
INSTITUTEFOR Rr_o_,,_,_,__,OSTI
JAN 2 ? Igg2

FUSIONSTUDIES

DOE/ET-53088-523 IFSR #523

Drift Wave Vortices in Nonuniform Plasmas
and Sheared Magnetic Fields

X.N. Su, W. HORTON, and P.J. MORRISON
Department of Physics and Institute for Fusion Studies

The University of Texas at Austin
Austin, Texas 78712

November 1991

THEUNIVERSITYOFTEXAS

I({i,i__,<,v_J:i)):,/))
,_,,.,:'/_-,/:.:.<7/

AUSTIN

; DI,STRIB'IJT1ON OF THIS DOCUMENT iS UNLltvlITED



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, norany of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product,process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.



Drift Wave Vortices in Nonuniform Plasmas

with Sheared Magnetic Fields

X.N. Su, W. Horton, and P.J. Morrison
DOE/ET/53088--523

Department of Physics and
Institute for b-_usionStudies DE92 006879

The University of Texas at Austin
Austin, Texas 78712

Abstract

Nonlinear coherent structures governed by the coupled drift wave-ion acoustic mode

equations in nonuniform plasmas with sheared magnetic fields are studied analytically

and numerically. A solitary vortex equation that includes the effects of density and

temperature gradients, and magnetic shear is derived and analyzed. The analytic and

numerical studies show that for a plasma in a sheared magn_._tic field, even without

the temperature and drift velocity gradients, solitary vortex solutions are possible;

however, these solutions are not exponentially localized due to the presence of a non-

structurally stable perturbative tail that connects to the core of the vortex. The new

coherent vortex structures are dipole-like in their symmetry, but are not the modons of

Larichev and Reznik. In the presence of a small temperature or drift velocity gradient,

the new shear-induced dipole can not survive and will separate into monopoles, like

the case of the modon in a sheared drift velocity as studied in Su et al. [Phys. Fluids B

3,921 (1991)]. The solitary solutions are found from the nonlinear eigenvalue problem

for the effective potential in a quasi-one-dimensional approximation. The numerical

simulations are performed in 2-D with the coupled vorticity and parallel mass flow

equations.

DISTRI_I.,JTION OF THIS DQCUMSNi" iS UNLItvllTEE



I. Introduction

Since the solitary dipole vortex solutions or modons were found I for the Hasegawa-Mima _

(H-M) drift wave equation in a uniform plasma, numerous works a-s have concerned soli-

tary vortex solutions in nonuniform plasmas. Petviashvili first suggested that if the H-M

equation is modified by including the effect of the electron temperature gradient, one can

derive solitary monopole vortex solutions. The derivation of the original Petviashvili model, a

however, has been shown to be incomplete recently by several authors. _-s In particular, the

full analysis shows that non-locality of the linear wave operator must be retaillc'd simulta-

neously with the KdV-type nonlinearity introduced by Petviashvili, in order to preserve the

conservation of potential vorticity. The authors have shown that for a plasma with conseant

drift velocity va, there exist no monopole vortex solutions, no matter what the temperature

profile, T(x); but monopole solutions can exist if the drift velocity is not constant vd(x). In

recent work s we have considered a fully nonlinear model with a Boltzmann density distri-

bution and have concluded that the monopole-like vortices can exist if the temperature and

drift velocity are not constant. Such monopole-like vortices are not exponenti;_lly localized

soliton-like monopoles since the inhomogeneity also causes energy leakage from the vortex

core through radiative tails. This leakage will be negligible if the strength of the inhomo-

geneity a = [T'/T 2 - vtdo/u[ and size of the vortex 1/ko (where ko - _1 - va0/u) satisfy

In all previous work, 3-s the spatial dependence of kll is ignored, and consequently the

effects of magnetic shear are systematically eliminated. The present paper extends previous

work s by taking into account the nonlinear coupling of vorticity to the magnetic shear induced

parallel ion motion. Here a model that includes not only the temperature and density

gradients, but also the effect of magnetic shear is developed and analyzed. Analytically



we consider a quasi-one-dimensional model for the finite amplitude coherent structures that

exhibits a nonlinear localization mechanism. With this model we are able to show that when

the effect of magnetic shear is included in the drift wave equation, even without the gradient

of drift velocity, the effective potential becomes a nonlinear trapping potential and, therefore,

there exist solitary solutions. The solutions are shown to be dipole-like solitary waves.

However, they are different from the well-known modons which are exact solutions _,1"the H-

M equation. Due to the coupling of drift waves to ion acoustic waves, the solitary structures,

like those induced by nonconstant drift velocity in a shearless field,s are not exponentially

localized soliton-like solutions; instead they have oscillating tails which connect to the cores

of the vortices. We also use 2-D magneto-hydrodynamic type of numerical code to simulate

the coupled vorticity and parallel velocity fields. The numerical results are consistent with

the analytic results obtained from the quasi-one-dimensional model.

The article is organized as follows. In See. II the model equations are derived and the

conservation laws are presented. In Sec. III the model equations are analyzed. The numerical

results are presented and discussed in Sec. IV. Finally, summary and conclusions are given

in Sec. V.

II. Model Equations and Conservation Laws

We consider a plasma of cold ions and massless electrons in a sheared external magnetic field

B = B0(_,+ $(a')/L,._) = Bog. The dissipationless equation of motion and the continuity

equation for the ions are

dv e
= --- Vq_ + v x Ft, (1)

dt mi

On

0-7+ v. (_v) = o, (2)

where d/dt = O/Ot + v. V, and Ft = eB/mic = w_ib is the ion cyclotron frequency. Upon

taking the curl of Eq. (1) and combining with Eq. (2), one can derive the inhomogeneous
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Ertel's theorem,

dt n n

where w = _' x v.

Introducing the ordering,

1 0 v.V VllVll <<1,
Odci Ot Odci Odci

we obtain from Eq. (1) to lowest order in et

v=v±=(--L-e )_x, VO "

=_,_v_, (_)_

and the convective derivative becomes

d_= 0-?+ v_. V = _ +,_o,_ , ,

where Ps = cs/wci and cs - (T_(x)/mi) _/2. Now we define T(x) - T_(x)/To (where To is a

constant), r; 1 = -den no/dx, ¢. = pso/r,,, pso = C_o/Wci= (To/mi)l/2/wci and the magnetic

shear strength S(x) = (r_/Ls)S(x). The parallel component of the vorticity equation from

Eq. (3) can now be written as

n n -" -_z + S(x) e.Vll , (4)

and the parallel component of the momentum equation from Eq. (1) is

+ , - +s(_) N _. (5)

For the massless electrons, we assume the Boltzmann distribution

n = no(x) exp = no(x) ,,7 . (6)



In writing Eqs. (4)-(6), we have used the following scaling transformations to dimensionless

variables: x,y ---+x/p_o, Y/pso ; z ---, z/rn ; t ---+(c_o/rn)t ; vii --_ (r,_/p_ocso)Vll ; _ -4

(_._/p_oTo)'_.

Upon substitution Eq. (6) into Eq. (4) and considering the ordering

r, 0 _ _ e¢ v p_o_e_~_, (7)c_o Ot _ Ps0Vj. ~ r_ VII T C_o r,,

we can rewrite Eq. (4) to order e and d as

+v_N - _r_,N - - N +s(_)N v,, (s)
whereva(z)= -denno/dx ~ O(1)and_r(z) = -(_/T)ee_T/a_~ o(_).

Now the conservation law for mass is evident by rewriting Eq. (8) as

0"_ + V. - 0-'-/- + t,a(z)_ 2

and momentum conservation by rewriting Eq. (5) as

0

_, +v. [(v_,×_)v,+_,f,]= 0. (10)

The conservation law for energy can be obtained by multiplying Eq. (5) by vii and Eq. (8)

by cpand then combining the two equations to get

+v. -- 3 _ y-_v -v_ _x vV +(_,ll)g= o, (11)

wheretheenergydensity,5'isdefinedas

e(z,y,t) = :i + (v_')_+ _' '

Therefore, Eqs. (9), (10) and (11) show that the dynamical system conserves mass, momen-

tum and energy to the second order in e.

Equation (4) describes the advection of the generalized potential vorticity and its change

:aused by parallel compression ViiVll. The compression from the parallel motion elimi-

ates the conservation of potential enstrophy, defined as U = f(VL_) 2 + (_7_L_)2dx d 9.
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However, the generalized cross helicity appears as constant of motion. To systemat!cally

construct the invariants, the so-called Casimir noncanonical Hamiltonian structure is de-

veloped in the Appendix. Here we observe that if we introduce the antiderivative of the

shear a(x) = f= S(x')dx' such that [a(x), vii] = S(x)OVll/Oy and the potential vorticity

q = _72_- _/T(x) -gnno(x), then it is straightforward to show that the conserved helicity
I

is

A generalization of this invariant in the case where z-dependence is neglected is given in the

Appendix.

III. Travelling VC'ave Equation and Solitary Wave
Solutions

Now we look for travelling wave solutions of Eqs. (4) and (5) by assuming _ = _(x, y - ut)

and vii = Vll(x,y - ut). Equations (4) and (5) become

Ovlj vii=- N' (14)+ , ]
Equation (14) gives

,, n!u_ _'_ =0, (15)
n----1

which has the general solution

S_z 51 ¢p_vii- ---C _ + _ = a(_ - ux) , (16)

where G is an arbitrary function of its argument. In writing Eq. (16), we have expanded

S(x) = So + Six + S2x _ +... with So = 0 and noticed that the higher order derivatives of

S(x) are significantly smaller than the first order derivative for the magnetic shear problem.
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For localized solutions _ _ 0 as r _ c_ and we assume the boundary condition vii ---,

v¢_ = constant as r _ oc. Assuming G(eo) = v¢0, vii can be written as

Six $1 _2

where we see that the magnetic shear introduces an important nonlinearity into the depen-

dence of vii on _.

Substituting Eq. (17)into Eq. (13), we obtain another condition

[c2_ ux en ( l + _,_V2_) + _,_S_x2 3c,_S_xcp2+_S_ ]' n u-------_-cp 2u 3 -_-u4 cp3 -- 0. (1S)

which has the general solution

e,_ e,S_x 2 3enS_x cp2+ e,_S_ ¢p3e_(l+_.v_)-e,_0 T(_)_ _--c-_ 2_ _ =F(_,-_z), (!9)

where we have assumed quasi-neutrality with the electrons obeying the Boltzmann distri-

bution of Eq. (6). Again we see that the presence of magnetic shear introduces important

strong nonlinearities into the system.

To insure localization for cp we select

F(_,- _) =-e_n0(_- _'). (20)
U

For a simple expo_iential density profile, no(x) = exp(-e_x), and constant te',:nperature

(T- 1), Eq. (19) with Eq. (20) becomes

x 2 3x cp2. -1 , (21)C,_V:_CP"-"exp _r_ 1 -- cp -- c,_S2 _hP 2u3

where va = 1 follows from the choice of units.

Considering the quasi-one-dimensional case in which O/Oy << O/c)x and introducing the

new variables

k2= 1 1 _ u S_-- -- _ X --" IIJ S2-u k" cp=-_ ' -2u2k 4,co=_k_,_,



we obtain
, 024

Here, note that for small kz, corresponding to large coherent structures, the cffective shear

parametcr s2 is considerably enhanced over the original shear parameter S_.

The boundary condi'ion _(t _ 4-oo) _ 0 and the initial conditions _(t = 0) = 0 and

d_(t = O)/dt = const, or _(t = 0) = const, and d_(t = O)/dt = 0 together with Eq. (22)

define a nonlinear eigenvalue problem for the unknown constant values at t = 0.

In the new variables we can calculate the rotation rate 4 gtE = (c,/r,_)kyd_/dx compared

to the vortex frequency Wl_b= (c,/r,_)kuu in the laboratory frame as gtS/CO,_b= d_/dt.

Equation (22) can be written in the form of the Hamiltonian equations for an imaginary

particle with coordinate q = _, time t, and momentum p = cgqJ/i)t in the effective potential

1 f_'

2
For u ,'_ vd = 1, e0 "_ _ << 1 and the effective potential reduces to

V_(_,t) _- [_-_--_-s2 (t2_2 t_3 + _-_--_)]. (24)

AlthotJgh for simplicity in Eq. (24) we have kept only the lowest order of Ve_ in e0, it can

easily be shown that this approximation does not change the shape of yen'.

The dynamical equations for a "particle" representing the system are

0

[9= O_ Vd(_,t) = _ - s2(2t2_ -3t_ _ + _3), (25)

=P. (26)

In order for Eq. (22) to have localized solutions, the effective potential must be a trapping

potential. In the limit of s --, 0 the effective potential has the form V_fr(s = 0) = qJ -

(1/eo)e '°_ or to lowest order V_r(s = 0) _ -(1/2)q/2, which is easily seen to not be a trapping

potential. However, with existence of small shear s, the situation is changed entirely. To
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realize this, one can examine the properties of V_fr. The extremal points of the potential are

given by
OV_r

= q__ s2(2.t2eg _ 3t_2 + qja) = 0agg

which yie_ds t_' - _ t_m2 -- (3/2)t-(_/2)V/_ + 4/_2_ and t_È_a= (3/2)t+(1/2)V/-_ + 4/s_.

The signs of second derivative c)2Vefr/Ot_2 at the extremal points determine the shape of the

potential. Figure 1 is a sketch of the evolution of the effective potential with "time" t.

Figure 2 displays corresponding phase space portraits showing the bifurcation of the origin

from unstable to stable at t = v/'2/2s. It is evident that, the effective potential has two wells

when t = 0, indicated by I and II in Fig. 1. Well I moves to _ = 0 and disappears as

t ---, v/'2/2s and then a new trapping Well III appears and stays at • = 0 for t > v/2/2a,

while Well II moves towards _ _ coast _ c_. For t < 0, Well II moves to _ = 0and

disappears as t _ -v/2/2s and a new trapping Well III appears and stays at • = 0 for

t < -v/'2,/2s, while Well I moves towards • --, -oo as t _ -oo. Therefore only a "particle"

eventually trapped in Well III corresponds to a solution satisfying the boundary conditions.

The initial conditions determine if the "particle" will be eventually trapped in the Well III.

The presence of the trapping well indicates that the existence of magnetic shear changes

the effective potential from nontrapping to trapping, and therefore creates the possibility

of solitary wave solutions with finite amplitudes. Itowever, the presence of magnetic shear

also makes the solitary drift wave couple to the ion acoustic wave by changing the effective

potential Vefr(tP,t) at the critical "time" to = :kV/2/2s. The new trapping Well III that

appears when [t[ > [t0[ a,'tually is the potential well associated with the ion acoustic wave.

The coupling between the solitarywaves and the propagating ion acoustic waves leads to the

formation of the oscillating tail emanating from the core of vortex. This tail gives rise to the

dissipation of energy from the solitary wave core. Therefore, for a solitary vortex solution,

the oscillating tail must be far away from the core of vortex, that is, to > 1 or x0 > l/k,
p

where 1/k is the_ size of the solitary vertex. This gives s < _/22/2 or S_ < [_,- vd[, which
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is consistent with the condition for a modon with small damping given earlier by Meiss and

Horton. 9

Equations (24) and (25) are symmetric under the following transformations:

(27)

These relations rule out the possibility of monopole solutions, since these are symmetric

about t -- 0. However, localized solutions in the form of dipoles are not ruled out. The shape

of such a dipole is determined by the initial conditions _(t - 0) = 0 and dqg(t - O)/dt -

constant corresponding to the strength of the core electric field or E x B flow velocity. Nu-

merical integration of Eq. (25) yieldes the spectrum of eigenvalues for the initial momentum

dqi(t = O)/dt or equivalently (1/u)d_o(x = O)/dx. Solutions are constructed by choosing the

initial condition of zero coordinate and nonzero momentum, and then integrating beyond

to = -t-v_/2s to determine if there is trapping as t _ 4-0o in the ion acoustic potential well.

Physically the trapping implies the radiative tail at large t.

Figure 3 shows an example of a nonlinear trapping solution for s = 0.06. Clearly the

trapping solutions of this form only occur for certain initial data, which depend on the shear

parameter s. The magnitude of dO(t = O)/dt and the initial amplitude _ of the vortex can

be estimated with the help of Eq. (25). For small t _<tm _ ec < 1, where t_ is the "time" at

which @ assumes its maximum value or amplitude Om= O(t = tta) and dql(t= tm)/dt = O,

the second and third terms on the right side of Eq. (25) are much less than the first and

fourth. Therefore for a nonlinear solitary solution, there must be a balance between the

linear and nonlinear terms on Eq. (25), that is, • ,,_ s2Oa . This gives the scaling law for

amplitude of the vortex,

i V/22u2k
@_ ~ - or _,-,, ~ . (2S)

s $1
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On the other hand, multiplying both sides of Eq. (25) by d_/dt and integrating in time from

t = 0 to t = tta, we can approximately get _'(0) _ (s2/2)_ - _, where _'(0) - d_P(t =

O)/dt. Therefore the scaling law for the _'(0) is

d (t=0) 0)
- or _'(0)- d_(x =dt ~ S, " (29)

A detailed study of the numerical spectrum yields the _'(0) vs. s curve shown in Fig. 4.

The curve shows the allowable initial momenta _'(0) for the eigenfunction _(t) that are

bounded as t _ -t-oe, versus the shear parameter s, The shaded regions in Fig. 4 represent

the allowable initial values for '_'(0). The lowest values of _'(0) gives the minimum flow

velocity for the vortex core required for the lormation of the coherent trapped structure.

Both the Figures 3 and 4 consistently support the scaling laws presented by Eqs. (28) and

(29). In addition, Fig. 4 shows that the existence of a vortex for small electric fields _'(0)

(or flow velocity) requires that s >__0.06, whereas for large electric fields a vortex is formed

for s > 0.02.

Note that the dipole solutions presented here are different from the Larichev and Reznik's

modons. 1 The modon construction uses two different linear functions F(_ - ux) in the two

different regions, namely, the interior and exterior regions of a modon; thus, the equations

determining the modon structure are two linear equations. These two equations are solved

separately in the two regions and the solutions from the two regions are matched up to second

derivatives at tile boundary. However, the construction of the new dipole solutions presented

here uses only one single arbitrary function F(_2 -ux). Therefore the derivatives of the

eigenfunction _ = (u/k)_ are continuous to any order in the whole :c-y plane. Furthermore,

the equation determining the structure of the dipole is a nonlinear multi-eigenvalue equation.

When the parameter $1 and u are given, one can find multiple eigenfunctions _,_(x) with

different amplitudes and derivatives d_n(x = O)/dx. The derivatives d_,,(x = O)/dx of

eigenfunctions form a banded continuous spectrum as a function of the parameter s =
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$1 / v/_(u - vd0) as shown in Fig. 4.

From the analysis, we conclude that when the magnetic shear parameter s << 0.02, the

effect of magnetic shear on drift waves is small and the coupling between the vorticity and

parallel velocity fields is weak. The decoupled vorticity equation becomes the H-M equation

and therefore we recover the modon solutions. With the increase of s, the coupling between

the two fields becomes important. When 0.02 _<s _< v_/2, the new type of dipole vortex

emerges. The new vortices are localized solitary waves. However, when a > v/'2./2, the strong

coupling between the drift waves ae,d ion acoustic waves causes strong radiation damping of

energy from the vortex cores and thus eliminates the existence of the solitary waves.

Even though the above analysis is based on the 1-D model, it exhibits the main features

of the solitary vortex induced by magnetic shear. The 2-D simulations of Eqs. (4) and (5)

discussed in the following section show that the principle features of the one-dimensional

model are consistent with the simulation. As the shear parameter increases the x-variation
¢

of the coherent structure becomes stronger than the y-variation and the one dimensional

model becomes more accurate. The 1-D model is adequate qualitative picture, but does not

yield quantitative values for the amplitudes.

IV. Numerical Vortex Solution in Inhomogeneous
Plasma with Sheared Field

In order to facilitate the numerical solutions of Eqs. (4) and (5), we first expand Eq. (4)

according to the ordering in Eq. (7) and consider v_0 ,-_zT "" en "- e. Keeping only the terms

of order e and d, we derive from Eqs. (_) and (5) the reduced dynamical equati(ms

(1)o_o o_0_[_ v_]=_s(x)_g__T(x) V2 ' Ovwl-_ + (V4o+ V_oX- '¢T_)_y , , (30)

COVll 090
o-T+ [_0'viii- -S(x)_-Tv+ t'v2v" ' (31)
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Here V_o= poodvd/dx ,,, (p,o/r,,)Vao at the core of the vortex. In writing Eq. (31) we have

included a viscous damping term to absorb energy transferred to [k[ _ c_.

To solve Eqs. (30) and (31), we use a uniform grid over x and k_ in 85 x 85 zk_-space with

3655 complex _.k_ (t) and vlj_.k_(t) modes. Since the first term of Eq. (30) depends on x,

we leave the equation in x space and use the second order central difference formula for c9_,

which yields a tridiagonal system that is solved for each cgt_(x, ku,t). We use the Ahlberg-

Nilson-Walsh algorithm for cyclic tridiagonal systems 1° to reduce the operator (_/T(z) -

V2) to a cyclic tridiagonal matrix. Upon inverting the matrix we obtain Ot_(z, ku, t) for

each mode. The nonlinear convolution terms in both the equations are evaluated by first

transforming _ and vEjin k_k_ space to get derivatives of _¢and vii, then transforming _ and

Vjik and their derivatives into zy-space to calculate the convolutions. The results are then

transformed back into zk_-space. Finally we use high order Runge-Kutta time stepping to

get _,(z, k_, t) for each mode at each time step. The constants of motion defined in Eqs. (9)-

(12) are used to monitor the accuracy of the codc. The modon of Larichev and Reznik

is taken as the initial perturbation for _(x,y,t = 0), and Eq. (17) with voo = 0, for vlj.

The exponential temperature profile T(z) = exp(-c2x) is used so as to avoid the negative

temperature problem that can arise when expanding T(x) as 1 -c2z. For the exponential

profile tCT = -(1/T2)dT/dz - c2exp(c_x). Because of periodic boundary condition, we

choose the magnetic shear profile as S(x) = Sm sin(27rx/L_), where L_ = 207rp,0 is the

length of periodic simulation box in the x-direction. Typical simulations use an average of

,_0 minutes CPU time on the CRAY-2 for At = 100 r,/c, which is about 10 rotations of the

vortex core.

In the first case we used V_o = c2 = 0, # = 0.1 and Sm = 0.1 so that $1 _- 0.01 and

the effective shear s _ 0.07, which give the parameter [u/vd - 1[ = 0.1 :>:>$1, therefore

the radiative damping of the vortex is small and negligible. We start with Larichev and

Reznik's modon with u = 1.1vdo and ro = 6.0p,o, so that the center derivative of the modon
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_'(0) - (c%2/Ox),=o _- 6.7 or _'(0) __ 6.1 where t = kx. We observe that the dipole vortex

structure for the to field stays a long time without much change, and that the vii field, though

experiencing some change, still keeps a rather coherent and stable structure in the interior

region of the dipole vortex. After a long time, the amplitude of the dipole _om _ 13, the

velocity u _ 1.3, and the center derivative qo'(0) slightly increases. Figure 5 shows the

streamline of _(x,y,t) = const, and vll(z,y,_ ) = const, at times tc,/r,_ = tVdo/P_o = O, 20,

40 and 60.

In the second case, temperature gradients exist. We choose c2 = 0.046, v_o = 0, Sm = 0.1,

u = 1.1Vd0and # = 0.1. For these values the dipole discussed in the first case can not survive.

Figure 6 shows that the dipole separates into monopoles immediately after it starts to travel.

This is expected since the c2 introduces the KdV nonlinear term in Eq. (30) that breaks
i

down the symmetries of Eq. (27) and causes the waves in the region of negative potential to

propagate faster as reported in Refs. 6 (c_= --_¢r in Ref. 6) and 8.

VV'ealso did some numerical experiments with s _ 1 or Iu/re - 11 _ $1, and found that

the dipoles eventually connect to oscillating tails with significantly large amplitudes. In

these casts the dipole vortices experience strong damping of energy through the tails.

In all the simulations, we notice that the waves with small amplitudes in the vii field

appear to be stationary and that the energy of the vii field tends to go into waves with small

scale lengths. The reason for these phenomena is that Eq. (31) does not have a linear wave

term like vdoOcg/Oyas in Eq. (30); thus linear waves with small amplitude do not propagate.

Since Eq. (31) lacks linear dispersion, the nonlinear steeping process cannot be effectively

balanced and the waves with small scale lengths tend to grow. Because of this fact, we add

a viscous term in Eq. (31) to dissipate the energy transferred to the waves with these small

scale lengths.

The results of the simulations show the general consistency with the results of the analysis

in the previous section. In particular, the simulations ._how that the dipole-type vortex
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solutions of the drift wave-ion acoustic wave system can exist in a sheared magnetic field

when the electron temperature is constant over the vortex. The dipole type vortices are

well formed and can last a long time without much damping if s < 1 or [u/v_- 1[ > $1

provided the mT _ 0. For finite mT we can estimate 6 the life time of the dipole vortex from

tL _ 1/mTC?mlC "_ 1/KTW'(0)]C 2.

V. Summary and Conclusions

Analytical and numerical studies of the effect of magnetic shear on drift wave vortices in

inhomogeneous plasmas have been reported. Analytically we have derived a solitary vortex

equation that includes the effects of density and temperature gradients and magnetic shear,

and we }lave used a quasi-one-dimensional model to exhibit the main features of solitary

vortices in sheared magnetic fields. The analysis shows that in a plasma with constant

temperature and drift velocity, the presence of a small magnetic shear will cause the effective

potential to change from a non-trapping to a trapping potential, which indicates the possible

formation of solitary vortex structures with finite amplitudes. The solutions are shown to

have the dipole-type symmetry. However, they are different from the well-known modon

vortices, because the derivatives of their eigenfunctions are continuous to any order in the

whole plane, also, the center derivative _(0) and the amplitudes form a banded continuous

spectrum.

It is also shown that the presence of the magnetic shear intrinsically causes t.he soli-

tary drift waves to couple to the ion acoustic waves. Thus the dipole solutions are not

monotonically decreasing functions, instead, they have oscillating tails with monotonically

decreasing amplitudes connecting to the core of vortices. This behavior is similar to the

monopoles induced by the gradient of drift velocity in shearless magnetic fields, s The os-

cillating tails cause radiative damping of vortex energy. The damping is negligible if the

amplitude _m(" v/22u2k/S_) of the dipole structure satisfies _m > x/_-u/k. Eor a weak effect
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of magnetic shear, this condition is consistent with that for the Larichev-Reznik's modon.

However, for shear above a small threshold value s > sc _ 0.02 as given in Fig. 4, we find

that the nonlinearity of the vii induced by the shear and vorticity equations combine to

produce a nonlinear restoring force proportional to (S_/2u't)_ 3 which gives the new dipole

vortex structures when s > 0.02 or Si > 0.031u/vd- 1 I. The nonlinear structures in the

weakly sheared field greatly reduce the shear radiation expected in the linear drift wave-ion

acoustic wave theory.

The numerical simulatioI,s performed in 2-D with the coupled vorticity and parallel mass

flow equations consistently support the analysis. The simulations show that for a plasma

with constant temperature and drift velocity in a magnetic field with small shear, the wel!-

formed dipole vortices are stable and can last a long time without much damping when

[(u/va) - 11 > $1. Itowever with the presence of a small temperature gradient, the dipole

vortices become structurally unstable and are rapidly separated into monopole vortices,

which is consistent with our previous studies 6,s on the effect of finite inhomogeneities across

the core of the vortex. Thereforewe conclude that with constant temperature and drift

velocity, the coherent structures of drift wave plasmas behave like dipole vortices in either

shearless or sheared magnetic fields. But when the gradients of temperature and drift velocity

exist, the solitary coherent structures take the form of monopole vortex structures rather

that1 dipole structures.
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Appendix: Noncanonical Hamiltonian Structure

The vorticity equation (4) and the parallel momentum equation (5) with the Boltzmann

density distribution n given in Eq, (6) can be rewritten to order _ and d for 0/0z = 0 as

follows:

Oq S(x) Ovlf (32)
-_" +,[_' q] = Oy

OVll O_
0-_ + [p' vii] = -S(x)-_y (33)

where the potential vorticity q(x,y,t)= V2_-_/T(x)- f,n(no(x)).

The Hamiltonian is, from Eq. (11),

fI(q, vll) = J + (Vr# +

1

where surface terms are neglected. Upon variation of H

5H = f (-c25 q + vllSVll) dxdy

and we obtain the functional derivative

5H 5H

5--_- -_; -- - vii. (3,5)5vii

Equations (32) and (33) can be written in Hamiltonian form,

Oq
O--[= {q,H} , (36)

Ovll
0-5-: H},
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where the noncanonical Poisson bracket {F, G} is defined as

{r, G}= i q + (vN-ct(x)) + dxdy, (38)

wher__(_)= f_s(_')e_'.

It is easily shown that the Poisson bracket given by Eq. (38) is antisymmetric,

{F,G) = ,{G,F} ,

and one can prove it satisfies Jacobi's identity,

{E,{P,a}}+ {F,{a,E}}. {a,{E,r}} = 0.

(A proof for essentially the same bracket can be found in Ref. 11.)

The Casimir invariants C of the Poisson bracket are defined by

{C,D} =0, (39)

where D is an arbitrary function. Substituting Eq. (39) into Eq. (38), we obtain

{C,D}= q , + (vil-a(x)) , + , dxdy=O. (40)

Using the identity,

f f[g,h]dxdy = f h[f,g]dxdy, (41)

we can rewrite Eq. (40) as

i('°[ '°[ ,o[
Since D is arbitrary its coefficient must vanish, and we can find two independent Casimirs,

from Eq. (42)

C, = f f[Vll- cr(x)]dxdy I

= i qg[vll - cr(x)]dxdy,C2

18



where f and g are arbitrary functions of their arguments. When O/Oz _ O, it can be easily

shown that

= /qdxdydz ,

_'=i'(v,,-.(.)),.,,,z.
survive,
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Figure Captions

1. Evolution of effective potential V_(_,t) with the "time" t that corresponds to the

distance kx from the shear reversal point.

2. Evolution of the separatrix in phase space corresponding to the effective potential

3. Nonlinear eigenfunction for s = 0.06 and d_(t = O)/dt - 13.58 showing the dipole type

vortex and wave solutions in the case without temFerature and drift velocity gradients.

4. Spectrum of critical d_(t ---O)/dt versus the effective shear s from 0 to 0.1, showing the

allowable initial "momenta" d_P(t = O)/dt in the range of 0 --50 for the eigenfunction

_(t) to be bounded as t --_ -+-_. The shaded regions represent the allowable initial

values for dq_(t = O)/dt.

5. Contour plots of the electrostatic potential _(x,y,t) and parallel velocity vll(z,y,t ) of

Eqs. (30) and (31) with temperature gradient _T ----0, drift velocity gradient v_0 - 0

and magnetic shear parameter Sm = 0.1(s __ 0.07). The dipole-type vortex does not

change much for a long time.

6. Contour plots of the electrostatic potential V'(x,y,t) and parallel velocity vll(x,y,t )

of Eqs. (30) and (31) with temperature gradient parameter c2 = 0.046, drift velocity

gradient v_0 = 0 and magnetic shear parameter Sm = 0.1. The dipole-type vortex

breaks up after a short time.
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