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THE APPROACH TO EQUILIBRIUM IN A QUARK-GLUON PLASMA

I review work done during the last year on the problem of color equilibration in a
quark-gluon plasma.

1. Introduction

A general review of the pre-equilibrium stage of quark-gluon plasma formation was
given at the Quark Matter '86 meeting in Asilomar [1]. In this contribution, I will review
recent work and new developments in this field that occurred during the last year.

The basic questions to be addressed in this paper are: How does the quark-gluon
plasma, once formed in heavy-ion collisions, approach equilibrium? What are the basic
equilibration time scales - how do they compare with the plasma lifetime before hadroniza-
tion and freeze-out set in? In particular, how do the strong color anisotropies, which are
presumably present in the initial formation stage (where color strings are supposed to be
abundantly generated and subsequently decay through particle production), disappear and
how fast, if at all, do the color degrees of freedom attain local equilibrium?

Knowledge of the equilibration time scale is very important, since it not only gives us an
intuitive feeling for the reliability of the local equilibrium assumption underlying so far most
dynamical pictures (in particular the hydrodynamic approach), but also enters formally
into the calculation of transport coefficients [2,3] and the non-equilibrium corrections to
hydrodynamic behavior, as well as determines the damping of collective modes in the
plasma [3,4] which might have phenomenological consequences [5].

The approach that I wish to present here involves the following chain of arguments:
(i) equilibration is related to dissipation of energy and creation of entropy; (ii) it is deter-
mined by the dissipative, i.e., imaginary part of certain response functions - for example,
to calculate the rate of dissipation for a density perturbation in an equilibrium plasma we
need to work out the imaginary part of the retarded density-density correlation function;
(iii) this imaginary part of the response function is dominated by its poles which signal col-
lective modes - for example, phonons in the density-density correlation function, (colored)
plasmons in the electric and magnetic response functions, etc.; (iv) from the imaginary
part one can calculate a damping rate 7 for these collective modes which in turn yields an
estimate for the equilibration time scale Teqa ~ ft/7.

In this contribution I will concentrate on color equilibration and thus focus on color
electric and magnetic plasma oscillations and their damping rates.

2. Previous work

In what I will call the "historical approach" (this includes the attempts reviewed in
my QM '86 talk [1] ), one started from the retarded gluon propagator in a medium. This
is the retarded correlation function for two color vector potentials A^, describing in some



sense the response of the system to an external color current [3a], but it is, of course, not
gauge invariant. The naive hope in the "historical approach" was that, although the gluon
propagator is not gauge invariant, maybe its poles are. Circumstantial evidence for this
existed in the form of identical results in a variety of gauges for the real part of the pole
position in the high-temperature, small-momentum limit (i.e., the plasma frequency and
the plasmon dispersion relation at long wave lengths). However, for the imaginary part
of the pole position, as well as for non-leading corrections in the high-T expansion for the
real part, this hope was not borne out by the calculations. Worse, it was found [6] that
in some gauges (e.g. Coulomb gauge) not even the leading term in the real part came out
correctly.

More specifically, the problem arose the following way: the condition for the pole in
the gluon propagator signalling the presence of a longitudinal collective mode is [6]

Since IIoo is generally complex, for real k the solution will be a complex frequency of the
form ko (k) — u> (k) — i-y (k). In the limit \f\ <C u> (2.1) then reduces to the two equations

k2 + Ren0Q(u;,k)=0 ; (2.2)

By explicit calculation in the 1-loop approximation one finds the following high-tempera-
ture expansion for k <C ko •C T:

(*o,k) = Ng2~ [ ^ + (a + ib) k0T + c$f + . . . ] + O (j^j . (2.4)

The gauge dependence mentioned above shows up as a gauge dependence of the constants
a, b, and c in this expression. In many gauges (for example, temporal axial gauge (TAG)
and general co van ant gauge (CoG)) the coefficient c vanishes, and upon insertion of (2.4)
into (2,3) one obtains

independent of which one of these gauges is chosen, as well as

Ng2

7 = fbT + O{k) (2.6)

where b, however, is different in TAG and CoG (indeed, it depends on the gauge parameter
in general CoG [6] ). On the other hand, in Coulomb gauge (CG) c does not vanish, and
since for small k the term ~ c swamps the two other terms in (2.4) (which were responsible
for the leading behavior in the other gauges), the small-momentum expansion is seen to
break down completely. This is what you get for considering a gauge dependent quantity
to begin with.



3. "Gauge covariant" linear response approach

During the past year or so Th. Elze, K. Kajantie, and T. Toimela from Helsinki and
myself [6-9] have attempted to overcome the problem of the rather complicated gauge
transformation properties of H ^ by generalizing the linear response framework for color
electric and magnetic response in such a way that we end up with equations that transform
covariantly, i.e., as vectors under gauge transformations. Although this is still not a gauge
invariant formulation, at least the gauge transformation properties are under tight con-
trol [9], and we have more reason to hope that we will be able to extract gauge invariant
answers from such an approach.

We start from the general linear response formula describing the change in the expec-
tation value of an observable O (x) induced by an external perturbation described by the
Hamiltonian density W«t (z') [10]:

S(O(*)) = -l-JdV© (t - t') Tr{p0 [o(x), T^t (as')] } • (3.1)

po is the density operator (~ e~^^°) for the equilibrium system, and the trace Tr over
physical states is best evaluated using the path integral formulation given in [11,12].

To study the color electromagnetic response, we consider the choice

W«t (*) - E (x)a • £a (x) - Ba (x) • Ba (x) . (3.2)

In QED this is, up to a total derivative term, equivalent to the coupling Wext = Jp. (%) A11 (x)
with an external current Sft(x). In QCD this is no longer true, but the coupling (3.2)
has the advantage of being gauge invariant under simultaneous gauge transformations
of the quantum field E,B and the sources £,B, while the JpA* coupling is not [12].
Note that in (3.2), to insure that one calculates the response to a physically identical
electric or magnetic source when going from one gauge to another, the source has to
be transformed by the gauge transformation connecting the two gauges: £ (x) —» U (x)
£ (as) ET"1 (x), etc.

I will focus on color electric oscillations generated by a pulse £i (x) = —8 (t) di exp (ik • x)
[6] for which, at least in the long wavelength limit, the magnetic part of Tiext can be
neglected [8]. The response to a static magnetic field has been studied in [8], and a
source corresponding to an electromagnetic plane wave is considered in present work by
Mrowczynski [13].

The induced electric field in the plasma is given through (3.1) as

6(E?(x)) = -l- J d*x'O (t-t')Ti{po[E?(x), i f (*')]}<•$ («') , (3.3)

i.e., the electric response function is given in terms of a retarded commentator of two
electric field operators:

J # ( . - . ' ) = -^6 (t - I") Tr{p0 [Ef (x), E) («•)] } . (3.4)



Obviously, R^ is not a gauge-invariant quantity. Eq. (3.3), after being contracted with
the SU(3) generators Xa, transforms as a vector equation under gauge transformations,
U (z) [Eq. (3.3)] U~1 (z); however, due to the folding over x' in Eq. (3.3), the response
function (3.4) by itself still has a rather complicated gauge transformation behavior which
has to be properly taken into account [9] when evaluating B$j in different gauges.

The most convenient gauge to evaluate (3.4) [14] is the temporal axial gauge (TAG),
A% = 0. In this gauge the Fock space spanned by \Ai) contains no dynamical unphysical
(ghost) states, although the residual freedom of time-independent gauge transformations
leads to l/po singularities in the propagators which have to be dealt with properly. (We
will use the principal value prescription for these poles which was shown [15] to give correct
results at 1-loop order.) Therefore, up to this ambiguity in the static sector, the sources £
and B, expressed through the vector potential A and its derivatives, involve only physical
degrees of freedom and are thus well-defined. Furthermore, the electric field is simply given
by Ef = —dtA" and does not involve the non-abelian structure constants. Another gauge,
where only physical modes propagate, is the Coulomb gauge (CG), V • A = 0. In this
gauge, however, Ef = —dtAf + diA% + gfabcA^Al involves also terms bilinear in the gluon
potential, and the electric response function becomes more complicated [6]. In most other
gauges further complications arise from propagating ghost states rendering the evaluation
of (3.4) even more difficult [9].

4. Temporal axial gauge

Since in TAG, E is just the time derivative of A, the response function (3.4) is easily
expressed [16] in terms of the retarded gluon propagator alone:

-i0(t-t')Tr{[E?(x), E){x')]} = -sW{x-xl)+dtdt,D?j
R{x-x>) . (4.1)

In this gauge, therefore, all the information needed for the electric response function is
actually contained in the gluon propagator. Its general structure in TAG (where 7?oo =
Voi = 0) is given by

with

~2 y k* ") '

The last identity in (4.3) is only true if fc"II*, = 0, which is indeed the case in TAG at the
1-loop level. The longitudinal electric modes are thus given by the solution of

k2-F(k0,k) = 0 <=* k2 + n^o(fco,k) = O, (4.4)



whereas the transverse part of the response function has its pole at

fc2-G(Jfe0,k) = 0 . (4.5)

5. Coulomb gauge

As already mentioned, in CG the electric response function no longer can be reduced
just to derivatives of the gluon propagator; the retarded 3- and 4-point functions enter
also, due to commutators involving those terms in the electric field which are bilinear
in the ghion potentials. If in CG those terms were neglected and only the contribution
to (3.4) involving the gluon propagator were taken into account, one would again obtain
Eq. (4.4) for the longitudinal modes. However, while in a high-T expansion (2.4) of Hoo
in this equation the coefficient b (which is responsible for damping) comes out identical
to the TAG result, the coefficient c in CG does not vanish (in contrast to TAG), and
destroys the leading small momentum behavior found in TAG. The crucial role of the 3-
and 4-point contributions to (3.4) in CG is the following [6]: while being completely real
and thus not affecting the coefficient b which governs damping (these corrections modify
the contribution to the propagator involving a loop with one physical, transverse gluon
and one unphysical, longitudinal gluon which, if cut, does not correspond to a physical
scattering or decay process), they modify the real part of Hoo such that the coefficient c
effectively vanishes. After adding the 2-, 3-, and 4-point contributions into an "effective
Ego", the condition for the longitudinal mode k2 + II*0 eff (fco, k) = 0 yields the same result
as in TAG, namely

, 2 = a , 2 + | k 2 + . . . where w2 = ^ ^ ; (5.1)

Further, one finds in both gauges, after similar cancellations of infrared divergent terms in
CG by the 3- and 4-point contributions, that the transverse modes are given by

o>2 = o>2 + - k 2 + (5 3)

with the same damping rate 7T (k —* 0) = fL (k —> 0). For finite k the damping rates 72;
and 7T are different and worked out in Ref. 9.



6. General covariant gauge

The computation of (3.4) in CoG was recently carried out in [9]. There not only the 3-
and 4-point functions are important, but also one has to be careful to include the proper
gauge transformation of the electric field operators find source, which is time-dependent
and includes dynamical ghost fields. The calculation is lengthy, and I refer the interested
reader to the original paper [9]. However, the result again is identical to TAG (for all
gauge parameters), as it has to be by construction because it is explicitly ensured that the
response to the physically identical external source is calculated. However, it is interesting
to follow the technical steps in [9] and see the role played by the ghost fields in this gauge.
If anything, one sees that covariant gauge appears to be a very inconvenient gauge for this
problem.

7. The connection to kinetic theory

I will not give any details here of the actual computation of Rij\ the methods used
to do the Matsubara frequency sums and integrals for the 1-loop terms are presented
in detail in Ref. [6]. One important point to note is that the imaginary part of the
response function (which is responsible for dissipation) arises from the poles of the prop-
agators under the loop-integral; these lead to ^-functions which put the loop particles on
mass-shell, and hence can be interpreted as the matrix element for a physical decay or
scattering process between the external perturbation and the thermal gluons in the heat
bath. As an example, one finds for the imaginary part of the longitudinal response function

lmF = ~itk{6 (u~k)l+ dP\ML->«rf K1 - nF) C1 - n'r) ~
-26(k - u) I dp\ML+q^q\

2 [n'p (1 - nF) - nF (l - n"F)}
Jk+Jk+

- k) fU+ dp\ML^ag\
% [(1 + n) (1 + n') - nn'j

-29 (fc - u) (^ dp\ML+g-.g\
2 [n" (1 + ») - n (1 + n")] } . (7.1)

Here we have included the (gauge-independent) quark-loop contribution, and n,np are
the boson and fermion distributions, n, n' and n" indicate evaluation at momentum
p, p' = <J) — p, and p" = p — u>, respectively. We see that each term splits into a loss and
a gain term: in the first line the process is pair decay of the electric perturbation into a
thermal qq pair, and its inverse; for the decay (loss term), the final q, q states are multiplied
with Pauli-blocking factors 1 — nF and 1 — np; for the inverse process (gain term) the now
ingoing q, g states are just multiplied with thermal distributions nF, n'F. While gg- (first



line) and <?<7-pair decay (third line) only happen for timelike momenta of the external field
(w2 > A2), at spacelike momenta (w2 < fc2) scattering processes can occur: in the second
line the external field gets absorbed by scattering a quark with initial momentum p" to
momentum p, and is regenerated by the inverse process; again all ingoing states have a
factor njr and all outgoing quark states a factor 1 — n/1. The fourth line describes the
analogous scattering process off thermal gluons, with Pauli-supp?ession 1 — UF on the final
states replaced by Bose-enhancement 1 + n. The relevant matrix elements are [6]

\ML_qq\
2 = \ML+q^g\

2 = 4Nfg
2
P

2sin2 (k,p) ; (7.2)
JL2 2

l-^i-tool = \'M-L+a->a\ = ^c9 ~Z~ (1 + COS (p,p )) 1 — —= rr sin (k,p) . (7.3)

We see [16] that the finite-temperature field theoretical calculation results in a dissipative
part of the response function which is intuitively interpreted in terms of physical scattering
and decay processes and takes the form of a Boltzmann-Nordheim collision term in kinetic
theory! Therefore we can also understand the equilibration rates and time-scales in the
language of kinetic theory. Writing the dissipative part in the generic form

r , (7.4)

we easily check from the form of (7.1) that always

•••gain

hence

Fio,s ~ rgaill e#" - 1 •/eq

is the equilibrium distribution for the plasmon perturbation. If the initial electric pertur-
bation has a phase-space distribution / (xt; kw) not too far from equilibrium, then its time
evolution will be given by the Boltzmann-Nordheim equation

= —/ (Flow — Tgain) + (Flo,, —
•*• I O M * g a i n

(7.7)

Its solution will behave like
/ = / e q + a e - r t . (7.8)

Hence, F = Fio,s — Tg^ ~ Im F is the equilibration rate. The factor of proportionality in
this last equation is not determined by the rather heuristic arguments of this section; but
we know from the linear response approach of sections 2,3 that, at least for perturbations
with the plasmon dispersion relation (2.1), it is given by —1/ (dKeF/du) (see Eq. (2.3)).



I will now give the complete result [6] for this equilibration rate F = 7 in the zero-
momentum limit, including both quark and gluon contributions and not invoking a high-
temperature expansion:

n

7 (fc - 0 ) = § £ K t h s f+ N c cth

which, when evaluated on the dispersion relation at w = u>p ~ gT >C T, yields

One sees that the quark contribution ~ Nf is suppressed by 2 orders in g\ The reason is
that for u ~ gT the loop integral is dominated by small momenta *S gT where the gluon
Bose distribution ~ 1/p becomes very singular, whereas the quark distribution saturates
at 1. So, at this order of g, equilibration of color perturbations is completely dominated
by gluonic scattering and decay processes!

An order of magnitude estimate for the associated time scales can be obtained by
assuming a typics! plasma temperature of T = 200 MeV and a strong coupling constant
a, = 1. We then get (the first number is just the leading order result, the number in
brackets includes the quark loop contribution in Eq. (7.9))

— ~ 0.2 (0.3) , (7.11)
Up

(i.e., the oscillations are damped after 3-5 periods) and

T = - ~ 2 fm/c (1.2 fm/c) , (7.12)

i.e., color equilibration occurs after 1-2 fm/c.

8. The effective action approach

In the remainder of this survey I will briefly review some recent work by H. Hansson
and I. Zahed at Stony Brook, who used a completely different method to try to answer
the same question. Unfortunately their result is quite different from the one quoted above,
and in their calculation 7 even comes out with the opposite sign, indicating instability
of the plasma. I will briefly outline their method, show that it also deals with a gauge-
dependent quantity too, and quote their answer. The lesson to be learned from this is
that, although things looked nice at the end of section 7 above, the final word on the
equilibration time scale is not said, and the problem cannot be considered settled before
the recurring problems with gauge-dependence are decisively eliminated.
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Hansson and Zahed start from the path integral expression for the partition function of
a gluonic system in an external background field A^, subject to an external source J^ [18]:

(8.1)

AG[A,Q]exp{i Jd>x \c{A+ Q) - ^ (Ga(A,Q))2 + J°<#] } .

At finite temperature and for J = A = 0, —iW is the grand canonical potential. Ga is
a gauge-fbdng condition for the quantum gluon field Q£, which can be chosen such that,
while breaking gauge invariance of the integrand with respect to transformations of Q,
invariance with respect to gauge transformation of the background field A is preserved.
An example of such a gauge is background Frenkel-Taylor gauge, given by

Ga (A, Q)=fi (do6ac + g fabc A*) Qc
0 + a (> c V - g fabcA6) • Qc . (8.2)

For different values of a and 0 this gauge in the limit A —* 0 interpolates [19] between
Coulomb gauge (a = 1, j3 — 0, £ —» 0), covariant gauge (a = /? = 1, £ arbitrary), and
static gauge (a — 1, /? = oo, £ —» 0). Hansson and Zahed chose for non-vanishing A the
case a = /3 = 1, i.e. background covariant gauge.

AQ [A, Q] in (8.1) is the Fadeev-Popov ghost determinant, and can in the usual way
be reexpressed as an integral over a ghost Lagrangian,

A c [A, Q]= J VT}DT)exp{-i J d^xfjaM^Vb} , (8.3)

where for the gauge (8.2)

(A)D0(A + Q)-aB(A)--D(A + Q)]ab (8.4)

„ (a) is the covariant derivative, Dab (a) = d,,6ab + gf^a'jj.
From (8.1) the effective action is obtained by a Legendre transformation

? [Q, A]=W [J, A]- j dtxjffi , (8.5)

where the "classical field" Q^ is defined through

~ SW

QS = j f • m
The "effective background field action" is then defined as the Q —» 0 limit of this expression,

T[A]=f[Q = 0, A] , (8.7)

and is, by construction, invariant [18] under gauge transformations on the background
field A. Hence, it can depend only on gauge invariant combinations of components of the
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background field strength tensor and its covariant derivatives and has to take the general
form

r[A] = \ j - ^ [e(fc)E.(*). E . ( - * ) - ^ B B ( A ) Ba(-*) + ...] , (8.8)

where the dots denote nonlinear and derivative terms (see Ref. 17).
On the other hand, an explicit calculation of F [A] in the 1-loop approximation yields

it in the form

(8.9)

where, from gauge invariance of F, one is assured [17] that the omitted higher order terms
in A in (8.9) correctly combine to give the nonlinear terms in E2 and B2 in (8.8). E ^
in (8.9) describes polarization of the background field A by loops of the quantum field
Q; it is thus different from the vacuum polarization tensor usually considered, where no
vertices to the background field enter. In fact, gauge invariance of F [A] guarantees that
this background polarization tensor is always transverse,

h^W = 0 , (8.10)

independent of the specific gauge choice Ga in (8.2) for the quantum field.
By comparison of coefficients in (8.8) and (8.9) we find at 1-loop order for the dielectric

function c(k) and the diamagnetic function n(k)

l (8.11)

-7TT = 1 + (T^Doo - H« ) /2k 2 . (8.12)
it i hi \ If* / /r" \ J \ /

The next step in their calculation is to minimize F [A] to obtain equations of motion for
the "classical" or "mean-field" modes for the background field in the medium. They derive
equations for a transverse electric and magnetic as well as for a longitudinal electric mode,
and the latter reduces to

c(Jfc) = O <=> k2 + Hoo (*) = 0 • (8.13)

This is the same equation as we had it in TAG (see (2.1)), but now with a completely
different IIoo> namely the one for the background field in covariant background gauge!

The surprise (at least to me) came when Hansson and Zahed [17] evaluated Eq. (8.13)
and found e(k) to depend on the gauge parameter £! Although much care was taken
to ensure that F [A] was invariant under gauge transformations of A, it still turned out
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to depend on the gauge choice for the quantum field Q. Somehow the fact that the
JtiQ11 coupling to the source J in (8.1) is not gauge invariant has propagated through the
Legendre transformation (8.5) into the limit Q —t- 0 in Eq. (8.7) [20] which apparently
leads to different results for different gauge choices Ga (A,Q).

Specifically, (8.13) has the solution (in the high T, small k limit)

^L = 4 + \k' + ... , (8.14)

(the same damping rate comes out for the transverse modes). Not only is 7 gauge-
parameter dependent, it also has, for any value off, the "wrong" sign, indicating instability
of the mean-field modes!

The dominant negative contribution in (8.15), the —11, actually is the same —11 leading
to asymptotic freedom. The Lorentz covariant nature of the gauge forces a relationship
between the sign of the /?-function and the sign of Im IIoo at zero temperature that is not
present in non-covariant gauges like TAG. The relation between the T = 0 result and the
finite-T medium corrections is such [7] that this same —11 then dictates the leading high-T
behavior of the damping rate (8.15) above, in this particular gauge.

The problem is obviously that the dispersion relation (8.13) in the effective action
approach again involves a gauge-dependent quantity, np i / . Indeed, if one chooses back-
ground Coulomb gauge (a = 1, 0 = 0, f -> 0 in (8.2)), then Eq. (8.13) remains formally
unchanged, but involves IIoo in Coulomb background gauge which turns out [21] to be
the same as Itoo in the usual Coulomb gauge, and we are back to the infrared problem
mentioned at the end of section 2.

In reference 17 it is argued that a completely gauge-independent version of F can be
defined [20], and that it agrees with their calculation for £ = 0. This appears to single
out £ = 0, the Landau background gauge, as the one physical gauge in the whole class of
covariant background gauges; however, the argument was only proven at T = 0, and it is
not entirely clear that it still applies at finite temperature.

In any case, even for £ = 0 the rate 7 is negative, and this calculation implies plasma
instability, whereas we had found plasma equilibration. So what is going on? Are both
approaches answering the same question? What is the relationship between linear response
and minimizing the effective action? Which is the correct, gauge-invariant answer for the
color equilibration rate in a quark-gluon plasma?

It is clear at this stage that, whatever prejudices one might have for or against either
one of the two approaches, a lot more work has to be done to clarify the issue. Both
approaches can be criticized by arguing that they involve gauge-dependent quantities, and
this state of affairs has to be changed. The result by Eansson and Zahed is particularly
troublesome, because at second order in perturbation theory, O (</2), one would not expect
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to see such an instability unless one were somehow starting from the wrong ground state.
In that case our whole picture of the QGP would have to change.
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