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Abstract

Nonlinear coherent structures governed by the coupled drift wave-ion acoustic mode
equations in nonuniform plasmas with sheared magnetic fields are studjed analytically
and numerically. A solitary vortex equation that includes the effects of density and
temperature gradients, and magnetic shear is derived and analyzed. The analytic and
numerical studies show that for a plasma in a sheared magnetic field, even without
the temperature and drift velocity gradients, solitary vortex solutions are possible;
however, these solutions are not exponentially localized due to the presence of a non-
structurally stable perturbative tail that connects to the core of the vortex. The new
coherent vortex structures are dipole-like in thejr symmetry, but are not the modons of
Larichev and Reznik. In the presence of a small temperature or drift velocity gradient,
the new shear-induced dipole can not survive and will separate into monopoles, like
the case of the modon in a sheared drift velocity as studied in Su et al. [Phys. Fluids B
3, 921 (1991)). The solitary solutions are found from the nonlinear eigenvalue problem
for the effective potential in a quasi-one-dimensional approximation. The numerjcal
simulations are performed in 2-D with the coupled vorticity and parallel mass flow

equations.
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I. Introduction

Since the solitary dipole vortex solutions or modons were found! for the Hasegawa-Mima?
(H-M) drift wave equation in a uniform plasma, numerous works®~® have concerned soli-
~tary vortex solutions in nonuniform plasmas. Petviashvili first suggested that if the H-M
equation is modified by including the effect of the electron temperature gradient, one can
derive solitary monopole vortex solutions. The derivation of the original Petviashvili model,?
however, has been shown to be incomplete recently by several authors.®~8 In particular, the
full analysis shows that non-locality of the linear wave operator must be retaincd simulta-
neously with the KdV-type nonlinearity introduced by Petviashvili, in order to preserve the
conservation of potential vorticity. The authors have shown that for a plasma with constant
drift velocity vy, there exist no monopole vortex solutions, no matter what the temperature
profile, T'(z); but monopole solutions can exist if the drift velocity is not constant vy(z). In
recent work® we have considered a fully nonlinear model with a Boltzmann density distri-
bution and have concluded that the monopole-like vortices can exist if the temperature and
drift velocity are not constant. Such monopole-like vortices are not exponentiully localized
soliton-like monopoles since the inhomogeneity also causes energy leakage from the vortex
core through radiative tails. This leakage will be negligible if the strength of the inhomo-
geneity a = |T'/T? — vly/u| and size of the vortex 1/ky (where ky = m) satisfy
a < kS

In all previous work,?=® the spatial dependence of kj is ignored, and consequently the
effects of magnetic shear are systematically eliminated. The present paper extends previous
work® by taking into account the nonlinear coupling of vorticity to the magnetic shear induced
parallel ion motion. Here a model that includes not only the temperature and density

gradients, but also the effect of magnetic shear is developed and analyzed. Analytically



we consider a quasi-one-dimensional model for the finite amplitude coherent structures that
exhibits a nonlinear localization mechanism. With this model we are able to show that when
the effect of magnetic shear is included in the drift wave equation, even without the gradient
of drift velocity, the effective potential becomes a nonlinear trapping potential and, therefore,
there exist solitary solutions. The solutions are shown to be dipole-like solitary waves.
However, they are different from the well-known modons which are exact solutions of the H-
M equation. Due to the coupling of drift waves to ion acoustic waves, the solitary structures,
like those induced by nonconstant drift velocity in a shearless field,® are not exponentially
localized soliton-like solutions; instead they have oscillating tails which connect to the cores
of the vortices. We also use 2-1) magneto-hydrodynamic type of numerical code to simulate
the coupled vorticity and parallel velocity fields. The numerical results are consistent with
the analytic results obtained from the quasi-one-dimensional model.

The article is organized as follows. In Sec. II the model equations are derived and the
conservation laws are presented. In Sec. III the model equations are analyzed. The numerical
results are presented and discussed in Sec. IV. Finally, summary and conclusions are given

in Sec. V.
II. Model Equations and Conservation Laws

We consider a plasma of cold ions and massless electrons in a sheared external magnetic field
B = By(z + S(z)/L,y) = Bob. The dissipationless equation of motion and the continuity

equation for the ions are

dv €

=T VeV, (1)
g-’t’+v-(nv)=o, (2)

where d/dt = /0t + v -V, and Q = eB/m;c = wyb is the ion cyclotron frequency. Upon

taking the curl of Eq. (1) and combining with Eq. (2), one can derive the inhomogeneous
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Ertel’s theorem,

where w = X Vv,

Introducing the ordering,

1 9 -V v
w=Ltlovy wy
Wey Ot Wer Wey

we obtain from Eq. (1) to lowest order in ¢,

V=vy, =(L)E><V<I>
miwe;

d 9 ,_ 9 p;
%—67+V'L’v—7+wmiz[e¢’1

Where pa = Cg/wcg' and Cy = (Tc(x)/mi)l/2

constant), p-1

st

. Now we define T(z) = Te(z)/T, (where T} is &

= —~dln no/dl‘, €n = paO/rm Pso = Cso/wci = (T0/7nz')]/2/w

¢i and the Mmagnetic
tear strength S(z) = (Tn/L,)S(w). The paralle] component of the yopt

icity equation from
Eq. (3) can now be written ag

. 2 2
ggn 1+aVip +lo, m(ltaVie - (2 + 8(z) 9 €ty (4)
ot n n 0z dy
and the parale] component of the momentum equatjon from Eq. (1) is
) N d 7}
5 e, vu}—*(gngS(w)@ w (5)

" =no(z)exp (%) = no(z)exp ((—}f) : (6)



In writing Eqgs. (4)~(6), we have used the following scaling transformations to dimensionless
variables: @,y — @/ps0, Y/pso i 7 = z[/rn it — (coo/Ta)t ; vy - ("'n/ﬂsocso)l’n P
(rne/psoTo)®. , ‘

Upon substitution Eq. (6) into Eq. (4) and considering the ordering

—c—’;-a—t-NpsoleTnV”N“T—N-c-:o-N—;::GnNC, (7)

we can rewrite Eq. (4) to order € and ¢? as

/"1‘\
~where vy(2) = —dlnng/dz ~ O(1) and kr(z) = —(1/T)dénT/dx ~ O(e).

LogNde, O Oe o, (0 o8
("“V>’é}‘+vd§y K1Y By [SO’ V.L(P]"' 8z+s(x)3y vy (8)

Now the conservation law for mass is evident by rewriting Eq. (8) as

9 ( ¢
5%(‘7*@3)*"

and momentum conservation by rewriting Eq. (5) as

\V/ 2 . R ~
. [_%{3 + (w(a:)w - K-T—(;L)“O—) Y+ (Ve x2)Vi + vub} =0, (9

0 R ~
Ev“-%-v- [(chxz)v”—{-cpb} =0. (10)
The conservation law for energy can be obtained by multiplying Eq. (5) by ;;|| and Eq. (8)

by ¢ and then combining the two equations to get

o€ va(z) 5 Kr(2) 3\, dp 2 [ ? ~1 ‘
—(57+V~K~—2—99 3| Y — eV = Vi Z2x Vo )+ (py)b| =0, (11)

where the energy density £ is defined as

Slent) = 5 | oy + (Tl 4 of]
Therefore, Eqs. (9), (10) and (11) show that the dynamical system conserves mass, momen-
tum and energy to the second order in e.
Equation (4) describes the advection of the generalized potential vorticity and its change
:aused by parallel compression Vjv,. The compression from the parallel motion elimi-

ates the conservation of potential enstrophy, defined as U = [(V,¢)? + (V2p)2dz dy.
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However, the generalized cross helicity appears as constant of motion. To systematically
construct the invariants, the so-called Casimir noncanonical Hamiltonian structure is de-
veloped in the Appendix. Here we observe that if we introduce the antiderivative of the
shear o(z) = [*5(z')dz’ such that [o(z), v)] = S(2)0v/dy and the potential vorticity
q= V2o —¢/T(z) — €nno(x), then it is straightforward to show that the conserved helicity
is | 4

h = /q (v“ - a(a:)) dzdydz . (12)
A generalization of this invariant in the case where z-dependence is neglected is given in the

Appendix.

III. Travelling Wave Equation and Solitary Wave
Solutions

Now we look for travelling wave solutions of Egs. (4) and (5) by assuming ¢ = ¢(z,y — ut) |

and v = y(@,y ~ ut). Equations (4) and (5) become .

0 1+ e,,Vzt,o) 146, Vi vy,
— -—€ B e ——— = n a0 t
uay n( - | + e, In - €nS(x) By (13)
Oy Oy |
—uz + va] = =Sz, (14)
Equation (14) gives
ad d-18(z)/dz (Y
[@—UIL‘, U'|+Z(—1)" (|)£ Lpn] =0 ’ (15)
n=1 . .U
which has the general solution
Slm Sl 2 _
V=Pt o e =Gle—ur), (16)

where G is an arbitrary function of its argument. In writing Eq. (16), we have expanded
S(z) = So + S1z + S22 + ... with Sp = 0 and noticed that the higher order derivatives of

S(z) are significantly smaller than the first order derivative for the magnetic shear problem.
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For localized solutions ¢ — 0 as r — oo and we assume the boundary condition v —

Voo = constant as r — oo, Assuming G(o0) = v, v)| can be written as

S:ZI Sl
U= P g @ e (1

where we see that the magnetic shear introduces an important nonlinearity into the depen-
dence of v on .

Substituting Eq. (17) into Eq. (13), we obtain another condition

[Lp Cuz fn (1 + envch) N enSfz?  3e.Sfr

&St 3
n w 2w 7 + 2ut

=0. (18)
which has the general solution

2\ _ g ep | enSiz’  3enSir 5 &SP 5 _ 3
€n<1+ench) {nng T(a:)+ a2 53 P + 524 ¥ = F(p —uz), (19)

where we have assumed quasi-neutrality with the electrons obeying the Boltzmann distri-
bution of Eq. (6). Again we see that the presence of magnetic shear introduces important
strong nonlinearities into the system.

To insure localization for ¢ we select

F(o —uz) = —In no(ux —?

) - (20)

For a simple expouential density profile, no(z) = exp(—e,z), and constant temperature

(T'=1), Eq. (19) with Eq. (20) becomes

v, z? 3z 3
€nV2(’0=eXp [€n (1—5)(p——cnSf (F‘P“'z"u_avz'f"é%)] -1 , (21)

where vy = 1 follows from the choice of units.

Considering the quasi-one-dimensional case in which 9/9y <« 8/0r and introducing the

new variables
G2

— 1 — ah
= Guapi €0 F ke, |



we obtain
0%

€ 5 = exp [eo (\Il —s%(28°0 — 3t W7 4 \113))] -1. | (22)
Here, note that for small k2, corresponding to large coherent structures, the effective shear
parameter s* is considerably enhanced over the original shear parameter 52,

The boundary condi’ion ¥(t — +o00) — 0 and the initial conditions ¥(¢t = 0) = 0 and
d¥(t = 0)/dt = const. or ¥(¢t = 0) = const. and d¥(t = 0)/dt = 0 together with Eq. (22) |
define a nonlinear eigenvalue problem for the unknown constant values at ¢t = 0.

In the new variables we can calculate the rotation ratet Qp = (cs/Tn)kydp/dz compared
to the vortex frequency wia, = (cs/7n)kyu in t‘he laboratory frame as Qg/w, = d¥/dt.

Equation (22) can be written in the form of the Hamiltonian equations for an imaginary

particle with coordinate ¢ = ¥, time ¢, and momentum p = 9¥/dt in the effective potential

__ L 2(042 2 3 v 4
%ﬂ%ﬂ~—g/<NemhﬂW~M%W—&W+W)ﬂ+a, (23)
For u ~ vy =1, g ~ € € 1 and the effective potential reduces to
2 4
Veg(W, 1) ~ — [%— — gt (t2w2 -t 4 5’4—)} . (24)

Although for simplicity in Eq. (24) we have kept only the lowest order of V.g in ¢, it can
easily be shown that this approximation does not change the shape of veg.

The dynamical equations for a “particle” representing the system are

0

@:-5anﬂmJy=w—§mﬂm~3w2+wﬂ, (25)

J=p. (26)

In order for Eq. (22) to have localized solutions, the effective potential must be a trapping
potential. In the limit of s — 0 the effective potential has the form Vig(s = 0) = ¥ —
(1/ea)e©? or to lowest order Vig(s = 0) ~ —(1/2)W?, which is easily seen to not be a trapping

potential. However, with existence of small shear s, the situation is changed entirely. To
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realize this, one can examine the properties of V.g. The extremal points of the potential are
given by

_OVel 22020 — 3002 4 0°) =
S5 = U= sH(2000 - 3107 4 0% =0

which yields W = 0, ¥y = (3/2)t = (1/2)y/t2 + 4/87, and U3 = (3/2)t+(1/2),/88 + 4/52,
The signs of second derivative *V.g/0W? at the extremal poiﬁts determine the shape of the
potential. Figure 1 is a sketch of the evolution of the effective potential with “time” t.
Figure 2 displays corresponding phase space portraits showing the bifurcation of the origin
from unstable to stable at t = /2/2s. It is evident that the effective potential has two wells
when ¢ = 0, indicated by I and II in Fig. 1. Well I moves to ¥ = 0 and disappears as
t — /2/2s and then a new trapping Well III appears and stays at ¥ = 0 for ¢t > /2/2s,
w\hile Well II moves towards ¥ — oo as t — oco. For t < 0, Well II moves to ¥ = 0 and
disappears as t — —1/2/2s and a new trapping Well III appears and stays at ¥ = 0 for
t < ——\/27/23, while Well I moves towards ¥ — —o00 as t — —oo. Therefore only a “particle”
eventually trapped in Well III corresponds to a solution satisfying the boundary conditions.
The initial conditions determine if the “particle” will be eventually trapped in the Well III.

The presence of the trapping well indicates that the existence of magnetic shear changes
the effective potential from nontrapping to trapping, and therefore creates the possibility
of solitary wave solutions with finite amplitudes. However, the presence of magnetic shear
also makes the solitary drift wave couple to the ion acoustic wave by changing the effective
potential Vig(\W,t) at the critical “time” ¢o = +v/2/2s. The new trapping Well Il that
appears when [t| > |tg] actually is the potential well associated with the ion acoustic wave.
The coupling between the solitary waves and the propagating ion acoustic waves leads to the
formation of the oscillating tail emanating from the core of vortex. This tail gives rise to the
dissipation of energy from the solitary wave core. Therefore, for a solitary vortex solution,
the oscillating tail must be far away from the core of vortex, that is, to > 1 or o > 1/k,

where 1/k is the size of the solitary vortex. This gives s < v/2/2 or §) < |u — vg], which
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is consistent with the condition for a modon with small damping given earlier by Meiss and
Horton.?

Equations (24) and (25) are symmetric under the following transformations:
Vt.zﬂ'(\yﬁt) - eﬂ'(—qls_t) )
CU(t) — —(—t) . (27)

These relations rule out the possibility of monopole solutions, since these are symmetric
about ¢t = 0. However, localized solutions in the form of dipoles are not ruled out. The shape
of such a dipole is determined by the initial conditions ¥(¢ = 0) = 0 and d¥(t = 0)/dt =
constant corresponding to the strength of the core electric field or E x B flow velocity. Nu-
merical integration of Eq. (25) yieldes the spectrum of eigenvalues for the initial momentum
d¥(t = 0)/dt or equivalently (1/u)dp(z = 0)/dz. Solutions are constructed by choosing the
initial condition of zero coordinate and nonzero momentum, and then integrating beyond
to = +v/2/2s to determine if there is trapping as t — oo in the jon acoustic potential well.
Physically the trapping implies the radiative tail at large ¢.

Figure 3 shows an example of a nonlinear trapping solution for s = 0.06. Clearly the
trapping solutions of this form only occur for certain initial data , which depend on the shear
parameter s. The magnitude of d¥(¢ = 0)/dt and the initial amplitude ¥,, of the vortex can
be estimated with the help of Eq. (25). For small t <t,, ~ €. < 1, where t,, is the “time” at
which ¥ assumes its maximum value or amplitude ¥,, = ¥ (¢ = t,,,) and d¥(¢ = t,,)/dt = 0,
the second and third terms on the right side of Eq. (25) are much less than the first and
fourth. Therefore for a nonlinear solitary solution, there must be a balance between the
linear and nonlinear terms on Eq. (25), that is, ¥ ~ s2¥? | This gives the scaling law for

amplitude of the vortex,

1 V2ulk

\I!m ~ - or ©m ~
S Sl

. (28)
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On the other hand, multiplying both sides of Eq. (25) by d¥/dt and integrating in time from
t=0tot=tn, we can approximately get ¥'(0) =~ (s?/2)¥} — W2 where ¥'(0) = d¥(t =

0)/dt. Therefore the scaling law for the ¥/(0) is

V'(0) = d¥(t =0) ~ L or ©'(0) = dp(z =0) ~ Vauk? .

‘)
dt s dz Si (29)

A detailed study of the numerical spectrum yields the ¥'(0) vs. s curve shown in Fig. 4.
The curve shows the allowable initial momenta ¥’(0) for the eigenfunction W¥(t) that are
bounded as t — %00, versus the shear parameter s. The shaded regions in Fig. 4 represent
the allowable initial values for ¥’(0). The lowest values of ¥’(0) gives the minimum flow
velocity for the vortex core required for the lormation of the coherent trapped structure.
Both the Figures 3 and 4 consistently support the scaling laws presented by Eqs. (28) and
(29). In addition, Fig. 4 shows that the existence of a vortex for small electric fields ¥/(0)
(or flow velocity) requires that s > 0.06, whereas for large electric fields a vortex is formed
for s > 0.02.

Note that the dipole solutions presented hgre are different from the Larichev and Reznik’s
modons.! The modon construction uses two different linear functions F(¢ — uz) in the two
different regions, namely, the interior and exterior regions of a modon; thus, the equations
determining the modon structure are two linear equations. These two equations are solved
separately in the two regions and the solutions from the two regions are matched up to second
derivatives at the boundary. However, the construction of the new dipole solutions presented
here uses only one single arbitrary function F(¢ — uz). Therefore the derivatives of the
eigenfunction ¢ = (u/k)¥ are continuous to any order in the whole z-y plane. Furthermore,
the equation determining the structure of the dipole is a nonlinear multi-eigenvalue equation.
When the parameter S; and u are given, one can find multiple eigenfunctions ¢, (z) with
different amplitudes and derivatives dp,(z = 0)/dz. The derivatives dp,(z = 0)/dzr of

eigenfunctions form a banded continuous spectrum as a function of the parameter s =
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S1/v2(u — vao) as shown in Fig. 4.

From the analysis, we conclude that when the magnetic shear parameter s < 0.02, the
effect of magnetic shear on drift waves is small and the coupling between the vorticity and
parallel velocity fields is weak. The decoupled vorticity equation becomes the H-M equation
and therefore we recover the rnodon solutions. With the increase of s, the coupling between
the two fields becomes important. When 0.02 < s < /2/2, the new type of dipolc vortex
emerges. The new vortices are localized solitary waves. However, when s > 1/2/2, the strong
coupling between the drift waves and ion acoustic waves causes strong radiation damping of
energy from the vortex cores and thus eliminates the existence of the solitary waves.

Even though the above analysis is based on the 1-D model, it exhibits the main features
of the solitary vortex induced by magnetic shear. The 2-D simulations of Egs. (4) and (5)
discussed in the following section show that the principle features of the one-dimensional
model are consistent with the simulation. As the shear parameter increases the z-variation
of the coherent structure becomes stronger than the y-variation and the one dimensional
model becomes more accurate. The 1-D model is adequate qualitative picture, but does not

yield quantitative values for the amplitudes.

IV. Numerical Vortex Solution in Inhomogeneous

Plasma with Sheared Field

In order to facilitate the numerical solutions of Eqs. (4) and (5), we first expand Eq. (4)
according to the ordering in Eq. (7) and consider v}, ~ k1 ~ €, ~ ¢. Keeping only the terms

of order € and €*, we derive from Egs. (#) and (5) the reduced dynamical equaticns

I o) 9 P08 2,) = _g(g) 2
(T(m) V) 50 + (vgo + vy nTgo)ay [go, \% c,o] = —-S(z) by (30)
av“ _ acp
It + [(,O,U“] = —S(x)-é—y- + /LV2U“ . (31)



Here vy = psodva/dz ~ (pso/Tn)vao at the core of the vortex. In writing Eq. (31) we have
included a viscous damping term to absorb energy transferred to |k| — oo.

To solve Eqgs. (30) and (31), we use a uniform grid over z and k, in 85 x 85 rk,-space with
3655 complex @z, (t) and v)z4,(t) modes. Since the first term of Eq. (30) depends on =z,
we leave the equation in z space and use the second order central difference formula for 6?2,
which yields a tridiagonal system that is solved for each 0yp(z, k,,t). We use the Ahlberg-
Nilson-Walsh algorithm for cyclic tridiagonal systems!® to reduce the operator (1/T(z) —
V?) to a cyclic tridiagonal matrix. Upon inverting the matrix we obtain 8,p(z, k,,t) for
each mode. The nonlinear convolution terms in both the equations are evaluated by first
transforming ¢ and v)| in kzk, space to get derivatives of ¢ and v, then transforming ¢y and
vk and their derivatives into ﬁ:y-space to calculate the convolutions. The results are then
transformed back into zky-space. Finally we use high order Runge-Kutta time stepping to
get o(z,ky,t) for each mode at each time step.‘ The constants of motion defined in Egs. (9)-
(12) are used to monitor the accuracy of the code. The modon of Larichev and Reznik
is taken as the initial perturbation for ¢(z,y,t = 0), and Eq. (17) with v = 0, for y.
The exponential temperature profile T'(z) = exp(—cpz) is used so as to avoid the negative
temperature problem that can arise when expanding T'(z) as 1 — c;z. For the exponential
profile kr = —(1/T?)dT/dz = cyexp(cyz). Because of periodic boundary condition, we
choose the magnetic shear profile as S(z) = Sy, sin(2rz/L,), where L, = 207p,o is the
length of periodic simulation box in the z-direction. Typical simulations use an average of
40 minutes CPU time on the CRAY-2 for At = 100 r,/c, which is about 10 rotations of the
vortex core.

In the first case we used v}y = ¢, = 0, 4 = 0.1 and S,, = 0.1 so that S; ~ 0.01 and
the effective shear s =~ 0.07, which give the parameter |u/vg — 1| = 0.1 > S, therefore
the radiative damping of the vortex is small and negligible. We start with Larichev and

Reznik’s modon with u = 1.1vg and ry = 6.0p,0, so that the center derivative of the modon

13



©'(0) = (0p/0x) =0 ~ 6.7 or ¥'(0) ~ 6.1 where t = kz. We observe that the dipole vortex
structure for the ¢ field stays a long time without much change, and that the v field, though
experiencing some change, still keeps a rather coherent and stable structure in the interior
region of the dipole vortex. After a long time, the amplitude of the dipole ¢,, ~ 13, the
velocity u ~ 1.3, and the center derivative ¢'(0) slightly increases. Figure 5 shows the
streamline of ¢(z,y,t) = const. and v)(z,y,t) = const. at times tc,/rn, = tvyp/p,0 = 0, 20,
40 and 60.

In the second case, temperature gradients exist. We choose ¢; = 0.046, v/; = 0, S, = 0.1,
u = 1.lvgp and p = 0.1. For these values the dipole discussed in the first case can not survive.
Figure 6 shows that the dipole separates into monopoles immediately after it starts to travel.

his is expected since the ¢, introduces the KdV nonlinear term in Eq. (30) that breaks
down the symmetries of Eq. (27) and causes the waves in the region of negative potential to |
propagate faster as reported in Refs. 6 (¢« = —k7 in Ref. 6) and 8.

We also did some numerical experiments with s ~ 1 or |u/vg — 1] ~ Sy, and found that
the dipoles eventually connect to oscillating tails with significantly large amplitudes. In
these casrs the dipole vortices experience strong damping of cnergy through the tails.

In all the simulations, we notice that the waves with small amplitudes in the v field
appear to be stationary and that the energy of the v field tends to go into waves with small
scale lengths. The reason for these phenomena is that Eq. (31) does not have a linear wave
term like v40p /0y as in Eq. (30); thus linear waves with small amplitude do not propagate.
Since Eq. (31) lacks linear dispersion, the nonlinear steeping process cannot be effectively
balanced and the waves with small scale lengths tend to grow. Because of this fact, we add
a viscous term in Eq. (31) to dissipate the energy transferred to the waves with these small
scale lengths.

The results of the simulations show the general consistency with the results of the analysis

in the previous section. In particular, the simulations show that the dipole-type vortex
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solutions of the drift wave-ion acoustic wave system can exist in a sheared magnetic field
when the electron temperature is constant over the vortex. The dipole type vortices are
well formed and can last a long time without much damping if s < 1 or |u/vy — 1| > S

provided the k7 — 0. For finite k7 we can estimate® the life time of the dipole vortex from

tL ~ l/,‘CTcpmk ~ 1/KTQO'(O)k2.
V. Summary and Conclusions

Analytical and numerical studies of the effect of magnetic shear on drift wave vortices in
inhomogeneous plasmas have been reported. Analytically we have derived a solitary vortex
equation that includes the effects of density and temperature gradients and magnetic shear,
and we have used a quasi-one-dimensional model to exhibit the main features of solitary
vortices in sheared magnetic fields. The analysis shows that in a plasma with constant
temperature and drift velocity, the presence of a small magnetic shear will cause the effective
potential to change from a non-trapping to a trapping potential, which indicates the possible
formation of solitary vortex structures with finite amplitudes. The solutions are shown to
have the dipole-type symmetry. However, they are different from the well-known modon
vortices, because the derivatives of their eigenfunctions are continuous to any order in the
whole plane, also, the center derivative ¢’(0) and the amplitudes form a banded continuous
spectrum.

It is also shown that the presence of the magnetic shear intrinsically causes the soli-
tary drift waves to couple to the ion acoustic waves. Thus the dipole solutions are not
monotonically decreasing functions, instead, they have oscillating tails with monotonically
decreasing amplitudes connecting to the core of vortices. This behavior is similar to the
monopoles induced by the gradient of drift velocity in shearless magnetic fields.® The os-
cillating tails cause radiative damping of vortex energy. The damping is negligible if the

amplitude @, (~ v/2u?k/S;) of the dipole structure satisfies p,, > /2u/k. For a weak effect
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of magnetic shear, this condition is consistent with that for the Larichev-Reznik’s modon.
However, for shear above a small threshold value s > s, ~ 0.02 as given in Fig. 4, we find
that the nonlinearity of the v induced by the shear and vorticity equations combine to
produce a nonlinear restoring force proportional to (S?/2u*)® which gives the new dipole
vortex structures when s > 0.02 or S§; > 0.03|u/vg — 1|. The nonlinear structures in the
weakly sheared field greatly reduce the shear radiation expected in the linear drift wave-ion
acoustic wave theory.

The numerical simulatiors performed in 2-D with the coupled vorticity and parallel mass
flow equations consistently support the analysis. The simulations show that for a plasma
with constant temperature and drift velocity in a magnetic field with small shear, the well-
formed dipole vortices are stable and can last a long time without much damping when
|(u/vg) = 1] > S;. However with the presence of a small temperature gradient, the dipole
vortices become structurally unstable and are rapidly separated into monopole vortices,
which is consistent with our previous studies®® on the effect of finite inhomogeneities across
the core of the vortex. Therefor= we conclude that with constant temperature and drift
velocity, the coherent structures of drift wave plavsmas behave like dipole vortices in either
shearless or shearéd magnetic fields. But when the gradients of temperature and drift velocity
exist, the solitary coherent structures take the form of monopole vortex structures rather

than dipole structures.
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Appendix: Noncanonical Hamiltonian Structure

The vorticity equation (4) and the parallel momentum equation (5) with the Boltzmann

density distribution n given in Eq. (6) can be rewritten to order ¢ and € for 8/9z = 0 as

follows:
8q _ Bv” 9
Iy _ ?f

where the potential vorticity q(z,y,t) = Vip — ¢/T(z) — tn(ne(z)).

The Hamiltonian is, from Eq. (11),

1

== [ (=av = ptno +vf) dedy , (34)

wl._,

where surface terms are neglected. Upon variation of H
0H = / (—995(] + v||5v||) dxdy

and we obtain the functional derivative

oH oH

Equations (32) and (33) can be written in Hamiltonian form,

dq
dy)
-52- = {U“,H} ’ (37)
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where the noncanonical Poisson bracket {F, G} is defined as

§F  6G §F  §G §F  6G)
(F, G}=/{q [?s‘?{’ —5—(1—] + (v = o(2)) ([Ev‘” W] + [Tq’ WD}W@, (38)

where o(z) = [* S(a')dz’.

It is easily shown that the Poisson bracket given by Eq. (38) is antisymmetric,
(F,G} = —{G, F} ,
and one can prove it satisfies Jacobi’s identity,
{E,{F,.G}}+ {F,{G,E}}+ {G,{E,F}}=0.

(A proof for essentially the same bracket can be found in Ref. 11.)

The Casimir invariants C of the Poisson bracket are defined by
{C,D}=0, (39)
where D is an arbitrary function. Substituting Eq. (39) into Eq. (38), we obtain

6C 6D §C 6D 6C 6D _
.oy =f{af5e. 5o + (n=oto) ([ 2]+ [ 2]V oty =0 a0

Using the identity,
/f[g,h]dacch =jh[f,g]d:vdy, (41)
we can rewrite Eq. (40) as
6D s5C 6D 6C 6D 5C
6q 8q Sa - < Fa - —_ J = 49
/(5q [q, 5,,] + 5q [(vu a(a:)> , 5”!1} +¢5v” [(vu a(w)) ; 5q]>dxdy 0. (42)

Since D is arbitrary its coefficient must vanish, and we can find two independent Casimirs,

from Eq. (42)
Cr = [ fly - o(@)dzdy
Cs = [ agloy - o(2))dudy ,
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where f and g are arbitrary functions of their arguments. When 8/9z # 0, it can be easily

shown that
a=/wmwh
Cs = [ (v - o(2)) dedydz
Cs = [ 4 (v - o() dedyds |
survive,
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Figure Captions

1. Evolution of effective potential V.q(W¥,t) with the “time” ¢ that corresponds to the

distance kz from the shear reversal point.

2. Evolution of the separatrix in phase space corresponding to the effective potential

Verr (U, t).

3. Nonlinear eigenfunction for s = 0.06 and d\¥(¢ = 0)/dt = 13.58 showing the dipole type

vortex and wave solutions in the case without temperature and drift velocity gradients.

4. Spectrum of critical d¥(¢ = 0)/dt versus the effective shear s from 0 to 0.1, showing the
allowable initial “momenta” d¥(¢t = 0)/dt in the range of 0 — 50 for the eigenfunction
¥(t) to be bounded as ¢t — +oo. The shaded regions represent the allowable initial

values for d¥(t = 0)/dt.

5. Contour plots of the electrostatic potential p(z,y,t) and parallel velocity v(z,y,t) of
Eqs. (30) and (31) with temperature gradient k7 = 0, drift velocity gradient v/, = 0
and magnetic shear parameter S,, = 0.1(s =~ 0.07). The dipole-type vortex does not

change much for a long time.

6. Contour plots of the electrostatic potential ¢(z,y,t) and parallel velocity vy(z,y,t)
of Egs. (30) and (31) with temperature gradient parameter c, = 0.046, drift velocity
gradient v}, = 0 and magnetic shear parameter S,, = 0.1. The dipole-type vortex

breaks up after a short time.



Fig. 1



Wwirri

N




30

20 -




d\W/dt

0.02 0.04 0.06 0.08 0.10
Shear ¢

Fig. 4



30F plxyt)

y/ps [

T

-30

30

T

-30

T

30

y/ps |

T

-30

-30

Fig.



30

Y/Ps

-30

30

Y/Ps

-30

30

Y/Ps

-30

T

30

G
T

T

1

-+

@(-)V‘rf@a

4

”) .

‘ st
\ ~-
\

* ~

' \ »

\_\\ L)

Yo

1vd/ps =6

Y T

30

-30+

30

Fig.









