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Laboratory, Flail Stop K765, Los Alamos, NM 875L5, USA
2Lab PMTM, Univer,sit4 Paris Nerd, Vllletaneuse, FFWCE
‘Institute of Engineering Mechanics, University of
Tsukuba, Sakura, Nihari, Ibaraki, 305 JAPAN

INTRODUCTION

The term “latent hardening” is commcnly used for the
effect of slip on one system on the flow stress of another,
One of the early surprises of the crystallographic slip
theory of plasticity was that such a hardening effect exists
at all, and later, that the hardening of the “latent” system
is actually usually larger than (or at least equal to) that
on the primary system. l‘4 These observations rela:e primar-
ily to the deformation of free rnonocrystals, in which single
slip is the rule, not the exception. In single crystals of
special orierltations, or under more severe straining roz-
ditions, or in grains of n polycrystal, slip generally
occurs on many systems simultaneously, The question is
still relevant, for the purpose of a general, theory of
strain hardeninu, whether the hardening of ea:h mystem is
indcpenent from slip on all the others or not. If it is
not, we say that there is “latent hardening”, and we now
mean Ehir term to refer primarily to the rate of strain
hardening in the different ~ystems, and only by con~equence
to the flow stresses,
IIItllcgrains of a polycrystal, there is another conaoquence
of latent hnrdcning, Since any change in the flow str~ss
ratios between different slip systems (active or not) causes
a change ti~ ahnpe of the single-crystal yield surface
(SCYS), the distribution of slips on the diff~rent systems,
for a given macroscopic strain increment, mny cl~ange, and
caLIstIdifferent orler~tat~on changes in this grain, Th1s
—
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could lead to different deformation textures in the same
class of uaterial (say, single -pklse FCC ❑etals slipping on
the octahedral slip system only) if, for some reason, the
latent-hardening behavior is different (e.g., because of
different stacking-fault energies). Such a mechanism has
been invoked, qualitatively, to explain differences in
rolling texture between, say, copper and brass.6 If one
understands latent hardening, one can make predictions about
the direction of possible texture changes due to it, and
about the ❑aximum conceivable effect.

This paper means to assess latent hardening effects on
large-scale polycrystal deformation on the basis of the
dislocation theory of plastic flow and of a wide variety of
●xperimental obse=ations on single crystals, The qualifier
“large-scale” is introduced to eliminate ●ffects during the
earliest stages of flow, where ❑ono- and polycrystals behave
differently: we will not consider ‘easy glide” in single
crystalsd’e; aIld we will not consider the gradual trans-
ition, over perhaps ten times the elastic strain, to
polyslip in polycr :tals”; or, for that ❑atter, initial
Liiders-type deformation in polycrystals’. In terms of
dislocation theory, we will consider the “flow stress” to
mean the percolation limit of dislocations in areal glide”.

Dislocation theory Jill be used at a rather gross
level, Experience has shown that ❑any of the details of the
interactions between dislocations and of their arrangement
are of surprisingly little influence on macroscopic plastic
behavior.” We will pre5ent a latent hardening ❑odel that is
based on the well established “forest” ❑odel of flow stress
and strain hardening, We will then assess various pieces of
experimental and theoretical evidence that limit the number
and magnitude of the parameters and predict the direction in
which they might depend on stacking-fault ●nergy, Finally,
we w1ll summarize results obtained by polycrystal simulation
in which the model was implemented. They show only marginal
effects, and only In certain cases,

FLOJ STRESS AND DISLOCATION ACCUMULATION

P@rhaps the most fundamental relation of the dlkloc-
atlon theory of plastic flow is

(1)

whrr~ ~ is an appropriate sh~nr modulus, b th~ maenltud~ of
L}W Bur&@rrn vecter, p sorer ❑easure of the dislocatlol]



density, and a a proportionality constant. Equation (1) has
been derived on the basis of various specific mechanisms,
with various precise meanings of p, and values of the
interaction strength a between 0.1 and 1,0; we are here not
concerned with temperature ~nd rate effects and assume a co
be the appropriate value for the given temperature and
strain rate, The term ~ is the contribution to the flow
stress from dislocation interactions only, to which other
contributions ❑ay be added or superposed in some other way.
(For background and older references, see ref,8.)

The theory of flow stress that has been, overall, the
most successful and is now widely accepted is the forest
theory. Here, p has the specific ❑eaning of the number of
(“forest”) dislocations that intersect the slip plane on
which T is measured. One of the many advantages of the
forest theory, which is of particular interest here, is that
the flow stress in different slip systems of the same slip
plane is perforce the same: an obsemation that has been
made, at least approximately, in all axperimants on latent
hardeningl -4. Equation (1) can then be expressed (in
differential form), specifically for the flow stress on
plane P, as

(2)

The increase of the forest density pf on plane P is
equal to the Increase in dislocation length A (per unit
volume) in all slip systems s not contained in P:

10001111111111

dp~ =
111000111111
111111000111

me m Yps d~s (3)
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where the “yield ❑atrix” Y has been introduced, If this
matrix is inuerted into eq,(2), ●nd a is taken to be a
constant, this means that all “trees” ate treated equal,
regardless of the apeciflc interaction between the forest
dlslocntion and the mobile one. Thie represents a consider-
able simplification: the “uniform Iorest” theory, Attempts
at more detailed treatment arm hampered by the question of
the appropriate superposition ●nd ●veraging rules

ThP. ]cngth of dis]ocntions belonging to each sllp
system earl incrensc in ●ssentially two ways, The first is



“direct storage”: the dislocation length left behind by the
dislocations that are ❑oving in this slip system (in are.1
glide) , It is proportional to the strain increment dy in
the system. The proportionality constant is usually related
to a “mean free path” L of the dislocations, which ❑ust be
assumed proportional to (say, K times) l/~p in order obtain
tl~e linear strain hardening obse~ed. (This is tantamount
to assuming the “principle of similitude”lo; dynamic
recovery will be discussed below.) Then, we have

(4)

The subscript D signifies the “direct” storage, and the
superscript S relates to the slip plane of system s.

Now comes the ❑ajor mechanistic assumption of this
paper, drawn from the “statistical theory of flow stress and
strain-hardening”: the “primary” dislocations accumulated,
from the pool of ❑obile dislocations by some statistical
mechanisms , cause various forest dlslGcations in the neigh-
borhood to move (and perhaps multiply) in response to the
internal stresses set up by the primarily stored disloc-
ations , and such as to lower the energy of the arrangement
and stabilize it (“plastic relaxation’’).a This may cause an
“indirect” (subscript 1) increase in dislocation line length
in all slip systems, It is reasonable to assume that the
total length of each set of indirectly stored dislocations
is proportional to the directly ctored ones:

(s*t) (5)

The “relax,ltion ❑atrix” R expresses the strength of the
interaction between the two Bets of dislocations. Before we
discuss it in detail, let us define each Ram-l; then, the
cutal increase in dislocation length can be written as

CIAt- dAD+ dAl - R=s dA~ (6)

In general, one might wish to include other causes for
dislocation generation, much as products of dislocation
reactions , or the remnants of dynamic File-ups”. Here, we
consider only “primary” dislocation ●ccmulatlon (from the
mobllc pool) antiplastic relaxation.



Inserting eq.(6) into eq.(2) and using eq,(3), we get

(7)

This is the increase in flow stress from dislocation accum-
ulation only; from it should be subtracted any effect of
dyranic recovery, which acts globally on all previously
stored dislocations; this will be done in eq,(9).

Equation (7) is similar In form to the commonly assumed
hardening law

dTt - ~ts & (a)

except for these major differences: the ratio of the current
flow stresses makes eq.(7) nonlinear, nonsymmetric (as h has
often been assumed to be) and dependent on strain. It is
worth recapitulating where these flow stresses came from.
The one in the r,umerator came from assuming that the rate of
dislocation accumulation in a slip plane is proportional to
the current forest density in that slip plane; this Is
reasonable if strain hardening is due to dislocation inter-
actions only (and the forest theory is acceptedj, In other
cases, - base particles assuch as a dominance ‘f ‘eco~d(f) in eq,(7) ~~~uld

causes for dislocation accumulation,
be replaced by a constant. On the other hand, the ~ in
the denominator is unavoidable: it is a direct consequence
of the fundamental relation (1),

The ❑ajor ta=l: now is to estimate the quantitative
nature of tkie rela~ation matrix R. Then, it will be Multi-
plied with the ❑atrix Y; we will normalize this product
matrix with its first member and then call it H, The final
form of eq.(7) then becomes

(9)

where 91 is the single-slip hardening rate; it ❑ay
incorporate all dynamic recovery effects.

3. THE RELAXATION MATRIX AND THE.HARDENING M.ATRIX

There are many possible types of interaction between
disloca~ions: el~,atic interaction, reactions at nodes, the
formation of jogs or kinks in one or the other are just some
of those, All interactions between dislocations on differ-



ent slip systems are, however, restricted by symmetry con-
siderations . For example, there are two “conjugate” slip
systems to each ‘primary” slip system, and these two ❑ust
react to a primary dislocation in the same way. (They may
have different applied stresses on them, which may cause an
orientation dependence, but should be a minor influence on
plastic relaxation under primarily internal stresses, )

Thas , one can draw up a ‘dislocation in~era~tion

matrix” that has only a few independent parameters. Table I
shows it for FCC metals, in a slip system nomenclature that
allows immediate identification of the crystallographic
relation between two slip systemsl . For example, when the
two letters are interchanged, the two systems have collinear
Burgers vectors (we label this situation by the letter q);
when no letter is in common, the Burgers vectors are
perpendicular (u); when the first letter is the same, ?hey
are coplanar (p); and when the second letter is the same,
they are “conjugate” (c). After these examples, there are
only two possible interaction types left: in every case, one
dislocation receives a kink, the other a jog when they
intersect (k and j). For elastic and junction interactions,
k -j.

lpKPQPUQUQPQK KPKUKQ UQUKUP

PK lpp
PQ plp
Pu ppl

Ujc
:: kqk
QK Cju

KP qkk
KU juc
KQ jcu

UQ Ucj
UK c Uj
UP kkq

Ujc
kqk
Cjb

lpp
plp

PP1

Uc j
Cu ~
kkq

qkk
juc
jcu

qkk
juc
Jcu

Uc j
Cu ~
kkq

lpp
plp

PP1

Ujc
kqk
Cju

Uc

d
:kq

qkk
juc
JC14

IIjc
kqk
Cju

lpp
plp

PP1

Table I displays the general, logical relation between
two Rlip systems, or two sets of dislocations. For the
present purposes, we wish to use it to describe plastic
relaxation, which wc envisage to occur due to tl-,ealastic



interactions . For these, we assume that the number of
secondary dislocations generated is proportional to the
degree of elastic interaction between the two dislocations.
Then, Table I becomes the relaxation matrix R introduced in
the last section, and p, q, etc. become coefficients in a
linear relation.

Multiplication of the relaxation matrix R with the
yield m~trix Y shows that there are, under the existing
symmetry restrictions, only 3 independent parameters in the
product matrix, one of which we use for normalization, Then,

H-

with

lllhghghhhhg
hghlllhhgghh
ghhhhglllhgh
hhgghhhghlll

h-l+ q +C+u+ 1 +2(p + k)
q+2(c+u+k+j)

l+2(p+c+u+j)
g- q+2(c+u+k+j)

(10)

(11)

QUANTITATIVE ESTJM.ATES

A quantitative derivation of ali parameters in the
interaction matrix on the basis of dislocation theory could
only be obtained on the basis of very particular assumptions
about the interactions and their superpositions, and about
the actual arrangement of dislocations. One can, however,
derive a number of equalities and inequalities that hold
under ❑any assumptions, One of these is j-k, as ❑entionad
above , In general, we must keep two criteria In mina: all
parameters must be positive, because the primary dislocation
can always be relaxed by one sign of secondary dislocation;
and no parameter should be much greater than 1, because then
one primary dislocation would cquse ❑any times its length of
a particular secondary dislocation set to be generated.

From single-crystal experiments , we know that the
difference between different non-coplanar systems 1s hard to
tell, Let us, therefore, assume h = g, which demands

q -c+u- J



This relation seems not unreasonable from the point of view
of dislocation theory. Combining, in a qualitative way,

long-range elastic interactions and the energy to be gained
from a reaction of parallel dislocations, one would ●xpect
plastic relaxation to be particularly effective for q and u,
less for c and j. (Another effect of setting h = g is that
H can be written as n 4x4 matrix, rather than a 12x4, if one
introduces the algebraic sum of shears h each slip plane.)

Finally, let us set p = 1/2, characterizing the effect-
iveness of relaxation between coplanar dislocations. Then,

h-g-
2+2q+4 1=- (12)

3q + 6j 3q

where the last approximation comes from neglecting j in
comparison to q/2. It is, of course, easy to make other
sensible assumptions; but eq. (12) gives the following set
of circumstances, which are in rough agreement with various
bits of experience, First, the last expression in eq.(12)
is 4/3 for q-1, 2 for q- 1/2. These values ❑ay be appro-
priate, for example, for aluminum and copper, respectively:
the effectiveness of cross-slip relaxation should be almost
perfect for full dislocations, less for extended ones.

Second, experimental single-crystal flow stress ratios
reflect approximately @, not h (because
over all the previous hardening,

~ith ~(p~fi~h:h~nj~~g~:~~n
.

tor, eq. (9)); this would give “latent hardening ratios” of
1.15 for Al, 1.41 for Cu: in good accord with observations.

Third, from TEM obsenations, one knows that the total
length of “secondary” dislocations stored after single slip
in stage 11 strain hardening is of the same order as that of
“primary” dislocations (or those of the primary Burgers
vertor, or those in the primary slip plane): that is true
for q between 1/2 and 1, as can be derived from Table I.

Finally, let us ❑ake an estimate of the highest value
of h that may be expected under these assumptions: q = 1/4
seems rather ineffective: it gives h - 10/3; q- 1/9 seems
ridiculously am~ll: it gives h - 20/3. Thus, we assume that
h and g are likely to be larger than 4/3 and smaller than 4,
giving rise to latent hardening ratios between 1.15 and 2.

Incidentally, isotropfc behavior would demand q - 2

which is, under the present set of assumptions, almost



impossible: it would demand one primary dislocation to
attract two cross-slip dislocations for its neutralization.

In multiple slip, eq.(9) predicts strain-hardening
rates that are higher than for single slip (if they are
expressed in the usual terms of the algebraic shear sum d’):
in <111> tension, for example,

dT/W - (2 + 4h)/6 ● el

where el is the single-slip value defined in eq.(9). For
Cu , the ratio would be about 5/3; in <100> crystals, it
would be a bit higher yet-both in accord with obsenations.

The difference in flow stress between different active
systems would be small when ❑any systems are ●ctive. When
there are only 6 systems, on 3 planes, the inactive plane
has a higher flow stress: for <111> tension, as above, the
hardening rate would be h=el, and rhe flow stress ration #1,
i.e. about 1.15 in Al - which has been observed’.

APPLICATION TO POLYCRYSTAL DEFORMATION

In polycrystals, under general deformation and with Its
attendant orientation changes in ●very grain, it is unlikely
that any slip plane will be inactive for any substantial
strain increment. Thus , the evolution of the flow stress
should be almost isotropic. However, small differences in

flow stress could be important under certain circumstances.
Figure 1 shows a schematic single-crystal yield surface
(SCYS) section in which four facets, corresponding to four
slip systems, meet at one vertex in three dimensions. This
❑eans that these four slip systems have one depend.?ncy
relation between them: only thre~ are necessary to accommo-
date an arbitrary prescribed ●train increment within this
subspace. Within the framework of rate independent Taylor
theory, this leads to an ambiguity in slip system selection
(which disappears when a finite, ●ven though perhaps very

small, rate sensitivity is used), Now let us assume we have

prescribed a deformation with dcl-0, Then, the “front” and

“back” slip systems are not needed: the deformation will
presumably be carried by the “right” and “left” ones. If
the active systems harden some, but the Inactive ❑ore, the
4-vertex decomposes into two 3-vertices, This alters the
slip system selection procedure for the next step. Thus ,
texture development ❑ay be affected.

#



For a quantitative estimate of the effects, we have
used the Los Alamos polycrystal plasticity (IApp) code
(version 6.4a). Since the SCYS continually changes, we had
to run the simulation in a strictly viscoplastic ~ode; the
rate sensitivity was set to 0.03, which was previously sh~wn
to give the same results as any smaller (though nonzero)
value. Relaxed Constraints were Incorporated gradually when
grains became sufficiently flat. Strain hardening within
the grains was incorporated using a Vote law, with the
parameters for aluminum, copper, and silver as determined
from previous experl.mentsll. The latent hardening
parameters were chosen in accordance with the above
discussion: h-g-4/3 for aluminum, 2 for copper and,
arbitrarily, & for silver (to demonstrate the ❑aximum
conceivable effect under this model).

Tension, compression, and plane-strain rolling were
simulated, to von Mises strains of up to 3.0. The first and
most striking result was that both the tension and the roll-
ing textures showed only very subtle differences against a
calculation in which all flow stress ratios were kept equal
to 1 (“isotropic hardening”). In compression, however,
there were marked differences-and they depended not only on
the latent hardening parameters chosen, but also on the
precise scalar strain hardening law. This is presumably due
to the fact that when the scalar hardening rate (0) goes to

Ei&J- Schematic single-crystal yield surface section
showing decomposition of a vertex through latent hardening.



zero, the flow stress ratios cannot change any more either.
Figure 2 shows the results for the three experimentally
deten~ined hardening laws, with the three assumed latent
hardening parameters. It is perhaps important that the
<110> texture that develops in FCC compression has a strong
tendency for plane-strain deformation and can be forced into
uniaxial deformation only by a 50% increase in stress. (It
is for this reason that “grain curling” ❑ay occur, as in BCC
tension.) This Is a particularly sensitive case. The tex-
tures exhibited in Fig. 2 are not observed quantlt~tively.
It is, however, true that a tendency for a ~pread from <110>
toward c1ll> de~lelops as one progresses from Al to Cu to Ag.
The second question to be asked, in addition to texture
development, is the effect on ❑acroscopic plastic aniso-
tropy, This would be affected not only by the texture, but
also by the flow stress ratios themselves. We have followed,
in the simulations, the average over all grains of the
greatest flow stress (normalized by the average): after an
initial decrease, the approximate values (after a strain of
about 0,5) are 1.03, ‘1.09, and 1.15, respectively, for
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h-g-4/3, 2, and 4. The real test is the polycrystal yield
surface after deformation: in principle, one might expect a
somewhat stronger expansion in all stress space directions
~ the lladlng direction, This was in fact demonstrated
by the simulations - but the effect is only a few percent.
In the worst case (which we find at best marginally real-
istic: h-g-4 ), the additional lateral spread was 6% after
rollin to a von Mises strain of 2.0. Experimental obsem-
ationsfz,ls of effe.tsof the order of 10& In aluminum can

therefore net be explained on the present basis. A perhaps
more important effect is the obsemation that the “vertices”
(or rather regions of high curvature) may, In some cases,
get sharper and the ‘flat spots” more extensive. This may
alter, for example, the ‘R-value” in certain cases.

SUKMARY

Based on the fcrest theory and the modified Taylor
model of polycrystal plasticity, both o: which are well
established, the effects of latent Ilardening on the develop-
ment of texture and plastic anisotropy are expected to be
quite small, though they may be of interest in some cases.
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