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JAMES GRADY SANDERS. I n t e rac t i ons '  Between Arsenic Species and Marine . . 

Algae (Under the d i r e c t i o n  o f  Herbert  L. Windom). 

. . The arsen ic  concent ra t ion and spec ia t ion  o f  marine algae var ies  

widely, from 0.4 t o  23ng-mg- l ,  w i t h  s i g n i f i c a n t  d i f fe rences  i n  both  

t o t a l  arsen ic  content  and arsen ic  spec ia t ion  occur r ing  between a l g a l  
t 

classes. The Phaeophyceae con ta in  more arsenic than o ther  a l g a l  classes, 

and a greater  p ropor t ion  o f  the arsenic i s  organic. The concent ra t ion 

of inorganic  arsenic i s  f a i r l y  constant  i n  macro-algae, and may i nd i ca te  

a maximum l e v e l ,  w i t h  the excess .being reduced and methylated. 

Phytoplankton take up As(V) r e a d i l y ,  and incorporate  a small 

percentage o f  i t  i n t o  the c e l l .  'The m a j o r i t y  o f  the As(V) i s  reduced, 

methylated, and released t o  the surrounding media. .This uptake, and 

subsequent re lease i n  a 'reduced o r  methylated form, causes l a rge  changes 

i n  'the spec ia t ion  o f  arsen ic  i n  the  c u l t u r e  media; up t o  50% o f  the  

As(V) may be reduced. . The arsen ic  spec ia t ion  i n  phytoplankton and 

VaZonia a l so  changes when As(V) i s  added t o  cu l tures.  The a d d i t i o n  

genera l l y  causes an increase i n  the  p ropor t ion  o f  organic arsenic.  

Arsenate and phosphate compete f o r  uptake by a l g a l  c e l l s .  Arsenate 

i s  taken up r e a d i l y  due t o  i t s  chemical s i m i l a r i t y  t o  phosphate, and 
. 

i n h i b i t s  primary product ion a t  concentrat ions as low as 5 ug-l-l when the 

2 phosphate concentrat ion i s  low. The i n h i b i t i o n  i s  compet i t ive.  A 

phosphate enrichment o f  > 0.3 p l j  a l l e v i a t e s  t h i s  i n h i b i t i o n ;  however, 

the As(V)  s t ress  causes an increase i n  the c e l l ' s  phosphorus requirement. 



iii. 
1 

Arseni  t e  i s  a l s o  t o x i c  t o  phytoplankton a t  s i m i l a r  concentrat ions.  
L 

Methy la ted a rsen ic  species, such as DMA, d i d  n o t  a f f e c t  c e l l  p r o d u c t i v i t y ,  ' 

! 

e v e w a t  concent ra t ions o f  .25  pg* l -1 .  T ~ U S ,  the  methy la t ion o f  As(V) t o  

DMA by  the  c e l l  produces a stable,  non-react ive compound which i s  non- 

t o x i c  . 
The uptake and subsequent reduc t ion  and methy la t ion o f  As(V) i s  a 

s i g n i f i c a n t  f a c t b r  i n  determining the arsen ic  bidgeochemi s t r y  of pkoduc- 

t i v e  systems, and a l s o  the  e f f e c t  t h a t  the arsen ic  may have on a l g a l  

p r o d u c t i v i t y .  Ca lcu la t ions  based on the  measured reduct ion ra tes  i nd i ca te  

t h a t  15 t o  20% o f  the  t o t a l  arsen ic  i s  reduced dur ing  the sp r ing  and f a l l  

bloom. Therefore, the  r o l e  o f  marine a l g a e  i n  determining the  a r i e n i c  

spec ia t i on  o f  marine systems cannot be ignored. 
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INTRODUCTION 

Arsenic. species . . are  present in  rather  low quanti t ies  i n  marine 

systems. Earl i e r  studies reported arsenic concentrations up t o  75 pg*  1-l 

(~akes t raw and L u t z ,  1933; Gorgy e t  aZ., 1948; Fondekar and .Reddy, 1974), 

but more recent studies indicate tha t  actual concentrations a r e  much 

lower. Results fo r  the continental shelf between North Carolina and 

Florida indicate  tha t  to ta l  arsenic ranges between 1 and 1 .'5 pg-1-' 

(Waslenchuk, 1977, in p r e q ) ,  s imilar  averages have been obtained f o r  

the Pacif ic  ( t h i s  study; Andreae, 1978). 

Arsenic can occur i n  four oxidation s t a t e s ,  +5, +3,  0,  o r  -3, and 

a l l  can be s t ab le  under varying Eh conditions tha t  occur in  natural 

waters (Ferguson and Gavis, 19'72); however, As0 (metal) i s  very rare ,  

and the -3  s t a t e  occurs only under very low Eh values. 

In oxygenated natural waters arsenate (As(V)) i s  the s t ab le  

oxidation s t a t e ,  with the predominant dissolved form being HA SO^*- 
(Ferguson and Gavis, 1972; Lowenthal e t  aZ., 1977). . Arsenious acids 

(As(II1)) and organic arsenicals  a re  s tab le  only under mildly reducing 

Eh conditions, and are  not normal ly  -found in large concentrations. On 

. . . . occasion, however, both arseni t e  (As(II1)) and organic arsenicals  (mainly 

dimethylarsi'nic acid,  DMA) have been found t o  comprise s igni f icant  
- .  

amounts- of the to ta l  arsenic (Waslenchuk, 1977, in press; Braman e t  aZ., 

1971,; Johnson and Pi 1 son, 1975; Andreae, 1978) and are thought' t o  be the 

result of .biological reduction of arsenate (Pilson, 1974; Johnson, 1972; 



Very l i t t l e  i s  known about the a rsen ic  content  o f  marine algae, and 

even l e s s  about a rsen ic  speciat ion.  Johnson and Bra'man (1975) repor ted [ 

t h a t  a rsen ic  i n  Sargassum sp. .ranged from 4.2 t o  12.7 pprn, 80 t o  95% o f  

which was As(V). Vinogradov (1953) repor ted concentrat ions o f  0.1 t o  

,30 ppm. Jones (1922) and Portmann and R i l ey  (1964) found arsen ic  

concent ra t ions of 1.7 t o  125 ppm i n  B r i t i s h  algae, Wi l l iams and Whetstone 

(1940) r e p o r t  concentrat ions o f  1 t o  12 ppm from Puget. Sound, and Young 

and L a n g i l l e  (1958) found 2 t o  50 ppm i n  algae from the A t l a n t i c  coast  

o f  Canada. T r e f r y  and Presley (1976) r e p o r t  t h a t  phytoplankton i n  the 

' Gu l f  o f  Mexico con ta in  3 t o  52 ppm arsenic.  

Arsenic species are  c l a s s i c a l l y  considered t o  be b i o l o g i c a l  poisons, 

and a few i nves t i ga t i ons  concerning the t o x i c i t y  o f  arsen ic  t o  organisms 

have been conducted. Studies performed on yeasts and algae i n d i c a t e  t h a t  

bo th  As(V) and As(111) i n h i b i t  ce l du la r  func t ions  a t  genera l ly  low l e v e l s  

(~aCos ta ,  1972; Scarborough, '1975; Rothstein, 1963; Lewin, 1954, 1955; 

Jung e t  al., 1965; But ton e t  aZ., 1973; Blurn,*1966), bu t  i n  d i f f e r e n t  

ways. Arsen i te  probably reac ts  w i t h  the -SH groups o f  p ro te ins  (DaCosta, 

1972; Lewin, 1954, 1955). Arsenate competes w i t h  phosphate, a chemical 

analogue, f o r  t r anspo r t  i n t o  the c e l l ,  i nac t i va tes  t h i s  ac t i ve  t ranspor t  

' system, and then may a l so  i n h i b i t  glucose metabolism (Rotnstein, 1963; 

Scarborough, 1975). I t  a l so  competes w i t h  phosphate i n  ox i da t i ve  

phosphor.ylation (DaCosta, 1972) and e s t e r f i c a t i o n  react ions (Jung ' e t  aZ., 

1965). Since As(V) competes w i t h  phosphate the' ex terna l  phosphate 

eoncen'tration. may be very important  i n  determining the  t o x i c i t y  o f  As(V), 
. . .... 

and i t s  i n h i b i t i o n  o f  c e l l u l a r  growth may be greatest  i n  areas- where 

phosphate concentrat ions a re  lowest. 

Algae may a l so  p l a y  a r o l e  i n  r egu la t i ng  arsen ic  spec ia t ion  i n  
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.natura l  waters. Arsenic and many o the r  t race  elements a re  known t o  
d 

p a r t i c i p a t e  i n  a " b i o l o g i c a l  cycle"  o f  spec ia t ion  changes and 

t ransformat ions by .means o f  the ox ida t i ve  and reduc t i ve  reac t ions  of 

organisms (Wood, 1974). C h l o r e l l a  sp. has been found t o  reduce As(V) 

t o  As(I11) (Blasco e t  al., 1971, 1972). Reduction and methy la t ion of 

tnorganic  arsenic by bac te r ia  and fung i  have been shown t o  occur both 

a e r o b i c a l l y  and anaerobical l y  (McBride e t  al., 1971 ; Challenger, 1945; 

-Johnson, 1972) and organic arseno compounds have been i d e n t i f i e d  i n  

Sargassum sp. (Johnson and Braman, 1975) and marine phytoplankton (Lunde, 

1973; I r g o l i c  e t  aZ., 1977; Andreae, 1978). 

The pathways o f  these reduct ions and t ransformat ions,  whether they 

occur  t o  any ex ten t  i n  marine a l ga l  comnuni t i e s ,  and t h e i r  r e l a t i v e  

importance have y e t  t o  be determined. Since algae may conta in  arsen ic  .. 
i n  concentra,tions more than 1000 times greater  than the surrounding 

water, they may be a s i g n i f i c a n t  r ese rvo i r  f o r  the marine system. They 

may a l s o  con t r i bu te  reduced and organic forms o f  arsen ic  t o  h igher  l e v e l s  

o f  the food chain, and t o  the water column as we l l .  

Since arsen ic  may occur i n  several d i f f e r e n t  forms, i t s  spec ia t ion  

. is  . important i n  determining a rsen ic .  t o x i c i t y  i n  any system. Presumably, 

an a l g a l  c e l l  w i l l  r eac t  d i f f e r e n t l y  t o  separate speci.es o f  the sanie 

elenlent. Several. i n ves t i ga to r s  (Sunda and Gui 1 la rd ,  1976; Morel e t  aZ., 
0 

1978; Anderson ,a"d .Morel , 1978) have demonstrated t h a t  copper 6 i n h i b i t i o n  
L 

o f  marine phytoplankton i s  r e l a t e d  t o  the cu2+ i o n  concent ra t ion and 

n o t  the t o t a l  copper concentrat ion.  

- Th is  d i s s e r t a t i o n  present.s the r e s u l t s  of i nves t i ga t i ons  i n t o  the 

i n te rac t i ons  t h a t  occur between d i f f e ren t  arsen ic  species and marine 
.a 

algae. The ob jec t i ves  o f  t h i s  study were: 



1. t o  measure the conce~n t ra t i on  o f  each arsen ic  species 
i n  phytoplankton.  and macro-algae i n  na tu ra l  systems, 

2. t o  determine the r e l a t i v e  t o x i c i t y .  o f  the separate 
arsen ic  species t o  phytoplankton, 

3. t o  measure the r a t e  of uptake, reduct ion,  and 
poss ib le  re lease o f  arsen ic  species by algae, and 

4. t o  determine the e f f e c t  o f  ex terna l  n u t r i e n t  
concent ra t ions on the uptake, release, reduct ion,  and 
t o x i c i t y  o f  arsenic.  



' MATERIALS AND METHODS 

Analysis of arsenic 
* 

.. Measurement of the separate arsenic species was performed on aqueous 

samples u s i n g  the D .C. arc-induced-plasma emi ssion technique of Braman e t  

a2. (1977),  modified somewhat for' use with biologikal samples. The 

technique involves placing an al iquot  of a sample i n t o  a glass reaction 

vessel, ac id i f ica t ion  with oxal i c  acid,  and reductdon of the arsenic 

present t o  AsH3 gas with a strong reducing agent, NaBtl4. Each separate 

arsenic species is  reduced to  i t s  unique arsine species;  i .e. ,  As(V) 

forms ars ine  and DMA forms dimethylarsine. Arsenate i s  separated from 

As(II1) by a change in the pH of the sample within the reaction vessel. 

The arsines are  trapped on a glass bead-packed U-'tube cooled i n  1 iquid 

N2. Separation and sequential release of the ars ines occurs when the  U-tube 

i s .  removed, and a1 lowed t o  warm. The arsines a re  swept. in to  the D.C. arc  

by helium c a r r i e r  gas, where the arsenic plasma i s  formed. The arsenic 

emission wavelength (234.98 nm) is monitored by a GCA-McPherson Model EU- 

700 spectrophotometer, the resul t ing pulse i s  graphed on a Fisher Model 

5000 recorder. The detection l imi t  (signal = 2x background) i s  approximately 

0.5 ng f o r  As(II1) and As(V) and 1 ng f o r  the methyl arsenicals .  The maxi- 

m u m  sample s i ze  i s  40 ml, giving min imum concentraticns of 0.01 ug ~ s ~ l - 1  

and 0.03 p g  AS-1-1, respectively. The precision fo r  aqueous samples based 

on repl ica te  analyses i s  approximately 510%. 

Digestion of bioloqical samples 

I t  was necessary t o  perform a wet digestion,on both phytoplankton 

and macro-algae before arsenic analyses coilld be performed. Up t o  1 



6. 

l i te r  o f  phytoplankton cul ture was f i  1 tered through e i  ther  a Nucleopore 

or Millipore membrane f i l t e r  of 0.45 p m  pore s ize .  The f i l t e r  apparatus 

used was constructed of polycarbonate, and soaked i n  20% HNO) between 

uses. The preweighed f i l t e r s  were placed in small, polycarbonate pe t r i  

,'I 
d ishes,  and dried a t  60-800 C i n  an oven. After drying, the f i l t e r s  

were re-weighed and the amount of plant material was determined from 
-7 

t he  weight gain. Macrolalgae were dried i n  an oven a t  60-800 C. The 

digest ions were carr ied,  'out on known amounts of plant material (approx- 

imately 10 mg of phytoplankton, 20-100 mg of macro-algae) . Known 

quan t i t i e s  of  NBS c e r t i f i e d  orchard leaves, a f i l t e r  blank ( i f  applicable),  

and a reagent blank were digested along with each group of samples . 

processed. Analysis of 21 repl icates  of NBS ce r t i f i ed  orchard leaves 

gave an average value of 13.5'ppm with a standard deviation of 2.2 ppm. 

NBS orchard leaves a r e  c e r t i f i e d  t o  contain 14 + 2 ppm arsenic.  

The digestions were performed in loosely capped teflon v ia l s ,  of 20 

m l  capacity on a , h o t p l a t e  under low heat (90° C ,  s l igh t ly  higher than the 

boi l ing point of HN03). The v ia ls  were plzced under a tef lon hood, and 

N E  gas was used as  an i n e r t  atmosphere t o  minimize contamination. The. 

acid used fo r  digestion was or ig ina l ly  5 m l  of concentrated NBS ce r t i f i ed  

r e d i s t i l l e d  HN03. Later,  Baker " ~ l t r e x "  HNO3 was found to  be suf f ic ient ly  

clean t o  replace the-more expensive NBS acid. The acid was evaporated 

nearly t o  dryness a n d ,  i f  n P c P q q a r y ,  more acid was added t o  completr? 

the digestion. The residue remain'ing was dissolved i n  5' n11 of . lo% 

" U l  trex" HNO3. T h i s  solution could then be analyzed f o r  arsenic . w i t h  

no ' fur ther  modifications. 

On several occasions, f i  1 t e r s  spiked with a1 1 ' three species of 

a rsenic  were digested t o  determine i f  speciation changes occured during 



7: 
. . 

digestion. With the exception of As(II1) no 'changes were observed. . . 

Arseni te  was sometimes i n  par t  (0-502) oxidized t o  AsCV). 

A lga l  col lect ion 

Macro-algae was collected from the in t e r t ida l  zone of several d i f f -  
# 

erent habi ta t s  (Maine, Massachusetts, Georgia, Florida, Cal i fornia ,  and 

~ r i t i s h  Columbia) t o  be analyzed f o r  arsenic  speciation. The algae was 

collected by hand, placed in  p l a s t i c  bags, then oven dried in  the labo- 

ratory a t  800 C .  The d r i e d  algae was digested and analyzed f o r  arsenic  

as detai led above. 

Culture techniques . 

1. Macro-algae; The only alga cultur'ed in bulk was VaZonia 

macrophysa, obtained in pure cul ture  from Carolina Biological Supply 

Company. In addition to  t h i s  species,  an attempt was made to  cul ture  

V. ventricosa collected .in the Flo.rida Keys; these c e l l s  did not survive 

f o r  mo,re than 2 months,. probably due to  de.gradation of the numerous 

attached epiphytes. The VaZonia were kept i n  200 ml glass cul ture  

dishes under a r t i f i c i a l  l i g h t  and a 12 hour photoperiod ( in t ens i ty  = 

100 p~-m'*-sec- l)  a t .  20° C.  Various cul ture  media were used including 

a commercially prepared medium ("Alga-Gro" ) from Carolina Biological 

Supply Company.- The basic med.ium used fo r  a l l  arsenic  s tudies  was 

prepared from seawater collected 50 to  60 miles offshore,  with NO3- 

added t o  .increase the concentration by 20 IJM. - .No other additions weare 
* 

made. VaZonia cultured in this .  media remained viable f o r  more than 1 

year when the medium was changed monthly. Arsenic enrichment s tudies  

C . were performed by adding the appropriate arsenic species t o  t h i s  basic 
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Vatoniu was selected f o r  these experiments because each p lant  is  

one large c e l l ,  0.2-3 cm in diameter. Because of i t s  s i ze ,  the c e l l  

could eas i ly  be separated in to  3 components: the vacuolar sap, the c e l l  

wall ,  and the cytoplasm. This separation was accomplished .by f i r s t  draw- 

ing o f f  the vacuolar sap with a micro-syringe. 'The cytoplasm was then 

ca re fu l ly  scraped from the ce l l  wall. The sap was d i r ec t ly  analyzed 

f o r  'arsenic. Both the cytoplasm and c e l l  wall were dried and digested 

before analysis .  The analysis  o f  . l ive t i ssue  (Jolinson and Br,aman, 1975) 

was' attempted on two occasions, but was discontinued due t o  poor.recovery 
' 

of arsenic .  . 

2. * Phytoplankton. Axenic stock c u l t u r e s  of ~ket'etonnema costatum 

i so la ted  by R.  R . L .  Guil lard (clone Skel , WHOI)  and Peridinium trochoidiwn 

( i so la ted  by M. Darley, University of Georgia) were maintained in 

Gui l  l a r d ' s  f/10 media (Guil lard and Ryther, 1962). The Skeletonema 

cu l tu re  w'as t ransferred weekly, the slower growing Peridiniwn was . 
- 

t ransferred monthly (250.v1 in to  50 ml). Care was taken to  use. cul tures  

of the same age and physiological s t a t e  fo r  cu l ture  experiments, i . e . ,  

week old Ske~etonerna stocks and 1 month old Peridiniwn stocks were used. 

Inoculum s i ze  varied from cul ture  to  cu l ture ,  depending on cul ture  s ize .  

Batch cul tures  were prepared, i n  2, 4,  o r  12 l i t e r .  glass  vessels.  

The medium was seawater co l l ec t ed~wel l  offshore, and membrane f i l t e r e d  

t o  remove a l l  other  possible biota.  Approximately 20 V M  - NO7- .. and .Si03 

were 'added t o  promote growth, phosphate was not usual ly  added. 
. 

The inoculum of c e l l s  from the stock cul tures  was designed t o  give 
6 -. 

a n i l n i  t i a l  c e l l  densi ty '  of 10 c e l l s * l - ' .  + A1 1 cul tures  were placed i n  

l a rge  'aquaria and maintained a t  a temperature of 20° C and a l i g h t  

in t ens i ty  of 80 VE -m-2.sec-1. Arsenic=was added ;-and the cul tures  were 



.run unt i l  the population' had .reached stat ionary phase, usually 6 to  8 

days. The cul ture density was monitored dai ly by measurement of i n  vivo 

f 1uor.escence; subsamples were taken periodical ly  fo r  ce l l  counts, 

arsenic concentration and speciation, and par t icu la te  carbon concentra- 

h o n .  After reaching s tat ionary growth, the cultures were f i  1 tered 

through cleaned membrane f i 1 t e r s  and digested as above. 

The productivity of various cul tures  was determined by the  1 . 4 ~  

method. 100 ml al iquots  of cul tures  were placed in 125 m l  bo t t les ,  

inoculated w i t h  5 P C ~  of I4c as  HC03-, and incubated i n  placg for  4 hours. 

These bot t les  were f i l t e r e d ,  the f i l t e r s  dr ied,  placed in 15 ml of 

"0mnifl.uor" ,' and counted in. a P,ackard "Tri -.CarbU 1 iquid s c i n t i  1 la t ion  
. . 

spectrometer. 

3. Phosphate-arsenate interact ions.  A s e r i e s  of experiments was 

designed t o  study the e f fec t s  of '  phosphate and As(V) on growth and 

nutr ient  uptake by SkeZetonema costatum. Thirty test- tube cu1tur.e~ 

4 i n  duplicate containing approximately 10 c e l l s  *ml-I of P-starved c e l l s  

received varying concentrations. of As(V) (0, 5,  and 25 p g 0 l - ' )  and 

phosphate (0,  .007, .02, .07, .17, .33, .67, 3.3, .6.7,  and 33 pfi) . 
After 24 hours of .incubation, the cul tures were fixed with Lug01 ' s  . 

solution and the increase in c e l l  number determined. 

3 2 7 4 ~ s  (as As(V)) and P (as PO4) were used t o  determine the e f f e c t  

..of A s ( V )  concentration on the uptake of phosphate .and conversely, the 

e f f e c t  of phosphate concentrations on As(V) uptake. 100 ml cul tures  , 

3 b f  Skeletonerna c o s t a t m  containing approximately 10 c,ell s ..rnl-l were 

inoculated w i t h  varying concentrations of As(V) (0, 5 ,  and 25 pg- I - ' ) ,  

phosphate (0, .007,..17, and 3.3 pM), - and 10 pCi of 7 4 ~ s  p e r  f lask ,  ,and 

incubated fo r -  25 hours. Periodi,cal ly ,  5 n i l  al iquots  .were reoicjvecl 'and 



f i l t e r e d  through 0.4 ~m Nucleopore f i  1 ters. The f i  1 t e r s  were placed 

i n  10 m l  of "Aquasol", and counted i n  a Packard liquid s c i n t i l l a t i o n  
. . 

counter. Other cul tures  were prepared using four concentrations of 

A s ( V )  (0,  5, 1 5 ,  and 25 pg- l - ' ) ,  four phosphate concentrations (0 ,  .007, 

.17, and 3.3  p!), and 2 pCi of .  3 2 ~  p e r '  f lask;  and incubated f o r  5 hours. 

Periodic samples were taken, f i 1 tered, and counted by Cerenkov radiation 

i n  5 m l  of water i 'n the Packard counter; 

. ~ 0 t h  the phytoplankton and VaZonia grown under arsenic enrichment 

were analyzed f o r - c  and N t o  determine t h e i r  r a t io .  100 ml o f  cul ture 

were f i l t e r e d  through a combusted glass-f iber  f i l t e r ,  dried a t  600 C ,  

and then analyzed in a Perkin-Elmer model 240 elemental analyzer. Whole 

t'aZonia c e l l s ,  dried a t  60' C were placed i n  platinum boats and analyzed 

a s  above. 



. . RESULTS 

# . -. . ~ r s e n i c  concentration and speciation i n  marine algae 

The arsenic concentration of marine algae varies  widely (Table 1 ) .  

Arsenic concentrations range from 0.4 to 23 ng*mg-l  i n  macro-algae 

collected on the eas t  and west coasts of North America. The arsenic 

speciation also varied, with inorganic species comprising from 1 t o  80% 

of the to ta l  concentration..  Note tha t  inorganic arsenic contains both 

the As(V) and As(II1) fract ions,  a s  the digestion procedure often 

.. .oxidized . the As(I1 I )  t o  As(V). Attempts to  determine the As (III)/As(V) 

r a t i o  by less d ras t i c  procedures such as  grinding the fresh algae in 

0.2N NaOH (Johnson and Braman, 1975) did not give sa t i s fac tory  r e su l t s .  

The three algal classes '  contain s igni f icant ly  d i f f e ren t  arsenic 

concentrations and speciation (Table 1 ,  p > .99). .Brown algae contain 

t h e ,  highest average to ta l  arsenic concentration and have the lowest 

percentage of inorganic arsenic.  B o t h  red and green algae contain 

approximately equal percentages of inorganic arsenic,  but green algae 

have' a higher average to ta l  arsenic concentration. 

Arsenic concentrations in cultured phytoplankton ranged from 5 

(~e r id in iwn  trochoidiwn) t o  23 ng-rng-l (~keZetonmcz c o s t a m ) .  Arsenic 

speciation in both algal species was approximately 50% inorganic, 50% 

organic (Table 2 ) .  

The cultured VaZonia macrophysa had very low arsenic content,  0.16 " 

ngrnf1, 75% of which was inorganic (Table 3 ) .  



Table 1. Arsenlc concentration and speciation i n  marine macro-algae. Concentration is i n  ng-rng-l. . , ,  

Classification accarding t o  Fri tsch, ,1377. - 

% % 
r r .  . Species Col 1 ected Total As Inorganic Organic Comments 

CHLOROPHY CEAE . 
Order I11 - ~lo t r i cha fes  

. . Enteromorpha sp. #3 
Enteromorpha sp. # I  
Enteromorphcz sp. #2 

. UZva Zactuca . . 
uzvu sp. 

' Order IV - Cladophorales 

CZadophora sp. # I  
CZcdophora sp. #2 

. . 
.Order V.1 I1 . - " Siphonales 

, CauZarpa s p .  
Derbesia s p .  
Codiwn frag<Ze , . 



Table I . ,  continued. 

% 
Total As Inorganic 

% 
Organic Species Coll ected Comments 

Hatkeda sp. 
Udotaa sp. 
VaZcriia macrophysa. ; 

Valcriia ver,tricosa 
A n d 3  omene sp . 

Calcareous, 
Calcified . . 

CHLOROFHYCEAE, over,all 

. . 
PHAEOFFY CEAE 

O r d e r  I - Ecto'carpales 

Ectccarpus sp. 
HapZcgloia sp. 
Pet~Zonia sp. 
Scy f,cesiphon but Zusus . 

Order V - ~esmares t i a l e s  
. > .  

Des~arestia sp. 



Tab1 e I . ,  continued. 

% 
Tctai As Inorganic 

% 
Organic Species CoJ 1 ected , Comments 

Order VI - Laminariales 

Cynathere t r i p l i c a t a  
PosteZsia pahoeformis. 
Nereocystis hetkeana ' 
Macrocystis pyrifera 
AZaria marginata 
AZaria marginata 
Eisenia arborea 

Bl ades 
Blades 

Bl ades 
Sporophyll s 

Order V I  I I - ' ~ i c t ~ o t a l  es 

Dictyota sp. 

Order IX -"~uca les  . 

Ascophy Zlwn sp. 
Fucus sp. # I  
PeZvetiopsis Zilmztata . 

Fucus sp. #2 

PHAEOPHYCEAE, overal i 



Tab1 e 1. , continued. 

Srecies  

RHODOPHY CEAE 
Swb-Class I - Bangioideae 

. Porphyra nereocystis 

. . 
Sub-class 11 - Florideae 

. Order IV - Cryptonemiales 

CoralZina sp. 

.Order V - Gigar t inales  
Iridaea cornuc'opiae 
Yzoagardhie Z Za sp . 
Sracilaria bzodget t i i  

. . .Order VI - Rhodymeniales 

Col 1 ected Total As 

3.16 

0.43 

1.80 
0.65 
2.23 

1.56 
0.82 

% 
Inorganic 

48 (47-49) 

28 (23-33) 

29 (27-31) 
22 
4 0 

2 9 
, 6.80 

. 
C o m n  t s 

Calcareous 



.. . 

Table I . ,  contfnued. 

Order VII - Ceramiales 

Col 1 ected 

Antithamion sp. 2 ,  7,'77 
Microc Zadia sp . 2 ,  7:7? 
Cerwnium sp. . ., 3, 1!78 
Chondria s p .  ffl 3 ,  1:78 
Chondria sp. #2 3 ,  . 1:78 

RHODOPHY CEAE, overal l  I 

. . 
I* - Skidaway River 
2O - Vancouver Is1 and, B r i t i s h  ~c lumbia  
3'0 - Florida Keys 
46 - Carol i na ~ i o l o g  i cal Supply Company 
50 - Southern. Cal i fo-nfa. 
64 - Fort Pierce,  Fl'orida 
77 - Woods Hole, Massachusetts 
8" - Maine 

Total As 
% . % 

Inorganic Organic Comen ts 



Tzble 2 .  As speciation in ce l l s  grown i n  enriched As media. As concentrations i n  ngemg-l: 
All cul ttires were S. costatwn except PT-9-77 was P. trochoidiwn. 

As(V) ~nrichment 

As(V) Inorganic Organic 
Cul ture Flask Added, pg*l- '  As As Total 

% 
' of Control 



Tab1 e 2. , continued. 

As(1II) Enrichment 

As(II1) 1norgar.i~ Organic % 
Culture Flask Added, u g l - l  As As' Total of Control 

SC-4-77 A .O 14..6 (12,.9-16.2) 56 11.3 (10.8-11.9) 4 4 25.9 --- 
B 1 20.8 (18..5-23.2) 58 15.2 (14-16.4) . 42 36.0 139 
C . ,20 25.8 (25..2-26.5) 5 3 22.8 (21-24.7) . 47 48.4 187 

DMA Enrichment , 

DP4A Inorganic Organic . X 
Culture - Flask Added, pa.1-l As As - Total o f  Control 



TaSle 3.  As content and speciati:on i n  Vatonia cells grown inmed la  enriched with As for 34 days. As 
concentrat ions i n  ng.mg-1 f c r  cell wall and cytoplasm, pg.1- f o r  sap and culture media. 

Cell Wall and Cytoplasm 

~ n r i c h e d  - 
I P.s. sp. 

control  
As ( V  

A s i I I I )  
DilA 

E3ri ched 
4 5  s p .  

Control 
W V )  

As(II1)  
imA . 

As 
Added, pg-l-l 

As 
Added, pg 1 -' 

Inorganic Organic 
As As 

Inorganic 
As 

Vacuolar Sap 

Organic 
. . As 

E n . r i  c hed As Inorganic 
As sp. Added, pg0l- '  As 

Culture Media 
Organic 

As 

- 

Total 

0.16 
1.37 
2.76 

.37 

Total 

2.3 
2.9 
6.6 

.14.2 

( x i  - Total  - 
Control 0 .03 $1 00 t r a c e  0 >. 03 

15 2.04 4 9 2.09 51 4.13 
84 16 5.63 As(1II)  15 4 .72  .91 

Dr4A 15 -. 21 3 6 .'40 9 7 6.61 10 
4 



ArsenSc uptake by phytoplankton and VaZonia 

1. As(V.). Phytoplankton batch cut tu res  subjected t o  added amounts 

of As(V) take up, a d d i t i o n a l  arsen ic  dur ing  the l o g  phase o f  growth. 

Stud ies using 7 4 ~ s ( a s  A S ( V ) )  i n d i c a t e  t h a t  the  ne t  uptake r a t e  va r ies  from 

. . 0:15 ng A S ( V ) *  h r - I  1 o6 c e l l  s o l  i n  unenriched c u l  tu res  t o  2 .3  ng AS(V)  h r - l  

0106 c e l l s - I  i n  c u l t u r e s  conta in ing 25 ~ ~ 9 l - l   a able 4, F igure 1) .  
. 

Cul tu red  SkeZetonema costatwn increase the ' i r  ' a rsen ic  concentrat ions 

approximately 40%, from 22 t o  29 ng-mg'l (Table 2, c u l t u r e s '  2-77-As, 

SC-3-77) i n  r c s p o n v  t o  arscn,ic a d d i t i o n s . o f  6 t o  25 + 1 ~ ? 1 ~ ~ ~  This  

a rsen ic  increase appears t o  be l a r g e l y  independent o f  ex terna l  arsen ic  

concen t rh t i  ons, above 6 ug,- 1 - l  As (V) added. Peridiniwn trochoidiwn, 

on t h e  o ther  hand, concentrated l a r g e  amounts o f  arsenic, and the concen- 

t r a t i o n  w i t h i n  the  c e l l s  va r ied  d i r e c t l y  w i t h  the  As(V) concent ra t ion o f  

the  media (Table 2, su l  t u r e  PT-9-77). Enrichments o f  up t o  10 t imes 

occured when c u l t u r e  medium was enriched w i t h  22 pg*l-l As(V). 

2. As ( I I1 ) .  When cu l t u res  o f  S. costatwn were enriched w i t h  As ( I I 1 )  

(Tab le ,  2, c u l t u r e  SC-4-77), c e l l u l a r  arsen ic  concentrat ions a1 SO increased 

as above, about 40% w i t h  an enrichment o f  1 p g - l - l ,  and 90% w i t h  a 20 

vg*l-l enrichment: 

3. DMA. Cu l tures grown' under cond i t i ons  o f  DMA enrichment showed 

no increase i n  c e l l u l a r  arsen ic  concent ra t ion over the con t ro l  (Table 2, 

c u l t u r e  SC-4-78). 

Addi t ions o f  phosphate t o  c u l t u r e  media a f f ec ted  the uptake of . 
7 4 ~ s ( a s  As(V) ) , a t  t he  several d i f f e r e n t  arsen ic  conc,entrations tes ted  

(Table 4 ,  Figure 1) .  Increased phosphate concentrat ions s i g n i f i c a n t l y  

decreased the uptake o f  arsenic i n  the c u l t u r e  (p > .90-.99). Phosphate 
.' 

enrichment a l so  reduced t he  t o t a l  arsen ic  concent ra t ion found i n  S. 



e .  

Table 4 .  The uptake o f  7 4 ~ s  by skiletonema costaturn subjected t o  a  
' 

v a r i e t y  o f  As and PO4 concentrat ions,  and l i n e a r  regress ion ana lys is .  
o f  t h e  p a r t i c u l a t e  a c t i v i t y  over t ime. S i g n i f i c a n t  d i f f e rences  
between the slope o f  the c o n t r o l  f l a s k  (no PO4 a d d i t i o n )  and the 
t reatment f l a s k s  a re  ind icated.  

As(V) 
A S ( V ) ~  P04, uptake ng As hr-1 S ign i f i cance  

t Flask ,,g*l- u M  n g S h r - 1  l ~ ~ c e l l s - ~  o f  t 



Figure 1.  The e f f e c t  of external As(V) concentration ( in  p g * l - l )  and 

phosphate concentration : ( i n  .pM) - on the A S ( V )  uptake rate,R)! of 
6 SkeZetonema costafmn ( i n  ng As (V) hr-' -1 0 ce l l  s-' ) . Both s igni f icant ly  

a f f e c t  the uptake r a t e  ( p  > .99). 
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coetutwn grown under arsen ic  enrichment (Table 5 ) ,  by an order  o f  magni- 

tude compared t o  c e l l  s  grown w i thou t  phosphate enrichment (Tab1 e 2). 

The increased uptake of the var ious arsen ic  species from the c u l t u r e  

media was small  i n  comparison t o  t o t a l  arsenic concentrat ions, so conse- 

quent ly,  t o t a l  arsen ic  concentrat ions . i n  the var ious cu l t u res  remained 

unchanged (approximately 10 mg c e l l  s  per  1 i ter ,  uptake o f  approximately 

10 ng/mg = 100 ng, o r  l e s s  than 2% o f  t o t a l  arsenic) .  

The uptake o f  arsen ic  by VaZonia macrophysa i s  much slower; however, 

c e l l s  grown i n  arsenic-enr iched media f o r  a per iod  o f  34 days (Table 3)  . 

dSd increase t h e i r  arsen ic  content  considerably. Ce l l s  grown i n  e i t h e r  

As(l11) o r  As(V) enr iched . media . showed l a r g e  increase;' i n  arsen ic  content, 

w h i l e  c e l l s  grown i n  media enriched w i t h  DMA showed very 1 i t t l e  uptake. 

The increase t h a t  occured i n  VaZonia c e l l s  was found p r i m a r i l y  i n  

the c e l l  wa l l  and cytoplasm. The cen t ra l  vacuole, which o r i g i n a l l y  had 

been pos tu la ted  t o  be a storage area f o r  excess arsenic had concentra- 

t i o n s  t h ree  orders o f  magnitude l ess  than the c e l l  wa l l  and cytoplasm, 

the  arsen ic  concent ra t ion and spec ia t ion was s in~ i la r .  t u  Lhe concentrat ion . 

i n  the  surrounding medium (Table 3) .  The reduct ion i n  t o t a l  arsen ic  i n  

t he  medium was due t o  uptake by the VaZonia, and n o t  t o  l oss  o f  any k i nd  

f rom the  c u l t u r e  d ish.  

Arsenic spec ia t ion  changes 

Arsenic spec ia t ion  w i t h i n  the ce l ' l  changes when c e l l s  a r e  grown I n  

arsen ic  enr iched media. The inorganic/organic arsen ic  r a t i o  i n  

SkeZr9eo1wma cootutwn changed s i g n i f i c - a n t . 1 ~  ($91) < p < .95) from 

approximately 45/55 t o  30/70 when grown i n  media enriched w i t h  As(V) 

(Table 2). No s p e c i a t i o n  changes were seen when S. costatum was grown 

i n  an As (I11 ) o r  DMA enriched medium, or '  when Peridinium t rocho id iwn was 



Table 5. As content and speciat'on i n  S. costatwn c e l l s  grown i n  media enriched with AS(V)  and phosphate. . 1 As concentrations i n  ngomg' . 

As conc P cony Inorganic Organic 
Flask pg*l-l pg-1' As:P04 As .w As 

% 
Total  o f  Control 



grown i n  an As(V) enr iched medium (Table 2). 

Vatonia c e l l s  grown i n  arsenic-enr iched medium had s i g n i f i c a n t  

(p > .95) inorganic /organic  arsen ic  r a t i o  s h i f t s  o f  75/25 t o  58/42, 

w i t h  t h e  l a r g e s t  change occurr ing under As(V) enrichment (Table 3). 

Arsenic spec ia t ion  changes w i t h i n  the seawater medium are  much more 

d r a s t i c  (Table 6 ) .  A f t e r  one week o f  Skeletonma cbstatum growth, the 

concen t ra t ion  of As (V) ' i n  the media i s reduced by approximately one-ha1 f , 
. . 

w h i l c  bo th  As (1 I I )  and DMA increase. Figures 2 a,b,c show the r a t e  a t  

which t h e  above spec ia t ion  changes occurred i n  SC-1-78. I t  i s  i n t e r e s t -  

I n g  t o  note t h a t  a l l  o f  the  As(V) reduc t ion  (and subsequent i n c r e a s e o f  

A s ( 1 I I )  and DMA) occurs dur ing  the l o g  phase o f  c e l l  growth. No As(V) 

r educ t i on  occurs wh i l e  the  popula t ion i s  i n  the  s ta t i ona ry  growth phase. 

When c u l t u r e s  were enriched w i t h  A s ( I I I ) ,  as i n  SC-4-77 (Figure 3) ,  

t he  A s ( I I 1 )  concen t ra t ion  r a p i d l y  decreased w i t h  time. Th is  decrease i s  

due ma in ly  t o  the chemical ox i da t i on  o f  As ( I I 1 )  t o  As(V) (F igure 4, 

discussed below) and i s  d i f f i c u l t  t o  separate from any b i o l o g i c a l l y  

mediated t ransformat ions.  However, the concent ra t ion o f  As (I 11) i n  the 

c o n t r o l  sample d i d  increase (Figure 3), and DMA increased i n  a11 th ree  

f l asks .  

No s i g n i f i c a n t . s p e c i a t i o n  changes occu r red . i n  cu l t u res  t h a t  had 

been enr iched w i t h  DMA  a able 7) ,  o ther  than the  changes caused by the  

a d d i t i o n  o f  t he  DMA i t s e l f .  
- . 

Chemical ox i da t i on  o f  a r sen i t e  ' 

The chemical ox ida t ion .  of ~si .111) was 's tud ied by adding 5 pg-l-' of 

As( I I1 )  t o  f i l t e r e d  seawater t h a t  had been t rea ted  i n  3  d i f f e r e n t  ways: 

1 )  g lass  f i b e r  f i l t e r e d ,  2 )  f i l t e r e d  then autoclaved, and 3 )  f i l t e r e d  

then UV i r r a d i a t e d .  ~ h e s e  three samples were placed i n  2 temperatures, 



Table 6. As speciatfgn changes i n  culture media, culture SC-3-77, one eek af ter  -Y .inoculation with LSceZetonma costatym. As concentrations in pg-1 . 

Flask 

' A, noAs 
A, control 

C ,  25 pg A S ( V ) / I .  
C,. csntrol 

As(II1) DMA 
ug.l-l Jlg.1-1 



Figure 2 .  Arsenic speciation changes with time i n  a Skeletonemu costatton 

cul ture ,  SC-1-78. 2a. Reduction of As(V). 2b. Formation of As(II1).  

2c.  orm mat ion of DM. Quantities a re  expressed as  % of to ta l  arsenic.  

Arsenic enrichment: A-no As (V) added, B-5 pg A S  ( v )  el-' , C-25 pg .AS(V) el-'. 

Total arsenic remained unchanged during the course of the experiment. 
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Figure 3 .  The oxidation of As(II1) w i t h  time i n  a SkeZetonema costatwn 

culture,  SC-4-77. Arsenic enrichment: A-no As(1 I I )  added, B-1 pg As(II1) 





Table 7.. As sp.eci.ation chang,es, i ,n cu l tu re  SC-4-DMA-77, a t  beginning o f  experiment, 
; and '7 -days a f t e r '  inoculat ion w i th  SkeZetonema costatwn. As concentrations i n  

, ,pe l -1 .  - - 

As(II1) DMA . 
C"/o) , - yq.1-1 la' Flask' 

r -  - . 
)lg*l-1 

. . . . 

1.2 79 .14 3 .18 12 A, ~ O ' D M A  . 
A; a f te r  7 days - 1.2 80 . .. . .06 4 . . .24 16 . 

6 .  . . 

B ,  5 bg DMA/l I .2 . 18 .26 . . 4' 5.1 78  . 

B, a f t e r  7 days 2.1 3 3 ..32 . 3 '4.0 62 . 
- 

-. - .  

C, 10. p.g DMP.11 , ' 2.3 20 .34 3 ' c  a 8 . 9  .' 77 " 
4 . 8.2 7.1 ' C.$ a f t e r  7 days 2.9 25 .46 



32. 
170 and 270 C ,  and allowed to  incubate f o r  50 days. A1 iquots were - 

withdrawn a t  frequent in te rva ls  , and the arsenic  speciation determined. 

The chemical oxidation of As(II1) was found t o  be slow; concentrations 

decreased exponential ly  (Figure 4 ) ,  There was no s ign i f i can t  difference 

between the r a t e  of oxidation i n  any of the three treatments, b u t  the 

oxidation r a t e  was somewhat f a s t ep  a t  27O C (significance, .80 i p < .go). 

The equations generated for  the .two d i f f e ren t  temperatures are:  

log. Y = -0.0126 X t 1.77, a t  17O C ,  and (1) . 

log- Y = -0.0161 X + 1.49, a t  27O C ,  (2) 

where X is' time i n  days; and Y i s  As(II1) expressed as  % of to t a l  arsenic.  

Speciation changes .in controlled ecosystem enclosures'(CEPEX) . . 

' "The Control led . Ecosystem . Pollution Experiment (CEPEX) i s  a 

cooperative, multidisciplinary research e f f o r t  designed to  t e s t - t h e  

e f f ec t s  of 'chronic exposure t o  low levels  of pol lutants  on pelagic 

marine organisms" (Menzel and Case, 1977). 
I 

As par t  of the on-going CEPEX project ,  three %-scale enclosures 

(68 m3) wereused  t o  study the biogeochemical cyclTng of arsenic.. The 

enclosures a re  described i n  de t a i l  by Menzel and Case (1977). One \ i 

enclosure was used as  a control ,  while the other two received arsenic  

enrichments of e i the r  As(V) o r  As(1II) equaling 5 ~ ~ - 1 ' ~ .  Arsenic 

concentration and speciatlon, nut r ien t  concentration, chlorophyll a ,  

par t icu la te  carbon, and phytoplankton abundance and productivity were 
. 

monitored periodically from 30 ,June t o  21 July 1977. The t s t a l  arsenic  

concentration of both enclosures did not vary during the course of the - 

experiment. 

, 
The . . speciation of arsenic  i n  t hecon t ro l l ed  ecosystem enclosures 

. (cEE) followed a pattern s i m i l a r  t o  t h a t  seen i n  cu l tures ,  b u t  the 

. . : .. .  . 
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speciat ion changes were not a.s large.  CEE-B, which received As(V) 

enrichment equiva lent  t o  5 had a gradual, s igni f icant  (p > .999) 

decrease i n  the AS(V) concentration from a maximum of 88% of to t a l  

a rsenic  a t  the s t a r t  of the  experiment to  a minimum of 72% on 11 July,  

12 days a f t e r  As(V) addition. After t h i s  .period, no s igni f icant  changes 

i n  arsenic  speciation occured (Figure 5) .  A1 though the enclosures were 

sampled a t  three  d i f f e r e n t  depths, no s igni f icant  differences were seen 

between them, and the  r e s u l t s  from a l l  depths were averaged. Primary 

productivity in CEE-0 increased u n t i l  11 July,  and then decreased (not 

shown). Both As(1II) and .DM increased s teadi ly  during the 21 days from 

approximately 6 t o  '14% of to ta l  arsenic;  

Arsenic speciation changes in CEE-C,  the enclosure containing 

5 pg0l- '  of As(II1) was qui te  d i f f e ren t  (Figure 6 ) .  As(II1) concentration 

decreased from an i n i t i a l  82% of to t a l  to  24% by 11 July,  then began to  

increase slowly. Arsenate increased w i t h  decreasing As(I1I) , and then 

decreased s l igh t ly .  DMA increased from approximately 4% t o  12%. 

Arsenic concentrat.i,on and  speciation i n  the surrounding Saanich 

I n l e t  did not vary during the course o f  the experiment. Total arsenic  

concentration was 1.41 u g * l - l ,  w i t h  As(V) equaling 1.16 ~ ~ 3 - l .  Sn~all 

amounts of As(II1) (0.06) and DNA (0.19) were a l so  present. 

Bacterial ~ . . .  . in te rac t ions  with arsenic speciation 

On one occasion, f resh ly  co l l  ect.ed offshore water was f i l t e r e d  

through a 0.6 urn Nucleopore f i l t e r .  This f i  1 t r a t ion  ef fec t ive ly  removes 

autotrophs, but leaves 60-80% of a l l  bacter ial  a c t i v i t y  (Azam and Hodson, 

1977). The water was placed i n  a 2 l i t e r  ' f lask ;  and incubated just as  

the phytoplankton cul tures .  

" 'Culture BAC-4-78 was monitored f o r  .I0 days. No s igni f icant  changes 
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Figure 6.. Arsenic speciation changes with'time, expressed as  % of 

to ta l  arsenic,  in CEE-C. The calculated As(II1) oxidation ra te  i s  

- a l s o  plotted. 5 pg A S ( I I I ) * I - '  were added on 30 June 1977. 
i 
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i n  arsenic speciatf on occurred during t h i s  period. Arsenate remained about -. 

1 vg-l-l ,  As(II1) averaged 0.09 ug.l-l,  and DM remained a t  0.20 bg*l-'. 

Arsenic v o l a t i l i t y  

I n  December 1977, a 12 l i t e r  cul ture of Skeletonem ~08tUty7I  was 

'grown i n  media enriched with 25 I . I~-1-1  of As(V) to  determine i f  arsenic 

i s  volat i l ized by phytoplankton. After the cul ture reached stat ionary 

growth, the airspace was pumped through' a s i l v e r  coated, glass bead 

packed tube (Braman, 1975) which adsorbs 'arsenic species. The tubes 

were then rinsed with a 2N NaOH solution t o  remove the arsenic .: The 

resulting sol ution was then neutral ized , and analyzed for  arsenic species. 

No vo la t i l e  species were released, even though a large amount of arsenic 

was reduced by the cul ture.  

C:N r a t i o  

The C:N r a t i o  in SkeZetmrema costatwn and VaZonia cultured i n  

enriched arsenic media was found t o  vary s igni f icant ly  from the control 

(Table 8). In both cases,  the C:N r a t i o  of c e l l s  grown in As(V) was - 

' less  than c e l l s  grown in other enrichments, o r  in control media. This 

reduction of the r a t i o  was primarily .due t o  reduction i n  the carbon 

content. of both the Va7.oni.a and the ,%~7.~fonsma cul tures .  

Arsenic inhibition of productivity 

The e f f e c t  of arsenic on primary productivity over the e n t i r e  growth 

cycle was evident i n  cultures enriched with As(V). Growth r'ate in 

cul ture 2-77-As (Figure 7 ,  Table 9)  was s igni f icant ly  inhibited by concen- 

t ra t ions  greater t h a n  12.5 pg.l-l .  I t  i s  in teres t ing  t o  note tha t  the 

l'owest As(V) addition, 6,pg.1-1, caused a s igni f icant  growth enhance- 

) ment; however, this population peaked four days ear ly  and did n o t  



. Table 8 ,  Carbon and Nitrogen content of VaZonia and Skeletonem. 
costatwn ,grown under conditions o f  As enrichment. 

As added, e g - l - '  

control . no AS 14.8 2 2 1.3 + .15 11.4:l 
As(V), 15 8.8 2 0 1.6 2 .1 %.5:1 

As(III) ,  15 14 .3  + 2 .5  1.2 5 . I  11.9:l 
DMA, 15 14.8 + . 3  1 . 7 2 . 1  . 8.7:l 

, . Sketetmema costatwn 

As added, 

Control , no.' AS 2.17 k .05 115 5 . . 5  19.7: l  
As ( V ) ,  25 1.07 k .05 120 k .7  13.3:l 

As(III) ,  20 2.71 + 0 145 + . 3  18.7:l  
DNA, 20 2.29 + -13 104 + .8 22.2:l 



Figure 7. Rela t i ve  growth o f  a Skeletonma costatlun c u l t u r e ,  2-77-As. 

Arsenic enrichment : A-no As (V) , added, 8-6 pg A S  ( v )  -1 , C-12 , pg As ( V )  
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- Table 9 .  Linear  regression analys is  o f  l o g  t ransformat ions ( l og  
r e l a t i v e  f luorescence versus t ime) o f  batch c u l t u r e  growth curves 
d u r i n  the l o  phase of growth. S i g n i f i c a n t  d i f fe rences  between 9 ? the  s ope of he con t ro l  f l ask  and the treatment f l asks  are ind icated.  

2 -77-~s  (As(V) enrichment, F igure 7) 

Added 
As(V I1  Y S ign i  f icance 

Flask g 1 Slope I n te r cep t  - t o f  t 

A 0 .09 1.2 ---- ------- 
B 6.2 .16 1.1 2.98 . '  ,975 < p < .99* 
C 12.5 .06 1.3 1.86 p = .95 
D 25 .06 1.1 2.22 .95 < p < ,975 

*B has g rea te r  slope than con t ro l ,  i n d i c a t i n g  increased growth due t o  
As(V) add i t ion;  however, see t ex t .  

' 

SC-3-77 (As(V) enrichment ,' Figure 8) 

Added 
A s ( V ) ~  Y S ign i f i cance  

Flask v g - l '  Slope I n te r cep t  - t o f  t 

PT-9-77 (As(V) enrichment, Figure 9) 

Added 
A S ( V ) ~  - Y S ign i f i cance  

Flask pq- 1 - Slope I n te r cep t  - t o f  t 
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e n t e r  a s ta t i ona ry  growth phase, bu t  imnedia te ly  died. I n h i b i t i o n  o f  

growth f o l  l ow i  ng . A s  ( V )  a d d i t i o n .  was a1 so seen i n  c u l  to res  SC-3-77 

(Figure 8, Table 9) and i n  PT-9-77 (Figure 9 ,  Table 9); a l though the  
. . 

s i gn i f i cance  of t h e  i n h i b i t i o n  was no t  as strong i n  the l a t t e r .  

I Arsen i te  add i t i ons  a l so  caused s i g n i f i c a n t  growth i n h i b i t i o n ,  as 

demonstrated i n  c u l t u r e  SC-4-77 (F igure 10, Table, l o ) .  Enrichment w i t h  . . 

DMA, however, apparent ly  had no e f f e c t  ,on growth (F igure 1  I., Table 10). 

~ r s e n i c  add i t i ons  a1 so a f f ec ted  short- term p rod i l c t i v l  t y ,  as measured 

by uptake. Arsenate add i t i ons  o f  5  ~ ~ - 1 - l  o r  greater  s i g n i f i c a n t l y  

i n h i b i t  carbon uptake by c e l l s  dur ing both l o g  and s ta t i ona ry  growth 

phases (Figure 12) .  Arsen i te  a l so  i n h i b i t s  carbon uptake (Figure 13), 

however, DMA add i t i ons  apparent ly do no t  s i g n i f i c a n t l y  a f f e c t  product- 

i v i t y  (Figure 14).  . . 

Add i t ions o f  phosphate (20 LM) - t o  the media e l iminated the As(V) 

i n h i b i t i o n  o f  carbon uptake (Figure 12). Cul tures grown under condi t ions 

o f  phosphate enrichment o f  0.1 t o  2.5 pM - (SC-11-77, Figure 15, Table l o ) ,  

were a l s o  no t  a f f ec ted  by As.(V) add1 t l o n s  o f  15 VCJ-1-l. The c u l t u r e  

i n  f l a s k  D was even s t imula ted because o f  the  higher l e v e l  o f  phosphate 

.present. 

The r e s u l t s  o f  the As(V)-phosphate tes t - tube  experiment i nd i ca te  
, . 

t he  reduc t ion  o f . a r s e n i c  t o x i c i t y  by increased concentrat ions o f  phos- 
. 

phste- . The growth rate (M) o f  tes t - tube  cu l t u res  grown under vary ing 

. As(V) and phosphate concentrat ions was ca lcu la ted  ,using the f o l l ow ing  

equa ti ori : 

( I n  n t  - I n  no) 
( i n  d i v i s i o n s  per day) = 35 --------------- 

t - to 
(3)  

(Eppley and S t r i ck land ,  1968), where nt = popula t ion dens i t y  a t  t ime t, 

I a 



. e 

Figure 8. ~ e l a t i  ve growth o f  a ~ke le t~r tema costatwn ' cu l tu re ,  'SC-3-77. 

Arsenic e n r i  chn~ent : A-no As ( V )  . added, B-12.5 ug As ( V )  1 , C-25 p g  * 



A-CONTROL,, A s ( V ) =  1.5 ~ g ~ 1 - I  

D A Y S  



Figure 9. Re la t i ve  growth o f  a Peridinium trochoidium cu l t u re ,  PT-9-77. 

Arsenic enrichment: A-no As(V) added, 8-2.5 pg AS(V)*I- '  (on day 6, 

20 pg-l-l added), C-5 ug AS(V)-I-~, D-10 pg AS(V)-I-'. 
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Figure 10. Relative growth of a Skeletonema costatwn culture, SC-4-77. 

Arsenic enrichment: A-no As(1II) added, B-1 pg As(III)*l - I ,  C-20 pg 
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45. 
- . Table 10. L inear  regression ana lys is  o f  l o g  transformations ( l o g  

r e l a t i v e  f luorescence versus t ime) o f  batch c u l t u r e  growth curves 
dur ing  the  l o g  phase o f  growth. S i g n i f i c a n t  d i f fe rences  betwee3 
the slope o f  the con t ro l  f l a s k  and the treatment f l asks  are  ind icated.  

SC-4-77 (As(I1 I) enrichment, F igure 10) 

Added - 
AS(III{ Y S ign i f icance 

Flask pg.1- Slope I n te r cep t  - t o f  t 

SC-4-DMA-77 (DMA enrichment, F igure 11 ) 

Added 
DMA Y S ign i f i cance  

- Flask . uso~ . - l  sl'ope I n te r cep t  t of t - 

SC-11-77 (As(V) , PO4 enrichment, Figure 12) 

*D has g rea te r  slope than con t ro l ,  i n d i c a t i n g  enrichment caused by 
excess PO4. .- 



Figure 11. Re1 ative growth o f  a skeletonema costatwn culture, SC-4-DMA-77. 

Arsenic enrichment: A-no DMA added, C-10 ug DMA-I- ' .  Culture fl.ask B 

received a smaller inoculum of ce l l s ,  and i s  n o t  shown. 
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F igure  12. Four hour 14c uptake by Skeletonema costihun cu l t u res  i n  

both  l o g  and s t a t i o n a r y  growth phase t h a t  have been exposed t o  As(V) 

add i t i ons .  Expressed as 1 o f  con t ro l  a c t i v i t y .  Each p o i n t  i s  the 

average o f  5 r e p l i c a t e  determinat ions.  The e f f e c t  o f  add i t i ona l  

phosphate (20 pE) i s  a l s o  shown. The reduc t ion  i n  uptake i s  s i g n i f i c a n t  
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Figure 13. Four hour 14c uptake by Skeletonma costatum cu l t u res  i n  

both l o g  and s ta t i ona ry  growth phase t h a t  have been exposed to '  ~ ~ ( 1 1 1 )  

add i t i ons .  Expressed as % o f  con t ro l  a c t i v i t y .  ~ a c h  p o i n t  i s  the 

average o f  5 r e p l i c a t e  determinat ions.  The reduc t ion  i n  uptake i s  

s i g n i f i c a n t  (p > .99). . 





Figure 14. Four hour 14c uptake by SkeZetonerna costatwn cul tures  i n  

both log and stat ionary growth phase t h a t  have been exposed t o  DMA 

additions.  Expressed a s  % of control ac t iv i ty .  Each point i s  the 

average of 5 repl ica tes .  There was no s igni f icant  reduction in 

a c t i v i t y  (p < . G O ) .  



ug DMA I" ADDED 



FiguiBe 15. Re la t i ve  growth o f  a Skeletonena costaturn cu l tu re ,  SC-11-77. 

Arsenic enrichment: A-no As(V) added, B-15 p g  AS(V)*I-', C-15 bg As(V)* 

I- ' ,  D-15 pg AS(V)*I-I. Phosphate enyichnlent :  A-0.5 pM - P, 8-0.5 p f j  P, 
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= popu ia t ion  dens i t y  a t  t ime 0, and t = hours. The r e s u l t s  a re  
' "0 

I 

p l o t t e d  i n  F igure 16, f o r  each As(V) concentrat ion.  A two-way ana lys is  

o f  var iance o f  p by As(V) acd phosphate, i nc l ud ing  the As(V)-phosphate 

i n te rac t i ons ,  i n d i c a t e s  t h a t  both  s i g n i f i c a n t l y  a f f e c t  p (Table 11). 

.. A Lineweaver-Burk p l o t  o f  l / p  versus 1/P ( ~ e h n i n ~ e r ,  1970) gave good 

c o r r e l a t i o n s  ( r  = .97-.98). T h i s  p l o t  a l lows ca l cu la t i ons  o f  umax and 

K,, t h e  concent ra t ion o f  subst ra te  a t  which p =' 1/2 pmaX, f o r  each o f  the 

As(V)  concent ra t ions (Table 12). The p l o t s  show t h a t  moderate add i t i ons  
. , 

o f  As(V) increase Ks w i thou t  a f f e c t i n g  urnax. Large add i t i ons  o f  As(V) 

n o t  o n l y  increase KS, bu t  a l so  depress pmax. 

The e f f e c t  o f  As(V) concentrat ions on uptake o f  phosphate by 

phytoplankton was s tud ied  by examining uptake o f  3 2 ~  i n  Skeletonema 

costutwn cu l t u res  subjected t o  var ious l e v e l s  o f  As(V) and phosphate 

(Table 13). Arsenate add i t i ons  a t  each l e v e l  o f  phosphate concent ra t ion 

caused s i g n i f i c a n t  (p  > .95) decreases i n  phosphate uptake. The 

phosphate uptake i n  unenriched cu l t u res  (P = 0.07 uM) - averaged 3.5 nM P -  

hr-' . . - l o b  ce l l ss1 .  The add i t i on .  o f  25 pg A S ( V )  &I-I reduced the  uptake 

by approximately one-half  t o  1.7 nM P *  h r - I  - l o 6  ce l ' l  s-' . S im i l a r  

. reduct ions i n  uptake ra tes  due t o  As(V) add i t i ons  occurred even under 

phosphate enrichment (Table 13, F igure 17). 



Figure 1 6    he growth ra te ,  p, i n  d i v i s i o n s  per  day, o f  tes t - tube  

cu l t u res  o f  Sketetonema costatwn exposed t o  vary ing l e v e l s  o f  As(V) 

and phosphate enrichment. Arsenic enrichment: A-no As (V) added, 

B - 5 p g  AS(V)*I-~., C-25 p g  AS(V)*I-~. . . .  





Table 11. Two-way ana lys is  o f  var iance o f  p by As and PO4, i n c l u d i n g  
As-P i n t e r a c t i o n s  . . i n  the  As-P t e s t  tube cu l t u res  o f  Skeletonema 
costatwn. .- 

Source o f  v a r i a t i o n  - F Siqn i f i cance  o f  F 

A s  26.26 
. PO4 13.62 

As-P i n t e r a c t i o n s  3.06 

Table 12. Ks and pmax f o r  phosphate uptake by Skeletonema costatum 
ca lcu la ted  using a  Lineweaver-Burk p l o t  f o r  each As concent ra t ion 

. . i n  the  As-.P t e s t  tube experiment. 

As conc 
~ g .  1-1 Ks, PM h a x  - 



Table 13. The uptake of 3 2 ~  by Skeletonerna costatwn subjected t o  a 
v a r i e t y  o f  As and PO4 concentrat ions and l i n e a r  regression analys is  

.- o f  t he  f i l t r a t e  a c t i v i t y  where Y = I n  f i l t r a t e  a c t i v i t y .  S i g n i f i -  
can t  d i f f e rences  between the slope o f  the con t ro l  f l a s k s  (no A s )  
and t he  t reatment f l a s k s  a re  ind icated.  

' 

PQ4 , 
A S ( V ) ~  P o i  , uptake ,  ~ M P - h r - 1 . .  S ign i f i cance  

F lask JI~-1- IJ n~.min ' l  10Gce l l s -1  - t o f t -  

PA 1.5 0.07 .36 3.5 ---- ------- 



Figure 17. The e f f e c t  o f  ex terna l  phosphate concent ra t ion ( i n  pM) - 

and As(V)  concent ra t ion ( i n  pg* l - l )  on the phosphate uptake r a t e , d  

o f  Skeletonma costaturn ( i n  nM P *  hr" * l o 6  cells-l ). Both s i g n i f i c a n t l y  

a f f e c t  the uptake r a t e  ( p  > .99). 





D l  SCUSS 

The concentration and speciation of arsenic in marine algae varies  

widely. Since to ta l  arsenic concentrations in seawater a re  re la t ive ly  

Constant, between 1 .O and 1.5 pg=l-l  (Wasl.enchuk, 1977, i n  p r e s s ;  Andreae, 

1978; t h i s  study),  variations in i t s  concentration i n  algae a re  probably 

not due t o  differences i n  natural levels .  This conclusion i s  supported 

by the observation tha t  arsenic concentrations i n  algal species col.lected 

from a s ingle location vary widely (Table . l ) .  

The s igni f icant  variation in arsenic concentration and speciation 

between algal c lasses  i s  especially s t r ik ing  in the brown algae, in 

par t icu lar  the Larninariales (kelps). In th i s  order the inorganic t o  

organic r a t i o  i s  10/90, and the to ta l  arsenic concentration averages 

15.0 ng-mg-l  ,'much d i f ferent  than observed in o the r  orders. 

Vinogradov (1953) reported differences in the to ta l  arsenic 

concentration of macro-algae, with browns containing 7.6 ng*rng-l, red 

algae 4.2, and green algae 3 .8 .  Tagawa and Kojima (1976) a lso  found 

tha.t brown algae contained s igni f icant ly  more arsenic than did red o r  

green algae (34 ng-rng-l versus 4 ) ,  and tha t  the .arsenic content 

increased w i t h  the age of the plant.  Further.study is  required before 

2 
a complete understanding of these observations can.be gained. 

I t  i s  in teres t ing  I .. t o  note tha t  phosphorus content of macro-algae - .. -. 

varies s imilar ly wi.th arsenic.  Data presented by Vinogradov (1953) for  

the brown, red, and .green algae,  arid by Whyte' and Englar (1974, 1975) 

f o r  the brown algae show tha t  t h e  l a t t e r  contain more phosphorus (as  % 



d r y  weight)  than e i t h e r  red 0.r green algae (0.37% versus .24 and .26). 

Although the  means are n o t  s i g n i f i c a n t l y  d i f f e r e n t  ( - 7 5  < p < .90, w i t h  , 

the a v a i l a b l e  data),, the t rend  i s  the same as t h a t  found f o r  t o t a l  

arsenic.  - ., 

The growth . o f  phytoplankton and Valonia i n  media enriched w i t h  As(V) 
' 

. i n  most cases caused both  an increase i n  t o t a l  .concent ra t ion and a s h i f t  

i n  t h e  inorganic /organic  r a t i o  towards a g rea te r  p ropor t ion  o f  organic 

arsenic.  The uptake o f  arsen ic  by Skczetonema costutwn i s  rap id ,  ranging 

from. 0.15 ng AS(V)  - hrhl l o 6  c e l l  s-I ill unenriched cu l t u res  Lo 2.3 ng 

~ s ( ~ ) - h r ' l * l 0 6  ce l l s ' l  i n  cu l t u res  con ta in ing  25 pg AS(V).I'~ (Table 4 ) .  

I n  Skeletonma costatwn, t h i s  uptake resu l t ed  i n  t o t a l  arsen ic  concentra- 

t i o n s  approximately 30% h igher  i n  enrixhed cu l t u res  than i n  unenriched 

cu l tu res .  The uptake by Peridiniwn trochoidiwn was d i f f e r e n t  from t h a t  

o f  SkeZctonema cosbtum i n  t h a t  arsen ic  was concentrated t o  a much greater  

extent ,  and increased As(V) concentrat ions i n  the  media l e d  t o  increased 

c e l l  concentrat ions.  

Andreae ( i n  press) r ecen t l y  completed s i m i l a r  s tud ies on 7 4 ~ s  [as 

As(V) ) uptake.  by Platymonas suecica. A t  ambient arsen ic  concentrat ions, 

he found a r a p i d  i n i t i a l  increase over the f i r s t  2 minutes, then a 

constant  uptake equiva lent  ' t o  0.003 ng AS(V )  hr-' * l o 6  c e l l  s" , o r  

approximately 50 t imes less than the uptake measured above f o r  SkeZeton- 

ma costatwn.. Although n o t  ev ident  from the presentat ion,  the lower - 
uptake r a t e  cou ld  be -due . t o .  the  much higher phosphate concentrat ions i n  

the  c u l t u r e  media, .and a l s o  t o  the d i f f e r e n t  a l g a l  species used, 
1 

, -.. 

The uptake o f  A;(v) i s  dependent on both the As(!) and phosphate 

concentrat ions i n  the media.' Radiotracer experiments have..shown t h a t  

increased As [ V )  concent.rat ions caused Increased uptake, and a t  each 



58. 
- a rsen ic  concent ra t ion studied ,' increas ing phosphate concent ra t ion de- 

creased the arsen ic  uptake (Table 4 ,  Figure 1) .  Rothstein (1963) found 

t h a t  As(V) uptake by yeasts was s i m i l a r l y  depressed by increas ing 

phosphate concentrat ion.  Andreae ( i n  press), however, found t h a t  increas- 

i n g  phosphate conce'ntrations a c t u a l l y  increased 7 4 ~ s  uptake from 

phosphate concentrat ions o f  0.4. pM - t o  2.4 pM, - and t h a t  uptake decreased 

s i g n i f i c a n t l y  on l y  a f t e r  add i t i ons  o f  100 pM - phosphate were added. This 

observat ion may be due t o  simple e q u i l i b r a t i o n  k i n e t i c s .  As phosphate 

concentrat ion increases, the phosphorus metabolism r a t e  i s  increased 

causing f a s t e r  e q u i l i b r a t i o n  between the i n t e r n a l  c e l l  pool and the 

externa l  medium. He d i d  no t  i nves t i ga te  the e f f e c t  o f  very low 

phosphate' concentrat ions on A's (V) uptake. ' 

Not only the uptake ra te ,  bu t  a l so  the t o t a l  arsen ic  concent ra t ion 

- 
' o f  SkeZetonema costaturn grown i n  batch cu l t u res  was a f fec ted  by the  

additlo; o f  phosphate (Table 5) .  Arsenic concentrat ions i n  SC-11-77 

were an order o f  magnitude lower than those grown under phosphate 

l i r n i  t ed  condi t ions (2-77-AS, SC-3-77, Table 2) .  

The reduct ion i n  the C:N r a t i o  i n  both Valonia macrophysa and 

S?<cZetonoma costatztm exposed t o  As (V) enrichment (Tab1 e 8) may be caused 

by reduced carbon uptake and incorporat ion.  However, reduc t ion  i n  14c 

uptake was a1 so observed i n  phytoplankton exposed' t o  As ( I I I ) ,  bu t  .no 

reduct ion i n  c e l l u l a r  carbon content  occurred; Very l i t t l e  data are  

ava i lab le ,  and although s i g n i f i c a n t l y  d i f f e r e n t ;  the  reduct ion may 
3 .  

the re fo re  merely represent the na tu ra l  v a r i a b i l ' i t y  i n  the C.and N 
. -- 

composition o f  algae. 

  he r a p i d  spec ia t ion  changes t h a t  occur w i t h i n  the surrounding media 

i nd i ca te  t h a t  a l g a l  c e l l s  a re .ab le '  t o  reduce, methylate, :and re lease 



a r s e n i c  i n  these forms t o  the water column. Although some o f  the' 
'I 

a d d i t i o n a l  a rsen ic  i s  incorporated i n t o  the c e l l ,  much o f  i t  i s  
..' 

apparent ly  metabol ized and r a p i d l y  released t o  the surrounding water 

column. Arsena t e  reduc t ion  i s  rapid.  Rates ca lcu la ted  ' f o r  SC-1-78 
. - .  

(F igure . . 2a ,b,c) ranged between 2 ng* 106 c e l l  s-1 -day-1. i n  unenriched 

c u l t u r e s  a"d 50 n g - l o 6  ~ e l l s ' ~ * d a ~ - l  i n  cu l t u res  enriched w i t h  25 pg 

AS(V)-I '~.  These ra tes  are  s i m i l a r  t o  the uptake ra tes  o f  7 4 ~ s  

(as As(V)) ca l cu la ted  f o r  SkeZetonema costaturn (Table 4, 3.6 t o  55 

6 n g - 1 0  cells:l.*day2'). 

Andreae ( i n  press) has a l so  documented reduc t ion  and subsequent 

product ion o f  methylated arsen ic  fo r  several species o'f algae. A lga l  

growth i n  chemostat cu l t u res  caused l a rge  increases o f  A s ( I I I ) ,  DMA and 

mono-methylarsonate. I n t e r e s t i n g l y ,  almost a l l  cu l t u res  showed a 

s i g n i f i c a n t  dep le t i on  i n the t o t a l  arsenic concentrat ion.  unfor tunate ly ,  

"no data on e i t h e r  the  arsen ic  content  of the c e l l s  i n  c u l t u r e  o r  the 

popu la t ion  dens i t y  i s  avai labl 'e,  so i t  i s  n o t  poss ib le  t o  determine. 

whether the l o s s  i s  due t o  uptake by c e l l s ,  o r  by v o l a t i l i z a t i o n .  Since 

no v o l a t i l . i z a t i o n  o f  a rsen ic  has been detected from cu l t u res  dur ing  t h i s  

study, i t  i s  l i k e l y  t h a t  the l o s s  i s  due t o  c e l l  uptake. 

The concent ra t ion o f  AS(I I I) i n  the ox ida t i on  experiment decreased 
. . 

exponen t ia l l y  . . as descr ibed by  equatjons 1 and 2 l i s t e d  above and shown 

i n  F igure  4. The chemical ox i da t i on  i s  slow, averaging 0.09 pg As( I I 1 )  

o x i d i ~ e d : l - ~ ; . d a ~ - ~  . . a t  t he  i n i t i a l  . a concentrat ion o f  5 pg* l - ' .  Th i s  ' i s .  
. ;* 

.- ve ry  s i m i l a r  t o  . .  t he  . r a t e  obtained by Johnson and P i l son  (1975) o f  0.09 

The ox ida t i on  r a t e  i s  dependent upon the As(111) concentrat ion,  and i s  

more: r a p i d  a t  h igher  concentrat ions,  as evidenced by the r e s u l t s  o f  J 



Johnson and P i  1 son ' (1  975) and. the r a p i d  loss  o f  A.s(I I I)' from SC-4-77 + 

(F igure 5 ) .  

Arsenic i n  large-volume CEPEX .enclosures (CEE-B and CEE-C) exper- 

ienced spec ia t ion  changes s i m i l a r  t o  those occur.r ing i n  batch cu l tu res .  

The As(V) decrease i n  CEE-B was s i m i l a r  t o  decreases observed i n  cu l t u res  

enr iched w i t h  As(V), SC-3-77 (Table 6) and SC-1-78 (F igure 2a). The 

r a t e  o f  reduct ion was a l so  very s i m i l a r ,  approximately 140 ng As(V) 

r e d ~ c e d ~ m g  o f  phytoplankton ~ - ~ - d a y - l  i n  CEE-B versus 190 ng As(V) 

reduced-mg ~ - ~ * d a ~ - l  i n  f l a s k  B of SC-1-78, which had a l so  been enr iched 

w i t h  5 pg AS(V)*I'~ ( t he  carbon content  o f  f l a s k  B was est imated from 

an average o f  the carbon content  o f  Skeletonerna costatum i n  l o g  phase 

from SC-1-78, SC-10-77, and SC-3-77) ; ~ r s e ' n a t e  reduc t ion  ceased a f t e r  

pr imary product iv ' i  t y  decl  ined and phytoplankton populat ions reached 

s ta t i ona ry  phase i n  both the.  batch c u l t u r e  and i n  the CEPEX enclosures, 

i n d i c a t i n g  t h a t  on ly  a c t i v e l y  growing popul 'at ions reduce As(V) (F igure 

2a,5). 

The ox ida t i on  o f  As ( I I 1 )  i n  CEE-C was a l so  s i m i l a r  t o  observati'ons 

made on c u l t u r e  SC-4-77 (F igure 3 ) ,  and dur ing the A s ( I I 1 )  oxidat i 'on 

experiment,. Using equation 1 calcul 'ated from the ox ida t i on  study ' a t  

17' C ( the  mean temperature i n  Saanich I n l e t  i n  July,  1977 was 16O C)  , 

l o g  Y = -.0126 X +  b, where Y = %As(I ' I I)  and X = t ime i n  days. Se t t i ng  

b = 1.91 ( i n i t i a l  A s ( I I 1 )  concentrat ion,  Y, = 82%), the As ( I I 1 )  concen- 

t r a t i o n s  w i t h i n  CEE-C should be approximately 43% o f  t o t a l  a t  the end 

o f  the  experiment. The observed As(1 I I) concentrat ions were 30%. Bath 

the ac tua l  and ca lcu la ted  curves f o r  As ( I I 1 )  ox i da t i on  a re  p l o t t e d  i n  

Figure 6. The ca lcu la ted  As ( I I 1 )  ox i da t i on  shows the r a t e  due t o  chemi- 

c a l  ox i da t i on  only,  ox i da t i on  by b i o l o g i c a l  means ( 1  .e. , bdcter- ia)  may 



- account f o r  the d i f f e rence .  

Arsenate enrichment of cu l t u res  a l s o  caused a s h i f t  i n  spec ia t ion  

w i t h i n  the c e l l .  General ly, increased As(V) caused the inorganic /  

organ ic  r a t i o  t o  s h i f t  (Table 2,3) from approximately 50/50 i n  

. . ., Skeletonema costatwn o r  75/25 i n  Valonia t o  approximately 30170 i n  S. 

costatwn and 50150 i n  Valmia.  Phosphate add i t i ons  a l so  cause a s h i f t  . . 
i n  a rsen ic  spec ia t ion.  S. costatwn grown w i t h  phosphate enrichment 

. . 
(Table 5)  had an inorganic /organic  arsen ic  r a t i o  o f  65/35, which d i d  no t  

change w i t h  As(V) add i t i ons  up t o  15 pg-1". 

Cul tures enr iched w i t h  As (1 I I )  f o l l o w  pa t te rns  o f  incorporat ion,  

and spec ia t ion  changes s i m i l a r  t o  t h a t  observcid' f o r  As(V) enrichments, 

b u t  c e l l s  grown i n  D M ~  show no increase i n  arsen ic  content  o r  spec ia t ion  

changes (Table 2). I t  i s  d i f f i c u l t  t o  determine whether the uptake o f  . 

' a r s e n i c i n A s ( I I 1 )  e n r i c h e d c u l t u r e s i s d u e ' t o u p t a k e o f A s ( I I I ) o r  . 

As(V), formed by ox ida, t ion of the former. I t  i s  more l i k e l y  t h a t  arsenic 

i s  taken up as As(V) s ince the most l o g i c a l  uptake pathway i s  v i a  the 

phosphate a c t i v e  t r a n s p o r t  system. 

Arsenate i s  a chemical analogue o f  phosphate, and s tud ies have 

shown t h a t  As(V) and phosphate compete. f o r  uptake by a l g a l  c e l l s  (Blum, 

1966, t h i s  study). The As-P t e s t  tube experiment demonstrated tha t ,  a t  

As(V) conc-entrat ions up t o  25 ug -1-' , competi t i o n  occurred between 
* 

. a rsen ic  and phosphate f o r  c e l l u l a r  uptake (Table 11). Th is  i s  also 

borne o u t  by the  r e s u l t s  o f  the two independent r ad io t r ace r  uptake 

s tud ies  ( ~ a b l b s  4, 13, ~ i ~ u r e s '  1, 17). ~ r s e n e i e  uptake by Sketetonema 

costattun was c u t  by 15% when 3 V M  - phosphate was added t o  the system. It 

i s  q l s o  c l e a r l y  demonstrated by the  very low t o t a l  arsen ic  concentrat ions 

i n  SC-11-77 (Table 5) ,  which were grown under phosphate enrichment. The 



.cornpet3 t i v e  i n h i b i t i o n  o f  As(V) uptake by phosphate demonstrated qbove 

b was n o t  seen by Andreae ( i n  press), however, as mentioned above, he was ; 
hampered by h igh phosphate l e v e l s  i n  the system w i t h  which he worked. 

Arsenate has been shown t o  i n h i b i t  phytoplankton production, both 

i n  the long-term by lower ing the popula t ion dens i t y  o f  a batch cu l tu re ,  

and i n  the short- term by depressing the uptak.e and photosynthesis 

o f  Skeletonema costaturn. This i s  the f i r s t  r e p o r t  demonstrating arsenic 

t o x i c i t y  a t  near ambient leve ls ;  o ther  i nves t i ga to r s  have found arsenic 

e f f e c t s  a t  much higher l e v e l s  (Schroeder and Balassa, 1966; Conway, 1978; 

I r g o l i c  e t  at., 1977; Bo t t i no  e t  a l . ,  i n  press).  The i r  studies, however, 

were performed under condi t ions o f  phosphate enrichment. The enrichment 

therefore reduced the uptake of arsenic and i t s  corresponding t o x i c i t y ,  

as has been demonstrated i n  the present study, over both the long-term 

and the short- term (Table 4, Figures 12., 15).  

H o l l i  baugh e t  a l .  ( i n  press) have recen t l y  demonstrated i n h i  b i t i o n  

due t o  As(V) and A s ( I I 1 )  i n  con junct ion w i t h  the arsen ic  experiments a t  

CEPEX dur ing 1977. Both A s ( I I I ) ,  and As(V) under condi t ions o f  low 

phosphate,. (=. 5 p!) concentrat ions, i n h i b i t e d  the growth o f  ThaZassiosira 

aestevat is ,  a marine diatom, a t  concentrat ions greater  than 22.5 p g * ~ - ~ .  

Arsenate was no t  t o x i c  a t  concentrat ions up t o  75 pg.l- . l  when added t o  

cu l t u res  enriched w i t h  phosphate (2.7 u!). The arsen ic  concentrat ions 

requ i red  f o r  an i n h i b i t o r y  response are higher than those determined 

here, l i k e l y  due t o  the higher concentrat ion o f  phos,phate found . i n  

. .  Saanich I n l e t ,  and poss ib ly  t o  the d i f f e r e n t  a l ga l  species used. 

Arsenate add i t i ons  o f  as l i t t l e  as 5 ug*l-l s i g n i f i c a n t l y  i n h i b i t e d  

the photosynthesis and 14c-uptake o f  Skeletoncma costaturn both i n  l o g  

and st-at ionary growth phases. This i s  equ iva lent  t o  3-5 times the 
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ambient As(V) l eve l ,  and is  the lowest concentration studied. I t  i s  

possible  t h a t  even lower As(V) concentrations. could cause decreased c e l l  

a c t i v i t y  under conditions of phosphate . l imitation. . Cell s in  s ta t ionary  

growth phase a r e  less affected by arsenic  additions (Figures 12, 13),  

a- 

' probably due t o  lowered metabolic a c t i v i t y ,  and subsequently decreased 

As(V) uptake. Low As(V) additions a l so  a f f e c t  the long-term growth . 
o f  S. costatwn. A1 though an increase i n  growth occurred i n i t i a l l y  in  

culture 2-77-As a t  a n  As(V) addition of 6 pg*l - ' ,  the population crashed 

early, never es tab l  i shi ng a s ta t ionary  phase. P ~ r i d i n i w n  trochoidiwn 

was not as a f fec ted  by the  As(V) additions as  was S. costatwn. P. 
. - 

trochoidiwn grows more slowly, and therefore i t s  i n i t i a l  phosphate 

uptake (and As(V) uptake) may be much slower than tha t  fo r  S, costatwn. 

The importance of the phosphate concentration i n  reducf ng As (V) 

t o x i c i t y  i s  demonstrated i n  the As-P t e s t  tube experiment. The r e su l t s  

.o f  the  experiment a l so  indicate  t h a t  As(V) additions a t  levels  as  low 

a s  5 v g * l - l  can i n h i b i t  growth r a t e  when concentrations of phosphate a re  

, very low. .When phosphate concentrations a re  greater  than 0.3 VM - the 

growth r a t e  i s  apparently not affected by small additions of AS(V) .  

. . Arsenate addi t ions,  however, d i d  cause an increase i n  K S ,  from 0.02 '@ 
$ . '  

t o  0.08 pM - a t  5 pcj.1-l As(V) and 0.62 pM - a t  25 p g * l ' l , ~ s ( ~ )   able 12). 

b T.he increase in K S  and constaricy ?f pmax fo r  low levels  of As(V) addition - 
- . , . i nd ica te  t h a t  AslV) competitively inh ib i t s  phosphate uptake (Lehninger, 

1970). Competitive . inh ib i t ion  i s  reduced by .high concentrations of the . 
. inh ib i ted  subs t ra te ,  phosphate. High levels  of As(V) addition, however, 

depressed ha, and increased KS,  indicating tha t  non-competi t i v e  i nhi bi- 

t i o n  may a lso  be occurring (Fisher e t  aZ., 1976). . 

The environmental significance of small additions of As(V) a r e  



c l e a r l y  demonstrated by t h i  s experiment. I f  enough phosphate i s  present 

t o  reduce the As(.V) t o x i c i t y ,  the popula t ion w i l l  s t i l l  be hampered by 

the increased requirement f o r  phosphate (as shown by the increased KS 

values above). Since ha l f - sa tu ra t i on  constants are  thought t o  be a 

measure of the r e l a t i v e  a b i l i t y  o f  a species t o  compete fo r  n u t r i e n t s  

(Dugdale, 1967; Perry, 1976), increased phosphate. requirement caused by 

As(v) could reduce a species a b i l i t y  t o  compete w i t h  a more r e s i s t a n t  

species. The e f f e c t  o f  As(V) on mul t i -spec ies populat ions cou ld  lead 

t o  success and dominance o f  r es i s t an t ' spec ies  which norrnally would no t  

be as successful.  These i n te r re l a t i onsh ips ,  and the e f f e c t  o f  As(V) 

on community s t ruc tu re ,  espec ia l l y  dur ing phosphate l i m i t a t i o n ,  need .to' 

b e  f u r t h e r  s tud ied before the impact of A S ( V ) -  add i t i ons  t o  the nearshore 

environment can be estimated. 

Arsen i te  i s  a l so  t o x i c . t o  phytoplankton. As discussed prev ious ly ,  

i t  i s  d i f f i c u l t  t o  determine whether the t o x i c i t y  i s  due t o  As(I11) o r  

As(V) formed by ox idat ion.  A1 1 forms o f  arsenic,  however, are  no t  

t o x i c .  t o  marine algae. concentrat ions o f  DMA up t o  25 ~ ~ ~ 1 - l  appear t o  

have 1 i t t l . e  o r  no e f f e c t  on phytoplankton p r o d u c t i v i t y .  

The non - tox i c i t y  o f  the DMA i o n  i s  probably due t o  i t s  l a r g e r  s ize,  

i t s  r e l a t i v e  s tab i  1 i t y ,  and most impor tant ly ,  i t s  chemical d i s s i m i l a r i  t y  

t o  phosphate. When As(V) i s  taken up by .an  .a lga l  c e l l  i n  excess, i t  has 

6- several adverse e f f e c t s .  I t  i n h i b i t s  the phosphate a c t i v e  t r anspo r t  

system by not  re leas ing  from the t ranspor t  molecule (Rothstein, 1963) 
t 

' 

and i t  inac t i va tes  the  glucose metabolism system (Scarbur%ough, 1975) and 

ox ida t i ve  phosphorylat ion (DaCosta, 1972): Arsen i te , -a l though n o t  so 

c lose an analogue of phosphate, may r e a c t  i n  a s i m i l a r  fashion. DMA, 

on the  o ther  hand, i s  no t  a c t i v e l y  ta,ken0up, ar~d seems t o '  p a r t i c i p a t e  i n  
. . 



- no reac t i ons  t h a t  a f f e c t  . c e l l .  p roduc t i v i t y .  

The l a r g e  changes i n  a r sen i c '  spec ia t ion caused by marine algae a1 so 

appear t o  be a product  o f  the As(V) e f f e c t  on p roduc t i v i t y .  Marine algae, 

along w i t h  fungi (Challenger, 1945), bac te r ia  (McBride e t  a Z . ,  1971 ; 

- ~ohnson,  1972), c o r a l s  (P i  1 son, 1974'), and some freshwater algae (Blasco 

e t  aZ., 1971, 1972) have the a b i l i t y  t o  reduce As(V) t o  A s ( 1 I I )  and then 
; 

methy la te  it, forming .DMA and o ther  methylated .a rsen ica ls .  Th is  reduc t ion  
. . 

and. subsequent methy la t ion  i s  a means -by which As(V) t h a t  enters the c e l l  

and . i n h i b i t s  i t s  func t ions  can be a l t e r e d  so t h a t  i t s  t o x i c i t y  i s  .reduced. 

changes i n  arsen ic  spec ia t ion  were observed i n  a l l  c u l t u r e s  studied, 

and indqcate t h a t  the above mechanism does e x i s t  i n  marine phytoplankton. 

Th is  may a l so  be the  mechanism by which the brown algae c o l l e c t  so much 

organic arsenic.  Since t h e i r  phosphoru's content  i s  h igher  than e i t h e r  

the r e d  o r  green aigae, i t  i s  poss ib le  t h a t  they:also i n d i s c r i m i n a t e l y  

incorpora te  l a r g e r  amounts of As(V). This A s ( V )  may then be reduced t o  

an organic  form and s tored i n  the ' t i ssue .  The inorganic  arsen ic  content  

o f  brown algae (2.2 ng.mg-') i s  q u i t e  s l m l l a r  t o  t h a t  o f  red (0.7 ngemg-1) 

and green (1.5 ng*mg-1). This concent ra t ion o f  1-2 ng-mg-l may represent 

the  h ighes t  l e v e l  o f  i no rgan ic  arsen ic  t h a t  can be accomodated by , 

macro-algae, and there fo re  any excess above t h i s  amount, as i n  brown 

algae, . is '  s tored .in the  methylated form. The lower concentrat ions o f  

organ ic  arsen ic  i n  red  and green algae may be due. t o  l ess  As(V) uptake, 

or  t o  increased removal of organic~compounds from t h e i r  t issues.  

Several i nves t i ga to r s  have determined t h a t  the organic arsen ic  

compounds i n  a lgae con ta in  both l i p i d  and water so lub le  f r a c t i o n s  (Lunde, 

1973; I r g o l i c  e t  al., 1977; Edmonds e t  al., 1977). There i s  s t i l l  some 

quest ion as t o  the exact nature o f  these arsen.ic compounds. Edmonds 
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et a t .  (1977) 'have i d e n t i f i e d  arsenobetaine from marine . lobs te r ,  and, ' 

I r g o l i c  et aZ. (1977) suggest t h a t  the compound i s  an .a rseno- l i p id ,  

and perhaps an arsenochol lne. . Whatever the con f igu ra t ion ,  the compounds 

appear t o  be stable,  l a r g e l y  non-reactive, and r e l a t i v e l y  non-toxic. 

(Edmonds and Francesconi , 1977; Lunde, 1977; Penrose e t  aZ., 1977; 

Woolson, 1974). ' 
The reduct ion.  o f  As(V) and the subsequent product ion o f  A s ( I I 1 )  and 

DMA occurs i n  na tu ra l  populat ions, n o t  j u s t  i n  cu l tu res ,  as evidenced by 

t h e i r  appearance i n  the 'marine environment. Under the ox id ized  cond i t i ons  

found i n  surface marine waters, n e i t h e r  A s ( 1 I I )  nor DMA i s  chemical ly  

produced, and must be a product o f  the b i o ta .  Since both of these , 

arsenic species can occur ' i n  l a rge  concentrat ions i n  h i g h l y  product ive . 

areas, i t ' i s  poss ib le  t o  est imate the con t r i bu t i on  made by the pl iyto- 

plankton. Since arsen ic  reduct ion takes place on l y  when the phytoplankton 

popula t ion i s  i n  the l og  phase o f  growth, the spr ing bloom i n  coasta l  

and s h e l f  waters o f f  Georgia should con t r i bu te  a l a rge  m a j o r i t y  o f  the 

reduced arsen ic  species, w i t h  a smal ler  c o n t r i b u t i o n  from the smal ler  

f a l l  bloom.. Estimates o f  . the  .phytoplankton c o n t r i b u t i o n  o f  A s ( I I 1 )  

t o  con t inen ta l  s h e l f  waters o f  the  South A t l a n t i c  using two separate 

approaches are presented be1 ow: 

1. According t o  r e s u l t s  of c u l t u r e  SC-1-78, dur ing l o g  phase o f  

growth, 2.2 x pg -AS (v)  * c e l l - '  i s  reduced per day. A1 ga l  blooms o f f  

Georgia run  an average o f  75 days, w i t h  c e l l  populat ions increas ing from 
5 

0.5 x 106 t o  1.5 x 1 o 6  c e l l s - 1 - I  (W.M. Dunstan, pers. corn.). Therefore, 

the c e l l  number increase i s  1 x 106 ce l l s -1 -1 .  2.2 x 10-3 x 1 x 106 = 
I 

2.2 n g * l - l - d a y - l  x  75 days =. 165ng* l -1 .  dur ing the,course o f  the spr ing 

3 bloom, = 165 pg*m' . . . . 



12 3 The Georgia B igh t  = 1.8 x 10 m (Cape Fear t o  Cape Kennedy), 

therefore  3.0 x 1014- pg a re  reduced i n  the Georgia Bight .  The t o t a l  

a rsen ic  concent ra t ion o f  the B i g h t =  2 x pg (Waslenchuk, 1977), so, . 

15% o f  t he  t o t a l  arsen ic  i s  reduced i n  the spr ing bloom. 

P The smal ler  f a l l  bloom ( c e l l  increase approximately 0.5 x l o 6  

c e l l s - l o ' )  i s  o f  shor te r  durat ion,  approximately 30 days, so 3% of the  

t o t a l  arsen ic  can be reduced du r i ng  t h i s  bloom, making a t o t a l  o f  18%. 

2 .  Cul tures SC.-1-78, SC-2-78 had 14c uptake i n  f o u r  hours = 1.44% 

.I04 mg ~ * l - ~ - h r - l  x 10 h r  day = 1.04 mg C - 1 - I  = l .O.g ~ * m " ~ - d a ~ ' l .  

According t o  Ryther (1 969), pr imary p r o d u c t i v i t y  = 300 g ~ - m - ~ - ~ r ' l ,  

= 10 g ~ * m - 3 * ~ r - 1 ,  assuming average depth o f  30 m i n  the Georgia Bight ,  

a n d t h a t p r o d u c t i v i t y i s t h e ~ s a m e t h r o u g h t h e e n t i r e d e p t h .  l o g  . 

~ * r n * ~ - ~ r - l  = 27 mg ~ * m - ~ - d a ~ - ' ,  = 2.7% o f  c u l t u r e  p r o d u c t i v i t y .  Cul tures 

reduced an average of 80 n g = l - l * d a y - l ,  so (.027) (80) = 2.16 n g - l - l  *day-1 

x 75 days = 162 n g l - 1  = 162 ng -~n ' . ~ ,  = 15% o f  the  t o t a l  arsen ic  reduced. 

The shor te r  f a l l  bloom would add an add i t i ona l  6%, making a t o t a l  

o f  21% of the t o t a l  a rsen ic  reduced.' This method assumes t h a t  the 

pr imary p r o d u c t i v i t y  i s  constant  from day t o  day, which i s  c l e a r l y  no t  
, . 

' t h e  case, t h i s  approach there fo re  on ly  serves as an est imate. . 

P - ' T h e  f a c t  t h a t  both o f  the ca l cu la t i ons  a r r i v e d  a t  s i m i l a r  values 

I 
i s  merely co inc iden ta l ,  however, 15-20% i s  probably a reasonable 

est imate f o r  the  amount o f  arsen ic  reduced, and indeed, i s  very  c lose  

t o  t h e  concent ra t ion of As (1 I I )  and DMA found i n  the spr ing i n  Georgia 

coas ta l  waters (Waslenchuk, 1977, i n  press). 

L .  + 'Us ing  equations 1, and .2 ca lcu la ted  above f o r  As( I I1 )  ox idat ion,  t he  
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As(1 I I )  produced dur ing the  sp r ing  bloom should degrade s lowly,  becoming 

undetectable i n  approximately 120 days, and the As (I I I) produced from 

the f a l l  bloom should become undetectable i n  approximately 90 days. . 

Although the data a re  n o t  complete, As ( I I 1 )  i s  o f t e n  detected year-round. 

a It i s  poss ib le  t h a t  some uptake and reduc t ion  o f  As(V) occurs a t  a l l  

t imes i n  phytoplankton populat ions,  no t  j u s t  d u r i n ~  logar i thmic  growth, 

which would lessen'  the "apparent" ox i da t i on  f a t e  o f  As (111). .Arseni  t e  

, . i n .  SC-1-78 (F igure 2b) remained n e a r l y  constant  wh i l e  c e l l s  were i n  the  

s t a t i o n a r y  growth 'phase; s i m i l a r  r e s u l t s  were. seen i n  CEE-C. The 

apparent .constancy o f  As ( I I 1 )  tends ' t o  support t h i s  theory. If t h i s  i s  

the case, the l a rge  pulse o f  As ( I I 1 )  i n  the e a r l y  spr ing and the smal ler  

one i n  the f a l l  would appear t o  be ox id ized  more s low ly  t han  predicted;  

the re fo re  'product ive marine systems would always con ta in  some detectab le  

As( I I1 ) .  

Fur ther  work i s  necessary be fo re  the biogeochemi s t r y  o f  arsen ic  

i s  f u l l y  understood. The r e s u l t s  o f  t h i s  study i n d i c a t e  t h a t  As(V) i s  

a c t i v e l y  taken up by marine algae, reduced, and methylated. Some o f  

t h i s  arsen ic  i s  incorporated i n t o  the a l g a l  t issue,  and some i s  ingested 

by other t r o p h i c  l e v e l s  feeding on the algae, a l though organic arsenic 

compounds are probably r e a d i l y  excreted ( ~ e n r o s e . e t  aZ., 1977). A l a rge  

p o r t i o n  o f  the reduced and methylated species a re  released t o  the  water 

i- column, where they are s low ly  ox id ized  back t o  As(V). There. i s  a l s o  

loss  of arsen ic  from the euphot ic zone due t o  s ink ing  o f  c e l l s ,  and - 
a 

feeding by h igher  t r oph i c  l eve l s .  The r a t e  o f  t h i s  b i o l o g i c a l  c yc l e  i s  

I determined by the pr imary p roduc t i v i  ty o f  the '  phytoplankton populat ion,  

and the ambient phosphate concentrat ion.. 

A l l  of the above,. coupled w i th '  the geochenlical sources and sinks, 
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. must be taken i n t o  account when an attempt t o  model arsenic speciat ion 

In -produc t ive  systems i s  made. ~ l t h o u g h  the prel iminary studies have 

been completed, f u r the r  experiments i n t o  the uptake o f  arsenic by various 

phytoplankton species, in te r re la t ionsh ips  between a lga l  and microbial  
. . 

I? 
populations, and the incorporat ion and release rates o f  arsenic need t o  

be conducted before the r o l e  o f  algae i n  arsenic biogeochemistry can be 

f u l l y  understood. 
. . 



SUMMARY AND CONCLUSIONS 

The arsen ic  concent ra t ion and spec ia t ion  i n '  marine algae var ies  

g rea t l y ,  espec ia l l y  i n  marine macro-algae. Va r i a t i on  i n  t o t a l  a rsen ic  

ranged from 0.4 t o  23 ngwmg'l i n  macro-algae,. and from 5 t o  23 ng0mg-1 

i n  phytoplankton .cu l tu res  grown i n  unenriched media. The wide range 

observed i s  probably no t  due t o  geographic v a r i a t i o n s  i n  arsenic concen- 

t r a t i o n ,  but  r a t h e r  t o  d i f fe rences  i n  the algae themselves. 

The concent ra t ion o f  arsen ic  i n  macro-algae var ies  d i r e c t l y  w i t h  

the concent ra t ion o f  phosphate. This i s  li.ke1.y due, t o  compet i t ive  

uptake between phosphate and arsen ic  as demonstrated i n  t h i s  study and 

others. 

Although the Phaeophyceae conta in  s i g n i f i c a n t l y  more arsen ic  than 

e i t h e r  the Chl orophyceae o r  the Rhodophyceae, the  concent ra t ion o f  

inorganic  arsen ic  w i t h i n  the three c lasses i s  r e l a t i v e l y  constant. This 

concent ra t ion may i nd i ca te  the maximum permiss ib le  l e v e l s  o f  inorganic  

arsen ic  f o r  marine algae, w i t h  the excess being reduced and methylated. 

The l a r g e r  concentrat ions o f  organic arsen.ic observed i n  the Phaeophyceae 

i s  probably due t o  greater  uptake, o r  t o  less  successful exc re t ion  o f  the 

organic forms. 

The arsen ic  spec ia t ion  i n  phytoplankton and VaZonia macroph9sc.z 

changes when cu l t u res  are  enriched w i t h  As(V) . The a d d i t i o n  general ly 
-. . 

causes an increase i n  the p ropor t ion  o f  organic arsen ic  and amincrease 

i n  t o t a l  arsen ic  concentrat ions. 

S im i l a r  spec ia t ion  and concent ra t ion changes occur when As (I 11) i s  



added; however, add i t i ons  o f  DMA cause no s i g n i f i c a n t  changes. 

Marine a lgae produce arsen ic  spec ia t ion  changes w i t h i n  the  surround- 

i n g  media as a r e s u l t  o f  uptake fo l lowed by reduct ion,  methylat ion,  and 

release.  Arsenic occu r r i ng  i n i t i a l l y  as DMA, however, i s  no t  a f fec ted.  

The spec ia t ion  changes a re  1 i ke ly .  i n  response t o  the demonstrated 

t o x i c i t y  o f  As ( V )  a t  near ambient l e v e l s  under phosphate-1 i m i  ted 

condi t ions.  The reduc t i on  and methy la t ion o f  As(V) t o  DMA produces a 

s tab le ,  non-react ive compound, and reduces. i t s  t o x i c i t y ,  s ince DM i s  

n o t  ' t o x i c  a t  the concent ra t ions studied.  

Arsenate and phosphate compete f o r  uptake by a l g a l  c e l l s .  Arsenate 

a l s o  c o m p e t i t i v e l y  i n h i b i t s  c e l l '  growth a t  low phosphate concentrat ions.  

A t  h igher  phosphate concent ra t ions (above 0.3 f o r  5 pg AS(V)I-I), 

no i n h i b i t i o n  occui-s. Concentrat ions o f  A s ( V )  o f  as much as 25 p g 0 l - l  .* 

cause some i n h i b i t i o n ,  even a t  'phosphate concenrratqons exceeding SO pM, - 

suggesting t h a t  non-competi t i v e  i n h i b i t i o n  may a1 so occur. 

The reduc t ion  o f  As(V) t o x i c i t y  by phosphate i s  an example o f  the 

type o f  problenis t h a t  a re  encountered bu t  o f t e n  overlooked i n  bioassay 

o r  t o x i c i t y  s tud ies.  Studies o f  t h i s  k i nd  cannot be r o u t i n e l y  run  under 

h i gh  n u t r i e n t  cond i t i ons  w i thou t  f i r s t  determining i f  e f f e c t s  occur a t  

ambient n u t r i e n t  l eve l s .  

The uptake r a t e  o f  7 4 ~ s  (as As(V)) ca lcu la ted  f o r  cu l t u res  o f  

Skeletonma costatwn i s  s i m i l a r  t o  the  r a t e  o f  As(V) reduc t ion  i n  batch 

c u l t u r e s  of S. cos&atm. In addi t ion,  the r a t e  o f  As(V) reduc t ion  i n  

l a r g e  volume (CEPEX) enclosures was a1 so s imi  1 ar .  

Using the  r a t e s  ca lcu la ted  f o r  As(V) uptake and reduc t ion  and 

As ( I I 1 )  ox idat ion,  we can begin t o  p r e d i c t  arsen ic  spec ia t ion.  The 

above functions, coupled w i t h  knowledge o f  the phosphate concentrat ion,  



. . 
p r ima ry  p roduc t i v i t y ,  l oss  r a t e s  of arsen ic  from the euphotic zone, and 

arsen ic  geochemistry should enable us t o  model the arsen ic  spec ia t ion  

i n  product ive systems. Fur ther  work, hpwever, i s  Cequired b;fore arsen ic  

biogeochemi s t r y  can be f u l l y  understood. ~ecessa'ry s tud ies inc1"de: 

. I .  The deter in inat ion o f  f ac to r s  responsible f o r  wide v a r i a t i o n s  
i n  arsen ic  concentrat ion and spec ia t ion  i n  algae, 

2. The measurement o f  uptake and reduc t ion  ra tes  f o r  o ther  a l g a l  
species, 

3. The determinat ion o f  the i n t e r r e l a t i o n s h i p s  between the a l g a l  
and mic rob ia l  populat ions,  

4. The moni tor ing o f  compet i t ion and succession o f  mu1 t i - spec ies  
populat ions subjected t o  arsen ic  stress,  

5. The charac te r i za t ion  o f  the organic a rseno- l i p id  compounds 
produced by algae, and, 

6. A seasonal study o f . a r sen i c  spec ia t ion i n  a  product ive area. 
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