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NOMENCLATURE

Sound velocity

Damping matrix

Drag coefficient

Added mass coefficient

Two-phase flow damping coefficlent
Viscous damping coefficient

Drag coefficient for axial flow
Cylinder diameter

Cylinder damping coefficient
Flexural rigidity of cviinder
Torsional rigidity

Total fluid force components in two orthogonal directions

Fluid force components that are independent of cylinder motion

w/2m

Natural frequency of nth mode (Hz)

Functions specified in Eqs. 6, 7, 8, and 11 for various cases
Fluidelastic stiffness constant
Keulegan-Carpenter parameter (2m/D)

Length of a cylinder or axial half wavelength
Mass per unit length of cylinder

Displaced mass of fluid per unit length

Added mass per unit length

Number of cylinders

Longitudinal pitch

Generalized coordinate associated with ith mode

Cylinder radius

u,v,w,

U.i ,Vi




Radius of the outside cylinder or radius of curvature for a

curved tube
2

Kinetic Reynolds number (E%_)
Forced Strouhal frequency
Strouhal frequency

Time

Transverse pitch

Cylinder displacements

Peak cylinder displacement
Reduced flow velocity (V/fD)
Flow velocity

Void fraction

Added mass
Fluid viscous damping

Fluidelastic stiffness

r/R

Fluid viscosity

Kinematic viscosity of fluid

Orthonormal modal function of ith mode

Fluid density for a single phase fluid

Effective density for a two-phase flow

Fluid density for the higher-density fluid in a two-phase flow
Modal damping ratio of nth mode

Oscillation frequency

Natural frequency of nth mode in radian/second




DESIGN GUIDE FOR CALCULATING FLUID DAMPING
FOR CIRCULAR CYLINDRICAL STRUCTURES

by

S. S. Chen

ABSTRACT

Fluid damping plays an important role for structures
submerged in fluid, subjected to flow, or conveying fluid. This
design guide presents a summary of calculational procedures and
design data for fluid damping for circular cylinders vibrating

in quiescent fluid, crossflow, and parallel flow.

I. INTRODUCTION

Fluid damping is the result of energy dissipation caused by the motion
of a structure relative to a fluid. It plays an important role for
oscillations of structures submerged in fluid, subjected to flow, or
conveying fluid. It affects structural response amplitude and stability
boundaries. To understand the vibrational behavior of a structural system
vibrating in a fluid, to calculate the response amplitude, and to predict
the stability-instability boundary, we have to determine the magnitude of

fluid damping.

Fluid damping arises from many different sources. In a quiescent
viscous flow, the drag force acting on a vibrating structure can contribute
to the viscous type of damping. In a compressible fluid, the energy carried
away by out—going waves is an energy loss and can also be modeled as viscous
damping in some parameter range. In a moving fluid, other fluid force
components can be very important—--forces are functions of flow velocity and
may act as a damping mechanism. In a certain parameter range, the nature of
this flow-velocity—dependent force may change from an energy-dissipating

mechanism to a destabilizing effect and cause structural instability.
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Studies of fluid damping for circular cylinders in various flow
conditions have been reported. The objective of this design guide 1is to
summarize the results, which may be useful in the analysis and design
evaluation of structural components subjected to fluid flow——in particular,
for applications to nuclear internal and plant components. Most of the
material in the design guide is based on a recent review [1]. Specifically,
this design guide includes:

Some general considerations of fluid damping,
Damping in quiescent fluids,

Damping in parallel flow,

Pamping in crossflow, and

Examples of fluid damping.

II. SOME GENERAL CONSIDERATIONS

1. Fluid Force Components

Consider an array of N circular cylinders oscillating in a flow as
shown in Fig. 1. The axes of the cylinders are parallel to the z axis. The
subscript 1 is used to denote variables associated with cylinder i. The
displacement components of cylinder 1 are uy and vy and fluid force
components are f; and g;, respectively. There are several types of fluid

forces (2,3]:
1. Fluid inertia force-—-fluid force that is proportional to the
cylinder acceleration.
2. Fluid damping force--fluid force that is proportional to the
cylinder velocity.
3. Fluidelastic stiffnesas force--fluid force that is proportional to

the cylinder displacement.

4., Fluid excitation force--fluid force that is independent of the

cylinder motion.
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Vv
(a) A GROUP OF CIRCULAR CYLINDERS
iy f g
0 - X
Y4

(b) FLUID FORCE AND CYLINDER DISPLACEMENT
COMPONENTS

Fig. 1. Schematic of a circular cylinder array; (a) a group of circular
cylinders; (b) fluid force and cylinder displacement components.
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Mathematically, these fiuid force components can be written:

N ’u Bu a%y
;= j_zl {oy N M S S L ;t_zi
av
ol ety
and N 82u du 32v W
8 = j=21 {lr5 N oy 'a?i+ 5505 ] + (B ;t'?fi
av

+ Bij'aTi+ By3vill + &gy -

The components in the brackets are called motion—-dependent fluid forces;
these components vanish if the cylinders are stationary. f_; and g,y are
resultant fluid excitation forces that are independent of cylinder motion.

Note that Gjs %y Tij’ and Bij are added mass matrices; "‘ij’ °ij’ , and

'r]!_j
B{j are damping matrices, and ufj, o{j, Tfj, and ij are fluidelastic
stiffness matrices. In general, these matrices depend on cylinder motion,
in particular, the displacement (uy, vy), velocity (3u;/3t. dv;/3c), and
acceleration (Bzui/ 8t2, Bzvi/atz), and the flow velocity (V). However, in
many practical situations, added mass matrices are independent of cylinder
motion and flow velocity V, while domping and fluidelastic matrices a.e

functions of flow velocity V only.

Equation 1 can be written as a single matrix equatien:
{F} = (M]{§} + [C1{q} + [K]l{q} + {Q}. (2)

For a single cylinder, the motioas in the two directions are uncoupled in

most cases; therefore, the two force components can be written:

2
du .
= g—= + a — + o’u +
f q&2+a 3t au fo,
and _ (3)
Bzv v
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Furthermore, in souwe situations, the motion is independent of the direction
of oscillations; i.e., either one of the components of Eq. 3 1s applicable
and can be written as follows:
82u u
f=CMMd ab2+CV—5t:_--'-ku-'-f':o’ . ()
where M; is the dispiaced mass per unit length of fluid by the cylinder, Cy
is the added mass factor, C, is the viscous damping coefficient, and k is

v
the fluidelastic stiffness constant.

2. Fluid Damping Coefficients

Without loss of generality, consider a single cylinder oscillating with
a displacement given by u = ujcosut in a flow with a mean flow velocity V.

In this case, the following dimensionless parameters are important:

Reynolds number Re = ? ,
Reduced flow velocity U_ = Y ,
£ f£D 2
Kinetic Reynolds number = _UE\)— ,
21ru0
Keulegan—-Carpenter parameter Kc =7 .

The first two parameters are associated with the mean flow and the last two
parameters are associated with the oscillations of the cylinder. Fluid
damping matrices aj'_j, oj'_j, Tij, and Bij in Eqs. 1 and [C] in Eq. 2, and
fluid damping coefficients a' and B' in Eqs. 3 and C, in Eq. 4, in general,

are functions of Re, Ug, S, and L

In most cases, we are interested in small-amplitude oscillations; i.e.,
K. is very small. Then fluid damping is a function of Re, 5, and Ug only.

The following two situations are of particular importance:
1. In quiescent fluid, fluid damping is a function of S only.
2. In flowing fluid, fluid damping is a function of Ug only.
In other situations, other approximations can be applied.

A summary of available results on damping will be presented based on

Eqs. 1 to 4 for three different flow conditions: quiescent fluid, parallel

flow, and crossflow.
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III. QUIESCENT FLUID
For structures vibrating in a quiescent fluid, fluid damping consists
of (1) fluid viscous effect and (2) energy carried away by acoustic waves.

Available results are listed in the following text.

1. A Circular Cylinder in a Concentric Annular Viscous Fluid

A circular cylinder vibrating in a confined viscous fluid, as shown in
Fig. 2, was studied theoretically and experimentally by Chen et al. [4,5].
A closed-form solution for the fluid force was obtained wusing the
linearized, two-dimensional Navier-Stokes equations of motion. Let the
cylinder perform a small sinusoidal motion u(t)(= ujcoswt). The fluid force

per unit length acting on the cylinder is

d2u du
f=CMMdd_t?+CvH’ (5)

where

Cy = Re(H),

C, = -Mquln(H),

H = {2a2[I(a)K (b) - I (B)K,(a)] = 4alI;(a)K,(b) + I (b)K,(a)]
+ 4ay[I (a)K (b) + I;(B)K,(a)] - 8y[T;(a)k (b) - I;(b)K;(a)]}
+ @21 - Y)II,(a)R (b)Y ~ I (b)K, (a)]

+ 2ay[I (a)K (b) = I; (B)K,(b) + I;(b)K (a) = I (b)K;(b)]

+ ZaYZ[Io(b)Kl(a) - Io(a)Kl(a) - Il(a)Ko(b) - Il(a)Ko(a)]} -1,

)
a=@+1) /5,

(6)
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Bt

ﬁ

r

Fig. 2. Schematic and coordinate system of a cylinder vibrating in
fluid annulus.
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2
a+1) /5=,

b=

(6)
Y=1/R, (Contd.)
Md = pnr2 .

The values of CM and Cv depend on H, which, in turn, is a function of the
radius ratio r/R and kinetic Reynolds number S (= urz/v). The values of
Re(H) and -Im(H) are given in Figs. 3 and 4, respectively.

When the absolute values of a and b in Eqs. 6 are large (e.g., both 'al

and |b| > 50), H can be simplified:

H = [a 1 + y) - sy]smh(b -a)+2a(2 -y + ¥ )cosh(b - a) - 2y J_b - 2ay/_
a (l - Y )sinh(b - a) - 2ay(l + y)cosh(b - a) + Zy (ab) + 2ayYy

(7)
As the radius ratio becomes infinite, H given in Eq. 6 becomes
4K1(a)
—_ +___—.
H=1 aKo(a) (8)

The values of H are given in Fig. 5 as a function of S(= wrz/v). This
corresponds to the case of a circular cylinder vibrating in an infinite

viscous fluid.

Based on the boundary-layer approximation, Sinyavskii et al. [6] has

developed approximate expressions for Cy and (;:

1/2
CM = 2 2 + r
and 9)

- dmer R4 + r3R

],
v /z’ (RZ _ rz)?.

where Yw/2v is the viscous penetration depth. Note that Eq. 9 is similar to

1

2 2
RO +r 2 (2v
T &)

Eq. 7; it is applicable for mrz/v >> 1. In many practical applicatioms,
Eq. 9 can be employed.
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Several additional approximate solutions for Cy and C, also are given

in Section III.S.

The theoretical results and experimental data agree well for both a
cylinder oscillating in an infinite fluid {7] and in an annular region
[4,6]. However, the linear theory is applicable only for small-amplitude

oscillations (see Section III.10 for discussions).

For a uniform cylinder with mass per-unit length m, the modal damping

ratio attributed to fluid viscosity is [4]

-_l(_____Md ) Im(H) (10)
T T2 e e M

The analytical results for L, were verified using several viscous fluids

[4]; the agreement between theory and experiment is good.

2. A Circular Cylinder in a Finite-Length Annular Viscous Region

When the length of the annular region is small (see Fig. 6; L is the
same order of magnitude as r), the three-dimensional effect becomes
significant. An approximate solution for this case was obtained by Mulcahy
[8]. It is based on the 1linearized Navier-Stokes. equations and the
assumption that the gap clearance is much less than the cylinder radius r.

The fluid force acting on the cylinder is given by

2
cen Pu, o &
£f=GM at2+c" T

C, = I—JRe(ns[1 - osh(z/R),

M R-r cosh(L/R)

C = -M ( r )m.[ (H) [1 _ COSh(Z/R)] (11)
v dR - ¢ /¥ ® cosh(L/R) ! °
H a sinh a

{2 + a sinh a - 2 cosh a) °’

and

_ 82
a=(1+i) ﬂ_zv—li—.
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Fig. 6. A circular cylinder in fluid filled annular region.
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The theoretical values of Re(H) and -Im(H) are given in Fig. 7. Experi-
mental data are shown to agree well with the theory. The solution is valid
for (R - r)/r << 1 and the viscous penetration depth vw/2v on the order of

(R - ).

Note that Eq. 11 is applicable for transverse motion within the gap.
The damping associated with the rotational motion is, 1in general, much

smaller and can be ignored.

3. A Circular Cylinder in an Eccentric Annular Viscous Fluid

Closed form solution for this case is not available. However, viscous
damping can be obtained using a finite—element method [9]. A system of
discretized equations 1is obtained from the appropriate two-dimensional
Navier—Stokes and continuity equations through Galerkin's process. The
basic unknowns are velocity and pressure. The added mass and viscous
damping coefficients are obtained through a line integration of stress and

pressure around the circumference of the cylinder.

Typical results are given in Fig. 8. Both Cy and C, increase with

eccentricity.

4, A Circular Cylinder in an Infinite Compressible Inviscid Fluid

When a cylinder vibrates in a confined ideal fluid, no energy loss
occurs. While in an infinite fluid, there 1s a radiation loss attributed to
the energy carried away by the out-geing waves. Let the cylinder radius be
r, sound velocity in fluid ¢, and ocillation frequency w. The two—
dimensional solution of the fluid field yields the added mass and viscous

damping coefficients [10]}:

25
Cv =2
and (12)

b

¢, = Mo 7o)
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a = cit-— (¢ = velocity of sound),

A= [ya) - Jo(a)l% + [Yy(a) - Y(a))?
8 = Jy(a)liy(a) - J,(a)] + Y (a)lYy(a) - Y (a)] , and
& = Yy(a)[Jy(a) ~ J (a)] - Jy(a)lYy(a) =~ Y (a)l .

The values of Cy and C, are given in Fig. 9.

For a uniform cylinder with mass per—unit length m, the modal damping

ratio attributed to fluid compressibility is

Md M

to= 5 a)/ [aa+ 20 ] . (13)

5. Two Coaxial Circular Cylinders Separated by Viscous Fluid

Fluid forces acting on two coaxial tubes separated by an incompressible

fluid are obtained based on the linearized two—-dimensional Navier-Stokes

equation [Ref. 5]. The fluid forces acting on the two cylinders are
(Fig. 10)
2
2 du du
£, = 1 (a, o, 1), (14)
i j=1 ij 8(:2 ij ot

aij = p"Rj,RjRe(aij)’
a'ij = pTIRiij[m(-aij) s

ay; = (1 +2a) ; (15)
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Fig. 10. Schematic of two concentric cylinders containing viscous fluid.
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812 = a')_l = 2'Ya = "Y(l + 811) N
agyg =1 - Zyza =1+ 72(1 + all) s

by = (1w W%, , (15)
(Contd.)

Yy=r/R , and

1 1  Fi(by)  G(by) 1 1 Fy(by) G (by)
0 1 yFy(by) G (by) Y 1 yF(by) Gy (by)

2 2 byF (b))  byG,(by) 0 2 byF(b;) byG (by)

0 2 byF (b)) byG,(by) 0 2 byF.(by)  byGy(by)

where F and G, are the nth-order Bessel functions. They can be either the
first- and second-kind Bessel functions, Jn and Y,s or the Hankel functions,

(1) and H(l). The selection of the functions mainly depends on
By n

computational considerations.

The coefficients and af: depend on the S(= wr?/v) and Y in a very
Q45 o &

complicated way. Approximate solutions can be obtained in special cases:

(a) Viscous fluid and very large radius ratio (e.g., y > 10, S > 1)

For Y »0 and |by]| >> 1,
apy = 1 - 4§D /o)) . (16)
Furthermore, if lbll > 1,

=1—-l-Lj;. (17)




(b)

(e)

(d)

(e)

(£)

(8)
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Viscous fluid and large value of S (e.g., S > 104)

aj; = -1 + {[16b% - (73 - 578y + 9v%)/8]s1in(Gb,)
- 2b1(1 - v)(16 + J;)cos(Gbl)}

£ {1 - v2)(8b% - (9 + 30y + 9v2)/16]s1n(Gb;)

+ by(1 + Y)(1 + 14y + Y’)cos(Gby) - 32byy Yy} ,

G=(1-v/y.

S > 1 and G2s << 1

= — 3
aj] = 121/G°S .

S >> 1 ard moderate gap (e.g., G > 0.01 and S > 104)

bl(l + Yz)sin(Gbl) -2(2 - v+ Yz)cos(Gbl) + 4yy
a,, = .
11 bl(l - Yz)sin(Gbl) + 2v(1 + Y)cos(Gbl) - 4yy

S > 1 and G2S > 1 (e.g., S > 10%, and G%s > 10%)

- 12(2 - v + Yz)]/[bl(l - Y2) +1i2v(1 + y) 1.

S > 1, 25 >> 1 and 6 << 1 (e.g., S > 107, ¢Zs > 10%

and G < 0.05)

2
=1+Y+ vr2- [1_1(1_42)].

a
112 c2g1/2 172

v+0, § +

1 - YZ

4

(18)

(19)

(20)

(21)

(22)

(23)
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6. Cylinder Arrays in Incompressible Viscous Fluid

The viscous damping coefficient matrices “ij’ °ij’ Tij’ and B{j for

general cylinder arrays can be calculated based on the linearized two-

dimensional Navier—-Stokes equation.

- There are several experimental studies on the damping of multiple
cylinders. Shimogo et al. [11] present the results of two cylinders
vibrating in a viscous fluid. The effects of fluid viscosity on tube
motions are studied. A series of experiments to study the diagonal terms,

!. and B/: is reported by Chen et al. [12].
%3 i

For cylinder arrays vibrating in a quiescent fluid, “ij and Bij are
symmetric, and Tij = oﬁi. Physically, this means that the damping of
cylinder 1 due to the motion of cylinder j is equal to the damping of

cylinder j due to the motion of cylinder 1i.

It should be pointed out that in a viscous fluid, the motion of a
cylinder 1is coupled to other cylinders in an array through added mass
coupling and viscous coupling as given in Eq. 2, where [M] represents the
mass effect and [C] reéresents the viscous damping. In general, [C] is not

proportional to [M].

For a group of N cylinders, there are N2 elements of damping
coefficients. It is dimpractical to compile all available data in this
design guide. In fact, there are practically no complete data for any
cylinder arrays consisting of more than three cylinders. In most cases, it
is not practical to calculate all these coefficients. However, if the

detailed damping coefficients are needed, the finite element method can be

applied.

7. An Infinite Circular Cylinder in a Concentric Annular Two—Phase Flow

A circular cylinder vibrating in a confined two-phase flow was studied
experimentally by several investigators [13-16}. The inertia and damping

forces can be written

£ =0 i?ﬂ+(c +c)du (24)
MMddtZ vV G
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Note that Eq. 24 is the same as Eq. 5 with the additional term C,(du/dt),
called the two-phase-flow damping. However, the added mass coefficient Cy
and viscous damping coefficient C,, are not the same as those for a single-
phase flow. Based on the limited experimental data, and on analytical
results, Cy can be calculated based on Eq. 6 with the exception that the
effective density should be used. The ratio of effective density p, to that
of the single-phase flow p is given in Fig. 11, which includes experimental
data and analytical results. The theoretical values Pe of the effective

density are given by

(1) p, =1 - ae)p + o', (25a)
(2) by = (1 - c:e)/(Zcze + 1), (25b)
(3) P, = p(1 ~ ae)(l + Zae)/(l + 4ae - 2a§), (25¢)

where % is the void fraction, and p and p' are the densities of the two
fluids. Equation 25a is appl cable for small «,; at large a,, it predicts
mvch larger Pe than the experimental data. Equations 25b and 25¢ correlate
better with the experimental data at high values of ag and are applicable in

that range.

The coefficient C, in Eq. 24 for two-phase flow is calculated following
the single-phase flow described in Section III.1l. However, the effective
density p, given in Eg. 25a and the mixture kinetic viscosity based on

McAdams' definition [17] should be used.*

There is no analytical expression for C.. The most complete experi-
mental data are those by Carlucci and Brown [14]; these data are given in
Fig. 12. With Fig. 12, the two-phase damping coefficient C; can be

calculated based on Cv‘

The added mass and damping of circular cylinders vibrating in a two-

phase flow are still not well understood. More theoretical and experimental

*The mixture viscosity according to McAdams is given by the following

equation:
1 = % + (1 - ae)

Yoixture  Wapor  Miquid
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studies are needed; in particular, there are practically no experimental

data for cylinder arrays.

8. Circular Cylindrical Shells

For small-amplitude oscillatory motion, the fluid damping force may be
calculated based on the linearized viscous flow theory. The results are
very complicated, in general, and the details of the analytical and
experimental results cannot be included in this design guide. The following
text Iincludes several cases that may be of some use in determining the role

of fluid damping.

a. An Infinitely Long Cylindrical Shell Surrounded by

Compressible Fluid

The response of this type of shell in fluid to an excitation can
be analyzed using the cylindrical shell theory and inviscid compressible
flow theory [18]. Depending on the frequency range, the solution may be of
a traveling or a stationary wave type. Let c = velocity of sound in fluid,
£ = axlal half wavelength, and w = oscillation frequency. Then for
w> cn/L it is a traveling wave solution; the energy carried away will
contribute to damping of the shell. For w < cn/%, it is a stationary wave

solution; no energy will be carried away by the acoustic medium.

b. Two Infinitely Long Coaxial Cylindrical Shells Coupled by
Viscous Fluid

An analysis 1s presented for coupled vibration of two concentric
shells separ.*ed by a viscous fluid [19]. The coupling effects are
accounted for by using a fluid stress coefficient matrix of concentric
shells. With this type of analysis, the natural frequencies and modal

damping ratio of coupled, concentric shells in viscous fluid can readily be

obtained.

The lowest natural frequency of the coupled shell system with
fluid is significantly lower than those of the individual shells., The
frequencies of the first coupled modes (out-of-phase modey--the two shells
moving out of phase with respect to each other) are lower than either of the
uncoupled natural frequencies. The effect of the fluid viscosity on the

system natural frequencies is negligibly small in most practical systems.
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However, the modal damping ratio is ncticeably increased for some cases when
the fluid viscosity is included, especially for the lower—frequency cases.
For a coupled shell, the viscous effects are most pronounced for the out-of-
phase modes, but these effects are considered to be negligible for the in-
phase mode. In general, the effect of fluid viscosity on damping can be
estimated based on the corresponding structure vibrating in an infinite
fluid for the radius ratio of the two shells larger than 1.15. However, if
it is less than 1.15, the viscous damping should be calculated based on the

coupled mode.

C. Two Finite-Length Coaxial Cylindrical Shells Coupled by

Viscous Fluid

The natural frequencies and modal damping ratio of two coaxial
cylindrical shells of finite length are determined in tests by several
investigators [20,21]. The modal damping ratio depends on different
modes. In general, the resuits are consistent with the analytical results
obtained for the infinite shells [19]; i.e., there is a significant increase
in damping ratios of the shell system as the gap decreases for the out—of-—

phase modes, but only a moderate increase for the in—-phase modes.

9. Cylinder Arrays in Compressible Fluia

The radiation damping for cylinder arrays depends on arrangement and
wave number Xr (r = cylinder radius, X = w/c, w = oscillation circular
frequency, and c¢ = speed of sound). A general method of analysis to
determine fluid damping for a group of cylinders is available [22]. The
perturbed fluid motion is described by a two—-dimensional acoustic wave
equation with Newmann conditions on the c¢ylinders and the radiation
condition at infinity. The solution is in terms of a series of cylindrical
wave functions associated with the polar coordinates of each cylinder. To
satisfy the boundary conditions on a particular cylinder, all cylindrical
wave functions are transformed to the local coordinates of that cylinder.
The resulting equations are a system of linear algebraic equations for the
undetermined constants that are then solved numerically by a digital

computer.

In general, for small values of Ar (e.g., 0.01), incompressible flow

theory is a valid approximation for determining added mass and the radiation
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damping is approximately zero. For Ar > 0(1l), the values of added mass are
relatively small and the effect of radiation damping will be dominant.

Other techniques can also be used to study the damping, e.g., T-matrix

approach [23].

10, Effects of Other Parameters

The results presented in Sections III.1 through III.9 are applicable to
small-amplitude oscillations; i.e., the structure displacement must be much
smaller than a characteristic length, such as cylinder diameter, clearance
between two cylinders, or shell radius. When the displacement becomes

large, nonlinear effects will become important.

a. Nonlinear Effect of a Cylinder Oscillating in an Infinite Fluid

The added mass and damping of a cylinder are studied in detail by
Skop et al. [24]. The added mass coefficient Cy (see Eq. 5) is essentially
equal to 1, as predicted by linear theory. For vibrational amplitudes less
than 0.4 cylinder diameter, the fluid damping force is essentially viscous
and can be calculated based on the equec:ion given in Section III.l.
However, for B8, > 0.4 (Ba = oscillation amplitude/cylinder diameter), the
fluid damping contains both linear and velocity-squared components. The
viscous damping coefficient C to account for the large amplitude

\
oscillations is given as follows:

2 0.5
c, = mo/wv [4.5 +0.91 (%) (8, - 0.4)Ja(p, - 0.4) , (26)

where p = fluid density, w = oscillation frequency, v = kinetic viscosity,
r = cylinder radius, and H is the Heaviside unit step function. Equation 26
is determined from experimental data obtained for 230 < wrl/v < 5220.

For large—amplitude vibrations, the results presented in
Section III are not strictly applicable, and there are very few data .
available for large—amplitude oscillations. Fortunately, in most practical
applications, one is more interested in the small-amplitude oscillations,
since the large-amplitude vibration is not acceptable in general. In

addition, linear theory is also valid to determine the stability-instability

boundary.
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b. Scale Model

The current state-of-the—art knowledge of vibration of cylinders
in flow is not well enough developed to rely solely upon analytical
predictions; therefore, scale-model testing is employed frequently for
design verification. Fluid damping is one of the parameters that is

difficult to scale.

Small-scale models frequently are used in practice for design
evaluation. The kinetic Reynolds number S(= w?/v) has to be simulated to
obtain proper fluid damping. However, in most cases, other parameters, such
as Strouhal number, may be more important. It is very difficult to simulate
all the parameters simultaneously. In this situation, the kinetic Reynolds
number has to be distorted. Considerations must be made to account for the
scaling effect on fluid damping. In general, a small-scale model will give

a larger value of fluid damping that is not conservative.

IV. PARALLEL FLOW

In a flowing fluid, in addition to the damping associated with fluid
viscosity and fluid compressibility, a damping attribucted to flow velocity,
called flow-velocity-dependent damping, is important. 1In this section and
the next one on crossflow, the flow-velocity—dependent damping will be
discussed. Therefore, in a flowing fluid, the total damping is the sum of

damping in statiomary fluid plus flow-velocity-dependent damping.

1. Tubes Conveying Fluid

Consider a uniform straight tube with mass per unit length m, and
flexural rigidity EI, conveying fluid of mass per unit length Mg flowing
axially with velocity V (see Fig. 13). The linear equation of motion is
{25,26]

4 2 2 2
3 u 2 3u du du 3
EL —7 + M.V -_5+2va-3-—-+0—+(|:1+»1)__“=0. (27)
3z - zdt s at f 8t2
Let
«©
u(z,t) = J q ()¢ (2) , (28)

i=1



Fig. 13.

Schematic of a tube conveying fluid.

8¢
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where ¢;(z) 1is the orthonormal modal function without the effect of the
Coriolis force. Equation 27 can be reduced to a system of coupled equations

using Eq. 28:

. . s . 2
q + Z(Sq_l_l + ijzlcnjqj + wdq = o, (29)

where w, is the dimensionless natural frequency of nth mode without the

effect of the Coriolis force, and

1 2 d¢j(z)
an =—1 0 dz ¢n(z)dz ’
N 20 (30)
(m + Mf) ?
and
c
6= —0—0D
2(m + Mf) ‘

Note that Eqs. 29 are coupled; the coupling arises from the Coriolis
force. Because of the Coriolis force, the system does not possess classical
normal modes, in which the various parts of the system pass through the
equilibrium position at the same instant of time. In addition, the Coriolis

force may act as a damping mechanism.

From Eq. 30, it follows that:

an + Cjn = ¢n( £)¢j(£) - ¢j(0)¢n(0) . (31)

If the tube is not movable at the ends,

a3 = "C%n (32)
The work done by the Coriolis force is
M=-2w Y Ve .q.q.dt . (33)

n i nj'n*j

If the tube is not allowed to move at the ends, Eq. 32 is satisfied and
& = 0; the Coriolis force does not dissipate or supply any energy to the
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system and is not a damping mechanism. However, if the tube is allowed to
move at the end, the Coriolis force is a damping mechanism.
Alternatively, this can also be demonstrated as follows: the Coriolis

force is given by

2

du
f(z,t) ZMfV 523t ° (34)

The work done by the Coriolis force is

u 2
M= [ [ f(z,t)du dz
0 O

32u u

t £
= -M.V fo fo saor o It 42

t [}
duy2
= M.V fo (——at) dt . . (35)

As long as there 1s no movement at the ends, AW = 0 and the Coriolis force

is not a damping mechanism.

For tubes allowed to move at the ends, the modal damping ratio

attributed to the Coriolis force is approximately

va ] d¢n(z)

z =
n (m + Mf)uhz dz

¢n(z)dz . (36)
0

Equivalently, the damping coefficient C, attributed to .he Coriolis force is

. - ™.V fz dcbn(z)
v L 0 dz

Qn(z)dz . (37)

Damping 1s proportional to flow velocity and fluid mass per unit 1length
inside the tube.

In summary, the effects of the damping associated with the Coriolis
force are as follows:
« For tubes that are not movable at the ends, the Coriolis force is not

a damping force; its effect is to induce phase distortion such that the

tube-fluid system does not possess classical normal modes.
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* For tubes that are movable at the ends, the Coriolis force may become
a damping force. For a given mode, the damping value increases with the
flow velocity. For example, in a cantilevered tube conveying fluid, the
dampiag attributed to the Coriolis force can become very large and the tube

is overdamped in the first mode [27].

For curved tubes, either vibrating in the in-plane or out-of-plane
directions, fluid Coriolis forces also play the same role as that in a
straight tube. Consider a uniformly curved tube conveying fluid as shown in
Fig. 14, The tube has radius of curvature R, mass per unit length mn,
flexural rigidity EI, torsional rigidity GJ, and subtended angle a,
conveying fluid of mass per unit length M¢.  The equations of motion for the

four displacement components are [28,29]

In-plane motion (inextensional theory):

2

6 4 2 M_V 4 2
e R R N - R R
R~ 26 20 26 30 26

4 2 4 2
Iw 3w oW dw
+ 2M_V ( + J+ Rm+ M) (55— ~"=]=0 (38)
Y P £ 06%0e2  ac?
and
=

u ae.
Out-of-plane motion:

4 2 2 2 2 2
rellov et NowAdibe Jhd shv.
R” 30 20 R 236 36 30

32v 32v
+2Wm+R(m+M)——2=O
at
and : (39

EI Pvy G o 06, Fv
F Re- ) - F RS S) =0
R T R 36 96
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(b)STRESSED STATE

(a)UNSTRESSED STATE

Fig. 14. Definition of coordinates and displacements of a uniformly curved
tube conveying fluid.
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4 2 2
The force component 2M_V 6—233 +-%§%E) in Eq. 38 and 2M.V -%E%E in Eq. 39

f
36~ ot
are attributed to the Coriolis force. The effect of these fluid forces is

similar to that of a straight tube.

Tubes conveying pulsating flow [30-32] and two-phase flow [33] also
have been studied. The results of fluid damping are rather complicated and

cannot be included in this design guide.

2. A Single Cylinder Submerged in Parallel Flow

For a single cylinder submerged in axial flow, the flow-velocity

dependent damping force is [34]

MV

2
Comy Fu 1o M
F= MV o0 t7% D o (40)

where Gy is the drag coefficient. The first term is the Coriolis force, and
the second term is the drag-induced damping. The modal damping ratio
attributed to the flow-velocity-dependent force for a uniform rod with mass
per unit length m is given by

M_V ] d¢n(z) C

£ MeVCy
= + [ ]
‘n (m + mf)“hl fo dz ¢h(2)dz 4Duh(m + Mf) (41)

The damping coefficient Cy attributed to the Coriolis force and drag force
is

MV 2 de (2) M_V

- 1o £
v~ 2 j; dz ¢n(z) T3 (42)

The damping attributed to the Coriolis force is the crame as that of tube

conveying fluid (see Eq. 37).

Two typical examples of modal damping ratios are given in Figs. 15 and
16 for a fixed-fixed cylinder and a cantilevered cylinder [34]. Figures 15
and 16 show the total damping. For the fixed-fixed cylinder, the
contribution from the Coriolis force is zero; therefore, the increase of
damping with flow velocity is attributed to the drag force (second term in
Eq. 42). For the cantilevered cylinder, the Coriolis force contributes
significantly to the damping. Consequently, the total damping is much
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larger than that of the fixed-fixed cylinder. In the flow velocity range

tested the theoretical model agrees well with experimental data.

The values of Cy obtained for several cases are given in Table 1.
These tests were conducted for a cylinder vibrating in an annual region with

the radius ratio of 1.24 to 4.0.

The effect of trailing-end geometry on the damping of a cantilevered
cylinder 1is important. Eleven different trailing~end geometries were
studied by Wambsgarss and Jendrzejczyk [35]. The total modal damping ratio

was given by
Z=b+cV. (43)

The values of b and ¢ are given in Table 2. The second term is the
resultant effect of the Coriolis force, drag force, and end effect.

Equation 43 can be written
z=b>b+ ccV + ch + ceV . (44)
The damping attributed to the Coriolis force c.V and drag force cyV do net

change with end geometry; therefore, the variation in ¢V is attributed to

the end effect. The coefficients c, and cy can be calculated from Egs. 41:

M L d¢ (2)
¢ = £ [ —B 4 (2)dz
c (m + mf)m L "o dz n ’
and (45)
. - MfCN
d 4Duh(Mf + m)

Because most of these parameters are not available, c, can be approximately
calculated as follows. The damping for the tapered end (6 = 30°) increases
most slowly with the flow velocity. It is assumed that c, is zero for this

case. Then ¢, for other cases can be calculated; the result is given in

Table 2.
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Table 1. Drag coefficient Cy for a cylinder in an annular region

Support Radius
Investigators Condition Ratio Cy Remarks
of Cylinder R/r
4 0.101 Brass Tube
Clamped- 3 0.103 Brass Tube
Chen and Clamped 2 0.044 Brass Tube
Wambsganss [34] 4 0.10 Brass Tube
(1972) Clamped- 3 0.056 Brass Tube
Free 2 0 Brass Tube
Clamped-
2 0.025 Steel Tube
Clamped
Carlucci [13] Clamped- 1.57 0.071 Brass Tube
(1980) Clamped 1.24 0.085 Brass Tube
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Table 2. Empirical relationships for damping as a function of mean

axial flow velocity [35]

TRAILING END ) ) )
GEOMETRY bx 10 exl0® ¢ x10
STEPPED ] - 6.47 .09 0.25

r/D=1/2 Er - 2.04 (.43 0.59

8
§:=30° D\L -0.32 0.84 0

SQUARE | - 2.88 .63 0.79
/D=1/8 ) -3.17 .75 0.9
8=90°_ D - 6.96 2.67 .83
8:=60° > 519 2.45 1.6

0114 ) - 2.42 2.11 .27
(/0=3/8 ) - 8.46 2.82 .98
tD=1/2____ D - 5.90 .87 1.03
BULLET D - 2.3 143 0.59

[=b+cV, for 6.Im/s <V <I(6.8m/s




49

3. Multiple Cylinders in Axial Flow

When an array of N cylinders is subjected to axial flow, fluid damping
consists of three parts: viscous damping, Coriolis force, and drag force.

This is the same as for a single cylinder. However, multiple cylinders

include coupling effect. The damping coefficients can be written as
follows:

a'. = o + 2Vaq, 2 + a'

1] 0ij 1] oz dij °

ol. = d.. + 2, =+ o

1j 0] 1j @z = dij °’

(46)

., =1 + 2Vt jL-+ T

1j oij ij 9z dij °’
and

B, = 8 . +2VE . 2 +p .

ij 01ij ij oz = "dij

The first terms are the viscous damping coefficients in stationary fluid,

the second terms are associated with the Coriolis force, and the third terms

are drag-induced damping coefficients.

At present, these coefficients are not available for arbitrary cylinder
arrays. The viscous damping coefficients in stationary fluid, uéij’ oéij’
T&ij, and ‘%ij can be obtained using a finite element technique [9]. The
coefficients in the Coriolis force terms are those of added mass, which can
be calculated using the potential flow theory [2] or linearized viscous flow
theory [9]. The drag coefficients are not well understood. Paidoussis and

Suss proposed a method of solution based on the potential flow solution but

the results have not been verified [36].

The damping of an uncoupled mode of a 3 x 3 array of 6.35-mm (0.25-in.)
diameter rods with an effective length of 0.495 m (19.5 in.) between simple
supports has been reported [37]. The rods are arranged in a square pattern

with a pitch-to-diameter ratio of 1.33. The modal damping ratio is given by
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oD v 0.5 ™
g = 1.71 [m + mf) > Dz) exp (-0.00018 T)
n
2 0.22
D v
+ 0.052 (m0+ mf) (f D) (%) , (47)
n

where f = natural frequency, D = rod diameter, m + my = effective mass per
unit length, v = kinetic viscosity, p = fluid density, and V = flow
velocity. The first term in Eq. 47 is the viscous damping in quiescent
fluid and the second is the damping induced by drag force. Because the rods
are supported at both ends, the damping associated with the Coriolis force

is zero.

Further investigations are needed to quantify the fluid damping for

cylinder arrays in axial flow.

4, Cylindrical Shells Conveying Fluid

The fluid damping for a cylindrical shell conveying fluid also is
important. Most studies are based on the linearized, unsteady potential
flow theory [38-41]. The analysis for this problem is quite involved. It
is difficult to present fluid damping for general applications. For a

specific problem, a detailed study would have to be performed for each case.

V. CROSSFLOW

1. A Single Cylinder Subjected to Crossflow

The mathematical representation of a single cylinder in crossflow is
very complicated. If the motion of the cylinder is small with respect to
the approaching flow, the flow~velocity—dependent damping force can be
represented by [42,43] (see Fig. 17)

and (48)




Fig. 17.
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A single cylinder subjected to crossflow.




52

where Cp is the drag coefficient. The modal damping ratios in the x and y

directions are

C M
=2 4 )
%{ 2 (m + M ) \f J
| d n
and (49)
_% (Md R
t‘y 2“2 m+Md fD)’

where f  is the natural frequency of the cylinder in cycles per second.

Experimental data obtained in water for 1low reduced-flow velocity
(V/an < 5) are given in Figs. 18 and 19 in the lift and drag directions
[43]. The resultant damping is given; the flow-velocity dependent damping
may be obtained by subtracting the damping value at zero flow velocity. The
Reynolds number ranges from 103 to 5 x 10% in Figs. 18 and 19. The steady
state drag coefficient is about 1. Based on the steady state drag, the
modal damping calculated from Eqs. 49 will be larger than the experimental
results given in Figs. 18 and 19. Therefore, the drag coefficient for
steady flow cannot be applied to this case, in which the steady flow is
superimposed with a pulsating component. Based on the results of Figs. 18

and 19, the values of drag coefficient are 0.35.and 0.19, respectively.

In the "synchronization region,”™ in which cylinder motion is locked in
to vortex shedding process, flow/cylinder interaction becomes important.
Equation 49 is no longer applicable in this region. Damping ratios in the
lift direction for a system in wind tunnel are shown in Fig. 20 for reduced
flow velocity (V/f D) from O to 20 and Reynolds number from 300-1000 [44].
Damping changes slowly at low flow velocity and then decreases to a ainimum
value as the velocity increases within the resonant range. The minimum
range of dampiug occurs near the maximum amplitude of the cross-flow
vibration, and damping begins. to increase thereafter. Above the lock-in

range, the damping increases more rapidly with flow.

Based on these results, it appears that for a single cylinder, Eq. 49
can be applied to obtain fluid damping outside the lock-in range, although
the value of the drag coefficient for steady flow cannot be used. 1In the
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lock-in region, representation of fluid damping is still difficult; the
results given in Fig. 20 actually are a manifestation of the coupling

between vortex shedding and cylinder motion.

The drag coefficient for an oscillating cylinder in crossflow has been
measured directly by Souders et al. [45]. The drag coefficient is found to
depend on the cylinder oscillation amplitude, Reynolds number, and ratio of
forced oscillation frequency to Strouhal irequency. Figures 21 and 22 show
the variation of drag and 1lift coefficients as a function of frequency ratio
for different vibration amplitude; Cp is in general greater than that for a
non-oscillating cylinder, and approximately independent of Sf/Sn for Sf/Sn >
about 0.4. For Sf/Sn < 0.4, C, is basically the same as for the non-
oscillating cylinder. The effect of Reynolds number on Cj seems to decrease

as the vibration amplitude increases.

The 1lift coefficient given in Fig. 22 shows that for the smaller values
of oscillation amplitude and Sf/Sn, the 1lift coefficient decreases with
increasing Re. For larger values of oscillation amplitudes and Sf/Sn, G, is

not sensitive to Re.

Most recently, Kato et al. [46] have systematically studied the drag
force on oscillating cylinders in a uniform flow. The drag coefficient Cp
is a function of reduced flow velocity V/an and Keleugan—-Carpenter
parameter K,. In general the drag coefficient increases with U/an and
K.. More measurements are needed to determine the value of the drag and

c
lift coefficients for a cylinder oscillating in a flow.

2. A Pair of Cylinders in Crossflow

The flow field around a pair of circular cylinders is very complex and
has been studied extensively [47]. However, there 1is very limited
information on damping. A complete description of the damping
characteristics requires the knowledge of “ij' °ij’ Tij’ and Bij in Eq. 1.

At present, no such information is available for a palr of cylinders.

Modal damping for two cylinders normal to a flow was measured by
Jendrzejczyk et al. [48]. The modal damping for a particular mode is given
in Fig. 23. Those damping values correspond to the out~of-phase mode of in-

plane motion. Note that damping increases with flow at small flow
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velocities. It reaches a peak at a flow velocity approximately equal to
that associated with the maximum cylinder displacemeni in the drag
direction, a velocity at which tube motion 1in t"e drag direction
synchronizes with vortex shedding. With further increase in flow velocity,

damping decreases with flow velocity.

The aerodynamic forces acting on twin circular conductors have been
considered in the study of “wake—induced flutter” [49]. The fluid damping
forces depend on conductor spacing and conductor arrangement. In general,
detailed measurements have to be performed to quantify the amplitude of
fluid forces. It 1s not possible, at present, to present a simple design

guide for this problem.

3. A Group of Cylinders in Crossflow

As 1n the case of two cylinders, no complete data on cqj, Uij’ Tij, and
Bij are available. There are only a few studies directed to obtain the

damping for tube arrays [50-52].

Two tube arrays, as shown 1in Figs. 24, were tested by Chen and
Jendrzejczyk [50]: (1) 1In-line array with longitudinal pitch P/D = 1.5 and
transverse pitch T/D = 1.5 and (2) Staggered array with P/D = 1.5, and
T/D = 1.6. Damping was measured for the active tubes, located at positions
1, 2, and 3, in both 1lift and drag directions. The measured damping

corresponds to the contribution from the diagonal terms of “ij and Bij'

Two typical results are given in Figs. 25 and 26; the total damping is
presented for all tests. The flow velocity-dependent damping can be
obtained by subtracting the damping at zero flow from the total damping.

Based on the experimental results, general trends of the flow velocity-
dependent damping for tube arrays are given in Fig. 27 in the drag and 1lift
directions for V/an < 10. In general, V; corresponds to the beginning of
synchronization of vortex shedding with tube na*ural frequency; V,
corresponds to the coincidence of vortex shedding and tube natural
frequencies; and V3 corresponds to the decrease of damping again in the lift
direction. General characteristics of damping in tube arrays are similar to
thogse of a single tube. However, in cylinder arrays, flow velocity-

dependent damping may change from dissipating energy to causing instability.
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The fluid force components acting on tube arrays are measured and
reported by Tanaka and his colleagues for a row of %tubes and a square array,
both with a pitch-to-diameter ratio of 1.33, as shown in Fig. 28 ([51,52].
In addition, the fluid forces for a square array with a pitch-to—diameter
ratio of 2.0 also are measured {53]. From these data, fluid-damping
coefficients can be calculated. Tables 3, 4, and 5 show the fluid-damping

coefficients ;&j, -ij’ Gij’ and t',; these coefficlents are defined as

ij’

follows:

pV
-B'. = (—-—ui.) B'. R
ij pv2 ij

(50)

13 pVZ 13
and
T, = G—&L) . e
ij pv2 ij

Note that Eq. 50 1is applicable for reduced flow velocity Ug not equal to
zero only. The coefficients depend on the reduced flow velocity Ug. For
larger values of Ug, the absolute values of these coefficients are

approximately constants.

VI. EXAMPLES OF APPLICATION

Consider a simply supported tube with a baffle plate at midspan (see
Fig. 29). The tube is a stainless tube submerged in water (70°F). Tube

properties are given as follows:
Tube 0.D. (2r) = 1 in.,
Tube wall thickness = 1/8 in.,

Tube length £ = 48 in.,
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Table 3. Fluid-damping coefficients for a tube row with P/D = 1.33

Ut P! %2 %2 51 2 B2
1.5 0.0 0.167 -2,228 0.524  -0.804 0.0
2,0  -0.297 0.141 -1.167 0.297 -0.611 0.209
3.0  -0.349 0.282 -0.667 0.543  -0.344 0.525
4,0 -0.956 0.498 ~0.206 0.679  -0.373 0.546
5.0  -1.256 0.536 0.000 0.537 -0.394 0.441
6.0 -0.994 0.246 0.079 0.469 -0.379 0.354
7.0  -0.656 0.063 0.106 0.471  -0.330 0.290
8.0 -0.338 -0.022 0.130 0.468 -0.275 0.248
9.0 -0.052 -0.059 0.129 0.446  -0.230 0.216

10.0 0.079 -0.076 0.099 0.423 -0.205 0.188

15.0 0.225 -0.103 0.062 0.240  -0.136 0.126

20.0 0.229 -0.095 0.056 0.146 -0.065 0.082

30.0 0.202 -0.088 0.046 0.102  -0.038 0.028

40.0 0.175  -0.078 0.038 0.094 -0.030 0.016

50.0 0.153 -0.074 -0.038 0.091  -0.026 0.014

60.0 0.141 -0.069 0.034 0.088 -0.022 0.009

70.0  0.135 -0.064 0.031 0.085 -0.020 0.007

80.0 0.129  -0.060 0.031 0.085  -0.018 0.007

90.0 0.126 -0.057 0.032 0.083  -0.016 0.0C4

100.0 0.123 -0.054 0.037 0.091 -0.018 0.004




Table 4,

Fluid-damping coefficients for a square array with P/D = 1,33

: %1 %2 %43 4 Bl 12 B3 B4 %15 s
1.500  1.021 -0.471  0.564  0.549  0.99% 0,557 ~-0.414 =-0.092 ~-2.561 -0.933
2.000  0.604 =-0.521  0.544  0.469  1.124  0.439 =-0.272 -0.103 -1.682 -1.205
2.500  0.853 =-0.524  0.549 0,518  1.406  0.401 =-0.209 -0.131 -1.303 -1.269
3.000  0.350 -0.539  0.556  0.524  1.465 0,381 -0.412 -0.090 =-0,919 -1.141
3.500 0.0  -0.517  0.602  0.559  1.245 0,390 =-0.326  0.268 -0.602 -0.940
4,000 =-0.061 -0.485  0.667  0.552  1.320  0.082 =-0.323  0.496 -0.356 -0.834
5.000 -0.101 -0.359  0.679  0.461  1.166 =0.305 =-0.355  0.594 =0.042 =0.685
6.000 -0.149 -0.249  0.638  0.408  1.031 =-0.340 =-0.357  0.495 0,082 -0.593
7.000 -0.162 =-0.179  0.606  0.352  0.901 =-0.220 =-0.335  0.423 0,135 -0.531
8.000 -0.159 -0.103  0.598  0.272  0.818 =-0.144 =-0.283  C.376  0.138 —0.48l

10.000 -0.169 -0.026  0.587  0.082  0.671 ~-0.108 =-0.231  0.324  0.124 -0.429
12.000 =0.094  0.010  0.493 -0.010  0.552 =-0.092 =-0.222  0.310  0.117 -0.402
15.000 -0.103  0.037  0.409 =-0.043  0.457 =-0.,072 =-0.218  0.310  0.109 -0.374
20,000 =-0.125  0.061  0.333 -0.060  0.385 -0.062 =—0.195  0.307  0.100 -0.334
25.000 =-0.153  0.070  0.293 -0.047  0.329 -0.056 =-0.175  0.293  0.101 -0.301
30.000 -0.179  0.080  0.265 =-0.039  0.292 -0.051 =-0.151  0.280  0.096 =0.271
35.000 -0.197  0.067  0.246 -0.061  0.256 =-0.046 =-0.136  0.248  0.089  -0.245
40.000 =-0.211  0.094  0.246 =-0.093  0.221 -0.045 -0.113  0.201  0.078 =0.227
50.000 -0.215  0.100  0.246 =-0.129  0.167 -0.040 =-0.088 0,156  0.059 ~0.201
60.000 =-0.206  0.093  0.247 -0.159  0.138 -0.035 =-0.066  0.156  0.036 =0.187
80,000 -0.181  0.073  0.240 =-0.195  0.091 -0.029 =-0.032  0.176 =-0,009 ~0.173
100.00  -0.154  0.063  0.236 -0.200  0.063 =-0.023 -0.022  0.190 -0.060 -0.168
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Table 5.

Fluid-damping coefficients for a square array with P/D = 2,0

t

Ut %1 2 43 4 Bl1 B2 B3 B4 %5 s
6.000 -0.820  0.116 0,100 =-0.056  0.514  0.525 ~0.095  0.373 =-0,108 ~0.138
8.000 -0.797  0.247  0.010 =0.127  0.371  0.249 =0.097  0.249  0.050 =0.155

10.000 -0.486  0.189 0,007 =-0.077  0.287  0.124 =0.089  0.177  0.044 =0.127
15.000 -0.314  0.267  0.009 -0.043  0.186 =-0.062 =0.064  0.102 0,010 -0.085
20,000 -0.288  0.271  0.009 -0.029  0.140 -0.062 ~0.046  0.073 =0.002 -0.065
30.000 -0.249  0.249  0.009 =-0.019  0.095 =-0.029 ~-0.018  0.049 -0.015 -0.049
40,000 -0.219  0.224  0.008 =-0.011  0.074 =-0.018 0,003  0.036 =-0.019 =0.042
50.000 -0.189  0.192  0.007 =0.006  0.057 =-0.009  0.010  0.029 =-0.015 =-0.035
70,000 -0.143  0.140  0.005 -0.001  0.046 =-0.001  0.002  0.020 -0.019 =-0.035
100,00  -0.119  0.098  0.002  0.001  0.039 -0.000 =-0.008  0.016 -0.001 =-0.033
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Fig. 29.

BAFFLE PLATE

A simply-supported tube with a baffle-plate support.
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Baffle-plate-hole diameter (2R) = 1,02 {in.,

Baffle plate thickness (2L) = 1.5 in.

We wish to calculate the fluid damping with and without the baffle plate.

(a) No Baffle Plate

For the case of a tube vibrating in an infinite fluid, the modal
damping ratio attributed to fluid can be calculated from Eq. 10:

--3 (——i‘l——— Im(H) (51)
% T T2 CMnd + m) °

Note that the natural frequency of the fundamental mode is given by

“2 ET 0.5
“ - _2 (CMM ) » (52)

and that

E = 30 x 10% 1b/in. |,

1= (1.0% - 0.75%)1n.% = 0.0336 in.* , (53)

m =-£ (l2 - 0.752)-7.5 X 10—4 lb-seczlin.2 = 2,58 x 10_4 lb—secz/in.z,
and

Md =-£ x 0.935 x 10-4 X 1.02 lb—secz/in.2 = 0,734 x 10_4 lb-secz/in.2

The effect of fluid viscosity on Cy is small; Cy is assumed to be 1.
Substituting these values into Eq. 52 yields

w = 236.3 rad/sec

and

uirz 2
_ _236.3 x 1 _ 5
S = 5 = T0.00i57 1.5 x 107 .

From Fig. 5, Re(H) =1 and -Im(H) = 0.0075 . Therefore,

-3 G s s ,2,,’?‘2 5g) x 0.0075 = 0.083% .
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The modal damping attributed to fluid is small.

(b) With Baffle Plate

The equation of motion of the tube is given as follows:

4 2

du , = Ly du 9 u _
EI 3z4+ c, 8 (7)—3?+ (m+CMMd)-;?— 0, (54)

where EI = flexural rigidity, u = tube displacement, t = time, & = delta
function, m = tube mass per unit length, and CyMq = added mass per unit
length. The second term is the damping associated with the fluid in the
annular region of the baffle plate; all other damping and excitation forces
are neglected in Eq. 54. Since the tube is hinged at both ends, let

u = q(t)sin 2= . (55)

Using Eqs. 54 and 55 ylelds

2
dgq d4q ., 2 _
2+2cnuon dt+wnq 0,

dt
.. n21l2 ( EI )0.5
+ ]
n 22 m CMMd
- (56)
C
7 = \d n = odd
»
n (m+ CDMD) JZ.wn
=0, n = even .
The damping coefficient T, is given by
_ L
c, = j_L G dz , (57)

where C, is given in Eq. 11,
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C = M r cosh(z/R)] . (58)

v d ( - r) uhIm(H) [l ~ cosh(L/R)

Substituting Eq. 58 into 57 yields

and (59)

Substituting Eq. 59 into 56 yields

2L

—t _ __ n = odd
(m + C M2

— r —
S A r)[ Im(H)]

=0 n = even . (60)

When n is an odd number, the tube vibrates within the gap (see Fig. 30); the
fluid in the annular contributes to damping. When n 1s even, the tube
vibrates against the baffle plate, the midspan at the baffle plate is a
nodal point and the damping attributed t6 the fluid at the baffle plate is

Zero.

In Eq. 60, the function H depends on the oscillation frequency;
therefore, the modal damping for different modes are different. Based on
Eq. 60 and Fig. 7 the modal damping for the fundamental mode is calculated

as follows:

0.5

1 /Zv_ 1 2 x 0.00157 l
R-t @  0.00 =3 ) 0.365 .

From Fig. 7, -Im(H) = 0.82,
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(1) TUBE VIBRATING WITHIN THE GAP

___—_—————————~—~~__
— — — —
a— — —
— [ro—

(2) TUBE VIBRATING AGAINST THE GAP

- S

Fig. 30. Different modes for a tube with motion-limiting gap.
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r
K=1 i-tanh @—)
0.5 0.75
=1 - 0.75 tanh (_6-,?-) = 0.397 ,
£, = 0.397 x 0.73 x 107 (322-) x 0.82 2
‘ (2.58 + 0.734) x 10 " x 48 x 12

0.94% .

Therefore, the total fluid damping is equal to

g = 0.083% + 0.94% = 1.02% .

VII. CONCLUDINC REMARKS

Fluid damping 1is important; however, its characteristics for general
cases are still difficult to quantify. In particular, very few data are
available for cylinder arrays. Systematic theoretical and experimental
studies remain to be done in evaluating the damping matrices oij, oij, Tij,

and Bij as functions of geometry. reduced flow velocity, and flow direction

as well as other system parameters.

When cylinder motion is small, a linear representation of fluid damping
as given in Eq. 1 is applicable. However, when cylinder motion becomes
large, other flow phenomena, such as vortex shedding, and cylinder/flow

interaction, become significant; more detailed characterization of the

damping effect will be needed.

At present, most of the mathematical models for cylinders vibrating in
a flow are based on the damping value obtained in stationary fluid. It has
been shown that flow-velocity dependent damping can be very important.
Without considering the flow velocity-dependent force, we may reach

erroneous conclusions.
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