4
12	54.869	1.917	59.7	60.0	59.5	59.4	60.1	48.1	1.7E+4
13	54.770	1.917	59.9	60.2	59.6	59.5	60.3	48.1	1.7E+4
14	68.650	2.399	61.1	61.5	60.8	60.6	61.5	48.0	2.6E+4
15	85.311	2.956	62.2	62.7	62.0	61.6	62.4	48.0	4.0E+4
16	105.447	3.634	63.5	64.1	63.6	62.8	63.5	47.9	6.1E+4
17	130.751	4.463	65.2	66.2	65.3	64.3	65.1	47.9	9.2E+4
18	151.994	5.156	66.9	68.3	67.1	65.6	66.7	47.9	1.2E+5
19	118.148	4.010	64.3	65.0	64.3	63.5	64.2	48.0	7.5E+4
20	92.254	3.122	62.9	63.4	62.8	62.3	63.1	48.0	4.6E+4
21	71.823	2.444	61.7	62.1	61.5	61.2	62.1	48.1	2.8E+4
22	55.563	1.902	60.3	60.5	60.1	60.0	60.7	48.1	1.7E+4
23	43.271	1.481	59.0	59.1	58.9	58.9	59.2	48.1	1.0E+4
24	33.063	1.135	57.7	57.8	57.7	57.7	57.8	48.1	5.9E+3
25	25.498	.887	56.5	56.6	56.6	56.5	56.5	48.1	3.6E+3
26	20.529	.713	55.5	55.5	55.5	55.4	55.4	48.1	2.3E+3
27	15.835	.547	54.2	54.3	54.2	54.1	54.1	48.2	1.4E+3
28	12.686	.436	53.4	53.4	53.4	53.3	53.3	48.2	8.8E+2
29	10.187	.347	52.0	52.0	52.0	51.9	51.9	48.1	5.6E+2
30	7.909	.266	50.7	50.8	50.7	50.7	50.6	48.1	3.3E+2

The file 29SEP1988 contains 30 records.
 A plain WIELAND tube with a surface area of 0 .0063199 m^2, an outer diameter of 0 .0198 m and a correction ratio R/r of 1.1 was tested in freon with a saturation temperature of 48.7 C.

data A 8

Pool Boiling Experiment

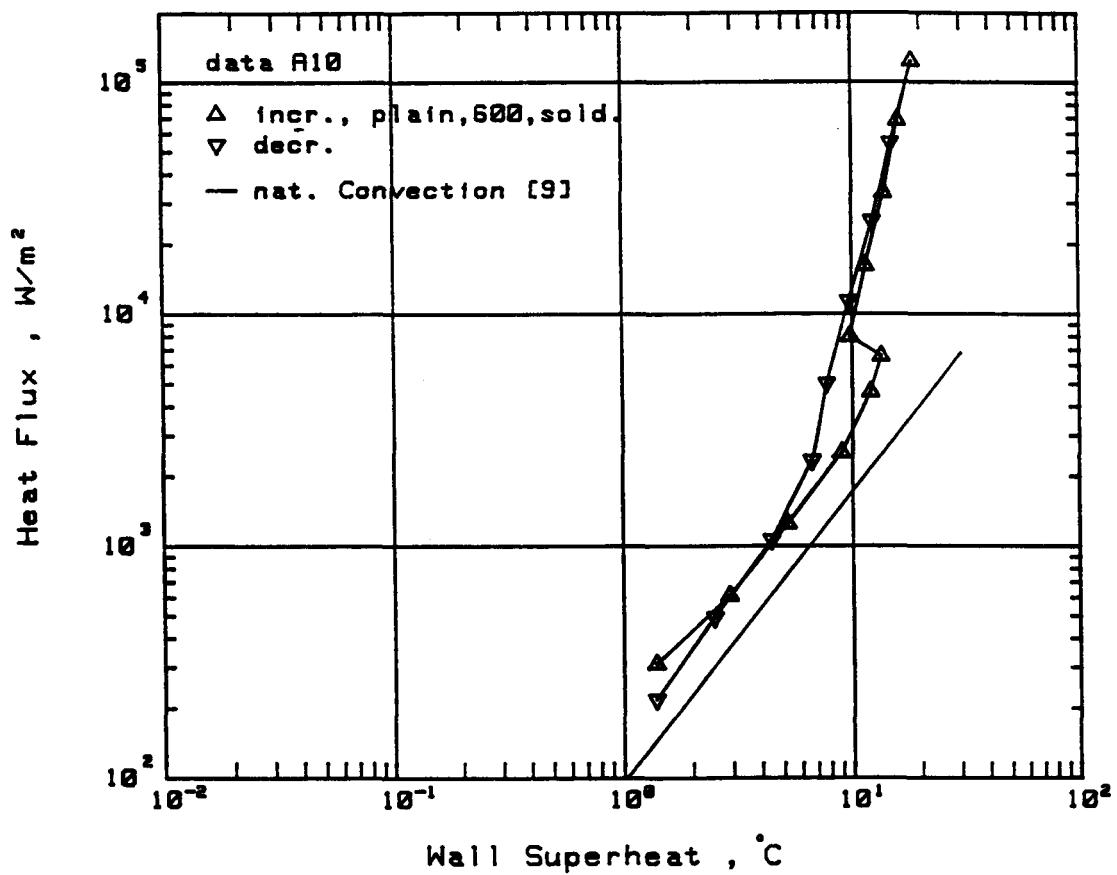

I	Uv(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.367	.023	48.0	48.0	48.0	47.9	47.9	47.7	1.3E+0
2	7.845	.266	49.8	49.9	49.9	49.8	49.7	47.7	3.3E+2
3	8.874	.302	50.2	50.2	50.2	50.1	50.1	47.7	4.2E+2
4	10.416	.358	51.1	51.1	51.1	51.1	51.0	47.7	5.9E+2
5	12.807	.444	52.1	52.1	52.1	52.1	52.0	47.7	9.0E+2
6	15.928	.555	53.9	53.9	54.0	53.9	53.9	47.8	1.4E+3
7	19.994	.699	56.9	56.9	57.0	57.0	56.9	47.8	2.2E+3
8	24.767	.869	59.4	59.3	59.5	59.5	59.4	47.8	3.4E+3
9	30.103	1.059	61.9	61.8	62.0	61.9	61.8	47.7	5.0E+3
10	37.820	1.301	58.5	58.5	58.5	58.4	58.4	47.7	7.8E+3
11	39.505	1.361	58.3	58.2	58.4	58.3	58.3	47.7	8.5E+3
12	48.524	1.677	59.1	59.0	59.1	59.1	59.2	47.6	1.3E+4
13	59.826	2.068	60.6	60.4	60.7	60.6	60.7	47.7	2.0E+4
14	74.005	2.550	61.8	61.6	62.0	61.8	61.8	47.6	3.0E+4
15	92.254	3.167	63.2	63.1	63.6	63.2	62.9	47.6	4.6E+4
16	113.682	3.905	64.6	64.6	65.1	64.5	64.1	47.5	7.0E+4
17	140.875	4.809	66.4	66.3	67.1	66.4	65.6	47.4	1.1E+5
18	151.795	5.171	67.2	67.1	67.9	67.3	66.4	47.4	1.2E+5
19	118.247	4.041	64.6	64.5	65.1	64.6	64.1	47.4	7.6E+4
20	91.758	3.137	62.9	62.8	63.3	62.9	62.7	47.5	4.6E+4
21	71.427	2.444	61.6	61.4	61.8	61.6	61.7	47.6	2.8E+4
22	55.959	1.917	60.0	59.9	60.1	60.0	60.2	47.6	1.7E+4
23	43.469	1.481	58.2	58.0	58.3	58.2	58.3	47.7	1.0E+4
24	33.459	1.135	57.1	57.0	57.2	57.1	57.1	47.8	6.0E+3
25	25.331	.880	55.9	55.9	56.0	55.9	55.9	47.7	3.5E+3
26	18.973	.657	54.5	54.4	54.6	54.5	54.4	47.7	2.0E+3
27	15.023	.517	53.0	53.0	53.1	53.0	53.0	47.7	1.2E+3
28	11.931	.411	51.6	51.7	51.7	51.6	51.6	47.7	7.8E+2
29	9.579	.326	50.7	50.7	50.7	50.7	50.6	47.8	4.9E+2
30	7.289	.245	49.8	49.9	49.9	49.8	49.7	47.8	2.8E+2

The file 30CT1988 contains 30 records.

A plain WIELAND tube with a surface area of 0.0063199 m^2, an outer diameter of 0.0198 m and a correction ratio R/r of 1.1 was tested in freon with a saturation temperature of 48.25 C.

data A 9

Pool Boiling Experiment

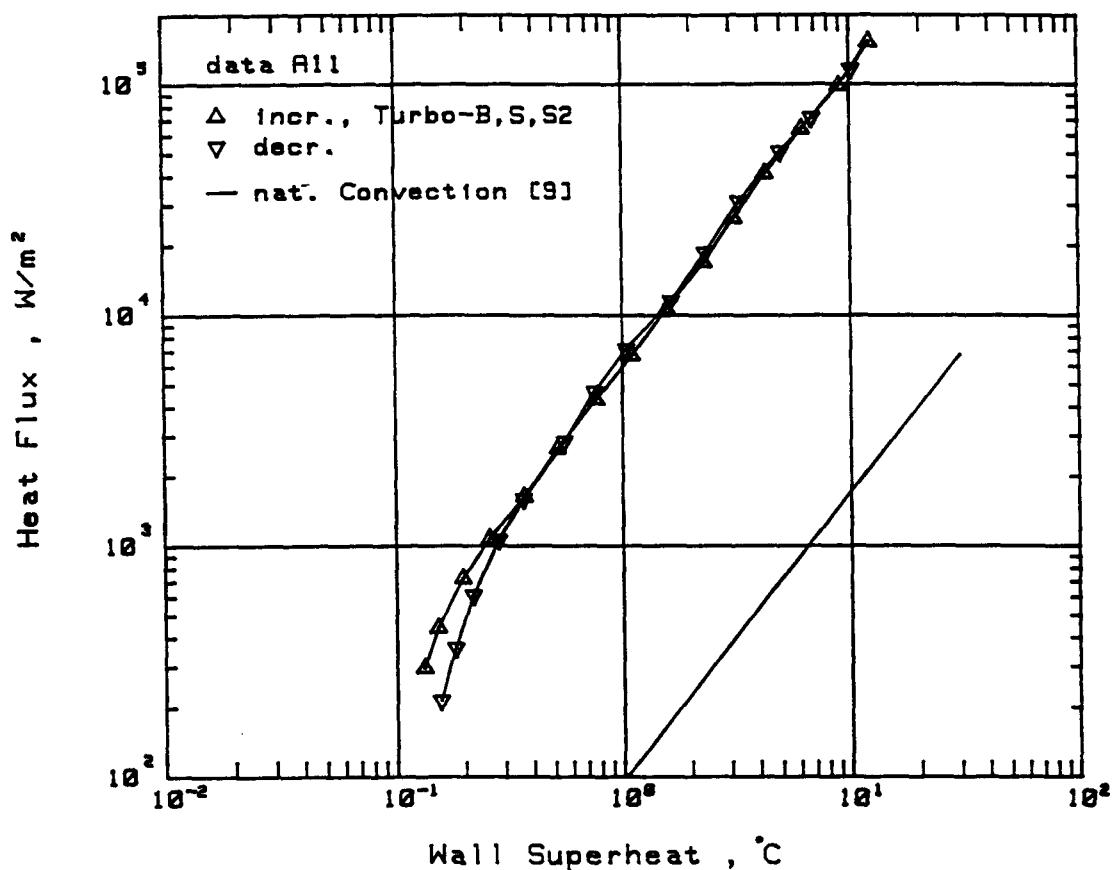

I	Uv(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.368	.023	48.1	48.2	48.1	48.0	48.0	47.9	1.3E+0
2	7.631	.257	49.6	49.7	49.7	49.6	49.5	47.8	3.1E+2
3	10.638	.364	51.2	51.2	51.2	51.1	47.7	6.1E+2	
4	15.096	.523	53.5	53.4	53.6	53.5	47.8	1.3E+3	
5	21.408	.746	57.2	57.1	57.4	57.2	47.8	2.5E+3	
6	28.917	1.010	60.3	59.9	60.5	60.4	47.7	4.6E+3	
7	34.846	1.195	61.7	61.2	61.9	61.9	47.7	6.6E+3	
8	38.414	1.316	58.1	57.9	58.3	58.1	47.8	8.0E+3	
9	54.571	1.872	59.8	59.5	60.1	59.9	47.7	1.6E+4	
10	78.368	2.685	62.1	61.7	62.5	62.3	47.6	3.3E+4	
11	112.492	3.845	64.2	63.7	64.5	64.6	47.5	6.8E+4	
12	151.299	5.156	66.8	66.0	67.0	67.3	47.4	1.2E+5	
13	100.685	3.438	63.1	62.7	63.4	63.4	47.5	5.5E+4	
14	68.055	2.339	60.6	60.2	60.9	60.7	47.6	2.5E+4	
15	45.749	1.571	57.9	57.8	58.2	58.0	47.7	1.1E+4	
16	30.387	1.045	56.0	55.9	56.2	56.0	47.8	5.0E+3	
17	20.597	.717	54.9	54.9	55.0	54.9	47.7	2.3E+3	
18	13.942	.483	52.7	52.7	52.8	52.7	47.8	1.1E+3	
19	9.549	.326	50.8	50.8	50.8	50.7	47.8	4.9E+2	
20	6.410	.215	49.6	49.7	49.7	49.6	47.8	2.2E+2	

The file 50CT1988 contains 20 records.

A plain WIELAND tube with a surface area of 0.0063199 m^2, an outer diameter of 0.0198 m and a correction ratio R/r of 1.1 was tested in freon with a saturation temperature of 48.26 C.

data A 10

Pool Boiling Experiment

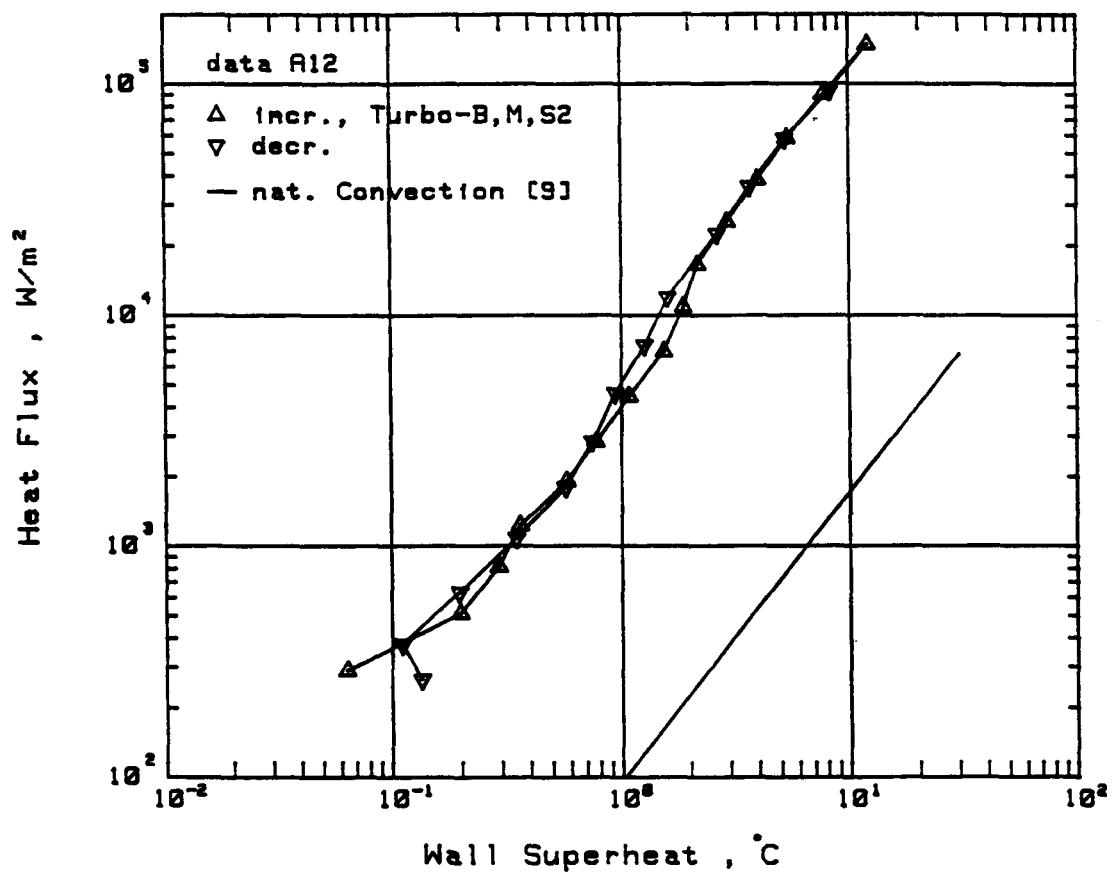

I	UV(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.368	.023	47.9	48.0	47.9	47.9	47.8	47.7	1.4E+0
2	7.251	.250	48.1	48.2	48.2	48.1	48.0	47.6	3.0E+2
3	8.803	.307	48.2	48.2	48.2	48.1	48.1	47.6	4.4E+2
4	11.210	.394	48.2	48.3	48.2	48.2	48.1	47.5	7.2E+2
5	13.635	.481	48.3	48.3	48.3	48.3	48.2	47.5	1.1E+3
6	16.805	.595	48.4	48.4	48.4	48.4	48.3	47.4	1.6E+3
7	21.309	.758	48.5	48.5	48.6	48.5	48.4	47.4	2.6E+3
8	27.222	.970	48.8	48.7	48.8	48.8	48.7	47.4	4.3E+3
9	34.252	1.195	49.1	49.1	49.2	49.1	49.0	47.4	6.7E+3
10	43.271	1.511	49.6	49.6	49.7	49.6	49.5	47.5	1.1E+4
11	54.671	1.902	50.3	50.3	50.4	50.3	50.3	47.5	1.7E+4
12	68.154	2.369	51.1	51.2	51.2	51.0	51.1	47.5	2.6E+4
13	85.410	2.941	52.3	52.4	52.3	52.2	52.4	47.4	4.1E+4
14	106.936	3.649	54.2	54.3	54.2	54.0	54.2	47.4	6.4E+4
15	133.133	4.523	57.0	57.2	57.3	56.7	56.9	47.3	9.9E+4
16	163.909	5.669	60.2	60.4	60.5	59.7	60.3	47.2	1.5E+5
17	143.655	4.915	58.2	58.4	58.5	57.7	58.2	47.2	1.2E+5
18	112.988	3.860	54.9	55.1	55.1	54.5	54.8	47.4	7.2E+4
19	95.329	3.257	53.0	53.2	53.2	52.7	52.9	47.4	5.1E+4
20	74.203	2.550	51.3	51.3	51.4	51.2	51.3	47.5	3.1E+4
21	57.645	1.978	50.3	50.3	50.4	50.3	50.3	47.5	1.9E+4
22	45.055	1.556	49.6	49.6	49.7	49.6	49.6	47.5	1.2E+4
23	35.441	1.225	49.0	49.0	49.1	49.0	49.0	47.4	7.1E+3
24	28.412	1.001	48.8	48.8	48.8	48.8	48.7	47.5	4.7E+3
25	22.185	.780	48.6	48.6	48.6	48.6	48.5	47.5	2.8E+3
26	16.670	.583	48.4	48.4	48.4	48.4	48.3	47.5	1.6E+3
27	13.607	.474	48.3	48.3	48.3	48.3	48.2	47.5	1.1E+3
28	10.388	.358	48.2	48.3	48.3	48.2	48.1	47.6	6.1E+2
29	8.030	.274	48.2	48.2	48.2	48.2	48.1	47.6	3.6E+2
30	6.238	.209	48.2	48.2	48.2	48.1	48.1	47.6	2.1E+2

The file 25OCT2988 contains 30 records.

A Turbo-B, S tube with a surface area of 0.0060972 m^2, an outer diameter of 0.01914 m and a correction ratio R/r of 1.42 was tested in freon with a saturation temperature of 48 C.

data A 11

Pool Boiling Experiment

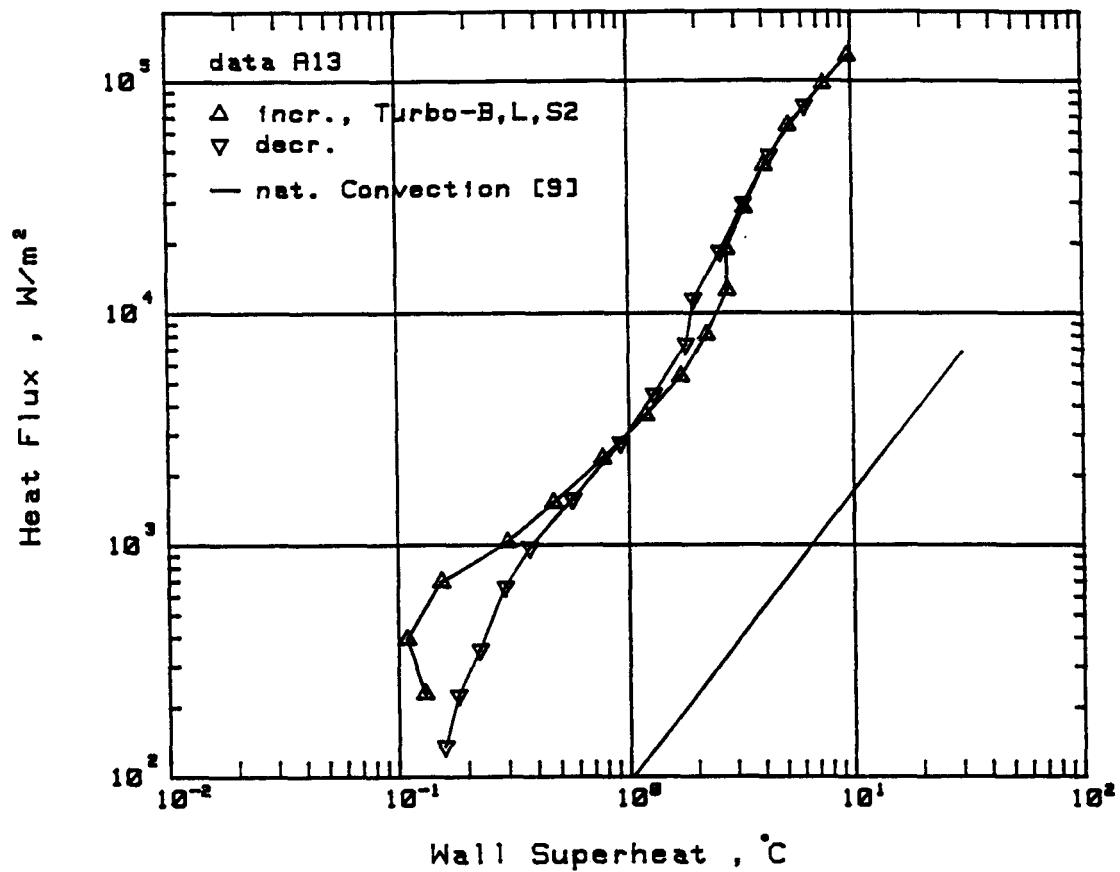

I	UV(I)	Ia(I)	Tav(I)	Ti(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.368	.023	47.8	47.9	47.9	47.8	47.7	47.6	1.4E+0
2	7.258	.244	48.0	48.1	48.0	48.0	47.9	47.5	2.9E+2
3	9.587	.326	48.1	48.2	48.2	48.1	48.0	47.5	5.1E+2
4	12.052	.414	48.2	48.3	48.3	48.2	48.1	47.5	8.2E+2
5	14.747	.510	48.3	48.3	48.3	48.3	48.2	47.4	1.2E+3
6	18.341	.636	48.5	48.5	48.6	48.5	48.4	47.3	1.9E+3
7	22.339	.776	48.7	48.8	48.8	48.7	48.6	47.4	2.8E+3
8	27.979	.976	49.0	49.1	49.1	49.0	48.9	47.4	4.5E+3
9	35.243	1.210	49.5	49.5	49.5	49.5	49.4	47.4	7.0E+3
10	44.064	1.511	49.8	49.9	49.8	49.8	49.7	47.4	1.1E+4
11	54.571	1.857	50.1	50.2	50.1	50.1	50.0	47.4	1.7E+4
12	67.559	2.294	50.9	51.1	50.8	50.8	50.8	47.3	2.5E+4
13	83.426	2.821	51.9	52.3	51.9	51.8	51.8	47.3	3.9E+4
14	102.670	3.468	53.4	53.9	53.2	53.2	53.1	47.3	5.8E+4
15	126.980	4.327	55.7	56.6	55.7	55.3	55.3	47.2	9.0E+4
16	156.859	5.744	60.1	61.4	60.2	59.4	59.4	47.1	1.5E+5
17	127.178	4.463	56.3	57.2	56.2	55.8	55.8	47.2	9.3E+4
18	100.685	3.513	53.2	53.8	53.2	53.0	52.9	47.2	5.8E+4
19	79.360	2.760	51.6	52.0	51.6	51.5	51.4	47.3	3.6E+4
20	62.701	2.188	50.6	50.8	50.6	50.5	50.4	47.4	2.2E+4
21	45.551	1.602	49.5	49.6	49.6	49.6	49.4	47.4	1.2E+4
22	36.036	1.256	49.2	49.3	49.3	49.2	49.1	47.4	7.4E+3
23	28.077	1.000	48.9	48.9	48.9	48.9	48.8	47.5	4.6E+3
24	22.101	.785	48.7	48.7	48.7	48.7	48.6	47.4	2.8E+3
25	17.618	.623	48.5	48.5	48.6	48.5	48.4	47.5	1.8E+3
26	13.719	.481	48.3	48.3	48.3	48.3	48.2	47.4	1.1E+3
27	10.515	.367	48.1	48.2	48.2	48.1	48.0	47.4	6.3E+2
28	8.150	.281	48.1	48.1	48.1	48.1	48.0	47.4	3.8E+2
29	6.891	.235	48.1	48.1	48.1	48.1	48.0	47.5	2.6E+2

The file 25OCT1988 contains 29 records.

A Turbo-B, M tube with a surface area of 0 .0061092 m^2, an outer diameter of 0 .01914 m and a correction ratio R/r of 1.41 was tested in freon with a saturation temperature of 47.94 C.

data A 12

Pool Boiling Experiment

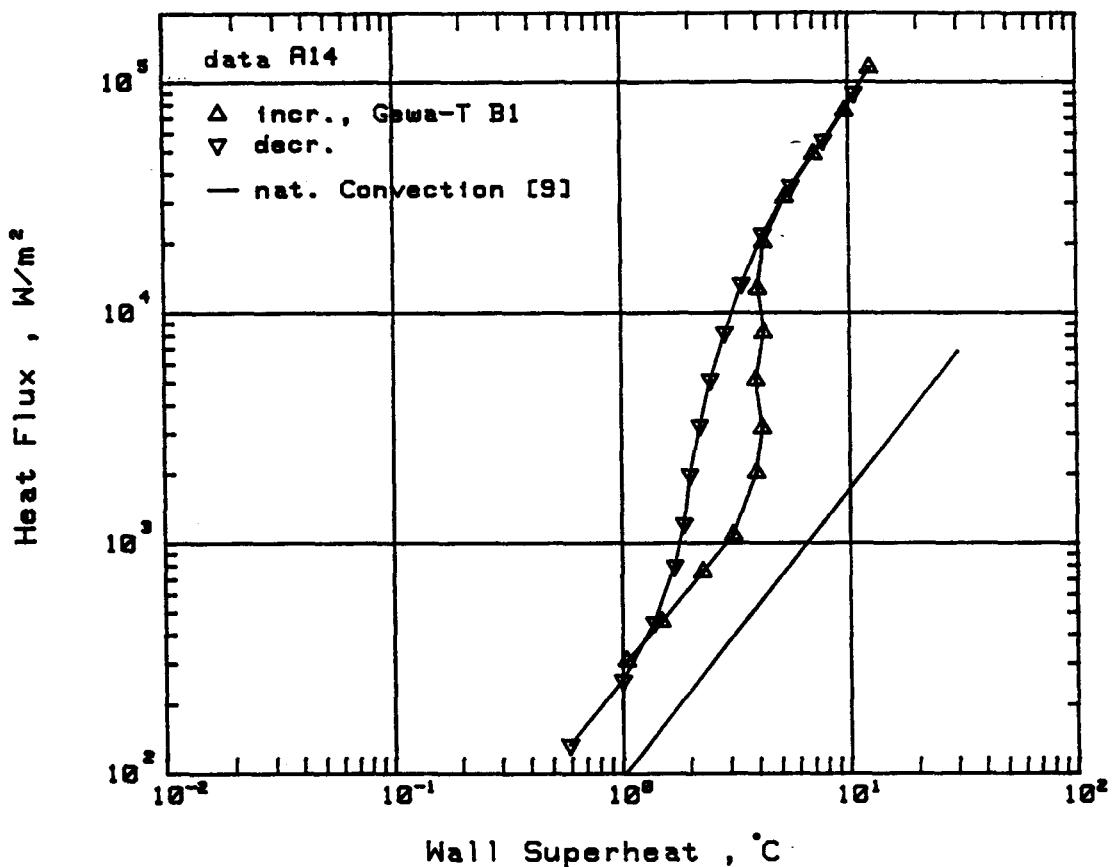

I	Uv(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.367	.023	48.0	48.1	48.1	48.0	47.9	47.8	1.4E+0
2	6.474	.217	48.2	48.3	48.3	48.2	48.1	47.7	2.3E+2
3	8.437	.286	48.2	48.3	48.2	48.2	48.1	47.6	3.9E+2
4	11.159	.382	48.3	48.3	48.3	48.3	48.2	47.6	7.0E+2
5	13.531	.466	48.4	48.4	48.4	48.4	48.3	47.6	1.0E+3
6	16.429	.568	48.6	48.6	48.6	48.6	48.5	47.6	1.5E+3
7	20.432	.710	48.9	48.9	49.0	48.9	48.8	47.6	2.4E+3
8	25.321	.881	49.3	49.3	49.3	49.3	49.2	47.6	3.6E+3
9	30.882	1.060	49.8	49.8	49.9	49.8	49.8	47.6	5.3E+3
10	38.018	1.301	50.4	50.3	50.4	50.4	50.4	47.6	8.1E+3
11	47.434	1.617	50.9	50.9	51.0	50.9	50.9	47.6	1.3E+4
12	58.240	1.978	50.9	50.8	50.8	50.9	51.0	47.5	1.9E+4
13	71.427	2.429	51.5	51.4	51.4	51.5	51.7	47.5	2.8E+4
14	88.385	2.986	52.3	52.2	52.2	52.3	52.5	47.5	4.3E+4
15	108.325	3.619	53.6	53.6	53.4	53.6	53.7	47.5	6.4E+4
16	132.835	4.478	56.1	56.2	55.8	56.1	56.3	47.5	9.7E+4
17	150.405	5.231	58.6	58.7	58.2	58.6	58.8	47.5	1.3E+5
18	118.644	4.025	54.6	54.7	54.4	54.6	54.8	47.4	7.8E+4
19	92.452	3.152	52.5	52.5	52.4	52.5	52.7	47.5	4.8E+4
20	72.815	2.489	51.5	51.4	51.4	51.5	51.7	47.5	3.0E+4
21	57.248	1.963	50.7	50.6	50.7	50.7	50.8	47.5	1.8E+4
22	45.253	1.556	50.1	50.0	50.1	50.1	50.1	47.6	1.1E+4
23	36.234	1.241	49.9	49.9	49.9	49.9	49.9	47.6	7.3E+3
24	27.976	.980	49.4	49.4	49.4	49.4	49.3	47.6	4.5E+3
25	22.022	.770	49.0	49.0	49.1	49.0	49.0	47.6	2.8E+3
26	16.685	.580	48.7	48.7	48.7	48.7	48.6	47.7	1.6E+3
27	13.122	.454	48.5	48.5	48.5	48.5	48.4	47.7	9.7E+2
28	10.826	.373	48.4	48.4	48.4	48.4	48.3	47.7	6.6E+2
29	8.005	.271	48.3	48.4	48.4	48.3	48.2	47.7	3.5E+2
30	6.431	.215	48.3	48.3	48.3	48.3	48.2	47.7	2.3E+2
31	5.026	.166	48.3	48.3	48.3	48.3	48.2	47.8	1.4E+2

The file 28OCT1988 contains 31 records.

A Turbo-B, L tube with a surface area of 0.0061288 m^2, an outer diameter of 0.01916 m and a correction ratio R/r of 1.45 was tested in freon with a saturation temperature of 48.09 C.

data A 13

Pool Boiling Experiment


I	Uv(I)	Ia(I)	Tav(I)	T1(I)	T2(I)	T3(I)	T4(I)	Tpool(I)	q(I)
	[V]	[A]	[C]	[C]	[C]	[C]	[C]	[C]	[W/m^2]
1	.424	.023	47.6	47.7	47.7	47.6	47.5	47.4	1.6E+0
2	7.314	.250	48.7	48.8	48.8	48.7	48.6	47.3	3.1E+2
3	8.868	.305	49.2	49.2	49.2	49.2	49.1	47.3	4.6E+2
4	11.338	.394	49.9	50.0	50.0	49.9	49.9	47.4	7.5E+2
5	13.590	.475	50.8	50.9	50.8	50.7	50.7	47.4	1.1E+3
6	18.475	.650	51.6	51.6	51.6	51.6	51.5	47.3	2.0E+3
7	23.080	.813	51.8	51.9	51.9	51.8	51.8	47.3	3.2E+3
8	29.287	1.035	51.6	51.6	51.6	51.6	51.5	47.2	5.1E+3
9	37.423	1.301	51.9	51.9	52.0	52.0	51.9	47.2	8.2E+3
10	46.542	1.617	51.7	51.7	51.8	51.7	51.6	47.2	1.3E+4
11	58.735	2.038	51.9	52.0	52.0	51.9	51.8	47.2	2.0E+4
12	73.410	2.550	52.9	53.2	52.9	52.8	52.8	47.2	3.2E+4
13	91.361	3.152	54.8	55.2	54.6	54.5	54.7	47.1	4.9E+4
14	113.385	3.920	57.4	57.9	57.1	57.0	57.4	47.1	7.5E+4
15	140.578	4.854	60.1	60.9	59.6	59.4	60.5	47.0	1.2E+5
16	124.102	4.282	58.3	59.1	58.0	57.8	58.6	47.0	9.0E+4
17	97.809	3.393	55.5	56.0	55.2	55.1	55.5	47.1	5.6E+4
18	77.872	2.700	53.3	53.6	53.2	53.1	53.2	47.1	3.5E+4
19	61.115	2.128	51.9	52.1	51.9	51.8	51.8	47.2	2.2E+4
20	47.731	1.662	51.1	51.2	51.1	51.0	51.0	47.2	1.3E+4
21	37.423	1.301	50.6	50.6	50.6	50.6	50.5	47.3	8.2E+3
22	29.326	1.036	50.1	50.2	50.2	50.1	50.0	47.3	5.1E+3
23	23.392	.824	49.9	49.9	49.9	49.9	49.8	47.3	3.3E+3
24	18.293	.642	49.7	49.7	49.7	49.7	49.6	47.3	2.0E+3
25	14.373	.502	49.6	49.6	49.6	49.5	49.5	47.4	1.2E+3
26	11.669	.406	49.4	49.4	49.4	49.4	49.3	47.4	8.0E+2
27	8.833	.304	49.1	49.1	49.1	49.0	49.0	47.3	4.5E+2
28	6.657	.226	48.7	48.8	48.7	48.6	48.6	47.3	2.5E+2
29	4.874	.163	48.3	48.4	48.3	48.3	48.1	47.3	1.3E+2

The file 2NOV2988 contains 29 records.

A Gewa-T, Bi tube with a surface area of 0 .005929 m^2, an outer diameter of 0 .01888 m and a correction ratio R/r of 1.36 was tested in freon with a saturation temperature of 47.68 C.

data A 14

Pool Boiling Experiment

