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ABSTRACT 

The nonlinear motion of a charged particle in a uniformly magne-· 

tized, two-dimensional plasma is analyzed 'in the presence of finite 

amplitude electrostatic waves traveling in the plane perpendicular to 

the magnetit field. In a strongly magnetized plasma, no particle 

trapping occurs in a single electrostatic traveling wave of arbitrary 
-+ -+ 

amplitude, since .the induced Ex B motion is orthogonal to the direction 

of wavi propaaatinn. However. particle orbits can be trapped when there 

are at least two mutually orthogonal components of the electrostatic 

field with finite wave amplitude E1/B > w/k1 such that a particle drifts 

one wavelength in a wave period. This threshold amplitude for strong 

nonlinear behavior coincides with and helps to explain the many-wave 

turbulence criterion for the onset of particle diffusion in a two­

dimensional plasma . 
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It is well known that a charged particle in an unmagnetized 

plasma can be trapped {i.e., swept along in a wave trough) by a 

single electrostatic wave whenever the wave potential energy e~ 

exceeds the particle kinetic energy in· the wave frame, l/2 m(v - vw) 2• 

Here, vw = w/k is the wave phase speed·and vis the particle speed in the 
-+ 
k direction. In a strongly magnetized plasma the two-dimensional 

particle motion in the plane perpendicular to a uniform magnetic field 
-+ -+ -+ 
B = Bz is determined by the E x B drift: 

( 1 ) 

do 

where E = -~~. Since there is no energy exchange with the wave, 
-+ -+ 
E · dr1 /dt = 0, it is apparent that trapping due to a perpendicularly 

propagating potential wave will be quite different than the trapping 

mechanism along the magnetic field. Indeed, for a single wrt.ve 

¢=¢cos {k1 x- wt) traveling in the x direction, Eq. (1) predicts 

dx = 0; .9l ~ - ckl ¢ sin (k
1

x -wt) 
dt dt B (2) 

Thus, there is no particle trapping, even for arbitrary wave amplitude 

¢, since x = x0 is a constant of motion for this single wave. 

To achieve particle trapping requires, by definition, induced 

motion in the direction of the propagating wave. For a magnetized 

plasma, such induced motion is absent for a single electrostatic wave, 

or even for a spectrum of waves propagating in the same direction, 

since E x B is always orthogonal to the wave vector k. Hence, at least 
~ 7 ~ ~ two waves with wave vectors k1 and K2 such that k1 x k2 1 0 are 

-+ -+ 
necessary for E x B trapping. 

• 
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We now show that two electrostatic waves of sufficient amplitude 

do, indeed, result in trapping. Consider the potential field 

+ -! . + ~(r,t) - 2 [s1n (k1 
+ + 

· r - w1t) + sin (k2 

+ + + + 
= <P sin (k+ · r- w+t) cos (k_ · r- w_t), 

+ + 
\'Jhich consists of two traveling waves with wave vectors k1 and k2 

( 3) 

perpendicular to B. Here, k± = (k1 ~·t2 )/2 and w± = (w1 ± w2)/2. It 
+ + + 

is useful to define unit vectors e+ = k±flk+l' which are generally 

not orthogonal (Fig. 1). 

To solve Eq. (1) with this potential, it is convenient to trans-

form to the wave frame in which the potential is static: 

(4a) 

+ 
Here, the wave frame velocity vw is completely determined by its 

+ + 
contravariant vector components, vw e± = w±!k+: 

(4b) 

++ + 
z/(e+ x e_ z) and -e- :::: Z X e+/(e+ + "'· where e = e X . x e . z) are 

vectors adjoint to e±' i . e. , 
+ ++ + ++ 1 (Fig. 1). the e . e = 0 and e+ . e-= ± 

+ + 
The condition kl X k2 f 0 guarantees the existence of the wave frame, 
+ + "' (1) becomes e+ x e . z 'f 0. In this frame, Eq. 

+ + + 
dr cB x v~w('rw) w -
dt - 82 

(5a) 

where 
+ 

+ + + .v + 
~w( r w) = ~~ r w ,0) rw ,~X B) 

c 
(5b) 
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is the potential in the wave frame. Note that the last term in 
+ + + 

Eq. (5b) corresponds to a spatially uniform electric field Ein = vw x B/c 

induced by motion of the wave across the uniform magnetic field. 
+ 

From Eq. (5a), note that in the wave frame ~~w · drw/dt = 

d~w/dt = 0. Thus, particles move along contours of constant wave 

frame potential 

where the constant of motion ~0 is determined by the value of ~w at 
+ 

an arbitrary initial phase point .rY'0• 

+ + + 
The position vector in the wave frame, rw = xwex + ywey (here, 

+ + 
e and e are the orthogonal cartesian unit vectors), can also be 

X y 
++ decomposed along e-: 

where the transformation between the orthogonal (xw and yw) and 

contravariant (x' andy') coordinates is given by 

+ + + x• = e+ r - x e w - w + 
+ + + e + y e · e 

X W + Y 

In the representation Eq. (7a), k+ + . r = 
w 

The following normalized variables are conveniently defined: 

y : k_y I /27f 

k_y• • 

(6) 

tla) 

(7b) 

(7c) 

(8a) 

(8b) 
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where lal < 1 can be chosen without loss of generality. Then the 

particle trajectories in Eq. (6) in the X-V phase plane become 

Y - v0 - aX = Eo sin 2nX cos 2nY ~ 

The remaining integration constant characterizing the original 

system in Eq. (1) is associated with the time to traverse the level 
-+ 

curves of Eq. {9). Using the k component of'Eq. (Sa), noting 

f y. dY 
w t = + -Y(O) a/2n + £O cos 2nX(Y) cos 2nY 

where X(Y) is determined from Eq. (9). 

(Be) 

( 8d) 

t9) 

( 10) 

In order to study the onset of particle trapping, it is sufficient 

to analyze the level curves £ 0(X,Y; v0,a) = £ 0 determined by Eq. (9). 

For analytic simplicity, we shall subsequently consider the special 

case a= 0, corresponding to w1 = w2 = w+. The main conclusion regard­

~ng particle trapping is not qualitatively altered for at 0, cf~ E4. 

(12). From Eq. (3), note that the potenttal for a= 0 is a standing 

wave in the e_(y') direction with wavelength 2n/k_ and a traveling 

wave with phase velocity w+/k+ in the e+(x') direction. 

For £0 << 1 and a = 0, Y-Y0 ~ ~0 sin 2nX cos 2nY0 is a periodic 

open curve in the X,Y phase plane corresponding to particles circulating 
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.in the X direction in the wave frame (Fig. 2). Thus, for small wave 

amplitudes, all particles are untrapped and undergo finite oscilla-

tions about a point in the laboratory frame. 

There is a threshold value of £ = £*(Y0) above which stable 

elliptic fixed points of the mapping in Eq. (9) begin to appear · 

(Fig. 3). The phase space trajectories around these points are· 

closed curves corresponding to bounded excursions in the wave frame 
. ~ ·. -+ 

and hence to particles which are trapped by the traveling E x B wav~ • 

. The emergence of the first (lowest order) fixed point corresponds to 

the onset of nonlinear trapping. 

To determine the fixed points and hence the criterion for trap~ 

ping·in this model, the system of simultaneous equations a£0;ax = 

o£0;av· = 0, together with Eq. {9), must be solved. Two sets of 

(nontrivial) fixed points are found in the periodic interval 0 < X < 1: 

X 1 y+ s2n+l 
for Eo 

+ 2 !::: 

= = = En = [1 + (s - I; ) ] 2/2rr 4 n 2TI 2n+l 0 

c-

X = 3 y- "2n for £0 = £~ ~ [1 + ( s2n - ~0)2]~/2TI -. =-· 4 ' n 2TI 

Here, so = 2nY0 and sn are the roots of 

tan s = - 1 
n (sri ::- so) 

The roots are uniquely characterized by sgn(sin sn) = (-l)n. 

Figure 3 shows the level curves of £0(X,Y) for the fixed phase 
+ . 

Y0 = 0. The predicted fixed points are (X= l/4, Yn = 0.97, 1.99, 

· (lla) 

( 11 b) 

( 11 c) 

n + 1), (X = 3/4, Y~ ,;: 0.44, 1.48, n + 1/2}, for n ~ 2, wi.th ·£~ ~ Y~ , 

These are in agre.ement with the numerically computed values. 



.-. 

7 

* From Eq. (11) it is clear that the choice ~n = ~0 = TI/2 + nTI _ ~n 

(n is an integer) yields the minimum value EO = E* = l/2TI for the 

appearance of a fixed point. When a ~ o; it can be shown that E* = 

(1 ~ lal )/2TI. This corresponds to the relation cE
1

/B = w/k
1

or, more 

precisely, 

c 
1 = 8 

-+ + "' 
I k+ •· (k_x z)¢1 

lw+l + lw_l 
Thus, particle trapping will first occur (for those particles with 

the proper initial phase) when the electric field amplitude is 

sufficient to convect particles one wavelength in a wave period. 

This threshold behavior contrasts with trapping in an unmagnetized 

( 12) 

plasma, where there are always some trapped particles for any finite 

amplitude electric field. Also note that the two-dimensional dynamics 

considered here are quite different from the three-dimensional motion 

in a sheared magnetic field, for which there is also no threshold for 

trapped particle island formation. 1 

* * At.the value EO= E and ~n = ~O = ~n (i.e., Y = 2n + l/4 = v0), 

the fixed point root of Eq. (llc) exists only in a limiting sense. 

* In fact, for E > E , ~hree characteristic points emerge from this 

single coalesced root. One is the fixed point X = 3/4, Y = l/4 (or 

X = 1/4, Y = 3/4) calculated above. The remaining two are hyperbolic 

points which migrate away from the fixed point as E increases along 

the separatrix Y = l/4 (or Y = 3/4) and are located at the roots of 
- . * sin 2TIX = ±_E /E. 

The phase space trajectories for two values of wave amplitude 

EO = (0.5, 2.0) are shown in Figs, 4 and &. As £ 0 increases, the island 

shapes tend to become rectangular and the hyperbolic points on the 

separatrix Y = l/4, 3/4 move away from the fixed points toward 
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half-integer values of X. For £0 + oo, the separatrices tend toward the 

lines X = n/2, Y = 1/4 + m/2 for integer m and n. Thus, the limiting 

phase space for ·large wave amplitude is a lattice delineated by the 

separatrices which enclose bounded island trajectories (Fig. 6). For 

this two-wave system, the nonlinear island orbits never tend to overlap,· 

even for arbitrarily large wave amplitudes. Therefore, there is no 

possibility for stochastic particle motion, 2 a fact that may be inferred 

from Eq. (5a), which represents an integrable dynamical system. The 

persistence of islands· in the two-dimensional, two-wave system -is in 

marked contrast with magnetic braiding1 which occurs in a sheared magnetic 

f1eld and StOchastic particle orbits which appear in two-dimensional, 

s1ngle wave plasmas when finite Larmor radius effects are re.tained. 3 

The analysis presented here has been for the so-called 11 Single 

wave .. case for which a transformation of the form in FCJ. {4) can be 

found to make ~ independent of time. In the many-wave turbulent w 
limit, a wave frame in which ~ is static exists only approximately 

for time intervals co~parable to the autocorrelation time. For 

longer times, a statistical treatment of the particle orbit is 

required. Nevertheless,. the salient nonlinear feature of the single 

wave analysis (trapping threshold) has a turbulent analogue. 
. 4 

Dupree · 

has obtained a threshold criterion for the onset of diffusion due to 
+ + . + 

random Ex B fluctuations which is identical to Eq. (12), with Ek 

and w/k
1 

·appropriately averaged over the spectrum. Thus, the coherent 
+ + 
E x B trapping threshold becomes the criterion for finite turbulent 

diffusion. 
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As the wave spectrum broadens, there is thus apparently a continuous 

transition from trapped particle to turbulent motion. It is thus pos~ible 

to infer a diffusion coefficient for two-dimensional Ex B turbulence 

from the present two-wave analysis. In the transition between coherent 

and random particle motion, the autocorrelation time and trapping time 

(time to complete an island orbit) become comparable. From Eq. (10), 

~tTrap ~ (w£
0

)-l The maximum correlated particle step size ~xis an 

island width, which from Fig. 6 is found to be a wavelength, ~x = 2rr/k
1

. 

Note that as the electric field amplitude increases, the island width 

remains constant whereas the trapping time decreases. The diffusion 

coefficient is estimated to beD= (.~x) 2/~t = (cE1 /B)k~ 1 , wh·ich is in 

agreement with the many-wave results when appropriate spectrum averages 

are taken. 4 Physically, for island orbits that are near the separatrices 

of Fig. 6, small perturbations of the particle orbit due to other waves 

can produce 11 diffusion 11 in the X-Y phase plane as the particle moves 

along the lattice of separatrices from island to island. 

Finally, we note that the existence of self-consistent, large 
+ + 

amplitude Ex B waves needs to be investigated in the future. 
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FIGURE CAPTIONS 

Fig. 1 Wave frame coordinate system. 

Fig. 2 Phase space trajectories for £ 0 = 0.1. 

Fig. 3 Level curves of the mapping in Eq. (9) for v0 = o 

and various values of £ 0. 

Fig. 4 Phase space trajectories for £ 0 = 0.5. 

Fig. 5 Phase space trajectories for £ 0 = 2.0. 

Fig. 6 Limiting trajectories for £ 0 ~ w. 
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