Ny S

1988 Workshop
on
Human-Machine
Symbiotic Systems
Proceedings
December 5-6, 1988 D0 NOT Mionur
Oak Ridge, Tennessee COVER

Lynne E. Parker, Charles R. Weisbin

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available

original document.

Oak Ridge Associated Universities is a private, not-for-profit association of 49
colleges and universities and a management and operating contractor of the U.S.
Department of Energy. ORAU's mission is to foster, encourage, and engage in the
identification and development of solutions to scientific, engineering, technical, medi-
cal, and human resource problems through the resources available to ORAU and its
member universities. In support of this mission, ORAU provides diverse services
(principally academic outreach, research, training and education, technical assistance,
and technology transfer) for DOE, ORAU's member institutions, other colleges and
universities, and other private and governmental organizations. Established in 1946,
ORAU was one of the first university-based, science-related corporate management
groups.

ORAU--89/C-140

DE89 013888

19888 Wo:rk.shop on Human-Machine
ymbiotic Systems Proceedings

.December 5-6, 1988
Oak Ridge Associated Universities
Ozk Ridge, Tennessee

Sponsored by
Qak Ridge National Laboratory
and
Qak Ridge Associated Universities

Lynne E. Parker, Charles R. Weisbin

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express of implied, or assumes any legal liability of responsi-
bility for the accuracy, completeness, of usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would sot ipfringe privately owned rights. Refer-
ence herein 1o apy specific commercial product, process, o1 service by trade name, trademark,
manufacturer, of otherwise does not necessanily constitute of imply its endorsement, recom-
mendation, or favoring by the United States Government of any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

Sciences of the U.S. De
. “ .S. Department of E
Martin Marietta Energy Systems, Insergy’ under contract DE-AC05-840R21400 with

DIS i Mo iwiy o s DUGUiviENT 18 UNLIMITED

b

Contents

Section 1: Executive Summary
1988 Workshop on Human—Machine Symbiotic Systemscccoeeveeeeiveiierereirennns 3
Section 2: INvitation ... s 11
Section 3: ABENAAooooniiiiiiiii ettt e e e aas 15
Section 4: Keynote Presentations
Man-Machine Communication for Symbiotic Controlcccovvvveeeiriiiiiiiiniieennnn, 21
Thomas B. Sheridan, Massachusetts Institute of Technology
A Task Planner for Simultaneous Fulfillment of Operational, Geometric and
Uncertainty-Reduction Goalsciciiiiiiiiiiiiiiiiiiiiiii e e eere s eeveeeve e 37
S.A. Hutchison and A.C. Kak, Purdue University
Dynamic Task Allocation and Execution Monitoring in Teams of Cooperating
Humans and RoDOtScooiiiiiiiiiiii e e e erea e 9
S.Y. Harmon, Robot Intelligence International
Human—Machine System Architecture: The Design of Cooperative Teams of
Human and Computer Decision Makerscccccooeeiiiiiiiiiiiiiiiniiiiieniiniieeneeennees 9
Christine M. Mitchell, Georgia Institute of Technology
Toward a Learning RobDOtcccooiiiiiiiiiiiiiiie e eae 129
Tom M. Mitchell, Matthew T. Mason, Alan D. Christiansen,
Carnegie-Mellon University
Section 5: Breakout Session Summaries
Breakout Session: Human—Machine Communicationcccccovvveevinrieenenenn.. 145
Marty Beckerman, Oak Ridge National Laboratory
Breakout Session: Autonomous Task Planning and Execution Monitoring 149
Reinhold C. Mann, Oak Ridge National Laboratory
Breakout Session: Dynamic Task Allocationcccceceeiiiieiiiieiriieiriiicieeeeiiennennn, 153
Wayne Manges, Oak Ridge National Laboratory
Breakout Session: Human—Machine System Architecturecccccceevvrrirennnnne. 157
Fred W. DePiero, Oak Ridge National Laboratory
Breakout Session: Machine Learning via Experience and Human Observation 163

Philip F. Spelt, Oak Ridge National Laboratory

Contents (continued)

Section 6: List of PartiCipants.............ccoooeiviiiiiiiiiiiicceeiieeceicceeveeeesesrteseernneeeeaes 173
SeCtion 7: BIOSKELCRIESo.onieiniiiiiiei ettt et eaeeaesrssaeensassssnssnssrseassstesess 19

Section 8: ORNL Distribution
ORNL Internal Distribublon .ooeieoriiiiiiiiiiiiiiiiieiiiei e resterseserssseresesrsnsns 191
191

ORNL External DistribDuUtlon .o.eecoeeeeeeiieiiiiiiiiiiiiiiieeeietavssaaeasesssssnsesssvensrssssessessss

Section 1: Executive Summary

Blank Page

1988 Workshop on Human-Machine Symbiotic Systems

Abstract

This report presents the proceedings of the 1988 Workshop on Human-Machine Symbi-
otic Systems. Held December 5-6, 1988, in Oak Ridge, Tennessee, the workshop served as a
forum for the discussion of several critical issues in human—machine symbiosis: human-
machine communication, autonomous task planning and execution monitoring for heteroge-
neous agents, dynamic task allocation, human-machine system architecture, and machine
learning via experience and human observation. The presentation of overview papers by
invited keynote speakers provided a background for the breakout session discussions in these
five areas. The full papers furnished by the speakers are included in the proceedings, along
with written summaries of the group discussions that report session conclusions and recom-
mendations for future work.

Executive Summary

In recent years, a growing research interest has focused on the development of methods
facilitating a cooperative problem-solving relationship between humans and autonomous
machines—a relationship the workshop organizers define as “human—machine symbiosis.”
In a symbiotic system, humans and machines cooperate in the decision making and control of
tasks in a complex, dynamic environment, communicating frequently in the exchange of
tasks. The function of the symbiotic system is to dynamically optimize the division of work
between the human and the machine, with the ultimate goal of improving the admissible task
range, accuracy, and work efficiency of the system. The successful creation of such systems
requires an effective approach to several fundamental technical issues such as human-machine
communication, autonomous task planning and execution monitoring for heterogeneous
agents, dynamic task allocation, human-machine system architecture, and machine learn-
ing via experience and human observation.

In order to address these key issues of research and to recommend directions for future
work in human—machine symbiosis, an invitational workshop was organized by Charles
Weisbin and Lynne Parker of Oak Ridge National Laboratory, and by Jim Gumnick of Oak
Ridge Associated Universities. The workshop was held December 5-6, 1988, at Oak Ridge
Associated Universities in Oak Ridge, Tennessee. The meeting brought together 38 investi-
gators interested in human—machine symbiosis from several research communities, includ-
ing robotics, artificial intelligence, human factors, and cognitive science. To encourage infor-
mality and more open discussions, the attendance size was intentionally restricted, but par-
ticipants were invited from a broad range of university, laboratory, and industry programs to
provide a diversity of viewpoints. A list of the attendees and short bibliographic sketches are
included in Sections 6 and 7.

To provide a background for discussion, five keynote presentations were made by
internationally recognized experts: Dr. Thomas Sheridan (Massachusetts Institute of Tech-
nology) addressed the subject of human-machine communication, Dr. Avi Kak (Purdue
University) presented the subject of autonomous task planning, Dr. Scott Harmon (Robot
Intelligence International) spoke on the subject of dynamic task allocation and execution
monitoring, Dr. Christine Mitchell (Georgia Institute of Technology) addressed
human-machine system architectures, and Dr. Thomas Mitchell (Carnegie-Mellon Univer-
sity) presented the topic of machine learning. The full papers provided by these speakers are
contained in Section 4 of the proceedings.

The keynote presentations were followed by breakout sessions whose participants were
charged to develop effective research approaches and suggestions for future work in five
principal technical areas. To help initiate the discussions in each of these areas, the following
questions were posed to the participants in advance of the workshop:

1. Human-Machine Communication: What are the most effective means of communica-
tion between man and machine in cooperative control systems involving physical proc-
esses?

2. Autonomous Task Planning and Execution Monitoring: What are the most promising
approaches to real-time task planning and execution monitoring between heterogene-
ous agents, at least one of which is human?

3. Dynamic Task Allocation: What are the best methods of allocating cooperative hu-
man-machine tasks?

4. Human-Machine System Architecture: What human-machine system architectures
allow real-time cooperative interaction between the human and the machine?

5. Machine Learning via Experience and Human Observation: What are the most
promising approaches toward providing the intelligence for a machine to learn new
tasks through assimilation of experience and human observation?

Written summaries of the recommendations and conclusions of the breakout sessions
were prepared by the reporters and are included in Section 5 of the proceedings. It should be
noted that the summaries reflect only the opinions of the select group of workshop partici-
pants; however, the workshop organizers are hopeful that the session reports will be a
valuable assistance to researchers in the human-machine symbiosis field.

It is interesting to note the attitude the attendees had concerning the definition and
implications of the term “symbiosis.” As defined by Webster’s Unabridged Dictionary, and
referenced by Thomas Sheridan in his paper, symbiosis is “two dissimilar organisms living
together in mutual dependence.” Although certain life-and-death situations (such as battle-
field management) might indeed require the human to be dependent on automated machines

for survival, many of the workshop participants were uncomfortable with this implied
requirement for all symbiotic systems. Instead, as presented in the Machine Learning
session report by Phil Spelt, the group was more willing to accept the first definition of
Webster’s II New Riverside University Dictionary 1984: “the relationship of two or more . . .
organisms in close association that may be but is not necessarily of benefit to each.” The term
“synergy,” defined as “the action of two or more . . . organisms to achieve an effect of which
each is individually incapable,” was suggested as a possible alternative for describing the
human-machine system. However, at least one opinion held that the symbiotic relationship
could be quite beneficial by merely serving to replace humans in distasteful tasks, without
requiring the symbiont to “achieve an effect of which each [symbiotic partner] is individually
incapable.”

Having somewhat agreed to an appropriate interpretation of symbiosis, the participants
generally concurred that some degree of autonomy is a prerequisite for symbiosis, since a
machine must have sufficient capabilities and intelligence to cooperate productively with a
human. However, full autonomy is not required since the human can be responsible for tasks
or portions of tasks that the machine is unable to perform. It was generally agreed that the
tasks performed autonomously by the machine need not be performed in the same manner as
would a human—that is, anthropomorphism is not required and may be an unnecessary and
burdensome constraint.

An analysis of the workshop reports reveals two overriding themes recurrent in the
breakout sessions: the need for the development of various types of human and machine
models and the need for investigations concerning the roles the human(s) and the machine(s)
should play in the symbiotic system. The development of human and machine models was
recommended as an important future research topic in the Human-Machine Communica-
tion, Dynamic Task Allocation, and Autonomous Task Planning breakout sessions. The
emphasis in the Communication group was for human behavioral modeling emphasizing the
characteristics present during both normal and abnormal circumstances, while the Dynamic
Task Allocation and Autonomous Task Planning sessions emphasized the need for the
modeling of human and machine capabilities. In his paper, Scott Harmon reports on several
existing techniques that have been used for internal agent modeling, while Christine
Mitchell, in her paper, describes the use of an operator function model in a particular project.
The participants, however, agreed that additional research is still needed in this area — both
for the development of generic models and for their application to the modeling of individual
operators.

The issue of the roles the human(s) and machine(s) should play in the symbiont provided
some lively discussions. In most complex systems of today, a hierarchy of control exists in
which certain agents (human or machine) dominate some agents while they are supervised
by others. Such a hierarchy will allow humans to be controlled by non—human, or auto-
mated, components of the system. However, at the highest level of decision-making and
control, current systems always place a human. The workshop opinion inclined toward
continuing this system organization by allowing the human to maintain ultimate control in
symbiotic systems for most, if not all, applications of the near future. The operator’s associate

described in Christine Mitchell’s paper reflects this superior human/subordinate machine
relationship in which the computer assumes control only when the human explicitly dele-
gates responsibility. The advantage to this approach is that by making the human the
primary decision maker, he/she will have the knowledge and authority required for effective
and safe system operation.

An opposing viewpoint, however, holds that the human may not always be the optimal
choice for highest-level system control. The recent Vincennes tragedy in which a U.S. Navy
missile cruiser shot down an Iranian airliner after mistaking it for a military fighter aircraft
was mentioned as a prime example of a situation in which human interaction with a complex,
time-critical, automated system is sensitive to extreme human stress and mental overload.
Situations such as this may therefore benefit from allowing the automated component to
assume ultimate control over the human under specified conditions. It was generally agreed,
however, that at the present time no one knows how to decide when the intelligent machine
should be the principal controller. Thus, these discussions led to the recognition of the need
for more research on the psychological and physiological impact and the interface implica-
tions of allowing a machine to serve as the highest-level decision maker over a human.

In addition to the issues of agent modeling and the roles of humans and machines, the
breakout sessions identified various other critical areas of future research and derived
several interesting conclusions. The Human-Machine Communication session emphasized
the need for research in the simultaneous and integrated use of multiple modalities, or sensor
channels, for communication between human and machine. The goal of this research should
be to make better, if not full, use of the human’s sensory capabilities. Another interesting
thought concerning human-machine communication held that the majority of the human’s
communication needs would be fulfilled with a combination of real-time visual displays and
simple natural language/voice communication. The Machine Learning group determined
that learning involves, in part, a transfer of knowledge from the human to the machine, and
is useful when complete pre-programming is impossible. They identified two roles the human
serves in symbiont learning: to act as a model from which the machine can learn (e.g. using
machine vision, watching and emulating human performance), and to function as a teacher/
consultant in which the human monitors the performance of the machine and makes
corrections when needed. Both the Machine Learning and the Autonomous Task Planning
sessions reported the need for continued research on machine learning leading to the
capability to generalize. The Autonomous Task Planning group also noted the need for
research to facilitate the smooth transition between human and machine control for the
purpose of planning at different task levels.

The Dynamic Task Allocation session emphasized the need for measurement techniques
for quantifying human and machine skills and for the determination of the appropriate task
granularity that assures the smooth transition of control among elemental subtasks as they
are assigned to different agents. In addition, this group noted the need for an automated
monitoring facility which can dynamically assess the progress and direction of the agents—a
facility also recognized as important by the Machine Learning group.

Finally, the Human—Machine Architecture breakout session determined that a symbiotic
system architecture should have a human interface perspective with multiple entry points
that provides user access to the various functional modules of the system as needed. One
area recommended for future research involves addressing the problem of system stability
under hybrid control in which the portions of the architecture controlled manually or
autonomously vary dynamically over time. Another topic recommended for future research
concerns the development of metrics defining quality measurements (such as effectiveness
versus complexity) of a human-machine system architecture.

Judging by positive feedback both from written evaluations and verbal communication,
the workshop organizers believe this 1988 Workshop on Human-Machine Symbiotic Systems
was a success. The workshop served to identify key areas of research in five principal areas of
human-machine symbiosis which are needed to achieve human-machine cooperative control
and intelligence. The authors are hopeful that this workshop will serve as a stepping board
toward advancing the state of the art in the area of human-machine symbiosis.

Acknowledgments

The authors would like to thank Oak Ridge Associated Universities staff members Jim
Gumnick, Libby Kittrell, Denise Davis, Robin Stoller, Jim Pearce, and others for their
contributions to the organization of the workshop. Thanks are also extended to Karen Harber
for her expert typing assistance. The authors are indebted to the workshop chairs and
reporters for their work in leading and summarizing the breakout sessions. Special gratitude
is expressed to Dr. Joseph F. Engelberger for his prepublication review of the workshop
executive summary and session report drafts. We credit Dr. Engelberger for emphasizing
several points concerning symbiosis, in particular: the symbiont should not be required to
achieve an effect of which either symbiont partner is incapable, anthropomorphism is not
required, and the combination of real-time display and voice communication should be
largely sufficient for fulfilling human-machine communication needs. Finally, we wish to
thank the attendees and speakers for their enthusiastic and active participation, without
which the workshop would not have been possible.

Blank Page

Section 2: Invitation

Blank Page

OR -
A oml
Osk Ridge Associated Universities Qak Ridge National Laboratory

P.0. Box 117, Oak Ridge, Tennessee 37831 P.O. Box X, Osk Ridge, Tennessee 37831
May 25, 1988

You are cordially invited to participate in the 1988
Workshop on Man-Machine Symbiotic Systems, jointly hosted by
The Center for Engineering Systems Advanced Research (CESAR) at
Oak Ridge National Laboratory and by Oak Ridge Associated
Universities (ORAU).

The invitational workshop, to be held December 5-6, 1988,
at ORAU's Pollard Auditorium in oOak Ridge, Tennessee, will
consist of keynote presentations by five internationally
recognized experts: Dr. Scott Harmon will address the subject
of dynamic task allocation and execution monitoring; Dr.
Christine Mitchell will present the subject of man-machine
system architectures; Dr. Avi Kak will address the subject of
autonomous task planning; Dr. Thomas Mitchell will speak on the
subject of machine 1learning; and Dr. Thomas Sheridan will
present the subject of man-machine communication. Work
sessions by the attendees will follow these talks. The primary
objective of the workshop is to define effective research
approaches to technical issues in man-machine symbiosis as
identified in the enclosed technical scope. Answers to the
following questions will be sought:

1. what are the most effective means of communication
between man and machine in cooperative control systems
involving physical processes?

2. What are the most promising approaches to real-time
task planning and execution monitoring between
heterogeneous resources, at least one of which is
human?

3. What are the best methods of allocating cooperative
man-machine tasks?

4. What man-machine system architectures allow real-time
cooperative interaction between the human and the

machine?
5. What are the most promising approaches toward providing

the intelligence for a machine to learn new tasks
through assimilation of experience and human

11

-2- May 25, 1988

Proceedings of the workshop will be published and will
include the papers presented by the keynote speakers and the
reports/conclusions reached during the five breakout sessions.

In the enclosed brochure are a preliminary agenda,
commitment form, and logistical information. A separate hotel
reservation card and a map showing the workshop site are also
included. If you agree to participate in this workshop, please
return the commitment form and your $50 registration fee in the
enclosed postage-paid envelope by June 30, 1988. Mark your
choices for the breakout sessions on the commitment form. We
will make every effort to honor your preferences, but we cannot
guarantee which session you will be assigned due to the need to
balance the groups.

We are intentionally restricting the attendance of this
workshop to approximately 40 people to encourage more open
discussions. Because of the small number of slots available
and the popularity of the workshop, we must stress the
importance of your attendance at the workshop if you have
committed to attend. If we do not receive your response by June
30, we must assume you cannot participate, and we will invite
the next person on the waiting 1list. :

Please make your own arrangements for lodging by
returning the enclosed hotel reservation form directly to the
Garden Plaza Hotel before November 23. If you prefer, call the
hotel directly at 615-481-2468. You will need to guarantee
your accommodations if you plan to arrive later than 6 p.m.

We look forward to a successful workshop to address a
timely and challenging subject. If you have any technical or
administrative questions regarding the workshop, please contact
Lynne Parker, workshop coordinator, at 615-574-2258.

OAK RIDGE OAK RIDGE
ASSOCIATED UNIVERSITIES NATIONAL LABOBATORY

ames L. Gumnick Charles R. Weisbin
University Relations Director Director, Robotics and

Intelligent Systems Program

Section 3: Agenda

Blank Page

WORKSHOP ON
HUMAN-MACHINE SYSTEMS

SUNDAY, December 4

7:30 p.m.

Welcoming Reception — Garden Plaza Hotel

MONDAY, December 5

7:30 a.m.

8:00

8:30

8:45

9:30

9:45

10:00

10:45

11:00

11:45

12:00 noon

Coffee — ORAU Energy Conference Room
Registration

Welicoming Remarks and Introductions
Dr. James L. Gumnick, Oak Ridge Associate
Universities
Dr. Charles R. Weisbin, Oak Ridge Nationa!
Laboratory

Keynote Speech 1 — Man-Machine
Communication
Dr. Thomas B. Sheridan, Massachusetts Institute of
Technology

Questions/Answers on Man-Machine
Communication

Break

Keynote Speech 2 — Autonomous Task Pianning
Dr. Avi Kak, Purdue University

Questions/Answers on Autonomous Task Planning
Keynote Speech 3 — Dynamic Task Allocation and
Execution Monitoring

Dr. Scott Harmon, robot Intelligence International

Questions/Answers on Dynamic Task Allocation and
Execution Monitoring

Catered Lunch - Energy Conference Room

1:00

4:15

4:30

5:30

6:00

Breakout Sessions
« Man-Machine Communication (Energy Conference
Room) .
Bill Knee, Chair
Marty Beckerman, Co-Chair/Reporter
« Dynamic Task Allocation (Pollard Auditorium)
Lynne Parker, Chair
Wayne Manges, Co-Chair/Reporter
Break

Reconvene in Energy Conference Room for Reports on
Breakout Sessions

Adjourn

Poolside Reception — Garden Plaza Hotel

TUESDAY, December 6

8:00 a.m.

8:30

8:45

9:30

9:45

10:00

10:45

11:00

Coffee — ORAU Energy Conference Room

introduction
Dr. Charles R. Weisbin, Oak Ridge National Laboratory

Keynote Speech 4 — Man-Machine System Architecture
Dr. Christine Mitchell, Georgia Institute of Technology

Questions/Answers on Man-Machine System
Architecture

Break
Keynote Speech 5 — Machine Learning via
Experience and Human Observation

Dr. Thomas Mitchell, Carnegie Mellon University

Questions/Answers on Machine Learning via Experience
and Human Observation

Breakout Sessions — Pollard Auditorium

16

» Man-Machine System Architecture
Bill Hamel, Chair

« Machine Learning via Experience and Human
Observation
Francois Pin, Chair
Phil Spelt, Co-Chair Reporter

1:00 p.m. Working Lunch — Energy Conference Room

2:00 Reports on Breakout Sessions
3:00 Wrap-up
4.00 Adjourn

#HH

17 l

Blank Page

Section 4: Keynote Presentations

Blank Page

Man-Machine Communication for Symbiotic Control
Thomas B. Sheridan

Man-Machine Systems Laboratory
Massachusetts Institute of Technology
Cambridge, MA 02138

Abstract

As telerobotic and other systems are asked to do more sophisticated tasks, the communi-
cation between man and machine becomes more critical. This paper specifies communication
functions and forms both of human and computer, discusses telerobotic control activities
about which communication is essential in relation to the human’s mental model and the
computer’s internal model, gives examples of critical research areas in man-machine com-
munication, and suggests appropriate performance measures.

Delimiting the Problem of Man-Machine Symbiotic Control

J.C.R. Licklider, in his important “Man-Computer Symbiosis” [1] used as his example of
the term symbiosis the larvae of Blastophaga grossorum, which lives in the ovary of the fig
tree and is itself responsible for pollinating the fig tree. By analogy, Licklider foretold the
needs and problems we would have in trying to engineer symbiotic man-machine systems.
He describes the problems of having computers “participate in formulation and real time
thinking,” the need for “time and motion analysis of technical thinking,” and the difficulties
of developing computer languages “not for specifying course” but for teaching the computer
“goals, as in human communication.” He mused on “desk surface display and control” (this
was long before the mouse emerged!), on “computer-posted wall displays” and on automatic
speech generation and recognition—all avenues of communication that appear salient for us
today.

One might ask whether man-machine symbiosis (Webster’s Unabridged: “two dissimilar
organisms living together in mutual dependence”) is more apt today than earlier? Years ago,
at least in some contexts, we might have characterized man as totally dependent upon his
tools, but we wouldn’t think to characterize the tools as dependent upon man for survival.
Today, however, the computer, or now more generally the intelligent and at least semi-
autonomous robotic system, may be considered metaphorically to have a life apart from its
operator, and in that sense we may use the idea of a symbiotic relation. We think of
communication in a such a symbiotic relation as necessarily being easy and reliable.

Historically, formal experimentation in modern human-machine communication may be
said to have begun with telephony. As the telephone matured, the Bell Laboratories became
a font of research in human-machine communication, not only machine-mediated
human-human communication but serious research on dialing and punching buttons. At

21

about the same time, World War II called attention to human—-machine communication in
aircraft cockpits and ship command stations. Along the way engineers who design chemical
plants and other process and manufacturing automation became concerned about
man-machine communication in control rooms. Then the stakes increased dramatically as
digital computers became available to everyone, and microcomputers gradually found their
way into all kinds of businesses and factories. The computer has become an integral part of
man-machine cooperation in almost all applications, ranging from automobiles to air traffic
control, from banks to hospitals, from home appliances to large scale chemical and nuclear
plants. So man-machine symbiosis, insofar as it does or can exist, is really human—computer
symbiosis.

The latest concern is human—computer symbiosis (and consequently communication) for
teleoperators and telerobotics—which, at least in part, is the subject of this meeting. By
teleoperator 1 mean a machine which has sensors and actuators, performs useful work on its
environment, and is controlled remotely by a human operator. Direct teleoperation means the
human continuously controls every action, much as a puppeteer controls a puppet. A telerobot
is a teleoperator which also embodies understanding, memory, and decision capability so
that the human operator, as a supervisor, may communicate to it high-level goals and contin-
gencies and receive high-level state information, while the machine executes low level
functions and pieces of the task semiautonomously by closing the loop through its own
effectors, sensors and internal computer.[2] Figure 1 illustrates supervisory control of a
telerobot. A single human operator may supervise multiple telerobots of sufficient autonomy.
The reason the human operator has an important role to play is that the robot cannot
generally be trusted in uncertain environments; human operators are needed to plan for the
telerobot, teach it, monitor its autonomous activity, take over in case of failure and reprogram
it as necessary, and learn from the experience.

Functions and Forms of Man-Machine Communication

Communication at the human-machine (human-computer) interface has two principal
functions (Figure 1): communication of the human operator’s intent in the form of commands
to the machine (diagrammed by the four steps in the upper block of Figure 2) and communi-
cation of the machine’s state (or the task situation) to the human (diagrammed by the four
steps in the lower block of the figure). For each function there is communication in two
directions, where the secondary direction is for clarification and feedback about that function,
thereby constituting a closed loop, or a dialog. Each of these four communications (1 to 2, 3 to
4 in each of the two blocks) involves active participation by both human and computer in an
appropriate sender or a receiver role, as indicated by the phrases at the left or right of Figure
2. Further, each of the four communications can take either analogic and symbolic form, or a
combination. None of these functions, directions, or forms is independent of the others;
indeed they are closely coupled.

22

Communicating intent: flexible interactive command language
and feedback of understanding

Probably the most primitive form of command language is analogic, wherein the hand or
other parts of the body move relative to or apply forces on the environment. Indeed these
motions or forces may be performing a task directly. Normally we might not think of this as
communication, but nature understands it as communication and necessarily complies
according to her rules, the laws of physics. We may engineer the environment (machine) so
that the motions/forces are operating valves, switches, knobs, steering wheel, etc., to activate
the machine in some appropriate way. In that case it is easier to think of the motions/forces
as signals for communication of information, though still carrying necessary energy to
operate the machine. Human factors studies as well as common sense have shown the
importance of arranging things so that the motions/forces correspond in some geometric or
physically isomorphic way, both to the form of sensory feedback available (they call it
stimulus-response compatibility) and to the way we normally think about what the signal
means (the population stereotype). Turning the steering wheel so that its top moves in the
direction we want the car to go and moving the master arm or joystick in the direction we
want the slave arm to go are examples of the former. Throwing the switch up for “on,” down
for “off,” and rotating the knob to the right for increasing the variable are examples of the
latter. Sometimes the stereotype is clear, but sometimes it is not. For example, most of the
world operate their light switches in the opposite direction. All of this points up the
importance of the so-called mental model, which we shall come back to.

Symbolic command language consists of spoken words or sounds or typed alphanumeric
characters concatenated according to agreed upon rules. Current linguistic theory hypothe-
sizes that the sophisticated computational architecture required of our brains to produce
such natural language is built into our genes and not simply learned.

When communicating with other people, whether through body language or spokern/
written language we make many assumptions—both about the specific domain of the task at
hand and about “universals” such as relevance, consistency, cooperation, etc., which essen-
tially form the rich community or cultural context that sets a norm for all of our behavior.
Such norms not only establish the rules governing how symbols are concatenated by the
sensor so as to be understood by the receiver (syntax), but also determine what terms to apply
to what different objects or events to convey meaning (semantics) and how to relate to
existing circumstances with regard to actions to be taken (pragmatics).

A computer which is not programmed with all of these constraints cannot possibly decide
what the received message intends for it to do. This is not a serious problem when by
prearrangement each simple discrete message maps to a unique action independently of all
other messages and actions, but it poses a very difficult problem when the sender must give
orders by concatenating discrete commands from a relatively small message set in order to
have a robot perform acceptably in a partially unknown environment with a multiple infinity
of alternative actions. Thus, curiously, more constraints enable richer communication and,
therefore, more freedom of communication than do fewer constraints!

23

Human to human communication of intent is mediated by the receiver’s feedback in some
form that the message is being understood or not—nods of the head, interjected “uh-huhs”
etc. In a telerobot system, display of this information can be graphical or alphanumeric. It
must convey to the sender (the human operator) a “picture of the computer’s model” for what
is to be done. Artificial intelligence (AI) and computer science are hard at work on aspects of
the understanding and feedback problem. One salient approach, called plan recognition, is
where a goal (explicit or implied) and a starting point are communicated to a computer and
the computer pieces together from a data base of “if . . . then” statements (production rules) a
specific plan for reaching the goal.[3] Another approach, called plan generalization[4] is
where a goal, a starting point, and some steps along the way are given and the computer
generalizes from this what to do in a slightly different situation later (to save the operator
from having to repeat all the details again or in case the initial plan execution encounters
trouble and the computer needs to step in and help). A third approach, called state space
reduction[5] is where the human operator gives a few steps along the way for the purpose of
delimiting the huge hyperspace of alternative actions sufficiently that the computer has
enough memory to search and optimize the final trajectory according to prearranged objec-
tives.

Currently available command languages for industrial robots such as VAL[6] are close to
the unique command-action mapping mentioned above but have limited capability to allow
short concatenations of symbols to work as more general subroutines or to be redefined as
chunks or macros. We are still a long way from instructing a computer much as we would
instruct another person,where the computer can indicate that it understands one part but is
confused about another, and the human teacher can respond that the computer seems to be
missing a particular point and provide an example, or express the command in another way,
i.e., where there is a dialog about what the human operator wants the computer to do relative
to what the computer can understand and can do.

Communication of system state: multimodal adaptable display

Information about system state may also be analogic or symbolic or both. The conven-
tional state displays for telerobots are video, computer generated alphanumerics, and per-
haps some dedicated warning lights and a dial or two; however, much more will be demanded
in the future.

First, vision is not the only sensory mode of interest. Consider audition. Computer-generated
speech is here today but unfortunately is not being exploited much. It is being used for
telephone systems, automobiles and public transit, and point-of-sale machines in rather
trivial ways. There is need to explore its full usefulness and what its limits are. We also know
a lot about binaural sound localization which might be used for generating three-dimensional
analogs of spatial configurations.

There also is new understanding and interest in computer-generated displays of force to the

human hand-arm muscles which correspond to gross or resultant forces applied by the task to
the robot hands. There is corresponding need to provide tactile dispays—presentations of

24

patterns of force and/or displacement to the human operator’s skin, based on corresponding
patterns applied to the robot hand. Tactile display might also be accomplished visually or
presented to a part of the body other than where the master arm or joystick is being held.

Vision remains the sense most amenable to communicating large quantities of interre-
lated data, especially about spatial relations. Computer displays are continuing to become
higher resolution. Stereoscopic and three-dimensional displays are being experimented with.
Memories are getting bigger and faster so that superposition of computer-generated graphics
on video is now relatively easy. What we do not know is how best to employ all these
newfound capabilities.

Both query by the operator about system state and clarification by the computer might
best be accommodated by using the computer-graphic display as a common “blackboard,”
where both “point” to physical objects, steps in a plan, or other parts of pictures or diagrams
and either voice or an abbreviated alphanumeric dialog language is used to arrive at mutual
understanding.

What Man and Machine Need to Communicate About in Order
to Do Symbiotic Control

Having laid out the requirements of communication (of human intent to the computer and
system state to the human), it is now appropriate to consider the things that human and
computer must communicate about in the context of jointly performing telerobotic tasks. The
reason for doing so, as implied above, is that the operator’s mental model (the pattern or
configuration of causation or correlation, remembered as words or images or in other ways,
which the human operator claims he associates with given objects or events) and the
computer’s internalized model for the similar interrelations among those same variables
must be consistent with each other. Insofar as possible, the command language and display
language should then embody a corresponding form. It goes without saying that all four
internal models should correspond to the task in space, time, and other key variables. Figure
3 illustrates the idea.

What, then, are the categories of communication activities for a telerobot system? 1
propose to divide them into two classes: off-line and on-line activities (see Table 1). Off-line
activities are: (1) learning the physical properties of the telerobot and task and learning
whatever lessons there are from experience in past operations, (2) exploring and setting
trade-offs among conflicting incommensurable objectives by satisficing, i.e., finding feasible
alternatives which are “good enough” according to subjective criteria which the operator
cannot easily explicate, and (3) strategic planning, i.e., the development of general and
contingency plans and guidelines. On-line activities are: (4) allocating sensors, i.e., specify-
ing what information gathering will be done, given that because of time, risk, and cost
constraints sensors can attend to but a small subset of what is available to look at, (5)
monitoring for failure or abnormality by use of specialized filters tuned to particular
symptoms as well as general fopographic methods to detect any deviation from normality,
(6) making control decisions, using standard techniques from modern control theory perhaps

25

as well as newer techniques of fuzzy control, and (7) implementing control decisions, i.e.,
telling the computer what is to be done in concise but unambiguous language and making
sure it understands.

For each of 1-7 in Table 1, the human operator has appropriate mental models, and for
each the computer also must have some internal model and stored data. For each, the human
must advise the computer of intent, and the computer must advise the human of what it
infers from its internal model—what it “knows” about the ongoing activity and its relevance
to the system. In addition, each can query the other and give advice in response to the other’s
query (or give advice solicited by a priori query such as warning or alarm information). Thus
in each of the seven categories the human and a computer-based “expert system” may be said
tobe in dialog. Table 1 provides a phrase or two describing the appropriate computer internal
model and the corresponding human mental model in each case. Naturally the computer
should be relegated to the algorithmic functions such as equation solving, storing, and
making available quantitative data. The human operator, by contrast, is best at intuition
and associative memory and recall.

Examples of Critical Research Areas in Man-Machine Communication

Ordinarily some of the following are not considered communication problems. Actually
they are. Human—computer communication is at the core of each.

Exploration of multiobjective Pareto alternatives

Perhaps the ultimate reason to retain human operators in complex systems is to decide
what trade-off of objectives is most appropriate or at least what small subset of alternatives
is acceptable (satisficed) in each task; eventually everything else may be automated.
Whether we ever reach such a state of automation is doubtful, but there is an increasing
awareness of the operator’s need to compromise among multiple incommensurable objectives
and greater interest in providing decision aids for this purpose. One approach to such
decision aiding is to abandon the notion that there exists or that the operator can produce
anything resembling a global utility function, other than to specify weak order with respect to
each objective. Assuming the operator or some other data source(s) can input to the computer
the set of feasible alternatives, the computer can then specify the dominant subset—the
Pareto frontier—those that are better in one or more objectives and no worse in others
(illustrated in Figure 4). The problem then is largely one of flexible communication, where the
operator explores the implications of adjusting weights and “least acceptable” constraints in
each of the objectives. Laboratory experiments[7] have shown that the analogic or symbolic
communication form by which the operator makes the adjustments and sees the implications
is critical.

Adjustment of impedance

The common position control mode of teleoperation means positioning a multidegree-of-
freedom “master” arm, having the “slave” arm servoed so as to adapt a corresponding position
in 6 degrees of freedom and getting feedback to the hand and arm muscles of whatever force

26

is required to maintain that position correspondence. By simply adjusting control gains,
such a system can instead be made to impose the same force as applied to the master, letting
the position take whatever values it must. In fact, as Raju[8] and others have shown, the
force-position relationship (compliance, or when damping and inertia area also factored in,
impedance) may be adjusted to be different in each DOF and/or at each of master and slave
ends, depending on the task requirements and the sensitivity and strength of the operator.
However, if gains are not adjusted carefully, oscillations will result, seeming to impose noise
on the analogic communication.

Touch

Touch is obviously an important means of communication with the environment for
animals and man, but we have hardly begun to understand how to use it in human-machine
systems. We now have crude touch sensors for robots. Experiments have been conducted on
primitive displays to the skin, but when that same skin is communicating in the forward loop
(applying forces or displacements or, which is the same, engaged in a “resultant force”
impedance relation with a telemanipulated object) other tactile information patterns are
masked. For this reason researchers have sought to display contact or force patterns from
tactile sensors to skin of other parts of the body, or convert these patterns to light and display
them to the eyes[9] or generate corresponding sound patterns for the ears, etc. The field is
wide open at this time.

Telepresence

Presumably the term telepresence means “a feeling of being present at a location actually
distant.” There now is faith that telepresence will help teleoperation. Indeed experiments
with head-mounted video systems (which is probably the most striking way to generate that
feeling) would seem to bear this out. Gross force feedback to the muscles and touch feedback
to the skin are also regarded as essential to high-fidelity telepresence. Curiously, no one has
ever shown that the sense of presence per se contributes a thing, apart from providing the
control feedback needed to perform the task (which may be provided without telepresence).
With progress in higher resolution, reduction in size, and lower costs for video and other
sensors, we can expect some of these questions to be put to critical test.

State estimation

State estimation means combining (1) the latest (usually noisy and delayed) measure-
ment data with (2) the predictions of an internal model about what should have happened,
given the last estimate of what was happening earlier and knowledge of what control signals
have been input to the system, to make a “best” (if all the assumptions are true) decision
about what is happening now. Computers are good at state estimation for noisy data and
reasonably good internal models of what variables are relevant and how they interact.
People are poor at state estimation for purely deterministic situations like tumbling satellites
but much better than computers at second-guessing the relevance of variables which are hard
to model. Getting human and computer to communicate and cooperate in this task poses
certain difficulties,[10] like the fact that the computer can spit out large multi-dimensional
probability densities which the human cannot comprehend so that much information must be
discarded first. The state estimation (or, more generally, situation assessment) problem is

27

seen as a challenging one for human—computer symbiosis.

Teaching relative commands

One way to teach a robot is to demonstrate a procedure (analogically) or to specify its
course point-by-point numerically (symbolically) and then have the robot perform. A second
way is to specify a set of points at key way-points, much as air traffic controllers communicate
to pilots, and then the pilot is responsible for employing criteria agreed to beforehand to get
from point to point. A third way is to specify the constraining geometry, the goal , and salient
criteria in addition to those given earlier, and then say, in effect, “OK, do it.” Each method
expects a bit more intelligence of the computer, but, as Yoerger{11] has shown, it need not
take much and one can achieve both speed and accuracy by letting the computer do what it
does best. Communicating human delays and noise accomplishes nothing.

Computer understanding

Computer understanding is a very big undertaking, as suggested in the discussion above;
nevertheless, in consideration of ensuring that human command language works, it may well
be the emphasis which has been neglected for too long. It is now an active field in Al, and
practical applications are beginning to emerge.

Multi-DOF, redundancy

A six degree-of-freedom arm can attain any commanded end position and orientation
within range, but the position and orientation of all intermediate links, are then fixed. But
with a few additional links the arm can reach the desired end position and orientation and
also avoid given obstacles. Das[12] has developed a technique for accomplishing this, where
the human operator tells the computer where the obstacles are and guides the arm’s end
point through the obstacle field while the computer forces intermediate joints to avoid the
obstacles and alerts the operator if it cannot. Part of Das’s system is a technique for
automatically selecting a “best” viewpoint for the operator.

Span of autonomy; communication policy

By span of autonomy is meant, loosely, the interval of time, space and/or instructions
during which the telerobot is on its own. Actually, there are several “spans,” and their
interrelationship must be established as part of a communication policy. Table 2 lists six
types of message for both human-to-machine and machine-to-human communication. From
top to bottom they progress more or less from “normal” to “emergency.” One would expect the
messages at the top of each list to occur more often than those at the bottom. Those toward
the bottom are less expected and higher priority, and deserve to take precedence over those
toward the top. Which of computer or human has ultimate control when is a politically tricky
issue. Communication policies need to be worked out for any particular system and mission,
but it is clear that there is no single span of autonomy; there are multiple spans depending
upon circumstances.

28

Deception by computer

Human-computer communication can be deceptive. Weizenbaum[13] makes clear the
ways in which people can be fooled into thinking computers are communicating sense when
actually they are communicating nonsense. An example is Weizenbaum’s own Eliza program,
which convincingly simulates a psychiatrist (for several minutes before one begins to suspect
that the computer isn’t very smart) by picking up words and phrases and repeating them in
plausible syntax. In the writer’s opinion more anticipatory research of this kind needs to be
done.

Performance Measures of Man-Machine Communication

Any improvement in human-machine communication must ultimately prove itself in
actual use. It is reasonable, however, to require demonstration of improvement long before
actual operation of any given system, namely at the stage of applied research and early
system development. At this stage it is desirable to have some measures which can be
applied to show the extent to which any one approach is better or worse than any other.

Information without meaning

One such measure is classical information theory.[14] During the 1960s, this was applied
extensively by psychologists who were caught up in it as a new fashion, but just as abruptly
it was fell from fashion, for indeed it was no silver bullet. Given any matrix with categories
of what the human operator intends to communicate on one axis and what is understood on
the other axis, and assuming communication is not perfect, there is a confusion matrix,
which is formally amenable to information transmission analysis. Such measure, however,
cares only about reducing consistency—the receiver’s uncertainty about which message was
sent—quite apart from any meaning any message happens to have.

Value of information

If, when information about circumstance x is communicated perfectly and on time, one
could take that action u which nets the greatest gain for that x, the expected gain (G) would
be

Ei(G) = f, max u [G(u,x)] p(x) dx

where G(u,x) is the value of action u contingent upon circumstance x. If one had to select an
action without knowing x except by its prior probability density p(x), then one could do no
better than

E(G) = max u [p(x) G(u,x) dx]

The value of the information about x is then

E,-E,

29

Relative membership with respect to a fuzzy rule

A third measure of communication, and one explicitly tied to linguistic meaning, comes
from fuzzy set theory.[15] A fuzzy set, unlike a crisp set to which an object or event is a full
member or not a member, has degrees of membership from 0 to 1, depending on the value of
an argument (x). Figure 5 illustrates several fuzzy variables (“short,” “medium,” etc.) for the
physical argument “height” and several for the argument “girth.” (It is assumed that a
person can generate such membership functions.) In terms of these variables, x, which has
physical values of height gnd girth, may also be expressed as a fuzzy vector (0.4 very tall, 0.9
tall, 0.6 medium, 0.0 short, and similarly for the fuzzy variables skinny, normal, and fat). For
any given rule stated with Boolean “and” and “or”, one can substitute “min” and “max”,
respectively, and infer the relative membership of every x. One may then select the x with the
greatest membership as the best choice (for president or whatever). The point is that mem-
bership is inherently a measure of relevance to a stated rule or set of rules, where the rule(s)
can be expressed in everyday words. When a given x fits perfectly, we may say it is a very good
(true, relevant) instance of the stated rule (expressed in fuzzy words). We have, therefore, a
goodness-of-fit metric by which to tie the meaning of words to physical objects or events. Itis
not unthinkable that the “terms” of body language and other forms of communication can
provide such fuzzy variables relative to physical arguments and that the meaning of concate-
nations of body language can be evaluated in the same manner.

User friendliness

User friendliness is a term often employed in characterizing human—computer communi-
cation (user friendliness presumably produces good communication). There are no accepted
definitions as yet. Perhaps fuzzy measures are appropriate or maybe just old fashioned rating
scales.

Conclusions

Various considerations regarding communications between man and machine (more spe-
cifically human operators and computers in telerobot control tasks) have been presented,
toward the end of more cooperation (symbiosis) between man and machine. Communication
functions and forms of both human and computer are specified. Activities within teleopera-
tion and telerobotics, about which communication is essential, are discussed, particularly in
relation to the human’s mental model and the computer’s internal model. Examples of critical
research areas in man-machine communication are given, and different types of performance
measures for man-machine communication are described.

30

supervisory commands control signals

HUMAN \ COMPUTER CONTROLLED
OPERATOR |, PROCESS
mental model L Cor?o%lgf r L ’I telerobot
, and task
displays measured data

Figure 1. Supervisory Control of a Telerobot

FUNCTION OF HUMAN FORM OF FUNCTION OF COMPUTER
COMMUNICATION

(1) generation of command————————g(2) understanding of command
principal direction

(4) clarification of command __(3) display of understanding
secondary direction

analogic

symbolic
combination

(2) understanding of state < (1) display of system state

principal direction

(3) query about state _____» (4) display of clarification
secondary direction

Figure 2. Functions and Forms in Human—Computer Communication

31

o

supervisory commands control signals
HUMAN COMPUTER \ CONTROLLED
OPERATOR PROCESS
mental model L co;mo%u.ger telerobot
and task
Ek/o \ L 10
displays measured data

[0

Figure 3. Models of Controlled Process Internal to Human, Computer, Command
Language and Display

amgunt of O o e
attribute A

amount of attribute B —»

© Dominating or Pareto optimal alternatives

O Nondominating alternatives

Figure 4. The Pareto Optimal Frontier of Alternatives to be Explored and Satisficed

SHORT MEDIUM TALL VERY TALL

09 . & ... _._-.—_'.__............_.=.‘——=....I.,umnuu :__:_
= I =
T |I=”.=I—=I_ =
membership| l|‘I = =
functions ,Il --E=___:
m o4!l.. & .5 ii|| = E:__;_
i ESE
' = =
|||l"Illl e Y
0 = i —= l —
physical variable = HEIGHT, INCHES — ;

1.0+—_ SKINNY

ERRAS SSUNNRARRARRRANT NORMAL FAT RS
T S) \\ aa
—_ W X
= \\‘\\\\\ \ \\‘\\
— \\\\\ \ O
T 06).......... = © \\ R
—_\ A
i : -\3\'\— \ o
membership S X N
. {-‘\ — \ \\‘
functions S — W
N — 3
m & — ~
S 1—_ \‘\\\ \
0 S | T “\\“\ N
)’< physical variable = GIRTH, INCHES —
Rule:

If candidate is tall or very tall, and is skinny, or if s(he) is short and fat, then reject.

Parse:
it {[(tall) or (very tall)] and [skinny] } or {[short] and [fat]} then reject

Evaluate membership for each person, e.q. for x
(using or = max, and = min)

max [(tall), (very tall)] = max [0.9, 0.4] = 0.9,

min {[tall or very tall =0.9], [skinny =0.6] } = 0.6
min { [short=0], [fat=0]}=0

max ({tall or very tall, and skinny = 0.6}, {short and fat=0}) = 0.6 for rejection

If have other rules, apply them also to every x,
take action with greatest membership

Figure 5. An Example of Fuzzy Variables and How Membership is Established in
Relation to Rules Stated in Terms of these Variables.

ACTIVITY REQUIRING
COMMUNICATION

off-line activities

COMPUTER
INTERNAL MODEL OF

(in relation to system state)

HUMAN
MENTAL MODEL OF

(in relation to intent)

(1) learning

physical equations of telerobot
task, record of past experience

intuitive physics of telerobot task,
lessons from past experience

(2) exploring a;'\d
setting objectives

tradeoffs among constraints,
Pareto alternatives

acceptable constraints,
choice from Pareto alternatives

(3) strategic planning

procedures compatible
with (1) and (2) above

laws, institutional policies,
cultural norms that apply

on-line activities

(4) allocating sensors

availability, constraints,
calibration of sensors

expected return,
trustworthiness of sensors

(5) monitoring for

abnomality / failure

symptoms of abnomality,
causal topography

symptoms of abnormality,
deviations from normality

(6)

making control
decisions

observer, state estimator,
control law

satisfaction of objectives,
intuition and skill in control

7)

implementing
control decisions

syntactic rules for specifying
command language

semantic, pragmatic associations
efficiency of communication

Table 1. Computer and Human Internal Models Associated with Various Telerobot
Communication Activities

HUMAN TO MACHINE

'MACHINE TO HUMAN

normal preoperational

teach

normal operational feedback

update program according to plan

request for program update
according to plan

respond to request for clarification

request for clarification

updated endogenous

interrupt based on reconsidered or

information

interrupt based on local
computer decision

interrupt based on exogenous input

interrupt based on uncontrollable
or unknown cause

Table 2. Messages which are Treated Differently According to Communication Policy

References

[1] Licklider, J.C.R. (March 1960), Man-Computer Symbiosis, Vol. 1, No. 1, paper 1 of IRE
Transactions on Human Factors in Electronics March 1960.

[2] Sheridan, T.B. (1988). Telerobotics, to be published in Automatica.

[3] Allen, J.F. and Perrault, C.R. (1980), Analyzing intention inutterances, Artificial Intel-
ligence, Vol. 15, 143-178.

[4] Yared, W. (1988), Cambridge, MA: MIT Man-Machine Systems Lab., PhD Thesis, in
progress.

[5] Park, J. (1988), Cambridge, MA: MIT Man-Machine Systems Lab., PhD Thesis, in prog-
ress.

[6] Lozano-Perez, T. (1983), Robot programming, in Proc. IEEE, Vol. 57, No. 7, 821-841,
July.

[7] Charny, L. (1988), Cambridge, MA: MIT Man-Machine Systems Lab., PhD Thesis, in
progress.

(8] Raju, G.J. (1988), Operator Adjustable Impedance in Bilateral Remote Manipulation,
Cambridge, MA: MIT Man-Machine Systems Lab., PhD Thesis.

[9] Bejczy, A. (1983). Sensors, controls and man-machine interfaces, Science.

[10] Roseborough, J.B. (1988), Aiding Human Operators with State Estimeation, Cambridge,
MA:MIT Man-Machine Systems Lab., PhD Thesis.

[11] Yoerger (1982)

[12] Das, H. (1988), Cambridge, MA: MIT Man-Machine Systems Lab., PhD Thesis, in prog-
ress.

[13] Weizenbaum, J. (1976), Computer Power and Human Reason, San Francisco, Freeman.

[14] Shannon, C.E. and Weaver, W. (1963). Mathematical Theory of Communication, Ur-
bana, Univ. of Illinois Press.

[15] Zadeh, L. (1984), Making computers think like people, IEEE Spectrum, Aug.

Blank Page

A Task Planner for Simultaneous Fulfillment of
Operational, Geometric and Uncertainty-Reduction Goals*

S.A. Hutchinson and A.C. Kak

Robot Vision Laboratory
School of Electrical Engineering
Purdue University
W. Lafayette, IN 47907

Abstract

Our goal in robot planning is to develop a planner which can create complete assembly
plans given as input a high level description of assembly goals, geometric models of the
components of the assembly, and a description of the capabilities of the work cell (including
the robot and the sensory system). In this paper, we introduce SPAR, a planning system
which reasons about high level operational goals, geometric goals and uncertainty-reduction
goals in order to create assembly plans which consist of manipulations as well as sensory op-
erations when appropriate. Operational planning is done using a nonlinear, constraint
posting planner. Geometric planning is accomplished by constraining the execution of opera-
tions in the plan so that geometric goals are satisfied, or, if the geometric configuration of the
world prevents this, by introducing new operations into the plan with the appropriate
constraints. When the uncertainty in the world description exceeds that specified by the
uncertainty-reduction goals, SPAR introduces either sensing operations or manipulations to
reduce that uncertainty to acceptable levels. If SPAR cannot find a way to sufficiently reduce
uncertainties, it does not abandon the plan. Instead, it augments the plan with sensing
operations to be used to verify the execution of the action, and, when possible, posts possible
error recovery plans, although at this point, the verification operations and recovery plans
are predefined.

*This work was supported by the National Science Foundation under Grant CDR 8803017 to the Engineering
Research Center for Intelligent Manufacturing Systems.

37

1. Introduction

Our goal in robot planning is to develop a planner which can create complete assembly
plans given as input a high level description of the assembly goals, geometric models of the
components to be assembled, and a description of the capabilities of the robotic work cell (both
the robots and sensors). These plans would include both manipulations and sensory opera-
tions. Toward this end, we have developed SPAR, a planner which creates plans that satisfy
operational, geometric and uncertainty-reduction goals. SPAR’s approach to planning is to
first create a high level plan containing actions like “pickup part-1,” and then add constraints
on the way the actions are executed, so that geometric goals are satisfied. It is also possible
that additional high level actions will be added to the plan to satisfy geometric goals, for
example, if a work piece must be repositioned so that an insertion operation can be per-
formed. In order to satisfy uncertainty-reduction goals, SPAR examines the maximum
uncertainty which might exist in its world description. If this uncertainty is too large to
ensure successful execution of any action in the plan, sensing operations or manipulations
are added to the plan in an attempt to reduce the uncertainty to acceptable levels. If this fails,
rather than abandon the plan, SPAR adds sensing operations to verify the execution of the
action, and when possible, adds precompiled recovery plans. By planning at these three
levels, SPAR is able to start with a high level set of assembly goals and develop assembly
plans which include geometric descriptions of the actions and sensing operations to reduce
uncertainty and verify actions which might not succeed.

There are certain limitations to SPAR’s planning abilities in its current implementation.
First, SPAR only considers the “endpoints” of actions. Thus, if the plan calls for grasping an
object and moving it to another place on the work table, SPAR will determine a set of
constraints on the configuration used to grasp the object, and on the configuration used to
place it on the table, but will not plan the motions required to move the manipulator from the
first position to the second. Second, we have not incorporated any fine motion planning into
our current planner. As a result of this, in some situations where compliant motion plans
could be used to robustly perform an assembly task, SPAR will pessimistically declare that
uncertainties are too great to guarantee successful assembly and that error detection sensing
should be used at execution time. Currently there is research being done in our lab on
compliant motion planning [16], and at some future point that work could be integrated with
this planner. Finally, SPAR must know a priori about the locations and orientations of all the
objects that participate in the assembly. Therefore, in order to be used in a real assembly cell,
SPAR must be augmented with a sensing system capable of determining the positions of the
objects to be manipulated. Such a system is currently under development in our lab and is
described in [18, 19].

Much of today’s planning research falls into one of two camps: the STRIPS family of
planners (more generally the domain independent planners) {7, 14, 29, 34, 36], and the con-
figuration space (C-space) planners [11, 21, 24]. Neither of these approaches to planning is
capable of producing complete assembly plans from high level specifications of assembly
goals. The domain independent planners are incapable of reasoning about geometric con-
cerns and uncertainties in the work cell, while the C-space planners typically deal only with

38

the geometric specifications of individual actions. One system which plans geometric configu-
rations based on a high level description of assembly goals is RAPT, described in [1, 28].
However, this system is not really a planner. Given a symbolic description of the relation-
ships which must hold in the goal state, RAPT manipulates equations which correspond to
these relationships to derive homogeneous transformations for the goal relationships be-
tween the manipulator and the work pieces to be manipulated.

Attempts at dealing with world uncertainties also fall into two camps: planners which
attempt to anticipate, and avoid errors [5, 27], and error recovery planners which are invoked
only after an execution error occurs [3, 15, 25, 32, 33]. Consideration of uncertainty in fine
motion planning has been discussed in [6, 10, 13]. A number of schemes for representing
uncertainty in robotic systems have been described, for example [12, 31], but these are not
currently part of a planning system.

There are two systems of which we are aware whose scope is similar to the scope of SPAR:
TWAIN [22] and Handey [23]. Each of these planners begins with a high-level task plan and
then adds motion plans for the individual actions in that plan. TWAIN is a constraint posting
planner which can also add sensory operations to the plan reduce uncertainties. Handey is
an integrated system which includes a sensory system to determine the initial world state.
One of Handey’s main strengths is its ability to plan grasping operations when the objects are
in cluttered environments (this is discussed further in [35]).

The approach to planning which we describe in this paper was inspired by Chapman’s
work on the constraint posting method [7]. In the constraint posting method, the planner
seeks to satisfy a goal by first examining all of the actions and constraints previously
generated to see if the goal can be satisfied by the addition of a new constraint (where a
constraint may be viewed as a specification or a restriction on an action). Only if this strategy
fails will a new action be added to the plan. Chapman’s planner by itself would be incapable
of handling the geometric and uncertainty-caused complexities in a robot work cell, and its
main virtue lies in the fact that it possesses some elegant theoretical properties, such as the
property of completeness which implies that if a solution to a planning problem exists, the
planner would find it.

Our planner expands Chapman’s constraint posting work by extending the planning
beyond high-level goals (which we refer to as operational goals) to include geometric and
uncertainty-reduction goals. In order to plan with these additional goals, we have added a
constraint manipulation system (CMS) which contains domain-specific knowledge (including
the kinematics of the robot, object models, and sensing operations). This domain knowledge is
used by the CMS to determine whether or not constraints on such things as robot arm con-
figurations can be satisfied.

When designing a constraint posting planner, the degree to which constraint posting is
used is an issue which must be considered. A pure constraint posting planner makes no
variable instantiations until all of its goals have been satisfied, at which time the CMS is used
to determine the variable instantiations which simultaneously satisfy all of the constraintsin

39

the constraint network. The advantage to this approach is that the planner is able to decrease
the amount of backtracking by avoiding arbitrary choices which could lead to failure. The
disadvantage to a pure constraint posting approach is that maintaining the constraint
network can become more expensive than backtracking during planning. Therefore, in many
cases a combination of constraint posting and backtracking is appropriate, the exact combi-
nation being determined by the complexities of the constraints and the cost of backtracking.

In SPAR, due to the complexities involved with the representation and evaluation of
uncertainty-reduction goals, only the operational and geometric goals are satisfied using the
constraint posting method (we will elaborate on these complexities in Section 4.3). Therefore,
SPAR performs its planning in two phases. In the first phase constraint posting is used to
construct a family of plans that satisfy all operational and geometric goals. In the second
phase, specific plan instances (generated by instantiating the plan variables so that the
constraint network is satisfied) are used as input for the uncertainty-reduction planning. We
should note that the constraint posting paradigm is conceptually able to handle all three
types of goals, however, for the reasons of complexity that we have just mentioned, it is not ex-
pedient to try and force uncertainty-reduction planning into the constraint posting mold.
Furthermore, it would not be advantageous to abandon constraint posting for the operational
and geometric planning, since the cost of maintaining the constraint network associated with
these two types of goals is significantly less than the cost of implementing a backtracking
search algorithm.

In this paper we present an overview of SPAR. A more detailed account can be found in
[17]. The remainder of this paper is organized as follows: In Section 2 we will give an overview
of the system, including the top-level search strategy used to satisfy system goals. In Section
3 we will describe the representations that SPAR uses for uncertainty, plans, actions, and
goals. Section 4 describes how SPAR satisfies individual goals. This includes discussions on
the satisfaction of high level operational goals, geometric goals, and uncertainty-reduction
goals. In Section 5 we discuss how SPAR represents and manipulates constraints. Section 6
brings the first sections of the paper together by presenting an example of how SPAR
develops a plan for a basic assembly task. Finally, Section 7 concludes the paper with a
summary and allusions to future efforts.

2. Planning in SPAR

In order to create complete assembly plans, we have extended the planning which is done
in traditional constraint posting planners, such as those described in [7, 36], to include both
geometric planning and uncertainty-reduction planning. By geometric planning, we mean
the planning which determines the actual geometric configurations that will be used during
the assembly process. These configurations include the configurations of the manipulator,
the positions in which parts are placed, and the grasping configurations which are used to
manipulate objects. Uncertainty-reduction planning consists of first determining whether or
not the uncertainty in the planner’s description of the world (e.g. the possible error in part
locations) is sufficiently small to allow plan execution to succeed. If the uncertainties are too

40

large, then either sensing operations or manipulations are added to the plan in an attempt to
reduce the uncertainty to an acceptable level. If this fails, verification actions and local
recovery plans are added to the plan. These can be used during plan execution to monitor the
robot’s success and recover from possible run time errors. We call the resulting planner
SPAR, for Simultaneous Planner for Assembly Robots, since all three levels of planning
influence one another.

In SPAR, the planning process begins with a null plan and a set of goals which the user
supplies. This null plan is then refined until all goals are satisfied. This occurs in two phases.
First, a constraint posting approach is used to satisfy all operational and geometric goals.
Then, a second phase of planning is used to satisfy the uncertainty-reduction goals.

In the first phase of planning, SPAR iteratively refines its current partial plan so that it
satisfies some pending goal. This is done by either constraining the execution of an action
that is already in the plan, or by introducing a new action into the plan. In the latter case,
SPAR adds the new action’s geometric and operational preconditions to appropriate goal
stacks, and also checks each currently satisfied goal, noting those which are possibly undone
by the new action and placing them on the appropriate pending goal stack. The first phase of
planning terminates when there are no more pending operational or geometric goals.

In the second phase of planning, SPAR does not use the constraint posting approach.
Instead, the uncertainty-reduction preconditions are considered for specific plan instances.
In order to create these plan instances, SPAR invokes its CMS to find consistent solutions for
the plan’s constraint network. These solutions are then used to instantiate the variables in
the plan actions. Specific plan instances are examined until one is found in which all
uncertainty-reduction goals can be satisfied. If no such instance can be found, the instance
which contained the fewest unsatisfied uncertainty-reduction goals is selected. Furthermore,
the plan instance is augmented to contain sensing verification actions and potential recovery
plans for anticipated possible errors.

Figure 1 shows a block diagram of SPAR. To the left are the goal stacks and set of satisfied
goals which are used to keep track of planning progress. At the top, enclosed by a dashed box,
are the templates which are used to represent actions, a set of rules for instantiating those
templates, a set of actions to be used to reduce uncertainty in the world, and a set of
procedures which are used to construct the uncertainty-reduction preconditions for actions in
the plan. To the right, enclosed by a dashed box, is the constraint system. This includes the
actual CMS, a number of domain-dependent modules (e.g. upper and lower bounding rou-
tines, an algebraic simplifier, inverse kinematics of the robot), and a constraint network
which is used to organize the plan’s constraints. Finally, at the bottom of the figure are the
verification sensory operations and local recovery plans, which are used when uncertainty-
reduction goals cannot be satisfied, as well as the set of actions which are currently in the
plan.

41

3. Representational Issues in SPAR

One of the important issues which must be addressed when designing a planning system
is the choice of representation schemes which will be used. These representations determine
the power that the planner will have in terms of its ability to adequately model the world and
the possible actions which can be performed to alter the world. In this section, we will
describe how SPAR represents actions, uncertainty, plans, and goals.

3.1. Representation of Actions

Currently, SPAR plans with three actions: pickup, putdown, and assemble.* These
actions are represented by action templates, each of which has the following components.

¢ Action id: An identifier which SPAR uses to reference a particular instance of the
action.

¢ Action: The name of the action, and its arguments.

* Preconditions: The operational geometric, and uncertainty-reduction preconditions
which must be met prior to the execution of the action.

¢ Add list: A list of conditions which will be true in the world after the execution of the
action.

* Delete list: A list of conditions which will no longer be true in the world after the
execution of the action.

Figure 2 shows the action template for the pickup action. The meanings of the various pre-
conditions will be made clear in the following sections of the paper.

When SPAR adds an action to the plan, it instantiates the template for the action so that
it will accomplish the particular goal which caused the action’s addition. This consists of first
instantiating the various identifiers in the action to unique labels (e.g. the Actionld, the Gi’s),
and then either instantiating or constraining the plan variables in the action so that it
achieves the goal. SPAR uses a set of rules to determine the proper variable instantiations for
an action template, given the goal which the action is to achieve. Figure 3 shows an example
of the rule which instantiates a pickup action template to achieve the goal holding(Object,
Grasp). (Note that the uncertainty-reduction preconditions do not appear in the instantiated
template. This is because in SPAR’s current implementation, they are actually encoded as
procedures.) By using this approach to instantiating action templates, SPAR is able to use a
small set of generic robot operations and instantiate these to specific actions based on the
objects which will be manipulated by those actions.

*There is only a limited repertoire of actions that can be carried out by a single robot arm and the three listed here
represent those that are used most often. Actions like threading and fixturing could be considered to be more
specialized forms of the assemble action presented here, the specialized forms being obtained by the addition of
more geometric and uncertainty-reduction constraints.

42

In some cases, when an action is added to the plan, an initial set of constraints on the plan
variables is also added. For example, the rule shown in Figure 3 specifies the initial
constraint that Grasp be one of the possible grasps for Object. (We will discuss how grasps,
stable poses, etc. are represented in the Section 5.) This amounts to assigning an initial label
set to a node in the constraint network (this will also be discussed further in Section 5). When
initial constraints are added, there is no need to invoke the CMS to see if they are consistent
with the current constraint network, since the variables which will be constrained by these
initial constraints did not previously exist in the plan, and thus did not occur in the constraint
network.

3.2. The Representation of Uncertainty in SPAR

In order to create assembly plans which are to be executed in an uncertain environment,
SPAR must have a suitable representation for the uncertainty in its world description, an
understanding of how much uncertainty in that description can be tolerated before an action
can no longer be guaranteed to succeed, and a knowledge of how the various assembly actions
affect the uncertainty in the world description. In this section, we will address each of these
three issues.

3.2.1. Representing Uncertain Quantities

In our current implementation of SPAR, we have chosen to limit the number of quantities
which are considered to be uncertain. (Once the system is extended to include a sensing
system, we will also consider uncertainties in object identity.) For an object resting on the
work table, the X,Y,Z location of the object (i.e. the object’s displacement) and the rotation
about an axis through the origin of the object’s local frame and perpendicular to the table are
considered uncertain. This choice reflects our assumption that objects resting on the work
table will be in a stable pose, which fixes two rotational degrees of freedom of the object (this
assumption will be discussed further in Section 5). For the manipulator, we consider the X, Y,
Z location of the tool center and the rotation about the Z axis of the manipulator’s local frame
to be uncertain.

All uncertainties in SPAR are expressed in terms of uncertainty variables. The possible
values for an uncertainty variable are defined using bounded sets. We represent the
uncertainty in the position of an object by a homogeneous transformation matrix whose
entries are expressed in terms of uncertainty variables. By combining the ideal position of an
object (i.e. the position of the object if all uncertainty is eliminated) with the uncertainty in
that position, we obtain the possible position of an object. This possible position will be a
homogeneous transformation matrix, with some or all of its entries expressed in terms of
uncertainty variables. Any matrix which can be obtained by substituting valid values for the
uncertainty variables will represent one possible position of the object.

43

Given these assumptions, we define the transformation which represents the uncertainty
in the position of the manipulator relative to the manipulator’s local frame to be:

cos(A(-)g) —sin(AOg) 0 AXg

T, = sin(Aes) cos(Aeg) 0 AYs
0 0 1 AZg
0 0 01

Again, note that the values, AXB, AYg, AZS, and A8, are bounded symbolic variables.
Therefore, the matrix T,, represents all of the transformations which could be obtained by
substituting valid numerical values into the matrix in place of the symbolic variables. The
bounds on these variables are stored in SPAR’s database, and retrieved when needed.

Given that T,,, represents the uncertainty in the manipulator’s position relative to the
manipulator’s own local frame, we can compute the possible position of the manipulator (i.e.
the combination of ideal position and possible error) using the composition:

T

M+A =

T, T ®
where T, represents the ideal position of the manipulator.

The expression for the possible position of an object resting on the work table is a bit more
complicated, due to the rotational component in the uncertainty. In particular, the axis of this
rotation is not defined by the local frame of the object or by the world frame, but by the world
Z axis, translated to the origin of the object’s local frame. To deal with this, we will consider
the uncertainty in the displacement of the object and the rotational uncertainty separately.
For the displacement, let the transformation Tr,, be a transformation which defines the un-
certainty in the X,Y,Z location of the object relative to the world coordinate frame:

1 0 0 AX,
Tr |0 1 0 &%
©710 0 1 AZ,

000 1

Similarly, let the transformation Tr, represent the ideal X,Y,Z position of the object. We
obtain the possible displacement of the object’s local frame by combining the two:

Tr

O+A

=Tr,, Tr,
Now, since the rotational uncertainty is about the world Z axis translated to the origin of

the object’s local frame, it can be represented by post-multiplying the possible object displace-
ment by a rotation about the Z axis, R,, where:

44

cos(AB,) —sin(A8,)) O O

R sin(A6,) cos(AB8,) O O
20 ~

0 0 1 0

0 0 0 1

Finally, by defining the matrix R to denote the ideal orientation of the object, we obtain the
possible position of the object (which includes both displacement and rotation uncertainties)
as:

T = Ter Tro RAO RO (2)

0+4A

3.2.2. Derivation of Uncertainty-Reduction Goals

In order to illustrate the construction of the uncertainty-reduction preconditions, in this
section we will derive the uncertainty-reduction preconditions for the pickup action. This is
done by examining the possible locations of the manipulator fingers, and their relationship to
the possible locations of the contact points on the object to be grasped (i.e. the points on the
object which the fingers will contact in the grasping operation). These preconditions should
guarantee that the two contact points will lie between the fingers of the manipulator, even
when worst case uncertainties occur. To express this, we first derive the possible local
coordinate frames for each finger. We then derive the possible locations of the contact points
on the object. Finally, we transform the possible contact points so that they are expressed in
the local finger frames, and check that they each lie between the fingers.

To find the possible local frames of the manipulator fingers, we find the possible location
of the manipulator’s local frame and perform a translation of £1/2W_ along the Y axis of that
frame (where W_ is the distance between the two fingers). This is illustrated in Figure 4.
Using Equation 1, we find:

P, =T,,, trans(0, -1/2W _, 0)
P, =T,,, trans(0, + 1/2W_, 0)

where trans (X, Y, Z) indicates a transformation of the form:

trans(X,Y,Z) =

O O O -
S O = O
o = O O
— N

45

In this case, the possible position of the manipulator is obtained by using Equation 1, but
replacing T,; by the composition of the object position (T,) and the grasping configuration, T,
(which expresses the position of the manipulator’s coordinate frame relative to the object’s
local frame).

In order to determine the two possible contact points, C, and C, we first find the possible
position of the object. Relative to the object’s possible local frame, the contact points are
obtained using the grasping transformation, T, in conjunction with a translation along the Y
axis of the manipulator frame (i.e., the axis which defines the direction of finger opening and
closing). Using Equations 2, we find:

C, = Tr,, Try R,o R, T trans(0, + 12W,, 0) [0, 0, 0, 1}

1

C, = Tr,, Tr, R, R, T trans(0, - 1/2W,, 0) [0, 0, 0, 1]t

where W,; is the width of the object at the grasp point. Note that we are not interested in the
coordinate axes at the contact points, only the displacement.

In order to see if the contact points lie between the fingers, we transform the locations of
C, and C, to be defined in terms of the coordinate frames P, and P, and check to see that the
Y-components of these locations are on the positive Y axis for P, and on the negative Y axis for
P, for all possible values of the uncertainty variables. Therefore, the four uncertainty-
reduction preconditions for the pickup action are:

0<[0,1,0,0]P:' C,,0<[0,1,0,0] P C,

and
0>[0,1,0,0]P;'C,,0>[0,1,0,01B;* C,

Again, note that all of the matrix multiplications shown above must be performed sym-
bolically. This is because many of the entries in the matrices will be expressed in terms of
uncertainty variables which do not have specific numeric values.

3.2.3. The Propagation of Uncertainty by Actions

To illustrate how actions propagate uncertainty, in this section we will describe how the
pickup action affects the uncertainties in the position of the object to be grasped. In general,
the pickup action has the effect of reducing the uncertainty in the position of the object to be
grasped. This is because the new uncertainty in the object’s position will be defined in terms
of the manipulator uncertainty, which is normally less than the uncertainty in positions
which are determined by the sensing system. Specifically, the pickup action has the effect of
transforming the object’s displacement uncertainty into the manipulator coordinate frame,
and then reducing the Y component of this uncertainty to the uncertainty in the Y component
of the manipulator. The pickup action also reduces the uncertainty in the object’s orientation
to be equal to the uncertainty in the orientation of the manipulator.

46

In order to represent this, let Tr,, be the displacement uncertainty in the object’s position
just prior to the execution of the pickup action. Therefore, as described in Section 3.2.1, this
uncertainty is defined relative to the world coordinate frame. We need to obtain a displace-
ment error Tr’,, such that

Ry Tr'yo=Tryo

where R, is the transformation which represents only the orientation of the manipulator (i.e.
it has a null displacement vector). In other words, Tr’,, expresses the displacement error
relative to the manipulator frame after the object is grasped. If we define R, to be the
transformation that represents the orientation of the object, and R, to be the transformation
which represents the orientation of the manipulator relative to the local frame of the object
(i.e. the rotational part of T;;), we find:

Tr' yo = (Ry Ry Tryg

given that

and therefore,
R, Ry RO Tr,) = Tr,,

Now, we define the vector that represents the uncertainty in the object’s displacement
relative to the manipulator frame by:

[Dx, Dy, Dz, 1} = (Ry R) Tr,,[0, 0, 0, 11

Finally, by combining this displacement with the uncertainty in the position of the manipu-
lator, we obtain:

cos(ABg) sin(AOg) 0 Dx+AXg
_ sin(ABg) cos(AGg) 0 AYg
a0 — 0 0 1 Dz+AZ,
0 0 0 1

Note that the uncertainty in the Y component of the displacement uncertainty has been
limited to the uncertainty in the Y component of the location of the manipulator’s tool center.
Further, note that the rotational uncertainty is the same as the rotational uncertainty in the
orientation of the manipulator.

47

3.3. Representation of Plans

As described earlier, SPAR does its planning in two phases. During the first phase, a
constraint posting approach is used to satisfy operational and geometric goals, and during
the second phase, specific plan instances are examined to find plans which satisfy uncer-
tainty-reduction goals. Clearly, the representation of plans must be different for these two
phases.

The plans developed by SPAR during the first phase of planning are not simple linear
sequences of actions. Instead, these plans consist of an unordered set of actions and a
separate set of constraints on how and when those actions are to be executed. These con-
straints are stored in SPAR's constraint network. The constraints on how actions are
executed are actually constraints on possible values which may be assigned to plan variables.
For example, if the action is to grasp an object, constraints on the variable used to indicate the
grasping configuration will effectively constrain how the grasping action is performed. Table
1 lists the constraints SPAR currently uses in the first phase of planning.

With this type of representation, a plan developed by SPAR during the first phase of
planning actually corresponds to a family of plans. A specific plan instance is derived by
finding a consistent instantiation for the plan variables (i.e. a set of values for the plan
variables which satisfies the constraints in the constraint network) and performing that
instantiation on the plan actions.

In the second phase of planning, SPAR uses specific plan instances, which are augmented
to contain verification sensory actions, local recovery plans, and an error count. The verifica-
tion-sensory actions and local recovery plans are added when the uncertainty reduction pre-
conditions for an action cannot be satisfied. The error count is incremented each time the
uncertainty-reduction goals for an action in the plan instance cannot be satisfied. This error
count is used to determine which plan instance has the greatest chance of success.

3.4. Representation of Goals

In this section, we describe SPAR’s representation of goals. Since Section 3.2 dealt with
SPAR'’s representation of uncertainty and uncertainty-reduction goals, we will not discuss
the uncertainty-reduction preconditions of actions in this section.

Goals in SPAR have three relevant attributes: a type (either operational, geometric, or
uncertainty-reduction), a condition which must be satisfied (i.e. the actual goal), and an
action identifier. The action identifier is used to indicate when the goal must be satisfied, in
particular, that it must be satisfied prior to the execution of the action specified by the action
identifier. We will use the terms goal and precondition to refer to either the condition part of
the goal or to the entire structure. Which of these is meant should be clear by the context.

SPAR’s operational goals are similar to the high-level goals used in traditional domain
independent planners (e.g. STRIPS or TWEAK). One difference is our inclusion of plan
variables which can be used to link the operational and geometric goals. For example, one
operational precondition of the assemble action is:

48

op(G1, Actionld, holding(Obj1, Grasp))

The plan variable Grasp is not used in the operational planning, but serves the purpose of
linking the operational and geometric planning. The variable Actionld is used to indicate the
time at which the goal must be satisfied. In particular, it must be satisfied just prior to the
execution of the action whose action identifier is Actionld.

Geometric goals are slightly more complex, with two main components. The first is a
geometric constraint and the second is a set of operational goals. The meaning of this pair is
that the planner is to establish the operational goals in such a way that the geometric
constraint is satisfied. For example, one geometric precondition of the putdown action is:

geo(G2, Actionld,
reachable(Grasp, Pos),
holding(Obj, Grasp))

4. Goal Satisfaction

In this section, we will individually discuss the methods that SPAR uses to satisfy opera-
tional, geometric, and uncertainty-reduction goals. In the course of this discussion, we will
frequently allude to the CMS’s role in the process of goal satisfaction; however, we will leave
a detailed discussion of the CMS for Section 5. For the purposes of this section, it is sufficient
to assume that the CMS is capable of determining if a new constraint is consistent with the
current constraint set.

4.1, Satisfying Operational Goals

In SPAR, ensuring the satisfaction of an operational goal proceeds in two steps: finding an
action which establishes the goal and then dealing with actions that could clobber (or undo)
the goal.

In order to find an action which establishes an operational goal, SPAR first looks at the
add lists of the actions that are already in the partially developed plan. If any element of the
add list of such an action can be unified with the operational goal, then that unification is
performed and the action is declared to have established the goal. If SPAR succeeds in finding
such an action, that action is constrained to take place prior to the time that the goal must be
satisfied. If the CMS determines that this new ordering constraint is not consistent with the
current constraint network, the constraint addition fails and SPAR backtracks in an attempt
to find another action in the plan which establishes the goal.

If SPAR fails to find an action in the plan that can establish the goal, it adds a new action.
This consists of instantiating an action template, adding the action to the plan, and con-
straining the new action to occur prior to the time that the goal must be satisfied. Any time
SPAR adds an action to the plan, it is possible that the new action may clobber goals which

49

have already been satisfied. For this reason, when a new action is added to the plan, SPAR
examines the list of satisfied goals and transfers any of these which could be clobbered by the
new action to the appropriate pending goal stack.

Once an operational goal has been established, SPAR examines each action in the current
partial plan to see if it could possibly clobber the goal. An action can clobber an operational
goal if any element in the action’s delete list can be unified with the goal. There are three
ways to deal with a potential clobberer. The clobbering action can be constrained to occur
after the time that the goal must be satisfied (promotion of the goal). The goal can be
constrained not to unify with the clobbering clause in the action’s delete list (separation). An
action can be used to re-establish the goal (white knight). This white knight can either be an
action that is already in the plan, or it can be a new action that is added specifically for the
purpose of re-establishing the clobbered goal.

In SPAR, since pattern matching is done using unification, it is difficult to add separation
constraints to the plan. The reason for this is that the unification is done using Prolog’s
unification algorithm, which will not take into account constraints in SPAR’s constraint
network. Therefore, it is difficult to implement a constraint which says that an element in the
delete list of an action, for example holding(partl, Grasp), should not be instantiated so that
it matches a particular goal, for example holding(partl, graspl). For this reason, we have
omitted separation as a possible means of declobbering goals in SPAR.

Promotion of the goal is the first option that SPAR tries when declobbering goals. When
an action, C, can clobber a goal required to be true during the execution of a certain action, S,
SPAR attempts to add a constraint of the form prior_to(S,C), which specifies that the
potential clobberer should not be executed until after action S has been executed. If this
constraint addition fails, SPAR will attempt to remedy the possible clobbering by the addition
of a white knight.

Using a white knight to re-establish a goal is the same as establishing a goal, with the
additional condition that the white knight must occur after the potential clobberer. As such,
this process proceeds exactly as the establishment process described above, but when a
candidate action is found, the additional constraint prior_to(C,W) is added to the constraint
network (where C is the action identifier of the clobberer and W is the action identifier of the
white knight). In an earlier paragraph we mentioned the possibility of constraining the
clobberer to occur before the establishing action. This is the same as following the establish-
ing action to act as its own white knight.

4.2, Satisfying Geometric Goals

In SPAR, geometric goals are satisfied by constraining the way that plan actions are per-
formed. For example, if a geometric goal specifies that the manipulator should be holding an
object in a particular grasping configuration, the way to satisfy that goal is to place a
constraint on how the manipulator performs the grasping action. In order to do this, SPAR
needs to link together the operational and geometric levels of planning. For this purpose,
when planning to satisfy operational goals, plan variables are introduced which can be

50

constrained by the geometric level of planning to determine how an action is executed. The
geometric preconditions are expressed in terms of those variables. For example, a traditional
STRIPS type action is pickup(Object). SPAR’s equivalent action is pickup(Object, Grasp).
The variable Grasp is used to define the geometric configuration which will be used by the
manipulator in grasping the object. At the operational level, the variable Grasp is primarily
ignored, but its presence gives SPAR a method of constraining how the pickup operation is
actually performed, thus linking distinct levels of planning.

As we pointed out in Section 3.4, geometric goals consist of a set of operational goals and
a geometric constraint which is to be applied to the actions that achieve the operational goals.
Each operational goal that is associated with a geometric precondition of an action is also
listed separately as an operational precondition of the action. Therefore, since SPAR only
considers geometric goals when the operational goal stack is empty, the operational goals
associated with a geometric goal are guaranteed to be satisfied by the current partial plan.
Therefore, in order to satisfy a geometric goal SPAR first finds the actions which establish its
associated operational goals, and attempts to constrain the execution of those actions so that
the geometric constraint is satisfied. This is done by instructing the CMS to add the
geometric constraint to the constraint network. If this succeeds, the goal is satisfied and
moved to the list of satisfied goals.

If the CMS determines that the geometric constraint is not consistent with the current
constraint network, then one or more new actions must be added to the plan. These new
actions are chosen based on the operational goals associated with the geometric goal. The
instantiation of the actions’ templates proceeds as described in Section 3.1. Once the actions
have been added, the appropriate geometric constraint is also added to the constraint
network. This constraint will automatically be consistent with the constraint network, since
the new action will contain new plan variables which have not yet been constrained. Note
that the addition of actions to the plan will introduce new operational goals, and therefore
effectively transfer control back to operational planning.

There is no need for SPAR to check for actions that might clobber geometric constraints.
The reason for this is that the constraint network has no sense of temporal ordering. The
entire network must be consistent at all times. Therefore, if any constraint in the network
had the effect of clobbering the new geometric constraint, this would have been detected by
the CMS when attempting the constraint addition.

4.3. Satisfying Uncertainty-Reduction Goals

When there are no remaining operational or geometric goals, SPAR begins the second
phase of planning, which deals with uncertainty-reduction goals. There are two fundamental
differences between this phase and the first phase of planning. First, the uncertainty-
reduction planning does not use the constraint posting method. Second, if no plan instance
can be found which satisfies all uncertainty-reduction goals, SPAR does not backtrack to the
geometric and operational levels of planning. Instead, it prepares for possible failures by
adding verification steps and potential local recovery plans.

51

As we mentioned earlier, we do not use constraint posting to satisfy uncertainty-reduc-
tion goals due to the complexities involved with their representation and evaluation. The
high cost of representing uncertainty-reduction goals compared to either operational or
geometric goals is partially due to the fact that the geometric and operational effects of
actions do not propagate through more than one action, but uncertainties may propagate
through many actions. For example, consider the sequence of actions:

actionl:pickup(partl,graspl)
action2:putdown(part1,positionl)
action3:pickup(partl,grasp2)

After the execution of action2, partl will be in a particular position (which is represented
by the variable positionl) regardless of where it was prior to the execution of actionl.
However, the uncertainty in the location of partl after the execution of action2 will be a
function of many variables, including the uncertainty in the position of the manipulator
during the execution of actionl and action2, how the particular grasping configuration used
in actionl affects the uncertainty in the location of partl, and the uncertainty in the location
of partl prior to the execution of actionl. Therefore, while the geometric preconditions of
action3 can be expressed in terms of two plan variables (positionl and grasp2), the uncer-
tainty preconditions depend on every action prior to action3 which involved part1.

The fact that uncertainties can propagate through an indefinite number of actions also
affects the complexity of evaluating the uncertainty-reduction constraints. As described in
Section 3.2, SPAR uses symbolic algebraic expressions to represent uncertainty. Each time a
plan action affects the uncertainty in some quantity, there is, in the worst case, a multiplica-
tive increase in the number of terms in the corresponding symbolic expressions. Therefore,
the number of terms in an expression for an uncertain quantity is, in the worst case
exponential in the number of actions in the plan. Since the CMS uses upper and lower
bounding routines to evaluate uncertainty-reduction constraints, and since the time com-
plexity of these routines is a function on the number of terms in the input expression, the
worst case time complexity for the evaluation of an uncertainty-reduction constraint is
exponential in the number of actions in the plan. In contrast, constraints associated with op-
erational and geometric goals can, in the worst case, be evaluated in time that is polynomial
in the number of actions in the plan. In the best case, the time is constant (e.g. in evaluating
constraints on the robot’s joint angles).

There are two reasons for not backtracking into the first phase of planning. Firsts, since
SPAR represents uncertainty in the world using bounded sets (e.g. the X location of an object
would be represented as X + AX), even though uncertainty-reduction goals cannot be
satisfied, it is quite possible that the actual errors in the world description will be small
enough that the plan can be executed without failure. Therefore, SPAR adds verification
sensory actions and local recovery plans to offending plan instances, in anticipation of
possible execution error. Second, by using the constraint posting approach in the first phase

52

of planning, SPAR attempts to develop the most general plan which will satisfy the opera-
tional and geometric goals. Therefore, it is not likely that a great deal could be gained by
backtracking into the first phase of planning.

The top level of uncertainty-reduction planning consists of a loop in which specific plan
instances are generated and tested until one is found in which all uncertainty-reduction goals
can be satisfied. If all possible plan instances have been generated and none are without
violated uncertainty-reduction goals, the instance with the fewest violations is selected for
execution.

The uncertainty-reduction planning for a particular plan instance begins with the crea-
tion of an augmented-plan instance which contains four components: the instantiated list of
plan actions (obtained by instantiating the actions from the partial plan that was developed
in the first phase of planning so that all constraints in the constraint network are satisfied),
an error count (initially set to zero), a list of sensory-verification actions (initially set to the
empty list), and a list of local error recovery plans (also initially set to the empty list). Once
this augmented plan instance has been constructed, SPAR sequentially examines each
individual action in the instantiated action list and attempts to satisfy its uncertainty-
reduction preconditions. After an action has been considered, its add and delete lists are used
to update the world state to reflect the effects of the action. This has the effect of propagating
the uncertainty in the world description forward, thereby defining the uncertainty in the
world when the next action in the sequence will be executed.

The first step in satisfying an uncertainty-reduction goal for an individual action is the
construction of the symbolic algebraic inequality associated with that goal. This is achieved
by performing an appropriate combination of symbolic matrix multiplications, matrix inver-
sions, etc., as determined by the actual goal. It should be noted that many of the quantities
which enter into these operations will be defined in the world state (e.g. the part locations,
uncertainties in the part locations).

If the uncertainty in the world description exceeds that which is specified by an uncer-
tainty-reduction goal, SPAR introduces sensing operations into the plan in an attempt to
reduce the offending uncertainties. Sensing actions have the same representation as manipu-
lations. The add and delete lists of a sensing action template contain elements which describe
how the uncertainties in the world description are reduced by the action. Once the sensing
actions have been inserted into the plan instance, these add and delete lists are used to
update the world state. The resulting world state is then used to recompute the symbolic
expressions for the failed uncertainty-reduction goal.

If the sensing operations fail to reduce the uncertainty to acceptable levels, SPAR
attempts to introduce manipulations into the plan which can reduce the uncertainty. Cur-
rently, the only manipulation which is used for this purpose is squeezing an object between
the manipulator fingers. The reduction in uncertainty for this action is the same as the
reduction in uncertainty for the pickup action, as was described in Section 3.2.3. Since the
operational and geometric preconditions for this action are the same as for the pickup action,

53

it can always be spliced into the plan instance just prior to the execution of some existing
pickup action; however, the uncertainty in the world description must satisfy the uncer-
tainty-reduction preconditions for the uncertainty-reduction pickup action.

If the sensing operations and manipulations fail to sufficiently reduce uncertainties,
SPAR prepares for possible execution error. First, the error count for the augmented plan
instance is incremented by one. Second, a sensing verification action and a local recovery
plan are added to their respective lists in the augmented plan instance. We should point out
that the process of instantiating verification strategies and local recovery plans is in its
formative stages. At this point, methods tend to be ad hoc, based on the programmer’s
evaluation of possible errors and likely recovery plans. We hope that future work will enable
us to link CAD modeling systems with SPAR’s descriptions of worst case world error to
automatically predict the types of errors which could occur, and automatically prescribe
verification strategies and recovery plans.

5. Constraint Manipulation

In SPAR, the bulk of the domain knowledge resides in the constraint manipulation
system. This allows the top-level planning to proceed without any need to “understand” the
domain of automated assembly. The actions include preconditions on the geometry of actions
and the tolerable uncertainties in the world description, but in order to satisfy these
preconditions, the top level planner merely requests that the CMS add constraints to the
constraint database. It is the task of the CMS to determine whether or not these new
constraints are consistent with the current constraints in the plan, which in turn, requires a
certain amount of domain-specific knowledge.

SPAR currently uses three types of constraint. In operational planning, SPAR uses order-
ing constraints to ensure that actions are performed in the proper sequence (and that goals
are satisfied at the appropriate times). In geometric planning, SPAR uses binary constraints
between object positions and manipulator configurations to ensure that the robot will be able
to perform the required manipulations. Finally, at the uncertainty-reduction level, symbolic
algebraic inequalities are used to express the maximum uncertainty which can exist in the
world description prior to the execution of an action.

Throughout the previous sections of the paper, we referred to the CMS maintaining a
constraint network. In actuality, there is not a single, uniform constraint network. A directed
graph is used for ordering constraints, a binary constraint network is used for the geometric
constraints, and algebraic inequalities (expressed in terms of bounded symbolic variables)
are used for the uncertainty-reduction constraints. This separation does not interfere with
determining the consistency of the constraint set, since the three types of constraints do not
interact. For example, even though operational planning might influence the choice of which
geometric constraint to add in the course of satisfying a particular geometric goal, once that
geometric constraint is chosen, it will be expressed solely in terms of geometric quantities.
Therefore, in the constraint database, there will be no interaction between distinct types of
constraints.

54

In this section, we will describe the constraints that are used in SPAR, their semantics,
and how the CMS determines whether or not new constraints are consistent with the current
constraint set. At this time, SPAR’s CMS is not complete in the sense that it is possible that
a new constraint will be determined to be inconsistent when it really isn’t. The reason for this
is that the quantities which enter into the constraints in SPAR are very complex and often,
exact solutions are only approximated. For example, characterizing the space of reachable
grasps for a robot entails partitioning a six-dimensional space into reachable and unreach-
able regions. In SPAR, we have devised a representation of grasping configurations which ap-
proximates the true situation. This simplifies the process of constraint manipulation, but
adds the possibility that SPAR might overlook certain solutions.

5.1. Ordering Constraints in Operational Planning

In the first phase of planning (used to satisfy operational and geometric goals), SPAR
operates as a nonlinear planner, so there is not a total ordering of the actions in the plan.
Instead, the time of an action’s execution is specified by a set of ordering constraints. Each
such constraint specifies whether the action should be executed before or after some other
action in the plan. While it is possible that the set of ordering constraints in a plan will define
a total ordering of the plan steps, more often it will only define a partial ordering.

SPAR’s CMS uses a directed graph (which we will refer to as the ordering graph) to keep
track of ordering constraints. All actions in the plan are represented in the ordering graph.
Any time a new action is added to the plan, a new node is created in the ordering graph, with
the action’s action identifier as the node’s label. An ordering constraint of the form
prior_to(Actionl,Action2) is represented by an arc directed from the node for Actionl to the
node for Action2. Consistency of the ordering constraints is guaranteed as long as the
ordering graph contains no cycles, since the only type of inconsistency which might arise is if
an action is constrained to occur both prior to, and also after some other action in the plan.

5.2. Constraints at the Geometric Level of Planning

All of the geometric constraints in SPAR are either binary constraints between plan
variables representing object positions and manipulator positions, or unary constraints on
plan variables. Furthermore, both object poses (i.e. possible orientations of objects, not
including displacement information) and grasping configurations have been quantized, and
assigned labels, so that each of these can be represented by a single symbolic variable rather
than a continuous variable in six-dimensional space. Because of these qualities, it is straight-
forward to represent the geometric constaints using a binary constraint network. By using a
binary constraint network, when the CMS is instructed to add a new constraint, the
consistency of that constraint with the current set of constraints can be determined by
adding an arc to the constraint network and then checking the new network for consistency.

We will begin this section with an introduction to binary constraint networks and an
explanation of how such a network is used to represent SPAR’s geometric constraints.
Following this, we individually describe each type of geometric constraint included in SPAR,
and the mechanisms used to evaluate those constraints.

55

5.2.1. The Geometric Binary Constraint Network

This section includes a cursory introduction to constraint networks. A more thorough
introduction can be found in either of [8,9]. We begin our discussion with the following
definitions.

Def: The label set for a plan variable is the set of possible values which may be assigned to
that variable.

Def: A unary constraint on a variable is a restriction of that variable’s label set.

Def: A binary constraint on two variables, V, and V;, is a relation
C,cL,xL,

where L, is the label set of V, and L is the label set of V..

Def: A binary constraint network is an undirected graph whose nodes represent constrained
variables, and whose arcs represent constraints between variables.

SPAR’s CMS uses depth first search with backtracking to determine network consistency.
For each level in the search, this consists of selecting one node in the network which has not
yet been assigned a value, and assigning to it a value which is consistent with all assignments
that have previously been made in the search (note that for the first node, there will have
been no previous assignments, and so any value from the node’s label set may be chosen). The
algorithm is similar to that described in [9].

In order to represent SPAR’s geometric constraints using a binary constraint network,
each geometric plan variable (e.g. grasp configurations, positions) is represented by a node in
the network. When a new variable is introduced into the plan, a node is added to the network
and assigned an initial label set. This label set is merely the set of values which may be
assigned to that variable (determined by the action template instantiation rules discussed in
Section 3.1). For example, if the variable represents a grasping configuration for a particular
object, then the initial label set for its node in the constraint network will contain the labels
of all the grasping configurations for the object (grasping configurations will be described in
Section 5.2.4).

Binary constraints between plan variables are represented by arcs between the corre-
sponding nodes in the network (these arcs are not directed). Each arcin the network contains
a set of pairs of values which indicate the valid pairs of labels for the connected nodes.
Determining the valid pairs of labels requires a semantic understanding of the domain, but
once the pairs have been assigned, no domain knowledge is required to check for network
consistency.

When the CMS is instructed to add a unary constraint to the network, it first updates the

label set of the appropriate node, and then updates each arc connected to that node by
deleting pairs which are no longer valid given the node’s new label set. Finally, the new

56

network is checked for consistency. When the CMS is instructed to add a new binary
constraint to the network, it adds an arc between the appropriate nodes (creating the nodes
if they do not already exist in the network), and then checks for network consistency.

5.2.2. Set Membership

In order to restrict the label set of a plan variable, SPAR uses the constraint member
(Variable, Labels). If there is no node in the geometric constraint network for Variable, the
CMS adds one, and assigns its initial label set to contain the elements of Labels. If there is
already a node in the constraint network for Variable, the CMS takes two steps to ensure that
the new constraint on Variable’s label set will not result in an inconsistent network. The first
step ensures node consistency (i.e. that the node for Variable will have at least one possible
label), and the second ensures network consistency. To ensure node consistency, the set
Labels is intersected with Variable’s current label set. If the intersection is empty, then the
new member constraint is not consistent with the current constraint set. If the intersection
is not empty, then it is assigned as Variable’s new label set. To ensure network consistency,
all arcs leaving the node corresponding to Variable are updated by deleting pairs that assign
Variable a value which is not in its new label set. The new network is then checked for
consistency. If both node and network consistency are satisfied, the CMS returns success. If
not, failure is returned.

5.2.3. Stable Poses and Position Classes

For the purpose of assembly operations, the exact position of an object is not always
important. What is important is that the object be oriented in a way that allows the mating
features of the object to be accessible. For example, if the assembly operation is to inset a peg
into a hole in a block, it is not important how the block is oriented, as long as the hole is
positioned so that the peg can be inserted. In light of this, in SPAR, we characterize object
positions using equivalence classes. These classes are based on the object’s stable poses,
where by stable pose we mean an orientation of the object which allows it to rest naturally on
the work table. For example, a cube has six stable poses.

The use of stable poses to quantize the space of object positions serves two purposes.
First, it provides a method for easily determining which of an object’s features will be
obscured by the work table. Second, when the plan calls for an object to be placed in some
position (by the putdown action), most often the displacement of the object is not important.
Stable poses provide a method of specifying destination positions in terms of the object’s
orientation, without regard to the actual X,Y,Z position. Clearly, in a cluttered work cell,
objects will not always be found in one of their stable poses. However, since stable poses are
only used to determine a list of occluded features and to specify destinations of held objects,
this will not be a problem as long as the sensory system is capable of determining by
inspection the object’s occluded features.

Using this representation for object positions, geometric goals about object locations can
be expressed in terms of set membership. That is, the planner can determine the set of stable
poses which are allowable for a certain assembly operation and constrain the object’s position
to correspond to one of those poses. For this purpose, SPAR uses the constraint

57

in_position_class(Position, Plist). This constraint indicates that the orientation specified by
Position must correspond to one of the stable poses in Plist.

If Position is instantiated to a homogeneous transformation which represents both the
orientation and displacement of an object (for instance, if the object has been ascertained by
the sensing system), then this constraint cannot be evaluated by a simple membership test.
In this case, the CMS must determine to which stable pose of the object Position corresponds.
This can be done in one of two ways. If the object is resting on the table, it is a simple matter
to compare the rotational component of Position to the rotations specified by the various
stable poses of the object to determine in which stable pose the object is resting. If the object
is not resting on the table (e.g. if it is leaning against some other object in the work cell), then
the sensing system must be used to determine the set of object features which are occluded.
Position is then determined to correspond to the stable pose which obscures the same set of
features.

Aside from the situation described in the last paragraph, the CMS handles the addition of
an in_position_class constraint in the same way that it handles the member constraint. It
restricts Position’s label set, updates the arcs which are connected to Position’s node, and
then checks for network consistency.

5.2.4. Reachability of Grasps

Whenever the planner inserts a manipulation action into the plan, it must ensure that all
of the configurations required to perform that manipulation will be physically realizable. In
order to do this, SPAR uses two constraints:

reachable(Grasp,Position)
and

mate_reachable(Grasp,Position,T,)

The first of these indicates that if the object to be manipulated is in the position specified by
the variable Position, and the configuration used to grasp the object is specified by Grasp,
then that combination must be physically realizable. This constraint is used both in
grasping, and in placing objects. The second constraint is used for mating operations, where
T, is a homogeneous transformation which represents the destination position of the grasped
object relative to the coordinate frame specified by Position.

For specific values of Grasp and Position, two conditions must be met in order for the
reachable constraint to be satisfied:

1. The faces of the grasped object which come into contact with the manipulator fingers
must not be in contact with the table (or any other object) when the object is located in

Position.

2. The robot must be able to perform the grasp without exceeding any of its physical joint
limits.

58

For the mate_reachable condition, only the second condition is used. However, the position
which the manipulator must reach is not Position, as in the reachable constraint, but T, T,,
where T, is the homogeneous transformation corresponding to Position.

To verify condition 1, the system must invoke the object modeling system to determine
which features of the object will be in contact with the table when the object is in Position, and
which features of the object will be in contact with the manipulator when the object is grasped
in the configuration specified by Grasp. (We should note that the modeling system used in
SPAR is not a CSG modeler. A number of object representations are included in an object
model, including a grasping model, a table of the stable poses, and a great deal of geometric
information which is used by the sensing system for object recognition and localization.) If
Position corresponds to one of the object’s stable poses, a simple table lookup operation is
used to determine which features are in contact with the table. If Position is an absolute
position, then the system must determine the set of occluded features as was discussed in
Section 5.2.3.

Condition 2 is verified, for specific values of Grasp and Position, by invoking routines
which compute the inverse kinematic solution for the robot’s joint angles given an absolute
position of the end effector. This is done as follows. A particular grasp has associated with it
a homogeneous transformation which defines the coordinate frame of the robot manipulator
relative to the frame of the object. We will refer to this as the grasp transformation, or
alternatively Tg. If Position is an absolute position (i.e. it has a specific X,Y,Z location as well
as a specified orientation) specified by the homogeneous transformation T, we compute T,
the transformation representing the manipulator’s coordinate frame relative to the world
frame, by T=T Tg. In the mate_reachable case, T=T, T, Tg. This transformation is used as the
input to the inverse kinematics program. The joint angles which are found by this program
are then tested to ensure that they are within the limits attainable by the robot. Currently,
our lab is using a PUMA 762 robot for manipulation experiments. Descriptions of the
kinematic and inverse kinematic solutions for this type of robot can be found in [20].

If Position corresponds to a stable pose (that is, it specifies an orientation of the object, but
no absolute X,Y,Z position) the CMS assumes that condition 2 can be satisfied by some
suitable choice of X,Y,Z. That is, we assume that for any arbitrary orientation of the robot ma-
nipulator, there will be some location in the work space where this orientation can be
physically performed (where by orientation, we mean that the coordinate frame for the grasp
has axes whose origin is not specified, but whose orientation relative to the world frame is
specified).

When the CMS is instructed to add either a reachable or mate_reachable constraint to the
constraint network, the two conditions described above are used to determine all valid pairs
of values for Grasp and Position (note that T, will always be instantiated to a constant
homogeneous transformation). This is done by exhaustively pairing every value from the
label set for Grasp with every value from the label set for Position, and recording all pairs
which satisfy the two conditions. These pairs are then used to construct a new arc connecting

59

the nodes for Grasp and Position. Finally, a network consistency check is performed. If the
consistency check fails, the CMS signals failure and the old network is restored. Otherwise,
the CMS signals success and retains the new network.

Exhaustive enumeration of pairs of positions and grasps is not as difficult as it might
seem. First, as we have described earlier, there are a finite number of possible stable poses
associate with any object (if the object is in a known location determined by the sensing
system, then there is only one position to consider). Usually this number is fairly small.
Second, we quantize the space of grasping operations based on the features of the object
which are obscured by the grasp and the features of the object which come into contact with
the manipulator fingers in the grasp. This approach is similar to that described in [26, 35].

By making this type of quantization of the space of grasping configurations, we replace
exact descriptions of grasping configurations with approximations. Because of this, it is
possible that SPAR will occasionally determine that a reachable constraint is not consistent
with the current constraint database, when in fact it is consistent. In general, we do not
expect this to happen except when the manipulations which are to be performed require the
robot to operate near the boundaries of its work envelope.

5.3. Constraints at the Uncertainty-Reduction Level of Planning

As we described in previous sections, when the planner considers the uncertainty-
reduction goals, it does so for a particular plan instance. As a consequence of this, at the time
of their evaluation, the uncertainty-reduction goals (which are expressed as symbolic alge-
braic inequalities) will be expressed in terms of specific bounded symbolic variables. There-
fore, determining if an uncertainty-reduction goal is satisfied consists of a single evaluation
(rather than a series of evaluations as was required in the geometric constraints). In
particular, since the uncertainty-reduction goals are expressed as inequalities of the form
expr, < expr,, and since at least one of these expressions is always a single constant, if we find
the maximum value for expr, and the minimum value for expr, (under the constraints
contained in the world description), we can determine whether the uncertainty-reduction
goals are met simply by checking to see if max(expr,) < min(expr,).

In order to find upper and lower bounds on symbolic expressions, we have implemented a
system similar to the SUP/INF system which was introduced by Bledsoe [2], and then refined
by Shostak [30], and later Brooks for his ACRONYM system [4]. The functions SUP and INF
each take two arguments, a symbolic expression and a set of variables, and return upper/
lower bounds on the expression in terms of the variables in the variable set. The method SUP/
INF employs is to recursively break down expressions into subexpressions, find bounds on
these subexpressions, and then combine the bounds using rules from interval arithmetic.
Obviously this works for linear expressions where superposition holds. When expressions are
nonlinear, however, it is quite possible that the bounds on the individual subexpressions will
be looser than the bounds on the subexpressions when considered in the context of the whole
expression. Because of this, it is possible that SUP/INF will sometimes find bounds which are
not exact.

60

In spite of this disadvantage, the policy of recursively finding bounds on subexpressions
and then combining those bounds guarantees that the algorithms will terminate. This has
been shown by Shostak for his version of SUP/INF, and later by Brooks for his modified
versions. Furthermore, even though it is possible that SUP/INF will not return exact bounds,
it has been shown (again, by Shostak and later by Brooks) that they are conservative, in that
SUP always returns a value which is greater than or equal to the maximum, and INF always
returns a value less than or equal to the minimum. The fact that SUP/INF sometime only
approximates solutions is not a severe problem for SPAR, since failure to satisfy uncertainty
constraints has a worst case result of the addition of sensing actions to the plan. That is, if the
CMS determines that the uncertainty constraints cannot be satisfied, it does not backtrack.
It merely prepares for the possibility of failure.

6. A Task Planning Example

In this section, we will illustrate SPAR’s flow of control with an assembly example.
Consider the assembly task shown in Figure 5. The assembly goal is to have the peg inserted
into the block so that the small hole in the block is aligned with the hole in the peg’s base. The
user specifies this with a goal of the form:

assembled(peg,block,Msurfaces, Tm, Va)

where Msurfaces is instantiated to a two-element list, the first element being a list of the
peg’s surfaces which will come into corntact with the block, and the second element being a list
of the block’s surfaces which will come into contact with the peg. The variable Tm is instan-
tiated to a homogeneous transformation matrix which represents the goal position of the peg
relative to the position of the block. The variable Va is instantiated to a vector which specifies
the approach for the mating operation relative to the position of the block. In other words, the
user specifies the positions of the parts relative to one another in the goal configuration, as
well as the relative locations prior to the goal.

In order to satisfy this goal, SPAR examines its possible actions, and selects the assemble
action. Of course, the assemble action has both operational and geometric preconditions
which must now be considered, so the planner pushes these onto the appropriate goal stacks.
The goal stacks and plan action list are shown in Figure 6.

At this point, a word about the meaning of the preconditions is in order. The assemble
action has a precondition of the form:

geo(Goalldl,Actionld,

in_position_class(Position,PositionList),
part_location(Obj2,Position))

61

As we discussed in Section 5, SPAR associates a set of stable poses with each object. By
stable pose, we mean an orientation in which the object will rest naturally on the table. In
order to mate two objects, SPAR requires that the stationary object be in one of its stable
poses which does not obscure any of its mating features. The set of stable poses which satisfy
this condition is easily determined by comparing each stable pose’s set of occluded faces with
the set of mating features. When the planner adds the assemble action to the plan, it
instantiates the variable PositionList to this list. (We should note that the list of stable poses
is actually a list of pointers to the data structures for the stable poses.)

This same kind of instantiation takes place for the precondition

geo(Goalld2,Actionld,
member(Grasp,GraspList),
holding(Obj1,Grasp))

In our system, grasping configurations specify not only the geometric configuration which is
used to grasp the object, but also the set of object features which are obscured by the grasp (as
was discussed in Section 5.2.4). Therefore, it is a simple matter to determine which grasping
configurations do not obscure the mating features of the object. When the planner adds the
assemble action to the plan, it instantiates the variable GraspList to be this set of grasping
configurations.

Figure 6 shows the instantiated versions of the preconditions for the assemble action as
they appear on the goal stacks. Note that the variables used to identify the preconditions and
the action to which the preconditions correspond have also been instantiated.

The first operational goal is that the gripper be holding the peg in some valid grasp
(remember that at the operational level, SPAR is not concerned with the grasp beyond this
condition). Since it is not possible to merely add a constraint to the plan to achieve this goal
(i.e., there is no existing action in the plan whose execution can be constrained so that it
results in the manipulator holding the peg), SPAR inserts the action pickup(peg,grasp_1) into
the plan, with the constraint that the pickup action must occur prior to the mating action.
This results in the addition of an arc to the ordering graph, directed from action2 to actionl.
The preconditions of the pickup action are then pushed onto the appropriate goal stacks. The
resulting goal stacks are shown in Figure 7. Note that when the planner adds this action, it
instantiates the variable Grasp to the label grasp_1, and that this instantiation affects all
appearances of Grasp on the goal stacks.

The remaining operational goals are trivially satisfied by the initial world state, so the
planner moves them to the satisfied goal list and turns to its geometric goals. (Note that when
these goals are satisfied, instances of the variable Pos_1 and Pos_2 on the goal stack are
instantiated to init_posl and init_pos2. The corresponding label sets are constrained to
contain single elements which are the homogeneous transformations representing the initial
positions of the block and peg.) The top goal on the geometric goal stack, goal_8, is for the

62

pickup action, and it specifies that the manipulator configuration used to pickup the peg,
grasp_l, be physically realizable by the robot. To satisfy this goal, the planner attempts to
add a constraint on the way in which grasp_1 is chosen, so that the configuration will be
reachable. This is done by instructing the CMS to add the constraint
reachable(grasp_1,init_pos2) to the constraint network. For our example, we will assume
that this constraint is consistent with the constraint network.

The next goal on the geometric goal stack, goal_3, specifies that grasp_1 must not obscure
any of the mating features of the peg. This is expressed as a member constraint, that is, a
restriction on the label set for the plan variable grasp_1. Again, the planner invokes the CMS
to add the member constraint to the constraint network. For the example, let us suppose that
this succeeds. Note that if adding this constraint resulted in an inconsistent constraint set,
SPAR would be forced to insert additional manipulations.

Up to this point in the example, SPAR has been able to satisfy geometric goals merely by
adding constraints on the way in which operations are performed. In some cases, it will not
be possible to satisfy geometric goals this way, and an alternative approach must be used.
This is the case for the geometric precondition goal_4, which constrains the possible positions
of the block. Consider the situation when the block is face down in the initial world state, as
shown in Figure 5. Since there is no action currently in the plan which manipulates the block,
SPAR cannot constrain the execution of a plan action to achieve the goal. Furthermore, the
planner cannot add a constraint on the block’s initial position, because it is a constant value
which is defined by the initial world state. Therefore, backtracking must be used to find some
alternative method to satisfy the goal goal_2, which specifies the position of the block.

Remember that goal_2 was originally satisfied by the initial world state. On backtrack-
ing, SPAR will try to find some other action in the plan to satisfy goal_2. As mentioned above,
there is no action in the current plan which can accomplish this. Therefore, SPAR adds the
action putdown(block,pos_1) to the plan. When SPAR reconsiders goal_4, the value of pos_1
will be constrained so that no mating features of the block are in contact with the table when
the block is in this position. This amounts to constraining pos_1 to be any of the block’s stable
poses other than p2P3, the single configuration which obscures the hole. In addition, SPAR
adds the constraint prior_to(action_3,action_1) to the ordering graph, since the block must be
put down prior to the assemble action. Of course the addition of this plan action introduces
new goals, and so additional planning must be done. This planning, however, is very similar
to the planning which must be done to pick up the peg appropriately, and so we will not
discuss it here.

The final result of the first phase of planning is shown in Figures 8-10. Figure 8 shows
the four actions which are in the plan. The top of Figure 9 shows the geometric binary
constraint network, which can be interpreted as follows. The grasping configuration grasp_2
is used to pick up the block, and then to place it on the table. Therefore, both init_pos_1 and
pos_1 must be reachable using grasp_2. This is indicated by the arcs connecting grasp_2 to
init_pos_1 and pos_1. Similarly, grasp_1 is used to pick up the peg, and then to assemble the
peg to the block (which is now located in pos_1). The possible pairs of values for each of these

63

arcs are shown in Figure 10, as are the label sets for the nodes. The possible pairs of values for
each arc in the network are determined by examining each possible pair of values from the
label sets of the connected nodes and collecting those which meet the conditions outlined in
Section 5.2.4. In the figure, we have represented stable poses by symbols of the form pxPy,
where x is used to indicate the object (the peg is indicated by x=1, the block by x=2) and y is
used to indicate the specific stable pose for the object. Symbols representing grasping configu-
rations have a similar interpretation.

The bottom of Figure 9 shows the ordering graph. Note that in the ordering graph, in
addition to the arcs we have mentioned above, there is an arc from action_3 to action_2. This
arc is added to the graph because the pickup action used to pick up the block (action_4)
clobbers the gripper(open) operational goal for the pickup action used to pick up the peg
(action_2). To remedy this, the putdown action (action_3) is constrained to come between
action_4 and action_2, to act as a white knight and reestablish the gripper(open) goal.

Once the operational and geometric goals have been satisfied, SPAR considers the uncer-
tainty-reduction goals. As we have described earlier, SPAR chooses a specific instance of the
plan (which satisfies the constraint network), and propagates uncertainties forward through
the plan actions to determine if the uncertainty-reduction goals are satisfied. For this
example, we will only consider the uncertainty-reduction goals for the first pickup action,
which were discussed in Section 3.2.

In order to evaluate the constraints associated with these goals, SPAR invokes the
procedure which constructs and evaluates the sympolic constraint for the goal. This involves
symbolic matrix multiplication, symbolic matrix inversion, and symbolic algebraic simplifi-
cation.

The resulting expression for the Y component of P-'C:

—2.0 + 3.0*cos(thetagr)*cos(theta_o) + cos(thetagr)*dx_o +sin(thetagr) +
sin(thetagr)*dxgr + —1.0*cos(thetagr)*sin(theta_o) + —1.5*%cos(thetagr) +
—-3.0*sin(thetagr)*sin(theta_o) + —1.0*cos(theta_o)*sin(thetagr) +
-1.0*sin(thetagr)*dy_o + —1*cos(thetagr)*dygr

Note that thetagr, dxgr, dygr and dzgr represent the uncertainties in the gripper configura-
tion, and theta_o, dx_o,dy_o and dz_o represent the uncertainties in the object position. Also,
for this particular plan instance, W_ was three inches and W was four inches. The complex-
ity of this expression illustrates the reasons we outlined in Section 4.3 for applying uncer-
tainty-reduction planning to specific plan instances instead of using a constraint posting
approach.

Similar expressions are found for the remaining terms, but we will omit these here. Using
the SUP and INF routines given the bounds on the uncertainties listed in Table 2, the lower
bound on this expression is found to be 3.2793, which indicates that the constraint was
satisfied. The remaining three constraints are evaluated in a similar fashion.

64

If the uncertainty-reduction goals are not satisfied in the world description, SPAR
attempts to add a sensing operation to the plan. Since it is impossible to predict the results
of a sensing action, the add/delete lists for sensing actions merely describe the uncertainty in
the object’s location after the application of the sensing operation. If this reduction is
sufficient, the sensing operation is inserted into the plan.

If SPAR cannot sufficiently reduce the uncertainty in the peg’s location, it augments the
plan instance with verification-sensing operations and local recovery plans.

7. Conclusions

This paper represents a step toward a planning system which can create assembly plans
given as input a high level description of assembly goals, geometric models of the components
of the assembly, and a description of the capabilities of the work cell (including the robot and
the sensory system). The resulting planner, SPAR, reasons at three levels of abstraction: the
operational level (where high-level operations are planned), the geometric level (where
geometric configurations of the actions are planned) and the uncertainty-reduction level
(where world uncertainties are taken into account).

At the first two levels of planning, we have extended the constraint posting approach to
domain-independent planning by adding geometric preconditions to the actions, linking
these to operational goals via plan variables, and expanding the CMS to be able to deal with
geometric constraints. At the uncertainty-reduction level of planning, we have expressed
uncertainties in the world in terms of homogeneous transformations whose elements are
defined in terms of symbolic uncertainty variables. We then expressed limits on tolerable
uncertainties in terms of operations on transformations. When the uncertainty-reduction
goals cannot be satisfied, rather than abandon the plan, our system augments the plan with
sensing operations for verification, and when possible, with local error recovery plans.

At this point, there are a number of areas in our system which are either ad hoc, or require
far too much input from the user. For example, the local error recovery plans must be entered
by the user, and associated with the uncertainty-reduction goals a priori. One goal of our
future work will be to automate this process by employing geometric reasoning about possible
errors and error recovery. A further shortcoming of SPAR is the lack of any sort of motion
planning system. Incorporating a motion planner with the current system is another goal of
our future work.

65

Action Information

Action
Templates
Inst. Unc. Red. Proc.
Rules Actions Knowledge

AN

Constraint System

1 7
N4

SUP/INF

CMS

SMP

IKS

Sat. Goals
Op. Goal Top Level
Stack PI
Geo. Goal anner
Stack
Verif. Recovery Plan
Sensing Plans Actions

C-Net

Figure 1. Block Diagram of SPAR

action-id: Actionld,
action: pickup(Object.Grasp),
preconditions:

operational:

op(G1,Actionld, gripper(open))
op(G2,Actionld, part_location(Object,Pos))

geometric:

geo(G3,Actionld,
reachable(Grasp,Pos),
part_location(Object,Pos))

uncertainty-reduction:

0<[0100]P

0>[0100]P1 C2
0<[0100]P2 C
0>[0100]P2 C;

add-list:
holding(Object,Grasp)
part_location_unc(Object,NewUnc)
gripper(closed)

delete-list:
part_location(Object,Pos)

pa_rt_locatio_n_unc(Object,OldUnc)
gripper(open)

Figure 2. The Action Template for the Pickup Action

If the Goal is "holding(Object,Grasp)" then:
Generate a unique symbol for Grasp
Set GraspList to the list of grasping configurations for Object
Set Initial Constraint List to contain "member(Grasp,GraspList)"”
Generate unique symbols for: Actionld, G1, G2, G3

Set Template =
action(Actionld,
pickup(Object,Grasp),
preconditions(
[op(G1,Action]d, gripper(open)),
op(G2,Actionld, part_location(Object,Pos))],

[geo(G3,Actionld,
reachable(Grasp,Pos),
part_location(Object,Pos))]),

addlist([holding(Object,Grasp),
gripper(closed)]),

dcllist([par;_location(Objcct,Pos),
gripper(open))))

Figure 3. Rule to Instantiate an Action Template

World
Frame

Figure 4. Possible Finger Coordinate Frames and Contact Points for the Pickup Action.

Figure 5. The Initial State and Assembly Goal for the Example

OPERATIONAL GOAL STACK
op(goal_1, action_1, holding(peg, Grasp))

op(goal_2, action_1, part_location(block, Pos_1))

GEOMETRIC GOAL STACK

geo(goal_3, action_1,
member(Grasp, [p1Gl, ... p1Gn])),
holding(peg, Grasp))

geo(goal_4, action_1,
- in_position_class(Pos_1, [p2P1, p2P2, ... p2P6)),
part_location(block, Pos_1))

geo(goal_5, action_1,
mate_reachable(Grasp, Pos_1, trans_1),
part_location(block, Pos_1)
holding(peg, Grasp))

PLAN ACTIONS
action(action_1,assemble(
peg.
block,

[[peg_face], [block_face]],
trans_1, vec_1))

Figure 6. Goal Stacks and Plan Actions after the Addition of the "Assemble"” Action

70

OPERATIONAL GOAL STACK
op(goal_6, action_2, gripper(open)).
op(goal_7, action_2, part_location(peg, Pos_2))
op(goal_2, action_1, part_location(block, Pos_1))

GEOMETRIC GOAL STACK

geo(goal_8, action_2,
reachable(grasp_1, Pos_2),),
part_location(peg, Pos_2))

geo(goal_3, action_1,
member(grasp_l, [p1Gl, ... p1Gn]),
holding(peg, grasp_1))

geo(goal_4, action_1,
in_position_class(Pos_1, [p2P1, p2P2, ... p2P6])),
part_location(block, Pos_1))

geo(goal_S, action_1,
mate_reachable(grasp_1, Pos_1, trans_1),
part_location(block, Pos_1)
holding(peg, grasp_1))

PLAN ACTIONS
action(action_1,assemble(
peg,
block,

[[peg_face], [block_face]],
trans_1, vec_1))

action(action_2,pickup(peg,grasp_1))

Figure 7. Goal Stacks and Plan Actions after the Addition of the "Pickup” Action

7

lan Actions
action(action_4, pickup(block, grasp_2))
action(action_3, putdown(block, pos_1))
action(action_2, pickup(peg, grasp_1))

action(action_1, assemble(
pee,
block,
[[peg_face], [block_face]],
trans_l,
vec_1))

Figure 8. Plan Actions Solve the Assembly Task Shown in Figure 5

Figure 9. Constraint Network for the Assembly Plan to Solve the Task Shown in Figure 5

72

NETWORK ARCS

grasp_1-pos_1:
[p1G1/p2P1,p1G1/p2P2,p1G1/p2P4,p1G1/p2P5,p1G1/p2P6,p1G11/p2P1,
p1G11/p2P2,p1G11/p2P4,p1G11/p2PS,p1G11/p2P6,p1G12/p2P1,p1G12/p2P2,
p1G12/p2P4,p1G12/p2P5,p1G12/p2P6,p1G13/p2P1,p1G13/p2P2,p1G13/p2P4,
p1G13/p2PS,p1G13/p2P6,p1G14/p2P1,p1G14/p2P2,p1G14/p2P4,p1G14/p2P5,
p1G14/p2P6,p1G15/p2P1,p1G15/p2P2,p1G15/p2P4,p1G15/p2PS,p1G15/p2P6,
p1G18/p2P4,p1G18/p2P5,p1G18/p2P6,p1G20/p2P1,p1G20/p2P2,p1G20/p2P4,
p1G20/p2P5,p1G20/p2P6,p1G3/p2P1,p1G3/p2P2,p1G3/p2P4,p1G3/p2P5,
p1G3/p2P6,p1G6/p2P1,p1G6/p2P2,p1G6/p2P4,p1G6/p2PS,p1G6/p2P6,p1G7/p2P1,
p1G7/p2P2,p1G7/p2P4,p1G7/p2PS,p1G7/p2P6,p1G8/p2P1,p1G8/p2P2,p1G8/p2P4,
p1G8/p2PS5.p1G8/p2P6,p1G9/p2P1,p1G9/p2P2,p1G9/p2P4,p1G9/p2P5,p1G9/p2P6)

grasp_2-pos_1:
(p2G1/p2P1,p2G1/p2P4,p2G10/p2P2,p2G10/p2P4,p2G11/p2P2,p2G11/p2P6,
p2G12/p2P2,p2G12/p2P5,p2G13/p2P1,p2G13/p2P5,p2G13/p2P6,p2G14/p2P1,
p2G14/p2P6,p2G15/p2P1,p2G15/p2P5,p2G16/p2P5,p2G2/p2P1,p2G3/p2P4,
p2G4/p2P5,p2G4/p2P6,p2GS/p2P5,p2GS5/p2P6,p2G6/p2PS,p2G6/p2P6,
p2G7/p2P6,p2G8/p2P1,p2G8/p2P2,p2G8/p2P4,p2G9/p2P1,p2G9/p2P2])

grasp_2-init_pos2:
p2G1/tr2,p2G16/02,p2G2/tr2,p2G3/r2,p2G4/tr2,p2GS/1r2,p2G6/2,p2G7/tr2)

grasp_1-init_pos1:

[P1G12/tr1,p1G3/tr1,p1G7/rl,p1G8/ir1]

LABEL SETS
pos_1: [p2P1,p2P2,p2P4,p2P5,p2P6]
init_posl: [trl]
init_pos2: [tr2]

grasp_2: [p2G1,p2G2,p2G3,p2G4,p2G5,p2G6,p2G7,p2G8,p2GI,
p2G10,p2G11,p2G12,p2G13,p2G14,p2G15,p2G16])

grasp_1: [p1G1,p1G3,p1G6,p1G7,p1G8,p1GY,p1G11,p1G12,p1G13,
p1G14,p1G15,p1G17,p1G18,p1G20]

Figure 10. The Arcs and Label Sets for the Constraint Network Shown in Figure 9

73

Table 1. The Constraints which Are Used in the First Phase of Planning

prior_to(Actionl,Action2):
Action] must be executed prior to Action2.

-reachable(Grasp,Position):.
Grasp is a grasping configuration which must be physically
realizable when grasping an object located in Position.
mate_reachable(Grasp,P,T):

P defines a fixed coordinate frame. T

defines the destination coordinate frame

of the object which is held in the manipulator,

relative to P. Grasp is a grasping configuration

which must be physically realizable given T and P.
member(Item,List):

Item must be chosen from List.

in_position_class(Position,PositionList):
Position must be an element of PositionList.

Table 2. Bounds on Uncertainty Variables Used in the Example of Section 6

Bounds on Uncertainty Vanables
Variable | Lower Bound | Upper Bound
axgr -0.001 X

dygr -0.001 0.001
dzgr -0.001 0.001
thetagr -0.001 0.001
dx_o =0.11 0.11
dy_o -0.11 0.11
dz_o -0.11 0.11

1 theta_o -5.5 55

4

References

[1]

[2]

(3]

[4]

(5]

[6]

[7]

(8]

[9]

(10]

[11]

[12]

(13]

Amber, A. P., and Popplestone, R. J., Inferring the Positions of Bodies from Specified
Spatial Relationships. Artificial Intelligence, 6:157-174.

Bledsoe, W. W, The SUP-INF method in Presburger Arithmetic. U. of Texas at Austin
Math. Dept. Memo ATP-18, December 1974.

Boyer, M., and Daneshmend, L. K., An Expert System for Robot Error Recovery
Computer Vision and Robotics Laboratory of McGill University, Technical Report TR-
CIM-87-18, October 1987.

Brooks, R. A., Symbolic Reasoning Among 3D Models and 2D Images. Artificial
Intelligence, 17:285-348 1981.

Brooks, R. A., Symbolic Error Analysis and Robot Planning. The International Journal
of Robotics Research, 1 (4), Winter 1982.

Brost, R. C., Planning Robot Grasping Motions in the Presence of Uncertainty. Com-
puter Science Department of Carnegie-Mellon University Technical Report CMU-RI-
TR-85-12, July 1985.

Chapman, D., Planning for Conjuctive Goals. Artificial Intelligence, 32 (3):333-378,
July 1987.

Davis, E., Constraint Propagation with Interval Labels. Artificial Intelligence, 32
(3):281-331, July 1987.

Dechter, R., and Pearl, J., Network-Based Heuristics for Constraint-Satisfaction
Problems. Artificial Intelligence, 34 (1):1-38, December 1987.

Donald, B. R., Robot Motion Planning with Uncertainty in the Geometric Models of the
Robot and Environment: A Formal Framework for Error Detection and Recovery. Proc.

of the IEEE Int’l Conf. on Robotics and Automation, 1588-1593 1986.

Donald, B. R, A Search Algorithm for Motion Planning with Six Degrees of Freedom.
Artificial Intelligence, 31 (3):295-353 March 1987.

Durrant-Whyte, H. F., Uncertain Geometry in Robotics. The IEEE Journal of Robotics
and Automation, 4 (1):23-31 February 1988.

Erdmann, M. A, On Motion Planning with Uncertainty. MIT AI Lab Technical Report
Al-TR-810, 1984.

(6]

[14] Fikes, R. E,, and Nilsson, N. J., STRIPS: A New Approach to the Application of

[15]

(16]

(17]

(18]

[19]

(20]

(21)

[22]

[23]

[24]

(25]

Theorem Proving to Problem Solving. Artificial Intelligence, 2:189-208, 1971.

Gini, M. Doshi, R. Gluch, M., Smith, R. and Zualkernan, 1., The Role of Knowledge in
the Architecture of a Robust Robot Control. Proc. of the IEEE Int’l Conf. on Robotics
and Automation, 561-567, 1985.

Gottschlich, S. N., and Kak, A. C.,, A Dynamic Approach to High Precision Parts
Mating. Proc. of the IEEE Int’l Conf. on Robotics and Automation, pp. 1246-1253, 1988.
[An update version of this paper will appear in a forthcoming issue of IEEE Trans. on
Systems, Man and Cybernetics..)

Hutchinson, S. A., and Kak, A. C., A Task Planner for Simultaneous Fulfillment of
Operational, Geometric and Uncertainty-Reduction Goals. Purdue University Techni-
cal Report, TR-EE 88-46, September 1988.

Hutchinson, S. A, and Kak, A. C., Applying Uncertain Reasoning to Planning Sensing
Strategies in a Robot Work Cell with Multi-Sensor Capabilities,” Proc. of the IEEE
Symposium on Intelligent Control, 1988.

Hutchinson, S. A., Cromwell, R. L., and Kak, A. C., Planning Sensing Strategies in a
Robot Work Cell with Multi-Sensor Capabilities. Proc. of the IEEE Int’'l Conf. on
Robotics and Automation, 1068-1075, 1988.

Lee, C. S. G,. and Ziegler, M., A Geometric Approach in Solving the Inverse Kinematics
of PUMA Robots. Proc. of the Thirteenth Int’l Symposium on Ind. Robotics and Robots
7, Chicago IL, April 1983.

Lozano-Perez, T., A Simple Motion-Planning Algorithm for General Robot Manipulators.
The IEEE Journal of Robotics and Automation, RA-3:224-239, No. 3, June 1987.

Lozano-Perez, T., and Brooks, R. A., An Approach to Automatic Robot Programming.
MIT AI Lab, AIM 842, 1985.

Lozano-Perez, T., Jones, J. L., Mazer, E., O'Donnell, P. A, Grimson, W. E. L., Tournas-
sound, P., and Lanusse, A., Handey: A Robot System that Recognizes, Plans and
Manipulates. Proc. of the IEEE Int’'l Conf. on Robotics and Automation, 1987.

Lozano-Perez, T., Mason, M. T., and Taylor, R. H., Automatic Synthesis of Fine-Motion
Strategies for Robots. The Int’l Journal of Robotics Research, 3 (1) Spring 1984.

Nof, S. Y., Maimon, O. Z., and Wilhelm, R. G., Experiments for Planning Error-

Recovery Programs in Robotic Work. Purdue Univ. School of Industrial Engineering
Resezrch Memo No. 87-2, March 1987.

76

[26]

(27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Pertin-Troccza, J., On-Line Automatic Robot Programming: A Case Study in Grasping.
Proc. of the IEEE Int’l Conf. on Robotics and Automation, 1987.

Pertin-Troccaz, J., and Puget, P., Dealing with Uncertainties in Robot Planning Using
Program Proving Techniques,” Proc. of the Fourth Int’l Symposium of Robotic Research,
Aug. 1987.

Popplestone, R. J., Ambler, A. P., and Bellos, I. M., A Language for Describing
Assemblies. The Industrial Robot, 131-137 September 1978.

Sacerdoti, E. D., A Structure for Plans and Behavior, Elsevier North-Holland, Inc., New
York, 1977.

Shostak, R. E., On the SUP-INF Method for Proving Presburger Formulas. Journal of
the ACM, 24 (4):529-543, October 1977.

Smith, R. C, Cheeseman, P., On the Representation and Estimation of Spatial
Uncertainty. The Int’l Journal of Robotics Research, 5 (4), Winter 1986.

Smith, R. E., and Gini, M., Reliable Real-time Robot Operation Employing Intelligent
Forward Recovery,” Journal of Robotic Systems, 3 (3):281-300, 1986.

Srinivias, S., Error Recovery in Robots Through Failure Reason Analysis. Proc. of the
AFIPS National Computer Conference, 275-282 1978.

Stefik, M., “Planning with Constraints (MOLGEN: Part 1). Artificial Intelligence,
16:111-140 1981.

Tournassound, P., and Lozano-Perez, T., Regrasping. Proc. of the IEEE Int’l Conf. on
Robotics and Automation, 1924-1928 1987.

Wilkins, D. E., Representation in a Domain-Independent Planner. Proc. Eigth Int’l
Joint Conf. Artificial Intelligence, 733-740, 1983.

Blank Page

Dynamic Task Allocation and Execution Monitoring
in Teams of Cooperating Humans and Robots

S. Y. Harmon

Robot Intelligence International
San Diego, CA 92107-7890

Abstract

Dynamic task allocation and execution monitoring are critical elements for the effective-
ness of teams of cooperating humans and robots. Execution monitoring is necessary to
identify when and where dynamic allocation is needed. Dynamic task allocation enables the
resources of the team to be efficiently mapped onto the demands of the prevailing task
regardless of its changing nature and uncertainties. The technology to realize dynamic task
allocation comes from the areas of distributed problem solving, multiple coordinated robots,
error recovery, scheduling and human-machine interactions.

Keywords: dynamic task allocation, execution monitoring, cooperating robots, distributed
artificial intelligence.

Introduction

The benefits of coordinated teams of intelligent individuals whether humans or robots or
combinations of the two have been recognized for their considerable potential. Foremost in
real applications, coordinated teams can have increased reliability amidst failures and
attrition through decreased sensitivity to individual failures and improved graceful system
degradation.[1-5] In addition, the performance of a team can be more accurate than individu-
als when faced with task uncertainty and incompleteness. If properly designed, teams can
provide increased spatial coverage and improved geometric advantage and can cope with the
communications and processing bandwidth requirements associated with large numbers of
sensors and effectors which are required to realize these advantages.[1,2,5] The efficiency of
a team can be significantly better than uncoordinated individuals through parallelism, spe-
cialization and resource sharing.[1] In fact, the success of scientific research has been attrib-
uted to its parallelism and pluralism.[6] The modular nature inherent to teams make them
more adaptable to change through task matching and extensibility.[1-5] Finally, for complex
tasks, teams offer more cost effective control of system complexity through reduced hardware
and software complexity,[1-5] enhanced real time response[2,3] and lower communications
and processing costs.[2]

Execution monitoring and dynamic task allocation in teams of cooperating humans and
robots draw support from a diversity of supporting technologies including distributed prob-
lem solving, multiple cooperating robots, scheduling, error recovery and human-machine

79

interactions. The influences of these technologies are discussed below. The use of teams
brings with it the need to consider the issues of distributed system design. Due to space
limitations, only a few of the critical design issues of distributed systems are discussed below
and the reader is referred to the literature which is cited for further important information.
Execution monitoring is discussed first since it introduces the need for dynamic task
allocation. Then, the issues of dynamic task allocation are discussed. Finally, a few conclu-
sions to the discussion are presented, and a number of remaining research issues are
identified.

Supporting Technologies

Researchers in distributed artificial intelligence (DAI) have been examining issues
related to interacting intelligent entities for many years.[4-7] A particularly relevant subset
of DAI is distributed problem solving (DPS). The coordination problem of intelligent entities
is a subset of DPS.[8]

Interest in developing systems of cooperating robots has grown significantly over the past
few years. Considerable work has been devoted to coordinating multiple robots simply to
prevent collisions while working in common geometric spaces.[9-15] Some work has been
devoted to developing systems in which robots actually cooperate to achieve common goals.
Applications of this work include multiple robots in a single work cell,[16] cooperating under-
water robots,*” and multiple cooperating work stations.[18-19]

An enormous amount of work has been done in the area of human-machine interaction.
Extensive review of this literature is well outside the scope of this paper; however, a small
subset of this work has addressed human interaction with automated resources which
directly relates to the problems of task allocation and execution monitoring in human-robot
teams. Applications for this work include such areas as human-autopilot interactions,2®
multioperator spacecraft tracking,[21] computer-human teams for ill-structured (i.e., not
well understood) risk management problems,[22] and supervisory control of automated sys-
tems for flexible manufacturing systems,[23]

Scheduling and resource allocation have received considerable interest in the robotics
community for coordinating the actions of multiple work cells. Extensive review of this vast
area is also outside the scope of this paper, but a few observations are appropriate.

Scheduling and resource allocation have been applied to such applications as scheduling
multiple assembly robots[24—33] and routing automated guided vehicles.[34,35] Several
scheduling and resource allocation techniques have been explored for automation of various
types, including dynamic programming and queuing theory,[29] control theory and optimiza-
tion,[30] essentially decision free Petri nets for resource allocation,[32] search tech-
niques,[28,34] a combination of graph theory, optimization and A* search,[35] nonlinear
planning techniques,[35] and various opportunistic (i.e., run time) scheduling tech-
niques.[24,25,27,28,31,33] Opportunistic scheduling is most directly related to the problem of
dynamic task allocation in human-robot teams since it deals directly with the assignment of

80

resources to tasks (or vice versa) after the task has begun.

Much of the work on error detection and recovery has implications for execution monitor-
ing and dynamic allocation. Error detection techniques have been developed to find faults in
computer systems and to generate discriminatory tests,[36,37] to recover from errors in
single robots for assembly[38-41] and reactor maintenance,[42] to recover from errors en-
countered when executing mobile robot route plans,[43] and to detect and diagnose plan
faults.[44] Most of these techniques account only for errors caused by uncertainties in
accurate and correct task descriptions.[40] Although almost no formal analysis of the error
recovery problem is available, a limited theory for error detection and recovery using
configuration space representation and a forward chaining planner has been introduced.[45]

Distributed Cooperating Systems Design

The capabilities of automated systems which can be distributed include sensing and
interpretation, planning and problem solving, controls and actuators, and knowledge and
computing. Several questions arise when considering designs which distribute these capa-
bilities. The distribution of capabilities is relevant to any kind of distributed system whether
manned or automated; however, combining humans with automation presents a number of
human-machine design options which are not available with strictly automated systems.
The humans and machines can adopt any of several possible roles including teleoperation,
autonomous entities, or mixtures of the two.

The organization of a team of distributed humans and robots is the plan by which
resources are initially distributed and exchanged throughout the task. The choice of an
organization is perhaps the second most important decision a system architect must make.
The first most important decision is the choice of the task. An organization can be character-
ized by the structures of its communication, task, power, and skills and by the distribution of
its knowledge, resources, and perception. An organization has been described as the system
of constraints on the individual entity.[7]

There are essentially two distinct types of organizations, hierarchies and committees.
Each of these has different attributes which are appropriate for different situations. In
general, the amount of cooperation within a distributed system is predetermined by the
problem domain. Committees are data driven and hierarchies are goal- driven.[4] Commit-
tees tend to maximize system flexibility through communication, whereas hierarchies tend to
minimize communication through structure.

A system organization can be created at design time and remain static throughout the
execution of the task, or it can be dynamic. A dynamic organization can be created once at the
beginning of the task and remain static thereafter, or it can be modified during task
execution. A dynamic organization may be more costly to implement but it permits reorgani-
zation in the event of failures. In addition, dynamic organizations are generally needed in
problems where little is known a priori.[4] Further, as the number of agents in a team

81

becomes very large then a dynamic organization may be necessary.[7]

Several paradigms for dynamic organization control have been proposed.[4] For instance,
one technique uses epsilon-optimal learning automata to heuristically select the hierarchical
structures to be formed. This approach improved the speed of convergence onto a solution but
the optimum resultant organizations have yet to be found.[46] Negotiation systems such as
the contract net formalism provide another alternative for controlling system reorganiza-
tion.[47] However, negotiation systems may not be sufficiently responsive to external events
and may require a significant amount of communications bandwidth for the negotiation
process. Audience restriction reduces this bandwidth requirement and is particularly favor-
able when agent addition or deletion decreases and specialization increases.[4] Regarding the
distribution of sensing and actuation resources as well as others, heterogeneous agents seem
to complicate design whereas homogeneous agents tend to simplify analysis.[7]

An important problem which is inherent to planning in distributed systems is maintain-
ing coherence within the system. Coherence refers to the consistency of local plans and
actions of the team members with the global plan of the entire team. Needless to say, global
coherence is critical when using multiple problem solvers.[7] Partial coherence wastes re-
sources and degrades performance.[48] One solution to the coherence problem is to guide
each agent by a high level strategic plan for cooperation, taking care not to constrain each
individual too much.[48] Another potential solution is to provide each agent with the ability
to reason about its current state of problem solving and to predict the future actions of
companion agents. This can be done by having each agent compute an abstracted high level
description of its local state and from this description to formulate new high level goals and
generate plans to achieve them. These high level goals and plans are then communicated to
the other active agents.[48]

There are several reasons for distributing control. Centralized coordination seriously
hampers system reliability, and mutual agreement contracts before action are inefficient and
may not lead to acceptable solutions.[48] However, the distribution of control is complicated
by the difficulty in achieving globally coherent behavior because each node lacks a global
perspective of the state of the problem. Furthermore, conflicts must be avoided to realize the
improved performance which is promised by distributed systems.[47] In addition, with in-
creased coordination and cooperation comes increased communication.[4] Fortunately, task
and coordination complexity can be reduced by minimizing unnecessary interaction between
units.[47]

Execution Monitoring

The information for dynamic allocation comes from monitoring the execution of the task.
Execution monitoring compares the information received through sensors and communica-
tions with that stored in models of expectations, behaviors, physical processes, sensors,
actuators, and plans to detect situations where replanning and reallocation are necessary.
Execution monitoring identifies inefficient utilization of team resources due to poor plans or
to a task environment which no longer meets the criteria for plan or action validity. Execution

82

monitoring also identifies the occurrence of errors and failures within the components of the
team.

All execution monitoring should be preplanned. If a priori expectations of execution
results are not available, then effective execution monitoring is simply not possible. However,
generating expectations is not enough to guarantee effective execution monitoring. Many
other conditions must be met. The important components of the execution process must be
sensed. No monitoring is possible if no sensors are available which provide information on the
results of execution. Execution monitoring is extremely useful if the execution process is
nondeterministic. If the process is well characterized and no deviations from this characteri-
zation are anticipated, then monitoring is probably not necessary. On the other hand, if little
can be accurately predicted about the outcome of execution, then the process must be closely
monitored so remedial actions can be taken as soon as possible. The particular execution
process must be important to the success of accomplishing the task. If the process is not very
important, then do not monitor it. If it is very important, then monitor it closely. Finally,
some corrective action must be within the system’s capabilities if the execution process
begins to go awry. In other words, monitoring is only useful if something can be done about
the problem once it is sensed. The more actions which are available to the system the more
useful detailed monitoring is to decide which actions are most useful.

The factors which contribute to uncertainty in execution (and, therefore, to enhance the
utility of execution monitoring) include uncertainties in the environment (how well is the
environment understood), uncertainties in the accuracy of the plan (how well is the planning
process for a particular task understood), and uncertainties in the system (how well are the
system’s behavior and the outcome of its actions understood). Execution monitoring provides
a means of dealing with the effects of these uncertainties. No more execution monitoring
should be preplanned or incorporated in the system than is useful.

Some execution monitoring issues include error detection, out of limits situations, ques-
tions of allocation/reallocation, and when to abort. In addition, one must ask what agents can
be trusted and who can monitor what tasks. In tracking tasks, the progress made in closing
toward the end goal and the violation of task constraints must be monitored. The monitoring
task must consider task allocation, capability overlap, allocation overlap, sensing perform-
ance, and the models used to monitor execution.

Execution monitoring involves one or more internal models, mechanisms for detecting
unacceptable situations, and procedures for recovery. These elements are usually organized
into some structure of components to perform planning, monitoring, and recovery.

Execution Monitoring Structures

The structures of execution monitoring systems generally include a planner to generate a
plan,[43,49] a monitor to identify deviations from the plan,[39,43,49,50] and a recoverer to
devise a recovery strategy.[39] The monitor must cooperate with either the recoverer or the
planner to develop a successful recovery plan. The planner must supply error, transitions to
the monitor to help recognize errors and the monitor in turn helps the planner by retracing

83

steps and exploring to overcome errors.[43] Likewise, the recoverer uses the monitor to run
further tests for more information.[39] Execution monitoring can reduce errors and improve
performance of a DPS system through meta-level control which detects and diagnoses plan
faults.[44]

Internal Models

Several different internal models are possible including models of expected be-
havior,[36,40,43,45,50,51] system structure,[35] sensors (e.g., limits of calibration), the
task,[40] expected performance [44] and interactions between system components. Modeling
techniques which have been used include finite state transition graphs with nodes of possible
internal states and links representing transitions from one state to another,[51] physical
models,[38,40,45] Petri nets,[37] finite state automata to map events to actions,[40] common
sense heuristics representing useful facts,[40] and scripts developed from experiences.[43]
Various reasoning mechanisms have been used with these models including mathematical
techniques,[45] finite state automata,[40,51] deductive inference,[36,37,40,50] common sense
reasoning,[38] plan simulation,[50] and formal logic.[51] Of the possible modelling tech-
niques for describing behavior, simple rules are useful if behavior is simple. Petri nets are
useful if the focus is on parallel events and unrestricted code is the last resort if all else
fails.[37] Humans can acquire these models through training and robots can acquire these
models through programming and/or training. Much of the representation must be the same
for both planner and execution monitor to make communications and sharing of world models
possible.[49]

Modelling uncertainties and accounting for errors help, but the real world is so complex
that extremely sophisticated models may be required.[38] Often the size and complexity of
the model and the associated data base require some focussing mechanism to make real time
execution monitoring possible. Focussing mechanisms which have been implemented for
DPS and robot error recovery include hierarchical organization of the data[36,37] and
domain specific heuristics to present only the most relevant features of sensor data to the
execution monitor.[43]

Detection Mechanisms

Detection mechanisms identify when something is going wrong during task execution and
what it is. This could involve exceeding the capabilities of sensors, actuators, knowledge, or
computing, or it could involve deviating from plan expectations. Some error detection mecha-
nisms include sensor monitoring, hard-wired interrupts, and operator supervision.[42] Moni-
toring involves looking at such quantities as robot motion,[40] the motion of task objects,“®
raw sensor data,[41,42] high level sensor data representations,[50] and internal data base
consistency.“* Sensor data can be compared with performance thresholds,[42] data recorded
from previous similar actions,[43] and the expected outcomes of a plan.[39,44,49] Once a de-
viation is detected the system can be interrupted,[41] an operator called,[42] or a plan
recovery mechanism invoked.[39,40,43,49] Often in monitoring performance it is especially
important to maintain pace with the real time evolution of events. Some measures to improve
monitoring performance include using hard-wired interrupts to detect critical subsystem fail-

84

ures,[42] using a special sensor handler to filter data for only unexpected events,[39] using a
dedicated processor to monitor sensor data{41] and precomputing critical raw sensor data
thresholds to minimize computing associated with the monitoring process.[41] Representa-
tions of sensor data have varied from raw sensor data values(41] to high level predicates.[50]

An interesting issue related to sensor data monitoring is how to determine where the
error is occurring. Suppose an error has been identified. Is the error caused by deviation from
the plan, by the sensor producing the reading, by a faulty set of expectations, or by an
actuator which did the wrong thing? A classical method for identifying faulty elements in a
system is voting, but that works only when there is sufficient overlap in functionality which
is often not the case in robot systems. If humans are involved, should the human trust the
robot or vice versa? The most intuitive answer is that the human should be the final
authority, but the recent incident aboard the USS Vincennes showed that multiple respon-
sible humans were at fault and that the automated assistance was correct.

Recovery

There are several methods of handling errors once they are discovered. Task execution
can proceed regardless of the error, but this is dangerous. Execution can be stopped when an
error is detected, but this is inefficient. Preprogrammed error checking and recovery for every
error situation is possible, but it is unreliable and expensive to design and to compute. A
program can be generated from the task description which is guaranteed to execute correctly
even in the presence of errors and uncertainties but this requires models of robot kinematics
and dynamics and of such complex physical properties as friction and is generally successful
only for fine motions. Finally, it is possible to analyze the error situation and replan but this
is as yet an underdeveloped option.[38]

Most of the systems reviewed halted execution when an error was discovered.[40,42—-44)
Then control was passed either to a human operator{42] or to a recovery module which
diagnosed the problem and created a recovery plan.[40,43,44] At this point, discrepancies can
be analyzed to determine whether error (1) is unimportant, (2) has a fixed solution or (3)
requires complete replanning.[49] The repair could be simple (e.g., wait for mechanical
wobble to stabilize) or complex (requiring complete revision of program). Revision of the
complete program is a difficult job which generally involves considerable reasoning from a
global knowledge base.[39] Several approaches attempted to patch the existing
plan.[18,40,43.44]

Different techniques which have been suggested for plan recovery include a rule-based
system which knows the intent of the failed action,[39] plan critics,[39] and bidirectional con-
straint propagation and comparative reasoning which operate from a detailed model of the
problem solver.[44] Execution can be restarted at fixed predefined recovery points,[42] at the
point where the error was detected,[40] at a point which makes sense according to the intent
of the failed action,[39] at a point discovered by moving up to the next level in the plan
hierarchy,[18,43] or at a point identified by using exploration to deal with unknown ar-
eas.[43] Simply restarting the plan where failure was first detected has presently been

85

explored only for simple linear recovery plans.[40] In addition, recovery planning must take
into account the timeframe within which recovery is possible.

If humans are involved in the monitoring and recovery process, then protocols must be
developed to facilitate their interactions with the automated processes. In some cases, error
recovery is possible only with operator assistance, because the robot does not know the cause
of the error. In this situation, the transfer from operator back to robot is handled by requiring
transfer to take place at specific points in task (i.e., beginning or end of subtasks).Using this
strategy, the operator must make sure that subtasks are completed if interrupted by error
detection.“?

Recovery can involve either patching an existing plan of action with no reallocation of
resources or creating a new plan which requires reallocation of the subtasks to the team
members. Only the latter alternative requires dynamic task allocation.

Dynamic Task Allocation

Task allocation is concerned with the distribution of tasks among the resouces of the
team. Leaving the dynamic aspect aside for a moment, task distribution encompasses two
issues, decomposition and assignment. Decomposition addresses the question of how a task
can best be partitioned into its component parts. Quite often this is done before the task is en-
countered by an off-line planning process. Assignment addresses the question of how the task
components can be best assigned to the team members. Assignment can be done either
statically before the task starts or dynamically as work on the task is in process. Task
assignment has been most directly approached by research into scheduling of automated
resources. Dynamic restructuring of a team becomes important when the task involves
uncertain, incomplete, or incorrect information.[4] However, the present state of planning
technology does not provide much support for handling dynamic allocation in uncertain
situations. Further, there is presently no unified theory on dynamic allocation even in simple
cases (e.g., computing resource allocation).[4]

Design Decisions

As mentioned previously, the design of any aspect of dynamic allocation depends upon the
task and, particularly, upon the extent of the designer’s understanding of the task. This
involves an understanding of the prevailing task phenomena and the importance of the
various goals of the task. As an example of different task types, the designers of a DPS system
for air traffic control include information gathering through sensing or communication input,
information distribution through communication output, planning, plan evaluation, plan
fixing, and plan execution.[52]

The extent of dynamic allocation which is possible and needed depends upon how much
decision making is allocated to the designer, to the programmer (after design but before the
task starts), to the participating humans (after task starts), and to the participating robots
(after task starts). A task which is completely understood by the designer or the programmer
needs no dynamic allocation. The ability to restructure the team becomes more and more

86

important as the task becomes less and less understood by nonparticipants. Thus, the
designer must ask, “How much information about the nature and status of the task is
available at design time, before the task starts and after the task starts?” If a decision must
be made about allocation between humans and robots during the task then one must also ask,
“How much information is available to the humans and to the robots?” If sufficient informa-
tion is available after design time but before the task starts, then a number of decisions can
be made and implemented through preprogramming. In cases where the programmer is om-
niscient of the task circumstances, then all structure and responses can be preprogrammed
before the team is deployed. However, this may seldom be the case so that only team
structure can be preprogrammed. This involves decisions of organization (hierarchy or
committee), restructuring metaphor (commanded or negotiated), and responsibility (who is
the boss and can he be trusted all the time or must that also be flexible).

For a poorly understood task the following inequality is suggested. In terms of effective-
ness, reliability, and cost,

design < programming < dynamic allocation

where design determines system structure, embedded knowledge, embedded actions, embed-
ded interactions, and execution monitoring. In uncertain situations, hard-wired design is
always the least effective and reliable option but is also always the cheapest option. Simi-
larly, dynamic allocation provides the most effective and reliable option (assuming, of course,
that the dynamic allocation capabilities are well designed) but is also the most expensive in
terms of design cost, implementation cost and communications and computing costs during
run-time.

Another design issue related to dynamic allocation is the level of restructuring which is to
be possible or the granularity of the system. The granularity should be decided by the modi-
fiability of the system required. System granularity should always be equal or below that
which is dynamically restructured. No dynamic modification should be below the level of
system granularity because of undesirable consequences which arise from competing struc-
tures. In addition, the granularity of overlapping capability must match in all components
which share responsibility. This has great impact upon task sharing between humans and
robots and means that humans can probably always share robots’ tasks, but robots cannot
always share humans’ tasks.

The degree of dynamic restructuring or system flexibility required is strongly dependent
upon the amount of uncertainty in the task. Part of this uncertainty is manifested by
component failures. In the face of failures and uncertainty, the designer must consider the
consequences of only partially accomplishing the task and then prioritize the task goals. Only
then can capability be allocated appropriately. This, of course, requires knowledge of what
failure modes are most likely and which will have the most debilitating effects.

Other design issues abound with regards to dynamic allocation. One of the hardest relates
to resolving the fuzzy area between the overlap of human and robot capabilities. The designer

87

must resolve the allocation decisions of possible system structures, dynamic allocation

technique, allocation interaction types, and restructuring and allocation criteria. The criteria
for success depend upon the uncertainty of the situation, the allocation algorithm, and the
definition of optimality.

Opportunistic Scheduling

Resources should be allocated to a task at run-time to ensure best system performance,
because the exact process time schedules often cannot be foreseen.[28] In addition, dynamic
resource allocation improves efficiency, reliability, and flexibility[27,28] and ensures conflict-
free operation of multiple robots in a dynamic environment. Opportunistic scheduling also
improves the ability of robots to cooperate in a task and makes it possible for robots to share
resouces.[27] Furthermore, the issue of distributed operation is emphasized because a global
centrally issued allocation strategy becomes more costly as complexity increases.[24]

Most if not all existing opportunistic scheduling schemes start with a task plan which has
been developed off-line.[24-31] Three levels of coordination have been suggested for flexible
assembly: planning, resource allocation and coordinated motion planning.[24] In systems
which benefit from opportunistic scheduling, a planner or programmer works with virtual
resources and the scheduler maps these virtual resources into the real resources at run-time.
The scheduler does gross motion planning, material routing, parts presentation scheduling,
and resource allocation.[28]

Plan Representations

Several different plan representations have been suggested including simple trees,[5,28]
action formalisms,[26] procedural networks,[50] partially ordered graphs,[25,31] AND/OR
graphs,[33] and sparse hypergraphs,[33) For assembly planning, partially ordered graphs
cannot retain all possible assembly sequences. AND/OR graphs do retain all possible assem-
bly sequences, but exponentially growing complexity makes generating them all impractical.
In addition, only a small number of the sequences will be encountered in any real situation.
Thus, one suggestion is to generate a few preferred sequences off-line and infer the rest on-
line.®® This implies that on-line planning must supplement the opportunistic scheduling
mechanism. In this technique, the assembly plan is represented as a hierarchical hyper-
graph, and frames represent domain objects and relations/actions.[33]It has been suggested
that planning is more efficient if the representation is limited.[50]

Techniques

Several opportunistic scheduling or dynamic resource allocation techniques have been
suggested,[24,25,27,28,31,33] and the specifics of only a few will be reviewed here as
examples of current work. The field is still rapidly evolving, and further techniques are
undoubtedly being developed even as this paper is being written.

Scheduling consists essentially of mapping resources onto tasks through various criteria.
Most obviously, tasks cannot be allocated to resources which are unavailable, but beyond that

88

considerable scheduling latitude exists. Clearly, the scheduler must keep the schedule
executionally feasible.[25] Knowledge-based techniques and heuristics have been used to -
deal with the complexities of execution uncertainties.[31] One common heuristic which is
used is the principle of least commitment.[25,26] Scheduling can be goal or data directed and
can use strategies which are intentional (i.e., action before sensing) or opportunistic (i.e.,
sensing before action) or a combination of both.[33] A scheduler which uses a combination of
allocation strategies can change modes when a solution is not being generated within a
reasonable time.[33]

The virtual resources of a plan can be mapped onto the real resources of a multiple robot
system by searching an allocation tree for the best solution using various search strategies.
In this search the scheduler can allocate a resource directly to the task, suspend a task until
a resource is available, transfer a resource from one robot to another (e.g., end effector tool),
or issue an error message if no solution is available to the task.[28] Another dynamic
allocation technique assigns a resource supervisor to each class of resource which then
synchronizes the access to that resource according to priority and eligibility. This mechanism
also prevents collisions dynamically by using a resource supervisor to exclude mutual access
to the swept volume of each concurrent robot motion.[27]

In yet another approach, a decentralized allocation strategy is used for individual robots.
This technique uses dynamic local policies consisting of weighting factors (called allocation
pressures) which are attached to each allocation goal (as opposed to decision rules) to
maintain global coherence. Three allocation pressures are elucidated: production (assures
assembly of low level subsystems first), coordination (assures proper task assignments when
two or more robots are required to complete an assembly), and consumption (encourages
robots to assume higher level assemblies for work-in-progress inventories and permits work
flows to remain balanced). Allocation pressures are propagated through weighting functions.
Robots are constantly evaluating the task mapping (including deallocation costs if already
occupied) thus allowing a robot to take on a task more highly rated than the one with which
it is engaged. Concurrency problems are avoided by making only one allocation decision at a
time (through locking). A global but distributed blackboard is used for coordinating commu-
nication. The combinations of allocation pressures, resource constraints and opportunistic
decisions are made by the individual robots.[24]

Dynamic allocation has also been approached by those researching DPS.*550.52 In many
of these schemes, each agent is permitted to perform its own local planning using such
mechanisms as a hierarchical planning paradigm,[50] deduction,[5] and heuristic scheduling
rules.[52] In cases where the problem space is large, dynamic allocation can be guided by a
focussing agent or by an agenda mechanism.[4]

Conflict Resolution/Negotiation

The distribution of tasks between independent agents implies the potential for conflicts to
arise. One approach to conflict detection and resolution has been suggested although others
may exist. This example will be discussed to illustrate the process of conflict detection and
negotiated resolution. Plan consistency checking starts when an agent has a plan and learns

89

the plan of another agent or when the agent changes his own plan or when the agent believes
he knows the plan of another agent and gets sensor information that indicates the other
agent is not behaving consistently with that belief. If a conflict is detected, then the agent will
not allocate further resources to that plan and will try to resolve the conflict until either the
conflict is resolved or the agent has tried hard enough (in terms of computing resouces). If the
conflict has not been resolved after the agent has tried hard enough then it will ask the other
involved agent to try resolving the conflict.[52]

Allocation Decisions

Many factors affect task allocation aside from the basic issue of mapping task to resource.
In the simplest of situations, these include who decides, how much time is available for the
decision, how much tolerance of error is there, how much more information is available after
the task starts, and if the task can be easily mapped onto one of the players with the required
sensing and control capability. Once an allocation decision is made, then is it working? If not,
can a better solution be found within a useful time? Since humans can be involved, then the
question of “What modes of communication between humans and machines are possible?”
must be answered. In addition, one must also address how subordinate to man the machine
should be made and when it should be independent of human control or if it should be made
independent at all (e.g., in the Iranian airliner situation, automation worked fine but humans
failed). Robots can work faster and more reliably than humans, but humans can deal with
task uncertainty better.

In more complex situations, even more factors affect allocation decisions. If knowledge-
based elements are prevalent in the task, then how much they can decide the state of the task
must be determined. Overt opposition to obtaining the task goals makes the allocation
decision even more complex by introducing plan sabotage and agent attrition. Finally, safety
is a very important and often neglected issue. How must humans and machines be protected
from the task and from each other?

Allocation Criteria

Several questions arise related to the choice of allocation criteria. For instance, what
criteria are used to decide when and where task allocation is necessary? Further, what are
the criteria to decide when not enough information is available to decide? What resources
should be risked when the choices are limited and the stakes are high? How much time is
available to make allocation decisions? Sometimes how the environment affects the capabil-
ity determines how much capability must be allocated (e.g., processing in high radiation en-
vironments). How does uncertainty in sensor data, in planning and allocation and in action
affect the plan?

DPS for the air traffic control domain provides one example, among many possible
examples, of dynamic allocation criteria. In this example, tasks are driven by states or
changes in the knowledge base. A task may run to completion (thereby meeting completion
criteria), run to the end of its assigned resources (at which time it is reevaluated and
rescheduled), or be eliminated because of changes which invalidate it.[52]

90

Errors and Recovery

Finally, every allocation decision may not result in successful task completion because
errors arise. These errors may be recognized by simulating the task plan and allocation
scheme before implementation or by monitoring the execution of the plan. Whichever tech-
nique is used, the effects of errors must be carefully analyzed to determine their impact.
Many errors will not have a signficant impact or may result in minor reallocation, but a few
errors could have disasterous impact and ruin the day. These must be recognized and avoided
or confronted directly. The degree of preparation for an error depends upon the probability
that that error will occur and the impact the error will have upon the performance of the
system. Once allocation is complete and an error occurs, then is there enough time to
reallocate? Is a graceful abort possible, and when is the line between reallocation and abort
crossed? In addition, how much time is available to determine what is wrong and whether to
deal with it with the existing structure or to reallocate the resources?

These issues return the discussion to the topic of execution monitoring and this recursion
emphasizes the intricate coupling between dynamic allocation and execution monitoring. In
a cooperating team of humans and robots, one is not useful without the other. Execution
monitoring identifies when and where dynamic task allocation is necessary and useful.
Dynamic task allocation provides the action which makes monitoring task execution a useful
process.

Conclusions

The advantages of cooperating teams of humans and robots abound, but to be successful
these teams must be prepared to dynamically allocate their resources to the constantly
changing demands of the tasks. Execution monitoring is required to identify when dynamic
allocation must begin. A team of humans cooperating with robots can take many different
forms. This decision depends strongly upon the amount of information which the designer
has about the task. Static organizations are possible only when the task is well defined and
component failures are improbable. Only dynamic organizations can confront most complex
real world tasks with a high probability of success.

As the discussion of needed research below illustrates, the technology for implementing
sophisticated teams of interacting humans and robots is quite underdeveloped. Little is
understood about these systems in terms of theory, design, implementation, and use despite
the support from such better developed technologies as distributed artificial intelligence,
multiple cooperating robots, scheduling, error recovery and man-machine interaction.

Needed Research

Considerable research is needed in the areas of DPS, dynamic task allocation, execution
monitoring, multiple robot coordination, and human-machine cooperation, to realize practi-
cal and effective symbiotic human-robot teams.

In the area of DPS, more work is needed to develop a formalized description of the categories

91

of control tasks at various levels of abstraction to improve human-machine communications
and to aid in the multilevel abstraction of problem identification and solving. Description of
control tasks in terms of mental functions would be extremely helpful to ensure effective task
sharing between humans and machines. Analysis of human performance in real life situ-
ations to identify mental strategies and subjective performance criteria would also be
beneficial. Methods are needed to evaluate specific interface design and system design
concepts. Techniques are needed to verify the internal consistency of models. Consideration
of integrated human performance which is normally studied as a collection of disjoint
paradigms is also required.[53]

Further work on DPS is needed in the areas of theory, conflicting goals, organizational
design, traditional distributed computing issues, expectation driven communication,[4] er-
ror detection and recovery, learning methods for error recovery and uncertainty handling.[8]
Norms need to be developed for the exchange of tasks and other kinds of information between
robots and between robots and humans. The effects of asynchrony, effective use of local
control, use of local evaluation of progress, and building of abstractions of control knowledge
also require extensive further study.[7] More work is needed to define the effects of commu-
nications strategies on coherence and performance (e.g., conflicting goals).[48] Finally, the
problem of organizational self design of distributed problem solvers must be attacked.[7]

In the area of dynamic task allocation, models of human decision making and algorithms
which effectively use these models are needed. More efficient dialog styles for explicit
communications between humans and computers in multiple-task time-constrained situ-
ations must be identified.[54] More dynamic allocation implementation experience, and theo-
retical analysis of local allocation strategies, and the effects of feedback through the system
are required.[24] A representation must be established for scheduling knowledge and for
selecting the appropriate partial subtask orders to pass to the scheduler.[25] A formalism for
allocation strategy selection and techniques for learning about when to switch strategies in
dynamic situations must be developed.[33] Finally, performance analysis on the task alloca-
tion strategies of distributed problem solvers has not been adequately addressed.[4]

In the areas of execution monitoring and error recovery, the sensor signal to predicate
transformation and modelling of uncertain and unreliable sensors must be better devel-
oped.[50] More effective techniques for recognizing the precise point in a task from which to
continue, patch, or discontinue the plan needs further exploration.[39] Techniques are
needed to manipulate more abstract goals and so more effective recovery plans can be con-
structed.“®

For multiple coordinated robots, more work is needed in such areas as operating system
kernals, message primitives, programming languages, and timing analysis of various imple-
mentations.[55] In human-machine cooperation, better training strategies are needed which
limit human susceptibility to the combinatoric complexity present in complex systems.[56]

By no means is this list of research needs complete. It only serves as a starting point from
which to address the effective design of teams of cooperating humans and robots. It also

92

emphasizes the distance which exists between the present state of the art and the day when
such teams will be commonplace. However, this distance should not be discouraging because
the benefits of the research in this area will be great and will tremendously influence
developments in such related areas as multiple coordinated robots and human-machine
cooperation.

93

References

[1] B. Chandrasekaran, “Natural and Social System Metaphors for Distributed Problem
Solving: Introduction to the Issue,” IEEE Trans. on Systems, Man, and Cybernetics,
SMC-11 (1), January 1981, ppl-5.

[2]1 V. R. Lesser & D. D. Corkill, “Functionally-Accurate, Cooperative Distributed Systems,”
IEEE Trans. on Systems, Man, and Cybernetics, SMC-11 (1), January 1981, pp81-96.

[3] J-Y. D. Yang et al., “An Architecture for Control and Communications in Distributed
Artificial Intelligence Systems,” IEEE Trans. on Systems, Man, and Cybernetics, SMC-
15 (3), May/June 1985, pp316-326.

[4] K. S. Decker, “Distributed Problem-Solving Techniques: A Survey,” IEEE Trans. on
Systems, Man, and Cybernetics, SMC-17 (5), September/October 1987, pp729-740.

[56] K. Konolige & N. J. Nilsson, “Multiple-Agent Planning Systems,” Proc. of the National
Conf. on Artificial Intelligence, Stanford, CA, 18-21 August 1980, ppl38-141.

[6] W. A. Kornfield & C. Hewitt, “The Scientific Community Metaphor,” IEEE Trans. on
Systems, Man, and Cybernetics, SMC-11 (1), January 1981, pp24-33.

[7] N. S. Sridharan, “1986 Workshop on Distributed Al” AI Magazine, 8 (3), Fall 1987,
pp75-85. '

(8] A. J. Koivo & G. A. Bekey, “Report of the Workshop on Coordinated Multiple Robot
Manipulators: Planning, Control, and Applications,” IEEE Jour. of Robotics and Auto-
mation, RA-4 (1), February 1988, pp91-93.

[9] E. Freund, “On the Design of Multi-Robot Systems,” Proc. of the IEEE Int. Conf. on
Robotics, Atlanta, GA, 13-15 March 1984, pp477-490.

[10] L. Gouzenes, “Collision Avoidance for Robots in an Experimental Flexible Assembly
Cell,” Proc. of the IEEE Int. Conf. on Robotics, Atlanta, GA, 13-15 March 1984,
pp474—476.

[11] J. Roach & M. Boaz, “Coordinating the Motions of Robot Arms in a Common Workspace,”
Proc. of the IEEE Int. Conf. on Robotics and Automation, St. Louis, MO, 25-28 March
1985, pp494-499.

[12] O. Khatib, “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots,” Proc. of
the IEEE Int. Conf. on Robotics and Automation, St. Louis, MO, 25-28 March 1985,
pp500-505.

94

[13] E. Freund & H. Hoyer, “Pathfinding in Multi-Robot Systems: Solution and Applica-
tions,” Proc. of the IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, 7-10
April 1986, pp103-111.

[14] P. Tournassoud, “A Strategy for Obstacle Avoidance and Its Application to Multi-Robot
Systems,” Proc. of the IEEE Int. Conf. on Robotics and Automation, San Francisco, CA,
7-10 April 1986, ppl224-1229.

[15] Y. P. Chien et al,, “On-Line Generation of Collision Free Trajectories for Multiple
Robots,” Proc. of the IEEE Int. Conf. on Robotics and Automation, Philadelphia, PA,
24-29 April 1988, pp209-214.

[16] R. Alami, “NNS: A LISP-Based Environment for the Integration and Operating of
Complex Robotics Systems,” Proc. of the IEEE Int. Conf. on Robotics, Atlanta, GA,13-15
March 1984, pp349-353.

[17] M. Herman & J. S. Albus, “Overview of the Multiple Autonomous Underwater Vehicles
(MAUYV) Project,” Proc. of the IEEE Int. Conf. on Robotics and Automation, Philadel-
phia, PA, 24-29 April 1988, pp618-620.

[18] R. J. Norcross, “A Control Structure for Multi-Tasking Workstations,” Proc. of the IEEE
Int. Conf. on Robotics and Automation, Philadelphia, PA, 24-29 April 1988, pp1133-1135.

[19] H. S. Baird et al., “Coordination Software for Robotic Workcells,” Proc. of the IEEE Int.
Conf. on Robotics, Atlanta, GA, 13-15 March 1984, pp354-360.

[20] G. Johannsen & W. B. Rouse, “Studies of Planning Behavior of Aircraft in Normal,
Abnormal, and Emergency Situations,” IEEE Trans. on Systems, Man, and Cybernetics,
SMC-13(3), May/June 1983, pp267-278.

[21] B. G. Silverman, “Distributed Inference and Fusion Algorithms for Real-Time Supervi-
sory Controller Positions,” IEEE Trans. on Systems, Man, and Cybernetics, SMC-17 (2)
March/April 1987, pp230-239.

[22] K. Niwa, “A Knowledge-Based Human-Computer Cooperative System for Ill-Structured
Management Domains,” IEEE Trans. on Systems, Man, and Cybernetics, SMC-16 (3),
May/June 1986, pp335-342.

[23] O. Dunkler et al., “The Effectiveness of Supervisory Control Strategies in Scheduling

Flexible Manufacturing Systems,” IEEE Trans. on Systems, Man, and Cybernetics,
SMC-18 (2), March/April 1988, pp223-237.

95

[24] L. Gasser & G. Bekey, “Task Allocation among Multiple Intelligent Robots,” Proc. of the
1987 Workshop on Space Telerobotics, Vol. 1, G. Rodriguez, ed., Jet Propulsion Labora-
tory, Pasadena, CA, 1 July 1987, pp127-130.

[25] B. R. Fox & K. G. Kempf, “Opportunistic Scheduling for Robotic Assembly,” Proc. of the
IEEE Int. Conf. on Robotics and Automation, St. Louis, MO, 25-28 March 1985,
pp880—885.

[26] M. J. P. Shaw & A. B. Whinston, “Automatic Planning and Flexible Scheduling: A
Knowledge-Based Approach,” Proc. of the IEEE Int. Conf. on Robotics and Automation,
St. Louis, 25-28 March 1985, pp890-894.

[27] O. Z. Maimon, “A Multi-Robot Control Experimental System with Random Parts Arri-
val,” Proc. of the IEEE Int. Conf. on Robotics and Automation, St. Louis, MO, 25-28
March 1985, pp895-900.

[28] R. Cassinis, “Automatic Resource Allocation in Industrial Multirobot Systems,” Proc. of
the IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, 7-10 April 1986,
Pp2012-2017.

[29] O. Z. Maimon & S. B. Gershwin, “Dynamic Scheduling and Routing for Flexible Manu-
facturing Systems That Have Unreliable Machines,” Proc. of the IEEE Int. Conf. on
Robotics and Automation, Raleigh, NC, 31 March~3 April 1987, pp281-288.

[30] R. Akella & B. Krogh, “Hierarchical Control Structures for Multi-Cell Flexible Assembly
System Co-Ordination,” Proc. of the IEEE Int. Conf. on Robotics and Automation,
Raleigh, NC, 31 March-3 April 1987, pp295-299.

[31] B. R. Fox & K. G. Kempf, “Reasoning about Opportunistic Schedules,” Proc. of the IEEE
Int. Conf. on Robotics and Automation, Raleigh, NC, 31 March-3 April 1987, pp1 876-1882.

[32] B. H. Krogh & R. S. Sreenivas, “Essentially Decision Free Petri Nets for Real-Time
Resource Allocation,” Proc. of the IEEE Int. Conf. on Robotics and Automation, Raleigh,
NC, 31 March -3 April 1987, pp1005-1011.

[33] X. Xia & G. A. Bekey, “SROMA: An Adaptive Scheduler for Robotic Assembly Systems,”
Proc. of the IEEE Int. Conf. on Robotics and Automation, Philadelphia, PA, 24-29 April
1988, ppl1282-1287.

[34] O. Berman & O. Maimon, “Cooperation among Flexible Manufacturing Systems,” IEEE
Jour. of Robotics and Automation, RA-2 (1), March 1986, pp24-30.

[35] C. L. Chen et al., “Task Assignment and Load Balancing of Autonomous Vehicles in a

Flexible Manufacturing System,” Proc. of the IEEE Int. Conf. on Robotics and Automa-
tion, Raleigh, NC, 31 March-3 April 1987, pp1033-1039.

96

[36] M. R. Genesereth, “Diagnosis Using Hierarchical Design Models,” Proc. of the National
Conf. on Artificial Intelligence, Pittsburgh, PA, 18-20 August 1982, pp278-283.

[837] R. Davis et al., “Diagnosis Based on Description of Structure and Function,” Proc. of the
National Conf. on Artificial Intelligence, Pittsburgh, PA,18-20 August 1982, pp137-142.

[38] M. Gini & R. Smith, “Monitoring Robot Actions for Error Detection and Recovery,” Proc.
of the 1987 Workshop on Space Telerobotics, Vol. 3, G. Rodriguez, ed., Jet Propulsion
Laboratory, Pasadena, CA, 1 July 1987, pp67-78.

[39] M. Gini et al., “The Role of Knowledge in the Architecture of a Robust Robot Controller,”
Proc. of the IEEE Int. Conf. on Robotics and Automation, St. Louis, MO, 25-28 March
1985, pp561-567.

[40] R. E. Smith & M. Gini, “Robot Tracking and Control Issues in an Intelligent Error
Recovery System,” Proc. of the IEEE Int. Conf. on Robotics and Automation, San
Francisco, CA, 7-10 April 1986, pp1070-1075.

[41] M-Y. Chern, “An Efficient Scheme for Monitoring Sensory Conditions in Robot Systems,”
Proc. of the IEEE Int. Conf. on Robotics, Atlanta, GA, 13-15 March 1984, pp298-303.

[42] M. M. Moya & W. M. Davidson, “Sensor-Driven Fault-Tolerant Control of a Maintenance
Robot,” Proc. of the IEEE Int. Conf. on Robotics and Automation, San Francisco, CA,
7-10 April 1986, pp428-434. '

{43] B. Ward & G. McCalla, “Error Detection and Recovery in a Dynamic Planning Environ-
ment,” Proc. of the National Conf. on Artificial Intelligence, Pittsburgh, PA, 18-20
August 1982, ppl1 72-175.

[44] E. Hudlicka & V. R. Lesser, “Meta-Level Control through Fault Detection and Diagno-
sis,” Proc. of the National Conf. on Artificial Intelligence, Austin, TX, 6-10 August 1984,
ppl153-161.

[45] B. R. Donald, “Planning Multi-Step Error Detection and Recovery Strategies,” Proc. of
the IEEE Int. Conf. on Robotics and Automation, Philadelphia, PA, 24-29 April 1988,
pp892-897.

[46] B. T. Mitchell & D. 1. Kountanis, “A Reorganization Scheme for a Hierarchical System of
Learning Automata,” IEEE Trans. on Systems, Man, and Cybernetics, SMC-14 (2),
March/April 1984, pp328-334.

[47] R. G. Smith & R. Davis, “Frameworks for Cooperation in Distributed Problem Solving,”
IEEE Trans. on Systems, Man, and Cybernetics, SMC-11 (1), January 1981, pp61-70.

97

[48] E. H. Durfee et al., “Increasing Coherence in a Distributed Problem Solving Network,”
Proc. of the 9th Int. Joint Conf. on Artificial Intelligence, Los Angeles, CA, 18-23 August
1985, ppl1025-1030.

[49] R. P. Sobek, “A Robot Planning Structure Using Production Rules,” Proc. of the 9th Int.
Joint Conf. on Artificial Intelligence, Los Angeles, CA, 18-23 August 1985, pp1103-1105.

[50] D. E. Wilkins, “Recovering from Execution Errors in SIPE,” Computational Intelligence,
1 (1), February 1985, pp33—45.

[61] M. Georgeff, “A Theory of Action for MultiAgent Planning,” Proc. of the National Conf.
on Artificial Intelligence, Austin, TX, 6-10 August 1984, pp121-125.

[52] D. McArthur et al., “A Framework for Distributed Problem Solving,” Proc. of the
National Conf. on Artificial Intelligence, Pittsburgh, PA, 18-20 August 1982, pp181-184.

[53] J. Rasmussen, “Skills, Rules and Knowledge; Signals, Signs, and Symbols, and Other
Distinctions in Human Performance Models,” IEEE Trans. on Systems, Man, and Cyber-
netics, SMC-13 (3), May/June 1983, pp257-266.

[54] J. S. Greenstein & M. E. Revesman, “Two Simulation Studies Investigating Means of
Human-Computer Communication for Dynamic Task Allocation,” IEEE Trans. on Sys-
tems, Man, and Cybernetics, SMC-16 (5), September/October 1986, pp726-730.

[55] K. G. Shin & M. E. Epstein, “Intertask Communications in an Integrated Multirobot
System,” RA-3 (2), April 1987, pp90-100.

[56] J. Sharit, “The Use of Measures of Entropy in Evaluating Human Supervisory Control of
a Manufacturing System,” IEEE Trans. on Systems, Man, and Cybernetics, SMC-17 (5),
September/October 1987, pp815-820.

98

Human-Machine System Architecture:
The Design of Cooperative Teams
of Human and Computer Decision Makers

Christine M. Mitchell
Center for Human—-Machine Systems Research
School of Industrial and Systems Engineering
Georgia Institute of Technology
Atlanta, GA 30332
(404) 894-4321
mitchell@chmsr.gatech.edu

December 1988

Abstract

As computer technology becomes both more sophisticated and more affordable, design
issues become more challenging. In complex, dynamic systems, computers can be used to
replace human decision makers, to enhance decision making via decision aiding, or to amplify
human potential by providing the human operator an associate or assistant in the decision
making process. In complex systems, uncertainty associated with system dynamics and the
costs and risks associated with system malfunction make the first option, replacement of the
human decision maker with a computer decision maker, an unrealistic alternative. Recent
research has shown that display enhancement is a design alternative that has proved
successful in reducing operator workload and increasing operator effectiveness. This paper
describes research that examines the feasibility and effectiveness of the third alternative—
design teams of decision makers that include both humans and computers. This design
strategy is sometimes called an operator’s associate. The function of an associate is to provide
intelligent assistance for the human operator of a complex dynamic system. The basis for
intelligent, context-sensitive advice and reminders is the ability of the associate to infer likely
operator intentions in real time. Such human-computer architectures draw heavily on
artificial intelligence models. This paper discusses the general requirements for an operator’s
associate and presents an overview of three components of an on-going research project:
OFMspert (Operator Function Model expert system), a particular architecture of an intelli-
gent operator’s associate; ACTIN, OFMspert’s intent-inferencing mechanism; and Ally, an
implementation of OFMspert with system control functions.

Key Words: Human-machine interaction, operator’s associate, intelligent decision aiding,
supervisory control systems.

99

Introduction

The increasing availability and sophistication of computer technology has contributed to
its proliferation in work environments. Increased automation has brought about major
changes in the role of the human operator in the control of a complex dynamic system. In
particular, the human’s role has shifted from that of a manual controller, where perceptual-
motor skills are emphasized, to a supervisory controller, where cognitive skills such as
planning, monitoring, and decision making are emphasized (Baron, 1984; Rasmussen, 1986;
Sheridan et al., 1988; Wickens, 1984; Woods, 1986).

The consequences of automating a complex dynamic system, and thus changing the role of
the human to that of a supervisory controller, are often problematic. In particular, Wickens
(1984) cites several problems: an increased monitoring load; a “false sense of security”
whereby the operator trusts the automation to such an extent that any human intervention
or checking seems unnecessary; and “out-of-the-loop familiarity” (i.e., as a supervisory
controller who no longer actively controls the system, failure detection, diagnosis, and com-
pensation can take a very long time). These and other difficulties have serious implications
for the ability of operators to cope with emergency situations. However, as Chambers and
Nagel (1985) point out, at present, humans are an irreplaceable part of complex systems.
They note that humans are capable of coping with ambiguity and uncertainty and can make
inductive decisions in novel situations.

Given that the human will remain an integral part of a complex system, a potential
approach to advanced automation is that of “amplifying” rather than automating human
skills (Woods, 1986). Thus, the computer acts as an assistant to the operator, capable of
performing routine control tasks, monitoring human performance, and offering advice. In
this way the operator is “still in the loop.” Chambers and Nagel suggest that this approach
may lead to better human-system performance and enhanced user acceptance.

Computerized advice giving is a particularly important consideration for intelligent
aiding and decision support. In Vicente and Rasmussen’s (1987) taxonomy of decision support
techniques, the authors advocate a blend of approaches that enables the operator to under-
stand the functions of the automated aid. The human operator remains in control of the
system, with an automated assistant that integrates data, matches the problem representa-
tion employed by the user, and gives advice and supporting explanations. Similarly, Wickens
(1984) argues that to promote user acceptance, a cooperative computer system is necessary.
Such a system should perform tasks consistent with the human operator, be “flexibly
available,” and should provide recommendations rather than commands. Woods (1986)
supports the idea of a “joint cognitive system” where the computer aids the user in the process
of decision making rather than merely presenting a solution or recommendation. Thus, the
computer consultant is a resource for the human operator; the human, however, is still in
charge. These ideas form the design philosophy of the operator’s associate.

100

An Operator’s Associate

The concept of a computer-based operator’s assistant or associate has been proposed as
one method to provide an intelligent decision aid for operators responsible for complex
dynamic systems (Chambers and Nagel, 1985; Rouse et al., 1987; Rubin et al., 1988a). An
operator’s associate is a computer-based system that acts as an assistant to the human
operator. Functionally, an operator’s assistant can offer the operator timely advice and
reminders, and, at the operator’s request, assume responsibility for portions of the supervi-
sory control task. The principle is to augment a team of human operators with one or more
computer-based assistants. A human-computer team achieves the goals of improved system
efficiency and safety. System efficiency is achieved by simultaneously reducing the number of
required human operators and incorporating state-of-the-art knowledge-based computa-
tional techniques. System safety and emergency backup are achieved by retaining the human
in the control system to compensate for unexpected events and computer system limitations
(Wickens, 1984).

A human-computer team may address some of the current problems with supervisory
control systems. As systems become more automated, the human operator performs fewer
tasks on a routine basis. In complex dynamic systems, however, safety requires staffing at a
level that can meet the most challenging or threatening abnormal conditions. The result is
often a team of human operators who are rarely challenged and often underutilized. Human
factors research suggests that boredom and underutilization may actually impair operator ef-
fectiveness in abnormal or emergency conditions. A human-computer cooperative team may
reduce some of the tedium. A cooperative system entails addition of a computer-based
decision maker and a concurrent reduction of human personnel to the number of operators
that, in cooperation with the computer-based system, can adequately monitor and control the
system under a wide range of system conditions. Consolidation of decision making into a
team comprised of human operators augmented by a computer-based assistant retains the
human operator as an essential part of the decision making team, yet gives the operator an
assistant to whom tedious tasks can be delegated under normal conditions or who can assume
responsibility for lower priority tasks under abnormal, i.e., high workload, conditions.

An operator’s associate (or, in the case of aviation, a pilot’s associate) (e.g., Chambers and
Nagel, 1985; Rouse et al., 1987) is a fascinating concept. Before implementation, however, a
range of issues must be addressed. These include the types of functions that the associate can
perform, the relationship between the human and computer decision makers (e.g., who has
control or initiative during normal or emergency events), and the interaction between the
human and computer components (e.g., how or when they communicate intentions and
assumptions to each other). There are many ways that these issues can be addressed and
implemented. At this time there is not a correct or best way. Precise specification of the
characteristics of an operator’s associate are open research questions that require principled
implementation and empirical evaluation. This paper describes a particular conceptual
design for an operator’s associate. This design is part of a larger research project that
attempts to build a theory of human-computer interaction in the control of complex dynamic
systems. To evaluate the theory, individual portions are implemented and empirically

101

evaluated. This paper summarizes some basic characteristics that underlie our operator’s
associate design. Then, we summarize the structures that provide the computer with knowl-
edge about the system and operator functions and with the ability to understand the
operator’s current intentions and goals. Finally, we describe the procedures and results of
two empirical studies: one that evaluated the associate’s understanding capabilities and the
second that evaluated the effectiveness of a human-computer team using the associate.

Principles of an Operator’s Associate

Conceptually, an operator’s associate is a dynamic entity with which the operator can
interact with the ease and familiarity of human-to-human interaction. The intent is to design
the computer component of the supervisory control system so that it mimics the functions
that a human assistant performs. The computer component’s knowledge base and user
interaction should permit the system to swiftly assume responsibility for control tasks that
the human operator may delegate and to offer the human operator context-sensitive sugges-
tions, advice, and reminders.

As a software system, the operator’s associate is a stand-alone “expert system” that can
carry out system control functions under the anticipated or planned set of system conditions
and events. As part of a decision-making team, the operator’s associate is designed to
function as a subordinate in the decision-making process. The associate monitors the system
and may offer advice or reminders, but it only assumes control of portions of the system when
the operator explicitly delegates responsibility for specific activities.

The subordinate role of the operator’s associate is a fundamental assumption that charac-
terizes our research project. The rationale for this is that in complex dynamic systems it is
impossible to anticipate and plan for all contingencies (Rasmussen and Goodstein, 1987).
Thus, a computer system cannot act as the principal or sole “expert” in system control. A
human decision maker will always be present and ultimately responsible for effective and
safe system operation. In order to provide the operator with the knowledge and authority
necessary to intervene and control the system during unexpected events, the control system
must be a cooperative system in which computer-based tools and systems are used to enhance
rather than replace human decision-making functions (Woods, 1986; Rasmussen and Good-
stein, 1987). By defining the associate as a stand-alone system, the capabilities of knowledge-
rich computational models such as expert systems can be used to enhance the effectiveness of
system control. By building a cooperative system in which the human is the primary decision
maker, system design ensures that the human responsible for system efficiency and safety
has the necessary knowledge and authority.

The interactive nature of the cooperative control team implies a dynamic allocation of
control functions between the human and computer components. Both the human and
computer are able to perform any control activity. Cooperative design, as proposed in this
design for an operator’s associate, has advantages and costs. The design forecloses the

102

possibility of optimizing control system function by allocating individual tasks and functions
to the entity "most" capable of carrying them out. It does so, however, to insure that the
human operator is integrated into every level of the supervisory control system and is able to
carry out any of the control activities if necessary.

Dynamic task allocation allows the human operator to prioritize system control activities
and take advantage of the computer’s strengths and compensate for the computer’s weak-
nesses in the context of current system state. The human operator, in working with the
computer-based controller, can build an understanding and trust for the range of activities
that the computer handles well, and likewise build an understanding of situations when the
computer fails to understand the nuances of an event or fails to recognize the occurrence of a
novel event. Allowing the operator to build up a thorough understanding of the computer
system’s strengths and weaknesses is an essential part of the cooperative supervisory control
system design.

The intelligence and utility of the operator’s associate rest on its abilities to understand
the operator’s current intentions and to provide context-sensitive assistance in the form of
operator aids (e.g., suggestions, advice, or reminders) or by assuming responsibility given for
portions of the control task. To ensure generalizability, the operator’s associate requires a
well-defined knowledge structure that represents information about the controlled system
and the operator functions, as well as a problem-solving structure to build a dynamic
representation of operator intentions which reflects current system state and recent operator
actions. There are many candidate models that might be used for both of these requirements
(Geddes, 1985; Jones, 1988). This project uses the operator function model (OFM) (Mitchell,
1987) to organize knowledge about the controlled system and related operator functions, and
the blackboard model of problem solving (Nii, 1986) to build a current hypothesis of operator
intentions. The next section summarizes how these models are used in ACTIN, the under-
standing component of OFMspert (Operator Function Model expert system).

ACTIN (Actions Interpreter): OFMspert’s Understanding Component

OFMspert is a research project that explores the design of an operator’s associate for
complex dynamic systems (Rubin et al., 1988a). It uses the operator function model (OFM) as
the knowledge structure to represent operator intentions. OFMspert is a generic architecture
for an operator’s associate. It specifies the individual components necessary to communicate
with the controlled system, to construct representations of controlled system state and
current operator intentions, and to coordinate the timing and communication between these
modules. The details of the architecture are given in Rubin et al. (1988a,1988b). This paper
focuses on ACTIN, the OFMspert component that performs operator-intent inferencing.
While Rubin et al. (1988a) show that the architecture as a whole is feasible, the next step is
to validate that the intent inferencing architecture is also “correct”; i.e., ACTIN can build a
representation of current operator intentions that is consistent with what current operator
intentions actually are. ACTIN uses the problem solving capabilities of a blackboard and the

103

system and operator knowledge derived from an OFM to build and maintain a current
hypothesis about operator intentions given current system state. First, we summarize the
main features of the OFM and the blackboard model of problem solving; then we show their
application in ACTIN.

Operator Function Model

In previous research, the OFM provided a flexible framework for representing operator
functions in the context of a dynamic system (Mitchell and Saisi, 1987). The OFM is a
representation of how an operator might decompose and coordinate system control functions.
Mathematically, the OFM is a hierarchic-heterarchic network of finite-state automata.
Network nodes represent operator activities defined as operator functions, subfunctions,
tasks, and actions. The network is a hierarchy that represents operator functions as the
highest level nodes and decomposes individual operator functions into subfunctions, tasks,
and actions. Actions may be manual or cognitive. Manual actions consist of one or more
system reconfiguration commands. Cognitive actions include information gathering, infor-
mation processing, and decision making; typically, cognitive actions are supported by infor-
mation retrieval requests. Network arcs represent system events or the results of operator
actions that initiate or terminate operator activities. At each level of the hierarchy, there
may be a heterarchy, i.e., a collection of activities that, given the corresponding system
events, are undertaken concurrently. The heterarchy account for the coordination of opera-
tor activities and the operator’s dynamic focus of attention.

Figure 1 depicts an abstract OFM. The highest level consists of five operator functions.
Each function decomposes into multiple subfunctions; likewise, subfunctions decompose into
tasks and tasks into actions. One feature of the OFM is that subfunctions, tasks, or actions
may be performed in support of more than one higher-level activity; which one(s) depends on
current system state. For example, in Figure 1, action 2 may be undertaken (or performed) to
support either task 2 or 3, or possibly both. This context-sensitivity is an important attribute
in applying the OFM to intent inferencing.

The OFM is a prescriptive model that specifies nondeterministically a set of plausible
operator functions, subfunctions, tasks, and actions given current system state and recent
operator actions. As such, it provides a structure to represent knowledge about the system
and operator function and a mechanism to define expectations of operator activities given
current state. For example, in considering the OFM depicted in Figure 1, if system event a
occurred, it is reasonable to expect operator function 2 to become active.

Blackboard Model of Problem Solving

In general, a model for problem solving “provides a conceptual framework for organizing
knowledge and a strategy for applying that knowledge” (Nii, 1986). A problem-solving model
specifies a scheme for knowledge representation and a control strategy in order to construct
a solution to the problem. ACTIN uses the HASP blackboard model of problem solving (Nii et
al., 1982). The HASP blackboard is one of the few artificial intelligence systems that
explicitly addresses real-time hypothesis formation in dynamic environments.

104

The blackboard model of problem solving consists of three components: the blackboard,
the knowledge sources, and the blackboard control (Nii, 1986). The blackboard is a data
structure on which the current best hypothesis of the solution is maintained and modified.
The hypothesis is represented hierarchically, at various levels of abstraction, and evolves
incrementally over time as new data become available or as old data become obsolete.
Domain-specific knowledge to construct and update the blackboard is contained in knowledge
sources. Knowledge sources are logically independent pieces of information that perform
several diverse functions, e.g., post information at appropriate levels of the blackboard,
connect information between levels, and assess the state of the current hypothesis. Black-
board control applies knowledge sources opportunistically with both top-down and bottom-up
reasoning, depending on what is more appropriate in the current context.

As a problem-solving model, the HASP blackboard is very compatible with both the
system and operator function knowledge represented in the OFM. Both models represent
hypotheses hierarchically. The blackboard hierarchy offers a mechanism to maintain both
heterarchic and hierarchic information about operator activities contained in the OFM
nodes. The blackboard knowledge sources provide a conceptually efficient structure to
maintain much of the domain-specific knowledge contained in the OFM arcs. The opportun-
istic control strategy offers the flexibility of both event-driven and goal-driven reasoning.
ACTIN, OFMspert’s intent inferencer, combines domain knowledge from the OFM and the
problem-solving framework of the blackboard model to dynamically build and maintain a
hypothesis about current operator intentions.

ACTIN’s Structure

Like all blackboard problem-solving systems, ACTIN consists of a blackboard data struc-
ture, knowledge sources, and a blackboard control mechanism. Figure 2 illustrates ACTIN’s
architecture. The blackboard data structure hierarchically represents hypothesized current
operator intentions as a collection of operator goals decomposed into related plans, tasks, and
actions. The goal-plan-task-action representation corresponds to the function-subfunction-
task-action OFM hierarchy. Goals are currently instantiated functions, plans are currently
instantiated subfunctions, and so forth. In some respects, ACTIN is a process model that
uses the blackboard problem-solving method to build a dynamic representation of current
operator intentions based on the static information about operator activities contained in the
OFM (Wenger, 1987). Figure 3 depicts the four-level hierarchy of ACTIN’s blackboard.

Knowledge sources contain domain-specific knowledge to construct, update, and assess
the blackboard data structure. Knowledge sources that construct and update the blackboard
are of two types: model-driven and data-driven. Model-driven knowledge sources use the
OFM knowledge to instantiate hypothesized goal-plan-task (GPT) structures based on
system events and recent operator actions. For a system-triggering event, defined by OFM
arcs, a knowledge source may post a goal, one or more plans, and associated tasks on the
respective blackboard levels. The sets of goals, plans, and tasks are defined by network nodes
in the OFM. For example, a system failure may cause a knowledge source to post a GPT
structure that hypothesizes a new operator goal (together with its associated plans and tasks)
to compensate for the observed failure. Referring to Figure 1, system event a triggers instan-
tiation of function 2 as a goal with its related plans and tasks.

105

Data-driven knowledge sources post observed operator actions on the ACTIN blackboard
at the lowest level of abstraction and attempt to link these actions to currently hypothesized
GPT structures. By linking an observed action to one or more tasks, ACTIN infers the intent
of (i.e., understands) the action. If an action is not linked, it is not currently considered to be
understood. The knowledge of what actions support which tasks is derived from the OFM.

Data-driven knowledges sources have the property of maximal connectivity; they connect
an action to all possible tasks that the action can support. Maximal connectivity gives ACTIN
flexibility in subsequent interpretation of operator actions and the ability to maintain
multiple, competing hypotheses - much like a human operator might have.

Although data-driven knowledge sources typically connect observed actions to previously
hypothesized GPTs, some data-driven knowledge sources can themselves hypothesize and
construct a GPT. That is, using a collection of operator actions, some knowledge source can
consider the actions as a set to infer a new GPT. This capability allows ACTIN to infer
operator intentions with both top-down and bottom-up strategies.

Assessment knowledge sources determine the extent to which operator actions support
ACTIN’s currently hypothesized operator goals, plans, and tasks. Assessments are always
made in the context of a particular GPT and are the mechanism that ACTIN uses to create a
context for possible advice or reminders.

Like HASP, ACTIN's blackboard control consists of a hierarchy of knowledge sources: the
strategy, activators, and specialists. The strategy knowledge source examines three lists of
events maintained by the blackboard in order to guide its focus of attention. After selecting a
type of event on which to focus, the strategy knowledge source invokes an appropriate
activator knowledge source, which in turn chooses specialist knowledge sources to process
the event. Specialist knowledge sources are the only knowledge sources that can directly
modify the blackboard data structure. The sets of assessment, model-driven, and data-driven
knowledge sources described above comprise ACTIN’s specialist knowledge sources.

The strategy knowledge source uses three lists to coordinate blackboard activity: the
clock-events list, the problems list, and the events list. The clock-events list contains events
scheduled for future execution. The problems list saves anomalous information (e.g., actions
that were uninterpretable when they occurred). The events list contains all new events that
must be processed immediately by the blackboard.

GT-MSOCC: An Application Domain

In order to test the modeling techniques and structural components of OFMspert, an
OFMspert of the Georgia Tech Multisatellite Operations Control Center (GT-MSOCC) was
implemented. GT-MSOCC is an interactive, real time simulation of the NASA Multisatellite

106

Operations Control Center (MSOCC), a NASA ground control station for near-earth satellites
located at Goddard Space Flight Center in Greenbelt, MD (Mitchell, 1987). In GT-MSOCC,
an operator monitors the data transmitted by satellites to insure data integrity, compensates
for equipment and schedule failures, and handles system requests.

The GT-MSOCC system and the duties of the GT-MSOCC operator are described briefly
below. More detail is available in Mitchell, 1987; Mitchell and Saisi, 1987; and Mitchell and
Forren, 1987.

The GT-MSOCC System

GT-MSOCC supports 16 near-earth satellites and the Space Shuttle. Different satellites
have different requirements for the number and types of equipment necessary to capture and
process their telemetry data. In general, all satellites use several NASA communication lines
(NASs) to transmit their data through a variety of computer and communication networks for
data processing and recording. These configurations may include a RUP (Recorder Utility
Processor), a TAC (Telemetry and Command Computer), one or more APs (Application
Processors), a GW (GateWay network), a CMS (Command Management System), and a VIP
(Virtual Interface Processor). Finally, data are sent to an MOR (Mission Operations Room)
for satellites or an SPF (Shuttle Payload Facility) for the Space Shuttle. These are space-
craft-specific control rooms where operators monitor and control the spacecraft. Figure 4 il-
lustrates this system. Note that RUPs, CMSs, GWs, and VIPs do not transmit data to subse-
quent components; rather, they are “endpoints” in the equipment configurations.

The data transmitted by GT-MSOCC satellites consist of telemetry (science) blocks and
two types of error blocks (polynomial errors and sequence errors). The GT-MSOCC operator
is responsible for monitoring the rates of transmission and knows about the different
expected block and error rates at each point in the equipment string. The expected rate
depends on the type of equipment and the particular arrangement of the entire equipment
configuration for a specific satellite.

The GT-MSOCC operator workstation consists of three display monitors and one key-
board (see Figure 5). The center screen shows the hardware status and mission configuration
display, as illustrated in Figure 6. This display shows the hardware status of all GT-MSOCC
equipment together with currently configured missions and their supporting communication
and computer equipment. For example, in Figure 6 the ERBE spacecraft is currently
supported by NAS 18, NAS 21, NAS 29, RUP 2, TAC 4, AP 6,GW1,CMS 2, VIP 1, and MOR
5.

The right display gives data transmission information. The operator can request various
telemetry pages which give the data and error counts for individual pieces of equipment. The
left display is used for schedule information. In addition to the MSOCC schedule page, which
shows the imminent missions and their associated equipment, the operator can request
schedules for entire classes of equipment (e.g., the request for the “TAC avail” page shows a

107

graphical representation of schedules for all TACs and APs) or individual mission or equip-
ment schedules.

GT-MSOCC Operator Functions

At the highest level of the GT-MSOCC operator function model are major operator
functions and the system events that cause the operator to transition among functions (see
Figure 7). This level of description represents operator goals in the context of current system
state. The arcs define system events that trigger a refocus of attention or the addition of a
function to the current set of operator duties.

The default high-level function is to control current missions. This involves the subfunc-
tions of monitoring data transmission and hardware status, detection of data transmission
problems, and compensation for failed or degraded equipment. Each subfunction is further
defined by a collection of tasks, which in turn are supported by operator actions (system
reconfiguration commands or display requests).

System-triggering events cause the operator to focus attention on other high-level func-
tions. An unscheduled support request causes the operator to shift to the “configure to meet
support requests” function. An error message from the automatic scheduler causes the
operator to transition to the function to compensate for the automatic schedule failure. A
request to deconfigure a mission causes the operator to shift to the function of deconfiguring
a manual mission configuration. Finally, the operator may engage in long-term planning in
the absence of other system-triggering events. Upon the termination of these other functions,
the operator resumes the default control of current missions function. Functions may be
terminated by their successful completion or the determination that they cannot be com-
pleted.

GT-MSOCC Implementation

GT-MSOCC runs on a VAX 11/780 under the Berkeley UNIX operating system (BSD 4.3).
Three InteColor 2400 display terminals and one keyboard are used for the operator interface.
OFMspert was originally implemented in Smalltalk/V on a PC AT, 12 mHz machine.
Currently, OFMspert runs in Smalltalk 80 on a Macintosh II. OFMspert communicates with
the VAX via an RS232 communications port. This configuration is shown in Figure 8. The
details of OFMspert implementation are discussed in Rubin et al., 1988a and 1988b.

ACTIN for GT-MSOCC

The organization of GT-MSOCC goals, plans, tasks, and actions are defined by the GT-
MSOCC OFM (Figure 7). Given system-triggering events, ACTIN’s model-driven knowledge
sources post the appropriate goal, plan, and task (GPT) structures on the blackboard. When
operator actions occur, ACTIN’s data-driven knowledge sources post actions on the black-
board and attempt to “connect” the actions to tasks which they support. This “connection”

108

between actions and tasks defines ACTIN’s intent inferencing capability. The knowledge of
appropriate inferences of intent is contained in a data structure that matches actions to task
types. Data-driven knowledge sources consult this structure to determine task type(s) that a
current operator action can support. They then search the blackboard’s task level of abstrac-
tion for those types and connect the action to all appropriate tasks.

A concrete example from GT-MSOCC illustrates ACTIN’s dynamic construction of opera-
tor intentions. The resulting blackboard from the following scenario is shown in Figure 9.
When a particular satellite (e.g., Planetary Mission [PM]) is configured automatically,
ACTIN’s model-driven knowledge sources post the goal to control the current mission (CCM)
for PM. This goal is comprised of two plans: to monitor software (i.e., data transmission)
(MSW) and to monitor hardware status (MHW). Each plan is composed of one or more tasks.
The monitor software plan consists of two tasks: to check data flow at the MOR (CMOR) and
to check data flow at endpoint equipment (CEND). The monitor hardware plan consists of the
single task to check hardware (CHW). This entire GPT structure defines the default control
of current mission function prescribed by the OFM. When PM is configured, ACTIN’s knowl-
edge sources retrieve the control of current mission GPT structure, fill in mission-specific in-
formation (e.g., the name of this particular mission is PM), and post the structure on the
blackboard. Now ACTIN’s blackboard contains model-derived expectations of operator
actions. After some time, one of the components used by PM experiences a hardware failure.
The component in this example is RUP2. Upon the occurrence of this triggering event,
ACTIN’s model-driven knowledge sources post a plan to replace the failed component, along
with the four associated tasks of finding a currently available replacement (FCUR), finding
the duration of the mission (FDUR), finding an unscheduled replacement (FUSC), and
executing the replace command (XRPL). The operator then requests the schedule for RUP1.
ACTIN’s knowledge sources determine that a request of this type supports a “Find Unsched-
uled” (FUSC) type of task for RUPs, so this action is posted and connected to the FUSC task
associated with the RUP2 replace plan.

The evaluation of operation performance is performed by knowledge sources that assess
the degree to which operator actions support current tasks (and by extension, plans, and
goals). ACTIN schedules assessments periodically in the context of particular goals or plans.
In the example shown in Figure 9, ACTIN schedules separate assessments for the control of
current mission goals for PM, GEO, and LNSAT, and the replace plan for RUP2. Assessments
note the number of supporting actions and the time at which those actions occurred. From
Figure 9, the assessment for PM would note that the CMOR task is supported by two actions
and the CEND task is supported by one action. Similarly, GEQO’s assessment would state that
two actions support the CMOR task and one action supports the CEND task. LNSAT’s as-
sessment would state that one action supports the CMOR task. RUP2’s replace plan assess-
ment would state that one action supports the FDUR task and one action supports the FUSC
task.

To summarize, the proposed model for intent inferencing uses the OFM methodology to
postulate operator function, subfunctions, and tasks on the basis of current system state and

109

observed operator actions. This model has been implemented using a blackboard architec-
ture. This structure, of which the scenario described in this section is an example, defines the
context for intent inferencing. The OFM and its implementation in ACTIN is an example of
“the middle ground” in theory construction in cognitive science (Miller, Polson, and Kintsch,
1984). The theory has well-defined structures and processes to “support both the instantia-
tion of the theory as an executable computer program and qualitative experimental studies of
the theory” (Miller, Polson, and Kintsch, 1984, p. 13). The next section summarizes the
procedure and experimental results for the validation of ACTIN.

Validation of Intent Inferencing

Procedure

Validation of intent inferencing assures that the system is correctly inferring the inten-
tions of the human operator. Within the context of the OFM structure of intentions, this
means that the system infers support for the same tasks (and by extension, plans, and goals)
as the human, given the same set of operator actions. The “human” in this case can be a
human-domain expert performing a post-hoc analysis, or the human operator giving an (on-
line) account of intentions. The experimental validation of ACTIN’s intent inferencing was
conducted in two studies. In Experiment 1, a domain expert’s interpretations of operator
data were compared to ACTIN’s interpretations of those same actions on an action-by-action
basis. In Experiment 2, concurrent verbal protocols were collected from GT-MSOCC opera-
tors while they were controlling GT-MSOCC. Statements of intentions for each action were
compared to ACTIN’s interpretations. Thus, the proposed two-part framework for the valida-
tion of intent inferencing is 1) comparison of expert and ACTIN analyses; and 2) comparison
of concurrent verbal protocols and ACTIN analyses (see Jones, 1988, for more detail).

For the first experiment, a domain expert hypothesized intentions from 30 hours of data
from 10 GT-MSOCC operators. The data from these subjects consisted of various log files that
detailed the events that occurred during the experimental sessions. Perfect state information
(i.e., what missions were currently configured, what equipment failures existed) was avail-
able, as well as every action by the operator. The domain expert used these log files as the
basis for interpretations.

The second approach to the validation of intent inferencing made use of verbal dataasa
measure of subjects’ intentions in controlling GT-MSOCC. The data in Experiment 2 consist
of concurrent verbal protocols from two subjects for seven GT-MSOCC sessions.

Summary of Results

Tables 1 and 2 contain a summary of experimental results. For each experiment, these
tables show the percent of actions that were interpreted by ACTIN in the same way as the
domain expert (Experiment 1) or the subjects in their verbal protocols (Experiment 2).
Overall, ACTIN did a good job of inferring intentions for GT-MSOCC operators. Certain
classes of actions were relatively straightforward to interpret and, thus, showed strong

110

agreement between ACTIN and human interpretations. Other classes of actions showed
marked differences between ACTIN and human interpretations. In particular, some actions
were interpreted as supporting tasks that were not modeled in the OFM used by ACTIN.
Some mismatches can be remediated by relatively simple extensions to the GT-MSOCC
OFM. Some mismatches are due to the difficulty that the OFM model has in accounting for
less structured or reactive functions like browsing or long-term planning. The latter are not
easily modeled, as the structure of such a function within the OFM framework is not clear. A
detailed discussion of the experiments and interpretations can be found in Jones, (1988), and
dJones et al., (1988).

ALLY: OFMspert With Control Properties

The most recent OFMspert research examined the use of OFMspert as the computer
component of cooperative team of supervisory controllers (Bushman, 1988). OFMspert was
modified to provide a user interface that allowed a human operator to request OFMspert’s
assistance and allowed OFMspert to communicate any advice or suggestions to the operator.
In addition, OFMspert was modified to allow it to control the system at the human operator’s
request. Ally is the software system that was created by modifying OFMspert with a user
interface and system control capabilities.

Ally Structure

Figure 10 depicts Ally’s user interface. The interface was designed to support multiple
operator functions at various levels of aggregation. The operator used the rectangular
buttons to request assistance from Ally. Each button, when selected by the operator, dis-
played one or more context-sensitive submenus that allowed the operator to further specify
the amount of help desired. The definitions of the buttons and the associated submenus were
obtained from the GT-MSOCC OFM. The buttons themselves corresponded to the high-level
operator functions. The submenus reflected associated subfunctions and tasks.

To test the effectiveness of Ally with a specific interface, an experiment was conducted in
which 10 subjects controlled GT-MSOCC with both a human assistant and with Ally. The
teams controlled the system for four sessions with each associate. A range of performance
measures was used. The results, consistent over all measures, showed no performance
differences between the teams composed of two human operators and the teams composed of
a human operator and Ally. Figure 11 provides an example of the data gathered in this
experiment. As the figure shows, there was a trend that indicated that performance with Ally
was better than that with the two-person team; however, this trend was not statistically
significant. Interestingly, although subjects liked Ally, they often said they preferred a
human assistant. Also of interest are the differences in the style of interaction between the
two experimental conditions. Preferences for a human or computer associate may be linked to
task-oriented versus social-oriented styles of interaction (Bales, 1958).

111

Conclusions

The notion of a computer-based operator’s associate is a conceptually appealing philoso-
phy that has the potential to structure the design of human-computer architectures in the
control of complex dynamic systems. The OFMspert research provides some initial data on
design, implementation, and evaluation of this concept. Thus far, the results are encourag-
ing. Future results will further explore the issues of human-computer communication in co-
operative teams and the potential to use an operator’s associate as a tutor for novice
operators whose role can change into an associate or an assistant as the operator’s skills
evolve.

112

Figure 1. A Generic Operator Function Model

113

clock
events
list

Strategy

problems
list

events
list

KS
Activator
KS
Specialist
KS

Specialist
KS

Blackboard data structure

GOALS

PLANS

TASKS
ACTIONS

Figure 2. ACTIN's Architecture

114

- . \\\\\\\\\
A&v\\\\\;
\I-'Q\\\~\\\\\\

9yl

N

-
\\\\\\\‘\\\\\\\\\\ ‘

s s s’
il
pr st
rose,
\‘\\\\\\\‘\‘\\\“\ ‘
',

SRl LLLL LTI IV PV P rs

st

ey r?”

/'.\\\\s\\\!

N

- (eete,,,)
/‘\\.\\\\ﬁ\

b

7 \\\

s,
‘24,,,
44, s,
\\\
20y,
s,
0,

L L LL L L L L L L L L L L L L L

®

L L L L L L L L L L L L L L L L L LS

AL
model
derived
PLANS
model
derived

T
model
derived

ACTIONS
data
derived

Figure 3. ACTIN's Intent Inferencing Structure
115

Satellite
NASA
Communication
Lines
(Nascom
Lines)
Groundstation

(Greenbelt, MD)

Recorder

Utility
Processor
Application
Processor
Telemetry &
Command
Computer

Mission Operations Rooms
(Shuttle Payload Facility)

MOR
(SPF)

Virtual

Interface
Processor

Figure 4. Multisatellite Operations Control Center

116

TELEMETRY STATUST3UALITY 00.18 2* 30

NAME SITE TIME DOWN TYPE BG TEP FLAGS

ERBE
ERBE
ERBE

GSAT
GSAT
GSAT

HAW
HAW
HAW

MAD
MAD
MAD

Figure 5. GT-MSOCC Workstation

00 20 23 ST 4504 002 00045
00 20 23 ST 5100 004 00051
00 20 23 ST 5700 005 00056

00 22 50 PB 0200 001 00002
00 22 50 PB 0402 002 00004
0022 50 PB 0599 003 00006

| Msocc coNPGURATION & STATUS |

=1,

MG | Q :”-i_—] A AP USERMOR
@@ 1_11‘_1 @-—Q . 2 ——@ {ERBE 05|
- L7 O [1
O] L7 O [l
D0 [T O [I
DO L7 O [l
1] [T O | 1
[- L7 O [|
8 LT o

O 7/

(- =2/ ¢
:o?:oz]l:oajllluig g [—?:arj@\‘/ FREEMORS
os|jo7}los]los] |10 N = GNZ VDEIE]
mjaiaimin vie o]] [oe]
el]G] o] []] rreewers FREE TACS meears (1)
EEEEER| < |07 0 0 0 |mEE
BEOECEE| < |6770747] 0 O O |EEE

Figure 6. GT-MSOCC Center Screen

117

o Nk

Configure
to meet

support requests

Compensate
for automated
schedule failures

Control of
Current missions

7
5
6 8
Plan to

Deconﬂg.ur.e compensate for known
manual mission future problem

configuration

Error message received from the automatic scheduler.

Compensation completed or unable to compensate.

Unscheduled support request received by the operator.

Request configured or unable to meet the request.

Message received that a manually configured mission is completed.

Deconfiguration completed.

Operator summons schedule and/or mission template pages when no
other triggering event takes place.

Terminate planning function.

Figure 7. GT-MSOCC Functions

118

Controlled System

Figure 8. OFMspert-GT-MSOCC Hardware Configuration

119

Telem is interpreted as supporting CMOR for PM, CMOR for GEO

GwTelem is interpreted as supporting CEND for PM, CEND for GEO

Telem is interpreted as supporting CMOR for PM, CMOR for GEO,
CMOR for LNSAT, FDUR for RUP2 :

Rup1Sched is interpreted as supporting FUSC for RUP2

Unable to connect Nas§Sched

Figure 9. Final Blackboard

321/1 9:1 8:48

Mission Equipment
nni' Support Support
.iI" Check Replace
1€ Gelect a Mission Support

I —c Reconfigure
§ AE-QL
- S Support
mf SS PP
De ALL
Support INTERRUPT

K I'S/*”.'*-'?*
321/19:14:58: Real Operation Resumed
321/19:17:06: AE-QL is due down at 321/19:29:00

321/19:18:55: TAC4 is not available for 3 minutes

Figure 10. Example of Ally's User Interface

121

Correct Responses

3.0+

2.8

2.6

24 -

2.2

—@— Human Associate
—f— ALLY Associate

2.0 ———— T Y

Session

Figure 11. Mean Number of Correct Responses to Support Requests by Session

Table 1. Experiment 1: Average Percentage of Equivalent Interpretations between ACTIN
and a Human Domain Expert Ordered By Rank

Configure 100%
Endpoint telemetry page requests 100
Deconfigure 97.1
Telemetry page requests 96.3
Answer 914
Reconfigure 91.2
Interior telemetry page requests 87.1
Replace 75.3
Mission schedule page requests 66.7
MSOCC schedule page requests 503
Equipment schedule page requests 218
Events page request 17.7
Pending page request 16.7

Table 2. Experiment 2: Proportions of Equivalent Interpretations between ACTIN and
Verbal Reports

Subject

21 2
Telem 30/42 * 40/58 *
Endpoint 33/39 * 26/38 *
Telem
Interior 15/19 * 26/29 *
Telem
MSOCC 36/45 * 22/31 *
Sched
Equip 4/4 25/31 *
Sched
Mission 8/8 * 517
Sched
Events 11/18 15
Pending 0/3 4/6
Deconfig 3131 * 30/30 *
Reconfig 75 6/8
Config 5/5 * 3/3
Replace 23/23 * 26/29 *
Answer 12/12 * 12713 *

* Significantly good match
Significantly poor match

References

Bahill, A. T., Jafar, M., and Moller, R. F. 1987. Tools for extracting knowledge and validating
expert systems. Proceedings of the 1987 IEEE International Conference on Systems, Man and
Cybernetics, 2: 857-862. New York:IEEE.

Baron, S. 1984. A control theoretic- approach to modeling human supervisory control of
dynamic systems. In W. B. Rouse (Ed.), Advances in Man-Machine Systems Research,1:1-47.
Greenwich, CT: JAI Press, Inc.

Bushman, J. B. 1988. Identification of an operator’s associate model for cooperative supervi-
sory control situations. Ph.D. dissertation (in progress), Center for Human—Machine Systems
Research, School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA.

Chambers, A. B. and Nagel, D. C. 1985. Pilots of the future: human or computer? Communi-
cations of the ACM 28, No. 11:1187-1199.

Geddes, N. D. 1985. Intent inferencing using script and plans. Proceedings of the First
Annual Aerospace Applications of Artificial Intelligence Conference, Dayton, OH. Jones, P.
M. 1988. Constructing and validating a model-based operator’s associate for supervisory
control,. Report No. 88-1, Center for Human-Machine Systems Research, School of Industrial
and Systems Engineering, Georgia Institute of Technology, Atlanta, GA.

Jones, P. M., Mitchell, C. M., and Rubin, K. S. 1988. Validation of intent inferencing by a
model-based operator’s associate, submitted for publication.

Kim, J., Gingerich, W. J., de Shazer, S., Kim, P., and 1. Koh. 1987. BRIEFER: An expert
system for brief therapy. Proceedings of the 1987 IEEE International Conference on Systems,
Man and Cybernetics, 2: 853-856. New York: IEEE.

Miller, J. R., Polson, P. G., and Kintsch, W. 1984. Problems of methodology in cognitive
science. In W. Kintsch, J. R. Miller, and P. G. Polson (Eds.), Method and Tactics in Cognitive
Science, 1-18. Hillsdale, NJ: Lawrence Erlbaum Associates.

Mitchell, C. M. 1987. GT-MSOCC: A research domain for modeling human-computer interac-
tion and aiding decision making in supervisory control systems. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-17, 553-570.

Mitchell, C. M. and Forren, M. G. 1987. Multimodal user input to supervisory control
systems: Voice-augmented keyboard. IEEE Transactions on Systems, Man, and Cybernetics,
SMC-17, 594-607.

Mitchell, C. M. and Saisi, D. L. 1987. Use of model-based qualitative icons and adaptive
windows in workstations for supervisory control systems. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-17, 573-593.

Nii, H. P. 1986. Blackboard systems, AI Magazine, 7-2 and 7-3.

Nii, H. P., Feigenbaum, E. A., Anton, J. J., and Rockmore, A. J. 1982. Signal-to-symbol
transformation: HASP/SIAP case study. Heuristic Programming Project, Report No. HPP-
82-6, Heuristic Programming Project, Stanford University, Stanford, CA.

Rasmussen, J. 1986). Information Processing and Human-Machine Interaction: An Approach
to Cognitive Engineering. New York: North-Holland.

Rasmussen, J. and Goodstein, L. P. 1987. Decision support in supervisory control of high-risk
industrial systems. Automatica, 663-671.

Rouse, W. B., Geddes, N. D., and Curry, R. E. 1987. An architecture for intelligent interfaces:
Outline of an approach to supporting operators of complex systems Human-Computer
Interaction,Vol. 3, No. 2.

Rubin, K. S., Jones, P. M., and Mitchell, C. M. 1988a. OFMspert: Inference of operator
intentions in supervisory control using a blackboard architecture. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-18, No. 4..

Rubin, K. S., Jones, P. M., Mitchell, C. M., and Goldstein, T. C. 1988b. A Smalltalk
implementation of an intelligent operator’s associate Proceedings of the 1988 Conference an
Object-Oriented Programming Systems, Languages, and Applications, 234-247.

Sheridan, T. B., Charny, L., Mendel, M. B. and Roseborough, J. B. 1988. Supervisory control,
mental models, and decision aids. Manuscript, Massachusetts Institute of Technology,
Cambridge, MA.

Vicente, K. J. and Rasmussen, J. 1987. The cognitive architecture of decision support systems
for industrial process control. Presented at the First European Meeting on Cognitive Science
Approaches to Process Control, Marcoussis, France.

Wenger, E. 1987. Artificial Intelligence and Tutoring Systems: Computational and Cognitive
Approaches to the Communication of Knowledge. Los Altos, CA: Morgan Kaufmann.

Wickens, C. D. 1984. Engineering Psychology and Human Performance. Columbus, OH:
Charles Merrill.

Woods, D. D. 1986. Cognitive technologies: The design of joint human-machine cognitive
system., The AI Magazine, 86-92.

Acknowledgements

This research was supported by NASA Goddard Space Flight Center Contract Number
NAS5-28575 (Karen Moe and Walt Truszkowski, technical monitors) and by NASA Ames
Research Center Grant Number HAG-413 (Dr. Everett Palmer, technical monitor). Also, this
paper summarizes the intellectual endeavors of many people in the Center for Human—-Machine
Systems Research, particularly J. B. Bushman, P. M. Jones, and K. S. Rubin.

Blank Page

Toward A Learning Robot

Tom M. Mitchell
Matthew T. Mason
Alan D. Christiansen

Computer Science Department
Carnegie-Mellon University
Pittsburgh, PA 15213

15 January 1988
submitted to the Fifth International Conference on Machine Learning

Keywords: Learning and planning, Explanation-based methods, Empirical evaluation

Abstract

The problem of robot manipulation—of planning how to successfully grasp, push, and pull
arbitrary objects to reconfigure them as desired—is an unsolved problem in robotics. We are
presently developing a hand-eye system which is intended to begin with simple knowledge
about how to manipulate its world, and to itself acquire increasingly refined knowledge about
manipulation in specialized contexts. For example, the robot may begin with knowledge such
as “to move an object somewhere to the right, push from some point on the left,” and may
refine the knowledge through experience into more specific, more precise assertions such as
“to move object which is in contact with a wall to the right in a straight line, push from a point
on the left which is 2/3 of the distance from the wall.” The learning method is a type of
explanation-based generalization driven by an incomplete theory of the domain—in particu-
lar by a theory for qualitative differential analysis. This paper presents an approach to
constructing a planning/learning system of this kind, and is primarily organized around a
hand-generated example of the type of behavior our system is intended to exhibit.

1This research has been supported by NASA Ames under grant NCC 2463, and in part by NSF under grant IRI-
8740522,

129

Introduction

The long-term goal of the work reported here is to develop robots capable of planning and
acting in worlds about which they have only an incomplete theory, and capable of automati-
cally refining their theory of the world as a result of such attempts. As a problem in machine
learning, this research can be viewed as a case study in automated theory refinement. As a
problem in robotics, the motivation for such research is straightforward: Current robotic
systems are successful only in very carefully engineered environments in which it is feasible
for the robot to know precisely the current state of its world, and in which the robot can
predict accurately the results of each action that it might choose to perform. We seek more
robust systems which will be able to operate in less carefully engineered domains. Imagine,
for example, asking a robot to “go look under that rock to see what is underit.” In such a task,
the robot cannot know the precise state of the world in advance (e.g., What is the size and
shape of the portion of the rock which is underground?). Neither will it know with precision
the consequences of actions it might perform (e.g., If it attempts to push the rock, will it
budge?).

Our approach to extending the robustness of robotic systems is to allow the robot to plan
relative to its approximate theory of its world and to monitor the execution of its plans.
Should the robot observe that its plan is not unfolding as intended, it will seek to construct a
plausible explanation of the possible causes of this deviation. This explanation serves as the
basis for devising an error recovery strategy. It also serves as the basis for explanation-based
generalization of the empirical observation, which allows refining the initial incomplete
world theory.

The following sections describe in greater detail the approaches to planning with incom-
plete theories, plan execution monitoring, explanation-based error recovery, and automatic
theory refinement. These ideas are being explored in the context of a simple hand-eye system
which is described in the following section. The subsequent section describes the approach
and illustrates it with a detailed, manually generated example trace. The final section sum-
marizes the major aspects of our approach, as well as some issues raised by our initial
explorations.

The Hand-Eye Testbed

Our research on learning robots is being conducted within a robot testbed based on a
Puma 560 manipulator arm and IRI D256 vision system. Both the arm and the vision system
are controlled by special-purpose processors that communicate with a Sun workstation
running Common LISP. Common LISP functions have been developed for requesting particu-
lar arm movement, and for querying the vision system regarding the current state of the
robot’s world.

The problem of general manipulation is a major unsolved problem in robotics, and the

130

task of planning, executing, monitoring, and acquiring robot manipulation strategies is a rich
area for study (see, e.g., [2], [8], [4], [5], [6], [1]). The difficulty of robot manipulation stems
from both the lack of observability of the world and the complexity of the computations
involved. Consider, for example, the difficulty of predicting something as simple as the exact
trajectory of a block lying on the table when it is pushed by a finger from a particular point in
a particular direction. The task would be burdensome, but possible if one knew the exact
force applied by the finger, the coefficients of friction between the finger and block and
between the block and table, the precise points of contact between the block and table, the dis-
tribution of mass within the block, etc. In fact, many of these features are unobservable in
general, so the task is inherently rife with uncertainty. For these reasons, we find robot
manipulation an interesting domain for studying problems of planning, error recovery, and
learning under the assumption that the agent possesses only an incomplete theory of its
domain.

In order to avoid difficult issues of automated perception, we have chosen a very simple
world for the robot. It manipulates flat objects lying on a table, by pushing these objects. The
objects may collide as they are pushed, but are never picked up off the table. This essentially
restricts the robot to operating in a two-dimensional world and allows us to use simple vision
algorithms to obtain reliable feedback regarding the positions, orientations, and identities of
each object on the table with a delay of approximately 5 seconds. The present testbed provides
a 2D world with friction (among the objects and the table), but no gravity (the objects remain
in position unless pushed). We intend to alter these parameters as the project progresses,
adding gravity to the 2D world by tilting the table so that objects slide to the bottom and
removing friction by utilizing a table full of holes connected to an air pump so that the objects
float on a cushion of air above the table. Thus, we will be able to study a variety of worlds with
and without friction or gravity and study tasks such as constructing two-dimensional
structures including arches, towers, and the like.

Approach

This section discusses the interrelated problems of planning, execution monitoring, error
recovery, and theory refinement. Here the primary activity of the robot agent is to plan and
execute actions to achieve its goals. Learning occurs in the event that planned actions fail to
achieve the desired goal when they are executed. In this case, the agent attempts to explain
to itself the plausible cause of the failure (in terms of a predefined theory for qualitative
analysis of observed motions). This explanation is then used both for suggesting error
recovery strategies and for generalizing from the observed failure to provide a more refined
model of the offending action. A key assumption of the approach is that it is feasible to provide
the agent a strong enough theory of its world that it can construct plausible explanations of
observed failures, even though this theory may not be strong enough to predict and plan how
to avoid such failures ab initio.

The discussion in this section presents the approach that we are presently implementing

131

and illustrates it in terms of a manually derived trace based on the simple planning problem
shown in Figure 1. Here the robot has the goal of moving square SQ1 into the corner and
begins with the following incomplete knowledge about the Push operation:

To move an object somewhere to the right
Push from somewhere on the left

The following subsections discuss how this knowledge can be used to produce a plausible
plan for achieving the robot’s goal and how the observed failure of the plan can lead to
refining this initial knowledge to the following more specialized and more precise assertion:

To translate square SQ1 straight to the right along WALL2
Push from the left with y coordinate of fingertip at f,<-55

Planning

Planning is the task of generating a sequence of operations, or actions, whose expected
outcome achieves the desired goal. The competence of a planner in performing this task is
primarily determined by the correctness of its internal models of its actions; that is, its
assumptions about each action’s preconditions and postconditions. If the planner’s action
models are insufficiently precise, the planner will be unable to produce a plan guaranteed to
achieve the desired goal. The learning task we are considering here is the task of improving
the precision and correctness of such action models.

More precisely, we view actions as mappings over states of the agent’s world. An action
model is generally a one-to-many mapping (e.g., the above model of the Push operation maps
an initial world state into any of a set of possible outcome states). Following [5], we define a
strong plan as a sequence of actions that maps the initial world state into a set of possible
outcome states each of which satisfies the goal. Similarly, we define a weak plan as a
sequence of actions that maps the initial world state into a set of outcome states at least one
of which satisfies the goal.

While a detailed discussion of strategies for planning is beyond the scope of this paper, we
intend for the agent to produce a strong plan when possible and to produce a weak plan when
strong plans are not possible. Reference [5] describes in greater detail strategies for produc-
ing such plans.

In the present example, a strong plan is not possible, since the agent’s model of the Push
action is insufficiently precise. Thus, the best that can be achieved is a weak plan, such as the
plan shown in Figure 1. This plan is intended to achieve the goal IN-CORNER (SQ1), but
based on the agent’s model of Push it can only be guaranteed to move SQ1 somewhere to the
right. The plan is described in terms of the following features:

e Goal: the class of desired world states
e Actions: asequence of actions to be executed in order to achieve the goal.

132

e Expectation: the class of possible resulting world states, based on the agent’s action
models

e Intention: the class of world states that are the intended effect of executing the
planned actions. Note in the example plan the intentions are expressed as a function
of the finger position f, which varies during execution of the Push action.

Execution Monitoring

As the plan is executed, the vision system is used to monitor the trajectory of resulting
world states. Here the vision system field of view encompasses the entire world of the robot
(i.e., its table), so that we avoid questions of focus of attention in perception which appear in
more general robotics domains.

What is the general condition under which plan execution should be interrupted and an
error signaled? Throughout the execution of the plan, the system’s observations of the world
state must be consistent with the plan intention. Should this cease to be the case, the plan is
no longer proceeding as intended and an error should be signaled.

Figure 2 summarizes the results of executing the example plan, illustrating that the
observations conflict with the plan intentions at time t,. This corresponds to the observation
that at time t, the square SQ1 has rotated away from the wall rather than translating
directly along the wall as intended.

Error Recovery

Once an error is detected in executing the plan, one might attempt to recover simply by
creating a new plan to reach the goal from the newly observed world state. However, this
strategy has the drawback that the factor which led to the observed error could easily foil the
new plan as well (e.g., if the block rotated away from the wall because it was being pushed
from the wrong pushing point, then the new plan could easily fail for the same reason). In
order to avoid this difficulty, the agent first constructs a plausible explanation for the cause
of the observed error, relating the cause of the error to parameters which are within its
control (e.g., the parameters to the Push operator). In constructing this explanation, the
agent relies on certain general knowledge of physics which forms its background domain
theory. As we will see, this derived explanation can be used to suggest a revised plan that
avoids the cause of the error. Furthermore, this explanation is also used as the basis for in-
ferring the general conditions under which the error will occur, as well as general conditions
under which it can be avoided. Thus, the explanation of the cause of the error is central both
to recovering from the error and to learning a general refinement ¢o the agent’s action models.

Explaining the Error

Let us call the difference between the plan intention and the observations the error
feature. We will say that the system explains the source of the error if it answers the question
“What is the dependence of the error feature on parameters under the agent’s control in
earlier world states?” In the present example, the error feature is the observed but unin-

133

tended rotation of square SQ1 away from the wall. Thus, in the present example the robot
must explain how the rotation of SQ1 depends on the controllable parameters of its Push
action.

Note that the explanation task here is fundamentally a problem of differential analysis:
we are interested in the qualitative derivative of the error feature with respect to parameters
under the agent’s control. It is this explanation task that dictates the form of background
domain theory required by the agent. If it can answer this question, then it can choose a new
set of action parameters more tuned to bringing its observations in accord with its intentions.
The agent derives the explanation by first identifying all possible influences on the error
feature, then determining the type of dependence of the error feature on each influence, then
determining which of these influences is under the agent’s control.

Figure 3 illustrates the block-against-wall schema which contains the derived explana-
tion of the observed error feature for the present example. The first part of this explanation
determines all forces acting on SQ1 as well as the direction of the dependence of the error
feature on each. The clockwise (CW) rotation depends positively on certain force components,
negatively on others, and might depend either positively or negatively on another (the wall
normal force) depending on the unobservable details of the contact between the wall and SQ1.
This portion of the explanation follows from fairly straightforward knowledge of physics,
based on the assumption that the force moment causes rotation, that forces arise from
physical contacts, and that each physical contact gives rise to both normal and tangential
force components. Since SQ1 participates in three physical contacts (with the table, the wall,
and the robot finger), there are six force components to consider. Figure 4 summarizes the
knowledge of physics used to construct this explanation.

Given this inferred dependence of the error feature on these force components, the second
portion of the analysis determines the dependence of the error feature on features under the
control of the robot (e.g., finger position, velocity, orientation). This is shown in the bottom of
Figure 3, and follows from reasoning about the geometry of the contact between the finger
and SQ1 and the dependence of the resulting forces on this geometry. This final explanation
of the dependence of CW rotation on the features controllable by the robot provides the key to
error recovery and to theory refinement by the robot. For instance, since the explanation
indicates that CW rotation is an increasing function of the y component of the finger position,
one way to decrease CW rotation is to move the finger in the negative y direction. Similarly,
the rotation can also be reduced by decreasing the y component of finger velocity, or by
decreasing the x component of finger velocity, but not by altering the finger orientation.

The agent attempts these candidate plan revisions in order to eliminate the undesired
rotation?. Some of these may succeed, such as moving the finger in the negative y direction.
Others may not, such as reducing the x component of the finger velocity (which reduces the
rate of rotation, but not the total rotation per unit of finger travel). When candidate plan
revisions are found to succeed, then the associated explanation of the error feature receives
empirical validation?, and is used as the basis for refining the agent’s action model.

134

Them.’y Refinement

Once the agent recovers from its error, it uses the empirically validated explanation of the
cause of the error feature as the basis for explanation-based generalization of the observed
failure and later success conditions. For example, as shown in Figure 5, the explanation of
the observed error feature in the present example leads to the generalization that

Pushing SQ1 against WALLZ2 with finger position f;>-30, any theta, fv_>10, fo >0
will produce CW rotation.

This generalization is supported by the observed error (observationl in Figure 5), along with
the (empirically supported) explanation of the dependence of the observed rotation on finger
position, theta, etc. For example, since the explanation indicates that CW rotation is an
increasing function of the y component of finger position f, and independent of the finger
angle theta, it is reasonable to extrapolate the generalization that rotation will occur for any
value of f, greater than the value in observationl, independent of theta. Similarly, generali-
zation2 asserts that rotation will not occur for values of f <-55.

Note that generalizationl is only a plausible—not a guaranteed—generalization of obser-
vationl for the following reasons:

¢ The generalization is inferred by a form of extrapolation, inferring the behavior of SQ1
over some interval of pushing points based on only a single observation and the
inferred partial derivation of rotation with respect to the pushing parameters at the
current observed values of these parameters. There is in general no guarantee, for
instance, that the analysis which produced the derivative of rotation with respect to f,
at f =-30 will hold over the entire interval f >-30, and this extrapolation is thus an
approximate inference. This corresponds to an inductive bias that the derivatives of
the functions of interest are slowly varying.

¢ The analysis of the physics is based on a number of implicit simplifying assumptions,
such as the assumed uniform coefficient of friction over the surface of the table and
block, the lack of jagged edges along the wall, the independence of force components
and action parameters, rigid bodies, lack of inertial forces, etc. Any of these assump-
tions might be inappropriate, and thus the explanation on which the generalization is
based might be incorrect. This corresponds to the inductive bias that the world is
fairly uniform and that of all the factors influencing an object’s motion, only a few
terms dominate.

2In fact, the plan error may leave the world in a state such that the simple plan revision cannot be immediately
applied. In this case, for example, the agent must first push SQ1 back against the wall before it can test the
conjectured plan revisions.

30f course the hypothesized explanation could be incorrect even if the associated error recovery strategy succeeds,
since the error recovery tactic might work by coincidence or for some other reason unknown to the robot.

135

For both of these reasons, the robot must treat its inferred generalizations as having the
same status as its initial knowledge—they are plausible statements subject to subsequent
empirical disconfirmation, reanalysis, and refinement. We intend for the system to retain the
explanation that justifies each proposed generalization so that this explanation can be
refined as needed should the generalization be empirically disconfirmed at some subsequent
time. In this light, the above inductive biases lead the agent to inductive leaps that are not
firm commitments, but are rather a means of delaying consideration of additional factors
until some future point at which observations may indicate a more detailed analysis is
warranted.

This approach of generalizing based on plausible explanations, then subsequently elabo-
rating the analysis on a need-driven basis, is similar to the approach proposed in [9] for
dealing with explanation-based learning from intractable theories in the domain of chess. In
our problem domain, we anticipate that the system’s ability to automatically make and later
retract simplifying assumptions to ease the analysis will be an important factor in determin-
ing the overall success of the system.

Summary and Discussion

This paper presents our preliminary insights on the problem of developing a robot system
that refines its action models and therefore improves its competence with experience. We
have presented an approach to automatic refinement of robot action models based on
analyzing observed plan failures in terms of a predefined qualitative theory for differential
analysis. This approach is presently being implemented for a robot system based on a Puma
manipulator and IRI vision system. The primary characteristics of our approach are:

e Explanation-based error recovery utilizes a plausible explanation of the source of the
error to hypothesize the dependence of the error feature on controllable parameters.
This hypothesized dependence suggests tactics for avoiding reoccurrences of the error
while recovering from the plan failure.

® Successful error recovery lends empirical support to the hypothesized explanation,
which is then used for explanation-based generalization of the observed failure and
success conditions.

¢ Learning corresponds to demand (i.e., failure) driven refinement of an initial action
model, so that the initial general-but-abstract action model is incrementally refined
into a hierarchy of increasingly specialized and increasingly precise models that cover
past error situations.

* Learning is guided by a theory for qualitative differential analysis. This theory is
itself insufficient to entail correct plans, but is very useful for analysis of errors and
guiding generalization.

136

Relation to Explanation-Based Generalization

From the perspective of explanation-based learning [3] (7], this approach utilizes a
particular type of incomplete theory to produce plausible generalizations of its observations.
A “classic” application of explanation based generalization [7] to this problem would require
a domain theory capable of explaining/proving that the observed error feature (i.e., rotation of
-15 degrees) is logically entailed by the robot’s Push (SQ1, 0, -30, 60, <10,0>) action. This
explanation would then be used to extract just those features of observationl which are
necessary for this prediction to hold in general. But it is unrealistic to expect that the robot
could produce such an explanation here, both because the physics would be too complex and
because the explanation would depend on features such as coefficients of friction, precise
contact characteristics, etc., which are unobservable by the vision system.

Given this difficulty in applying straightforward explanation based generalization, our
approach is to instead rely on a qualitative theory for differential analysis of motions, which
is less complex and does not depend on knowing precise values of physical parameters such as
coefficients of friction. It is used to explain the sign of the difference between observed and
intended values of world state variables rather than the precise observed values. This
explanation is then used to suggest directions for changing the initial action parameters so
that this error feature will be reduced. Should the suggested changes be tested and found to
have the predicted effect, then the corresponding explanation receives empirical support and
is used to drive the agent’s generalization process. This process extrapolates from the specific
training instance to a general class of situations and action parameter values for which the
action effects can be more precisely predicted. It is interesting that this theory for differential
analysis is very helpful in guiding learning despite that fact that it is not useful for initial
planning (e.g., it is not useful in selecting the parameters for the Push action in the initial
plan). See [10] for a discussion of methods for qualitative differential analysis.

A number of questions for further research are raised by this approach: Will the generali-
zation errors introduced by the approximate theory and the extrapolation mechanisms over-
whelm the system, or will it be able to incrementally refine its beliefs as it discovers these
errors during subsequent activities? Can this type of differential analysis be useful for
analyzing plan execution errors that are not typically described numerically (e.g., the tower
was intended to remain intact, but it fell down)? Can this differential analysis be used to
automatically design feedback control loops that use the inferred dependence of the error
feature on controllable parameters to continuously update the control parameters of the
robot’s action? Can the approach be extended to deal with situations in which the cause of the
plan failure is outside the scope of the background theory (e.g., if the finger is magnetic)?

137

The Problem: /_Zyé 2"; //// /
r= ="

Finger - V' Goal !

(] SQ1 | i

Y |____]

Where:
coordinate frame origin: x=0, y=0 is initial position of top left corner of SQ1
position of SQ1 described by <x,y,theta>, where

x = x coordinate of top left corner of SQ1

y =y coordinate of top left corner of SQ1

theta = orientation relative to initial orientation of SQ1

f; = x coordinate of tip of finger

f, = y coordinate of tip of finger

£3,0.a = Oricntation of finger (independent of finger velocity)
fv = the vector velocity of the finger tip (independent of fiy,.,,)
SQI, inidal = X coordinate of initial position of SQ1

Inital Knowledge:

To move ?object somewhere to the right
Push(?objcct,?fx,?fy,?fmem,?fv) with ?f,=x coordinate of left edge of ?object

The Plan:
Inidal State:
AT(SQl, <0,0,0>)
Goal: (target world state)
AT(SQl, <200,0,0>) (i.e., IN-CORNER(SQ1))
Actions: (sequence of planned actions)
Push(SQl, 0, -30, 60, <10, 0>)
Expectation: (predicted trajectory of world states)
AT(SQI, <x,y,theta>), where x > SQI, ;nigiare Y<0, O<theta<360
Intention: (target trajectory of world states)
AT(SQl, <x,0,0>), where x=f,

Figure 1. Problem and Plan to Achieve IN-CORNER(SQ1)

Expectation: (predicted trajectory of world states)
AT(SQI, <x,y,theta>), where x > SQ1, ;niian ¥<0, O<theta<360
Intention: (target trajectory of world states _/. { { {
AT(S(t;ir.g <x,0.JO>), \:ryherc x=f,) / / / / / / / / /
Observations: (observed trajectory of world states)
t;: AT(SQ1, <0,0,0>)
4 AT(SQl, <3,0,0>)
t3: AT(SQI, <6,-1,-15>) ** t, ' t ty

** Error: At t3, difference between intended and observed position of SQ1: <0, -1, -15>
(i.c., intended translation (y and theta should remain 0), but observed rotation)

Figure 2. Execution Monitoring

[L/ L[]/

CW rotation of SQ1

Note arrows inside SQ1 represent force components.

Applicability conditions:
IS(Block 7b)
IS(Wall ?7w)
IN-CONTACT(?w ?b)

Force components acting on block Dependence of CW rotation on force

Wall normal ? (+or-)
Wall friction
Table normal
Table friction
Finger normal
Finger friction

+4+' 0

Controllable features Dependence of CW rotation on feature

Finger posmon Gie.,?
Finger velocxty G.c., "(\v')
Finger velocxtyx (i.e., v)
Finger orientation (i.c., "fu,m)

O+ + +

Figure 3. Block-against-wall Schema

139

e Forces arise from physical contact

e Contact forces can be characterized in terms of two components:
 Normal component (normal to contact surface)

» Tangential component (due to friction)

e Friction: '
* For translation, friction force directly opposes direction of translation
* For rotation, friction resists direction of rotation

© Motion = Translation + Rotation

¢ Translation depends monotonically on vector sum of forces

¢ Rotation depends monotonically on moment of forces

Figure 4. Primitive Qualitative Physics

e Observationl: CW rotation for SQ1 against WALL2 with finger at position fy=-30,
theta=60, ...

e Explanation: Sum of forces from wall, table, finger produce positive torque. CW
rotation is an increasing functon of finger positiony, finger vclocityy, finger

velocity,.
e Candidate Plan Revision: Move finger positiony in negative y direction to reduce
rotation.

e Observation2: Pure translation (no rotation) when pushing at position f,=-35.

e Generalizationl: Pushing SQ1 against WALL2, with finger ‘position fy>-30, any
theta, fv,>10, fvy>0 ..y Will produce CW rotation.

o Generalization2; Pushing SQ! against WALL?2, with finger at position fy<-55 , any
theta, fv,<10, fvy<0. .., Will produce no CW rotation.

Figure 5. Summary: Observation, Explanation and Generalization

140

References

1]

[2]

[3]

[4]

[5]

(6]

7]

[8]

[9]

[10]

Brost, R. C. Automatic Grasp Planning in the Presence of Uncertainty. In Proceedings of
the IEEE International Conference on Robotics and Automation. IEEE, San Francisco,
1986.

Carbonell, J. C., and Gil, Y. Learning by Experimentation. In Langley, P. (editors),
Proceedings of the Fourth International Workshop on Machine Learning, pages 256-266.
Morgan-Kaufmann, Irvine, June, 1987.

Dedong, G., and Mooney, R. Explanation-Based Learning: An Alternative View. Ma-
chine Learning 1(2):145-176, 1986.

Donald, B. R. Error Detection and Recovery for Robot Motion Planning with Uncer-
tainty. Technical Report 982, MIT-AI, July, 1987.

Lozano-Perez, T., Mason, M. T., and Taylor, R. H. Automatic Synthesis of Fine-Motion
Strategies for Robots. International Journal of Robotics Research 3(1):3-24, 1984.

Mason, M. T. Mechanics and Planning of Manipulator Pushing Operations. Interna-
tional Journal of Robotics Research 5(1), 1986.

Mitchell, T. M., Keller, R. K., and Kedar-Cabelli, S. Explanation-Based Generalization:
A Unifying View. Machine Learning 1(1), 1986.

Segre, A. M. Explanation-Based Learning of Generalized Robot Assembly Plans. PhD
thesis, Univ. of Illinois, 1987.

Tadepalli, P. Learning Approximate Plans in Games. December, 1986. Rutgers Com-
puter Science Ph.D. thesis proposal.

Weld, D. Comparative Analysis. Artificial Intelligence: to appear, August, 1988.

141/ 4%

Blank Page

Section 5: Breakout Session Summaries

Blank Page

Breakout Session: Human-Machine Communication

December 5, 1988

Marty Beckerman
Oak Ridge National Laboratory

Attendees:

Bill Knee — Oak Ridge National Laboratory — Chair
Marty Beckerman — Oak Ridge National Laboratory — Reporter
Prem Chopra — University Tennessee at Chattanooga
Harold P. Van Cott — National Academy of Sciences
James H. Graham — University of Louisville
Thomas Hutchison — University of Virginia
Kazuhiko Kawamura — Vanderbilt University
Christine Mitchell — Georgia Institute of Technology
Amit Mukerjee — Texas A&M University
Michael J. Rabins — Texas A&M University
Karl Reid — Oklahoma State University
Thomas Sheridan — Massachusetts Institute of Technology
Phil Spelt — Oak Ridge National Laboratory

Question: What are the most effective means of communication between
man and machine in cooperative control systems involving physical proc-
esses?

The participants’ interests in human—machine symbiotic systems were varied, ranging
from the design of systems for handicapped individuals such as quadriplegics (Prem Chopra)
to the building of near-earth satellite operator’s associates for NASA (Christine Mitchell) to
robotics for handling nuclear power plant accidents. At the conclusion of the session, the
group on Human-Machine Communication observed that there are two immediate, promis-
ing areas of research into communications in human-machine symbiotic systems. These high
priority areas are: (1) The simultaneous (concurrent) and integrated use of multiple modali-
ties, or sensor channels, for communication between man and machine and (2) the develop-
ment of models of the human operator within intelligent computer systems, with emphasis on
characteristics present during periods of both nominal and unusual arousal and stress.

145

The agenda for the Human—-Machine Communication group as framed by Bill Knee
included the identification/discussion of relevant issues, the formulation of an answer to the
representative question of what is the most effective means of communication between man
and machine in cooperative systems, and the prioritization of issues and the associated
research. To provide a framework for discussion, the participants examined the schematic
diagram of a cooperative system presented by Tom Sheridan in his keynote talk (Figure 1)
and a similar, but more detailed and therefore less general, plot by Bill Knee (see below).
These discussions were intended to serve as a first pass as to the general properties of
cooperative systems regarding communications. This initial group discussion was followed
by one in which the participants examined symbiotic systems with respect to their human,
task, and environment characteristics.

Among the various task characteristics were time available, rate of information flow,
resource requirements, fault (error and uncertainty) tolerance, closed/open environment,
level of impact (cost of task), and risk. Among the environment parameters of importance
were those relating to cultural and regulatory differences and those of a physical nature
which produce, say, noise and signal degradation and hostility (high temperature, radiation,
vibration, smoke, etc.).

The systems of interest to the participants involve a broad range of tasks and environ-
ments. However, when viewed with respect to their human characteristics and communica-
tion/interface requirements, the symbiotic systems become remarkably similar. This obser-
vation became the focus for the continuing discussion. The human has multiple information
processing channels, but most, if not all, systems do not take advantage of this characteristic.
The human has a need for integrated, pictorial information, has problems dealing with
stress, inattention (boredom), and the rapid transition from situations where either immedi-
ate or no action is required and can suffer from cognitive overloading.

A paradigm for human-machine symbiotic systems may be of a complex, high-technology
environment in which at least partially unknown situations arise and in which performance
under stress is required of the human. The importance of building human confidence in
diagnoses provided by the computer/machine subsystem in emergency situations was noted.
The events which took place at Three Mile Island and the Vincennes affair were discussed
within the framework of the emerging paradigm.

The two recommendations stated at the beginning of the summary address these issues of
paramount importance. The first recommendation is motivated by the need to make better, if
not full, use of man’s sensory capabilities. Regarding the second recommendation, models of
the human operator within the machine allow it to form expectations related to its human
counterpart. As such, the machine can “act” more intelligently and, therefore, can aid in
building a situation that supports trust and understanding. In addition, models of the human
permit the machine to infer intent on the part of the operator, thereby enhancing the
environment for understanding. Underlying this is the observation that in truly symbiotic
systems, good performance is supported by knowing what your partner/associate is or is not
capable of.

146

Situation

! Yalr,f
\\\‘\\ I//’

7

/7,

”~,
//’,Iml."]l\\\\\\

\

Mentaol ntentiorn

Model Explonotron
ACREEMENT

g9 2 Assessment

Machine
World
Model

PROCESS
SENSORS &
DISPLAYS h }:) h

CONTROLS

Figure 1. Schematic Diagram of a Cooperative System

147

Blank Page

Breakout Session: Autonomous Task Planning
and Execution Monitoring

December 5, 1988

Reinhold C. Mann
Oak Ridge National Laboratory

Attendees:

Gerard DeSaussure — Oak Ridge National Laboratory — Chair
Reinhold C. Mann — Oak Ridge National Laboratory — Reporter
Kai-Hsiung Chang — Auburn University
Fred DePiero — Oak Ridge National Laboratory
Maria Gini — University of Minnesota
Claudio Gutierrez — University of Delaware
Susan Hruska — Jacksonville State University
Avi Kak — Purdue University
Francois Pin— Oak Ridge National Laboratory
Ching-Long Shih — University of Kentucky
James Tulenko — University of Florida
Yuan Zheng — Clemson University

Question: What are the most promising approaches to real-time task plan-
ning and execution monitoring between heterogeneous resources, at least
one of which is human?

Summary

The discussion in this session focused on mainly two areas: (1) interpretations of the
scope of and rationale for human-machine symbiosis and (2) issues involved in autono-
mous task planning. ’

Figures 1 and 2 summarize most of the arguments made during the first part of the dis-
cussions.

Symbiosis can be viewed as an approach to bridge the gap between the majority of robotic
systems today that are capable of performing complex tasks under full teleoperation or after
being preprogrammed and those few prototype systems capable of autonomous behavior for
simple assignments.

149

complex |
tasks goa

simple
tasks >

teleoperation autonomy

Figure 1

The issue in symbiosis is not autonomy versus teleoperation but a dynamic mixture of
both modes of robot operation. It was pointed out that the concepts considered in symbiosis do
not apply only to human-robot systems. An example presented was the interaction between
a human and an intelligent data base system through a computer work station. In any event,
autonomy is a prerequisite for symbiosis. Furthermore, the group maintained that autonomy
is not synonymous to intelligence.

fully
human-controlled

autonomous
or
preprogrammed

dynamic
mixture

Figure 2

Task planning refers to the decomposition of a symbolic goal description into a sequence of
tasks with associated numeric descriptions that can be executed by the different agents in
the symbiotic system. Prerequisites for task planning include an appropriate goal descrip-
tion; models for the current environment and agents and other resources available to the
system, as well as adequate definitions of possible constraints under which the goal must be
achieved, e.g., limited time.

150

There was consensus among the participants that it is difficult if not impossible to
separate task planning from task allocation and that the issue of learning is of great
importance in making the transition from task planning entirely based on human decision
making to autonomous planning by an intelligent machine system. Since the ability to
generalize is crucial for learning, current connectionist approaches were considered to be less
promising than cognitive approaches. Task planning for a symbiotic system should take
advantage of superior human capabilities in top-level planning and good planning abilities of
existing automated systems at the low level and should allow for human intervention re-
quired for producing plans for mid-level tasks and unforeseen situations as well as learning
from these interventions.

The group concluded that among the main open issues in autonomous task planning are
adequate modeling of agents and resources in the symbiosis system, learning leading to the
capability to generalize, and the smooth transition between human intervention and autono-
mous planning at different task levels.

151

Blank Page

Breakout Session: Dynamic Task Allocation

December 5, 1988

Wayne Manges
Oak Ridge National Laboratory

Attendees:

Lynne Parker — Oak Ridge National Laboratory — Chair
Wayne Manges — Oak Ridge National Laboratory — Reporter
Kevin Corker — BBN Laboratories
Bill Hamel — Oak Ridge National Laboratory
Jia-Yuan Han — Southern Illinois University
Scott Harmon — Robot Intelligence International
Chuck Jorgensen — Thomson-CSF
Thomas Mitchell — Carnegie-Mellon University
Eui Park — North Carolina A&T State University

Question: What are the best methods of allocating cooperative
human-machine tasks?

Abstract

The group began by developing a list of the attributes of the “best” approaches to dynamic
task allocation. The resulting list included such factors as timeliness, coherence, load
balance, and risk. Subsequent discussion detailed the importance of various architectural,
human interface, and measurement issues in designing a human-machine symbiotic system
that optimizes the allocation attributes for the current application. The group concluded by
emphasizing the importance of on-line “observers” and other intelligent mechanisms to
dynamically assess the progress and directedness of the agents of the dynamic task allocation
implementation in achieving the defined tasks. Topics recommended for further research
included improved measurements, architectures, relative human-machine roles, and task
granularity.

153

Assumptions

To begin addressing the initial question posed to the breakout session, the group agreed
that some basic assumptions would be useful to help bound subsequent discussions. It was
agreed that dynamic task allocation is a desirable goal since static allocation, though cheaper
to implement in terms of design costs, implementation costs, and run-time communication
and computing costs, cannot be effectively used in dynamic environments and is usually less
reliable. The group agreed that symbiotic teams did not necessarily have to consist strictly of
one human and one machine; instead, we chose to consider the concept of a human master
working with several automated apprentices as well as the multiple human, multiple
machine cooperative relationship. By assuming that the agents are willing to cooperate,
resource contention problems can be resolved by invoking global goals. The group also
wanted to include discussions concerning the computer-controlled human by addressing the
psychological, physiological, and interface implications of a human allowing a computer to
assume control under certain conditions. The final assumption recognized the fact that
symbiosis is a realistic goal, since examples of elements of the human-machine symbiosis
concept currently exist. The pilot’s associate, the Mars rover, and applications in areas of
hazardous waste handling are examples where symbiotic systems are being developed or
considered.

Discussion

The group began considering the question of the best methods of dynamic task allocation
by defining the attributes present in an optimal, or at least “good,” allocation strategy.
Although the relative importance among the allocation attributes depends on the application,
improvements in the attributes for a particular application would indicate an improvement
in the allocation strategy. The attributes considered important in human-machine symbiotic
systems include timeliness, coherence, load balance, and risk. Timeliness would be the
overriding attribute in task allocation strategies for time-limited applications. In such
applications, the allocation strategy would assign tasks by assessing the speed with which
certain tasks are performed by the available agents. The allocation procedure itself may be
restricted in these situations due to a limit on the time available for an allocation decision to
be made. Coherence is a crucial factor for most, if not all, applications and requires that the
focus of subtasks remain directed toward a high-level, common goal. The load balance
attribute is predominate in applications requiring the maintenance of a critical level of
activity in all agents of the symbiont system. Finally, the risk minimization attribute
involves consideration of the probability of jeopardizing mission success or the symbiont
system itself in selecting a suitable task allocation. Further discussion noted that it is
essential that a task allocation strategy be adapted in real time in response to an environ-
mental change, an internal fault detection, or a shift in goals. In response to certain
emergencies, timeliness may become the most important attribute.

154

The remainder of the dynamic task allocation discussion focused on concerns of measure-
ment, human factors, architectures, and future research. The discussions of measurement
emphasized the need for dynamic assessment of the “goodness” of the current task allocation
strategy to allow the improvements in subsequent strategies to be verified. Measurement
techniques also encompass the need for evaluating the capabilities of the human(s) and the
machine(s). One area where measurement techniques already exist that might assist in
dynamic task allocation is in the taxonomy of learning. For a number of years, research in
this field has centered on assessing the capabilities of humans. Much work has been accom-
plished in evaluating human learning in skills, knowledge, abilities, and attitudes (SKAAs).
Appropriate metrics may already exist in these areas that could be adapted to symbiotic
systems. In discussions concerning related techniques for measuring machine performance,
some group members believed that machine capabilities are best assessed by examining the
hardware and software that make up the machine rather than external attributes. Whether
examining human or machine capabilities, it was recognized that the agent capabilities may
change over time. To measure the relative performance of the agents as well as improve-
ments over time by a particular agent, benchmarking (using a repeatable task for which a
good metric is developed) was suggested as a potential solution.

The human factors issues centered on the roles the human(s) and machine(s) should play
both in the allocation of tasks and in the execution of tasks. Of particular interest were
questions concerning the consequences of permitting a human to be controlled by a machine.
Additional issues included the need to recognize human stress and attitude in the selection of
an appropriate task allocation.

The architectural issues focused on performance, available communication bandwidth,
and potential flexibility for adjusting the allocation strategy. These discussions were trig-
gered by a recommendation that the task allocator and the execution monitor should be
considered elements of a closed-loop control system. Discussions of committee versus hierar-
chical architectures concentrated on their relative advantages and disadvantages in poorly-
and well-understood environments. The importance of understanding the tasks to be
performed was considered crucial to establishing the appropriate task allocation architec-
ture. Heteroarchical (combination of hierarchical and committee) architectures were consid-
ered most applicable to symbiotic systems.

Suggested Research Topics

In addition to the discussion of the issues detailed above, the group identified some areas
of human-machine symbiosis that were considered important for advancing the state of the
art in dynamic task allocation for the next few years:

1. Measurements—Good benchmarks and techniques for quantifying and measuring

human and machine skills/capabilities are needed. Incorporation of results from research in
human learning may be important here.

155

2. Architectures—The relationship between execution monitoring and task allocation
influence architectures. Would dynamic architectures be advisable so that hierarchies could
develop inside the committee structures? Are dynamic architectures even possible or desir-
able?

3. Roles—What are the psychological and physiological impacts of computer-controlled
humans? When is it important for humans to assume control even if they are not the “best”
choice? What data from the human are important in assessing the relative roles?

4. Task granularity—What task granularity assures the smooth transition among ele-
mental subtasks as they are assigned to the different agents?

Conclusions

The group agreed on a list of attributes that can be used to assess the goodness of a
dynamic task allocation strategy and determined that the relative weights of the attributes
are context specific. We also agreed on the importance of both off-line skill measurement and
on-line assessment of human or machine task execution performance as feedback to the
dynamic task allocation algorithm. Finally, the group noted that the coupling among the
modules in the dynamic task allocation strategy requires high performance, highly flexible
architectures. We concluded that the best dynamic task allocation strategies are those that
maintain metrics for real-time assessment and adjustment of the strategy in response to
changes in the environment, modifications of the goals, or variations within or among the
agents.

156

Breakout Session: Human-Machine
System Architecture

December 6, 1988

Fred W. DePiero
Oak Ridge National Laboratory

Attendees:

William R. Hamel — Qak Ridge National Laboratory — Chair
Fred W. DePiero — Oak Ridge National Laboratory — Reporter
Marty Beckerman — Oak Ridge National Labortary
Prem Chopra — University of Tennessee at Chattanooga
Kevin Corker — BBN Labs
James H. Graham — University of Louisana
Jia-Yuan Han — Southern Illinois University
Thomas Hutchison — University of Virginia
Kazuhiko Kawamura — Vanderbilt University
Wayne Manges — Oak Ridge National Laboratory
Christine Mitchell — Georgia Institute of Technology
Amit Mukerjee — University of Michigan
Thomas P. Sheridan — Massachusetts Insitute of Technology
James S. Tulenko — University of Florida
Yuan F. Zheng — Clemson University

Question: What human-machine system architectures allow real-time coop-
erative interaction between the human and the machine?

Abstract

This session of the workshop focused on the subject of human—-machine symbiotic (H-MS)
system architecture. The session began with an agreement on the definition of an architec-
ture. Two examples were discussed, and then, to focus the discussion, the following question
was considered: “Is there a canonical human-machine symbiotic system architecture, or are
there only good design rules?” This question provoked many suggestions of what a “good”
architecture might be. It became clear that a set of criteria was needed to evaluate the merits
of an architecture. Throughout the session many areas of potential research were also iden-
tified.

157

Definition of an Architecture

The possibility of working with either a hardware or a software type of architecture was
discussed. It was decided that a functional type was more suited to describing a system’s ob-
jectives. It was agreed that the hardware and software architectures together give a system
its functionality, and hence would be an equivalent representation of a system. However, the
functional description was more removed from implementation and performance related
details and was thought to be a more appropriate basis for the discussion.

It was suggested that a system designer’s notion of an architecture can be very different
from a user’s impression of the same system. The session decided to work with this idea. An
‘architecture’ was then taken to mean: “A functional description of a system’s structure, as
viewed from a user’s perspective.” It was noted that this expands the concept of a
human-machine interface (HMI) from being just a port to being more of a viewpoint.

Example Architectures

Two members of the session presented their own architectures to the group. The diagrams
are included here for the reader’s consideration, but an attempt will not be made to fully
explain each. The first is an architecture associated with a particular project and is shown in
Figure 1. The second, shown in Figure 2, is not specific to a project but has been used as more
of a guideline for projects. Its components describe where development efforts are often
concentrated. Because this second architecture was more general purpose (it was not moti-
vated by the objectives for a particular system), there was a general agreement that a
representation of this style approached more of a canonical form. A notable difference in the
two examples is the connection of the HMI to the rest of the system. The first puts the HMI
into one module. The second does not attempt to encapsulate it; instead, the HMI reaches all
layers in the architecture (except for the low level robot control).

If one generalizes a system architecture as hierarchical layers, it is clear that the layers
will have a top-down structure. In addition, the most general case may be a heteroarchical
architecture, containing “committee” structures within the more structured layers. The
corresponding architecture of the HMI will correlate with this overall system structure as a
function of two basic features: 1) the specific human’s functional responsibility and 2) the
specific HMI requirements for a particular architectural layer.

Criteria/Wish List for a Good Architecture

Many qualities of architectures were discussed at this point in the session. A number of
these were very legitimate metrics for systems in general but were not qualities that applied
to H-MS architectures in particular. These were qualities like modularity, data accessibility,
fault tolerance, and others. An important criterion that did apply to H-MS systems was the
role of the human-machine interface. By definition, an HMI must exist in some form in any
human-machine symbiotic system. There was an agreement that the specific elements and

158

connectivity of an HMI are dependent on its functional requirements. (This supported the
idea of a very general canonical form.) For example, note again the very different connectivity
of the HMI in the examples given. There was a disagreement as to whether or not a high
degree of connectivity between the HMI and all other layers of a hierarchy was appropriate.
Some felt it should only connect to a subset of the layers; others thought there should be no
restrictions. The group was then reminded of its adopted definition of an architecture. There
was an agreement that an HMI should not be restricted from any possible connections,
provided that a particular link is appropriate for a particular user. This idea spawned the
concept of a dynamic architecture that can change to meet the needs of the user or the needs
of the system.

Another aspect of an H-MS system that can be affected by its architecture is the
aggregate stability of the system. More specifically, this is the problem of maintaining
stability while some parts of a system are being driven directly by human control and other
parts run in an autonomous mode. This problem in hybrid human-machine control mixture
was thought to be an interesting research topic as it applies to system architecture design.

As the session continued to define quality measurements of an H-MS architecture, the
subject of developing these metrics themselves was noted as an interesting research topic.
Examples of good techniques with poor applications were mentioned. This motivated the idea
that metrics which compare effectiveness vs. complexity would be worthwhile.

Summary
The session members felt that if a canonical form of an H-MS system does exist, then it
would at least have the two following properties. First, it would be a high level template only.

Secondly, the perspective that the human interface provides should vary according to the
user’s needs.

159

(Task, environment, and

Knowledge Bases resource information)

task data resource improved)
data action/object
object
Job Planner data
review
5“‘“3 action/object
high level task know ledge
9 Y Y
Dynamic Task Learning | sensor data
object Allocator System -
data
status
status
assigned
tasks query-aided
learning
sensor
Human-Robot expectations'
assigned lnterface
tagsks lert Automated
alert due to .
informatio unexpected events Monitor
' resolutions excnange ‘
Intelligent
Controller Operator sensor data
* force reflection
desired positions
sensor Master Arm
data
vision, tactile
cartesia and force
data manipulation measurement
Robot Sensors
sensor data } sensor data ‘

Sensor Database (real time acquisition)

Figure 1. System Architecture for an ORNL Human-Robot Sy

160

mbiotic System

Off-Line Planning:

l l l

ol v
) objectives gene
physics strategy

Contributions Up and Down
On-Line Supervision:

Estimate Decide

Current > control
State actions

noisy dy situation \

assessment
Decide Execution
where : of specific
Human-machine
. to look interfaces at_this __ _ plan -

layer and above

Robot/Task - including low level control

Figure 2. Architecture for a Human-Robotic System

161

Blank Page

Breakout Session: Machine Learning via
Experience and Human Observation

December 6, 1988

Philip F. Spelt
Oak Ridge National Laboratory

Attendees:

Francois G. Pin — Oak Ridge National Laboratory — Chair
Philip F. Spelt — Oak Ridge National Laboratory — Reporter
Gerard de Saussure — Oak Ridge National Laboratory
Maria Gini — University of Minnesota
Claudio Gutierrez — University of Delaware
Scott Harmon — Robot Intelligence International
Susan Hruska — Jacksonville State University
Chuck Jorgensen — Johnson CSF
Avi Kak — Purdue University
Bill Knee — Oak Ridge National Laboratory
Thomas Mitchell — Carnegie-Mellon University
Eui H. Park — North Carolina A & T
Lynne Parker — Oak Ridge National Laboratory
Michael Rabins — Texas A & M
Ching-Long Shih — University of Kentucky
Harold P. Van Cott — National Acadamy of Sciences

Question: What are the most promising approaches toward providing the
intelligence for a machine to learn new tasks through assimilation of experi-
ence and human observation?

Abstract

Considerable time and effort were spent to define the terms “Learning” and “Symbiosis”
in the Human-Machine Symbiosis context. While the original question for the group was not
directly answered, the issues raised by the 5 questions presented below should serve as areas
of focus for research on human-machine symbiosis in the next few years. The utility of both
inductive, data-driven learning systems and deductive, knowledge-driven systems was high-
lighted, and there was some suggestion that a blending of the two approaches would be good.

Initial “Charge to Group” by F. G. Pin — To answer the question posed to the group, it

would be helpful to consider the following three questions which relate to or derive from that
overall question:

163

1. What are the assets and liabilities of human-machine symbiotic systems?
2. What is learnable in the human-machine context?

3. What are the promising approaches, now and in the
future?

As presented in the CESAR Human-Machine Symbiosis project (see Figure 1), machine
learning in a Human-Machine Symbiotic system requires communication between an
Automated Observer of human performance, and a Human Operator. Focus for this discus-
sion session was on the relationship between those two components, as illustrated in the
highlighted area of Figure 1. By implication, then, Learning in a Human-Machine Symbiotic
system involves, in part, a transfer of knowledge from the human to the machine. This
process must also include the Automated Monitor shown in Figure 1, to observe the overall
performance of the entire system.

In attempting to answer the question presented to the group, a number of issues were
raised. Considerable time was spent defining terms and exploring the limits of applicability
of those terms. The material which follows summarizes and organizes the discussion around
the major points made by the group.

1. Definition of Terms:
Machine Learning and Symbiosis

A. Learning — The group spent considerable time and effort discussing what was meant by
the term “Machine Learning,” and even after a definition was adopted and recorded, the
discussion periodically returned to this topic, indicating the volatile and ubiquitous nature of
the term. A problem arose when the group, at times, forgot that the discussion actually
should have been limited to “Learning” in a Symbiotic system. Consequently, at times the
process ranged rather far and wide in the general area of learning. Some discussion con-
cerned the function or use of feedback in learning, a topic one participant talked of in terms of
“Open-Loop” (without feedback) and “Closed-Loop” (with feedback) learning. It was pointed
out that the cybernetic view of the human body holds that it is a system of closed loops which
are constantly monitored. As is frequently the case in discussions of Machine Learning,
examples of both machine and biological (human) learning were cited which purported to
show that one or another type was or was not suitably included in learning.

After the far-ranging discussion described above, the following definition was ac-
cepted by the group:

Learning is: “The acquisition of knowledge resulting in an improvement of performance [by
the system]) at some task.”

164

Discussion of various implementations of machine learning followed, especially those using
Artificial Neural Networks — the Connectionist approach. In the context of Neural Net-
works, learning consists of a Correction Function which is applied to the differences between
an input vector, representing the real world, and an output vector from the Network,
constituting the system’s representation of the world state. There was some discussion of
what “knowledge” the Neural Network starts with, and the point was made that NO learning
system starts from scratch — with NO information or knowledge. As one participant put it,
“The machine ain’t going to make this stuff up by itself — someone has to put something in.”
In the case of Artificial Neural Networks, the system begins with a minimum of some
randomly distributed non-zero weights in the matrix or matrices which map the input
vector(s) to the output of the network. In knowledge-based systems, someone must program
in either the information itself or the ability for the system to acquire that knowledge from its
experience (a form of learning). One specialized form of knowledge-based systems is the
Expert System, which is currently the major alternative to Neural Networks in Al research in
the United States.

The issue of evaluation also is raised by this definition of learning. Improvement of
performance requires some operation for measuring a change in performance from one time
(measurement) to another, and such evaluation “closes the loop” for learning. The techniques
for measuring improvement are situation and/or task specific. This issue relates closely to
another issue that arises specifically in the context of Human-Machine Symbiosis — that
issue is, what is the function of learning in such a system, what component(s) learn, and how
does the overall performance of the system change. These issues will be discussed more fully
in a later section.

B. Symbiosis — In his opening remarks to the group, F. G. Pin presented an illustration of
symbiosis from the animal world — a humorous caricature of a hippopotamus with a bird on
its back removing parasites from the skin of the hippopotamus. The definition of “symbiosis”
which the group inferred from this model does not seem suitable for a Human-Machine
system, primarily because of the implied dependence for survival of the two symbionts on
each other. Such mutual dependence is not suited to Human-Machine systems. In contrast,
the definition in Webster’s II New Riverside University Dictionary does seem properly suited
to this type of system:

The relationship of two or more different organisms in a close association that may be
but is not necessarily of benefit to each. (1984, p. 1172, emphasis added)

An alternative term for such a human-machine system might be Human-Machine Synergy —

The action of two or more . . . organisms to achieve an effect of which each is
individually incapable. (ibid, p. 1174)

For simplicity and for continuity with previous writing in this area, the term “symbiosis” will

continue to be used here, but only in the sense conveyed by the dictionary definition
presented above. Either of these terms, however, raises the issue of the role of the human in

165

the system, an issue which is discussed in a section to follow.

Another major issue raised by the concept of symbiosis is that of autonomy of the
components of the system. Is autonomy a prerequisite for Symbiosis? That is, do both the
human and the machine need the capacity to function entirely on their own in order for
symbiosis to occur? It was the consensus of the group that Human-Machine Symbiosis
requires some degree of autonomy on the part of the machine in order for it to be able to
cooperate with the human. The key is to have a distributed system in which the machine and
the human both make some decisions. There is serious question about how successful a
Human-Machine system would be if the Intelligent Controller machine (see Figure 1) made
all the decisions concerning task allocation, in a machine-controlled-human sense.

II. What Learning Techniques Are Available?

There appear to be several ways of “slicing the pie” to answer the question which
heads this section. One way suggested was to contrast Inductive with Deductive learning
systems. Inductive learning systems are Data-driven systems which learn from training
examples (data). This type of learning is found in Artificial Neural Networks, which embody
the connectionist approach to learning described above. Contrasting with data-intensive
systems are those which can be characterized as Knowledge intensive. Knowledge-driven or
concept-driven, these deductive systems learn rules for relating outside or new information to
information already in the system. This type of system can be said to do feature extraction,
in which the “important” features of the outside world are selected for processing in the
system. ‘

A question arose concerning whether Neural Networks are an implementation of
data-driven learning and Expert Systems are, correspondingly, an implementation of the
knowledge-driven approach. The group generally agreed that the situation is not so simple —
that both implementations can and do use both approaches, but the two types naturally
incline toward such a dichotomy. Possible uses of both these types of learning system in the
Human-Machine Symbiosis context were considered. Inductive, data-driven systems appear
to be useful for modeling the human operator, especially those characteristics which are
difficult to quantify. Deductive, knowledge-driven systems seem suited for decision making,
and for use in situations where heuristics are needed for coping with the situation. Deductive
systems need to have enough of the proper kind of knowledge written in for them to function
properly. Currently in the Al literature, there is recognition that connectionist systems are
suited for low-level processing/learning, while knowledge-based systems are good for higher-
level functions.

III. Role of Human in HMS Learning
In light of the preceding considerations, there was general agreement that there are 2
roles for humans in a Human-Machine Symbiotic System. One is to serve as a Model for the

machine component to learn from. The human’s activity in this case is to simply perform the
task(s) while the machine part of the system observes and learns. Ifsuch a process were to be

166

automatic, then it would require the Automated Observer in the lower right of Figure 1 to
monitor task execution and feed information back to the Learning System. The second role
for humans in this type of system is that of Teacher/Consultant (Approver). In this situation,
the human would monitor performance of the machine (robot) component and make correc-
tions as needed. Here, the activity of the human would be active teaching or coaching of the
machine component.

The preceding analysis makes a number of assumptions about the functioning and
characteristics of the various components in the Human-Machine System. First, it assumes
that the human is “superior” early in the performance of the tasks. This is often a valid
assumption, however, as in many situations humans are capable of doing the entire set of
tasks. A second assumption is that, as the system gains experience, the machine becomes a
more important component — machine takes on more of the functions originally performed
by the human. To the extent that this assumption is true, it expresses an important goal of
the learning component of the symbiotic system.

The assumptions discussed above raise major issues. One concerns the question of
whether, if the machine learns and takes over more of the tasks, does the overall system
Improve? Usually, a machine is more brittle than a human — that is, the machine’s
performance is more subject to failure caused by relatively small fluctuations in operating
conditions, to which a human could easily adapt but to which the machine cannot. Under
conditions in which the result is to lower overall system performance, can we say that
learning has occurred? Certainly, this would not be a desirable outcome.

Another question raised by one group member was “Do we really want a human in the
loop?” The implication of this question is that if we can automate a system so that a machine
can perform the tasks adequately, there is no need to include a human in the system. Related
to this issue is the one of whether we should make machines to do things the way people do
things, or whether there are other more efficient ways of having machines do things. While
neither of these questions was answered, they are nevertheless important questions that
need to be asked about each implementation of Human-Machine Symbiosis.

Finally, the group considered the question: Is the Complementarity of humans and
machines something to build on? The overwhelming answer to this question was YES!!!
However, the answer to the related question “Do we know how to do it?” is not so clear-cut.
The point is that machines are not the same as people, and, as implied by the questions in the
preceding paragraph, we need to explore ways to maximize the contributions of both
machines and humans in these Human-Machine Systems. These considerations raise even
more questions about the nature of symbiotic systems involving machines and humans. The
following issues can serve as a source of research topics for some time to come:

1. What role should learning play in a Machine and Human symbiotic relationship?

2. Can learning improve system performance (as opposed to improved machine performance
with overall lowered system performance)?

167

3. What is learnable? What kinds of subtasks could the machine learn, and what must
(should) remain with the human?

4. Should the Human always be in control, or are there times when it is permissible for the
machine to be in control?

5. When is Machine Learning useful?

The group was able to answer only some of these questions, and then only in a rather
general way. In answer to question 5, machine learning is useful when not everything can be
pre-programmed, partly because it can not be known a priori. In other words, a learning
program is needed when one cannot specify all parameters and values in advance. The
question of “What is learnable?” (number 3) was answered only by saying “To be learnable it
must be observable.” Clearly, all these issues need to be considered any time a symbiotic
human-machine system is being designed. In considering question 4, it was noted that, if a
system learns (in the sense of shifting tasks to the machine), then the system can, in turn,
become the teacher of an untrained human. In other words, the question of who is in control
may be answered by determining which component is the “expert” or master craftsman and
which is the apprentice (see bottom of Figure 1).

One member pointed out that machine learning is still very much “in its infancy”,
compared to other areas of computer science, which is itself a relatively young science.
Moreover, there has been a tendency for people in the machine learning field to develop
unique terminology for concepts that have been used for some time in other fields, for
example in the psychology of learning and memory. To help clarify thinking on the various
topics of machine learning, the following Hierarchy of Learning was presented:

Kinds of Learning: Level of Functioning:
Problem Solving |

Rule Learning - “Higher” Cognitive Functions
Concept Formation

<——— Several Steps in Biological Learning Missing

Motor Skill Learning | “Low_level” Learning
Perceptual Learning

Machine Learning has tended to focus on the top three as being representative of “Intelligent”
systems. The bottom two are becoming important for robotics, as attempts are made to create
machines which can navigate in the environment and do things. Very little work in machine/
robot learning has explored the intermediate kinds of learning which are, nevertheless, very

168

important for intelligent behavior in biological systems, including humans.

IV. Discussion of Gains in next 2 Years
for Machine Learning in HMS systems
(needed &/or desired)

At the end of the session, the group was asked to briefly consider what gains might be
expected in the next two years, or what problems need to be addressed. It was felt that there
would be more work done on learning by machines from examples provided by people —
learning from trained (observed) sequences, with generalization being an important element
of the learning. An important component of this will be the ability of machines to observe
whether the goal is reached, and make corrections in the operation when it is not.

Pessimism was expressed by one or two about machine learning as a long-lasting
endeavor, pessimism which stems from comparing what even a human infant can learn with
what we can make a machine learn. We don’t know enough about how to create learning
machines. One person felt that there is no such thing as learning in the strong sense of the
word, that we can have only adaptive systems. Additional areas which the group felt are
either important or interesting include adapting to changing environments (a system which
learns about patterns of events in time), learning by extrapolating knowledge from one
domain to another (generalization is important), and integration of sensory information,
enabling a machine to discover new capabilities. We also need ways of interpreting sensor
data. '

V. Summary

As might be expected with a group of this size and diversity, full agreement on issues
and terms was difficult to achieve. The group spent considerable time and effort to arrive at
a definition of the term “Learning” in the Human-Machine Symbiosis context. Even after
accepting one, discussion returned several times to that topic, although the original defini-
tion was left intact. The term “Symbiosis” was also defined, as a more restricted version of
the group’s initial view, which included some element of mutual dependence by the symbi-
onts. While the original question for the group was not directly answered, the issues raised
by the 5 questions presented in section III above should serve as areas of focus for those
interested in research on Human-Machine Symbiosis in the next few years. The utility of
both inductive, data-driven systems and deductive, knowledge-driven systems was high-
lighted, and there was some suggestion that a blending of the two approaches would be good.

169

MASTER CRAFTSMAN(S) ¢ EXECUTION / APPRENTICE(S)

Figure 1. Man-Machine Symbiosis

170

Section 6: List of Participants

Blank Page

List of Participants

Dr. Marty Beckerman
Engineering Physics and
Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37831

Dr. Kai-Hsiung Chang
Department of Computer
Science and Engineering
Auburn University
Auburn, Alabama 36849

Dr. Prem Chopra

School of Engineering
University of Tennessee-
Chattanooga

Chattanooga, Tennessee 37403

Dr. Kevin Corker

BBN Systems & Technologies
Corporation

70 Fawcett Street
Cambridge, Massachusetts
02178

Mr. Fred Depiero

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37831

Dr. Gerard DeSaussure
Engineering Physics and
Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37831

Dr. Maria L. Gini
Department of Computer
Science

4-192 EE/CSA Building

200 Union Street, SE
Minneapolis, Minnesota 55455

173

Professor James H. Graham
Department of Engineering
Mathematics and Computer
Science

University of Louisville
Louisville, Kentucky 40292

Dr. James L. Gumnick
University Relations Office
Oak Ridge Associated
Universities

Oak Ridge, Tennessee 37830

Dr. Claudio Gutierrez
Professor of Computer and
Information Sciences
University of Delaware
Newark, Delaware 19716

Dr. Bill Hamel
Instrumentation and Controls
Division

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37831

Dr. Jia-Yuan Han
Department of Electrical
Engineering

Southern Illinois University
Carbondale, Illinois 62901-
6603

Dr. Scott V. Harmon

Robot Intelligence
International

4660 Long Branch Avenue
San Diego, California 92107

Ms. Susan Hruska
Jacksonville State University
Jacksonville, Alabama 36265

Dr. Thomas Hutchinson
Computer Science Department
University of Virginia
Charlottesville, Virginia 22904

Dr. Chuck Jorgensen
Thomson-CSF, Inc.

630 Hansen Way, Suite 250
Palo Alto, California 94307

Dr. Avi Kak

Department of Electrical
Engineering

Purdue University
Lafayette, Indiana 47907

Dr. Kazuhiko Kawamura
Department of Electrical
Engineering

Box 1674, Station B
Vanderbilt University
Nashville, Tennessee 37235

Mr. Bill Knee

Engineering Physics and
Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37831

Dr. Charles Kring

Fuel Recycle Division

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37831

Dr. Wayne Manges
Instrumentation and Controls
Division

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37831

Dr. Reinhold Mann
Engineering Physics and
Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008

Osgk Ridge, Tennessee 37831

Dr. Christine Mitchell
Man-Machine Systems -
Research

School of Industrial and
Systems Engineering
Georgia Institute of
Technology

Atlanta, Georgia 30332

174

Dr. Thomas Mitchell
Department of Computer
Science

Carnegie Mellon University
Pittsburgh, Pennsylvania
15213

Dr. Amit Mukerjee

Computer Science Department
Texas A&M University

College Station, Texas 77843

Dr. Eui H. Park
Department of Industrial
Engineering

North Carolina A&T State
University

Greensboro, North Carolina
2741

Ms. Lynne Parker
Engineering Physics and
Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37830

Dr. Francois Pin

Engineering Physics and
Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37830

Dr. Michael J. Rabins
Department of Mechanical
Engineering

The Texas A&M University
100 Engineering Physics
Building

College Station, Texas
77843-3123

Dr. Thomas Sheridan
Department of Mechanical
Engineering
Massachusetts Institute of
Technology

Cambridge, Massachusetts
02139

Dr. Ching-Long Shih
Center for Robotics and
Manufacturing Systems
University of Kentucky
Breckinridge Hall
Lexington, Kentucky
40506-0056

Dr. Philip Spelt

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37831

Dr. James S. Tulenko

202 Nuclear Science Center
The University of Florida
Gainesville, Florida 32601

Dr. Harold P. Van Cott
National Academy of Sciences
2101 Constitution Ave., NW
Washington, DC 20418

Dr. Chuck Weisbin
Engineering Physics and
Mathematics Division

Oak Ridge National Laboratory
P.O. Box 2008

Oak Ridge, Tennessee 37831

Dr. Yuan F. Zheng
Department of ECE
Clemson University

Clemson, South Carolina
29634

175

Blank Page

Section 7: Biosketches

Blank Page

Biosketches

MARTIN BECKERMAN

Martin Beckerman, a staff scientist in Oak Ridge National Laboratory’s Engineering Physics
and Mathematics (EPM) Division, conducts research in sensor modelling, sensor fusion, and
image model building. Prior to joining the EPM Division he served as a research associate
professor of physics at the University of Tennessee and as a research scientist and principal
investigator in the Laboratory for Nuclear Science of the Massachusetts Institute of Technol-
ogy. He was an Institute Fellow in the Department of Nuclear Physics of the Weizmann
Institute of Science and has been a consultant in heavy-ion experimental physics to the
Physics Division and the Kellogg Radiation Laboratory at Caltech. He has authored over 70
publications in robotics and experimental and theoretical nuclear physics.

KAI-HSIUNG CHANG

Kai-Hsiung Chang received his diploma in electrical engineering from the Taipei Institute of
Technology in 1977 and his M.S. and Ph.D. in electrical and computer engineering from the
University of Cincinnati in 1982 and 1986, respectively. Currently, he is an assistant
professor of computer science and engineering at Auburn University. His present interests
include knowledge-based systems, manufacturing systems, and computer vision. He is a
member of the IEEE and AAAI. His address is the Department of Computer Science and
Engineering, Auburn University, Auburn, AL 36849.

GERARD DE SAUSSURE

Gerard de Saussure, a staff scientist in Oak Ridge National Laboratory’s Engineering
Physics and Mathematics Division, has worked for over 30 years in experimental nuclear
physics. Currently, he splits his time between nuclear physics and research in strategy
planning and machine intelligence at the Center for Engineering Systems Advanced Re-
search and is also an honorary professor at the University of Tennessee. He received his
Ph.D. in experimental physics from Massachusetts Institute of Technology.

179

MARIA L. GINI

Maria L. Gini is an associate professor at the University of Minnesota, Department of
Computer Science, in Minneapolis.

She has been a research associate at the Department of Electronics, School of Engineering,
Polytechnic of Milan, Italy, and a visiting research associate at the Artificial Intelligence
Laboratory at Stanford University.

Her research interests are in the area of artificial intelligence and robotics. She is mainly
interested in programming robots and making robots understand more about the environ-
ment in which they operate. She has worked on automatic error detection and recovery for
assembly robots, navigation of robots in unknown environments with moving obstacles,
integration of planning with execution, and programming of robots. She is author of several
publications on those subjects.

JAMES H. GRAHAM

James H. Graham ||} 1< carned his bachelor’s degree in
electrical engineering from the Rose Polytechnic Institute and his master’s and doctoral
degrees in electrical engineering from Purdue University. He is a registered professional
engineer and has worked as a product design engineer with General Motors Corporation. He
has served on the faculty at Rensselaer Polytechnic Institute and is presently an associate
professor of computer science at the University of Louisville. His research interests include
robotics, artificial intelligence, and parallel computation.

CLAUDIO GUTIERREZ

Claudio Gutierrez is a professor of artificial intelligence at the Department of Computer and
Information Sciences, University of Delaware.

He is a citizen of Costa Rica, where he was president of the leading institution of higher
learning, the University of Costa Rica, and taught Philosophy and Computer Science for more
than two decades.

He has a Ph.D. in philosophy of science from the University of Chicago and is “licenciado” in
Law and in History of the University of Costa Rica. He received the Guggenheim Fellowship
(1966), was the Langston Hughes Professor at the University of Kansas (1982), and was a dis-
tinguished visiting professor at the University of Delaware (1981-1983).

He is the author of several books on philosophy of science, epistemology, ethics, and social
impact of computing. During the last eight years, he has been developing a symbiotic system

180

for administration (AISA). In the design of such system, he has taken advantage of his
experience as a former university administrator and the analytical insights of his philosophi-
cal education.

WILLIAM R. HAMEL

Dr. William R. Hamel is head of the Telerobotic Systems Section in the Instrumentation and
Controls Division at the Oak Ridge National Laboratory. As head of the Telerobotic Systems
Section, he directs a research team with expertise in robot/teleoperator systems engineering,
manipulator controls, real-time digital controls, servo/digital electronics and robotic sensing.
He has a B.S.M.E. from West Virginia University, a M.S.M.E. from Oklahoma State Univer-
sity, and a Ph.D. from the University of Tennessee. He is a member of the Sigma Xi, Tau Beta
Pi and Phi Kappa Phi honoraries. Dr. Hamel’s research interests include high performance
robot design, manipulator dynamics and control, robot sensor integration, and human-
machine interactions. He has written numerous reports and papers in the areas of nuclear
remote technology and the advancing field of robotics. He maintains memberships in the
ASME, IEEE, and Robotics International.

JIA-YUAN HAN

Jia-Yuan Han received an M.S. in applied mathematics from Ohio State University in 1983,
and a Ph.D. in electrical engineering from the Ohio State University in 1986. His research
interests are real-time computation systems and their application in robotics, signal process-
ing and pattern recognition, task planning, decomposition, scheduling, fault-tolerance com-
puting, robotics, and neural networks.

SCOTT Y. HARMON

Scott Y. Harmon is owner of Robot Intelligence International, a robotics research and
development firm based in San Diego, California, USA. With over 16 years research experi-
ence, he has concentrated for the past 13 years on advanced robot system and autonomous
system research. An internationally recognized authority on mobile robots, autonomous
systems, and cooperating robots, Mr. Harmon has authored over 40 technical publications on
robot system integration, mobile robots, sensor data fusion, distributed robotics, military
robots, robot computing architectures, and robot planning. He has conducted two extensive
surveys of European robotics and teleoperated system research, coorganized the 1984 ONR
European Workshop on Robotics, and organized the 1987 NATO Advanced Research Work-
shop on Mobile Robot Implementation. He has been an invited contributor to the NATO
Advanced Research Workshops on Machine Intelligence for Robotic Applications, on Mobile
Robots and on Highly Redundant Sensing Systems, as well as the 1986 DARPA Workshop on
Blackboard Systems for Robot Perception and Control. He has also been invited to partici-
pate in the 1989 NATO Closing Workshop for Advanced Research Workshop Directors on
Sensory Systems for Robotic Control and on a panel on Robot Navigation for the 1989

181

International Joint Conference on Artificial Intelligence. Mr. Harmon originated, managed
and contributed technically to the Ground Surveillance Robot project, an effort to develop an
autonomous ground vehicle which could cross unknown natural terrain. He is currently
developing the autonomous ground navigation system for the Mars Rover Sample Return
project. ’

SUSAN I. HRUSKA

Susan Hruska is assistant professor at the Department Computer Science and Mathematics,
Jacksonville State University, Jacksonville, Alabama. She received the B.S. and M.S. de-
grees from Auburn University and the Ph.D. from University of Alabama in Birmingham.

KAZUHIKO KAWAMURA

Kazuhiko Kawamura (Ph.D., Michigan) is a professor and the director of graduate studies of
electrical engineering at Vanderbilt University. He is also Associate Director of the Center for
Intelligent Systems, a multi-disciplinary research center engaged in studies in applied
artificial intelligence at the School of Engineering. He directs research projects in intelligent
robotics, parallel computer vision systems, intelligent tutoring systems, and knowledge-
based risk assessment systems.

His past positions include an instructor at the University of Michigan, Dearborn, research
specialist at Ford Motor Company, principal systems planner at Battelle Columbus Labora-
tories, and invited professor at Kyoto University, Kyoto, Japan.

AVI KAK

Avi Kak is a professor of electrical engineering at Purdue University. He is in charge of the
Robot Vision Laboratory with his current research in high level planning and sensing in
robotics.

H. E. KNEE

Mr. Knee is the group leader of the Cognitive Science and Human Factors Group at the Oak
Ridge National Laboratory (ORNL). This group is composed of an interdisciplinary team of
engineers, psychologists, and computer scientists that carry out applied research and devel-
opment, applications and basic research in human factors, systems reliability, systems
engineering/analysis, artificial intelligence, and cognitive science. Mr. Knee holds B.S. (1974)
and M.S. (1976) degrees in Nuclear Engineering from the University of California at Los
Angeles, and an M.B.A. (1986) with an emphasis in management from the University of
Tennessee. Mr. Knee has been with ORNL since 1976 and has been involved with human
factors research for over a decade. His research efforts over this time period involved: (1) the

182

development (for the Nuclear Regulatory Commission) of the MAPPS (Maintenance Person-
nel Performance Simulation) computer simulation model of nuclear power plant maintainer
activities, (2) the development of the Centralized Reliability Data Organization (CREDOQ), an
international advanced reactor reliability, availability, and maintainability data system and
data analysis center, and (3) initial development of a cognitive model of nuclear power plant
operator behavior entitled INTEROPS (Integrated Reactor Operator/System). Mr. Knee’s
current research interests involve human behavioral/cognitive modeling, human/system
interaction in advanced system design, human/system reliability, and cognitive science

WAYNE W. MANGES

Wayne has been involved in real-time computer activities in the Instrumentation and
Controls Division of Oak Ridge National Laboratory (ORNL) for eleven years. He currently
leads the Telerobotic Sensors and Electronics Group. Before his current position at ORNL, he
was a high school physics and chemistry teacher. He holds a B.S. and an M.S. in pure science
as well as a B.S. and M.S/EE. His interests include real-time computer hardware and
software architecture, control system architectures, and software quality measurement and
control. He has several publications in the areas of hierarchical process control, management
of large software projects, and real-time networking of heterogenous computer architectures.

REINHOLD C. MANN

Reinhold C. Mann received a Diplom-Mathematiker degree (M.S. in mathematics) in 1977,
and a Dr. rer. nat. degree (Ph.D.) in physics in 1980 from the Johannes Gutenberg University
in Mainz, Federal Republic of Germany (F.R.G.) From 1978 until 1980 he was a research
associate in the Biophysics Department at Mainz University and a consultant with the Laser
and Optics Group at Battelle Institute in Frankfurt, F.R.G., in the areas of digital image
analysis and pattern recognition. In 1980 he joined the Image Analysis Group at the
Fraunhofer Institute for Data and Information Processing in Karlsruhe, FR.G. He was
awarded a Feodor-Lynen Fellowship by the Alexander von Humboldt Foundation in Bonn,
F.R.G., which allowed him to spend 1981 and 1982 as a visiting scientist at the Oak Ridge
National Laboratory (ORNL), working on biomedical applications of pattern recognition and
image analysis. He has been a staff member at ORNL since 1983 and joined the Robotics and
Intelligent Systems Program in 1986. He has been leader of the Advanced Computing and
Integrated Sensor Systems Group at ORNL since 1987. He is an Adjunct Professor in the
Computer Science Department at the University of Tennessee in Knoxville. His research
interests include computer vision, multisensor integration, pattern recognition, and concur-
rent computing. He has authored over 20 reports and publications.

CHRIS MITCHELL

Chris Mitchell received her Ph.D. in industrial and systems engineering from Ohio State
University. She was a member of George Mason University’s Decision Sciences Faculty. In
1984, she accepted a position with Georgia Tech School of Industrial and Systems Engineer

183

ing and Center for Human—Machine Systems Research. Her research interests are in the
areas of models of human—computer interaction in supervisory control systems and the
design of teams of decision makers that combine human and computer components.

TOM M. MITCHELL

Tom M. Mitchell is a professor of computer science at Carnegie Mellon University and an
affiliated faculty of the Robotics Institute. He earned his B.S. degree (1973) from Massachu-
setts Institute Technology and his M.S. (1975) and Ph.D. (1978) degrees from Stanford Uni-
versity. He taught in the Computer Science Department at Rutgers University from 1978
until moving to Carnegie Mellon in 1986. In 1983 he received the IJCAI Computers and
Thought award in recognition of his research in machine learning and in 1984 an NSF
Presidential Young Investigator Award. His current research focuses on developing robots
that learn and on general architectures for problem solving and learning. His current
address is Department of Computer Science, Carnegie-Mellon University, Pittsburgh, PA
15213.

EUI PARK

Dr. Eui Park is an associate professor of industrial engineering at North Carolina A&T State
University and currently is conducting the quality control and manufacturing programs in
the department. Dr. Park earned his Ph.D. from Mississippi State University in 1983. His
research interest areas are production systems design and artificial intelligence (AI) applica-
tions. He currently has two research contracts with NASA and U.S. Air Force in the area of
telerobotics. In addition to his teaching and research experience, Dr. Park spent several years
as a senior engineer in Engineering Computing Systems at Boeing Commercial Airplane
Company.

LYNNE E. PARKER

Lynne E. Parker, a staff scientist in Oak Ridge National Laboratory’s Robotics and Intelli-
gent Systems Program, conducts research in human-machine symbiosis and related artifi-
cial intelligence areas, including job planning, dynamic task allocation, and automated moni-
toring. Prior to joining ORNL, she worked as a Computer Systems Analyst with Martin
Marietta Energy Systems. She received the B.S. degree in computer science from Tennessee
Technological University and the M.S. degree in computer science from the University of
Tennessee, Knoxville. Besides human-machine symbiosis, her current research interests are
multiple robot cooperation and autonomous mobile robot navigation.

FRANCOIS G. PIN

Francois G. Pin heads the Machine Reasoning and Automated Methods Group at Oak Ridge
National Laboratory. He also leads the Machine Intelligence and Advanced Computing Sys-

184

tems activities of the Robotics and Intelligent Systems Program and is a principal investiga-
tor of the Center for Engineering Systems Advanced Research. His technical interests
include high-level planning, reasoning, problem solving and learning for autonomous mobile
systems, and man-machine symbionts. He received his M.S. and Ph.D. in mechanical
engineering from the University of Rochester, New York.

MICHAEL J. RABINS

Michael J. Rabins joined the Texas A&M University Mechanical Engineering Department as
Head in February 1987. Prior to that he was at the Wayne State University College of
Engineering in September, 1977, first as Chairman of the Mechanical Engineering Depart-
ment, and then from June, 1985 he served as associate dean for engineering research and
graduate programs at Wayne. Prior to 1977, he was on the Polytechnic Institute of New York
faculty from June 1970 as a professor of system engineering and director of the System
Engineering Program in the Department of Operations and System Analysis. Between 1960
and 1970 he served as assistant and associate professor of mechanical engineering at New
York University. He plays an active role in the American Society of Mechanical Engineers
(ASME), of which he is a Fellow, where he was (founding) Editor of the ASME Quarterly,
Dynamic Systems, Measurement and Control from 1970 to 1973; and chairman of the Execu-
tive Committee of the Automatic Control Division of the A.S.M.E. in 1975. In 1977 he became
an elected member-at-large of the ASME Policy Board, Communications, and served as
ASME vice-president of communications from 1981 through 1984. Currently, he serves as
chairman of the Technology Opportunity and Planning Committee of the American Society of
Mechanical Engineers Board on Research and Technology Development. He is also a member
of ASEE, ISA, and an elected member of the College of Fellows of the Engineering Society of
Detroit. He is the immediate past-president of the American Automatic Control Council.

THOMAS B. SHERIDAN
Thomas B. Sheridan [Hc received the B.S. degree

from Purdue University, West Lafayette, IN (1951), the MS degree from University of
California at Los Angeles (1954), and the ScD degree from Massachusetts Institute of
Technology (MIT), Cambridge, MA (1959). From 1951-1953 he was a research and develop-
ment officer in the Air Force and a rated parachutist.

For most of his professional career he has remained at MIT, where he was assistant
professor, associate professor, and professor of mechanical engineering and is now professor
of engineering and applied psychology and director of the Man-Machine Systems Laboratory.
He has also served as a visiting faculty member at University of California, Berkeley,
Stanford University and Technical University of Delft, Netherlands. Dr. Sheridan’s research
and teaching activities include design, control, modeling and human factors experimentation
of telerobotic systems for space and undersea, operation of nuclear power plants and commer-
cial aircraft, individual and group decision processes, and social effects of automation. Dr.
Sheridan has also been associated with the MIT programs in technology and policy and in
science, technology, and society.

185

Dr. Sheridan served as president of the IEEE Systems, Man and Cybernetics Society, Editor
of IEEE Transactions on Man-Machine Systems, and is an IEEE Fellow and Centennial
Medalist. He is also a Fellow of the Human Factors Society and recipient of their Paul M.
Fitts Award for contributions to education. He is coauthor of Man-Machine Systems (MIT
Press, 1981,84; USSR, 1981) and coeditor of Monitoring Behavior and Supervisory Control
(Plenum, 1976). He has served on the editorial boards of Automatica, Advanced Robotics,
Robotics and Computer Integrated Manufacturing, Computer-Aided Design, and Technologi-
cal Forecasting and Social Change. He is coholder of two patents.

Dr. Sheridan has served on various advisory committees of the National Institutes of Health,
Office of Technology Assessment, NRC, NSF, and NASA. He was chairman of the National
Research Council’s Committee on Human Factors and currently is a member of the NRC
Committee on a Commercially Developed Space Facility. He is also a member of the Nuclear
Regulatory Commission’s Research Review Committee and NASA’s Oversight Committee for
the Flight Telerobotic Servicer. He is listed in Who’s Who in America and similar listings.

CHING-LONG SHIH
Ching-Long Shih || NG e received B.S. and M.S. degrees

in control engineering from National Chiao Tung University, Hsinchu, Taiwan, in 1980 and
1984. He received his Ph.D. in Electrical Engineering from Ohio State University of 1988. He
is currently with the Center for Robotics and Manufacturing Systems, University of Ken-
tucky. His main interests are in the areas of robotics, walking machines, and artificial
intelligence

PHILIP F. SPELT

Philip F. Spelt, Ph.D., a consulting cognitive scientist in Oak Ridge National Laboratory’s
Engineering Physics and Mathematics Division, has worked during the past year to develop
the learning and inferencing system components for the autonomous mobile robot at the
Center for Engineering Systems Advanced Research Laboratory. He is on extended leave
from Wabash College, Crawfordsville, Indiana, where he is Professor of Psychology. He
received his B.A. in psychology from Grinnell College, Iowa, and his M.Sc. and Ph.D. degrees
from the University of Pittsburgh in experimental psychology. He has done work on animal
learning and memory and on computer simulation during his 20-year career.

JAMES S. TULENKO

Professor James S. Tulenko is chairman of the Department of Nuclear Engineering Sciences
at the University of Florida. He holds degrees from Harvard and Massachusetts Institute
Technology in applied physics and nuclear engineering. He is a principal investigator for the
University of Florida in the Department of Energy University Program in Robotics for
Advanced Reactors. He is also chairman of the Research Committee of the Utility/Manufac

186

turers Robotic Users Group. He is the author of over forty papers on nuclear engineering,
workstations, and robotic modeling

HAROLD P. VAN COTT

Harold P. Van Cott is the study director for the Committee on Human Factors of the National
Academy of Science/National Research Council. Previous positions include vice president and
director, Systems Operability Division, Essex Corporation; chief scientist, BioTechnology,
Inc.; division chief, National Engineering Laboratory, National Bureau of Standards; and
director, Institute for Research on Human Performance, American Institutes for Research.
Common to all of these positions is research related to the proper use of technology in relation
to human needs, capabilities and limitations. Dr. Van Cott is a Fellow of the APA, AAAS,
Washington Academy of Science, and the Human Factors Society. He received a Ph.D. in
experimental psychology from the University of North Carolina.

CHARLES R. WEISBIN

Charles R. Weisbin is the director of the Robotics and Intelligent Systems Program at Oak
Ridge National Laboratory (ORNL), where he is responsible for directing robotics and related
artificial intelligence and parallel computing projects for the Department of Energy (DOE)
and the Department of Defense, and other sponsors. He is also the Director of the Center for
Engineering Systems Advanced Research and head of the Mathematical Modeling and Intel-
ligent Control Section at ORNL. Dr. Weisbin serves as an associate editor of IEEE Expert, as
a member of Martin Marietta Corporation Artificial Intelligence Steering Committee, and as
DOE representative to the Department of Defense, Joint Directors of Laboratories, Robotics
Technology Panel. He received his Eng.Sc.D. from Columbia University in nuclear engineer-
ing. His current research interests include robotics, concurrent computation, machine intel-
ligence, decision making, sensitivity and uncertainty analysis, and human-machine symbio-
sis.

YUAN F. ZHENG

Yuan F. Zheng received his B.S. degree from Tsinghua University, Beijing, China, and M.S.
and Ph.D. degrees from Ohio State University. After completing his Ph.D. degree in 1984, he
joined Clemson University at Clemson, South Carolina. From 1984 to 1987, he was an
assistant professor and became an associate professor in 1987. Dr. Zheng’s research interests
include a number of aspects in robotics and automation, such as robot arms for manipulation
and robot legs for walking. Since 1984, he has made significant contributions in the coordina-
tion of multiple robot arms and biped walking robots. In recognition of his contributions, he
was selected to receive the Presidential Young Investigator Award in 1987.

187

Blank Page

Section 8: ORNL Distribution

Blank Page

ONDNR N

77.

78.

79.
80.

81.
82.

Philadelphia, PA 19104

ORNL Internal Distribution

B. R. Appleton 35.

S. M. Babcock 36.
D. L. Barnett 37-41
M. B. Beckerman 42-46
P. F. R. Belmans 47.
L. A. Berry 48.
T. W. Burgess 50.
B. L. Burks 51.
R. J. Carter 52,

dJ. C. Culioli 53.
F. C. Davis 54.
F. W. Depiero 55.
G. de Saussure 56.
B. G. Eads 57.

J. R. Einstein 58.
C. W. Glover 59-63
W. R. Hamel 64.
J.H. Han 5.

J. N. Herndon 66.

dJ. P. Jones 67.
S. M. Killough 68.
H. E. Knee 70.
D. P. Kuban 71.

. F. C. Maienschein

W. W. Manges 72-73
R. C. Mann 74.
S. A. Meacham 75.
J. R. Merriman 76.

jaliae g
= S

wc-'t.ON:Ug"d"U'-BNL'UJL'U;’d

=

. Oblow
O taduy
. Pz_arker

Bdeg

Relster
. Robinson
. Schrock
. Schryver

toguchi

. Shannon
. Spelt
. Sweeney

. Terranova

. Urhig
ancleave

. Weisbin

. White

. Worley
H. R. Yook
A. Zucker
d. J. Dorning (Consultant)
Central Research Library
ORNL Technical Library Document
Reference Section

g;Ot"*-]wq)

> S

>UW<3'?1

. Laboratory Records Dept.

Laboratory Records - RC
ORNL Patent Office
EPMD Reports Office

ORNL External Distribution

Office of Assistant Manager, Energy Research and Development, Department of
Energy, Oak Ridge Operations, P.O. Box 2001, Oak Ridge, TN 37831

dJ. K. Aggarwal, University of Texas, Department of Electrical and Computer
Engineering, Austin, TX 78712

Moonis Ali, University of Tennessee Space Institute, Tullahoma, TN 37388

Harry Alter, Division of Advanced Technology Development, 19901 Germantown
Road, MS-542, Germantown, MD 20874

Michael A. Arbib, University of Southern California, Los Angeles, CA 90089-0782

Ruzena Bajcsy, Department of Electrical Engineering, University of Pennsylvania,

191

83. Jacob Barhen, Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109
84. S. Baron, BBN Laboratories, Inc., 10 Moulton Street, Cambridge, MA 02238

85. Antal K. Bejczy, Robotics and Teleoperator Group, Jet Propulsion Laboratory,
California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109

86. George Bekey, Computer Science Department, University of Southern California,
Los Angeles, CA 90089-0782

87. Leo Beltracchi, Division of Reactor and Plant Systems, Office of Nuclear Regulatory
Research, US NRC, MS NL/N-316, Washington, DC 20555

88. Thomas O. Binford, Artificial Intelligence Laboratory, Computer Science
Department, Stanford University, Stanford, CA 94305

89. Wayne Book, Department of Mechanical Engineering, Georgia Institute of
Technology, Atlanta, GA 30332

90. John Brewer, Mechanical Engineering Department, Louisiana State University, Baton
Rouge, LA 70803-6413

91. Roger Brockett, Division of Engineering and Applied Physics, Harvard University,
Pierce Hall, Cambridge, MA 02138

92. Rodney Brooks, Massachusetts Institute of Technology, Artificial Intelligence
Laboratory, 545 Technology Square, Cambridge, MA 02139

93. Reggie J. Caudill, Department of Mechanical Engineering, College of Engineering,
Drawer ME, Tuscaloosa, AL 35487-2998

94-98. Kai-Hsiung Chang, Department of Computer Science and Engineering, 107 Dunstan
Hall, Auburn University, Auburn, AL 36849-5347

99. Prem Chopra, School of Engineering, University of Tennessee-Chattanooga,
Chattanooga, TN 37403

100. James S. Coleman ER-15, Director of Engineering and Geosciences, Office of Basic
Energy Systems, U.S. Department of Energy, Washington, DC 20545

101. Lynn Conway, Associate Dean of College of Engineering, Chrysler Center, University
of Michigan, Ann Arbor, MI 48109-2092

102. Kevin Corker, BBN Systems and Technologies Corporation, 70 Fawcett Street,
Cambridge, MA 02178

103. Rui J. P. deFigueiredo, George R. Brown School of Engineering, Department of
Electrical and Computer Engineering, P.O. Box 1892, Rice University, Houston, TX 77251

104. Max Donath, Department of Mechanical Engineering, University of Minnesota, 111
Church St., SE, Minneapolis, MN 55455

105. Joseph F. Engelberger, Transitions Research Corporation, 15 Durant Ave., Bethel, CT
06801

106. Bernard Espiau, IRISA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex,
France

107. Gerard Fraize, UGRA, CEA CEN/Fontenay aux Roses, Fontenay aux Roses, France

108. Grafkan Galanos, Chairman, Department of Electrical Engineering, Southern Illinois
University at Carbondale, Carbondale, IL 62901

109. Maria L. Gini, Department of Computer Science, 4-192 EE/CSA Building, 200 Union
Street, SE, Minneapolis, MN 55455

110. Ralph Gonzalez, Department of Electrical and Computer Engineering, Ferris Hall,
The University of Tennessee, Knoxville, TN 37996-2100

111 James H. Graham, Department of Engineering Mathematics and Computer Science,
University of Louisville, Louisville, KY 40292

112. William A. Gruver, College of Engineering, Center for Robotics and Manufacturing
Systems, University of Kentucky, Lexington, KY 40506-0056

113. James L. Gumnick, Office of University and Industrial Programs, Oak Ridge Associ-
ated Universities, Oak Ridge, TN 37830

114. Claudio Gutierrez, Professor of Computer and Information Sciences, University of
Delaware, Newark, DE 19716

115. P. M. Haas, 10615 Alameda Drive, Knoxville, TN 37922

116. Capt. Samuel Hagins, Aircraft Launch and Recovery Branch, AFWAL/FDEMB, Wright-
Patterson AFB, OH 45433-655

117. Ernest L. Hall, Department of Mechanical and Industrial Engineering, MS-72,
University of Cincinnati, Cincinnati, OH 45221

118. Jia-Yuan Han, Department of Electrical Engineering, Southern Illinois University,
Carbondale, IL 62901-6602

119. Scott V. Harmon, Robot Intelligence International, 4660 Long Branch Ave., San
Diego, CA 92107

120. Ewald Heer, 5329 Crown Ave., La Canada, CA 91011

121. Marty Herman, Industrial Systems Division, National Bureau of Standards, Building
220/B124, Gaithersburg, MD 20899

122. David B. Hertz, Director, Intelligent Computer Systems, Research Institute,
University of Miami, P.O. Box 248235, Coral Gables, FL 33156

123. Susan Hruska, Jacksonville State University, Jacksonville, AL 36265

124. Thomas Hutchinson, Computer Science Department, University of Virginia,
Charlottesville, VA 22904

125. Sitharama S. Iyengar, Associate Professor, Department of Computer Science,
Louisiana State University, Baton Rouge, LA 70803-4020

193

126. Michael Jackson, Bldg. 4708, Room 206, Marshall Space Flight Center, AL 35806

127. Marilyn Jones, Department of Electrical Engineering, Virginia Tech, Blacksburg, VA
24061

128. Chuck Jorgensen, Thomson-CSF, Inc., 630 Hansen Way, Suite 250, Palo Alto, CA
94307

129. Avi Kak, Department of Electrical Engineering, Purdue University, Lafayette, IN
47907

130. Abraham Kandel, Florida State University, Inst. for Expert Systems and Robotics,
Computer Science Department, LOV 206, Tallahassee, FL 32306-4019

131. Takeo Kanade, The Robotics Institute, Carnegie-Mellon University, Schenley Park,
Pittsburgh, PA 15213

132. Kazuhiko Kawamura, Department of Electrical Engineering, Box 1674, Station B,
Vanderbilt University, Nashville, TN 37235

133. Tarek M. Khalil, University of Miami, Department of Industrial Engineering, College
of Engineering, P.O. Box 248294, University of Miami, Coral Gables, FL 33124

134. Jung H. Kim, Department of Electrical Engineering, North Carolina A&T State
University, Greensboro, NC 27411

135. T.T. Lee, College of Engineering, Center for Robotics and Manufacturing Systems,
University of Kentucky, Lexington, KY 40506-0056

136. Gary Leininger, Director of Intelligent Industrial Systems, 320 ERL, University of
Missouri-Rolla, Rolla, MO 65401

137. Oscar P. Manley, Office of Basic Research and Engineering, Mathematical, and
Geosciences Division, U.S. DOE, MS ER-15, Washington, DC 20545

138. Worthy N. Martin, Computer Science Department, University of Virginia,
Charlottesville, VA 22904

139. Robert A. McLauchlan, Texas A&l University, Department of Civil and Mechanical
Engineering, Campus Box 191, Kingsville, TX 78363

140. Alex Meystel, Department of Electrical and Computer Engineering, Drexel
University, Philadelphia, PA 19104

141. Ryszard Michalski, George Mason University, Department of CSC, Artificial
Intelligence Center, 4400 University Drive, Fairfax, VA 22032

142. Christine Mitchell, Man-Machine Systems Research, School of Industrial and Sys-
tems Engineering, Georgia Institute of Technology, Atlanta, GA 30332

143. Thomas Mitchell, Department of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213

144. Amit Mukerjee, Computer Science Department, Texas A&M University, College
Station, TX 77843

145. J. Nievergelt, Chairman, Department of Computer Science, University of North
Carolina - Chapel Hill, Department of Computer Science, Chapel Hill, NC 27514

146. Celestine Ntuen, Department of Industrial Engineering, McNair Hall, Room 405,
North Carolina A&T State University, Greensboro, NC 27411

147. Eui H. Park, Department of Industrial Engineering, North Carolina A&T State
University, Greensboro, NC 27411

148. Joey Parker, Department of Mechanical Engineering, College of Engineering,
University of Alabama, Drawer ME, Tuscaloosa, AL 35487-2998

149. Frank Paul, Mechanical Engineering Department, Center for Advanced
Manufacturing, 318 Riggs Hall, Clemson University, Clemson, SC 29634-0921

»

150. Richard Paul, Department of Mechanical Engineering and Computer Science,
University of Pennsylvania, Philadelphia, PA 19104

151. J. J. Persensky, Division of Licensee Performance and QA, Human Factors
Assessment Branch, Office of Nuclear Reactor Regulation, US NRC, Washington, DC 20555

152. Larry Peterson, U.S. Army Human Engineering Lab, Building 459, Attn: SLCHE-CS
(L. Peterson), Aberdeen Proving Ground, MD 21005-5001

153. Harry E. Pople, Decision Systems Laboratory, University of Pittsburgh, School of
Medicine, Pittsburgh, PA 15261

154. Michael J. Rabins, Department of Mechanical Engineering, Texas A&M University,
100 Engineering Physics Building, College Station, TX 77843-3123

155. Raj Reddy, Director, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
15213

156. Karl N. Reid, College of Engineering, Architecture, and Technology, Oklahoma State
University, Stillwater, OK 74074

157. John Roach, Virginia Polytechnic Institute and State University, Department of
Computer Science, 562 McBryde Hall, Blacksburg, VA 24061

158. Bernie Rock, Office of Technology, Support Programs, U.S. Department of Energy,
Washington, DC 20545

159. William Rouse, Center for Man-Machine Systems Research, Georgia Tech, 225 North
Ave., NW, Atlanta, GA 30332

160. T. G. Ryan, 5546 Falmead Road, Fairfax, VA 22032

161. George Saridis, Electrical, Computer and Systems Engineering Department,
Rensselaer Polytechnic Institute, 15th Street, Troy, NY 12180

162. Paul Schenker, Technical Manager, NASA/JPL Space Telerobotics Program, Jet
Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109

163. Thomas Sheridan, Department of Mechanical Engineering, Massachusetts Institute
of Technology, Cambridge, MA 02139

195

164. Ching-Long Shih, Center for Robotics and Manufacturing Systems, University of
Kentucky, Breckinridge Hall, Lexington, KY 40506-0056

165. Wes Snyder, North Carolina State University, Center for Community and Signal
Processing, Box 7914, Raleigh, NC 27695-7914

166. A. Swain, 712 Sundown Place, SE, Albuquerque, NM 87108

167. James S. Tulenko, 202 Nuclear Science Center, The University of Florida, Gainesville,
FL 32601

168-181. Harold P. Van Cott, National Academy of Sciences, 2101 Constitution Ave.,
NW, Washington, DC 20418

182. Richard A. Volz, University of Michigan, Director of Robotics Systems Division,
Department of Electrical Engineering and Computer Science, Ann Arbor, MI 48109

183. C. Wickens, Aviation Research Laboratory, University of Illinois at Urbana-
Champaign, Champaign, IL 61820

184-185. Yuan F. Zheng, Department of ECE, Clemson University, Clemson, SC 29634

186. Robotic Systems Lab, Department of Industrial Engineering, North Carolina A&T
State University, Greensboro, NC 27411

187-196. Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN
37831

197. Carl Steidly, Department of Computer Science, Central Washington University,
Ellensburg, WV 98926

198. J. M. Giron Sierra, Santa Hortensia, 41, 1, 28002, Madrid, Spain

196

