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ABSTRACT

The problem of radiative heat transfer through
a gray, emitting, absorbing, and scattering
medium with uniform optical properties is
reduced to one without scattering through two
techniques. One uses scaling laws, and the other
uses a self-consistent effective gas tempera-
ture. The scaling laws are derived via the P;
approximation to the radiative transfer
equation and can be applied to multidimensional
problems with nonisothermal media. The effec-
tive temperature method is presently restricted
to isotropic scattering and isothermal media.
Both methods are evaluated in the current study
as a function of scattering albedo, wall
emissivity, and optical thickness for two
different geometries, and two sets of wall and
gas temperatures. The effects of scattering
anisotropy are also assessed for the P; method.
The numerical results show that for these cases
the scaling method is reasonably accurate for
optically thick media with a scattering albedo
less than 0.8, and the effective temperature
technique is reasonably accurate for optically
thin media for all albedos.

NOMENCLATURE
D = diffusion coefficient, m
I = radiation angular intensity, W/m2-sr

outward unit vector normal to a surface
element

scattering phase function

radiant heat flux, W/m2

radial coordinate, m

surface area, m2

total surface area, m2

temperature, K

volume, m3

= total volume, m3
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emissivity

scattering angle

angular coordinate, see Fig. 1

average cosine of the scattering angle
optical depth

reflectivity

attenuation coefficient due to radi-

ation/media interactions, m~1
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Stefan-Boltzmann constant, W/m2-K4
scalar flux of thermal radiation, W/m2
volume-averaged scalar flux, W/m2
scattering albedo

solid angle
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]

Subscripts

absorption

extinction

net efflux of thermal radiation
medium property

scattering

total length

wall property

boundary index

boundary index

Hh
Hh
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Superscripts

' = angular coordinate of the scattering
direction, or the effective temperature

1. INTRODUCTION

Radiative heat transfer is one of the
dominant modes of heat transfer in many engi-
neering applications involving high tempera-
tures. For radiative transfer through purely
gaseous media, the effects of scattering are
negligible in most heat transfer calculations
due to the fact that the interactions between
the thermal radiation and gas molecules or atoms
occur in the Rayleigh 1limit. In this 1limit
scattering is negligible compared to the
absorption and transmission of radiation.
However, in the presence of suspended solid or
liquid aerosol particles, scattering often must
be considered.

By nature, the equation of radiative
transfer with scattering is an integro-
differential equation whose solution is quite
difficult. Although advanced numerical solution
techniques are available for solving the general
equation such as the P, method (e.g., Bell and
Glasstone, 1970), the discrete ordinates or the
Sph method (e.g., Bell and Glasstone, 1970), and
the Monte Carlo method (Meyer, 1956), such
detailed numerical solutions are not warranted
in many practical applications for a number of
reasons. First, the solution of the radiative
transfer equation is quite sensitive to the
optical properties of the transport medium and



such optical properties for materials of
interest are seldom available in the literature,
(e.g., the complex indices of refraction for
most dielectric materials are only reported for
visible 1light at room temperature.) Even if the
indices of refraction are known, the shape,
chemical structure, and size distribution of
the aerosols may not be known accurately.
Assuming this information were available, in
some applications one cannot afford computa-
tionally to take the resulting wavelength
dependence of the optical properties into
account with high accuracy. Second, the results
of radiant energy exchange are of little use
in many cases without considering simulta-
neously the thermal-hydraulic response of the
system to the radiation. The solution of the
coupled problem can be a formidable task.

The above considerations indicate that
methods for solving the scattering problem to
moderate accuracy may be quite useful if they
are efficient. The present paper proposes and
gives the results of a preliminary study for
two such methods. These methods have been
developed for potential use with CONTAIN, a
code that can analyze coupled aerosol, fission
product, and thermal-hydraulic behavior in
severe nuclear reactor accidents (Murata et
al., 1989). The radiative transport problem is
solved every timestep in this code, and con-
sequently there is a premium on computational
efficiency.

Methods with moderate accuracy similar to
one of the present methods have been proposed
before. The equation of radiative transfer
reduces to a differential equation when scat-
tering is absent so that the effort required
to solve the problem is reduced considerably.
Although scattering itself often cannot be
neglected in the presence of aerosols, one can
take an unconventional approach to the transport
problem with scattering by first mapping it
onto a nonscattering one, and then seeking the
solution of the mapped problem. Such approaches
have been reported in the literature (Goswami
and Vachon, 1977; Lee and Buckius, 1982, 1983,
and 1986) . The basis of these earlier approaches
is either the P, approximation to the transport
equation or the two-flux method.



In the present study, two complementary
mapping methods have been developed for
potential application to the multidimensional
problem, one using the P; approximation and the
other using an effective medium temperature.
The P; mapping is derived by requiring the P;
solutions of the original and the mapped
problems to be identical and can be applied to
multidimensional problems with nonisothermal
media. While similar to the P; approach used
in Lee and Buckius (1983), the present approach
has a number of advantages. First, when the
equation for the scalar flux is scaled, as in
the present approach, rather than that for the
heat flux, it becomes apparent that noniso-
thermal media can be treated. (The difficulty
is that the temperature gradient term in the
heat flux equation introduces a second dimen-
sionless group.) Second, when gray wall boundary
conditions are used, a factor containing the
wall emissivity can be combined with a second
dimensionless group introduced by the boundary
conditions. Because there are two parameters
to scale in the present treatment (the optical
depth and the wall emissivity), the scaling
difficulties found by Lee and Buckius to arise
from the presence of two dimensionless groups
are absent, and the present method is exact
within the P; approximation.

It is well known that the P; approximation
is poor when the optical thickness of the system
decreases (Duderstadt and Hamilton, 1976).
Unfortunately, the proposed P; scaling laws
transform the original problem with a high
scattering albedo into an optically thin
problem. Therefore, it is expected that the
current P; mapping method will fail in two
circumstances: (1) for optically thin systenms,
and (2) for high scattering albedos. (It should
be noted that in contrast the P approximation
itself generally improves with scattering
albedo at fixed optical depth.)

A second mapping method, an effective
temperature method, has been developed for
optically thin systems. In the effective tem-
perature method, the emission and the scattering
terms of the radiative transfer equation are
combined into an effective emission term
characterized by an effective emission tem-
perature. Generally, this effective emission
temperature is unknown and must be obtained by
iteration.



Both the Pj; mapping technique and the
effective temperature method have been assessed
through a number of calculations for isothermal
media comparing the mapped solutions with those
obtained by a reference discrete ordinates
method. While the generality of these results
remains to be demonstrated, the results for the
cases investigated indicate that the P; mapping
method will result in less than 5 percent error
in the net efflux of radiation (defined in Eq.
(19)) for an optical depth greater than 4 and
a scattering albedo less than 0.8, while the
effective temperature method will result in
less than 5 percent error for an optical depth
less than 4. Furthermore, the error in both
mapping methods is improved considerably when
the transport medium is surrounded by reflective
(nonblack) boundaries.

2. THEORY

The P; approximation to the radiative
transfer equation can be derived by taking the
zeroth and the first moments of the radiative
transfer equation and assuming that the angular
intensity is at most linearly anisotropic (see,
for example, Duderstadt and Hamilton, 1976).
The present scaling method uses the P; scalar
flux equation, i.e.,

~DV2Y(r)+0,0(r)=40,6T*(r) . (1)

It should be noted that Eq. (1) applies only
to a gray medium with uniform optical proper-
ties. The boundary condition for a diffusely
reflecting wall in the P; approximation can be
written as

- = €w - 2€,,
DVe(ry) fy=s————¢(ry)-

- 2
2(1+pw) Tvpn ™ (2

where D is the diffusion coefficient defined
as

D=(3(0,-p,0)]" (3)

and Ko is the first moment of the scattering
phase function.



In the first mapping method, the original
problem with scattering is solved by assuming
that it is equivalent to a nonscattering one.
The P; equation and the boundary condition for
the mapped problem without scattering can be
written as

-DV2H(r)+0,0(r)=40,8T*(r) , (4)

and

——— = € - - €

DV A = i -—= 0T} 5
B(w) My = S =) = 1207 (5)

where

D=(30,)"' ., (6)

and the bar indicates the mapped quantities.
The solutions for ¢ in the original and mapped
problems are identical, if and only if, the
“ollowing relations are satisfied:

08 68 7
"% ()
and
€w EW
(8)

D(1+pw) D(l+py)

Therefore after rearrangement, the scaling laws
given by Egs. (7) and (8) can be written as:

G,=0,/(1-w)(l-p,w) , (9)

and

— -1
Py=2 1+1/1—”°”U Cw | -1, (10)
1-w 1+p, :

where w is the single scattering albedo dg/0,.

It should be noted that py may be negative, in
which case the corresponding wall emissivity
is greater than one. (The solutions for ¢ in
this case are not unphysical because they
correspond to the original problem with a




properly bounded emissivity.) Eq. (9) is
equivalent to the square-root scaling 1law
derived by Lee and Buckius (1982, 1983).

Finally, since a(F) and ¢(F) are related in
the P; approximation according to

q(ry=-DVe(r) ., (11)

the radiant energy flux of the original problem
is given by

- - 1_ - -
[q(r)]orlglnal= —_-f-”—_[Q(r)]mapped . (12)
l-p,w

The second mapping method, or the effective
temperature method, applies to problems with
isotropic scattering. It is assumed here for
simplicity that the medium temperature and
effective temperature are constant. (This
assumption can be relaxed through a general-
ization of the equations below.) For an iso-
tropic scattering medium, the scattering
integral in the radiative transfer equation,

Eg. (A-1), reduces to ogp(r)/4n, and the
right-hand side of Eq. (A-1) becomes independent
of angle. Furthermore, if the optical depth is
small and the spatial variation of the scattered
flux is small, it is possible to represent the
total radiation source (emission and scatter-
ing) with an effective radiation source char-
acterized by an effective emission temperature

T

CeaT e 24 (F)=26(T ") (13)
3 41 1 ’

The radiative transfer equation for the mapped
problem thus becomes a nonscattering one:

Q-61(}’,(1)+o,1(?.0)=%6(7')‘ . (14)

Generally, the effective temperature is
unknown and must be found by iteration. It is
defined implicitly by the volume averages of
the radiation flux equation and Eq. 13. The
radiation flux equation is obtained by inte-
grating Eq. (14) over all solid angles, which
results in



V-q(r)+o,6(r)=40,0(T")* . (15)

From the divergence theorem, the volume-
averaged scalar flux is found to be

-~ 1 - = -
=40(T )*- f -ds . .
b=43(TH - 5, q(r) - ds (16)
The volume average of Eg. (13) gives

Nqory o s, W
(T =(1-w)T 466 . (17)

Therefore, one may write

4_ oyt w pndP e N T
T '-(T") 460eV(1-cu)in(r) ds . (18)

Equation (18) defines T' implicitly and is
solved iteratively for T'.

In the next section, the two mapping methods
will be assessed against more exact numerical
methods.

3. EVALUATION

To examine the validity of both the P;
mapping technique and the effective temperature
method, one-dimensional planar and spherical
geometries are studied quantitatively. Figure
1 summarizes the coordinate systems used in the
following calculations.

In the following assessment of the mapping
methods, the original problens with scattering
and the mapped problems without scattering were
all solved by an S3, discrete ordinates method
except for +the mapped problems in planar
geometry. For the latter cases the well-known
analytic solution was used. The discrete
ordinates solutions were obtained using 32
angular directions, 201 spatial nodes, and a
convergence criterion of 106 for the fractional
error in angular intensities. (The P;-mapped
problem is not solved here in the P; approxi-
mation because in the intended application, it
will not be solved in the P; approximation but
by essentially exact net enclosure methods.)



Finally, it is assumed in the assessment
that one is interested in the net radiant heat
fluxes at walls, or equivalently, the volume-
averaged scalar flux, ¢, which is proportional
to the total absorption of radiant energy by
the medium. The net radiant heat fluxes at the
boundaries, or efflux ¢eff, and the volume-
averaged scalar flux are related by the radi-
ation flux equation according to

1 - - e
¢.n'0—7fsQ(r)‘ds-40T.‘n-$ . (19)

In view of the 1large number of input
parameters, the physical dimensions were fixed
in the calculations. They are: x¢ = 1 m, rj; =
l1m and 75 = 2 m. Two sets of boundary tem-
peratures were studied: (1) Tyj = Ty = Ty, and
= 1.2. The combinations of geometries and
temperatures considered are given by the three
cases listed in Table 1. Each case was evaluated
for the two mapping methods as a function of
wall emissivity, albedo, and optical depth. The
P; mapping method was also evaluated for two
different scattering phase functions. The
first,

Py(6)=1 , (20)

represents isotropic scattering and the second,
8 .
PZ(G,)=3-—n(sm9,,-eocoseo) , (21)

represents diffuse scattering from a large
sphere (Siegel and Howell, 1972). Hereafter,
these two phase functions will be referred to
as the isotropic scattering and anisotropic
scattering phase functions, respectively.

The percentage error in the net radiation
efflux is presented in Figures 2 through 8 for
various wall emissivities. The percentage error
of the mapping methods is defined by

(¢eff)mapping - (¢o")sn
(err)sn

x 100 . (22)



The coordinate & in these fiqures is equal to
Oex¢ and 0g(rz-ri) in planar and spherical
geometry, respectively. Error contour plots are
shown for the P; mapping technique in Figures
2 through 5, and for the effective temperature
method in Figures 6 through 8.

There are several conclusions that can be
drawn from the numerical results:

1. As shown in Figures 2 through 5, the error
in the efflux in the P; mapping method
increases as the scattering albedo
increases. This can be attributed to the
fact that the mapped system as shown in Eg.
(9) becomes optically thinner as scattering
albedo increases, and the P; approximation
is poor for an optically thin system. The
errors are not a strong function of the cases
and the two scattering phase functions
studied. However, it remains to be seen
whether the P; mapping method is suitable
for a more irregularly shaped phase function,
as found in general from Mie theory (van de
Hulst, 1981). As shown in Figures 2 through
5, an error in the efflux of less than 5
percent can be expected using the P; mapping
technique for an optical depth greater than
about four, and a scattering albedo less
than about 0.8.

2. As shown in Figures 6 through 8, the efflux
in the effective temperature method is
accurate for small to moderate values of
optical thickness. For an optical thickness
less than about four, the effective tem-
perature method is very accurate for the
entire range of the scattering albedos. Note
that this conclusion is drawn for the efflux
for the cases considered; other quantities
and cases are presently under investigation.

3. The accuracy of both mapping methods studies
improves considerably as the wall emissivity
decreases. For a gray wall, part of the
thermal radiation that reaches the boundary
is reflected back into the system. As a
result, radiant energy becomes more evenly
distributed than it would with black walls,
and consequently both methods become more
suitable.



4. In Figures 2 through 5 for the P; mapping
technique, the errors are observed to
decrease sharply as the optical depth becomes
extremely small. This behavior is surprizing
since it is known that the P; approximation
fails for a transparent medium. However, it
can be shown that the P; approximation
predicts the correct transparent medium wall
fluxes in the limit as & approaches zero.
Therefore, both the P; approximation and the
P; mapping technique predict the correct
behavior in this limit.

4. CONCLUSIONS

Two mapping methods based on the P;
approximation and an effective temperature have
been developed for radiative heat transfer
problems with scattering. In the P; mapping
technique, a radiative transfer problem with
scattering medium is transformed into a non-
scattering one by scaling the absorption
coefficient and the wall emissivities within
the P; approximation. The scaling laws thus
obtained are not restricted to the one-
dimensional planar geometries used in previous
scaling approaches and may in principle be
applied to nonisothermal problems as well. The
effective temperature method applies to opti-
cally thin systems with isotropic scattering
and isothermal media, provided the spatial
variation of the scattered flux is small.

Both mapping methods have been examined
in a number of cases involving an isothermal
gas and both planar and curved geometries. Note,
however, that although a large number of cal-
culations were required to generate the results
in Figures 2-8, the cases presented in this
paper are not comprehensive. For example, it
would be desirable to run cases with a hot gas
radiating to cold walls and with a relatively
small hot surface radiating to cold walls that
have a much larger area. In the latter case,
it is not clear that the net efflux is the
appropriate quantity to use in evaluating the
accuracy of the mapping methods. The errors in
the transmitted flux and gas temperature under
equilibrium conditions are also of interest.
These other cases and quantities are presently
under investigation.



It is concluded that for the cases con-
sidered the current P; mapping technique gives
a reasonably accurate net efflux for an optical
depth greater than about four and a scattering
albedo less than about 0.8, and the effective
temperature method gives a reasonably accurate
one for an optical depth less than about four.
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APPENDIX A. THE P; APPROXIMATION
For a gray medium with uniform optical

properties, the radiative transfer equation is
given by

Q-JI1(r, Q) +o.I(F,Q)-%6T‘(?)
O, . . - . j _
+RL“P(Q-Q YI(r,Q)H)dQ” . (A-1)

For a diffuse gray isothermal surface, the
boundary condition for Eq. (A-1) can be stated
as follows:

- 1I(r,.00n,-Q°da (A-2)
J n, 01°<0

where fi,, is the outward normal unit vector
perpendicular to the surface element at position

I e



Table 1. Cases considered.

Geometry | Tq Tw1 Tw2

Case I Planar Ty | 1.5Ty | 1.5Tq

Case II Planar T 0.8Tp 1.2Tq

Case III| Spherical | Ty | 1.5Ty [ 1.5Tn
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Fig. 1. Graphic representation of the coordinate systems

used in the numerical calculations.
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Fig. 2. Contours of constant percentage error in the net efflux, Eq. (22), predicted by the

P, mapping technique for Case I of Table 1 and isotropic scattering.
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Fig. 8. Contours of constant percentage error in the net efflux, Eq. (22), predicted by the

effective temperature technique for Case IIl of Table 1.

20



