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Laser-Based Instrumentation for Detection of Chemical-Warfare Agents

by
Gerard P. Quigley, Leon J. Radziemski, Robert K. Sander, and Allen Hartford, .r.
University of California, Los Alamos National Laboratory

P. 0. Box 1663
Los Alamos, NM 87545

ABSTRACT

Several laser-hased techniques arc being developed for remote,
point, and surfacc contamination detection of chemical warfare apents.
These techniques include optoacoustic spectroscopy, laser-induced breakdown
swectroscopy, and synchronous detection of laser-induced fiuorescence.
Detection limits in the part-per-million to part-per-billion regime have

been demonstrated.
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by
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University of California, Los Alamos National Laboratory
P. 0. Box 1663
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I. Introduction

In the modern, integrated batxlefield, operating areas, equipment, and person-
nel are subject to contamination by chemical warfare agents. This scenario requir-s
that rapid agent detection techniques be developed for contamination avoidance ¢
well as certification of hardware decontamination. To address these issues,
scientists at the Los Alamos National Laboratory have been developing laser-based
methods for the detcction of chemical warfarc agents. These optical techniques
afford extremely sensitive remotc, point, and surface contamination detection capa-
bilities. Furthermore, detection can be accomplished in real-time.

Anmong the laser-based dectection approaches being developed at Los Alamos are
optoacaustic spectroscopy, laser-induced brecakdown spectroscopy (LIBS), and synchro-
nous detection of laser-induced fluorescence (SDLIF). In laboratory tests opto-
acoustic spectroscopy has been used to detect agent GB at the 10 ppb level. Laser-
induced breakdown speccroscopy has been used to monitor species concentrations in
the part-per-million to part-par-billion regime. Development of the SDLJF technique
wus only recently begun, but it promises to be u sensitive schemo for both remote
and surfuce detection.

II. Optoacoustic Spectroscupy

The physical basis for optoacoustic detoction is that following vibrational
excitation of u molecular species, the vibrational cnergy is ultimately degraded to
heat, producing a prossurc wave in the surrounding gas. If the excitation source

(typically an infruroed lascr) is modulutod, the acoustic signal occurs at the

modulation frequoncy und muy be dotected with a microphone. Furthormore, the sound



intensity is a direct function of the absorbed energy. Thus, by increasing the
power of the laser source the acoustic signal may be enhanced. This feature of
optoacoustic detection, coupled with the frequency tunability of many laser sources,
provides the capability to det * specific trace components dispersed in the atmos-
phere.

We have employed the optoacoustirc technique to detect agent GB at ppb concen-
trations in air. The apparatus employed is depicted schematically in Fig. 1 and
consists of a line-tunable, cw CO, laser, a sample cell equipped with a microphone,
a chopper-wheel to modulate the CO2 laser beam intensity, and a lock-in amplifier
for signal processing. Several infrared absorption fecatures of agent GB occur in
the 9-11 um region as shown in the upper portion of Fig. 2. This spectral range is
conveniently covered by laser lines derived from the CO, laser, as indicated in the
lower section of Fig. 2.

A dilution apparatus was used to prepare samples of GB in air. Initially, N2
was passed over a porous material impiregnated with GB. The N2 flow was then further
dilutcd by a measured flow of dry air. In this manner air samples containing ppb
concentrutions of GB could be prepared in order to deturmine the efficacy of agent
detection via optoacoustic spectroscopy. The signal level obtained from an air
sample containing 10 ppb of GB 13 shown in Fig. 3. Since the background signal
(also proscented in Fig. 3) is much smaller in magnitude, it is clcar that opto-
acoustic detection provides an oxtremely sensitive means for monitoring the presence
of chemical agents.

The dopendence of the optoacoustic signal from agent GB has also been deter-
mincd as a function of CO2 luscr wavelength., As indicated previously, the opto-
acoustic signai level is proportional to the absorbed cnergy. Hence, tho signal
should mimic the infrarod spectrum of the material under study, allowing positive
ldentificution of u material if o sufficient spectral rogion can bhe cxplored. As

may be seen in Fig. 4, over tho limited spoctral rogion investigatod, the opto-



acoustic spectrum of GB does indeed coincide with the low resolution infrared
spectrum.
III. Laser-Induced Breakdown Spectroscopy

Laser-Induced breakdown spectroscopy has proven to be an extremely sensitive
method for monitoring various airborne contaminants, both in molecular form and as
aerosols. The technique is based on generating a plasma with the focused output of
a high-inrtensity, pulsed laser. The molecules and particulates within the plasma
volume are typically reduced to elemental form, producing electronically excited
ionic or neutral atomic species. Emission from these excited atoms may be detected,
allowing identification of particular elements from their characteristic spectral
signatures. The application of LIRS to the detection of chemical agents is predi-
cated on monitoring emission from the unique combination of elements which are
typically present in the agents. In the case of nerve agents these clements are
phosphorus and fluorine (except agent GA which does not contain fluorine), while
nustards generally incorporate sulfur and chlorine.

The apparatus used to determine the atomic spectral lines which provide the
optimum detection sensitivity via LIBS is shown in Fig. 5. The focused output of a
Nd:YAG laser (10 ns pulse length, ~ 100 m!/pulse) produces the plasma. A monochro-
mator equipped with a photomultiplier is used to monitor individual spectral lines
trom the plasma emission. A gignal averaging system is cmployed to enhance the
signal-to-noise (S/N) ratio. ... essential fcature of the detection clactronics is
that a delay timec may be introduced between plasma initiation and rocording of the
cmission. It has been found that in the carly stages of the plasma a broad conti-
nuum emission underlies spectral lines from singly ionized atoms. This behavior is
shown in Fig. 6 for the phosphorus lines originating from the agent simulant
diisopropyl methyl phosphonate (DIMP) dispersed in air. As tho plasme cvolves in
timo, the intensities of both the continuum and singly ionized atomic emission

docay, whilo omission due to noutral stoms becomes more preovalont., In Fig. 7 this



behavior is shown for DIMP. Consequently, the S/N ratio is optimized in the LIBS
technique by introducing a delay time between plasma onset and monitoring of
neutral atomic emission. This approach is referred to as time-resolved iarer-
induced breakdown spectroscopy (TRELIBS). The effect of delay time on tha S/N
ratio for fluorine and chlorine emission lines is presented in Fig. 8.

The TRELIBS detection limit for phosphorus under laboratory conditions has
been established as 1 ppm. If this value is specified as a concentration in mg/m?
and compared to the median incapacitating doses (MID) of the agents containing
phosphorus,1 it is found that detection limit for the atoms is a factor ¢~ 5-50
lower than the MID.

IV. Synchronous Detection of Laser-Induced Fluorescence

In the application of the laser-induced fluorescence (LIF) technique to the
detection of toxic chemicals in the environment, one finds that there are two
irterference problems that limit its uscfulness. The rirst problem is irtcrfer:nce
due to background fluorescence from large concentrations of chemicals (either
natural or man-made) which are an accepted part of the environment. The second
problem is interference caused by the overlap of the fluorescence spectra of two or
more of the chemical agents to be de.ected. Examples of the former problem are:
dyes and paints; smoke and dust parficles; natural pigments such as the chlorophyll
in plants; and insecticides. Thesc interference problems can be minimized by using
a variation of the conventionul LIf technique called synchronous detection of
laser-incuced fluorescence (SDLIF,.

The essence of this process can be shown by returence to Fig. 9a, which is the
conventional fluorescence excit:tion and emission spectrum of perylenc in ethnnol.z
Note that the width of the emis.ion spectrum that one would sce in normal laser-
induced fluorcscence is about f) nm, while the width of the synchronous spectrum
(Fig. 9t) is 8 nm. The reduction in the width of the dotected fluorescence spectrum

is accomplished Ly scunning a :arrow-bund excitation sourcce synchronously with a



narrow-band detector (a spectrometer with a photumultiplier tube at the output
slit) at a fixed wavelength separation (AA). In the case of Fig. 9, AA = 3 nm.
What one measures then is the overlap integral of the excitation and emission
spectrum, where A\ is a wavelength shift that optimizes the overlap and hence the
signal intensity and spectral bandwidth.

We are developing a system that will impreve this technique by cubstituting a
tunable laser for the usual xenon arc lamp source. This will greatly increase the
detection sensitivity of the technique (by greater than three orders-of-magnitude)
and allow for a remote-sensing capability due to the collimated nature of the
coherent laser source.

Figure 10 shows a block diagram of the simple experimental setup required to
perform synchronous detection of LIF. A wavelength tunable-dye laser excites the
sample in the cell and the fluvorescence is viewed in tne transverse directior by a
spectrometer that is being scanned at the same ratc as the laser, but is at a fixed
wavelength separation, AL - AS = AA, where AL and AS arc the laser and spectrometer
wavelengths, respectively.

The choice of A\ is determined by several factors. The smaller the A\, the
more one must contend with the effects of scattered laser light. With this in
mind, AA should be chosen to optimize the spectral intensity and bandwidth of each
molecular component in the mixturza. This optimum AX is heavily dependent on the
relative position of the excitation and emission spectra of each component. This
can be seen more clearly by referring to Fig. 11 which shows (schematically) three
general classes of fluorescing molecules divided cccording to the degree of overlap
of the excitation and emission spectra. Clearly, AA has a strong influence on the
width of the synchronous spectrum. One would expect most molecules of interest to
fall into category (b) where there is som~ overlap of the bands. In this case, if

GAS (the separation between bands) is large enough to avoid scattered light proh-

lems, the optimum condition is AA = GAS. For most molecules of interest here, this



is apprcximately 3 nm.

For simplicity, we have chosen tetracene for our first SDLIF studies. This is
because the emission-absorption band overlap cccurs in the middle of the Coumarin
480 (C480) dye laser gain characteristic and dye changes in mid-spectrum are not
necessary.

As a point of comparison, we first took the normal LIF spectrum of tetracene
in benzene, pumping the molecule at 470 nm with a fi:ed C480 laser output. This
result is shown in Fig. 12, where the large spike at 470 nm is the pump laser light
scattered into the SPEX spectrometer. Note that the tetracene spectrum js more
than 90-nm wide.

On the other hand, the SDLIF spectrum of tetracene in benezene is shown in
Fig. 13. In this case, both thc dye laser and the spectrometer are scannea at the
same rate and AX = 5 nm. The result is that the tetracene fluorescence occupies no
more than 7 nm (FWHM) of the spectrum, leaving room on either side for the detection
of cther fluorescing molecules whose LIF spectra overlap the tetracene spectrum,
but whose SDLIF spectra are completely resolvable. Note that a 2 x 10°° M solution
of tetracene in benzene is equivalent to two parts-per-million in the condensed
phase.

We are current.y in the process of extending the SDLIF tcchnique to the detec-

tion of chemical agernts
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from 10 ppb of agent GB in air.
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