

RECEIVED

APR 22 1998

IS-T-1818

OSTI

Improved Resins and Novel Materials and Methods for Solid Phase Extraction and High Performance Liquid Chromatography

by

Freeze, Ronald

PHD Thesis submitted to Iowa State University

Ames Laboratory, U.S. DOE

Iowa State University

Ames, Iowa 50011

Date Transmitted: October 8, 1997

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY
UNDER CONTRACT NO. W-7405-Eng-82.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

DISCLAIMER

Portions of this document may be illegible electronic image products. Images are produced from the best available original document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.

AVAILABILITY:

To DOE and DOE contractors: Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

prices available from: (615) 576-8401
FTS: 626-8401

To the public: National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

This work is dedicated to my wife, Ann, who has brought so much into my life. Not only did you give me so much of yourself, you also gave us Elizabeth and Anthony. I am happy to say you often made getting this degree difficult. Spending time at home with you and the kids was generally a highlight to my day, and many nights I found it impossible to come back to the lab. When times were difficult, you always provided me with encouragement and reminded me of what was really important. Thanks for creating and sharing so many of the most important moments of my life. I love you.

TABLE OF CONTENTS

ABSTRACT	vi
-----------------------	----

GENERAL INTRODUCTION	1
Dissertation Organization	1
Solid Phase Extraction	1
Direct Injection HPLC	7
Solid Phase Extraction in a Syringe	11
References	13

IMPROVED CHELATING RESINS FOR THE UPTAKE OF METALS	21
---	----

<i>Preprint</i>	
<i>Removed</i>	
<i>for separate processing</i>	
Abstract	21
Introduction	22
Experimental	23
Reagents	23
Apparatus	23
DSX-100 instrument	25
Resin synthesis	25
Results and Discussion	32
Iminodiacetic acid resin	32
Rare earth resin	38
Dithiocarbamate resin	46
Thiouronium resin	46
Conclusions	51
Acknowledgements	51
References	52

A NEW SURFACTANT FOR DIRECT INJECTION OF BIOLOGICAL FLUIDS IN HPLC	54
---	----

<i>Preprint</i>	
<i>Removed</i>	
<i>for separate processing</i>	
Abstract	54
Introduction	55
Experimental	57
Chromatographic system	57
Reagents and chemicals	57
Chromatographic procedure	58
Sulfonation reaction	58
Results and Discussion	59
Composition of Brij-S	59
Comparison of SDS, DOSS, and Brij-S	59
Comparison of SDS and Brij-S for direct injection	66
Brij-S concentration	73
Effect of solvent type and concentration	73
Effect of pH and buffer strength	78
Quantification of drugs in serum	80

The use of a gradient	83
Mechanism	87
Conclusion	89
Acknowledgements	89
References	90
 MEMBRANE-BASED MICRO SOLID-PHASE EXTRACTION OF ORGANIC COMPOUNDS 9	
<i>Preprint Removed for separate processing</i>	
Abstract	92
Introduction	93
Experimental	95
Reagents and chemicals	95
HPLC system	95
GC system	95
Procedure for MMSPE	96
Sample loading and elution	96
Results and Discussion	99
MMSPE assembly	99
Breakthrough curves	100
MMSPE of phenols	103
MMSPE of benzenes	111
Conclusions	111
Acknowledgements	115
References	115
 GENERAL CONCLUSIONS	117
 ACKNOWLEDGEMENTS	119

ABSTRACT

Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. By reducing the size of the resin beads and optimizing reaction conditions, resins were produced which had excellent capacities both in the packed-column and the suspension mode. By using a suspension of resin and a batch equilibrium system, many problems associated with packed columns were eliminated. By reducing bead sizes to 1 μm , direct injection of the beads into an inductively coupled plasma (ICP) torch was possible. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy.

Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. The analysis of drugs in biological fluids usually involves time consuming pretreatment steps for the removal of the drugs from the biological matrix before analysis with HPLC. Pretreatment steps such as liquid-liquid extraction or precipitation not only increase the overall analysis times, they also introduce an additional possibility for error in the final measurements. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment.

A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Small analyte molecules are separated normally on these precoated

columns. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 μ l injection volume were obtained. A gradient system resulted in sharper peaks and reduced retention times.

Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few μ l of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handing problems associated with such small volumes.

GENERAL INTRODUCTION

Dissertation Organization

This dissertation begins with a general introduction which contains a comprehensive review of related literature. The introduction is followed by three chapters. The first chapter is based partially on work to be published in a journal along with work done in our lab that has led to the development of a commercially available resin. Due to the proprietary nature of this work, discussion is limited to results obtained with the resin. The final two chapters are based on papers that have been or will be submitted to refereed journals in the field of analytical chemistry. Permission from the publishers extending reproduction and distribution rights has been obtained. A separate introduction, conclusions and references section is presented for each paper. Each paper is similar to the published version, although additional figures and tables have been added. The final section is general conclusions to provide continuity to the entire work.

Solid-Phase Extraction

Sample preparation steps before analysis are often the weakest link in an analytical measurement and require the majority of the overall analysis time. Preparation steps are often required to remove the analyte of interest from a complex matrix or for preconcentration of the analyte to lower detection limits. As analyses are pushed to provide lower detection limits with lower costs in less time, the preparation steps are generally the first area targeted. Common preparation techniques include solid phase extraction (SPE), liquid-liquid extraction (LLE), supercritical fluid extraction, and Soxhlet extraction. Of these methods, LLE is possibly the most widely used preparation technique,

though SPE has proven to be the most attractive choice when dealing with liquid samples. The advantages of SPE over LLE are well documented and include overall reduced costs due to smaller solvent volumes and shorter preparation time, ease of automation, higher extraction efficiencies, and elimination of emulsion problems (1-6).

Since Fritz *et al* (7) first described using a polymeric resin for extraction of phenols from aqueous solutions in 1974, the applications of solid phase extraction have expanded to cover a wide range of analytes (8-10). Bonded-phase silica particles are the most commonly used resins, though porous polymeric resins have also proven to be a strong alternative. Polymeric resins are more resilient to extremes in pH and solvent strength, and have higher surface areas which provide better uptake of organic compounds from solution. A representation of polystyrene/divinylbenzene is represented in Figure 1. SPE consists of a resin bed packed into a small extraction tube, usually made of a plastic. The resin is packed between two frits to hold the resin bed securely in place. The liquid sample is passed through the resin bed by applying either positive pressure or a vacuum to the column (11).

SPE usually involves four steps. The first step in SPE is conditioning of the column. Due to the hydrophobic nature of most SPE resin, a "mediating" solvent such as methanol or acetonitrile is required to wet the resin, allowing intimate contact between the aqueous sample and the resin bed. Once this solvent is passed through the SPE column, the excess is removed from the column with a water rinse. After preconditioning, care must be taken to ensure the column never goes dry. If the mediating solvent is evaporated from the column, reduced recoveries will be observed (12). While preconditioning is required for hydrophobic resins, by adding a polar group to the resin, this step can be

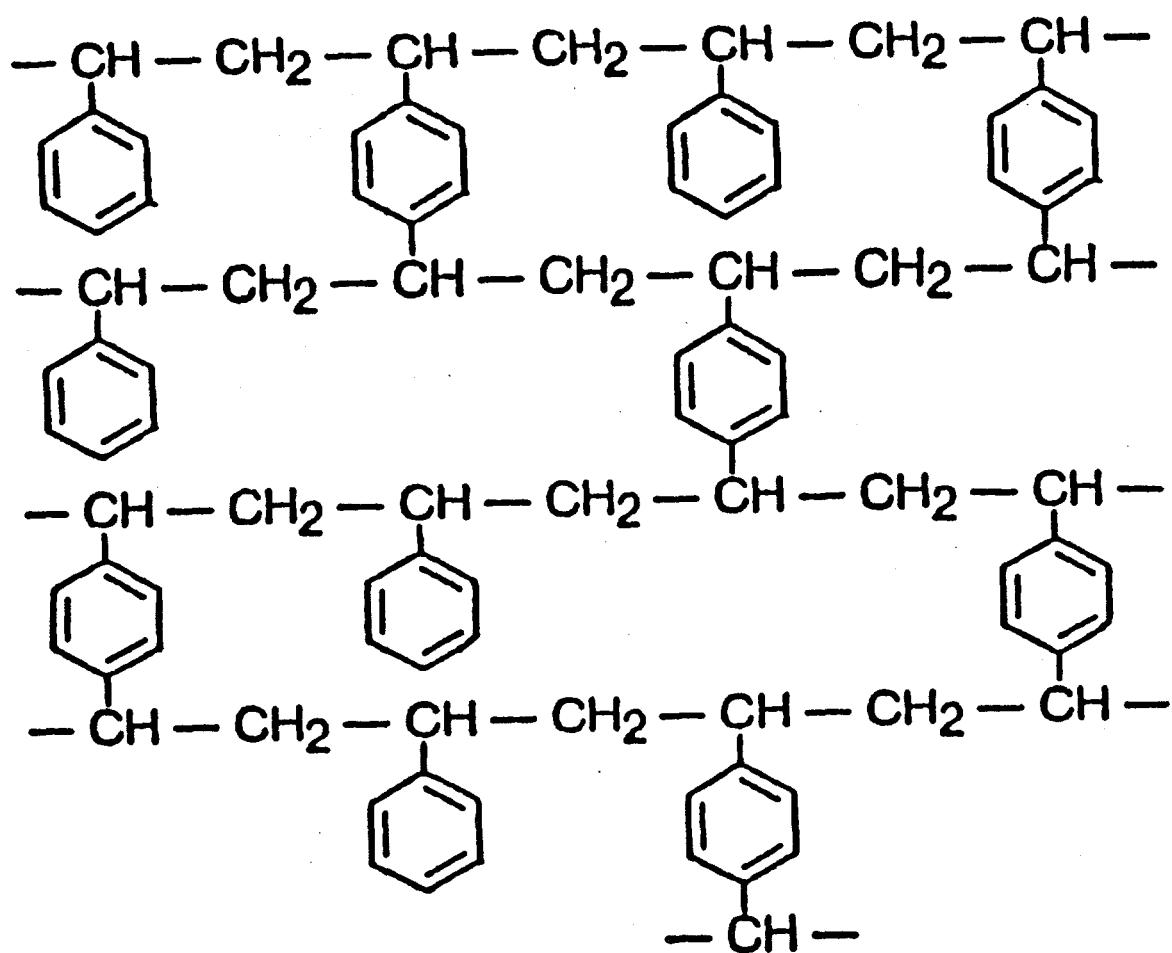


Figure 1. Chemical Structure of Polystyrene divinylbenzene (PS/DVB).

eliminated (13,14).

The first step in SPE consists of loading analytes onto the column. As the aqueous sample is passed through the column, the analyte makes intimate contact with the resin and is attracted to the resin surface. The attractive forces encountered depend on the resin being used and can include dispersive, dipole-dipole, ionic, hydrogen bonding, or even covalent interactions (15). Due to these forces, the analyte is extracted onto the surface of the resin as the rest of the sample matrix passes through the column. These encounters occur throughout the column, resulting in multiple extraction steps. Due to these multiple extractions, SPE is much better at quantitative extraction of the analyte from solution than LLE which has only a single extraction step (15).

The second step in SPE is to rinse the column to assure the unretained matrix is eluted from the column and therefore separated from the analyte. This step can also be utilized to remove some of the retained compounds from the adsorbent, resulting in an even more selective extraction (16). The final step is the elution of the analytes from the adsorbent. For organic analytes, eluting solvents can include methanol, acetonitrile, propanol, acetone, or other organic solvents. With solid phase extraction as little as 100 μ l of eluent can be used to elute the compounds from the column, resulting in very large concentration factors. Concentration factors ranging from 10-1000 have been obtained, resulting in very low detection limits (17).

While much of the work involving SPE has focussed on the uptake of analytes from solution using bonded phase silica or polymeric resins (18-27), many resins have been synthesized for the uptake of inorganic analytes. Polymeric resins are easily functionalized by covalently bonding either chelating (28-50) or ion exchange groups (51-

54) to the resin. By first chloromethylating the resin, a methyl-chloride group is added to the ring and is an active site for further derivitization. Chelating resins involve the formation of chelating rings between the functional group on the resin and the metal of interest. These rings are very stable and are often specific for certain metals. A list of chelating resins and their references are listed in Table I. While very good uptake of metals was achieved by these resins, chapter two explores using state-of-the-art resins that have much smaller particle sizes, are carefully cross-linked, and that are more thoroughly chloromethylated than conventional resins.

Though SPE in the column mode is very effective for the uptake of metals, there are drawbacks to using packed resin beds. The primary disadvantages to column SPE include channelling, limited flow rates, insufficient equilibration time for quantitative uptake, incomplete elution, and memory effects from previous extractions. Many of these disadvantages are more pronounced in chelating resins. The formation of chelating rings is a very powerful extraction technique, but the kinetics of this process are often slow. As the sample passes through the column, the time for the formation of these rings is limited by flow rate. If the flow rate is too fast, uptake may be incomplete. Once the metal chelates are formed, elution of the metals from the column may be very difficult. An example of this is the need for warm 4 M HCl to elute chelated metals from dithiocarbamate resins (32). The metals are bound so tightly that the elution is achieved only by destroying the functionality of the resin.

The second section describes a new technique where very small resins are used for improved kinetics and higher capacities. Instead of packing the resin into a column, a resin slurry is injected directly into the sample. Once sufficient time is provided for

Table 1. Chelating resins available for solid phase extraction and related references for each.

Chelating Group	Structure	reference
iminodiacetic acid	$R-N(CH_2COO^-Na^+)_2$	16-19
dithiocarbamate	$R-NHCS_2^-$	20-24
8-hydroxyquinoline	C_9H_6NOH	25-27
thiuronium	$R-SC(NH_2)NH$	28,29
hydroxamic acid	$R-CONHOH$	30-35
cation exchange	$R-SO_3^-$	36,37
anion exchange	$R-N(CH_3)_3^+$	38,39

uptake of the metals from solution, the resin is separated from the solution by filtration through a hollow fiber cartridge. This cartridge provides a very large filtration area and therefore a high filtration rate. Once the matrix is separated from the resin, the resin can be injected directly into an inductively coupled plasma (ICP) torch, vaporizing both the resin and the adsorbed metals. The metals that are concentrated on the resin are then detected by mass spectrometry or emission.

Direct Injection HPLC

The use of surfactants as mobile phase additives has been explored extensively (55). The addition of surfactants to the mobile phase results in additional interactions between the analytes and the surfactant in the mobile phase as well as between the analytes and the surfactant adsorbed on the surface of the stationary phase. While surfactants such as sodium dodecylsulfate (SDS) and cetyltrimethylammonium bromide (CTAB) have been used in ion-pair chromatography at concentrations below their critical micelle concentrations (56-58), most work has been done with surfactants above their critical micelle concentration in aqueous solutions. The surfactant is used in place of the organic solvent that is usually required in conventional hydro-organic chromatography. This technique, which was introduced by Armstrong and Henry in 1980, is called micellar liquid chromatography (MLC) (59-61). While many advantages over conventional HPLC were realized with MLC, this technique is often associated with lower separation efficiency than seen in conventional HPLC. This is due to peak broadening that is attributed to slow mass transfer of the analyte from the micelle to the stationary phase (62,63).

Though MLC suffers from lower separation efficiency than conventional HPLC,

the addition of even 1 - 2% of an organic solvent, such as propanol or acetonitrile minimizes this problem (63). Xue and Fritz found that even in mobile phases containing 70% organic solvent a dramatic decrease in retention times is seen when a surfactant is added (64). Xue and Fritz went on to show that by mixing two or more surfactants even greater reductions in retention times are obtained (65). In their study of a variety of surfactants, which are shown in Figure 2, it was found that while SDS is the most widely used additive for MLC, it was actually a poor surfactant when compared to other commercially available surfactants.

As new ways are being developed to use surfactants as mobile phase additives, many papers have explored the use of surfactants as a tool in direct injection of biological fluids onto HPLC columns (66-78). By using a surfactant in direct injection HPLC, the analytical column is protected from the proteins in serum due to a protective coating of surfactant which is deposited onto the stationary phase. This eliminates the need for lengthy and tedious pretreatment such as liquid-liquid extraction or precipitation steps which are otherwise required prior to analysis to remove the proteins from the biological fluids (79,80). The addition of a surfactant also eliminates the need for dilution of the biological sample or the addition of an internal standard (81). It has also been shown that surfactants free drugs which are bound by proteins allowing detection of the total free drug concentration (82,83). If both the bound and free forms of the drug exist upon analysis, peak broadening or even the appearance of a second peak is possible, raising detection limits and making quantification of drug concentrations more difficult. By freeing the bound drug, detection of the total drug concentration in biological fluids is made possible.

Two techniques that rival MLC for direct injection are the use of specialized

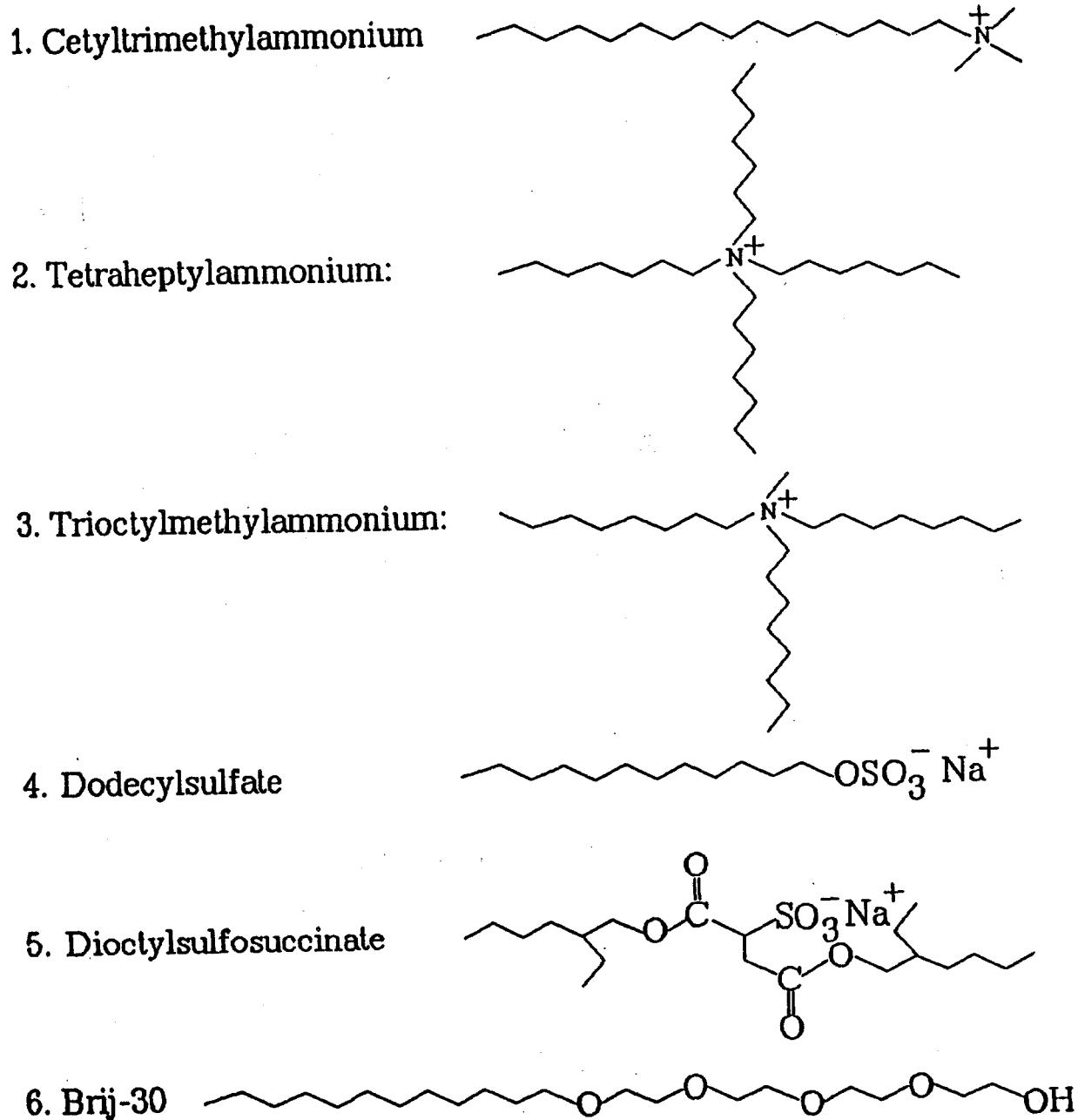


Figure 2. Structures of common mobile phase additives.

stationary phases and using a column switching setup. The area of specialized stationary phases for direct injection has been dominated by restricted access medium columns (84). Several reviews have been published describing this technique (85-88). Restricted access medium is a general term for packing material which employs a hydrophobic interior protected by a hydrophilic barrier. This barrier allows passage of small molecules to the hydrophobic interior while preventing the passage of large molecules, such as proteins (89,90). The drawbacks to these columns include difficulty in column to column reproducibility and a split peak phenomenon under certain conditions due to some of the drug still being bound in the protein (91-93).

Column switching offers the added advantage of preconcentration and a wider choice of eluents, but requires a more complex apparatus (94). Column switching utilizes two columns in series, a precolumn and an analytical column, connected by a switching valve. Once the proteins have passed through the precolumn and to waste, the mobile phase is switched and the retained analytes are eluted from the precolumn onto the analytical column (95-100). The amount of proteins passing through the analytical column is minimized, lengthening column life.

Many papers have explored the use of SDS in direct injection HPLC (101-104). SDS has the advantage over many surfactants of being soluble in aqueous mobile phases. Many of the surfactants that show promise at higher organic solvent levels are limited in their usefulness in direct injection HPLC due to their solubility in water. In direct injection HPLC the highest organic solvent level that can be used is about 20% due to denaturing and precipitation of proteins above this level (105). For this reason the use of MLC for direct injection has been restricted almost exclusively to SDS.

The third section of the dissertation introduces a new surfactant for use in direct injection HPLC. Through a simple sulfonation reaction which was performed in the lab, commercially available Brij-30 is sulfonated. While Brij-30 has a very limited solubility in water, requiring 30% acetonitrile levels to avoid precipitation of a 50 mM solution, the sulfonated form of Brij-30 (Brij-S) can be used in purely aqueous mobile phases at much higher concentrations. Brij-S was found to be comparable to SDS in solubilizing and eluting proteins, and was a much stronger surfactant than SDS when used in drug separations. Dramatic reductions in retention times of late eluting compounds, along with different selectivities for early eluting compounds were observed. Excellent recovery of drugs, good limits of detection, and feasibility of a gradient system were also demonstrated.

Solid-Phase Extraction in a Syringe

As the restrictions on hydrocarbon based solvents increase, a push to minimize the requirements for solvents in extraction techniques is underway. SPE provided a method with much smaller solvent requirements than liquid-liquid extraction techniques. Resin-loaded membranes further reduced the amount of solvent required, often using up to 90% less solvent than traditional SPE cartridges (106,107). This technique still utilized 1-10 ml of solvent, which could still be considered relatively high. Dianna Ambrose introduced semi-micro solid-phase extraction (SM-SPE) which employed very small membrane disks and allowed elution of analytes with just 20-50 μ l of solvent (108). While these advances have lead to a system that uses a very small volume in the traditional SPE setting, still more advances were desired.

The recent introduction of solid-phase micro-extraction (SPME) provides some of the advantages of SPE with no eluting solvent required (109-111). In SPME a thin coating of stationary phase is deposited onto a fiber. In a two-step process, the fiber is first exposed to the analytes of interest. These analytes can be contained in either a solution or in the headspace above a solution. Once the fiber is exposed, the analytes partition into the stationary phase based on their partitioning coefficient. The second step of the process involves the thermal desorption of the analytes from the stationary phase into a gas chromatograph (GC) (112-118).

SPME has proven to be a strong alternative to conventional SPE and has developed into a commercially available system (119,120). SPME is similar to SPE in its simplicity, cost, and on-site sampling capabilities while eliminating the need for eluting solvents. The limitations of SPME are found in its extraction step. While SPE is based on exhaustive extraction of analytes from solution, SPME is based on equilibration for extraction. This technique results in less sensitive limits of detection and sometimes difficult calibration is required if quantification is desired. The desorption process has also been optimized for GC thermal desorption. Though a LC desorption system has been introduced (121-123), it relies on a special injection port and a microbore HPLC system.

The final chapter of this dissertation introduces the possibility of SPE in a syringe. In this system, given the name membrane-based micro solid-phase extraction (MMSPE), a much smaller membrane is utilized than any system previously explored. MMSPE allows extraction of analytes on a membrane that has a total volume of less than 0.5 μ l and elution of extracted analytes with just a 1.0 - 5.0 μ l of eluting solvent. Overall recoveries similar to the high analyte recoveries obtained with conventional SPE are realized.

Finally, this solvent is injected directly into either a GC or HPLC system with no required modifications to the systems. Since the syringe in which the extraction is performed is also the syringe used for injection, no tedious collection step of the small elution volumes is required. This eliminates the possibilities of either evaporation of the small volume or partitioning of the analytes from solution into the headspace above the solution. With MMSPE 200-fold concentration factors were achieved with just 1.0 ml of sample solution. Due to the very small elution volume required and the fact that the entire elution volume is used in the analyses, these very high concentration factors are made possible.

References

1. W. Pipkin, *Am. Lab.*, 11 (1990) 40D.
2. M.H.I. Baird, *Canadian J. Chem. Eng.*, 69 (1991) 1287.
3. S.K. Poole, T.A. Dean, J.W. Oudsema, C.F. Poole, *Anal. Chim. Acta*, 236 (1990)
4. S.B. Hawthorn, *Anal. Chem.*, 62 (1990) 633A.
5. R. Huber, K. Zech, *Selective Sample Handling and Detection in High Performance Liquid Chromatography*, part A, Chapter 2, Elsivier, 1988.
6. R.D. McDowall, J.C. Pearce, G.S Murkitt, *Trends Anal. Chem.*, 8 (1989) 134.
7. G.A. Junk, J.J. Richard, M.D. Grieser, D. Witiak, J.L. Witiak, M.D. Arguello, R. Vick, H.J. Svec, J.S. Fritz, G.V. Calder, *J. Chromatogr.*, 642 (1993) 135.
8. I. Liska, J. Krupcik, P.A. Leclercq, *J. High Res. Chromatogr.*, 12 (1989) 577.
9. R.D. McDowall, *J. Chromatogr.*, 492 (1989) 3.
10. J.V. Greenwood, *BioTechnology*, 5 (1987) 76.

11. J.J. Sun, J.S. Fritz, *J. Chromatogr.*, 522 (1990) 95.
12. J.J. Sun, J.S. Fritz, *US Patent*, 5071565, December 10, 1991.
13. P.J. Dumont, J.S. Fritz, *J. Chromatogr.*, 691 (1995) 123.
14. M. Moors, D.L. Massart, R.D. McDowall, *Pure & Appl. Chem.*, 66 (1994) 277.
15. P.E. Jackson, P.R. Haddad, *J. Chromatogr.*, 629 (1993) 11.
16. S. Schmidt, J.J. Sun, J.S. Fritz, *J. Chromatogr.*, 641 (1993) 57.
17. J.C. Molto, Y. Pico, J. Manes, G. Font, *JAOAC Int.*, 75 (1992) 714.
18. P.M. Hyde, *J. Anal. Toxicol.*, 0 (1985) 269.
19. D.L. Gmur, P. Meier, G.C. Yee, *J. Chromatogr.*, 425 (1988) 343.
20. M.J.M Wells, D.D. Riemer, M.C. Wells-Knecht, *J. Chromatogr.*, 659 (1994) 337.
21. M. Psathake, E. Manoussaridou, E.G. Stephanou, *J. Chromatogr.*, 667 (1994) 2251.
22. O. Busto, Y. Valero, J. Guasch, F. Borrull, *Chromatographia*, 38 (1994) 654.
23. S.D. Aga, E.M. Thurman, M.L. Pomes, *Anal. Chem.*, 66 (1994) 1495.
24. K.C. Ting, P. Kho, *J. AOAC*, 74 (1991) 6661.
25. T.P. Rohrig, R.W. Prouty, *J. Anal. Toxicol.*, 13 (1989) 305.
26. Y. Yamada, O. Asano, T. Yoshimura, K.J. Katayam, *J. Chromatogr. Biomed. Applic.*, 433 (1988) 243.
27. P.J. Dumont, J.S. Fritz, L.W. Schmidt, *J. of Chromatogr.*, 707 (1995) 109.
28. M.C. Gennaro, C. Baiocchi, E. Campi, E. Mentasti, R. Aruga, *Anal. Chim. Acta*, 151 (1983) 339.
29. M. Pesavento, A. Profumo, R. Biesuz, *Talanta*, 35 (1988) 431.

30. M. Pesavento, R. Biesuz, M. Gallorini, A. Profumo, *Anal. Chem.*, 65 (1993) 2522.
31. M. Marhol, K.L. Cheng, *Talanta*, 21 (1974) 751.
32. D.S. Hackett, S. Siggia, *Anal. Chim. Acta*, 71 (1975) 253.
33. J.F. Dingman, K.M. Gloss, E.A. Milano, S. Siggia, *Anal. Chem.*, 46 (1974) 774.
34. R. Raja, *Am. Lab.*, 36 (1982) 35.
35. D.E. Leyden, G.H. Luttrell, *Anal. Chem.*, 47 (1975) 1612.
36. A. Hulanicki, *Talanta*, 14 (1967) 1371.
37. J. King, J.S. Fritz, *Anal. Chem.*, 57 (1985) 1016.
38. F.E. Critchfield, J.B. Johnson, *Anal. Chem.*, 28 (1956) 430.
39. W.M. Landing, C. Haraldson, N. Paxeus, *Anal. Chem.*, 58 (1986) 3031.
40. J.W. Parrish, R. Stevenson, *Anal. Chim. Acta*, 70 (1974) 189.
41. S.N. Willie, R.E. Sturgeon, S.S. Berman *Anal. Chim. Acta*, 149 (1983) 59-66.
42. G. Schmuckler, *U.S. Patent*, 3473921 (1969).
43. G. Kosster, G. Schmuckler, *Anal. Chim. Acta*, 38 (1967) 179.
44. J.R. Parrish, *Chem. And Ind.*, 98 (137) 1956.
45. R.J. Phillips, J.S. Fritz, *Anal. Chim. Acta*, 139 (1982) 237.
46. J.B. Haynes, *J. Med. Chem.*, 13 (1970) 1235.
47. W.N. Fishvein, J. Daly, C.C. Streeter, *Anal. Biochem.*, 28 (1969) 13.
48. H.U. Demuth, G. Fischer, A. Barth, R.L. Schowen, *J. Org. Chem.*, 54 (1989) 5880.
49. R.J. Phillips, J.S. Fritz, *Anal. Chim. Acta*, 121 (1980) 225.
50. G. Petrie, D. Locke, C.E. Meloan, *Anal. Chem.*, 37 (1965) 919.

51. J.S. Fritz, P.J. Dumont, L.W. Schmidt, *J. Chromatogr.*, 691 (1995) 133.
52. R. Parry, D. Gisch, G. Wachob, *J. Liq. Chromatogr.*, 10 (1987) 2429.
53. R.F. Strasburg, J.S. Fritz, *J. Chromatogr.*, 547 (1991) 11.
54. R.E. Barron, J.S. Fritz, *J. Chromatogr.*, 284 (1984) 13.
55. G.L. McIntire, *Crit. Rev. Anal. Chem.*, 21 (1990) 257.
56. D.J. Barkeley, M. Blanchette, R.M. Cassidy, S. Elchuk, *Anal. Chem.*, 58 (1986) 2222.
57. M.Wu, V. Pacakova, K. Stulik, G.A. Sacchetto, *J. Chromatogr.*, 439 (1988) 363.
58. J. Fischer, P. Jandera, *J. Chromatogr. B.*, 681 (1996) 3.
59. D.W. Armstrong, S.J. Henry, *J. Liq. Chromatogr.*, 3 (1980) 657.
60. D.W. Armstrong, *Sep. Purif. Methods*, 14 (1985) 213.
61. M.F. Borgerding, R.L. Williams, Jr., W.L. Hinze F.H. Quina, *J. Liq. Chromatogr.*, 12 (1989) 1367.
62. D. Bentrop, F.V. Warren, S. Schmitz, B.A. Bidlingmeyer, *J. Chromatogr.*, 535 (1990) 293.
63. J.G. Dorsey, M.T. DeEchegaray, J.S. Landy, *Anal. Chem.*, 55 (1983) 924.
64. X. Li, J.S. Fritz, *J. Chromatogr.*, 728 (1996) 235.
65. X. Li, J.S. Fritz, *Anal. Chem.*, 68 (1996) 4481.
66. M. Arunyanart, L.J. Cline Love, *J. Chromatogr.*, 342 (1985) 293.
67. Y. Shang, S.E. Rassi, *J. Liq. Chromatogr.*, 18 (1995) 3373.
68. M. Amin, K. Harrington, R.V. Wandruszka, *Anal. Chem.*, 65 (1995) 2346.
69. D. Westerlund, *Chromatographia*, 24 (1987) 155.

70. J. Haganaka, J. Waka, H. Yasuda, T. Nakagawi, *Anal. Chem.*, 59 (1987) 2732.
71. F.J. DeLuccia, M. Arunyanart, L.J. Cline Love, *Anal. Chem.*, 57 (1985) 1564.
72. L.J. Cline Love, S. Zibas, J. Noroski, M. Arunyanart, *J. Pharm. Biomed. Anal.*, 3 (1985) 511.
73. J.V. Poslusny, M.T. DeEchegaray, J.S. Landy *J. Chromatogr.*, 507 (1990) 267.
74. G.R. Granneman, L.T. Sennello, *J. Chromatogr.*, 229 (1982) 149.
75. M.J. Koenigbauer, M.A. Curtis, *J. Chromatogr.*, 427 (1988) 277.
76. D. Bentrop, F.V. Warren, B.A. Bidlingmeyer *J. Chromatogr.*, 535 (1990) 293.
77. T.C. Pinkerton, *J. Chromatogr.*, 544 (1991) 13.
78. R. Grohs, F.V. Warren, B.A. Bidlingmeyer, *Anal. Chem.*, 63 (1991) 384.
79. J.D. Brewster, A.R. Lightfield, R.A. Barford, *J. Chromatogr.*, 598 (1992) 23.
80. C.K. Lim, *Trends Anal. Chem.*, 7 (1988) 340.
81. C.T. Wehr, *J. Chromatogr.*, 418 (1987) 27.
82. M.B. Kester, C.L. Saccar, M.L. Rocci, H.C. Mansmann, *J. Chromatogr.*, 380 (1988) 99.
83. J. Haganaka, J. Wakai, H. Yasuda, *Anal. Chem.*, 59 (1987) 2732.
84. M.A. Van Opstal, F. A. Van der Horst, J.J. Holthuis, W.P. Bennekom, A. Bult *J. Chromatogr.*, 495 (1989) 139.
85. J. Haganaka, *TRAC, Trends Anal. Chem.* 10 (1991) 17.
86. K.K. Unger, *Chromatographia*, 31 (1991) 17.
87. T. Ohta, S. Niida, H. Nakamura, *J. Chromatogr. B*, 675 (1996) 168.
88. M.L. Menezes, *J. Liq. Chromatogr. Rel. Technol.*, 19 (1996) 3221.

89. J.W. Dolan, *LC-GC*, 13 No. 1, (1995) 24.
90. J.A. Perry, *J. Liq. Chromatogr.* 13 (1990) 1047.
91. K.K. Unger, *Chromatographia*, 10 (1991) 17.
92. T.C. Pinkerton, *J. Chromatogr.*, 544 (1991) 13.
93. T.C. Pinkerton, T.D. Miller, S.E. Cook, J.A. Perry, J.D. Ratelke, T.J. Szczerba, *BioChromatography*, 1 (1986) 96.
94. T.C. Pinkerton, T.D. Miller, L.J. Janis, *Anal. Chem.*, 61 (1991) 1171.
95. A. Shibukawa, T. Nakagawa, M. Miyake, H. Tanaka, *Chem. Pharm. Bull.*, 36 (1988) 1930.
95. T. Ohta, S. Niida, H. Nakamura, *J. Chromatogr. B.*, 675 (1996) 168.
96. K. Zech, R. Huber, *J. Chromatogr.*, 353 (1986) 351.
97. R. Wysa, F. Buchell, *J. Pharm. Biomed. Anal.*, 8 (1990) 1033.
98. H. Takahegi, K. Inoue, M. Horlguchi, *J. Chromatogr.*, 352 (1989) 369.
99. U. Juergens, *J. Chromatogr.*, 310 (1984) 97.
100. V. Ascalone, L. Dalbo, *J. Chromatogr.*, 423 (1987) 239.
101. Z. Yu, S. Westerlund, *J. Chromatogr.*, 725 (1996) 137
102. I. Perez-Martinez, S. Sargrado, M.J. Medina-Hernandez, *Anal. Chim. Acta*, 304 (1995) 195.
103. F.A. Van Der Horst, M.A.J. Van Opstal, J. Teeuwesen, M.H. Post, J.J.M. Holthuis, U.A. Brinkman, *J. Chromatogr.*, 567 (1991) 161.
104. J. Haganaka, J. Wakal, H. Yasuda, *J. Chromatogr.*, 488 (1989) 341.
105. K.B. Sentell, J.F. Cloe, J.G. Dorsey *BioChromatography*, 4 (1989) 324.

106. B. Bryan, *Today's Chemist at Work*, February, 1994.
107. D.F. Hagan, C.G. Markell, G.A. Schmitt, D.D. Belvins, *Anal. Chim. Acta*, 236 (1990) 157.
108. D.L. Mayer, J.S. Fritz, *J. of Chromatogr.*, accepted 1997.
109. Z. Zhang, M.J. Yang, J. Pawliszyn, *Anal. Chem.*, 66 (1994) 844A.
110. K.D. Buchholz, J. Pawliszyn, *Anal. Chem.*, 66 (1994) 160.
111. S. Magdic, J. B. Pawliszyn, *J. Chromatogr.*, 723 (1996) 111.
112. M. Moder, S. Schrader, U. Franck, P. Poppp, *Fesen. J. of Anal. Chem.*, 357 (1997) 326.
113. R.G. Belardi, J. Pawliszyn, *J. WAtter Pollut. Res. Can.*, 24 (1989) 179.
114. M. Chai, C.L. Arthur, J. Pawliszyn, R.P. Belardi, K.F. Pratt, *Analyst*, 118 (1993) 1501.
115. C.L. Arthur, D.W. Potter, K.D. Buchholz, S. Motlagh, J. Pawliszyn, *LC-GC*, 10 (1992) 656.
116. C.L Arthur, L.M. Killam, K.D. Buchholz, J. Pawliszyn, *J. Anal. Chem.*, 64 (1992) 1960.
117. F. Centini, A. Masti, I.B. Comparini, *Forensic Science*, 83 (1996) 161.
118. D.W. Potter, J. Pawliszyn, *J. Environ. Sci. Technol.*, 625 (1992) 247.
119. Supelco Application Note T396098, copyright 1996, Supelco, Inc.
120. Solid Phase Microextraction, T496058, copyright 1993, Supelco, Inc.
121. K. Jinno, T. Muramatsu, Y. Saito, Y. Kiso, S. Magdic, J. Pawliszyn, *J. of Chromatogr.*, 754 (1996) 137.
122. J. Chen, J. Pawliszyn, *Anal. Chem.*, 67 (1995) 2530.

123. Supelco Product Specification T496049, copyright 1996, Supelco, Inc.

GENERAL CONCLUSIONS

By using resins that are much smaller than conventional solid phase extraction, and carefully optimizing reaction condition, resins can be produced that give very good recoveries in the batch mode. These resins provided high capacities and excellent recoveries in both the column and the batch mode. Many of the problems usually encountered when using chelating resins are avoided in the batch mode. Equilibration times, elution off of the resin, and memory effects when reusing the resin are avoided in the batch mode. Due to the very strong complexation achieved with these resins, recoveries of metals in the batch mode are also higher than when simple ion exchange resins are used.

The DSX-100 instrument from Cetac Technologies showed excellent reproducibility and recovery of metal ions with a fully automated system. Concentration factors between 10-100 were demonstrated, along with excellent elimination of interfering ions in the matrix. Concentrated salt brines were even used as representative samples, with recoveries of uranium near 80% with a ten-fold concentration effect.

The use of a new surfactant, Brij-S proved to be an excellent choice when compared to SDS. The surfactant serves two purposes in the separation of drugs from biological fluids in direct-injection HPLC. First, it prevents adsorption of the large biomolecules and causes them to be eluted rapidly and cleanly. Second, it permits elution of the drugs at a much lower organic solvent concentration than would otherwise be necessary. Brij-S is found to elute the large biomolecules almost with the identical strength at SDS, while the elution of drugs with Brij-S is a great improvement over SDS.

Peak shapes are sharper, drugs are eluted faster, and different selectivities for particular drugs are found. By using a solvent gradient in the sulfonated Brij-30 system, analysis times were cut in half and late eluting peaks were sharpened, with no additional instrumentation required. The choice of an appropriate surfactant for a separation is an easy way to achieve excellent separations in the minimum amount of time when drug separations in biological fluids are required.

The technique of SPE in a syringe has many advantages over conventional SPE and SPME. SPE in a syringe miniaturizes traditional SPE, requiring just 5-20 μ l of solvent to elute compounds from the small membrane bed. Since the technique requires such small elution volumes, the eluted compounds can be eluted from the syringe, directly into a GB or HPLC system, with no handling of the eluant required. This eliminates the risk of error due to evaporation or mishandling. SPE in a syringe is also an exhaustive extraction technique, providing the lowest limits of detection and the easiest quantification.

SPE in a syringe is shown to be an effective form of SPE. Recoveries of phenols on an anion exchange resin were found to be >90%, with limits of detection pushed down to the parts per billion range. This technique was also effective in removing drugs from serum and in the extraction of polycyclic aromatic hydrocarbons before analysis with HPLC.

ACKNOWLEDGEMENTS

I would like to thank my major professor, Dr. James Fritz, for accepting me into his group. I was the third you took that year, and I am very happy for the last five years of learning the separation sciences from you. I also enjoy those times we got to do things away from the office, including golf. Unfortunately I was looking to win the day you shot a 42 at Homewood.

Along with Dr. Fritz I want to thank the members of my committee for their time and commitment over the last five years. I got to know the three chemistry professors very well while I taught with them. Dr. Johnson, it was a pleasure to watch you teach your general chemistry class. I learned so much "every day" chemistry sitting in on your freshman chemistry class. I also want to thank you for being a professor I could go to when I wanted to discuss any problems or my future direction. As for Dr. Houk, I also enjoyed teaching with you, but possibly enjoyed the basketball and softball even more. I wasn't especially inclined to either sport, but I am sure I had the most assists in basketball (since I almost refused to shoot). I also want to thank Drs. Woo and Oulman. I feel your questions are some of the most important ones asked during my prelim oral. It is so important to see how people with different approaches to science view the same research.

The Fritz group was a great group to be in. I want to thank the past group members first. Phil, for your help getting me hooked on golf and your help in the lab too. Unfortunately we will be in different cities now, but who knows what a few years will bring. Xue, with your constant smile and your help getting me started on my first HPLC project. Tom, Nancy, Luther, and John for your help when I first started in the group,

The current members of the group, Michelle, Wei, Jei, and Jeremy, I would also like to thank. Michelle, we have had more talks in our five years together than I care to count. It was always nice to talk either chemistry or of things outside of the lab with you. It always helped to break up the day. Wei, you have been a great source of information. I enjoyed learning from you and sharing a lab and so many other things with you - like golf. I would also like to thank Jeremy for his help on my final project.

I would like to thank Pat for his assistance in making me an "HPLC troubleshooter". I hope I didn't mess up your instrument too much during the work we did on it. Your talks about the Church and religion in general have brought me a long way down the path. I know you will make a wonderful priest. Along with Pat, I would like to thank so many people that I call friends at Iowa State. In intramurals, fantasy football, tackle football, playing cards, or gaming of any kind, I have gotten to know so many people here.

The most important person in my life for the last five years is the next person I would like to thank. Ann, you have meant so much to me. Your support and strength always gave me a place to run to no matter how much pressure I was under. You took care of Elizabeth and Anthony full time, provided us with some crucial money with your job, and still had to put up with me. I can't thank you enough for your commitment to graduate school you had to share with me. As I said in the dedication, you never let me forget what was really important in life and how unimportant the things that worried me the most usually were. I love you.

I would next like to thank my parents, James and Marilyn Freeze. You raised all of your kids with level heads that helped us all go far (no matter what some high school

of your kids with level heads that helped us all go far (no matter what some high school guidance counselor predicted). Thanks for your support and always telling me I could accomplish whatever I set my mind to, no matter how discouraged I may of been at the time.

In closing I would like to thank God for bringing each and every person that I have mentioned into my life. You have given me the strength, tools and people to get me this far. Help me to always remember that there is no way I could of made it this far without so many people holding me on their shoulders.

This work was performed at Ames Laboratory under Contract No. W-7405-Eng-82 with the U.S. Department of Energy. The United States government has assigned the DOE Report number IS-T 1818 to this dissertation.