
o /
SAND—89-0737C 

DE89 012678
»

Integrating Security Analysis and Safeguards Software Engineering

Debra D. Spencer, Sandia National Laboratories 
Robert M. Axline, Sandia National Laboratories

Introduction

One of the challenges of designing and 
building a security system to protect critical 
resources is not only to safeguard the 
resources being protected, but also to make 
the security system software itself more 
secure. The safeguards organization at Sandia 
National Laboratories (SNL), in conjunction 
with other Sandia organizations specializing 
in software security analysis and software 
engineering, has initiated an effort to address 
this significant computer security concern in 
an organized manner. This effort embraces 
the idea that security must be designed into 
critical software from the beginning of 
software development activity in order that 
later security analysis of the software will 
provide confidence that the software works 
only as intended.

Modern safeguards systems protect a 
variety of resources against adversarial 
threats. Examples include:

• Storage areas for high-valued assets

• Government administrative and 
production facilities

• Nuclear power plants

• Aircraft installations

An increasingly common element in these 
modern safeguards systems is the use of 
software-controlled devices. Sometimes, 
software directly controls functions that are 
critical to preventing unauthorized access.

As modern software systems are developed, 
they tend to be more and more complex. This 
complexity provides versatile features that 
theoretically do a better job of providing the 
desired functionality. On the other hand, the 
complexity alone makes the job of assessing 
the security of the software very difficult.

Adversarial threats to a security system 
include the usual insiders and outsiders, plus 
the insider who designed and built the

software upon which the security system is 
based. This special insider has an enormous 
potential for creating security problems, 
whether intentionally or not. When no 
integrity problem exists among the system 
designers, a knowledgeable outsider may still 
have the potential for subversion of poorly 
designed security software.

Many different consequences of security 
flaws in the system can result. These include:

• Denial of service

• Unauthorized use

• Alteration of critical data

• Leakage of information

Due to 1) the complexity of the software, 2) 
the opportunities for an adversarial designer, 
and 3) the subversion potential for poorly 
designed software, the true level of security 
for today’s security-related software is usually 
difficult to assess. As a consequence, we 
believe that the problem of producing secure 
software is one of great national importance 
at the present time.

Security in the Software Life Cycle

Opportunities for improving the security of 
software occur in two primary ways. 
Software can be developed using tools, 
techniques, and methodologies which make it 
inherently more secure. In addition, software 
can be analyzed during the stages of the 
development process to determine how secure 
it is. These two opportunities for improving 
the security of software are explored in the 
following two subsections.

Security in Software Design
In recent years, the methods for developing 

software have changed drastically. Successful 
software development no longer depends 
solely on larger and faster computers on 
which to run it or on innovative computer 
programmers to create it.

This work was supported by the United States Department of Energy under Contract,.N-umber 
DE-AC04-76DP00789. DiSTRIBUTION OF THIS DOCUMENT IS

MASTER



DISCLAIMER

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, 
makes any warranty, express or implied, or assumes any legal liability 
or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference 
herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or 
favoring by the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not necessarily 
state or reflect those of the United States Government or any agency 
thereof.

DISCLAIM ER

Portions of this document may be illegible in electronic image 

products. Images are produced from the best available 

original document.



Increasing reliance on computers has driven 
the demand for software to perform more 
extensive and increasingly complex tasks. 
This rapid increase in complexity of software 
has sometimes overwhelmed those tasked with 
producing it. For example, inaccurate 
communication of complex requirements has 
led to finished software not performing as 
needed and costing more than expected, and 
inadequate documentation of the design and 
implementation has led to increased 
maintenance costs. The dominating 
percentage of computer application cost has 
shifted from hardware in the late fifties and 
sixties to software development and, 
especially, maintenance in the eighties.

In response to the problems associated with 
producing increasingly complex software, the 
discipline of software engineering has 
developed. Software engineering is the 
systematic approach to the specification, 
development, testing, operation, maintenance, 
and retirement of software. There are a 
number of tools, techniques, and 
methodologies that together form the core of 
this new discipline. These enhance the 
quality and productivity of the activities 
related to software development.

Modern software engineering principles 
now clearly separate the stages of software 
development:

• Concept exploration

• Requirements

• Design

• Implementation

• Test

• Installation and checkout

• Operation and maintenance

• Retirement

Specific deliverables are required at each 
stage of the development in the form of 
documentation, testing activities, and actual 
product. This development process provides 
an excellent structure and has generally been 
accepted as leading to superior software. 
However, the problem of building inherently 
secure software has not been explicitly 
addressed in software engineering practices.

We believe that some security benefits will 
accrue to software developed using modern 
software engineering practices. Examples of 
these software engineering practices that may 
lead to enhanced security are:

• Modularity and improved structure

• Improved documentation of requirements 
and code

• Formal inspection process

We do not believe that these improvements 
are enough; security-specific measures must be 
taken in the development process. Effective 
integration of these security-specific measures 
into the development process is just beginning. 
The initiatives we discuss here will aid in this 
integration.

Software Security Analysis
A security analysis of the software- 

controlled system is an important step at 
Sandia National Laboratories in the efforts to 
assure the security of critical software 
systems. This process attempts to identify 
security vulnerabilities, while considering the 
software in the context of the complete 
security system. A typical analysis includes 
assessment of the security attributes of the 
software and its operating environment as 
well as static and dynamic analysis of the 
code. Initiatives presented here should 
enhance the aspects of structure and 
automation for the security analysis process.

Security analysts often find themselves in a 
reactive posture, with the analysis beginning 
late in the system’s life cycle. As a result 
expensive design modification may be 
required to make the system adequately 
secure. One goal of our initiatives is to 
incorporate more of the philosophy of the 
security analysis process into the early 
software design phases. By providing 
security-related design guidelines and 
concepts that can be integrated into the 
earliest stages of the software life cycle, the 
security of the critical systems can be 
economically enhanced and these systems can 
be made easier to analyze.

Software Security Initiatives at SNL

Several groups at Sandia National 
Laboratories have joined forces to undertake



the mission of designing and developing more 
secure software. These groups include 
individuals who design safeguards systems, 
others who routinely analyze various kinds of 
software systems for security problems, and 
still others who are addressing the front-end 
problem of proper software engineering in the 
specification and design stages of software 
creation.

These three groups have well-defined roles 
in the joint effort. The safeguards software 
designers are using small software design 
projects as prototypes for a new methodology 
of building inherently more secure software. 
The software engineering and security- 
analysis groups are developing guidelines for 
development of software systems that can be 
more easily analyzed for potential security 
problems. The security analysts are also 
developing new analysis methodologies and 
tools for performing security analysis of 
software. Together the groups will analyze 
the success of their efforts from their various 
unique perspectives.

The goals of the new initiatives are to 
identify, develop, and promote new tools, 
techniques, methodologies, and architectures 
that enhance software and system security 
and support and improve the software 
security analysis process. These goals are 
aimed at eliminating the system’s undesired 
modes of behavior so that it does what it is 
intended to do and no more. When security 
problems are present in software despite 
design methodology aimed at eliminating 
them, then they should, ideally, be detectable 
through routine security analysis. Detected 
security flaws can then be eliminated by 
incorporating design changes.

The scope of the initiatives is small 
microprocessor- or microcomputer-based 
systems, less than or equal to a personal 
computer in complexity. The focus is on 
systems that protect critical resources. 
However, we expect that much of the 
technology developed for these systems will 
have broader applicability.

Current safeguards systems that have 
previously been developed by Sandia tend to 
be somewhat bigger than the target systems 
for the initiatives described above. Several of 
these systems are of the microVAX size. 
Newer systems under development use 
personal computers. The decision to restrict 
the scope of these initiatives to the PC class

and smaller makes the problem more 
manageable.

A system in the class to be addressed by the 
initiatives is likely to employ a single 
microprocessor with random-access memory 
(RAM) for temporary storage of data and 
read-only memory (ROM) for storage of 
program code. The system may be embedded, 
its only interface to the outside world being a 
cable to which a more complex controller 
attaches. Another system may have a 
keyboard and display interface to which an 
operator has access. In such a case, the 
software may be either ROM-based or 
diskette-based. Finally, the system may 
constitute a minimal network. Examples of 
systems in the class under consideration are:

• Facility security systems such as access- 
control portals and intrusion-detection 
systems

• Material and personnel control and 
tracking systems

• Storage and retrieval systems for high­
valued assets

The approach will be a three-phased one 
that will build upon past efforts by the 
groups involved. These past efforts have 
included:

• A preliminary set of design guidelines 
for software security

• Preliminary identification of 
commercially-available software design 
components with desirable security 
features

• Promotion of software engineering 
principles among laboratory software 
designers

• Informal surveys of some of the current 
software design tools and software 
analysis tools

• Development of a concept that uses a 
dynamic, independent, resident hardware 
monitor to detect erroneous memory- 
access behavior in a microprocessor-based 
system

Phase One objectives are underway and are 
expected to be delivered before the end of 
1990. This activity includes:



• Further development of the software 
security guidelines

• Design of the resident hardware monitor

• Development of a methodology for 
integrating security into the early phases 
of software engineering

• Initial application of the guidelines to a 
safeguards project

• Investigative work on tools, techniques, 
platforms, and methodologies for 
designing and analyzing secure software 
systems

Phase Two activity is expected to occur 
during the following two years. This effort 
will focus on:

• Design and implementation of various 
custom tools and methodology

• Continued safeguards use of this 
expanding list of tools and methods

• Assessment of verifiability, cost, and 
effectiveness of the tools and 
methodology being developed

• Construction of the resident hardware 
monitor

Phase Three activity involves long-range 
projects, whose tasks are more tentative and 
much less well defined. This activity will 
build upon accomplishments of the first two 
phases. Included will be:

• Continued development of tools and 
design aids

• Promotion of recommended tools, 
techniques, methodologies, and 
components

• Quantification techniques for the 
complexity and security of software 
systems

• Refinement of both guidelines and 
analysis methodologies

• Implementation of the resident hardware 
monitor or other concepts in fielded 
hardware

Summation

These initiatives will work together to 
provide more secure safeguards software, as 
well as other critical systems software. The 
resulting design tools and methodologies, the 
evolving guidelines for software security, and 
the adversary-resistant software components 
will be applied to the software design at each 
stage to increase the design’s inherent security 
and to make the design easier to analyze. The 
resident hardware monitor or other 
architectural innovations will provide 
complementary additions to the design to 
remove some of the burden of security from 
the software. The security analysis process, 
supported by new analysis methodologies and 
tools, will be applied to the software design as 
it evolves in an attempt to identify and 
remove vulnerabilities at the earliest possible 
point in the safeguards system life cycle. The 
result should be better and more verifiably 
secure software systems.

VAX is a trademark of the Digital 
Equipment Corporation.

For further information, the authors may 
be contacted at:

Sandia National Laboratories 
P. O. Box 5800
Albuquerque, New Mexico 87185


