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NOMENCLATURE

c Sound ve loc i ty

[C] Damping matr ix

Crj Drag coe f f i c i en t

Cw Added mass coe f f i c i en t

C t Two-phase flow damping coef f ic ien t

Cv Viscous damping coef f ic ien t

C M Drag coefficient for axial flow

m

S f

S n

u,v,w,
u i» v iD Cylinder diameter u i » v i

C Cylinder damping coefficient %

EI Flexural r i g id i ty of cviinder %

GJ Torsional r ig id i ty v

f i , g i Total fluid force components in two orthogonal directions ae

f o i , g o i , Fluid force components that are independent of cylinder motion ct, &,
fo'So 3 i j ' a i j '

f w/2 TT a , , g , , a'
ft' rr'
6i j ' ij *

fn Natural frequency of nth mode (Hz)

VBVi

H Functions specified in Eqs. 6, 7, 8, and 11 for various cases ^ii' °ii *

k Fluidelastic stiffness constant

Kc K e u l e g a n - C a r p e n t e r parameter (2mi Q /D)

I Length of a cylinder or axial half wavelength

Mass per unit length of cylinder2

Md(= pur ) Displaced mass of f lu id per un i t l eng th p

Mf Added mass per un i t length pe

N Number of c y l i n d e r s p '

P Longitudinal pitch n̂
3i Generalized coordinate associated with ith mode u

r Cylinder radius "h



Radius of the outside cylinder or radius of curvature for a
curved tube

2
Kinetic Reynolds number ( )

Forced Strouhal frequency

Strouhal frequency

Time

Transverse pitch

Cylinder displacements

Peak cylinder displacement

Reduced flow velocity (V/fD)

Flow velocity

Void fraction

Added mass

iJ Fluid viscous damping

jL' Fluidelastic stiffness

r/R

Fluid viscosity

Kinematic viscosity of fluid

Orthonormal modal function of ith mode

Fluid density for a single phase fluid

Effective density for a two-phase flow

Fluid density for the higher-density fluid in a two-phase flow

Modal damping ratio of nth mode

Oscillation frequency

Natural frequency of nth mode in radian/second



DESIGN GUIDE FOR CALCULATING FLUID DAMPING
FOR CIRCULAR CYLINDRICAL STRUCTURES

by

S. S. Chen

ABSTRACT

Fluid damping plays an important role for structures

submerged in fluid, subjected to flow, or conveying fluid. This

design guide presents a summary of calculational procedures and

design data for fluid damping for circular cylinders vibrating

in quiescent fluid, crossflow, and parallel flow.

I. INTRODUCTION

Fluid damping is the result of energy dissipation caused by the motion

of a structure relative to a fluid. It plays an important role for

oscillations of structures submerged in fluid, subjected to flow, or

conveying fluid. It affects structural response amplitude and stability

boundaries. To understand the vibrational behavior of a structural system

vibrating in a fluid, to calculate the response amplitude, and to predict

the stability-instability boundary, we have to determine the magnitude of

fluid damping.

Fluid damping arises from many different sources. In a quiescent

viscous flow, the drag force acting on a vibrating structure can contribute

to the viscous type of damping. In a compressible fluid, the energy carried

away by out-going waves is an energy loss and can also be modeled as viscous

damping in some parameter range. In a moving fluid, other fluid force

components can be very important—forces are functions of flow velocity and

may act as a damping mechanism. In a certain parameter range, the nature of

this flow-velocity-dependent force may change from an energy-dissipating

mechanism to a destabilizing effect and cause structural instability.
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Studies of fluid damping for circular cylinders in various flow

conditions have been reported. The objective of this design guide is to

summarize the results, which may be useful in the analysis and design

evaluation of structural components subjected to fluid flow—in particular,

for applications to nuclear internal and plant components. Most of the

material in the design guide is based on a recent review [1]. Specifically,

this design guide includes:

Some general considerations of fluid damping,

Damping in quiescent fluids,

Damping in parallel flow,

Damping in crossflow, and

Examples of fluid damping.

II. SOME GENERAL CONSIDERATIONS

1. Fluid Force Components

Consider an array of N circular cylinders oscillating in a flow as

shown in Fig. 1. The axes of the cylinders are parallel to the z axis. The

subscript i is used to denote variables associated with cylinder i. The

displacement components of cylinder i are u^ and v^ and fluid force

components are f̂  and g^, respectively. There are several types of fluid

forces [2,3]:

1. Fluid inertia force—fluid force that is proportional to the

cylinder acceleration.

2. Fluid damping force—fluid i:orcs that is proportional to the

cylinder velocity.

3. Fluidelastic stiffness force—fluid force that is proportional to

the cylinder displacement.

4. Fluid excitation force—fluid force that is independent of the

cylinder motion.
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V

(a) A GROUP OF CIRCULAR CYLINDERS

0-̂

(b) FLUID FORCE AND CYLINDER DISPLACEMENT
COMPONENTS

Fig. 1. Schematic of a circular cylinder array; (a) a group of circular
cylinders; (b) fluid force and cylinder displacement components.



12

Mathematically, these fluid force components can be written:

N 3
2
u 3u 3

2
v

V ^ IK, -^ * «ij ** *

3v

and „
 2

 (1)

N 3 u, 3u, 3 v,

j=1 3t 3t

3v

The components in the brackets are called motion-dependent fluid forces;

these components vaaish if the cylinders are stationary. f
Q
^ and g

o
£ are

resultant fluid excitation forces that are independent of cylinder motion.

Note that cu* , cb.= , \it and β̂ i are added mass matrices; OLJJ , al* , ti-;* and

B^ are damping matricts, and a£±, α^j, x ^ , and &['.= are fluidelastic

stiffness matrices. In general, these matrices depend on cylinder motion,

in particular, the displacement (u^, v^), velocity (Suj/St., 9v
i
/3t), and

acceleration O
2
^ / ^

2
, 3

2
v

i
/3t

2
), and the flow velocity (V). However, in

many practical situations, added mass matrices are independent of cylinder

motion and flow velocity V, while damping and fluidelastic matrices ai.e

functions of flow velocity V only.

Equation 1 can be written as a single matrix equation:

{F} - [M] {$} + [C] {q
#
} + [K] {q} + {Q}. (2)

For a single cylinder, the motions in the two directions are uncoupled in

most cases; therefore, the two force components can be written:

3 u
 a,a,

f
 - <*—

 + a ,
 -3T

+a
"

U

3v

and * (3)
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Furthermore, in some situations, the motion is independent of the direction

of oscillations; i.e., either one of the components of Eq. 3 is applicable

and can be written as follows:

f =

where M^ is the displaced mass per unit length of fluid by the cylinder, C^

is the added mass factor, C is the viscous damping coefficient, and k is

the fluidelastic stiffness constant.

2. Fluid Damping Coefficients

Without loss of generality, consider a single cylinder oscillating with

a displacement given by u = uQcosujt in a flow with a mean flow velocity V.

In this case, the following dimensionless parameters are important:

VDReynolds number Re = — ,

V
Reduced flow velocity U = -r— ,

Kinetic Reynolds number S = ,
2mi

Keulegan-Carpenter parameter K = — — .

The first two parameters are associated with the mean flow and the last two

parameters are associated with the oscillations of the cylinder. Fluid

damping matrices <x[• , ajj , T{J, and B^ in Eqs. 1 and [C] in Eq. 2, and

fluid damping coefficients a1 and 0' in Eqs. 3 and Cy in Eq. 4, in general,

are functions of Re, U^, S, and Kc<

In most cases, we are interested in small-amplitude oscillations; i.e.,

Kc is very small. Then fluid damping is a function of Re, S, and Uj only.

The following two situations are of particular importance:

1. In quiescent fluid, fluid damping is a function of S only.

2. In flowing fluid, fluid damping is a function of U^ only.

In other situations, other approximations can be applied.

A summary of available results on damping will be presented based on

Eqs. 1 to 4 for three different flow conditions: quiescent fluid, parallel

flow, and crossflow.
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III. QUIESCENT FLUID

For structures vibrating in a quiescent fluid, fluid damping consists

of (1) fluid viscous effect and (2) energy carried away by acoustic waves.

Available results are listed in the following text.

1. A Circular Cylinder in a Concentric Annular Viscous Fluid

A circular cylinder vibrating in a confined viscous fluid, as shown in

Fig. 2, was studied theoretically and experimentally by Chen et al. [A,5].

A closed-form solution for the fluid force was obtained using the

linearized, two-dimensional Navier-Stokes equations of motion. Let the

cylinder perform a small sinusoidal motion u(t)(= uocosuit). The fluid force

per unit length acting on the cylinder is

where

% = Re(H),

Cv = -MduiIm(H),

H = {2a2[lo(a)Ko(b) - Io(b)KQ(a)] - 4a[I1(a)Ko(b)

4aYlIo(a)K1(b) + I^b^Ca)] - 8Y[I1(a)K1(b) -

{a2(l - ^ M l ^ a ^ C b ) - Io(b)Ko(a)]

+ 2aY[Io(a}K1(b) -

+ 2ay2[Io(b)K1(a) - I ^ a ^ a ) - I1(a)KQ(b) -

(6)

a - (1 + i) /|^
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•V-

Fig. 2. Schematic and coordinate system of a cylinder vibrating in
fluid annulus.
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b = (1 + i) , 2 v

(6)

T r / R ' (Contd.)

M ^ = pirr

The values of C^ and Cv depend on H, which, in turn, is a function of the

radius ratio r/R and kinetic Reynolds number S (= ur /v). The values of

Re(H) and -Im(H) are given in Figs. 3 and 4, respectively.

When the absolute values of a and b in Eqs. 6 are large (e.g., both a

and b > 50), H can be s impl i f ied:

o [ a 2 ( l + Y2) - 8y]sinh(b - a) + 2ct(2 - y + y2)cosh(b - a) - 2y

a 2 ( l - Y2)sinh(b - a) - 2aY(l + Y)cosh(b - a) + 2y2(ab)
(7)

As the radius ratio becomes infinite, H given in Eq. 6 becomes

H - aTOaT 'o

The values of H are given in Fig. 5 as a function of S(= ur /v). This

corresponds to the case of a circular cylinder vibrating in an infinite

viscous fluid.

Based on the boundary-layer approximation, Sinyavskii et al. [6] has

developed approximate expressions for C^ and Cv:

and (9)

u>

where /ui/2v is the viscous penetration depth. Note that Eq. 9 is similar to

Eq. 7; it is applica

Eq. 9 can be employed.

Eq. 7; it is applicable for unrVv » 1. In many practical applications,



I
o>

40

Fig. 3. Real values of H as a function of R/r for selected values of S [Ref. 4 ] .
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Fig. 5. Real and imaginary values of H for a cylinder vibrating in an infinite fluid.
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Several additional approximate solutions for Cĵ  and Cv also are given

in Section III.5.

The theoretical results and experimental data agree well for both a

cylinder oscillating in an infinite fluid [7] and in an annular region

[4,6]. However, the linear theory is applicable only for small-amplitude

oscillations (see Section III.10 for discussions).

For a uniform cylinder with mass per-unit length m, the modal damping

ratio attributed to fluid viscosity is [4]

I m < H )

The analytical results for t^ were verified using several viscous fluids

[4]; the agreement between theory and experiment is good.

2. A Circular Cylinder in a Finite-Length Annular Viscous Region

When the length of the annular region is small (see Fig. 6; L is the

same order of magnitude as r), the three-dimensional effect becomes

significant. An approximate solution for this case was obtained by Mulcahy

[8]. It is based on the linearized Navier-Stokes equations and the

assumption that the gap clearance is much less than the cylinder radius r.

The fluid force acting on the cylinder is given by

32u 3u
f " SlMd ~2 + Cv It '

ot

c - f r iRnfiuh -oshU/R; iCM lR - r ^ ^ n 1
 Cosh(L/R)

J

and

c =
V

H =
n = (2

/ r 1 T /-t
d R - r

a sinh
+ a sinh a -

*' L J

a
2

. cosh(z/R)
cosh(L/R)

cosh a) '

a - (1 + 1) • 2 v
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y

x

Fig. 6. A circular cylinder in fluid filled annular region.
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The theoretical values of Re(H) and -Im(H) are given in Fig. 7. Experi-

mental data are shown to agree well with the theory. The solution is valid

for (R - r)/r « 1 and the viscous penetration depth vW2v on the order of

(R - r).

Note that Eq. 11 is applicable for transverse motion within the gap.

The damping associated with the rotational motion is, in general, much

smaller and can be ignored.

3. A Circular Cylinder in an Eccentric Ainular Viscous Fluid

Closed form solution for this case is not available. However, viscous

damping can be obtained using a finite-element method [9], A system of

discretized equations is obtained from the appropriate two-dimensional

Navier-Stokes and continuity equations through Galerkin's process. The

basic unknowns are velocity and pressure. The added mass and viscous

damping coefficients are obtained through a line integration of stress and

pressure around the circumference of the cylinder.

Typical results are given in Fig. 8. Both C^ and Cv increase with

eccentricity.

4. A Circular Cylinder in an Infinite Compressible Inviscid Fluid

When a cylinder vibrates in a confined ideal fluid, no energy loss

occurs. While in an infinite fluid, there is a radiation loss attributed to

the energy carried away by the out-going waves. Let the cylinder radius be

r, sound velocity in fluid c, and ocillation frequency u>. The two-

dimensional solution of the fluid field yields the added mass and viscous

damping coefficients [10]:

and (12)
2/L

C « M,u) {—7-) »v d laA }

where
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Fig. 7. Added mass and damping multipliers, Re(H) and Im(H) [Ref. 8]
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FINITE- ELEMENT SOLUTIONS

Fig. 8. Added mass and damping coefficient as a function of eccentricity
[Ref. 9].
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a = — (c * velocity of sound),

A = (J2(a) - Jo(a)]
2 + [Y2(a) - YQ(a))

2 ,

Aj_ = ̂ ( a M ^ C a ) - Jo(a)] + Y1(a)[Y2(a) - YQ(a)] , and

&2 = Y1(a)[J2(a) - Jo(a)] - J1(a)[Y2(a) - Yo(a)] .

The values of C^ and Cv are given in Fig. 9.

For a uniform cylinder with mass per-unit length m, the modal damping

ratio attributed to fluid compressibility is

£ ^ . (13)

5. Two Coaxial Circular Cylinders Separated by Viscous Fluid

Fluid forces acting on two coaxial tubes separated by an incompressible

fluid are obtained based on the linearized two-dimensional Navier-Stokes

equation [Ref. 5], The fluid forces acting on the two cylinders are

(Fig. 10)

2 32u. 3u

I hi
J - l dC

pTrR1R.Re(aij)

a,

2 a ) ;
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Fig. 9. C and C as functions of wr/c for a cylinder vibrating in an infinite compressible fluid.
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•+-1

/ FLUID )

INNER CYLINDER i= I, R, = r

OUTER CYLINDER i =2 , R2 = R

y

Fig. 10. Schematic of two concentric cylinders containing viscous fluid.
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2-ya

a22 Y 2(l

Y = r/R ,

i = -

1

0

2

0

and

1

1

2

2

Fl<

YFX<

blFc

blF<

:bx)

:b2)

, ( b l )

,(b2)

G l ( b l )

YG1(b2)

b1Go(b1)

b1GQ(b2)

*

1

Y2

0

0

1

1

2

2

(15)

(Contd.)

YF1(b2) YG1(b2)

b1Fo(b2) b1Go(b2)

where Fn and GR are the nth-order Bessel functions. They can be either the

first- and second-kind Bessel functions, J_ and Y , or the Hankel functions,

H^ ' and H_ . The selection of the functions mainly depends on

computational considerations.

The coefficients a** and <x[.i depend on the S(* UJT /v) and Y in a very

complicated way. Approximate solutions can be obtained in special cases:

(a) Viscous fluid and very large radius ratio (e.g., Y > 10, S > 1 )

For Y •*• 0 and

all (16)

Furthermore, if jbjj » 1 ,

7 4 i

all= \ (17)
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(b) Viscous fluid and large value of S ( e . g . , S > 10 4 )

a l l = _ 1 + C[16bJ - (73 - 578Y + g^/ejeinCGbj)

- 2b-L(l - Y ) ( 1 6 + A)cos(Gb1)}

* {(1 " Y2)[8b| - (9 + 30Y + 9Y2)/16]sin(Gb1)

+ b x ( l + Y)(1 + 14Y + Y2)cos(Gb1) -

G = (1 - Y)/Y .

(c) S » 1 and G2S « 1

u

_iW

= -12i/G3S . (19)

(d) S » 1 ai?d moderate gap (e .g . , G > 0.01 and S > 104)

b . ( l + Y2)sin(Gb1) - 2(2 - Y + Y2)cos(Gb1)
a n - — y . (20)

b 2 ( l - y i t)8in(Gb1) + 2Y(1 + Y)cos(Gb1) - /

(e) S » 1 and G2S » 1 (e .g . , S > 104, and G2S > 104)

- 12(2 - Y + Y 2 ) ] / [ b 1 ( l - Y2) + 1 2 Y ( 1 + Y ) ] . (21)

(f) S » 1, G
2
S » 1 and G « 1 (e.g., S > 10

7
, G

2
S > 10

4

and G < O.O5)

1 + Y
2
 , 2̂

2 2 1/2
I-γ G S '

( g ) v > 0 , S •*• <*>

I - γ
2 * (23)
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6. Cylinder Arrays in Incompressible Viscous Fluid

The viscous damping coefficient matrices aj.., α^j, T^J , and β̂ j for

general cylinder arrays can be calculated based on the linearized two-

dimensional Navier-Stokes equation.

There are several experimental studies on the damping of multiple

cylinders. Shimogo et al. [11] present the results of two cylinders

vibrating in a viscous fluid. The effects of fluid viscosity on tube

motions are studied. A series of experiments to study the diagonal terms,

<x£j and 6j.j is reported by Chen et al. [12].

For cylinder arrays vibrating in a quiescent fluid, ajj and 3j4 are

symmetric, and T ^ = °\±' Physically, this means that the damping of

cylinder i due to the motion of cylinder j is equal to the damping of

cylinder j due to the motion of cylinder i.

It should be pointed out that in a viscous fluid, the motion of a

cylinder is coupled to other cylinders in an array through added mass

coupling and viscous coupling as given in Eq. 2, where [M] represents the

mass effect and [C] represents the viscous damping. In general, [C] is not

proportional to [M].

For a group of N cylinders, there are N elements of damping

coefficients. It is impractical to compile all available data in this

design guide. In fact, there are practically no complete data for any

cylinder arrays consisting of more than three cylinders. In most cases, it

is not practical to calculate all these coefficients. However, if the

detailed damping coefficients are needed, the finite element method can be

applied.

7. An Infinite Circular Cylinder in a Concentric Annular Two-Phase Flow

A circular cylinder vibrating in a confined two-phase flow was studied

experimentally by several investigators [13-16]. The inertia and damping

forces can be written



(1)

(2 )

(3 )

Pe ~

pe =

Pe =

(1

P( l

P(l

- v
- ae

- ae

P

)

)

+ ae

/ ( 2 ae

(1 +

P , ,

+

2ae

1 ) ,

) / ( ] L + 4a -
e

2a 2 ) ,

31

Note that Eq. 24 is the same as Eq. 5 with the additional term Ct(du/dt),

called the two-phase-flow damping. However, the added mass coefficient Cu

and viscous damping coefficient Cy are not the same as those for a single-

phase flow. Based on the limited experimental data, and on analytical

results, Cw can be calculated based on Eq. 6 with the exception that the

effective density should be used. The ratio of effective density pe to that

of the single-phase flow p is given in Fig. 11, which includes experimental

data and analytical results. The theoretical values pe of the effective

density are given by

(25a)

(25b)

(25c)

where o^ is the void fraction, and p and p, are the densities of the two

fluids. Equation 25a is appJ cable for small a ; at large a , it predicts

much larger p than the experimental data. Equations 25b and 25c correlate

better with the experimental data at high values of a and are applicable in

that range.

The coefficient C in Eq. 24 for two-phase flow is calculated following

the single-phase flow described in Section III.l. However, the effective

density p given in Eq. 25a and the mixture kinetic viscosity based on

MeAdams' definition [17] should be used.

There is no analytical expression for (L. The most complete experi-

mental data are those by Carlucci and Brown [14]; these data are given in

Fig. 12. With Fig. 12, the two-phase damping coefficient Ct can be

calculated based on Cv«

The added mass and damping of circular cylinders vibrating in a two-

phase flow are still not well understood. More theoretical and experimental

The mixture viscosity according to Me Adams is given by the following
equation:

Hnixture 'Vapor ^liquid
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Fig. 11. Effective density for two-phase flow as a function of void fraction.
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Fig. 12. Viscous damping coefficient for two-phase flow.
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studies are needed; in particular, there are practically no experimental

data for cylinder arrays.

8. Circular Cylindrical Shells

For small-amplitude oscillatory motion, the fluid damping force may be

calculated based on the linearized viscous flow theory. The results are

very complicated, in general, and the details of the analytical and

experimental results cannot be included in this design guide. The following

text includes several cases that may be of some use in determining the role

of fluid damping.

a. An Infinitely Long Cylindrical Shell Surrounded by

Compressible Fluid

The response of this type of shell in fluid to an excitation can

be analyzed using the cylindrical shell theory and inviscid compressible

flow theory [18]. Depending on the frequency range, the solution may be of

a traveling or a stationary wave type. Let c = velocity of sound in fluid,

I = axial half wavelength, and OJ = oscillation frequency. Then for

a) > CTT/JI, it is a traveling wave solution; the energy carried away will

contribute to damping of the shell. For <u < cir/£, it is a stationary wave

solution; no energy will be carried away by the acoustic medium.

b. Two Infinitely Long Coaxial Cylindrical Shells Coupled by

Viscous Fluid

An analysis is presented for coupled vibration of two concentric

shells separ^ed by a viscous fluid [19]. The coupling effects are

accounted for by using a fluid stress coefficient matrix of concentric

shells. With this type of analysis, the natural frequencies and modal

damping ratio of coupled, concentric shells in viscous fluid can readily be

obtained.

The lowest natural frequency of the coupled shell system with

fluid is significantly lower than those of the individual shells. The

frequencies of the first coupled modes (out-of-phase modeu—the two shells

moving out of phase with respect to each other) are lower than either of the

uncoupled natural frequencies. The effect of the fluid viscosity on the

system natural frequencies is negligibly small in most practical systems.



35

However, the modal damping ratio is noticeably increased for some cases when

the fluid viscosity is included, especially for the lower-frequency cases.

For a coupled shell, the viscous effects are most pronounced for the out-of-

phase modes, but these effects are considered to be negligible for the in-

phase mode. In general, the effect of fluid viscosity on damping can be

estimated based on the corresponding structure vibrating in an infinite

fluid for the radius ratio of the two shells larger than 1.15. However, if

it is less than 1.15, the viscous damping should be calculated based on the

coupled mode.

c. Two Finite-Length Coaxial Cylindrical Shells Coupled by

Viscous Fluid

The natural frequencies and modal damping ratio of two coaxial

cylindrical shells of finite length are determined in tests by several

investigators [20,21]. The modal damping ratio depends on different

modes. In general, the results are consistent with the analytical results

obtained for the infinite shells [19]; i.e., there is a significant increase

in damping ratios of the shell system as the gap decreases for the out-of-

phase modes, but only a moderate increase for the in-phase modes.

9. Cylinder Arrays in Compressible Fluia

The radiation damping for cylinder arrays depends on arrangement and

wave number Ar (r = cylinder radius, X = to/c, u> = oscillation circular

frequency, and c = speed of sound). A general method of analysis to

determine fluid damping for a group of cylinders is available [22], The

perturbed fluid motion is described by a two-dimensional acoustic wave

equation with Newmann conditions on the cylinders and the radiation

condition at infinity. The solution is in terms of a series of cylindrical

wave functions associated with the polar coordinates of each cylinder. To

satisfy the boundary conditions on a particular cylinder, all cylindrical

wave functions are transformed to the local coordinates of that cylinder.

The resulting equations are a system of linear algebraic equations for the

undetermined constants that are then solved numerically by a digital

computer.

In general, for small values of Xr (e.g., 0.01), incompressible flow

theory is a valid approximation for determining added mass and the radiation
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damping is approximately zero. For AΓ > 0(1), the values of added mass are

relatively small and the effect of radiation damping will be dominant.

Other techniques can also be used to study the damping, e.g., T-matrix

approach [23].

10. Effects of Other Parameters

The results presented in Sections III.l through III.9 are applicable to

small-amplitude oscillations; i.e., the structure displacement must be much

smaller than a characteristic length, such as cylinder diameter, clearance

between two cylinders, or shell radius. When the displacement becomes

large, nonlinear effects will become important.

a. Nonlinear Effect of a Cylinder Oscillating in an Infinite Fluid

The added mass and damping of a cylinder are studied in detail by

Skop et al. [24]. The added mass coefficient C^ (see Eq. 5) is essentially

equal to 1, as predicted by linear theory. For vibrational amplitudes less

than 0.4 cylinder diameter, the fluid damping force is essentially viscous

and can be calculated based on the eque:ion given in Section III.l.

However, for f$
a
 > 0.4 (3

a
 = oscillation amplitude/cylinder diameter), the

fluid damping contains both linear and velocity-squared components. The

viscous damping coefficient C
v
 to account for the large amplitude

oscillations is given as follows:

2 0.5

C = TTP^V [4.5 + 0.91 f — ) (3 - 0 . 4 ) ] H ( B -0.4) , (26)
v
 L v

 v
 y
 a

 J
a

where p = fluid density, m = oscillation frequency, v = kinetic viscosity,

r = cylinder radius, and H is the Heaviside unit step function. Equation 26

is determined from experimental data obtained for 230 < tar /v < 5220.

For large-amplitude vibrations, the results presented in

Section III are not strictly applicable, and there are very few data

available for large-amplitude oscillations. Fortunately, in most practical

applications, one is more interested in the small-amplitude oscillations,

since the large-amplitude vibration is not acceptable in general. In

addition, linear theory is also valid to determine the stability-instability

boundary.
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b. Scale Model

The current state-of-the-art knowledge of vibration of cylinders

in flow is not well enough developed to rely solely upon analytical

predictions; therefore, scale-model testing is employed frequently for

design verification. Fluid damping is one of the parameters that is

difficult to scale.

Small-scale models frequently are used in practice for design

evaluation. The kinetic Reynolds number S(= ur /v) has to be simulated to

obtain proper fluid damping. However, in most cases, other parameters, such

as Strouhal number, may be more important. It is very difficult to simulate

all the parameters simultaneously. In this situation, the kinetic Reynolds

number has to be distorted. Considerations must be made to account for the

scaling effect on fluid damping. In general, a small-scale model will give

a larger value of fluid damping that is not conservative.

IV. PARALLEL FLOW

In a flowing fluid, in addition to the damping associated with fluid

viscosity and fluid compressibility, a damping attributed to flow velocity,

called flow-velocity-dependent damping, is important. In this section and

the next one on crossflow, the flow-velocity-dependent damping will be

discussed. Therefore, in a flowing fluid, the total damping is the sum of

damping in stationary fluid plus flow-velocity-dependent damping.

1. Tubes Conveying Fluid

Consider a uniform straight tube with mass per unit length m, and

flexural rigidity EI, conveying fluid of mass per unit length Mj flowing

axially with velocity V (see Fig. 13). The linear equation of motion is

[25,26]

4 2 2 2
3 u 2 3 u 3 ii 3u J u OT\

EI — r + M£V — - + 2M V — — + C — + (m + M ) = 0 • ^/;
a * f *2 f 3z3t s 3t f .̂2
oz dz 3t

Let
00

u(z,t) - I qi(t)(f>i(z) , (28)



00

Fig. 13. Schematic of a tube conveying fluid.
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where <^(z) is the orthonormal modal function without the effect of the

Coriolis force. Equation 27 can be reduced to a system of coupled equations

using Eq. 28:

Cβ

f 2 XV I c q\ + to
2
q = 0, (29)

where to is the dimensionless natural frequency of nth mode without the

effect of the Coriolis force, and

, * d <
Cnj = 1 /0 - V - V z ) d z •

x = J^Tnp > ( 3 0 )

and
C

6u
 2(m + M

f
) *

Note that Eqs. 29 are coupled; the coupling arises from the Coriolis

force. Because of the Coriolis force, the system does not possess classical

normal modes, in which the various parts of the system pass through the

equilibrium position at the same instant of time. In addition, the Coriolis

force may act as a damping mechanism.

From Eq. 30, it follows that:

c n j + c j n = ^ U H j U ) - ^ ( 0 ) ^ ( 0 ) . (31)

If the tube is not movable at the ends,

c n j - - c j n . (32)

The work done by the Coriolis force is

Bα = -2XV T y c .q* q.dt . (33)

^ j - njHn*j

If the tube is not allowed to move at the ends, Eq. 32 is satisfied and

/U " 0; the Coriolis force does not dissipate or supply any energy to the
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system and is not a damping mechanism. However, if the tube is allowed to

move at the end, the Coriolis force is a damping mechanism.

Alternatively, this can also be demonstrated as follows: the Coriolis

force is given by

The work done by the Coriolis force is

u i
flf - / / f(z,t)du dz

0 0

-MfV / (£) 2 dt
0

(35)
0

As long as there is no movement at the ends, AW = 0 and the Coriolis force

is not a damping mechanism.

For tubes allowed to move at the ends, the modal damping ratio

attributed to the Coriolis force is approximately

MfV I d<|. (z)
e = ^ / t ()dz • (36)e = 7—r^r-N—; / — i — <t> (z)dz •
^n (m + M.)io £ Jft dz Tnin u

Equivalently, the damping coefficient Cv attributed to -he Coriolis force is

2M V % d<J> (z)c - ' I *<z)dz

Damping is proportional to flow velocity and fluid mass per unit length

inside the tube.

In summary, the effects of the damping associated with the Coriolis

force are as follows:

• For tubes that are not movable at the ends, the Coriolis force is not

a damping force; its effect is to induce phase distortion such that the

tube-fluid system does not possess classical normal modes.
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• For tubes that are movable at the ends, the Coriolis force may become

a damping force. For a given mode, the damping value increases with the

flow velocity. For example, in a cantilevered tube conveying fluid, the

dampiflg attributed to the Coriolis force can become very large and the tube

is overdamped in the first mode [27];

For curved tubes, either vibrating in the in-plane or out-of-plane

directions, fluid Coriolis forces also play the same role as that in a

straight tube. Consider a uniformly curved tube conveying fluid as shown in

Fig. 14. The tube has radius of curvature R, mass per unit length m,

flexural rigidity EI, torsional rigidity GJ, and subtended angle a,

conveying fluid of mass per unit length M^. The equations of motion for the

four displacement components are [28,29]

In-plane motion (inextensional theory):

R 86 36 39 39 39

2M,V I-γ- + - h ^ ) + R(m + M£) [-V^-o- ^ J = 0 (38)
38 3t

and

3w

Out-of-plane motion:

r> T ^ .» a x viir a ii
u*. i ^ i _ » y » vaj f O v , „ q <p \ , ray o v

~T V. T - R t ' 3 ^ 2 2 J ~R 2
R 39 36 R 39 39 39

and (39)

E I r D A 3 ^ 1 G J

V 2 (R 2
9^ R 39
V 2 ( 2 2

39^ R 39 99
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(b)STRESSED STATE

(a)UNSTRESSED STATE

Fig. 14. Definition of coordinates and displacements of a uniformly curved
tube conveying fluid.
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4 2 2
The force component 2M.V (-~ + 4^r) ia E(i- 38 a n d 2 Mf V 4^T in Eq. 39

f 3e33t 9 6 9 t 3 e 3 t

are attributed to the Coriolis force. The effect of these fluid forces is

similar to that of a straight tube.

Tubes conveying pulsating flow [30-32] and two-phase flow [33] also

have been studied. The results of fluid damping are rather complicated and

cannot be included in this design guide.

2. A Single Cylinder Submerged in Parallel Flow

For a single cylinder submerged in axial flow, the flow-velocity

dependent damping force is [34]

where C^ is the drag coefficient. The first term is the Coriolis force, and

the second term is the drag-induced damping. The modal damping ratio

attributed to the flow-velocity-dependent force for a uniform rod with mass

per unit length m is given by

MfV I d<|>n(z)
 MfVCN

?n = (m + m.)u> £ ' ? i V z ) d z + 4D<o (m fr n o n r

The damping coefficient C attributed to the Coriolis force and drag force

is

2M V I d$ (z) M V
C = -f- 1 - 5 — *(2) + 1 C Iv f 1 5z *n(2) + 1 CN I '

o

The damping attributed to the Coriolis force is the rame as that of tube

conveying fluid (see Eq. 37).

Two typical examples of modal damping ratios are given in Figs. 15 and

16 for a fixed-fixed cylinder and a cantilevered cylinder [34]. Figures 15

and 16 show the total damping. For the fixed-fixed cylinder, the

contribution from the Coriolis force is zero; therefore, the increase of

damping with flow velocity is attributed to the drag force (second term in

Eq. 42). For the cantilevered cylinder, the Coriolis force contributes

significantly to the damping. Consequently, the total damping is much



0.05

0.045 —

0.005 -i

I ' I ' I ' I ' I

— THEORY —

EXPERIMENT

O (I) BANDWITH METHOD
A (2) MAGNIFICATION FACTOR

METHOD(CONSTANT FORCE)
• (3) MAGNIFICATION FACTOR

METHOD
(CONSTANT DISPLACEMENT)

20 40 60 0 20 4 0 60 80 0 20

MEAN AXIAL FLOW VELOCITY (V), ft/sec

40 60 80 100

Fig. 15. Modal damping ratio of a fixed-fixed cylinder.



0.25

0.20 —

g

o

0.15 —

010 —

0.05 —

THEORY

EXPERIMENT:
O BANDWIDTH METHOD
A MAGNIFICATION FACTOR '

METHOD (CONSTANT FORCER
MAGNIFICATION FACTOR

• METHOD (CONSTANT
DISPLACEMENT)

0 10 20 30 40 50 60 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 100 IK)

MEAN AXIAL FLOW VELOCITY ( V ) , ft/sec

Fig. 16. Modal damping ratio of a cantilevered cylinder.
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larger than that of the fixed-fixed cylinder. In the flow velocity range

tested the theoretical model agrees well with experimental data.

The values of C^ obtained for several cases are given in Table 1.

These tests were conducted for a cylinder vibrating in an annual region with

the radius ratio of 1.24 to 4.0.

The effect of trailing-end geometry on the damping of a cantilevered

cylinder is important. Eleven different trailing-end geometries were

studied by Wambsganss and Jendrzejczyk [35]. The total modal damping ratio

was given by

C = b + cV . (43)

The values of b and c are given in Table 2. The second term is the

resultant effect of the Coriolis force, drag force, and end effect.

Equation 43 can be written

C - b + ccV + cdV + ceV . (44)

The damping attributed to the Coriolis force c V and drag force CJV do not

change with end geometry; therefore, the variation in cV is attributed to

the end effect. The coefficients cc and c^ can be calculated from Eqs. 41:

c

Mf I d<|>n(z)
f — 3 4> (z)dz ,
• dz Yn '

c (m + mc)uj I • dz Yn
r n o

and (45)

c
MfCN

d 4DOJ (M. + m) *
n r

Because most of these parameters are not available, ce can be approximately

calculated as follows. The damping for the tapered end (9 = 30°) increases

most slowly with the flow velocity. It is assumed that ce is zero for this

case. Then ce for other cases can be calculated; the result is given in

Table 2.
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Table 1. Drag coefficient Ĉ  for a cylinder in an annular region

Investigators

Chen and

Wambsganss [34]

(1972)

Carlucci [13]

(1980)

Support
Condition
cf Cylinder

Clamped-

Clamped

Clamped-

Free

Clamped-

Clamped

Clamped-

Clamped

Radius
Ratio
R/r

4

3

2

4

3

2

2

1.57

1.24

0.101

0.103

0.044

0.10

0.056

0

0.025

0.071

0.085

Remarks

Brass Tube

Brass Tube

Brass Tube

Brass Tube

Brass Tube

Brass Tube

Steel Tube

Brass Tube

Brass Tube
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Table 2. Empirical relationships for damping as a function of mean

axial flow velocity [35]

TRAILING END
GEOMETRY bxlO c x I O 2 c x l O 2

e

STEPPED_

r/D = I

0 = 3 0 °

SQUARE

r / D = l / 8

0 = 90°

9 -60°

r/D=l/4

r/D=3/8_

r/D=l/2

BULLET

J-J

ki

- 6 . 4 7

- 2.04

- 0 . 3 2

- 2.88

- 3 . 1 7

- 6.96

-5 .19

- 2 . 4 2

- 8 . 4 6

- 5.90

-2 .31

1.09

1.43

2.82

1.87

1.43

0.25

0.59

0.84

1.63

1.75

2.67

2.45

2.11

0

0.79

0.91

1.83

1.61

1.27

1.98

1.03

0.59

= b + cV , for 6.1 m/s <V < 16.8 m/s
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3. Multiple Cylinders in Axial Flow

When an array of N cylinders is subjected to axial flow, fluid damping

consists of three parts: viscous damping, Coriolis force, and drag force.

This is the same as for a single cylinder. However, multiple cylinders

include coupling effect. The damping coefficients can be written as

follows:

a! . = a' . + 2Va, . -|- + a' . ,
ij oij ij 3z dij

(46)

and

a,.. = a,.. + 2Vo. . -|" + o' . ,
IJ oij ij 3z dij

T,. . = T, .. + 2VT. . 4" + T^-
ij oij ij 3z dij

B! . = B, . . + 2V g. . 4- + BL •
ij oij ij 9z dij

The first terms are the viscous damping coefficients in stationary fluid,

the second terms are associated with the Coriolis force, and the third terms

are drag-induced damping coefficients.

At present, these coefficients are not available for arbitrary cylinder

arrays. The viscous damping coefficients in stationary fluid, a^^ , o^a,

T'. • , and Boj4 can be obtained using a finite element technique [9]. The

coefficients in the Coriolis force terms are those of added mass, which can

be calculated using the potential flow theory [2] or linearised viscous flow

theory [9]. The drag coefficients are not well understood. Paidoussis and

Suss proposed a method of solution based on the potential flow solution but

the results have not been verified [36].

The damping of an uncoupled mode of a 3 x 3 array of 6.35-mm (0.25-in.)

diameter rods with an effective length of 0.495 m (19.5 in.) between simple

supports has been reported [37]. The rods are arranged in a square pattern

with a pitch-to-diameter ratio of 1.33. The modal damping ratio is given by
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(-0-00018 " )

where f = natural frequency, D = rod diameter, m + nu = effective mass per

unit length, v = kinetic viscosity, p = fluid density, and V = flow

velocity. The first term in Eq. 47 is the viscous damping in quiescent

fluid and the second is the damping induced by drag force. Because the rods

are supported at both ends, the damping associated with the Coriolis force

is zero.

Further investigations are needed to quantify the fluid damping for

cylinder arrays in axial flow.

4. Cylindrical Shells Conveying Fluid

The fluid damping for a cylindrical shell conveying fluid also is

important. Most studies are based on the linearized, unsteady potential

flow theory [38-41], The analysis for this problem is quite involved. It

is difficult to present fluid damping for general applications. For a

specific problem, a detailed study would have to be performed for each case.

V. CROSSFLOW

1. A Single Cylinder Subjected to Crossflow

The mathematical representation of a single cylinder in crossflow is

very complicated. If the motion of the cylinder is small with respect to

the approaching flow, the flow-velocity-dependent damping force can be

represented by [42,43] (see Fig. 17)

and (48)
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Fig. 17. A single cylinder subjected to crossflow.
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where CD is the drag coefficient. The modal damping ratios in the x and y

directions are

Sc 2 m̂ + M, f
n d n

and (49)

.J Lf id n

where fn is the natural frequency of the cylinder in cycles per second.

Experimental data obtained in water for low reduced-flow velocity

(V/fnD < 5) are given in Figs. 18 and 19 in the lift and drag directions

[43]. The resultant damping is given; the flow-velocity dependent damping

may be obtained by subtracting the damping value at zero flow velocity. The

Reynolds number ranges from 10J to 5 x lCr in Figs. 18 and 19. The steady

state drag coefficient is about 1. Based on the steady state drag, the

modal damping calculated from Eqs. 49 will be larger than the experimental

results given in Figs. 18 and 19. Therefore, the drag coefficient for

steady flow cannot be applied to this case, in which the steady flow is

superimposed with a pulsating component. Based on the results of Figs. 18

and 19, the values of drag coefficient are 0.35.and 0.19, respectively.

In the "synchronization region," in which cylinder motion is locked in

to vortex shedding process, flow/cylinder interaction becomes important.

Equation 49 is no longer applicable in this region. Damping ratios in the

lift direction for a system in wind tunnel are shown in Fig. 20 for reduced

flow velocity (V/fnD) from 0 to 20 and Reynolds number from 300-1000 [44] .

Damping changes slowly at low flow velocity and then decreases to a minimum

value as the velocity increases within the resonant range. The minimum

range of damping occurs near the maximum amplitude of the cross-flow

vibration, and damping begins to increase thereafter. Above the lock-in

range, the damping increases more rapidly with flow.

Based on these results, it appears that for a single cylinder, Eq. 49

can be applied to obtain fluid damping outside the lock-in range, although

the value of the drag coefficient for steady flow cannot be used. In the
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LOCK-IN RANGE
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Fig. 20. Modal damping ratio in the lift direction [Ref. 44],
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lock-in region, representation of fluid damping is still difficult; the

results given in Fig. 20 actually are a manifestation of the coupling

between vortex shedding and cylinder motion.

The drag coefficient for an oscillating cylinder in crossflow has been

measured directly by Souders et al. [45], The drag coefficient is found to

depend on the cylinder oscillation amplitude, Reynolds number, and ratio of

forced oscillation frequency to Strouhal lrequency. Figures 21 and 22 show

the variation of drag and lift coefficients as a function of frequency ratio

for different vibration amplitude; Cp is in general greater than that for a

non-oscillating cylinder, and approximately independent of Sf/Sn for S£/Sn >

about 0.4. For Sf/S < 0.4, C^ is basically the same as for the non-

oscillating cylinder. The effect of Reynolds number on C^ seems to decrease

as the vibration amplitude increases.

The lift coefficient given in Fig. 22 shows that for the smaller values

of oscillation amplitude and S£/Sn, the lift coefficient decreases with

increasing Re. For larger values of oscillation amplitudes and Sf/Sn, C^ is

not sensitive to Re.

Most recently, Kato et al. [46] have systematically studied the drag

force on oscillating cylinders in a uniform flow. The drag coefficient CD

is a function of reduced flow velocity V/fnD and Keleugan-Carpenter

parameter K . In general the drag coefficient increases with U/f D and

Kc. More measurements are needed to determine the value of the drag and

lift coefficients for a cylinder oscillating in a flow.

2. A Pair of Cylinders in Crossflow

The flow field around a pair of circular cylinders is very complex and

has been studied extensively [47], However, there is very limited

information on damping. A complete description of the damping

characteristics requires the knowledge of a^*, a^, TJJ, and ftjj in Eq. 1.

At present, no such information is available for a pair of cylinders.

Modal damping for two cylinders normal to a flow was measured by

Jendrzejczyk et al. [48]. The modal damping for a particular mode is given

in Fig. 23. Those damping values correspond to the out-of-phase mode of in-

plane motion. Note that damping increases with flow at small flow
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Fig. 23. Modal damping ratio in the lift direction for two tubes normal
to a flow [Ref. 48].
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velocities. It reaches a peak at a flow velocity approximately equal to

that associated with the maximum cylinder displacement; in the drag

direction, a velocity at which tube motion in t.e drag direction

synchronizes with vortex shedding. With further increase in flow velocity,

damping decreases with flow velocity.

The aerodynamic forces acting on twin circular conductors have been

considered in the study of "wake-induced flutter" [49], The fluid damping

forces depend on conductor spacing and conductor arrangement. In general,

detailed measurements have to be performed to quantify the amplitude of

fluid forces. It is not possible, at present, to present a simple design

guide for this problem.

3. A Group of Cylinders in Crossflow

As in the case of two cylinders, no complete data on <x£., o^, T^., and

3|- are available. There are only a few studies directed to obtain the

damping for tube arrays [50-52].

Two tube arrays, as shown in Figs. 24, were tested by Chen and

Jendrzejczyk [50]: (1) In-line array with longitudinal pitch P/D = 1.5 and

transverse pitch T/D = 1.5 and (2) Staggered array with P/D = 1.5, and

T/D = 1.6. Damping was measured for the active tubes, located at positions

1, 2, and 3, in both lift and drag directions. The measured damping

corresponds to the contribution from the diagonal terms of ajj and

Two typical results are given in Figs. 25 and 26; the total damping is

presented for all tests. The flow velocity-dependent damping can be

obtained by subtracting the damping at zero flow from the total damping.

Based on the experimental results, general trends of the flow velocity-

dependent damping for tube arrays are given in Fig. 27 in the drag and lift

directions for V/fnD < 10. In general, V^ corresponds to the beginning of

synchronization of vortex shedding with tube natural frequency; Vn

corresponds to the coincidence of vortex shedding and tube natural

frequencies; and V3 corresponds to the decrease of damping again in the lift

direction. General characteristics of damping in tube arrays are similar to

those of a single tube. However, in cylinder arrays, flow velocity-

dependent damping may change from dissipating energy to causing instability.
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The fluid force components acting on tube arrays are measured and

reported by Tanaka and his colleagues for a row of tubes and a square array,

both with a pitch-to-diameter ratio of 1.33, as shown in Fig. 28 [51,52],

In addition, the fluid forces for a square array with a pitch-to-diameter

ratio of 2.0 also are measured [53]. From these data, fluid-damping

coefficients can be calculated. Tables 3, 4, and 5 show the fluid-damping

coefficients a' ., fj! , a' , and T' ; these coefficients are defined as

follows:

aij

(50)

and

Note that Eq. 50 is applicable for reduced flow velocity IL= not equal to

zero only. The coefficients depend on the reduced flow velocity Uj. For

larger values of U^, the absolute values of these coefficients are

approximately constants.

VI. EXAMPLES OF APPLICATION

Consider a simply supported tube with a baffle plate at midspan (see

Fig. 29). The tube is a stainless tube submerged in water (70°F). Tube

properties are given as follows:

Tube O.D. (2r) - 1 in.,

Tube wall thickness - 1/8 in.,

Tube length I - 48 in.,
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Table 3. Fluid-damping coefficients for a tube row with P/D - 1.33
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Table 5. Fluid-damping coefficients for a square array with P/D = 2.0
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Fig. 29. A simply-supported tube with a baffle-plate support.
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Baffle-plate-hole diameter (2R) - 1.02 in.,

Baffle plate thickness (2L) -1.5 in.

We wish to calculate the fluid damping with and without the baffle plate,

(a) No Baffle Plate

For the case of a tube vibrating in an infinite fluid, the modal

damping ratio attributed to fluid can be calculated from Eq. 10:

s, - - T ^
Note that the natural frequency of the fundamental mode is given by

J FT °*5

f
and that

and

E = 30 x 106 lb/in. ,

I = ̂  (1.04 - 0.754)in.4 = 0.0336 in.4 , (53)

m = j (I2 - 0.752)-7.5 x 10"4 Ib-sec2/in.2 = 2.58 x 10"4 Ib-sec2/in.2,

M, = -? x 0.935 x 10~4 x 1.02 Ib-sec2/in.2 = 0.734 x 10~4 Ib-sec2/in.2
d 4

The effect of fluid viscosity on Cw is small; C^ is assumed to be 1.

Substituting these values into Eq. 52 yields

u>̂  = 236.3 rad/sec

and
2

o V _ 236.3 x I 2 , ,. ,»5
5 = — 0.00157 " 1'5 x 10 *

From Fig. 5, Re(H) = 1 and -Im(H) - 0.0075 . Therefore,
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The modal damping attributed to fluid is small,

(b) With Baffle Plate

The equation of motion of the tube is given as follows:

EI - 4 + Cv6 (|)-*+(« + c ^ ) ^ =0 , (54)
9z 3t

where EI = flexural rigidity, u = tube displacement, t = time, 6 = delta

function, m = tube mass per unit length, and CUMJ = added mass per unit

length. The second term is the damping associated with the fluid in the

annular region of the baffle plate; all other damping and excitation forces

are neglected in Eq. 54. Since the tube is hinged at both ends, let

u = q(t)sin 2f- . (55)

Using Eqs. 54 and 55 y ie lds

4 + 2? a> £ + o)2q = 0 ,
j . 2 n n dt nM 'at

2 2 __ 0.5
n ir t E I N

(56)

0 , n = even

The damping coefficient Cv is given by

C - / Cdz , (57)
v -L

where C v is given in Eq. 11,
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cosh(z/R)
C = -M. fe-*—) a> Im(H) [1 - ^^ A, 1 . (58)
v d *-R - r ; n L cosh(L/R) J

Substituting Eq. 58 into 57 yields

C = 2LKM, t-£—1 a) [-lm(H)]
v d R̂ - r n

and (59)

K = 1 - f tanh (-] .

Substituting Eq. 59 into 56 yields

_2L _
;—~ .,—\~r , n — odd

= 0 , n = even . (60)

When n is an odd number, the tube vibrates within the gap (see Fig. 30); the

fluid in the annular contributes to damping. When n is even, the tube

vibrates against the baffle plate, the midspan at the baffle plate is a

nodal point and the damping attributed to the fluid at the baffle plate is

zero.

In Eq. 60, the function H depends on the oscillation frequency;

therefore, the modal damping for different modes are different. Based on

Eq. 60 and Fig. 7 the modal damping for the fundamental mode is calculated

as follows:

1 /2v _ _±_ (2 x 0.00157 }
0-5 m

R - r ô  ~ 0.01 L 236.3 J U*Jb5 *

From Fig. 7, -Im(H) - 0.82,
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( I ) TUBE VIBRATING WITHIN THE GAP

(2) TUBE VIBRATING AGAINST THE GAP

Fig. 30. Different modes for a tube with motion-limiting gap.
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K = 1 - L tanh £ )

0.5 , rO.75> rt on-?
OTTT

 t a n h te") = °'397

0.397 x 0.734 x 10"
4
f-^4r] x 0.82 ——

(2.58 + 0.734) x 10~* x 48 x 12

- 0.94% .

Therefore, the total fluid damping is equal to

?! - 0.083% + 0.94% - 1.02% .

VII. CONCLUDING REMARKS

Fluid damping is important; however, its characteristics for general

cases are still difficult to quantify. In particular, very few data are

available for cylinder arrays. Systematic theoretical and experimental

studies remain to be done in evaluating the damping matrices aJ* , al J , TJ .,

and β̂ j as functions of geometry, reduced flow velocity, and flow direction

as well as other system parameters.

When cylinder motion is small, a linear representation of fluid damping

as given in Eq. 1 is applicable. However, when cylinder motion becomes

large, other flow phenomena, such as vortex shedding, and cylinder/flow

interaction, become significant; more detailed characterization of the

damping effect will be needed.

At present, most of the mathematical models for cylinders vibrating in

a flow are based on the damping value obtained in stationary fluid. It has

been shown that flow-velocity dependent damping can be very important.

Without considering the flow velocity-dependent force, we may reach

erroneous conclusions.
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