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ABSTRACT
The problem of radiative heat transfer through 
a gray, emitting, absorbing, and scattering 
medium with uniform optical properties is 
reduced to one without scattering through two 
techniques. One uses scaling laws, and the other 
uses a self-consistent effective gas tempera­
ture. The scaling laws are derived via the 
approximation to the radiative transfer 
equation and can be applied to multidimensional 
problems with nonisothermal media. The effec­
tive temperature method is presently restricted 
to isotropic scattering and isothermal media. 
Both methods are evaluated in the current study 
as a function of scattering albedo, wall 
emissivity, and optical thickness for two 
different geometries, and two sets of wall and 
gas temperatures. The effects of scattering 
anisotropy are also assessed for the method. 
The numerical results show that for these cases 
the scaling method is reasonably accurate for 
optically thick media with a scattering albedo 
less than 0.8, and the effective temperature 
technique is reasonably accurate for optically 
thin media for all albedos.
NOMENCLATURE

D = diffusion coefficient, m
I — radiation angular intensity, W/m2-sr
nw = outward unit vector normal to a surface 

element
P = scattering phase function
q - radiant heat flux, W/m2
r = radial coordinate, m
s = surface area, m2
•S = total surface area, m2
T — temperature, K
v = volume, m3
V = total volume, m3
Greek Symbols

e = emissivity
0O = scattering angle
H = angular coordinate, see Fig. 1
M-o = average cosine of the scattering angle
£ = optical depth
p = reflectivity
a = attenuation coefficient due to radi­

ation/media interactions, m-1



a = Stefan-Boltzmann constant, W/m2-K4 
<|> = scalar flux of thermal radiation, W/m2
$ = volume-averaged scalar flux, W/m2
(jo — scattering albedo
Cl = solid angle
Subscripts
a “ absorption
e = extinction
eff = net efflux of thermal radiation 
m = medium property 
s = scattering
t = total length
w = wall property
1 = boundary index
2 = boundary index
Superscripts
' = angular coordinate of the scattering

direction, or the effective temperature
1. INTRODUCTION

Radiative heat transfer is one of the 
dominant modes of heat transfer in many engi­
neering applications involving high tempera­
tures. For radiative transfer through purely 
gaseous media, the effects of scattering are 
negligible in most heat transfer calculations 
due to the fact that the interactions between 
the thermal radiation and gas molecules or atoms 
occur in the Rayleigh limit. In this limit 
scattering is negligible compared to the 
absorption and transmission of radiation. 
However, in the presence of suspended solid or 
liquid aerosol particles, scattering often must 
be considered.

By nature, the equation of radiative 
transfer with scattering is an integro- 
differential equation whose solution is quite 
difficult. Although advanced numerical solution 
techniques are available for solving the general 
equation such as the Pn method (e.g., Bell and 
Glasstone, 1970) , the discrete ordinates or the 
Sn method (e.g.. Bell and Glasstone, 1970), and 
the Monte Carlo method (Meyer, 1956), such 
detailed numerical solutions are not warranted 
in many practical applications for a number of 
reasons. First, the solution of the radiative 
transfer equation is quite sensitive to the 
optical properties of the transport medium and



such optical properties for materials of 
interest are seldom available in the literature, 
(e.g., the complex indices of refraction for 
most dielectric materials are only reported for 
visible light at room temperature.) Even if the 
indices of refraction are known, the shape, 
chemical structure, and size distribution of 
the aerosols may not be known accurately. 
Assuming this information were available, in 
some applications one cannot afford computa­
tionally to take the resulting wavelength 
dependence of the optical properties into 
account with high accuracy. Second, the results 
of radiant energy exchange are of little use 
in many cases without considering simulta­
neously the thermal-hydraulic response of the 
system to the radiation. The solution of the 
coupled problem can be a formidable task.

The above considerations indicate that 
methods for solving the scattering problem to 
moderate accuracy may be quite useful if they 
are efficient. The present paper proposes and 
gives the results of a preliminary study for 
two such methods. These methods have been 
developed for potential use with CONTAIN, a 
code that can analyze coupled aerosol, fission 
product, and thermal-hydraulic behavior in 
severe nuclear reactor accidents (Murata et 
al., 1989). The radiative transport problem is 
solved every timestep in this code, and con­
sequently there is a premium on computational 
efficiency.

Methods with moderate accuracy similar to 
one of the present methods have been proposed 
before. The equation of radiative transfer 
reduces to a differential equation when scat­
tering is absent so that the effort required 
to solve the problem is reduced considerably. 
Although scattering itself often cannot be 
neglected in the presence of aerosols, one can 
take an unconventional approach to the transport 
problem with scattering by first mapping it 
onto a nonscattering one, and then seeking the 
solution of the mapped problem. Such approaches 
have been reported in the literature (Goswami 
and Vachon, 1977; Lee and Buckius, 1982, 1983, 
and 1986) . The basis of these earlier approaches 
is either the approximation to the transport 
equation or the two-flux method.



In the present study, two complementary 
mapping methods have been developed for 
potential application to the multidimensional 
problem, one using the approximation and the 
other using an effective medium temperature. 
The Pi mapping is derived by requiring the Pi 
solutions of the original and the mapped 
problems to be identical and can be applied to 
multidimensional problems with nonisothermal 
media. While similar to the Pi approach used 
in Lee and Buckius (1983), the present approach 
has a number of advantages. First, when the 
equation for the scalar flux is scaled, as in 
the present approach, rather than that for the 
heat flux, it becomes apparent that noniso­
thermal media can be treated. (The difficulty 
is that the temperature gradient term in the 
heat flux equation introduces a second dimen­
sionless group.) Second, when gray wall boundary 
conditions are used, a factor containing the 
wall emissivity can be combined with a second 
dimensionless group introduced by the boundary 
conditions. Because there are two parameters 
to scale in the present treatment (the optical 
depth and the wall emissivity) , the scaling 
difficulties found by Lee and Buckius to arise 
from the presence of two dimensionless groups 
are absent, and the present method is exact 
within the approximation.

It is well known that the approximation 
is poor when the optical thickness of the system 
decreases (Duderstadt and Hamilton, 1976). 
Unfortunately, the proposed P^ scaling laws 
transform the original problem with a high 
scattering albedo into an optically thin 
problem. Therefore, it is expected that the 
current P^ mapping method will fail in two 
circumstances: (1) for optically thin systems, 
and (2) for high scattering albedos. (It should 
be noted that in contrast the Pi approximation 
itself generally improves with scattering 
albedo at fixed optical depth.)

A second mapping method, an effective 
temperature method, has been developed for 
optically thin systems. In the effective tem­
perature method, the emission and the scattering 
terms of the radiative transfer equation are 
combined into an effective emission term 
characterized by an effective emission tem­
perature. Generally, this effective emission 
temperature is unknown and must be obtained by 
iteration.



Both the Pi mapping technique and the 
effective temperature method have been assessed 
through a number of calculations for isothermal 
media comparing the mapped solutions with those 
obtained by a reference discrete ordinates 
method. While the generality of these results 
remains to be demonstrated, the results for the 
cases investigated indicate that the Pi mapping 
method will result in less than 5 percent error 
in the net efflux of radiation (defined in Eq. 
(19)) for an optical depth greater than 4 and 
a scattering albedo less than 0.8, while the 
effective temperature method will result in 
less than 5 percent error for an optical depth 
less than 4. Furthermore, the error in both 
mapping methods is improved considerably when 
the transport medium is surrounded by reflective 
(nonblack) boundaries.
2. THEORY

The Pi approximation to the radiative 
transfer equation can be derived by taking the 
zeroth and the first moments of the radiative 
transfer equation and assuming that the angular 
intensity is at most linearly anisotropic (see, 
for example, Duderstadt and Hamilton, 1976). 
The present scaling method uses the Pi scalar 
flux equation, i.e.,

-DV2<t>(r) + ca<j>(r) = 4aa6T4(r) (1)
It should be noted that Eq. (1) applies only 
to a gray medium with uniform optical proper­
ties. The boundary condition for a diffusely 
reflecting wall in the Pi approximation can be 
written as

(2)2(1+Pw)
where D is the diffusion coefficient defined 
as

0-[3(0.-no0a)] -i (3)

and is the first moment of the scattering 
phase function.



In the first mapping method, the original 
problem with scattering is solved by assuming 
that it is equivalent to a nonscattering one. 
The Pi equation and the boundary condition for 
the mapped problem without scattering can be 
written as

-DV2*(0 + aaK0 = 45a6T4(0 , (4)

and

Z>V<Krw)-fiw =
2e,

2( 1 + pw)
r T ✓ n w -* ^ 4——OT^

1 + p,
(5)

where

, (6)

and the bar indicates the mapped quantities. 
The solutions for <|> in the original and mapped 
problems are identical, if and only if, the 
following relations are satisfied:

D~ D 

and

(7)

£>(1-Pw) £>(1 + Pw)
(8)

Therefore after rearrangement, the scaling laws 
given by Eqs. (7) and (8) can be written as:

o.-o.VO ““OC1 • (9)

and

1 + l-p.0u) ew
1 “(A) 1 + p w

(10)

where co is the single scattering albedo os/aa.
It should be noted that pw may be negative, in 
which case the corresponding wall emissivity 
is greater than one. (The solutions for <t> in 
this case are not unphysical because they 
correspond to the original problem with a



properly bounded emissivity.) Eq. (9) is 
equivalent to the square-root scaling law 
derived by Lee and Buckius (1982, 1983).

Finally, since g(r) and <|>(r) are related in 
the Pi approximation according to

g(0 = -DV<|»(r) . (11)

the radiant energy flux of the original problem 
is given by

— I l - (X) —
[Q(^')]oriBlnal — a / T = [9(^)]mapped • (12)

V l-li0MJ

The second mapping method, or the effective 
temperature method, applies to problems with 
isotropic scattering. It is assumed here for 
simplicity that the medium temperature and 
effective temperature are constant. (This 
t*ssumption can be relaxed through a general­
ization of the equations below.) For an iso­
tropic scattering medium, the scattering 
integral in the radiative transfer equation,
Eq. (A-l), reduces to c^KO/411* and the 
right-hand side of Eq. (A-l) becomes independent 
of angle. Furthermore, if the optical depth is 
small and the spatial variation of the scattered 
flux is small, it is possible to represent the 
total radiation source (emission and scatter­
ing) with an effective radiation source char­
acterized by an effective emission temperature 
T':

0__ A 0S 0. _ ATor = • (13>
n. 4ji n

The radiative transfer equation for the mapped 
problem thus becomes a nonscattering one:

A-V/(r,A)-*-0,/(r.6) = ^0(T')4 . (14)

Generally, the effective temperature is 
unknown and must be found by iteration. It is 
defined implicitly by the volume averages of 
the radiation flux equation and Eq. 13. The 
radiation flux equation is obtained by inte­
grating Eq. (14) over all solid angles, which 
results in



(15)V-g(r) + oe<l>(P) = 4ae6(T')4

From the divergence theorem, the volume- 
averaged scalar flux is found to be

gCO-ds • ‘ (16)atV Js

The volume average of Eq. (13) gives

(r')4 = (l-co)r4 + ^r$ . (17)

Therefore, one may write

74-(7')4 = co
4aoel/(l -cjo)

• ds (18)

Equation (18) defines T’ implicitly and is 
solved iteratively for T1.

In the next section, the two mapping methods 
will be assessed against more exact numerical 
methods.
3. EVALUATION

To examine the validity of both the 
mapping technique and the effective temperature 
method, one-dimensional planar and spherical 
geometries are studied quantitatively. Figure 
1 summarizes the coordinate systems used in the 
following calculations.

In the following assessment of the mapping 
methods, the original problems with scattering 
and the mapped problems without scattering were 
all solved by an S32 discrete ordinates method 
except for the mapped problems in planar 
geometry. For the latter cases the well-known 
analytic solution was used. The discrete 
ordinates solutions were obtained using 32 
angular directions, 201 spatial nodes, and a 
convergence criterion of 10”6 for the fractional 
error in angular intensities. (The P^-mapped 
problem is not solved here in the P^ approxi­
mation because in the intended application, it 
will not be solved in the P^ approximation but 
by essentially exact net enclosure methods.)



Finally, it is assumed in the assessment 
that one is interested in the net radiant heat 
fluxes at walls, or equivalently, the volume- 
averaged scalar flux, $, which is proportional 
to the total absorption of radiant energy by 
the medium. The net radiant heat fluxes at the 
boundaries, or efflux 4>effr and the volume- 
averaged scalar flux are related by the radi­
ation flux equation according to

't’.ff “Tirf g(r) • ds “ 4o7'^ - $ . (19)
aav Js

In view of the large number of input 
parameters, the physical dimensions were fixed 
in the calculations. They are: = 1 m, =
1 m, and r2 = 2 m. Two sets of boundary tem­
peratures were studied: (1) Twi = 7W2 = Tv, and 
7W/Tm = 1.5; and (2) 7W2/7'wl = 1«5, and 7W2/7in 
= 1.2. The combinations of geometries and
temperatures considered are given by the three 
cases listed in Table 1. Each case was evaluated 
for the two mapping methods as a function of 
wall emissivity, albedo, and optical depth. The 
Pi mapping method was also evaluated for two 
different scattering phase functions. The 
first,

^i(60)“ 1 . (20)

represents isotropic scattering and the second, 

^2(e.) = ^:(sineo-eecos0o) , (21)

represents diffuse scattering from a large 
sphere (Siegel and Howell, 1972). Hereafter, 
these two phase functions will be referred to 
as the isotropic scattering and anisotropic 
scattering phase functions, respectively.

The percentage error in the net radiation 
efflux is presented in Figures 2 through 8 for 
various wall emissivities. The percentage error 
of the mapping methods is defined by
($ aff ) mapping (4*eff)sn

x 100 (22)(^•ff )sn



The coordinate in these figures is equal to 
aext and de(r2"rl) ^-n planar and spherical 
geometry, respectively. Error contour plots are 
shown for the mapping technique in Figures 
2 through 5, and for the effective temperature 
method in Figures 6 through 8.

There are several conclusions that can be 
drawn from the numerical results:
1. As shown in Figures 2 through 5, the error 

in the efflux in the mapping method 
increases as the scattering albedo 
increases. This can be attributed to the 
fact that the mapped system as shown in Eq. 
(9) becomes optically thinner as scattering 
albedo increases, and the Pi approximation 
is poor for an optically thin system. The 
errors are not a strong function of the cases 
and the two scattering phase functions 
studied. However, it remains to be seen 
whether the P^ mapping method is suitable 
for a more irregularly shaped phase function, 
as found in general from Mie theory (van de 
Hulst, 1981). As shown in Figures 2 through 
5, an error in the efflux of less than 5 
percent can be expected using the P^ mapping 
technique for an optical depth greater than 
about four, and a scattering albedo less 
than about 0.8.

2. As shown in Figures 6 through 8, the efflux 
in the effective temperature method is 
accurate for small to moderate values of 
optical thickness. For an optical thickness 
less than about four, the effective tem­
perature method is very accurate for the 
entire range of the scattering albedos. Note 
that this conclusion is drawn for the efflux 
for the cases considered; other quantities 
and cases are presently under investigation.

3. The accuracy of both mapping methods studies 
improves considerably as the wall emissivity 
decreases. For a gray wall, part of the 
thermal radiation that reaches the boundary 
is reflected back into the system. As a 
result, radiant energy becomes more evenly 
distributed than it would with black walls, 
and consequently both methods become more 
suitable.



4. In Figures 2 through 5 for the mapping 
technique, the errors are observed to 
decrease sharply as the optical depth becomes 
extremely small. This behavior is surprizing 
since it is known that the approximation 
fails for a transparent medium. However, it 
can be shown that the Pi approximation 
predicts the correct transparent medium wall 
fluxes in the limit as ^ approaches zero. 
Therefore, both the Pj approximation and the 
Pi mapping technique predict the correct 
behavior in this limit.

4. CONCLUSIONS
Two mapping methods based on the Pi 

approximation and an effective temperature have 
been developed for radiative heat transfer 
problems with scattering. In the Pi mapping 
technique, a radiative transfer problem with 
scattering medium is transformed into a non­
scattering one by scaling the absorption 
coefficient and the wall emissivities within 
the Pi approximation. The scaling laws thus 
obtained are not restricted to the one­
dimensional planar geometries used in previous 
scaling approaches and may in principle be 
applied to nonisothermal problems as well. The 
effective temperature method applies to opti­
cally thin systems with isotropic scattering 
and isothermal media, provided the spatial 
variation of the scattered flux is small.

Both mapping methods have been examined 
in a number of cases involving an isothermal 
gas and both planar and curved geometries. Note, 
however, that although a large number of cal­
culations were required to generate the results 
in Figures 2-8, the cases presented in this 
paper are not comprehensive. For example, it 
would be desirable to run cases with a hot gas 
radiating to cold walls and with a relatively 
small hot surface radiating to cold walls that 
have a much larger area. In the latter case, 
it is not clear that the net efflux is the 
appropriate quantity to use in evaluating the 
accuracy of the mapping methods. The errors in 
the transmitted flux and gas temperature under 
equilibrium conditions are also of interest. 
These other cases and quantities are presently 
under investigation.



It is concluded that for the cases con­
sidered the current mapping technique gives 
a reasonably accurate net efflux for an optical 
depth greater than about four and a scattering 
albedo less than about 0.8, and the effective 
temperature method gives a reasonably accurate 
one for an optical depth less than about four.
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APPENDIX A. THE ?! APPROXIMATION

For a gray medium with uniform optical 
properties, the radiative transfer equation is 
given by

A-V/(r,n) +a,I(r,Cl)-—oT4(r)it

+ — f P(£l'. (A-l)
4 Jl./ 4 «

For a diffuse gray isothermal surface, the 
boundary condition for Eq. (A-l) can be stated 
as follows:

/ (rw, H • n, 6 w -> 0) = —oT n
4
w

_p_w r 
II /(rw,A')nw-A'dn' (A - 2)

where nw is the outward normal unit vector 
perpendicular to the surface element at position



Table 1. Cases considered

Geometry Tm tu2

Case I Planar Tm 1. STjj 1.STfln

Case II Planar ^m 0. STjj, 1.2Tm

Case III Spherical ^m 1.5Tm £in•H
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cos 6

Wall 1
Wall 1 Wall 2

Fig. 1. Graphic representation of the coordinate systems 
used in the numerical calculations.
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Fig. 2. Contours of constant percentage error in the net efflux, Eq. (22), predicted by the
Pj mapping technique for Case I of Table 1 and isotropic scattering.
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Fig. 3. Contours of constant percentage error in the net efflux, Eq. (22), predicted by the
Pj mapping technique for Case II of Table 1 and isotropic scattering.
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