N
&

S
&

&
N

-
&

Q
2
»

Introduction

One of the challenges of designing and
buil‘éing a security system to protect critical
resources is not only to safeguard the
resources being protected, but also to make
the security system software itself more
secure. The safeguards organization at Sandia
National Laboratories (SNL), in conjunction
with other Sandia organizations specializing
in software security analysis and software
engineering, has initiated an effort to address
this significant computer security concern in
an organized manner. This effort embraces
the idea that security must be designed into
critical software from the beginning of
software development activity in order that
later security analysis of the software will
provide confidence that the software works
only as intended.

Modern safeguards systems protect a
variety of resources against adversarial
threats. Examples include:

Storage areas for high-valued assets

o Government administrative and
production facilities

o Nuclear power plants
e Aircraft installations

An increasingly common element in these
modern safeguards systems is the use of
software-controlled devices. Sometimes,
software directly controls functions that are
critical to preventing unauthorized access.

As modern software systems are developed,
they tend to be more and more complex. This
complexity provides versatile features that
theoretically do a better job of providing the
desired functionality. On the other hand, the
complexity alone makes the job of assessing
the security of the software very difficult,

Adversarial threats to a security system
include the usual insiders and outsiders, plus
the insider who designed and built the

CONE 8906 15~ ~

SAND--89-0737C

DE89 012678

R0} Integrating Security Analysis and Safeguards Software Engineering

Debra D. Spencer, Sandia National Laboratories
Robert M. Axline, Sandia National Laboratories

software upon which the security system is
based. This special insider has an enormous
potential for creating security problems,
whether intentionally or not. When no
integrity problem exists among the system
designers, a knowledgeable outsider may still
have the potential for subversion of poorly
designed security software.

Many different consequences of security
flaws in the system can result. These include:

o Denial of service

e Unauthorized use

e Alteration of critical data
e Leakage of information

Due to 1) the complexity of the software, 2)
the opportunities for an adversarial designer,
and 3) the subversion potential for poorly
designed software, the true level of security
for today’s security-related software is usually
difficult to assess. As a consequence, we
believe that the problem of producing secure
software is one of great national importance
at the present time.

Security in the Software Life Cycle

Opportunities for improving the security of
software occur in two primary ways.
Software can be developed using tools,
techniques, and methodologies which make it
inherently more secure. In addition, software
can be analyzed during the stages of the
development process to determine how secure
it is. These two opportunities for improving
the security of software are explored in the
following two subsections.

Security in Software Design

In recent years, the methods for developing
software have changed drastically. Successful
software development no longer depends
solely on larger and faster computers on
which to run it or on innovative computer
programmers to create it.

P : .
This work was supported by the United States Department of Energy under F?gﬁﬂﬁfl@m@éﬁr

DE-ACO04-76DP00789.

DISTRIBUTION OF THiIS DOCUMEN

MASTER



DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.



Increasing reliance on computers has driven
the demand for software to perform more
extensive and increasingly complex tasks.
This rapid increase in complexity of software
has sometimes overwhelmed those tasked with
producing it. For example, inaccurate
communication of complex requirements has
led to finished software not performing as
needed and costing more than expected, and
inadequate documentation of the design and
implementation has led to increased
maintenance costs. The dominating
percentage of computer application cost has
shifted from hardware in the late fifties and
sixties to software development and,
especially, maintenance in the eighties.

In response to the problems associated with
producing increasingly complex software, the
discipline of software engineering has
developed. Software engineering is the
systematic approach to the specification,
development, testing, operation, maintenance,
and retirement of software. There are a
number of tools, techniques, and
methodologies that together form the core of
this new discipline. These enhance the
quality and productivity of the activities
related to software development.

Modern software engineering principles
now clearly separate the stages of software
development:

e Concept exploration

e Requirements

e Design

e Implementation

e Test

e Installation and checkout

e Operation and maintenance

e Retirement

Specific deliverables are required at each
stage of the development in the form of
documentation, testing activities, and actual
product. This development process provides
an excellent structure and has generally been
accepted as leading to superior software.
However, the problem of building inherently

secure software has not been explicitly
addressed in software engineering practices.

We believe that some security benefits will
accrue to software developed using modern
software engineering practices. Examples of
these software engineering practices that may
lead to enhanced security are:

e Modularity and improved structure

e Improved documentation of requirements
and code

e Formal inspection process

We do not believe that these improvements
are enough; security-specific measures must be
taken in the development process. Effective
integration of these security-specific measures
into the development process is just beginning.
The initiatives we discuss here will aid in this
integration,

Software Security Analysis

A security analysis of the software-
controlled system is an important step at
Sandia National Laboratories in the efforts to
assure the security of critical software
systems. This process attempts to identify
security vulnerabilities, while considering the
software in the context of the complete
security system. A typical analysis includes
assessment of the security attributes of the
software and its operating environment as
well as static and dynamic analysis of the
code. Initiatives presented here should
enhance the aspects of structure and
automation for the security analysis process.

Security analysts often find themselves in a
reactive posture, with the analysis beginning
late in the system’s life cycle. As a result
expensive design modification may be
required to make the system adequately
secure. One goal of our initiatives is to
incorporate more of the philosophy of the
security analysis process into the early
software design phases. By providing
security-related design guidelines and
concepts that can be integrated into the
earliest stages of the software life cycle, the
security of the critical systems can be
economically enhanced and these systems can
be made easier to analyze.

Software Security Initiatives at SNL

Several groups at Sandia National
Laboratories have joined forces to undertake



the mission of designing and developing more
secure software. These groups include
individuals who design safeguards systems,
others who routinely analyze various kinds of
software systems for security problems, and
still others who are addressing the front-end
problem of proper software engineering in the
specification and design stages of software
creation.

These three groups have well-defined roles
in the joint effort. The safeguards software
designers are using small software design
projects as prototypes for a new methodology
of building inherently more secure software.
The software engineering and security-
analysis groups are developing guidelines for
development of software systems that can be
more casily analyzed for potential security
problems. The security analysts are also
developing new analysis methodologies and
tools for performing security analysis of
software. Together the groups will analyze
the success of their efforts from their various
unique perspectives.

The goals of the new initiatives are to
identify, develop, and promote new tools,
techniques, methodologies, and architectures
that enhance software and system security
and support and improve the software
security analysis process. These goals are
aimed at eliminating the system’s undesired
modes of behavior so that it does what it is
intended to do and no more. When security
problems are present in software despite
design methodology aimed at eliminating
them, then they should, ideally, be detectable
through routine security analysis. Detected
security flaws can then be eliminated by
incorporating design changes.

The scope of the initiatives is small
microprocessor- or microcomputer-based
systems, less than or equal to a personal
computer in complexity. The focus is on
systems that protect critical resources.
However, we expect that much of the
technology developed for these systems will
have broader applicability.

Current safeguards systems that have
previously been developed by Sandia tend to
be somewhat bigger than the target systems
for the initiatives described above. Several of
these systems are of the microVAX size.
Newer systems under development use
personal computers. The decision to restrict
the scope of these initiatives to the PC class

and smaller makes the problem more
manageable.

A system in the class to be addressed by the
initiatives is likely to employ a single
microprocessor with random-access memory
(RAM) for temporary storage of data and
read-only memory (ROM) for storage of
program code. The system may be embedded,
its only interface to the outside world being a
cable to which a more complex controller
attaches. Another system may have a
keyboard and display interface to which an
operator has access. In such a case, the
software may be ecither ROM-based or
diskette-based. Finally, the system may
constitute a minimal network. Examples of
systems in the class under consideration are:

o Facility security systems such as access-
control portals and intrusion-detection
systems

e Material and personnel control and
tracking systems

e Storage and retrieval systems for high-
valued assets

The approach will be a three-phased one
that will build upon past efforts by the
groups involved. These past efforts have
included:

o A preliminary set of design guidelines
for software security

@ Preliminary identification of
commercially-available software design
components with desirable security
features

e Promotion of software engineering
principles among laboratory software
designers

o Informal surveys of some of the current
software design tools and software
analysis tools

e Development of a concept that uses a
dynamic, independent, resident hardware
monitor to detect erroneous memory-
access behavior in a microprocessor-based
system

Phase One objectives are underway and are
expected to be delivered before the end of
1990. This activity includes:



e Further development of the software
security guidelines

e Design of the resident hardware monitor

e Development of a methodology for
integrating security into the early phases
of software engineering

e Initial application of the guidelines to a
safeguards project

e Investigative work on tools, techniques,
platforms, and methodologies for
designing and analyzing secure software
systems

Phase Two activity is expected to occur
during the following two years. This effort
will focus on:

o Design and implementation of various
custom tools and methodology

e Continued safeguards use of this
expanding list of tools and methods

e Assessment of verifiability, cost, and
effectiveness of the tools and
methodology being developed

e Construction of the resident hardware
monitor

Phase Three activity involves long-range
projects, whose tasks are more tentative and
much less well defined. This activity will
build upon accomplishments of the first two
phases. Included will be:

e Continued development of tools and
design aids

e Promotion of recommended tools,
techniques, methodologies, and
components

e Quantification techniques for the
complexity and security of software
systems

o Refinement of both guidelines and
analysis methodologies

e Implementation of the resident hardware
monitor or other concepts in fielded
hardware

Summation

These initiatives will work together to
provide more secure safeguards software, as
well as other critical systems software. The
resulting design tools and methodologies, the
evolving guidelines for software security, and
the adversary-resistant software components
will be applied to the software design at each
stage to increase the design’s inherent security
and to make the design easier to analyze. The
resident hardware monitor or other
architectural innovations will provide
complementary additions to the design to
remove some of the burden of security from
the software. The security analysis process,
supported by new analysis methodologies and
tools, will be applied to the software design as
it evolves in an attempt to identify and
remove vulnerabilities at the earliest possible
point in the safeguards system life cycle. The
result should be better and more verifiably
secure software systems.

VAX is a trademark of the Digital
Equipment Corporation.

For further information, the authors may
be contacted at:

Sandia National Laboratories
P. O. Box 5800
Albuquerque, New Mexico 87185



