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J. F. KNCK8!, P. FRANCIOBI?, AND M. KAWAI?
!Center for Materials Science, Los Alamos National
Laboratory, Mall Stop K765, Los Alamos, NM 87545, USA
21ab.PMTM, Université Paris Nord, Villetaneuse, FRANCE
Institute of Engineering Mechanics, University of
Tsukuba, Sakura, Nihari, Ibaraki, 305 JAPAN

INTRODUCTICN

The term "latent hardening" is commenly used for the
effect of slip on one system on the flow stress of another.
One of the early surprises of the crystallographic slip
theory of plasticity was that such a hardening effect exists
at all, and later, that the hardening of the "latent" system
is actually usually larger than (or at least equal to) that
on the primary systen.!"* These observations relate primar-
ily to the deformation of free monocrystals, In which single
slip is the rule, not the exception. In single crystals of
speclal orierntations, or under more severe straining con.
ditions, or in grains of a polycrystal, slip generallyv
occurs on many systems simultaneously. The questlon {is
still relevant, for the purpose of a general theory of
strain hardening, whether the hardening of ea:h system is
indepenent from slip on all the others or not. If it is
not, we say that there is "latent hardening", and we now
mean this term to refer primarily to the rate of strain
hardening in the different systems, and only by consequence
to the flow stresses.

In the grains cf a polycrystal, there is another consequence
of latent hardening. Since any change in the flow stress
ratios between different slip systems (active or not) causes
a change 1{a shape of the single-crystal yleld surface
(SCYS), the distribution of slips on the different systems,
for a given macroscoplc strain increment, may change, and
couse dlfferent orlentation changes in this grain,. This
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could lead to different deformation textures in the same
class of waterial (say, single-pkise FCC metals slipping on
the octahedral slip system only) if, for some reason, the
latent-hardening behavior 1is different (e.g., because of
different stacking-fault energies). Such a mechanism has
been invoked, qualitatively, to explain differences in
rolling texture between, say, copper and brass.® If one
understands latent hardening, one can make predictions about
the direction of possible texture changes due to it, and
about the maximum conceivable effect.

This paper means to assess latent hardening effects on
large-scale polycrystal deformation on the basls of the
dislocation theory of plastic flow and of a wide varlety of
experimental cbservations on single crystals. The qualifier
"large-scale” is introduced to eliminate effects during the
earliest stages of flow, where mono- and polycrystals behave
differently: we will not consider "easy glide" in single
crystals*'®; and we will not consider the gradual trans-
ition, over perhaps ten times the elastic strain, to
polyslip in polycr :tals®; or, for that matter, initial
Liders-type deformation in polycrystals’. In terms of
dislocation theory, we will consider the "flow stress" to
mean the percolation limit of dislocations in areal glide®.

Dislocation theory sill be used at a rather gross
level. Experience has shown that many of the details of the
interactions bhetween dislocations and of their arrangement®
are of surprisinrgly little influence on macroscopic plastic
behavior.’ We will present a latent hardening model that is
based on the well established "forest" model of flow stress
and strain hardening. We will then assess various pieces of
experimental and theoretical evidence that limit the number
and magnitude of the parameters and predict the direction in
which they might depend on stacking-fault energy. Finally,
we will summarize results obtained by polycrystal simulation
in which the model was implemented. They show only marginal
effects, and only in certain cases.

FLOV STRESS AND DISLOCATION ACCUMULATION

Perhaps the most fundamental relation of the disloc-
ation theory of plastic flow is

1 = aub Vyp (1)

where p is an approprliate shear modulus, b the magnitude of
the Burgers vector, p some measure of the dislocation



density, and ¢ a propourtionality constant. Equation (1) has
been derived on the basis of various specific mechanisms,
with various precise meanings of p, and values of the
interaction strength o between 0.1 and 1.0; we are here not
concerned with temperature and rate effects and assume o to
be the appropriate value for the pgiven temperature and
strain rate, The term 17 is the contribution to the flow
stress from dislocation interactions only, to which other
contributions may be added or superposed in some other way.
(For background and older references, see ref.8.)

The theory of flow stress that has been, overall, the
most successful and 1is now widely accepted is the forest
theory. Here, p has the specific meaning of the number of
("forest") dislocations that intersect the slip plane on
which 7 1s measured. One of the many advantages of the
forest theory, which is of particular interest here, is that
the flow stress in different slip systems of the same slip
plane 1s perforce the same: an observation that has been
made, at least approximately, in all experiments on latent
hardening!-*. Equation (1) can then be expressed (in
differential form), specifically for the flow stress on
plane P, as

P _ (aub)? P
dr’ = — dpf (2)

The increase of the forest density pgf on plane P Is
equal to the increase in dislocation length A (per unit
volume) in all slip systems s not contained in P:
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where the "yleld matrix" Y has been introduced. If this
matrix 1is inserted into eq.(l), and o {s taken to be a
constant, this means that all "trees" ace treated equal,
regardless of the specific interaction between the forest
dlslocation and the mobile one. This represents a consider-
able simplification: the "uniform forest" theory. Attempts
at more detailed treatments are hampered by the question of
the appropriate superposition and averaging rules

The length of dislocations belonging to each slip
system can increase in essentially two ways. The first is



"direct storage": the dislocation length left behind by the
dislocations that are moving in this slip system (in are:l
glide). It is proportional to the strain increment dy in
the system. The proportionality constant is usually related
to a "mean free path" L of the dislocations, which must be
assumed proportional to (say, K times) 1/J/p in order obtain
the linear strain hardening observed. (This 1s tantamount
to assuming the ‘"principle of similitude"!'®; dynamic
recovery will be discussed below.) Then, we have

s d\rs in TS
ang = - — ay® - dy” (4)
bL bK oK ub?

The subscript D signifies the "direct" storage, and the
superscript S relates to the slip plane of system s.

Now comes the major mechanistic assumption of this
paper, drawn from the "statistical theory of flow stress and
strain-hardening”: the "primary" dislocations accumulated,
from the pool of mobile dislocations by some statistical
mechanisms, cause various forest dislccations in the neigh-
borhood to move (and perhaps multiply) in response to the
internal stresses set up by the primarily stored disloc-
atlons, and such as to lower the energy of the arrangement
and stabjlize it ("plastic relaxation").® This may cause an
"indirect" (subscript 1) increase in dislocation line length
in all slip systems. It 1is reasonable to assume that the
total length of each set of indirectly stored dislocations
is proportional to the directly stored ones:

t ts
dAI - R dAD

(s+t) (5)
The "relaxation matrix" R expresses the strength of the
interaction between the two sets of dislocations. Before we
discuss it in detail, let us define each R%%a1; then, the
total increase in dislocation length can be written as

t ts

£
dA-dAD+dAI-R dAD (6)

In general, one might wish to include other causes for
dislocation generation, such as products of dislocation
reactions, or the remnants of dynamic pile-ups®. Here, we
consider only "primary" dislocation accumulation (from the
mobile pool) and plastic relaxation.



Inserting eq.(6) into eq.(2) and using eq.(3), we get

P ap T(S)

2K (P

Pt _ts s

dr Y "R dy (7

This is the increase in flow stress from dislocation accum-
ulation only; from it should be subtracted any effect of
dyramic recovery, which acts globally on all previously
stored dislocations®; this will be done in eq.(9).

Equation (7) is similar in form to the commonly assumed
hardening law

dr® = h's ay® (8)

except for these major differences: the ratio of the current
flow stresses makes eq.(7) nonlinear, nonsymmetric (as h has
often been assumed to be) and dependent on strain. It is
worth recapitulating where these flow stresses came from.
The one in the numerator came from assuming that the rate of
dislocation accumulation in a slip plane is proportional to
the current forest density in that slip plane; this 1is
reasonable if strain hardening is due to dislocation inter-
actions only (and the forest theory is accepted). In other
cases, such as a dominance of secondEPhase particles as
causes for dislocation accumulation, 7 ) in eq.(7) ?pould
be replaced by a constant. On the other hand, the 7 ) in
the denominator is unavoidable: it is a direct consequence
of the fundamental relation (l).

The major tas- now Is to estimate the quantitative
nature of the relaration matrix R. Then, it will be multi-
plied with the matrix Y; we will normalize this product
matrix with its first member and then call it H. The final
form of eq.(7) then becomes

T(S) Ps

H dys
1(P)

dTP -0, (9)

where ©; 1s the single-slip hardening rate; 1t may
incorporate all dynamic recovery effects.

3. THE RELAXATION MATRIX AND THE HARDENING MATRIX

There are many possible types of interaction between
dislocaiions: elestic interaction, reactions at nodes, the
formation of jogs or kinks in one or the other are just some
of these. All interactions between dislocations on differ-



ent slip systems are, however, restricted by symmetry con-
siderations!. For example, there are two "conjugate" slip
systems to each "primary" slip system, and these two must
react to a primary dislocation in the same way. (They may
have different applied stresses on them, which may cause an
orientation dependence, but should be a minor influence on
plastic relaxation under primarily internal stresses.)

Thus, one can draw up &a "dislocation interaction
matrix" that has only a few independent parameters. Table I
shows it for FCC metals, in a slip system nomenclature that
allows immediate identification of the erystallographic
relation between two slip systems!. For example, when the
two letters are interchanged, the two systems have collinear
Burgers vectors (we label this situation by the letter q);
when no letter 1is iIn common, the Burgers vectors are
perpendicular (u); when the first letter is the same, =“hey
are coplanar (p); and when the second letter is the sanme,
they are "conjugate" (c). After these exsmples, there are
only two possible interaction types left: in every case, one
dislocation receives a kink, the other & jog when they
Intersect (k and j). For elastic and junction interactions,
k = j.

Table I: The Relaxetion Matrix R

PK PQ PU QU QP QK KP KU KQ UQ UK UP
PK|11 pp ujcec q k k u c
PQlp 1 p k q k J uc ¢ u j
PUlP Pl ¢ J u J c u k k g
QU|u 3 ¢ 1 p p u c q k k
QP | k g k p 1 p ¢ u }J J u ¢
QK ] e § u pp 1l k k g J ¢
KP q k k u c J 1 p p u J ¢
KU[J uec ¢ uj p1lp k qFk
KQ|J ¢ u k k q p p 1 c J u
Q| u ¢ J q k k u j e 1 p p
UK{c uj J uec k q k p1lop
UP | k k q J ¢ u ¢ J u p p I_J

Table I displays the general, logical relation between
two slip systems, or two sets of dislocations. For the
present purposes, we wish to use it to describe plastic
relaxation, which wc envisage to occur due to the elastic



Interactions. For these, we assume that the number of
secondary dislocations generated 1is proportional to the
degree of elastic interaction between the two dislocations.
Then, Table 1 becomes the relaxation matrix R introduced in
the last section, and p, g, etc. become coefficients in a
linear relation.

Multiplication of the relaxation matrix R with the
yield metrix Y shows that there are, under the existing
symmetry restrictions, only 3 independent parameters in the
product matrix, one of which we use for normalization. Then,

111 hgh ghh hhg
_ | hgh 111 hhg ghh
H ghh Ehg 111 hgh (10)
hhg ghh hgh 111
with
h = l+g+c+u+i+2 (p+ k)
qQ+2 (¢c +u+k +3)
(11)
- l1+2 (p+c +u+y)
g q+ 2 (¢c+u+ +3)

QUANTITATIVE ESTTMATES

A quantitative derivation of all parameters in the
interaction matrix on the basis of dislocation theory could
only be obtained on the basls of very particular assumptions
about the Interactions and their superpositions, and about
the actual arrangement of dislocations. One can, however,
derive a number of equalities and inequalities that hold
under many assumptions. One of these is j~k, as mentionad
above, In general, we must keep two criteria in mina: all
parameters must be positive, because the primary dislocetion
can always be relaxed by one sign of secondary dislocation;
and no parameter should be much greater than 1, because then
one primary dislocation would cause many times its length of
a particular secondary dislocation set to be pgenerated.

From single-crystal experiments, we know that the
dii{ference between different non-coplanar systems is hard to

tell. Let us, therefore, assume h = g, which demands

q=c¢c+u - j.



This relation seems not unreasonable from the polnt of view
of dislocation theory. Combining, in a qualitative way,
long-range elastic interactions and the energy to be gained
from a reaction of parallel dislocations, ona would expect
plastic relaxation to be particularly effective for q and u,
less for ¢ and j. (Another effect of setting h = g is that
H can be written as a 4x4 matrix, rather than a 12x4, 1f one
introduces the algebraic sum of shears in each slip plane.)

Finally, let us set p = 1/2, characterizing the effect-
iveness of relaxation between coplanar dislocations. Then,

2+ 29 +4] 2429
3q + 6] 3q

h=g-=- (12)

wvhere the last approximation comes from neglecting j 1in
comparison to q/2. It is, of course, easy to make other
sensible assumptions; but eq. (12) gives the following set
of circumstances, which are in rough agreement with various
bits of experience. First, the last expression in eq.(12)
is 4/3 for q=1, 2 for q= 1/2. These values may be appro-
priate, for example, for aluminum and copper, respectively:
the effectiveness of cross-slip relaxation should be almost
perfect for full dislocations, less for extended ones.

Second, experimental single-crystal flow stress ratios
reflect approximately yh, not h (because 9f the integration
over all the previous hardening, with 1{P) {n the denomina-
tor, eq. (9)); thls would give "latent hardening ratios" of
1.15 for Al, 1.41 for Cu: in good accord with observations.

Third, from TEM observations, one knows that the total
length of "secondary" dislocations stored after single slip
in stage I1 strain hardening is of the same order as that of
*primary" dislocations (or those of the primary Burgers
vertor, or those in the primary slip plane): that is true
for q between 1/2 and 1, as can be derived from Table I.

Finally, let us make an estimate of the highest value
of h that may be expected under these assumptions: q = 1/4
seems rather ineffective: it gives h = 10/3; q= 1/9 seems
ridiculously sm=1ll: it gives h = 20/3. Thus, we assume that
h and g are likely to be larger than 4/3 and smaller than 4,
giving rise to latent hardening ratios between 1.15 and 2.

Incidentally, Jisotropic behavior would demand q = 2
which is, under the present set of assumptions, almoet



impossible: it would demand one primary dislocation to
attract two cross-slip dislocations for its neutralization.

In multiple slip, eq.(9) predicts strain-hardening
rates that are higher than for single slip (if they are
expresséd in the usual terms of the algebraic chear sum dI'):
in <111> tension, for example,

dr/dl’ = (2 + 4h)/6 + 6,

where 6, 1s the single-slip value defined in eq.(9). For
Cu, the ratio would be about 5/3; in <100> crystals, it
would be a bit higher yet-both in accord with observations.

The difference in flow stress between different active
systems would be small when many systems are active. When
there are only 6 systems, on 3 planes, the inactive plane
has a higher flow stress: for <111> tension, as above, the
hardening rate would be h-6,, and the flow stress ration yh,
i.e. about 1.15 in Al — which has been observed’.

APPLICATION TO POLYCRYSTAL DEFORMATION

In polycrystals, under general deformation and with its
attendant orientation changes in every grain, it is unlikely
that any slip plane will be inactive for any substantial
strain increment. Thus, the evolution of the flow stress
should be almost isotropic. However, small differences in
flow stress could be important under certain circumstances.
Figure 1 shows a schematic single-crystal yleld surface
(S5CYS) section in which four facets, corresponding to four
slip systems, meet at one vertex in three dimensions. This
means that these four slip systems have one depend:ncy
relation between them: only three are necessary to accommo-
date an arbitrary prescribed strain increment within this
subspace. Within the framework of rate independent Taylor
theory, this leads to an ambiguity in slip system selection
(which disappears when a finite, even though perhaps very
small, rate sensitivity is used). Now let us assume we have
prescribed a deformation with de;=0. Then, the "front" and
"back" slip systems are not needed: the deformation will
presumably be carried by the "right" and "left" ones. If
the acrive systems harden some, but the inactive more, the
4-vertex decomposes into two 3-vertices. This alters the
slip system selection procedure for the next step. Thus,
texture development may be affected.



For a quantitative estimate of the effects, we have
used the Los Alamos polycrystal plasticity (LApp) code
(version 6.4a). Since the SCYS continually changes, we had
to run the simulation in a strictly viscoplastic mode; the
rate sensitivity was set to 0.03, which was previously shown
to give the same results as any smaller (though nonzero)
value. Relaxed Constraints were incorporated gradually when
grains became sufficiently flat. Strain hardening within
the pgrains was Incorporated using a Voce law, with the
parameters for aluminum, copper, and silver as determined
from previous exper'ments'!, The 1latent hardening
parameters were chosen 1In accordance with the above
discussion: h=g~4/3 for aluminum, 2 for copper and,
arbitrarily, 4 for silver (to demonstrate the maximum
concelvable effect under this model).

Tension, compression, and plane-strain rolling were
simulated, to von Mises strains of up to 3.0. The first and
most striking result was that both the tension and the roll-
ing textures showed only very subtle differences against a
calculation in which all flow stress ratios were kept equal
to 1 ("isotropic hardening®). In compression, however,
there were marked differences—and they depended not only on
the latent hardening parameters chosen, but also on the
precise scalar strain hardening law. This is presumably du=
to the fact that when the scalar hardening rate (@) goes to

Fig. 1 - Schematic single-crystal yleld surface section
showing decomposition of a vertex through latent hardening.



zero, the flow stress ratlos cannot change any more either.
Figure 2 shows the results for the three experimentally
detenained hardening laws, with the three assumed latent
hardening parameters. It is perhaps important that the
<110> texture that develops in FCC compression has a strong
tendericy for plane-strain deformation and can be forced into
uniaxial deformation only by a 50% increase in stress. (It
1s for this reason that "grain curling” may occur, as in BCC
tension.) This is a particularly sensitive case. The tex-
tures exhibited in Fig. 2 are not observed quantitatively.
It is, however, true that a tendency for a spread from <110>
toward <111> develops as one progresses from Al to Cu to Ag.
The second gquestion to be asked, in addition to texture
development, is the effect on macroscopic plastic aniso-
tropy. This would be affected not only by the texture, but
also by the flow stress ratios themselves. We have followed,
in the simulations, the average over all grains of the
greatest flow stress (normalized by the average): after an
initial decrease, the approximate values (after a strain of
about 0.5) are 1.03, 1.09, and 1.15, respectively, for
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Fig. 2 - Compression textures at a strain of 1.0, simulated
by lApp for (a) isotropic hardening, (b) Al, (c) Cu, (d) Ag.



h=g=4/3, 2, and 4. The real test is the polycrystal yield
surface after deformtion: in principle, one might expect a
somewhat stronger expansion in all stress space directions
except the loading direction. This was in fact demonstrated
by the simulations = but the effect is only a few percent.
In the worst case (which we find at best marginally real-
istic: h~g=4), the additional lateral spread was 6% after
rolling to a von Mises strain of 2.0. Experimental observ-
ations'?'13 of effects of the order of 10% in aluminum can
therefore nct be explained on the present basis. A perhaps
more important effect is the observation that the "vertices"
(or rather regions of high curvature) may. in some cases,
get sharper and the "flat spots" more extensive. This may
alter, for example, the "R-value" in certain cases,

SUMMARY

Based on the fcrest theory and the modified Taylor
model of polycrystal plasticity, both of which are well
established, the effects of latent lLiardening on the develop-
ment of texture and plastic anisotropy are expected to be
quite small, though they may be of interest in some cases.
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