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INTRODUCTION

This document is the Final Grant Report required by the U.S. Department of Energy at
the conclusion of a Research Grant. It summarizes the work done in the last contract period.
Previous work has been described in Annual Performance Reports.

The work carried on under this Research Grant and not included in previous progress and

annual reports includes two distinct items:

One work is a study of the nonlocal high beta microstability of the FRC (Field Reversed
Configuration), which we began sometime ago. This study identified the limiting beta
(=4mnT/B? for the mode to remain unstable. The study found that as beta increases, the
wavenumbers (k,, K,) for maximum growth changes, so that the limiting beta is not the one
found by fixing (k,, K,) and increasing beta. It also appears that the criterion for nonlocal terms
to influence the result, as beta increases, is substantially weaker than might have been thought.
We identify the parameter that determines this effect. This study is presented as Appendix 1 of
this report.

The second study is of the effect of collisions on the lower hybrid drift instability. The
result is that the effect of collisions is substantially more important than might have been
expected. It might have been expected that since in the absence of collisions the growth rate o
= w = w/(l + 4wnmc?/B%)", collisions would damp the wave when » > W, with » a

collision frequency. However, the result we get is that

where (/D),,, = w,/(1 + 47nmc*/B%)"?; in the collisionless case, the largest growth Q/D is
achieved by minimizing D, with the appropriate choice of wave number k. But now minimizing

D not only maximizes {2/D, but also maximizes »/D, and stability is reached when

v > ,

rather than » > /D. The results of this study, which calculates Q, are derived in Appendix 2.
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These two studies are in different stages of completion. The second is in fact complete,
and could be published virtually as is, although it would benefit from a small amount of
numerical analysis. The first study is far richer than the second, in that it includes a variety of
regimes and effects. The formulation presented in it could be used as the basis for a series of
papers, although in its present stage it is not ready for publication. It is unfortunate, but the

level of the research Grant, and its untimely end, did not permit further progress on that study.
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1. INTRODUCTION

Drift waves are an important part of transport theory. They include,

among others,

- Eta-i modes (d 1n T./d 1n n,)
- Trapped particle instabilities

- Collisioniess and dissipative drift instabilities.

Collisionless and dissipative drift waves, driven by gradients in the
plasma density and/or temperatures, are believed to dominate or at least
influence the transport properties of a variety of plasma confinement devices.'?
In the present work, with particular reference to the Field Reversed
Configuration (FRC),*® we develop a nonlocal theory of these waves in an
arbitrary B (= plasma pressure/magnetic pressure) plasma, including the effect
of perturbed flow in the direction of the plasma density.

It is well known that finite 8 has a strong effect on the structure and
stability of drift waves; "finite" is here defined by 8 > ﬁc with BC the value
of B at which the # = 0 results are significantly altered. Previous studies have
shown that.ﬁh is strongly mode-specific. For modes already studied, the variety

of BC included

1

MHD interchange: Bc ~1
- Electrostatic universal instability: ﬁk ~ (rp/Lp)2
- Ion cyclotron drift wave: Bh ~ (me/mi)l/2

- Lower hybrid drift wave: BC ~ (aLi/rp)

where rp = plasma radius, Lp = plasma length, and = ion gyroradius.
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The present work is a natural extension of previous calculations which
were limited to B =1 in a local approximation;®’ the high B nature of the FRC
makes a proper treatment of high B effects vital to an understanding of that
device. The major result of this study is a comprehensive dispersion equation
for the low frequency stabi]fty FRC, which shows clearly how the universal and
dissipative drift wave instabilities evolve in wavenumber as B increases. A
major finding from this is that the effect of finite B begins to dominate long

before 8 — 1; the expansion parameter is Bf(k, a., K, w, Ln) where f is a

i
function which can be substantially greater than 1, depending on the wavenumber
of the wave parallel to the magnetic field (K), the wavenumber parallel to the
particle drifts (k), the wave frequency (w), the strength of the density gradient
(Ln), and the ion gyroradius (ai). The fact that finite B effects can onset for
quite small B make this study also applicable to confinement schemes such as
tokamak in which g ~ 1-10%, in addition to the natural application to the FRC.

A second result from the study was the surprising finding that including
finite B could result in a compressional flow in the direction of the density
gradient, and could also generate a perturbed electric field in that direction,
which changes the perturbed orbits. These finite B drift effects prove to be
Tower order in kai than the g = 0 drift effects. Thus, finite B effects set in
for B << 1 for modes with kai << 1.

In this report we derive and quantify these results. Section 2 discusses
the elements which parameterize drift waves, and cause deviation from the results
obtained in the original rather primitive calculations of drift instabilities.®
In Section 3 we develop the nonlocal, finite B dispersion equation for drift
waves including arbitrary polarization, identifying a new critical parameter

involving Etho’ and in Appendix A we give details of the derivation. 1In




Section 4 we solve the equations developed in Section 3 in the limit kX = EX =

0 and B arbitrary, extending and connecting previous specialized results.®® We

leave the kx #0, EX # 0 exploration of the formulation documented in Section 3

for other researchers.




2. [ELEMENTS WHICH PARAMETRIZE DRIFT WAVE BEHAVIOR

There are a number of plasma parameters and phenomena which can drive or

alter drift wave instabilities. Despite the extensive literature, not all of

these parameters and phenomena have been explored. The list of effects includes

the following:

Plasma Gradient Drifts: Drifts proportional to VnT are responsible for

virtually all drift wave activity and are included in all theories.

Magnetic Gradient Drifts: These include magnetic curvature effects.
They have been modelled in a Tlimited number of examples as a

pseudogravity.
Finite Larmor Radius Effects: In many cases, drift wave growth is of
order (kai)z. FLR effects are routinely included in drift wave

calculations.

Finite Collisionality: Particle collisions allow cross field transport,

but also provide a dissipation which can drive negative energy waves

unstable; they are included in calculations of dissipative drift waves.

Finite Beta Effects: These have been largely ignored, with the notable

exception of Ref. 6, which included the electromagnetic component of the

drift wave introduced by finite gB. A subsequent calculation’ has

questioned the existence of drift instability in the finite B regime.




The present study obtains a complete description of the transition from

B = 0 drift instability to higher £ instability.

Nonlocal Effects: In this category we combine effects which operate in
the direction of the plasma gradients. With few exceptions,'® previous
drift wave theories have been local, in the sense that variations of the
perturbed quantities with x, where n = n(x), were neglected, along with

perturbed fields EX. In the local zero B treatments, the perturbed

fields were E e”‘ye‘KZ ikyeiKz' However, finite B requires that

h
perturbed magnetic fields be retained. Specifically, finite £ can

and Eze

introduce an EX and Bz’ through the electromagnetic equations dBZ/dt =

(dEX/dy - dEy/dx)c. In the present study we keep these effects, and show

that there is a parameter range in which they can be significant.




3. NONLOCAL, FINITE B, ARBITRARY POLARIZATION DRIFT WAVES

In this section we derive a general expression for drift waves which
retains the effects of finite B, variations in x, where np = np(x), and electric
fields also in the x-direction. The details of the derivation of these

expressions are given in Appendix A.
We consider the slab plasma as shown in Figure 1, where the plasma is
infinite and uniform in the z-y plane, B = BZQ is the magnetic field, and n is

the plasma density. The plasma can be described by the distribution function

i} 2
fo = Ty (vys Vi) a(n)

nEvy-fBzdx

B (x)
n{x) z

/ x

Figure 1. Plasma geometry for drift waves.




A perturbation JE = E(x)eikyeiKZei“m, (iw/c)éB = -VXOE is applied to the plasma

and the response calculated from the Vlasov and Maxwell equations,

. q iker’ v/ _x dB, | ,
o J dt e (E+ —2) - V,f, , (1)

V-E=4r3q, [ f,dv : (2)
a la
V x 6B = Z a9, f v dv , (x and z components) (3)

iw _
E—JB— VxE N

where the sums are over particle species a, and r’, v’ are the particle orbits
in the unperturbed magnetic field. Making a small Larmor radius approximation

(ai < Ln = (dIn n/dx)'l) the integrand of (1) can be expanded
E(x’) = E(x) + 72 (x - X) + 5

2(x -0, (4)

and the orbit integrals carried out in the usual way. The technique for

obtaining a dispersion relation D{w,k) = 0 from Eqs. (1)-(4) has been used for

SO many _years8 that its details may have been forgotten. For completeness,




Appendix A derives D(w,k) = 0 for this problem in sufficient detail to allow
future researchers to reproduce and expand our results.

The result, after much algebra, is

' 2 2.2
J°E k“asw._ . dE
2 o Yy ici o ]1 y
% U)o " Xw e -5 @ o)) -

w

T X
{kZAS+k2a§ (1+a}“f) -‘i)(-[nT—e]/i”[we & (2+we)]} €, -
{KZAS_ [ s asw)a -‘J)] W, +

w o w w

X
[we ; E“f(— (2 + we)] (1-%) ;% we} E, 1% , (5)

| et

2.2 : 2,2,2.2
k"asw. . dE k“AsK"c o T
_i_qw(]_@) y ., 0 - e“_)f(l.,__ﬁ)(l_“_)_(_) E =
X w e w dx wz X w Ti w y

kA2 22 o, I .
O L iw a-Dp - arur
wz w2 kZ dx?' e w w e

o, A W2
W+ ) - (-2 1

1+ @ +we)]}§l-:z , (6)




of

= k l_._o i i 3 - ° =3

where of = » fo 3% ° wa1s defined below in Egqs. (9)-(10), and X =1 + Ea
o

Ba (1+u7)a (1+Wa).

The perturbed field EX has been expressed in terms of Ey, EZ by

E

z)_l(uw_?_ﬁ_{[&f wX )Lngx] Ey

w

A
- W, (1 -9 ¢ Ez} . (7)

Clearly, Ex is not necessarily negligible for finite small B because the
parameter which determines the generation of Ex from finite B is not B itself,

but

where kLn = kai(Ln/ai) can be a small parameter even when Ln > a;.

There 1is a variety of information contained in Egs. (5)-(7). One
possibility is to solve the differential equation (4th order) as an eigenvalue
problem for w. This requires a specific profile n(x), B(x). We do not attempt
this solution, on the grounds that the result would be specific to the FRC and
probably not worth the time such a device-specific calculation would require.

Two more modest efforts are to:




° Delete all 9/0x and EX effects and find uduf, B, v, kai, KLn).
° Write 9/9x = ikx and find the effect of Ex and harmonic spatial

structure in the x-direction.

We discuss these in the next two sections.

10




4. DRIFT WAVES FOR ARBITRARY 8; Ex ='kx =0

Setting EX = kX = 0, Egs. (5)-(6) reduce to (v is the electron collision

frequency),

=+ 1) W, , (8)

where o is the ion drift frequency and the W’s are the limit as € - 0 of

?

1 7 ve™V d
”e='57£°v+[(w-1v);i<ve]-16 ) (9)

1 T 'Vzd

ve Vv
wi=_r]~;7_‘£°V+(w/Kv1.)-ie ’ (10)

with Vo and Vs the thermal velocities.
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In the 1imit =0, v=20, and Kvi < w < Kve, Eq. (8) gives

w=u+ (K%MW) W

- (1 - 2%l - i Vi 2R £ /k,) , (11)

which is the familiar collisionless branch of the drift wave instability

spectrum. When 8 =0, v0, w> Kve, Eq. (8) gives

w = + 4k%a? (‘g(v—)2 W - i), (12)
e

1

which is the drift dissipative branch of the drift wave spectrum. So Eq. (8)
extends both the collisionless and dissipative drift waves into the finite B
regime.

We first consider the collisionless drift instability. Rewriting Eq. (8)

gives




This shows that the appropriate "finite-8" parameter is kzaﬁﬁ/Kanz. When this

parameter is small, Eq. (13) becomes

2k2a:1.Z + i 218 a?u.):(/Kve
w=u" 1 - T : (14)
2k ai
1-—5—8
2, 2
i KL, i

This shows the path that the drift instability follows in k2a§ and-Kan2

parameter space as S increases. From Eq. (13) we see further that as kzaEB/Kan2
increases, w/a]( < 1 extends the B range of the collisionless drift instability.

Using a numerical method developed by N. T. Gladd,’® we have solved Eq.

(13) directly for increasing values of 8. Figure 2 shows the development of the

collisionless drift instability with 8. Equation (13) essentially gives w/af( in

2

terms of three parameters, kzai,

KZan, B. In reducing the result to Imw(B),
we varied kai and KLn as well as £ in a manner consistent with the idea that
w/Kvi > 1 and wi < 2k2a§ would constrain these parameters. Figure 2 is a
qualitative representation of the maximum value of Inwi for a given 8. When kai
>0.7 or KLn > 0.233, the collisionless drift instability disappeared for all 8.

Next we turn to the dissipative drift wave (DDW) branch. Here

2.2
2 . k~ajs -1
w 2.2 u/x w iv i W W
— =1+ 4k"a; |7—| (= - =) 1-———-,8—(——+1)} , (15)
af‘{ 1 [KVJ wX wx { KZLﬁ wx wx

where (u)( - 1'v)/Kve > 1. This constraint is a severe limit on k2a§B/_K2Ln2 =

(a)(/KvG_,)(M/m)l/2 , and finite B quickly forces the mode to w << « or to the

13




branch ayuf = -1, both of which are stable. As a practical matter, this means

that the DDW would appear unstable only for 8 < (me/mi). However, as £ increases

the frequency cqﬂux decreases, until (w - iv)/Kve < 1. This mode remains

unstable, with

w
o ﬁkzaf k2a§,3 L2

Kanz 2 M KZanu)‘z ka, =
KL \/" l ° (16)

Figure 3 shows the evolution of the DDW from the £ = 0 1imit to larger B8, as

given by Eq. (16). This drift wave branch is discussed in Ref. 8.




0.2 0.25

Figure 3. w/w/ vs. B for the DDW.
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5. NONLOCAL EFFECTS AT ## 0

When the Ex and kx terms are retained in the general derivation of high
B drift waves, an interesting feature is apparent from Eqs. (15)-(16). A new

parameter,

Wey

o Vel

competes with terms of order 1. While we have not yet explored the consequence
of this new parameter, the physics of its appearance is clear, as follows.

The perturbed charge density in the drift wave is determined by the
perturbed velocities,

dn

. _ o .
ilw + kVD) ny = v nOV )

1x dx (18)

1

Because for low frequency waves le is the same for electrons and ions to order

= . 2.2
I and dnoe/dx = dnoi/dx, the RHS of Eq. (17) 1is o(k ai) when only Ey
perturbations are included. The kX and EX terms produce a 6BZ, which gives a VD

X 6BZ contribution to 6VX which is opposite for electrons and ions. This leads

to
kv
d ,d .
T nv-eV, =2 o+ -2 (& E - ikE) ,
ie 0 1 i Y w ‘dx "y X
2.2 .
sy . dno i k aiEyc \ iw EKE X ke EXVd . 1kXVd cEy
ie X dx B w, B w B0 W, B

where Ex ~ (B/kLn)Ey = B(ai/Ln)(l/ka].)Ey shows that the contributions from kx’

EX can be substantial even for g << 1.

16




REFERENCES

1. P. C. Liewer, Nucl. Fusion 25, 543 (1985).

2. R. C. Davidson and N. A. Krall, Nucl. Fusion 17, 1313 (1977).

3. W. T. Armstrong, R. K. Linford, J. Lipson, D. A. Platts, and E. G.
Sherwood, Phys. Fluids 24, 2068 (1981).

4. M. Tuszewski, Nucl. Fusion 28, 2033 (1988).

5. S. Hamasaki and N. A. Krall, in IEEE Conf. on Plasma Science (IEEE,
Montreal, 1979), p. 143. |

6. N. A. Krall, Phys. Fluids 30, 878 (1987).

7. V. Farengo (private communication).

8. N. A. Krall, in "Advances in Plasma Physics," Vol. 1 (Interscience, New
Yoirk, 1968), p. 153.

9. A. B. Mikhailovskii, in "Reviews of Plasma Physics," Vol. 1 (Consultants
Bureau, New York, 1967), p. 159.

10. N. T. Gladd (private communication).

17




APPENDIX A. DERIVATION OF THE DISPERSION EQUATION

For a highly elongated FRC, we assume that the stability problem can be calculated in
slab geometry. Therefore, we consider an equilibrium in which an equilibrium distribution of
plasma particles is described by a function of space and velocity f, (v,x) confined by electric and
magnetic fields B,(x), E,(x). If this distribution is perturbed by a field E,(x) exp (iky + iKz +
iwt), B;(x) exp (iky + iKz + iwt) the linear plasma response f,(v, x, y, z) for a plasma species

of charge q and mass m is determined by the Vlasov equation,

of, vt q g v B, v
_— + V. + L + .
ot Lom e C A
x B n
= - _‘i (El + v 1) . vao - Vfl + me 1 s (AI)
m c n,

where the effect of collisions has been modelled by a collision operator

of, n,
—| =-vf+vf — ,
ot coll no

111=fd3v’f1 ,




with f, a Maxwellian distribution. This simple collision term at least conserves density. The
plasma response sets up currents and charges which must be self-consistent with E; and B,

through Maxwell’s equations

V -E, = 4re (n; - n,) , (A2)
JE
VxB, - 1 —a—tl s (nev, - nev), (A3)
c c
oB
VxE --+21 | (A4)
c ot

where i and e refer to ions and electrons. In this Appendix we give the details of the derivation
of the dispersion equation. These details are all contained in earlier papers, and are repeated

here simply for the convenience of the reader.

Al. CHOICE OF EQUILIBRIUM

The equilibrium distribution function can be made up of any function of the constants of

the motion,

H=v2——2—9—fE0dx , p=v +fwcdx , (AS)
m
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where w, = qB/mc and E, is the equilibrium electric field. We assume that plasma wavelengths
and gyroradius are small compared with the scale length of the equilibrium, and so expand §

w, dx = w, (X)X - X,), | E, dx = E(x))x - x,). For example, a local equilibrium which
includes a density gradient, a diamagnetic drift due to the density gradient, and a drift due to

the electric field would be

mv? 9EX
_ 3p - MvD o, 2o v
f =n, (%) e T T 1+é [x + 6":) , (A6)
with
n(x)=n, , (AT)
dn, =1 le + qE, ’ (AB)
dx ° 2T
1 € T T 1dn Eg
V - . d3 [ ° R A9
y nofv"f"V o, m mw, o dx B (49

Most of the analysis in this Appendix does not require the simplified form (A6)-(A9), but will

use an arbitrary f, = f,(H,p).
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A2, PERTURBED WAVE VECTORS

For low B, the low frequency stability problem is dominated by electrostatic waves, ¢
= - V¢, with wave vectors E,, E, in the direction of the drift and the B-field. The FRC has
high B8, so we keep magnetic perturbations. If the study is nonlocal, i.e., d¢/dx # 0, electric
fields E, in the direction of the density gradient also contribute. Therefore, we keep a full set

of field vectors

E = E)y +Ez2+ EX , (A10)

which we write, in order to stay in contact with the low § work, as

E =ik¢ (Al1)

E, =iK¢ + A, | (A12)

s (A13)
dx

The associated perturbed magnetic fields are obtained from Faraday’s law,




9B, =ikr, . (A16)

A3. CHOICE OF MAXWELL’S EQUATIONS

Using Eq. (A4) to eliminate B, in terms of E;, Eqs. (A2) and (A3) give four equations
for the three wave vectors E,, E;, E,. This gives us a choice as to which set of three we use
in the calculation. A good choice would be one in which there is a minimum number of large
electron terms which cancel large ion terms, so that the j. and j; don’t have to be calculated to

higher order to take account of the cancellation. The set we choose is

V -E = 4me (n, - n), , {(A17)
3E

(VxB), = =2 @y, - @Vl (a19)
3E

(Vx B, = 2 ‘“’Te @V, - @V,),] (A19)

The reasoning is as follows: Equation (A17) is Poisson’s equation, which contains the
electrostatic part of the problem. Equation (A18) involves V,, which is flow along the magnetic
field due to the perturbation E,. Since V, ~ qE,/wm, the electron term is large and dominant.

For the third equation the choice was between Eq. (A19) which involves j, and the component

22




of Eq. (A3) which involves j,. We note that in the low 8 calculations, the j,, equation combines
with the j;, equation to give Poisson’s equation. To avoid a redundancy in the leading E,, E,

terms, we use Eq. (A19) to find E, in terms of E, and E,.

A4. THE PERTURBED DISTRIBUTION FUNCTION

Equation (A1) is solved by defining time dependent variables x',v’ which are orbits of
particles in the equilibrium fields E,, B,, with the boundary condition x'(t = 0) = x, V'(t = 0)
= v, where X, v are the phase space variables in (Al). In terms of X', v/, Eq. (Al) can then

be integrated to give

0
f(r, v) = f dt e KO YHKE -2y G0yt

-0

v/ x B n,(x
x |- 4 (El(x') + 1) <V, £ (xvh + vE n&) , (A20)
m c o
/
d_r :v/ y
dt
/ ,
_d_v_ _q E . vixB,
dt ml° c
Now we use

23




& o (A21)
op
and
v-(vxB)=0 , (A22)
to write
0
fl - f dt eiky’+iKz'(iw+v)t
of v xB, )| of n (x')
x—-iZEl v/__':_’_—-i + 1 2 ¢ v 1
m oH m| "’ c /), op .
0
= f dt eiky’+iKz’(il.)+v)t
of of
x |- 24 Vo -vi =2 - 29 Ay, + Av)) =2
m JH m oH
/ /
"i]k(b-kvzk—kvx}.]——g flll(X/)
® z ® b m n, (A23)

Now some simplification follows from using (A11)-(A13) for E,, and noting that

24




0
[ dt iy’ oy [(ikvy' + iKv e + % v/

0

= ¢ - (i + v) [ dt eM Ko pix))

This leads at once to

AS.

f:-ggif2¢+ g_(l.?f_"-&_l.(_ifﬂ
! m oH m H m o

X f dt (iQ)dJ - A'xvx/ - szz/) eiky*-iKZ*(i(n*-v)t

-

i?’g_. ifﬂ ¢ + _I_ll f | ey iK o)t
m oJH n, "

+ v f dt
THE ORBITS

The orbits 1’ and v’ satisfy

25
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(A25)




/
dvx _ __C_l_ E + vyB o , (A26)
dt mi{° c
dy g vB
dt m ¢

Now expanding about an arbitrary x = 0, y = 0 point, B, = B,(0) + x'(dB,/dx) and E, =
E,(0) + x'(dE//dx), we can solve Eq. (A26) by iteration, e.g., v, = v + v !, X' = x° + x},

where B_(0) is zeroth order and x(dB/dx) is first order. The equation set to first order is

g, WP 4y g %B
dt mi ° c ’ dt m c ’
1
dVX -9 dEo <© 4 q dBOV0X0+V1 Bo 9
dt m dx mc dx ¥ mc
1
dv, __ 9 .5 _ 4 dB, 0y 0
dt me © ° mc dx °
Neglecting the d/dx terms gives the solution to zeroth order:
v, =Vsin(d + wt) , x°-=- v cos(f + wt) + Y ocoss
®» ®,

[
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o Ec o V . . oC
vy = Veos(f + o t) - B y°® = —(:): sin(f + wt) - ——c sinf - t ,
where
v, = Vsind P Vcosf ,

define V and @ in terms of the phase space variables v,, v,, and w, = qB,(0)/mc. Next we time
average the first order equations, keeping only the secular (non-oscillating in time) first order

terms v! and dx!/dt = v!t. This gives to first order (neglecting oscillating terms such as

(E.c/B)cosw,t)

Ec 2 Ec (B E
v, = Veos(0 + o) - ==+ 2 Y 1 dB ¥V =81 %) d ) 2o} g, (A27)

y B 2w Bd o, B, |E]dx|B,
v, = Vsin(@ + o t) (A28)
x' = - Y cos(@ + of) ¢ V- cosd (A29)

@, @,
y = sin@ + ot) - - sinf - et - at cosd (A30)
W, W,
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=_o 2 Y 1495 , A31
2 o B dx a3

Ec
A (A32)

w, dx B,

A6. TABLE OF INTEGRALS

The orbits listed above allow the time integrals in Eq. (A25) to be done explicitly. If the
calculation is nonlocal, ¢(x') = ¢(x) + (X’ - x) dp/dx + (d*¢/dx?)(x" - x)?/2 changes (A25) into

an explicit set of integrals, of the form

fl —_ f dt e Ky Kz s(iw+v)t

X [a +a&’ -x)+ax -0ra v, va vEx -x] . (A33)
We define
I = f dt eiky’+iKz’+(im+v)t e ’

and calculate I, I, etc. Next we note that Eqs. (A17) and (A18) require | d’vf, and { d*vv,f;,
respectively, while Eq. (A19) requires { d®vv,f,. In this section we collect the integrals

required to assemble the dispersion relation. We make repetitive use of the following relations:




o iKVIOgsin@0) _ i o 160+0 I, (ﬂ)

®

=-00 c

Further, in the I, only leading terms will be retained, ordering w/w, < < 1, k%32 << 1, so

= (0, +1. It is tedious but straightforward to obtain (the argument of every Bessel function

o
is kV/w), and ¥  isimplied
m=-0o
L - J J e me _ . 2Jm11?"‘“"c059 9 (A34)
i(w + Kv, - ke, - ka,cosf - iv) 1w,
J J e ™cosh .
m”o -V Jyemgng  , (A3S)

i - - _ 2 “m o
iw, (0 + Kv, - ka, - ka,cosf - iv) ©>

2 JJ e mé

Ixx = y__ . mo - (A36)

w? (@ + Kv, - ke, - keycosf - iv)

-imé \Y/ ~imé

L - VJmJle _ JmJoe cosf . (A37)

* o+ Ky, - ke, - kalcosﬂ - iv W,

2 -imé

L - v? cosf) Je (A38)

* . o+ Kv, -ka - kacosd - iv
c z o 1

Note that v, = constant makes { dt v, = v, | dt, so only the five integrals listed are

significant. We have determined that the sixth integral, L, is negligible, and haven’t listed it.
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Next we examine the velocity integrals, writing

o %© 2w
[dv=[vav [dv, [d6
0 - 0

with v, = Vcos# and v, = Vsind. Integrating over the velocity angle § and the perpendicular

velocity V, we obtain the moments of f; needed to calculate the charge density | fid®v:

217']3
[doT, = - , :
{w -iv + Kv, - ka )
Vk d Ec
2myJ, 32 w, dx B
f dfcosfl, = — + — ,
iw, 2 j(w-iv+Kv, - ke)?
2 k 4 Ec
deI _ 2V, X 2wV dx B
. i w?  2i(w -iv + Ky, - ka )?
w2V
fd()coséllx = )

iw(w -iv + Kv, - ke, )

2mV2 32

o1, -
| ar, w2 i(w -iv + Kv, - ka,)

, f dfcosbl . = 0

c
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(A39)

(A40)

, (A41)




27V]J
[ a1, - kil vl . [ docostl, = - TV 52
* (0 -iv + Ky, - ka ) x W,
V3]
[do1, =0 , [ docosdT,x - 77 o
= * oy w -iv + Kv, - ka )
Ec 2
aos_l__v _}_@ , Jt,:]e_l_(_‘i
B 20, B dx W,
The integrals required to compute j;, = | Vsinff,d®v are
iky+iKz-ka,+(io+v IJ
[ dosing (1) ™ EON < L L2
(0 + Ky, - ke, - iv)

vi?

f dBsind (X/ N X) eiky+iKz—ka°+(im+v)t _
207

Jo‘]'l

k3a€) . (Add)

iky+iKz-ka +(iw+ 2
[ dosing (x/ - x2 ™o .V

\AR

i(w + Kv, - ka - iv)

f dfsing v, g HWyiKekagiomt
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wz (0 + Kv, - ket - iv)

(A42)

9

(A43)

3

(A45)

) (A46)

(A47)




f dosino Vx/(x/ _ x) eiky*iKZ—kdo"'(i(l)*V)t

— = O(ka,)* = 0 .
(0 + Ky, - ke, - iv) , (A48)

V2 KV (d Ec) A

A7. PERTURBED CHARGE AND CURRENT DENSITIES

We can use the integral table from the previous section to calculate the charge and

current densities needed for Maxwell’s equations. Using Eq. (A25) for f;, expanding J, in kV/w,

afo
oH

n, = [ Vavay, {~ i:-;ﬂ (%)

+_2ﬂaf°_i_k_$)' -
(m JdH m o dp [(m)da )»ngflldﬂ

2
; Ed;? (i0d - Av) [ 140 + :xz wd
A do - A D
- Ay) f .0 - A, f 1,46 - f I, 46 — , (Ad9)
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= 2 2q afo _ q k afo . _ .
@V, = [ Vidvdy, (H H mo Gwd - Av) [ 1, sinddo

d . N : az . :
+ < (i0¢ - Ay) [ Lsinodo -+ 1o (00 - Av) [ 1.2 sinddé
- A f I sin0dg - Ay f 1, sinfde , (A50)
o dx 2

where the § Iand § Isind are given explicitly in the previous section.

of of of
nlcszdVdvz{_ﬂ_&¢(x)+(zﬂ__°_iﬁ__f’)
m JH m Jd m o op
x [jod - Ay) [1d0 -2, [T, do|
29 % o B
‘v (m b fm}fllde} : (ASD)
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of of
(an)le = f V4dVdv _2_9__ _o _ 9 £ )
Zlim dH m o

X |0 - Ay,) [ Lsingdd - A, [ 1, sinodo)|

+v(2q$¢+&fm)fllsmo} ,

‘m oH n (A52)

where we have kept ka,;; terms, dropped ka,, terms, and retained electron collisions only.
In the electron charge density, Eq. (AS51), the perturbed density n,, appears on both the

left and right hand sides, so Eq. (A51) can be explicitly solved for n,,

n, = [All Eq. (AS1) RHS terms not multiplied by n,}/D ;

where

D=1 f vF dv,
) (0 + Kv, - ke)

and F, is f, integrated over dv,dv,/n,. This n, can be used in (nv,),, etc.
The only further perturbations needed are (nv,),. These can be obtained from Eqgs. (A49)

and (A51) by simply replacing dv, by v,dv,, which immediately transforms n, into (nv,),.
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A8. PERTURBED CHARGE DENSITY AND CURRENT -» DISPERSION RELATION

First we use the x-component of Ampere’s law to express A, in terms of ¢ and A,.

Equation (A19) gives

d Vim g2 2wV J,
+ — (m)¢ - ).sz) — * > (m)qb - )szz)
dx 20, d&x o, (0 + Kv, - ka,)
\A N

A
*i(w + Kv, - ka,)

} ' (A53)
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It is useful to define some recurring quantities, z(\), «;* and v; as

o _ kT (1 dn, o4 Epc
w qBow dx ij B ’

o

zZyy = — [ 1 As1
JT e X T A +ie€ A
-2 - fmie A<l

In terms of these quantities and doing { d’v, Eq. (A53) becomes

o w -k dir,
Y [1+_JZ__&=53_5+5»_@;_
® va w dx ¢ dx
2 X . X
%1+&](]¢+_ ka, +1v)___Z mzm—ka~1v +(+_J)
WC W K ® K va KvJ W
B kwf,e v LM T 7z w - ka
wc Kv, n, e Kv, ’ (A54)
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where we have used df /OH = -(m/2T)f, and of /dp = (1/w)[(1/n)(dn/0x) - (eE/T)]. From
(A53) and (A54) we note that

00, V2 d%

k%? o2 dx?

d¢ |
& (AS5)

w
k%? k%? o,
Even the leading term in E, is down from E, by ww,/k*c?, which for k ~ 1/a; ~ w/v, is less
than T/mc?> < < 1. This justifies the fact that we have neglected the d\,/dx terms in p; and j,,.

We have also used (a;2/Ap2)(T/mc?) = 4anT/B? = B.

Keeping the leading terms in A, then gives

(A56)
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1. INTRODUCTION

Since it was first discussed! and explored with reference to theta pinch experiments,?
there has been extensive study and application of the lower hybrid drift (Ihd) instability.>® The
reason for this interest is that there are a variety of experiments and experimental conditions for
which the 1hd mode produces the turbulence that dominates the observed transport and heating
behavior. The dominance of the 1hd mode in so many contexts is due to the fact that it does not
require a close resonance with any particular particle drift or orbit feature, and because it is
driven by plasma currents in a plasma edge or sheath, and this is a universal feature of plasma
experiments.

One effect which has not been treated is the effect of collisions on this instability. This
may be a significant feature in existing experiments, particularly near the magnetic separatrix,
where the temperature is low compared with the interior. This is also the region where high g
(plasma pressure/magnetic pressure) fails to stabilize the mode; further, this is the region where
FRC experiments’ have looked for this instability and have failed to find it. Although there are
other effects® which have been proposed as supression mechanisms for this instability in the
FRC, it must be recognized that collisional effects may also play a role. In this study we
investigate this effect.

One important result of the study is that the effect of collisions is substantially more
important than might have been expected. It might have been expected that since in the absence
of collisions the growth rate w; = w, = w,/(1 + 47nmc%/B?"?, collisions would damp the wave

when » > w;, with » a collision frequency. However, the result we get is that




where (/D) = w,i/(1 + 4anmc?/B*»"%; in the collisionless case, the largest growth Q/D is
achieved by minimizing D, with the appropriate choice of wave number k. But now minimizing

D not only maximizes /D, but also maximizes »/D, and stability is reached when
Q >v > () 5
D

rather than » > Q/D.
In this report we derive the results stated above and explicitly calculate the form of (2.
In subsequent work we will develop a numerical method to analyze the dispersion relation, and

later extend the work by using the numerical method to plot ; vs. k for a variety of plasma

conditions and collisionality.




2. THE EQUILIBRIUM

As in all calculations of Ihd stability, we work in slab geometry, with x representing
radial gradients, y the axis of the cylinder, and z the magnetic field direction. The equilibrium

ion and electron velocity distributions must satisfy

vxB.
Vf—(E Z°)’vao=o , M
m

which implies a functional form for £,

1 . 2 €EX v,mc
f fO{ m (v, +v,) - TO X, @)
Expanding f, gives the usual form for ions and electrons,
f. = n, 1+e lx+ vymc + eE°X e'mVZ/ZT _m X , (3)
° ' ' eB T 27T
f =n_|[1+e€ (x | Yyme)  eBx g “mV2T _m , @)
o o ¢ eB T 27T
with the constraints
E E
n ee—e°=n.e.+e° , ®
oe T o1 1 T




it ) (6)

° n dx

The first constraint is required for quasi-charge neutrality, the second gives ion pressure balance.
In this equilibrium, the electrons have single particle drifts v, = - E,c/B, and diamagnetic drifts

V. = (cT/eB)(d In n/dx), which are clearly present in Eq. (4), since

dn
o] + _l_ [ . ‘ (7)
ne

dx

Also, Eq. (6) requires that ¢; = 0, since ¢; = (1/n)(dn/dx) - eE/T. Since in the FRC, B (x=0)

= (, we will keep the electromagnetic terms in the plasma response to lhd waves.




3. COLLISION MODEL

The effect of binary collisions can be included in the lhd calculation by adding a term

-»(f - f,) to the Vlasov equation, e.g.,

§£+v-Vf+.H_
ot

vxB
+
x|

C

)-va=—v(f—fR) ° ®

The problem is in choosing what collision frequency » to use, and what relaxation distribution
fy to choose. For fz, we note that although collisions eventually relax the system to thermal
equilibrium, this takes a very long time. On the lhd time scale, the effect of » will be to restore
the metaequilibrium state described by Eqs. (3) and (4). In deciding what collision frequency

to use, we first calculate a table of useful parameters:®
Electron Gyrofrequency
w, =2x 10" B (tesla) s
Ion Gyrofrequency

ci

- B(tesla) 108 S—I
A

Ton Thermal Speed

T(eV)

A% - 10°
S ( Y ] cm/s




Electron Thermal Speed

V. = 45 T(eV)? 107 cm/s

- Cross Section for 90° Electron Scattering by Singly Charged Ions

2.6

= —=— 10 ¢m?
T? (eV)

ei

Cross Section for 90° Ion Scattering by Electrons

2.6 m -
e T —2110" cm?
TX(eV) | m;
Collision Frequencies = n o v
v;=3x10° st for 10 eV, n = 10 ¢cm
Vie = 2x10° % s for 10 eV, n = 10" cm 3

For the electrons, the lower hybrid frequency of the wave means that the drifts induced

by the wave will give a relative speed of electrons relative to the ions, primarily due to the drift

induced by the waves electric field,

sv. = JEC o iy-ian
€ B .

o]




Reducing this relative drift requires shorting out the charge separation which supports 6E, which
is equivalent to the electrons diffusing a distance k', the Ihd wavelength. Since like-particle
collisions do not give spatial diffusion, electron-ion collisions will dominate. The ions could
also diffuse. The fastest process for this would be collisions between different ion species.
However, for the 1hd wavé, the ions are essentially unmagnetized, and are moving to short out
the fields as rapidly as their heavier mass m; will allow. Collisions would impede this process,
giving the ions a greater effective mass. However, from the calculations above, by the time ion
collisions affect the wave, the electrons will have diffused many electron gyroradii. Siﬁce the
lIhd wavelength is comparable to the electron gyroradius, electron collisions will dominate. Thus

we use »,; (90°) as the relaxation frequency.




4. COLLISIONAL LOWER HYBRID WAVES

Vlasov theory'® gives the response of the plasma to a wave

_ iky+iKz-iwt
8E - El el 1 10

SB = B. ellbviKz-iot
1

by expressing the velocity distributions as f = f, + f; and finding that

0
f .. % / V/XB1 iky +iKz it/ +v t/ 9)
1(¥2Y) = - n f dat’ |E, + ot v, £, e , (

-]

where y’, z’, v’ are the orbits of particles of species «, in the equilibrium fields E,, B,, with the
constraint that at t' = 0, y' =y, z’ = z, and v' = v, which are the phase space points for

which f, is calculated. In the present case, the time scale is taken to be the lower hybrid drift

scale, so the ion orbits are straight line,

The electrons are magnetized, so we use the orbits

/
Vye =V cos (0 - ot) +v,

v, = vsin (0 - w t) ,




__Ec ., 1dB (x*Y)
B B dx eB/mc

The techniques for solving Eq. (9) are published in many articles and books™'°, and need not be

reproduced here. This is not to say that they are trivial. After a dozen or so pages of algebra
we find forms for the dispersion tensor in terms of selected components of the wave fields; the
representation of the wave fields, explicitly defined below, were chosen, from past experience,

to simplify the algebra
E =- V¢ +iKA2 ,
_ ikKAc

B X
1 ®

In terms of these fields, the dispersion tensor is

(k* + K ¢ - K?A, = - dme [ £, d + dme [ £,d%




2
KK, = - 28 [ygaiv s 38 [ygay (1)

_e(w + iv) (1 . € kcT ) . v, Ke X} ¢

fle=-e£¢-J§ T eB(w + iv)) T °
T Kv, + kv, - @ - iv

, (12

JJev kKe N

Bw (Kv, + kv, - w -iv) *

e - eKv
- k . + z A
A . (13)
1 Kv, + kv, - °

and J, = J (kv/w,) is the Bessel function of order 0.

The fact that in f,, w sometimes appears alone and sometimes in the combination « +
iv is because » appears explicitly in the Vlasov equation for f; but not in the Maxwell equation
dB/dt = - VXE that relates E; and B,.

In the ion term of course »; = 0 from arguments in Section 3. Continuing, we define

© 1 kV.f.d3v
Z|- L -2 f 2T © 14
( ] fk-v—w (19

which has limits (V, is the ion thermal speed)

10




kV, -0k}

Z=-—+ifme ,  @>kV, (15
@
7-29 . im ,  e<kv. . (16)
KV, i

We also use K < < k, because long wavelength along B, (which means small K) is required to
prevent electron flow along B, from shorting out the wave fields.

In calculating the resistivity we will need the fluctuation densities on;, én,, since’

nov
m ( y) = <6n8E>q . (17)
S

In a low (3, ion-electron plasma, this gives

n_m oV
(—e—e——”—] = - ¢ <én SE> , (13)
ot
nmgdVv..
[____' ‘ Y‘) - e <énSE> {19
ot thd

and momentum conservation then requires

<énSE> = <én SE> . (20)

11




Explicitly, the perturbed densities are

ne X
sn, = —2 “I et
ne T {‘b 0e ( (l))
0P - WA - ivA + kv A iv - kv
a, - L2 T H)Z(mrlcvv l @2)
N iv e W +1iv - kv, s
A KV ’
s nle o @ |4 3
n. = + _—
T, kv, kv, ’ @)

where we have defined

x cTe, T 1 dne
W, = =2k 2= — ,
© k" eB ky eB n_ dx

and I, is the Bessel function of pure imaginary argument, of argument b = k’a2. In addition
to the perturbed densities, which go into Eq. (10), we must calculate explicitly the currents J,
needed in Eq. (11), the second half of the dispersion matrix. Again, the technique is

straightforward and well documented, though in practice it is really tedious. The result is




Tc w K K
(24)
1 W +iv - kv, W +1iv - kv,
+
KV, KV, ’
41rq. 4ore’n.
T vy - T K
c mc kV,
(25)
A o) 90, © [ 0
z kV, kV, kV, kV,

Using the perturbed densities and currents found in Egs. (22)-(25), we can evaluate Eqgs. (10)

and (11) to get the dispersion matrix

2
%«2+K2+ 4 e 1
T




+
kV,

b w* . w+iv-kv, w+iv-kv,
Ie ™ |1I+— (w+iv-kv ) 1+ Z ‘
® KV, KV

4me? 2
N Sy A ECR Y
m kv, (kv

1

To the best of my knowledge, the matrix Eq. (26) and (27) is an original result, including for

the first time electron collisions in an electromagnetic calculation of the lower hybrid drift wave.

14




5. ANALYSIS OF THE DISPERSION MATRIX

To analyze the implications of Eqgs. (26) and (27), a reasonable program would be to
assume that finite 8 will stabilize the interior, and so to look at the electrostatic limit, A\, = 0,
making the usual approximations'? that allow an analytic solution to the problem. This brings
into focus the differences between the well analyzed case of an electron-ion collisionless plasma,
and the case in which collisional effects can contribute. Eventually however a numerical
integration of Eqs. (26) and (27) would be necessary to complete the study. We Vc‘lo not
anticipate attempting that step, due to the limited resources in the contract.

In the electrostatic (low ) limit, A, = 0, and the dispersion relation is (from Eq. (26)),

2

k2+K2+& 1+I(b)e_b ® + @+ i Z @+ iv - kv,
2 ° KV

[

v )2 )

1

[

(28)

=0 ,

where w?; = 4mne’/m;, b = ka2, 1, is the Bessel function of order zero, of pure imaginary
argument, and a, is the electron gyroradius.

The limit which recovers the lower hybrid wave is that of a nearly flute-like mode with
k,a, of order 1 and (K/k) < (m,/my)"2. In that limit (w - kv))/KV, > 1,and Z = - KV /(v +

iv - kv,.), so that Eq. (28) becomes

15




(29)

To do a really accurate job of analyzing Eq. (29) requires some numerical work, since
the dimensionless constants are of order unity. However, a good indication of the physics can
be had by taking w/kV; > > 1, since that is the limit in which lower hybrid waves are found;
this limit becomes increasingly good if T; < T,. With this assumption, along with k’a2 < 1,

Eq. (29) becomes

X 22
k2 (A} + a;) - o I, K
W +iv - kv, w?
(30)
+ i‘/; __C .__(0_ xp - (l)22 = O )
Ti kv kZVi

where C, is the ion-acoustic speed, C2 = T/m,.
An adjunct to the fact (see after Eq. (6)) that the ions are electrostatically confined in the

sheath is that

@~ = = - 2kv , GD

which further simplifies Eq. (30), reducing it to




[ _ S
w - kVe + iv (,32
(32)
2
9 _1-0
k2v}

Even with this simplification the dispersion relation is cubic in w, if the exponential factor

exp(-w*/k*V?) is set equal to 1, and a numerical analysis, albeit a fairly easy one, would be
needed for truly quantitative answers. However, the idea is still to get analytic formulas to show
trends, and we can do this by treating the growth rate of the 1hd wave as smaller than the wave

frequency, with the results given in the next few subsections.

5.1 WAVE FREQUENCY AND WAVELENGTH

Taking Q, = Rew/kv, and @, = Imw/kv,, the real part of Eq. (32) becomes

Le®Q -1 c| & -
K*Ap + (1 - Le™) + £ G0 2 202 . ol (33)
@ -1+ o+ 2| Ve (@Y
T 1 kve
and the imaginary part becomes
Ie®|Q + 2 o
° "o kv, C, 200, Qv, 2
- "l o B e R Al S P o)
@ -1+ o ) Ve |0 @) Vi
r 1 kV




and Qv./V; > 1 has been assumed in estimating Z(w/kV)).

Taking Q < 1, from the previous work in Ref. 2, and taking w; and » smaller than w,,

Eq. (33) gives

e 2B 2
2
) m mc
;= - < k%? . (35)
(L-Te® o Le®
P ST A W A
b ol b

Now in order for w to be real the denominator of Eq. (35) must be positive, which
requires b > 1, since otherwise the denominator = - 1 + w2w2 < 0. This restricts the wave

number k compared to the inverse of the electron gyroradius,

k%2l >1 : (36)
Using this fact gives
K2y? Lo
w? = W Wi _ T 17
2 2 2 ’ (37
Wee 1 _ 2 1+ k2, - >
o b b2 k?a,

pe

where V;, is the ion thermal velocity. The limits o*> > 0, & < kv,, @ > kV; bound k%a? to be

of order greater than 2, the actual value depending on T./T,.




5.2 MAXIMUM GROWTH RATES AND INSTABILITY CONDITIONS

Now we can use « and k from Eqgs. (36)-(37) to find the instability conditions and growth

rate. From Eq. (34) we have

Jr —= vie®
o 1 202 () ‘ 9
k2a? — v2 wr)

When collisions are neglected, instability requires «; > 0, which means

2 C -3/2

R S o B T PR L S , (39)
212 © 2 T 9y p 2,2

1+ k2% 2C; e k*-a,

where the left-hand inequality follows from the requirement that the denominator of Eq. (37) be
positive, while the right-hand comes from the need to make the denominator of Eq. (38)
positive.

To understand the implication of the form of Eq. (38), we first examine the limit of no
collisions, » = 0. Because of the exponential in the numerator, which gets small for w/kV; > >
1, it might be expected that wm= would come when the numerator is maximum. After a little

algebra we find that the numerator is maximum at

2T,

2. (1 + k2A%) (1 - ; (40)

2.2
k“a;

i
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this means that for TJ/T, > 1/2, there is no maximum and the numerator increases

monotonically from 0, k’a2? = 2/(1 + K®\p?) to

_ E 12 E
1+ k2A% 1+ k2% 1+ k%A%

However, even if there is a maximum in the numerator (T/T; < 1/2 and Eq. (40) holds), the
inequality of Eq. (39) is violated. So maximizing the numerator is not an option, except to make
k%2 as large as possible while still satisfying the right-hand inequality Eq. (39). This means

that the largest growth occurs when the denominator is small, namely at

€

: 2372
K2? = = (14 k22 - 2 - LG (') 5 - @]
v k’a, 2v, [(1 + kzlf)) k%l - 2}3

Equation (41) can in fact be solved for k’a.2. Defining

(1 + k?Ap) k2.
2

Eq. (41) can be written

Cz
Z-17 = = 2

z |,
25v2 1+ k%

which has the solution




“42)

L+ k) ke . (S5 1 i
M2 1+ k2 ’

where k,,, means the k that gives maximum growth, not the largest value of k. This value of
k?a,?2 will make the denominator of Eq. (38) vanish, so in practice k%a2 will be at the slightly
larger (than k2, a?) value which makes w, = «, whereupon the approximation w;, < < o,

breaks down. Near k,,, we have

K2C2 (2% @+ k23
mf _ s ; 3 ( . D) , (43)
1+ k%*\p C,
which for v, > C, satisfies w > kV,; as well as v < kv,
13
T v 23
@ e e _.2_____2_5>1 forv, > Cy . (44)
kV; T; \ G (1 + kz)tf))
23
C 3
© | 27 <1 fov,>C, . (45)
kve %) (1+x23)"

Thus for k = k,,,, w, satisfies the two approximations used in the derivation.

Near k., w; becomes
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13 | Te fve\® 2%
2% . [Ta (Cs) (1+k21f))2’3} v (1+k*Ap)
(1+k 22228 2 (46)
1 1 1 o

2.2 2 _2
k ac kmaxae

The point of Eq. (36) is that although k = k,,, maximizes the instability driving term, it also
maximizes the collisional damping term. To provide the strongest resonance, 2/k’a 2 should be
as small as possible. But if 2/k%a.? is too small, the driving resonance becomes a damping term,
and this limit on '2/k2a,,2 comes when w/KkV, is still fairly large and exp(-w*/k?V2) is very small
(see Eq. (46)). This means that the collisional term damps the lower hybrid wave not when »

~ w; ~ w, but when

(47)

S

e
4 Jm wyy [Ee)

It’s not easy to get around the limit Eq. (47) because to minimize the collisional part of the
numerator one would increase k%a2, and in Egs. (41)-(47) the value of k?a.2 has been taken as

large as is consistent with the lower hybrid drift instability.
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6. OTHER MODES AND NEEDED WORK

Although the 1hd instability has been the dominant source of turbulence in the bulk of
plasma implosion studies to date, it is possible that collisions might introduce a dissipative
branch to the lower hybid drift instability.

Examining Eq. (38) shows that in the usual case where the denominator is positive the
effect of ion Landau resonance is wave growth, and the effect of collisions is wave damping.
However, when the denominator is negative, collisions can drive instability if » is large énough
to dominate the ion resonance term. The reason for this behavior is that the electron drift splits
the lower hybrid wave into a positive and a negative energy branch, in the same way that
counterstreaming electrons split the plasma wave w, into a fast and a slow wave which have
opposite energies. The negative energy branch is then destabilized by any dissipation
mechanism, in this case electron-ion collisions. Of course, the collision term must dominate for
this to be possible. In previous applications collisions were neglected, so this dissipative
instability was overlooked. It might be worthwhile to explore this branch in some future study.

There are a number of extensions of this work that would further help application to

understanding the turbulent structure of the FRC. For example,

o The dissipative lhd mode could be examined to determine its linear and nonlinear
properties.
o There could be some numerical work to make our analytic estimate of lhd

properties fully reliable. At the minimum, the electrostatic limit Eq. (29), or at
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