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ABSTRACT

A method has been developed for estimating the amount of stable crack
growth that has occurred in a fracture toughness specimen that has been loaded
into the plastic range and for which only a monotonically increasing load-
displacement curve has been measured. The method has been applied to data
from several pressure vessel steels. The resulting J vs Aa values compare
favorably with a resistance curve obtained by the multiple specimen heat-
tinting technique for A533, Grade B, Class 1 steel. The method for estimat-
ing stable crack growth uses several existing concepts heretofore mainly
used separately. These concepts include an approximate expression for J for
the compact specimen proposed by Andrews, the effective crack length concept
of McCabe and Landes, the UK representation of the crack profile as a pair of
straight lines intersecting at a hinge point, and Well's expression, J = m0y6,
for relating the crack-opening displacement to the value of J. The value of
the constraint factor, m, at the advancing crack tip is estimated by means of
a relation between ductility and fracture toughness. When calculated with
respect to the COD at the original fatigue crack tip, the constraint factor,

m,, is found to have a value consistently close to 2.0 for compact and
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precracked Charpy specimens. The method of estimation requires no auxiliary

load-deflection measurements or calculations, and so permits single specimen

-estimates of stable crack  growth to be made without the necessity of making

high precision unloading compliance measurements.

INTRODUCTION

The useful application of fracture ﬁechanics to the safety analysis of
nuclear pressure vessels has been considerably enhanced by the development of
elastic-plastic methods for measuring high values of fracture toughness with
small specimens,l—3 and by the high safety margins demonstrated by the inter-
mediate pressure vessel tests conducted by the HSST Program.“ Nevertheless,
two aspects of these results still require additional clarification before
standard methods of elastic-plastic fracture toughness measurement and flaw
evaluation can be considered appropriate. The first aspect is the tendency
for maximum load fracture toughness values in the upper shelf temperature
range to increase with increasing specimen size. The second aspect is the
occurrence of relatively large amounts of stable crack growth before failure
in the upper shelf intermediate pressure vessel tests. In addition, because
of épace limitations and other size-related problems, only small specimens can
be used as irradiation surveillance specimens in reactor pressure vessels.

Consequently, there is no practical alternative to the use of small specimens

for measuring irradiated fracture toughness values. Furthermore, in order to

. justify the use of such values in fracture safety analyses, it is first neces-

sary to'explain their physical basis and also to develop procedures for using
them analytically that do not become unconservative.

The physical basis for the occurrence of maximum load toughness values
that increase with increasing specimen size was shown by Griffis® to be the
amount of stable crack growth that occurs prior to maximum load. Griffis®®
data showed that the absolute amount of stable crack growth occurring at maxi-

mum load, for notched bend specimens of HY-180 steel, increased with increasing




specimen size,- although the fractional value decreased slightly, from about 6%
for a 1.6-mm-thick specimen to about 47 for a 53-mm-thick specimen. On the other
hand, the toughness at the-onset of crack extension was about constant for speci-
mens exceeding about 2 cm in thickness. If the toughness required to develop
stable crack extension is indeed an increasing and a single valued function of
the amount of stable crack growth,® then it follows that to justify. using values
of fracture toughness higher than those cdrresponding to the onset of crack‘ex—
tension, the amount of stable crack growth as well as the toughness must be de-
termined from specimen test data, and both values must be used for a correct
"safety analysis of a flawed structure. '

Multiple direct or indirect méasurements of stable crack growth in single
specimens are not‘easily made, for a variety of reasons. One method for esti-
mating stable crack extension that is considered potentially applicable to ir-
radiated specimens, but that also 1llustrates the prec131on problems associated
with auxiliary crack length measurements, is the unloadlng compliance method. 7
By this method, the specimen is partially unloaded from the elastic-plastic range,
and the crack length is calculated from the change‘in.the elastic unloading com-—
pliance and the known .elastic complience of the'specimen as a function of crack

length.”’ Because the change in compliance due to a given change in crack length

7 it can be estimated that to pre-

1s inversely proportional to the specimen size,
vent errors in the value of the toughness at the onset of crack extension from ex-
ceeding 10% for a 4T compact specimen, which is used in research for obtaining
béseline data, the unloading displacement must be measured within 30 pin. Con-
sequently, efforts are underway to improve the precision and the accuracy of un-
loading displacement measurements, and simultaneously to develop alternate means.
for estimating small amounts of stable crack extension without the requirement

of nnloading. Andrews et al.8 at the General Electric Company have proposed. such
a method, based on two crack opening displacement measurements made at different
distances from the crack tip, from which the opening displacement at the briginel
fatigue sharpened crack tip can be calculated. By correlation, the difference
between this displacement and the displacement at the same location that would
have occurred if there had been mo crack extension are used to estimate the

amount of stable crack extension. Another method has been proposed by Paris

et al.,? based on the analytical or'experimental determination of the family of

load-displacement curves for specimens of constant crack length, covering the




" range from initial to final crack sizes occurring in the specimen. Both of

these methods are still under development and therefore their suitability for
routine application cannot yet be judged. In the meantime, it appears worth-
"while to continue exploring for other possible methods of estimating crack length
changes without unloading, especially if these methods appear to be easily ap-

- plied and their results promise to be reasonably accurate. This discussion de-
scribes one such possible method which, if-it proves to be feasible, can be ap-
plied to any new or existing elastic-plastic fracture toughness data that in-

clude both load and either load point or front face clip gage displacement values.

EFFECTIVE CRACK LENGTH

In order to estimate the increase in crack length in a specimen withouf
partially unloading. the specimen- or making other auxiliary additional measure-
ments, the increase in crack length must be related to some characteristicAof
the measured load-deflection curve for continued ldading. A relationship adapt-
able to this purpose was proposed by Bucci et al.,10 who suggested that the secant
- modulus of the load-deflection curve could be estimated by adding an ry plastic
zone size correction to the original crack length, and then estimating the secant
modulus as the elastic stiffness corresponding to the resulting effective crack
'length. Recently, McCabe and Landes!! suggested reversiﬁg this procedure, so
that the effective crack length is éstimated from the measured secant modulus of
the load-deflection curve. The latter procedure has the realistic advantage that
the effective crack length cannot exceed the specimen width. Furthermore, McCabe

1 showed that J calculations based on the elastic formula for K, the

and Landes
actual load and the effective crack length were consistently close to the experi-
mentally determined values of J defined as minus the rate of change of area under
the load-deflection curve with increasing crack area, at constant deflection.
This latter reésult turns out to.be of considerable practical importance, even
though there is presently no complete theoretical explanation for the result

itself.

SINGLE SPECIMEN EQUATIONS FOR J

Soon after the relationship between the effective crack length and the mnon-

linear load-deflection curve was suggested,10 equations began to be developed by



" which J could -be .calculated from a single specimen nonlinear load-displacement

test record. Tor the notched beam, Rice, Paris and Merkle? derived the equation

3.

DB ° | | ) eb

where 4 is the area under the load-displacement curve, b is the ligament width,

and B is ‘the specimen thickness. Subsequently, for the compact specimen, Merkle

3

and Corten® derived the equation

J = (1+a) 24, 0o(1'—20 — a2) . 2(PA — A)
(1 +02) DB (1 + a2)2 bB

B ' - (2)

where P is the load, A the displacement, and o is the fraction of the net section

that carries the applied force at limit load, and is given by .

o = [Kgg> + 2<§?> f 2]1/2 __<§Q_+ 1) ;' | |  : (3). ¥ : .ﬂ,”:

Note that Eq. (1), as well as Eq. (2), is written here in terms of the total dis-
placement, in agreement w1th the subsequent findings of several 1nvest1gators 12-14
Also, in this dlscus31on, the displacement A will be the load line displacement
and the area A will be the area under the load versus load line displacement, un-
‘less otherwise specified. ‘

Recently, several inVéstigators have proposed simplified approximations to

Eq. (2) for the compact specimen. Andrews® found that the expression

3 24

Je— . (4)
2 + (a/W) DB ‘ | A g

agrees with Eq. (2) within three to four percent, - for a/W 2 0.5. On the other
hand Landes, Walker and Clarkel* found that satlsfactory agreement with experi-

mentally based values of J, for a.series of blunt notched compact specimens of

K3




-~ HY-130 steel, could be obtained by using only the first term in Eq. (2), that is,
by writing '

-
J = — s —, , S B (5)
Based on the same comparison between experimentally determined and calculated
values of J, Clarke and Landes!® have since recommended Eq. (5) as the best ex— .
pression to use for determining J for the cémpaét specimen. '
Both Eqs. (4) and (5) are single term equations four J reminiscent of the

equivalent energy formulal! for the compact specimen, because they are both equa-

tions of the form
J=4=. ~ (6

The difference between Eqs. (4) and (5) can be investigated by considering'a’

general approximation for A to be of the form

'.2140 . .
Ae—— | | Q)
By + (a/W) .

where
BO = AO — 1 .- . ) E (8)

An appropriate value of Ay can be determined graphically by noting that the re-

ciprocal of A is a linear function of /W, and that, for a/W = 0,

2

Thus by plotting the values of 2/)A calculated from Eq. (5) versus a/W, and then

fitting a straight line to the results, as shown in Fig. 1, it can be determined



that within one percent accuracy, for a/W > 0.3, Bg/Ag = 7/9, so that Eq. (5)
can be represented by the expression

9 24
J=—" . , (10)
7 + 2(a/W) DbB :

Figure 1 also shows .a comparison between Eqs. (4) énd (2), for the elastic case.
In general, the accuracy of Eq. (4) will depend oﬁ the value of a/W and the ex- '
tent of yiélding. Hoyevef, it can be seeﬁ from Fig. 1 that Eq. (10) is a closer-
approximation to Eq. (5) than Eq. (4) is to Eq. (2). 'In addition, Eq. (10)
always gives slightly smaller values of J than Eq. (4); The difference is six
percent at aq/W = 0.5; and .it decreases steadily as a/W increases. Consequently,
the value of By = 3.9 will be used for subsequent calculations for the compéct

spedimen{ based on Eq. (10).

~ ENERGY AND COMPLIANCE EQUATIONS

One way of checking the accuracy of an approximate energy based expression :
for J is to use it to estimate the area under the load-displacement curve as a '
function of crack length at constant displacement. For this purpose, combining

Eqs. (6) and (7) with the basic definition of J gives

Ay 2U 190
—_— = — (11)
By + (a/W) bB B 3da | A = const. '

where, in accordance with common usage, U and 4 are synonymous. After using

Eq. (8) and the substitutions
b=W—a - (12)

and

- =
I
8




" and noting that U varies only with b if A is held constant, Eq. (11) can be con-

verted to the ordinatry differential equation

-

v 24,  dx

T "I~z = ° (14)

By direct integration, the solution to Eq.: (14) is

U 1 — (a/W) \? [By + (ag/W)\? | '
= . }+, A = const. ' - (15)
Ug 1 — (ay/W) By + (a/W) :

where Uy is the value of U at any reference value of crack size, denoted by ag.
The predictions of Eq. (15) can be compared with experiment by first noting
that the ratio of energies for two specimens of different crack lengths is inde-

pendent of displacement. Therefore, at any displacement,

P _U_ o ' . :
Py U : : (16).

From Eq. (16) it follows. that the variation of elastic compliance with crack size

can be estimated from

— = — , A = const.- | . | (7)

The'predictions of Eq. (17) are compared with the boundafy collocation values

:obtained by Newman,'l'6 in Fig. 2, using Newman's elastic compliance values at

a/W = 0.6 as reference values. From Fig. 2 it can be seen that using By = 3.6

produces a very close estimate of Newman's front face crack mouth opening com-

-pliance curve, while By = 2.0 produces a more accurate estimate of the load line

compliancé curve than'does By = 3.6. Equation (16) has also been applied in the
elastic-plastic range to the series of load-displacement curves for ten blunt
notched compact specimens of,HY—le steel obtained by Landes, Walker and Clarkel"
shown in Fig. 3. Using By = 3.5, the predicted loads at A = 2 mm (0.08 in.)

are slightly high for a/W < 0.6, the load for which was used as the reference
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* value, but they are extremely good for a/W > 0.6. Since all of the éomparisons
made thus far indicate that Eqs. (7) and (15) are good approximations, the use
‘of Eq. (7) in a method for estimating the extent of stable crack growth will now

‘be examined.

SOLUTIONS FOR THE EFFECTIVE CRACK LENGTH

At first glance, a method for reconciling the effective crack length concept
of McCabe and Landes!! with the érea based J formulas of Andrews® and Landes et
al.l"% is not obvious.. Nevertheless, it is possible to equate the J values calcu-
lated by the two methods, and thus obtain a solution for the effective crack length.

By this approach, for the compact specimen.

J (BW) . 2A : . PA

Ay [(Bo + (a/W)1[1 — (a/W)}  [By + (a, /W11 — (ay/W)] '

where aq, is the effective crack length. The expression for effective crack- length

obtained by rearranging Eq. (18) -is

a, 1 PA a a ' '
- = — { (BO —1)2—4 — BO + =1 —— —BO - (BO -1); . (19)
Vo2 24 W W) :

If it is assumed that the ratio PA/4 is the same whether based on front face or

load line displacement, then ae/W can be determined before the ratio of the two
displacements is known. '

To be considered ﬁsefﬁl, Eq. (19) must give estimates of effective crack
length that agree with certain logical restrictions. These are that (1) for a
completely linear load-displacement curve, the effective crack length should be
the actual crack length, a; (2) for large displacements at limit load, the ef-
fective crack length éhould‘not exceed the distance to the point of stress re-
versal; and (3) the effective crack length should not exceed the width of the
specimen under any conditions. From Eq. (18) it is easily seen that requirement

(1) is satisfied. To determine if requirement (2) is satisfied, Eq. (19) needs
. § -
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to be evaluated for the case of 4 = PA, and the result compared with the distance

to the point of stress reversal at limit load which, based on Fig. 4, is given by

t a (1 + o) a
-—= =4 — -—=1, ‘ (20)
Woow 2 W

where a is given by Eq. (3). The results are given in Table 1 which indicates

that for an infinite displacement at limit load, the effective crack tip approaches

the neutral axis, but remains within the tensile yielding zone. For either

a/W = 1, which is the extreme limit fof.a(very deep érack; or PA/2A = 0, which is

the extreme limit for a point on the load—displacemenﬁ curve well past maximum

load,qu. (19) reduces to ae/W = 1, indicating that requirement (3) is satisfied.
The solution for the effective crack length in a notched beam is even more

straightforward. Combining the area based? and the effective crack length11 equa-

tions for J gives
2A _ PA ' ‘
S =B D5 | . (21)

where b, is the effective ligament length. From Eq. (21) it follows that
_—= . ) , (22)

For elastic behavior, PA/24 = 1 and by, = b. For an infinite displacement at
limit load, PA/2A = 1/2 and b, = 1/2 b. At the end of the descending branch of
the load-displacement curve, PA/24 = 0 and by = 0. Thus requirements (1), (2),

and (3>'are all satisfied.

DETERMINATION OF THE PHYSICAL INCREASE IN CRACK SIZE

The effective crack length has two components, as shown in Fig. 5. The com-

ponent of main interest is the physical crack length, denoted by « The re-

b

mainder of the effective crack length is the intensely yielded but still intact
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" zone of length p. By utilizing the familiar although approximate assumption that
the profile of each side of the effective créck surface remains a straight line,

it follows from Fig. 5 that for a compact specimen

(23)

o] ©
i

Ay

where § is the crack opening displacement at the actual physical crack tip. From

Eq. (23) it follows that

o} 8 a, 2 ’
won\w Tw)e | (24)

T
-~

’ ' For a notched beam under threeApoint bend loading, neglecting arm curvature,
(25)

where S is the sﬁan and A is the displacement of the load. For a standard speci-

men with § = 4W,
§ A ' o
so that

- (27)

©
]
o
R

The value of § in Eqs. (24) and (27) will be determined here by using the

relation between J and § proposed by Wells,1”’ namely
J=may s, _ ' (28)

where m is the crack tip triaxial constraint factor. However, once stable crack

growth has occurred, it is necessary to distinguish between the values of crack




11
* opening displacement and constraint factor that exist at the actual advancing
craég tip from those that pertain to the original fatigue crack tip (see Fig. 5).
The former values will be denoted here by the symbols § and m, and the latter
values by 6y and my. Values of mg have been estimated by several different in-
vestigators. Boyle and Wells!® found that, for plane strain, 1.7 <mg < 2.1,
- by analyzing cracked specimehs of several different geometries in plane strain.
Based on other analyses, Harrison!® found . that my = 1.3 for plane -stress and
mg = 1.7 for plane strain. Finally, on the basis of experimental data, Dawes?20
found that 1.6 < mpy < 2.1. All of the above values of my were determined from

" the equation

55 : : (29)

However, a different pfoblem exists here because m must be determined before s
is known. Consequently, m must be determined from its bésic definition as the
ratio of the actual crack tip stress to the yield stress. Therefore, it is neces-
sary to have a relationship between toughness ahd the maximum crack tip stress.
The relationship to be used here is one that has already been shown to relate
plane strain ductility to fracture toughness, for A533-B steel,?1 up to be'
values approaching 154 MN'm_3/2 (140 ksi Vin.). According to this relationship,

Kz, = Viog VERoy (652 —1) | (30)

where po'is the effective root radius, HOY is the slope.of the strain hardening
branch of the stress-strain curve, and s is the maximum crack tip strain. For
Py = 0.05 mm (0.002 in.), H = 3, o, = 483 MPa (70 ksi) and E = 20.68 x 10" MPa
(3 x 107 psi), Eq. (30) . can be rearranged to read

. Ko\

I .

s =2 W <? +-743> R ' (31)
220 '
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" where Kﬁb

lated from the value of J, using

is expressed in MN'm_3/2. For inelastic conditions, K7, can be cailcu-

3.

K, = VEJ . o ' 4 (32)

. Furthermore, for the assumed case of linear strain hardening, .
m=1+ Hs . ‘ _ | (33)
Finally, once m is knbwn, 8§ can be calculated from the equation

J
ch

(34)

For the compact specimen, once the values of § and p are determined, the

amount of stable crack extension can be calculated from

m:w&—f———.: S | ~(35)
WoowW W - ‘ 3

In the case of compact specimen data consisting of load and crack mouth rather
than load line displacement values, the ratio of the two displacements must be
known in order to calculate J. If this ratio is assumed to be'approximately

constant, then it is given by

AL (ae/W) . ) . i
— = . - (36)
Ag (ae/W)’+ (z/W)
Consequently, the value of J can be calculated from
A AAL '
J = Ly, g : ' (37)
Ag Bb ? ’ )

where Ag is the area under the load versus front face clip gage displacement

curve.
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known. From Fig. 5,

X

Ag, 8
a, Gg~a’
and
mo 66 =mé
Hence it follows, by using Eqs. (34), (38), and (39), that
1 J
'.s o = (@/ii) | AN
_ N s T =
. . ‘(ae/W) g Ag
Correspondingly, for the notchedAbeam,
b,
(ag —a) = ba, = b{1 ——],
and

Aa = bay, —p .
Also, since, from Fig. 5,

Sp

JiYe S

8
e e

combining Egs. (39) and (43) gives

For checking purposes, the value of mg can be calculated, once'AL/Ag-is

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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TRIAL CALCULATIONS

The foregoing equations were applied to several sets of experimental data
for pressure vessel steels, and the results were compared for reasonableness
with an available J — Aq resistance curve for A533-B steel.2?2 The specimens

chosen for analysis were those for which the middle region of the crack advanced

-in the plane of the original fatigue precrack, and for which the load-displace-

ment diagram showed no sudden load drops. The calculations were each made for
the maximum load point of a test record. . Specimen types'and sizes rangéd from
precracked Chérpy V;Notch sﬁecimens to .1T compact specimens. All the sﬁecimens
were loaded monotonically to a displacement past maximum load. The data analyzed
are listed in Tables 2 and 3, and the results are plotted in Fig. 6.

Nine of the specimens anélyzed were precracked Charpy V-Notch specimens.
These data are listed in Table 2. Of these, three were from the V-7B weld fébair
region of HSST Program V-8 prolongation,23 and six were from base plate material
in HSST weldment W57.2% AEleVen of the specimens analyzed were compact specimens.
These data are listed in Table 3. Of these, two weré Charpy thickness compact

specimens of A537, class 1 steel; seven were 1T specimens of the same material;

. one was a 1T specimen of A537, class 2 steel; and one was a 1T specimen of A508,

_class 1 steel.?5

As shown in Fig. 6, the calculated results lie quite close to the J — Aa
resistance curve for A533, grade B, class 1 steel.2?2 This indicates both the
reasonableness of the analysis method despite its several approximations, and the

probable similarity of the resistance curves for séveral different pressure ves-

‘sel steels of similar yield strength. It is especially notéworthy that the values

plotted in Fig. 6 were obtained from single specimen test data, without any .
auxiliary crack length measurements, experimental data or analyses being required.

In fact, stable crack growth determinations were not even planned when the origi-

" nal tests were performed. Most of the compact specimens were tested with load

line displacement gages, but two of them (the Charpy thickness compact specimens)
had only front face clip'gageé.

All of the speciﬁens analyzed here were loaded monotonically to displace-
ﬁents beyond their maximum load points. Preliminary analysis of data from a
single specimen that underwent cyclic unloading and reloading for crack length

measurements indicates that such cycling may affect the crack tip constraint factor,
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because of reversed yielding near the crack tip. While this may create a problem
in cbmparing calculated results for unloading compliance specimens, it would not

be involved in the analysis of monotonically loaded specimens.

DISCUSSION

~Although the method of data analysis developed here contains several ap-
proximations, it is important to note that most of the approximations were de-
veloped by others, and have been in use separately for some time. The equation
for J fdr the compact' specimen has the same form as the equation proposed by-
AndrewS,8 and it agrees numerically with the recent proposal of Clarke and
Landes.l5 The geometric treatment of the crack profile as a pair of straight
"lines intersecting at a hinge point, and the relation between J and the crack
opening displacement, both agree with accepted practice in the UK. 17,20 The esti-
mation of an effectlve crack length is taken from the recent work of McCabe and

Landes,11

and the assumption of a relation between ductility and fracture tough-
ness agrees in principle with the recent EPRI sponsored work of Lawrence Liver-
more LaboratOry26 and Fracture Control Corporation.27'.Therefore,‘although it
contains several different approximations, the.method‘proposed here for estimating
stable crack growth from upper shelf toughness data is consistent with several
other accepted approaches and, perhaps most important of all, it is simple, both

analytically and experimentally.
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. Table 1. Asymptotic values of effective crack

length at infinite displacemént for compact
specimens at limit load

ae/W
a/W t/W
. By = 3.5 By = 2.0
0.3 0.682 0.702 . 0.738
0.5 0.766 0.775 0.791
0.7

0.855 0.858 : 0.863




Table 2. Precracked Charpy V-notch specimen data used for stable crack growth estimates*

B

@

Material . V-7B weld V-7B weld V-7B weld W57-B.P. W57-B.P. W57-B.P. W57-B.P. W57-B.P. W57-B.P.
Spec. No. V7W-4 V7W-5 Viw-17 57V=5 57V-6 57vV-7 57V-8 57V-35 57V-36
Test temp.,.°F 150 200 200 100 200 300 0 200 - 0
Oy, ksi 70 70 70 66 - 63 63 70 63 70
W? in. 0.3920 - 0.3934 0.3930 0.3930 0.3944 0. 3941 0.3940 0.3942 . 0.3940 -
a, in. 0.2054 0.1977 0.2160 0.2130 0.2136 0.2278 0.2053 0.2132 0.2182
b, in. ©-0.1866 0.1957 0.1770 0.1800 0.1808 © 0.1663 0.1887 0.1810 0.1758
a/W 0.5240 0.5025 0.5496 0.5420. 0.5416 '0.5780 0.5211 0.5408 0.5538
P, 1b 1380 1560 1100 1220 1170 = - 975 1410 1150 1210
A, in. 0.078 0.083 - 0.074 0.079 0.067 0.062 0.079 0.072 0.065
A, in.-1b 83.04 111.96 69.36 81.36 65.28 50.28 94.68 71.16 66.24
J, in.-1b/in.2 2270.5 2908.5 1994.2 2300.3 1830.9 1534.4 2546.9 1994.7 1912.6
Kro» ksi vin. 260.99 295.39 244,59 262.69  234.37 . 214.55 276.42 244,62 239.54%
s 1.6701 1.8141 1.5977 1.6775 1.5511 1.4577 1.7360 1.5978 1.5748
m 6.0103 6.4422 5.7931 6.0325 5.6534° 5.3732 6.2079 5.7934 5.7245
§, in. 0.0054 0.0064 0.0049 0.0058 0.0051 - 0.0045 0.0059 0.0055 0.0048
p, in. 0.0271 0.0306 0.0261 0.0287 0.0303 0.0288 0.0292 0.0299 0.0289
bgo/b 0.6481 0.5782 0.5868 0.5923 0.6004 -0.6011 0.5882 0.5818 0.5937
bag, in. 0.0657 0.0825 0.0731 0.0734 -0.0722 0.0663 0.0777 0.0757 0.0714
Aa, in. 0.0385 0.0520 0.0470 0..0446 0.0420 0.0375 0.0485 0.0458 0.0425
mg 2.4826 2.3860 2.0687 2.3626 2.3680 2.3339 2.3355 2.2900 2.3136

*Conversions:

°C = 5/9 (°F — 32);

1 ksi = 6.8948 MPa;

1L in. = 25.4 mm;

1 1b = 4.4482 N;

1 in.-1b = 0.1130 J;

1 in.-1b/in.% = 0.17513 KJ-m~2;

1 ksi Yin. = 1.0988 MN-m~3/2,



o

Table 3. Compact specimen data used for stable crack growth estimates (By = 3.5)% .,

Material A508-1 A537-1 A537-1 A537-1 AS537-1 A537-1 A537-1 A537-1 A537-2 A537-1 A537-1
Spec. No. 02T3F1 02C1P1 01C3P1 02COPL 01C6P2 O0lE7P2 01C3P2 01C4P2 O01E4P4 02A4P1 03A6P1
Test temp., °F 71.6 64.4 212 32 32 77 64.4 212 32 167 302
oy, ksi 50.7 52.2 56.5 52.2 55.8 58.7 54.8 52.9 60.0 50 45
B, in. 0.9972 1.0003 1.0004 1.0003 1.0005 0.9996 1.0004 1.0004 1.0003 0.3944 0.3946
W, in. 1.9964 2.000 2.0008 2.0013 2.0020 2.0021 2.0013 2.0024 2.0045 0.7896 0.7887
a, in. 1.0764 1.0839 1.0819 1.0668 1.0490 1.0345 '1.0468 1.0506 1.0477 0.431 0.450
b, in. 0.9200 0.9161 0.9189 0.9345 0.9530 0.9676 0.9545° 0.9518 .0.9568 0.359 0.339
2z, in. 0 - 0 0 0 0 -0 0 0 0 0.2645 0.2631
a/W 0.5392 0.5420 0.5407 0.5331 0.5240 0.5167 0.5231 0.5247 0.5227 0.5458 0.5706
z/W - 0 0 o . 0 0 0 .0 0 0 0.3350 0.3336
P, 1b 12,525 13,000 12,000 13,350 15,000 15,500 14,900 13,700 16,400 2055 1670
A,, in. ' . ' : 0.1800 0.1532
Ay, in. ©0.2153 0.1698 0.1885 0.1909 0.1813 0.1714 0.1783 0.1987 0.1961
AT, in.-1b 2339 1899.4 1937.2 2212.7 2303.5 2258.4 2262.7 2347.9 -2732.8 322.6. 220.1
ag/W 0.7474 0.7467 - 0.7447 0.7445 0.7329 0.7301 0.7340 0.7384  0.7331 0.7522 0.7616
Ar/A, 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 - 0.6919 0.6954
J, in.-1b/in.2 5681 4615 4694 5282 5403 5232 5301 5514 6388 - 3511 2532
Kr,, ksi /in. 412.8 372.1 375.2 398.1 402.6 396.2 398.8 406.7 437.8 324.5 275.6
s ©2.240 2.10 2.11 2.19 2.21 - 2.18 2.19 2.22 2.32 1.928 1.73
m 7.72 7.31 7.34 7.57 7.62 7.55 7.58 7.66 7.96 6.785 6.20
§, in. 0.0145 0.0121 0.0113 0.0134 0.0127 0.0118 0.0128 0.0136 0.0134 0.0103 0,0091
/W 0.0504 0.0532 0.0447 0.0521 0.0514 0.0503 0.0525 0.0506° 0.0500 .0.0625 0.0649
Aa, in. 0.315 0.303 0.319 0.319 0.315 0.327 0.317 0.327 0.321 0.114 0.099
mo 1.87 1.90 ~ 1.61 1.87 1.87 1.78 1.89 1.81 1.89 2.05 2.11

*Conversions:

°c = 5/9 (°F — 32);

in. =

= e

T4 is the area under the measured load—displacemént curve.

ksi = 6.8948 MPa;
25.4 mm;
1b - 4.4482 N;°
in.-1b = 0.1130 J;
in.-1b/in.2 = 0.17513 KJ-m~2;
ksi vin. = 1.0988 MN-m~3/2.

is Ag, then the area listed is Ag.

If the measured displacement



FIGURE CAPTIONS

= Fig. 1. Graphical determination of coefficients in the approximate’
expression for J for a compact specimen.

Fig. 2. Comparison between approximate and theoretical boundary colloca-
tion values of the non-dimensional compliances, at the crack mouth and load
" line, for a compact specimen. )

Fig. 3. Estimated loads at a displacement of 2 mm (0.08 in.) for a
series of 22.9 mm (0.90 in.) thick, blunt notched 1T profile compact specimens
of HY 130 steel with various a/W ratios (experimental data from Ref. 14).

Fig. 4. Geometric definitions for the compaét specimen at limit load.

Fig. 5. Dimensions characterizing the crack profile model used for
analysis.

Fig. 6. Comparison of calculated values of J and Aa at maximum load for
several monotonically loaded precracked Charpy V-Notch and compact specimens '’
.of various pressure vessel steels, with a reference curve for A533, grade B,
class 1 steel. .
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