LA UR -86-1151 WECFETT B TR TJAV 1 2 1986

CONE- 3508113 -

Los Alamos Na‘ional Laboratory s op=-2ied by (he Univeisily of Caifornia for (he Uniled States Department of Energy under coniraclt W-7405-ENG-38.

LA-UR--86-1151
DE86 010164

Ti7Le. A HYPERCUBE PROJECT AND A SIMULATOR FOR A HYPERCUBE OF COMPUTERS
AuTHORs) Jung Pyo Hong, Robert D. Tomlinson, Nisheeth Pate! and L. Howard Follard

supMITTED To Proceedings of the Conference on Hypercube Microprocessors held In
Knoxville, TN (8/85) In SIAM Publlcatfions.

DISCLAIMER

This report wan prepared u. an account of work sponsored b' an agency of the United States
Clovernment. Neither the Uiled States Giovernment nor any apency thereof, nor any of their
employees, makes any warranty, express or imp'ied, or assumes any legal linbility or responsi-
bility for the accuracy, con.pletenens, or usefulneas of sny information, apparatus, product, or
process disclosed, or represents that it use woukl not infringe privately owned rights. Refer-
ence herein Lo any specific cummercial product, process, or service by trade nuni, 'rademark,
manufscturer, or otherwise does not necessarily constitute or imply its endorserient, recom-
mendation, or lavoring by the United Statea CGovernmenl or sny sgency thereol. The views
and opinions of authors eapressed herein do not necessarily atite of reflect thove of the
United States Government or nny agency thereol.

Hy drvptacce o 1 s e 1 pobilaber tecogiugzes That 1o U S Goveramanl sptqins a soneag osive roylly hee b snas (o pubiab o iaprogi n

e g shaogd et gl ol om0t b ol alhe g oo o foe Y Grovernmend e poves

Toe pan Al on Nt e [alorglory eguesty gt (e pablaher glantily o el 10 as work pee! somad ginder 18 e ggspo as af the % Departiment ol | norgy

1 0s AlGos it IR

o o we i DiSTRIBUTION 0 TS DOCUMENT IS UNLIMITED (yy)

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

A HYPERCUBE PROJEC' AND A SIMULATOR FOR A HYPERCUBE OF COMPUTERS

Jung Pyo Hongs and Robert D. Tomlinson,s Nisheeth Patel,t and L. Howard Pollards
|

-

Abstract, The Los Alamos National Laboratory and the University of New
Mexico are working o. HC, a hypercube project for large problems. A hypercube of
1024 nodes is being designed; implementation of a machine of at least 16 ncdes is
underway. The nodes of the machine are complete computer systems, including
mass storage and a large main memory.

The computationzl abilities of each node are enhanced by using a detached
instruction fetch-execute-store organization. This allows the execution rate to
achieve a consistently high level, approaching 80% of optimum. Trace-offs in the
implementation methods indicate the speeds aveilable with acceptable hardware
investments.

A simulator hes been writien which allows execution of ligh level programs on
a hypercube organization. The simulator has shown that prograins prepared for
execution on a single ntream machine can be easily modified to use the resources of
a parallel machine, and that the results are identical to previous executions.

Introduction, A hypercube|1] of computers was discussed in the mid 1970's,
and the Russians(2] built a 32-node hypercube in the late 1970's. In addition t>
these instances, there are other references to hypercubes(3,4| in the literature,
Researchers at Caltech built a 64-node hypercube in the early 1980's. The:r efforts,
along with others, have demonsiurated that many problems in phy-
sics[5,6,7,8,9,10,11,12,13 14,15,16,17,18,'9] can be implemented efficiently on a
hy percube.

» loa Alamos National Laboratory, Electronice Divislon, E-10 Data Syatems
f U8, Artny Dallistle Resenrh Labomtory

¢ Univursity of New Mexlco, Department of Electrical and Computer Fugineering

This work ls supported by the U.S. Armny Balllstikc Research Laboratory under Projact Orders BRI,
PO 84-88, BRL PO 76-88 and BRL PO 18 86, and by the U.S. Army Research Inatitute for the
Behavioral and Soclal ("clences under MIPR 13 AR] 85-83.

The hypercube is a structure in which there is a node at each vertex of a cube
in n-th order space. When referring to a computer organigation, eack node in this
hyperspace contains a computational element. In the HC project at Los Alamos
National Laboratory and the University of New Mexico, we are using this organiza-
tion to provide sufficient computing resources to address some complex problems.
One approach is to implement the parallelism by utilizing a simple CPU as the
computational element. Instead o using nodes with minimal computing resources,
we have elected to implement the architecture using nodes with sufficient comput-
ing resources to address interesting problems. Thus, each node is itself a complete
computer system, with a disk and an operating system.

This ensemble of computers is then connected to form a hypercube in R space
by connecting each cf the N =2% computers to its R logica! nearest neighbors.
Communication is accomplished by asynchronous writes and synchronous reads.
That is, a node generates a messagc whenever it needs to send information to
another node, and ther continues with its computation. However, when informa-
tion is needed by a node to continue its work, then the node waits until that data is
available befcre proceeding. This read mechanism is the cnly method available for
bringing the nodes in step with each other.

ion, One of the attractive features of an ensemble archi-
tecture such as the hypercube is that a machine can be sized to fit problems of a
particular nature. At Los Alamos National Laboratory we have been looking at a
claas of problems for the Balistics Reseatch Laboratory of the Army and others
which requires a large amount of computing resources, and which maps well onto
the structure of the hypercube. An order 10 hypercube (1024 nodes) is being
designed to address these problems. This machine will have sufficient computa-
tional capability to address real problems of a size which would not fit well on other
architectures. An order 4 macline (16 nodes) will be bnilt to provide a test vehicle
for experimenting with the concepts involved; a full machine will be implemented
only when the preliminary portions show positive results.

Rather than approach the problem of implementing parallelism by using nodes
with minimal computing resources, we have elected to implement the architecture
using nodes with sufficient computing resources to addrass interesting problems.
Thus, each node is itself a coinplete computer system, capable of running UNIX;e
the actual system software will start with UNIX and be cut down to remove
unneeded overhead. All of the nodes in the machine will be identical, with the
exception of a number which will uniauely identify the ma-hine within the struc -
ture and also identify its nearest neighbors, connected to it by direct links. Not
only are all nodes identical, but there ia no "host® machine; each node has the capa
bility to pecform the work done by a host,

Each node is composed of two sections: a section which is responsible for all of
the 1/0 and communications, and a computational section which has been optim
ized for scientific problems. In addition to a control CPU, the 1/0 section contains

o UNTX 1a n tudomark of AT&T

a disk controller, an Ethernet port, links to other nodes, and a port into the
memory of the node. Each node will have attacked to it a large disk, with a capa-
city of greater than 300 million bytes, capable of transfer cates of 2.4 million
bytes/sec. This disk can be used to store data and resulis as needed, as well as
whatever system programs are neceasary. The Ethernet access is intended for
development and engineering acceas, and not for use as a general resource when the
machine is operating as a hypercube; however, it can be used to tiansfer data to
and from the nodes and disks when preparing for a computation or exarnining
results. The links are parellel ports which can transfer data between nodes at rates
in excess of 5 million bytes/sec; however, the aggregate data rate of all of the links
at a node is limited by the bandwidth oi the bus in the I/O section. Currently this
limit is 10 million bytes/sec, but the limit could be increased it studies indicate that
a higher inter-node communication rate is needed.

The ~omputational section has been designed to utilize currently available
te hnology to speed up overall data rates. A conceptual block diagram of the sec-

tion is shown in Figure 1.

| zall- 3
T e
find oparend
S g

INUT QUELE

L e

S B

N ENA 2 robuit
COMPUTAT 10NAL —ﬂ T REE
v ord) MOOWL ¢ remit
alFen T T

Coneeptual Block Diagram of Hypercube Node

MEMORY MODULE

Low Alamos National Laboratory

FIG. 1.

REPHODUTSED F\‘?‘("‘M‘
BeES! AVALLADBLL LOPY

This organization is simi'ar to the technique proposed by Smith[20]. The Quad
Generator is responsible for directing the sequence and action ¢f the computations.
Each computation is identified by an operation to be performed, the operands on
which to perform this work, and the location of the destination. This information is
given ‘o the Input Queue, which is responsible for obtaining the operands needed in
the computatioa, either from the Memory Module or from results of a previous
operation which is available in the Output Queue. The Memory Module contains
between 16 and 64 million bytes of memory, sufficient to hold the data needed for
large and interesting problems. This memory is organized in multiple banks to per-
mit efficient access for information transfers. As the operands become available
they are supplied, along with the operation to be performed, to the Computational
Module. The Computational Module contains two AMD23325 floating point ccm-
putational units which are connected to permit calculaticn of 3°X; Y, at the rate
of one term per cycle. Assuming a clock rate of ten megahertz, this is a computa-
tional rate of twenty megaflops. When results are available, they are supplied,
along with the destination information, to the Outpui Queue module, which is
respoasible for directing the results to the proper location. All of these modules
work together under the direction of a 32032 house keeping computer, which is
responsible for initiating the work which needs to be done.

The effect of devaching the instruction fetch and decode from operand access
and instruction execution is to speed up the effective computational rate of the sys-
tem. The Quad Generator performs much of the work which would normally be
done by the instruction execution unit in a conventional architecture. This leaves
the Computational Module free to perform the computations needed to solve the
problem. The Quad Generator can cause the operations to be performed in an
order similar to a vector type of operation, or vhe operations could be perforried in
a sequence more closely matched to the underlying problem being solved.

The size and capability of the various portions of the system have been under
study, and matching functional capability with buildable technology remains a ‘opic
of interest. If the various components are kept small they can be built with {ew
problems; however, the performance may not approach the desired level. On the
otier hand, the implementation probleins associated with a more complex unit may
render the whole machine unbuildable or unreliable. Studies of the trade-offs
involved are underway, and some of the resulis are shown in Figures 2 and 3. Fig-
ure 2 gives an indication of the effect that the number of banks in the memory has
on system performance. Th-. graph shows the percentage of {ull lcad for the fa.it
floating point unit for different memory speeds. The lines vhich make up ~nch
band represent different probabilities that a calculation wiil use an operand
identified in a calculation already in the pipe. Each band represents a division of
the memory into a different number of banks. As expected, increasing the bankinyp
factor doea indeed improve the system throughput. However, the graph also gives
some insight into the tradeoffs between faster and more expensive memory, and
slower memory with more banks. Figure 3 is a look at another facet: the effect of

the length of the input queue on the rate of calculation. Increasing the length of
the input queue does indeed improve performance, but the graph indicates the ty pe
of perfocmance improvements ca» be expected by doubling the hardware invest

ment. More and clogser looks at the various design parameters will be needed hefore

the machine can be further defined.

100 Percent

50 100 150 200 250 ns

ALU Performance as a Function of Number of Banks
(Input Queue Length = 8)
FIG. 2.

100 ferunl
|

90,

15,

MU

a0 1oa 1 J00 Hon

ALU Performance as a Function of Luput Queue Length
(Inbut Queue Length 8)
Flu. 3.

REPHODUCED 'MOM
BEST AVAILABLL .ORY

In order to explore the space of communication and
computation problems associated with putting s problem on the hypercube, a simu-
lator capable of large, and hence realistic, program execution has been deveioped.
This simulator has been used to show that certain important classes of numerical
computations match closely the hypercube organizaticn. Hydrodynamics and
Monte Carlo programs have been executed using the simulation system.

The simulator executes in the 4.2 BSD UNIX environment, where each node of
the hypercube is a proccss. Within the 4.2 BSD UNIX environment, this guaran-
tees that there will not be accidentally shared memory, resulting in an exact model
of how the hypercuse will be physically arranged. The user process can creaie,
read, and write files. In face, ordinary programs can be executed on a node.
Within a node, all UNIX programming tools and conventions are available, includ-
ing forking. There rced not be any new language nor operating system for the
node. Very large programs may be written for each node.

Inter-node communications are simulated by sockets. From the user’s point
of view, a node does a read or write to another node. The use of the socket formal-
ism means that programs written for the sirnulator will execute on the hypercube
hardware.

The simulator has executed programs written in Fortran and C. Once again it
is stressed that no special programming language ia required. One example of a
program that was executed on the simulator is about one thousand lines of ordinary
Fortran composed of eight subroutines. It is computationally intense, there being a
sequence of over one hundred fifty thousand floating point operations in une sub-
routine.

A Fortran program, written before the author of the code was aware of the
hyvercube simulator, was put or the hypercube siinulator with small modifications.
The output from a simulation on 16 nodes was exactly the same as the original out-
put from the linear program, bit for bit. It rliowed that the number of changes
that had to be made was ymall. It also showed that the inter-node communications
and the synchronizations required for this code.

Conclusion, We are in the process of designing a large scale hypercube of com -
puters, the operation of which will be an effective ool in the study of large scale
problems. The nodes of this hypercube will be complete computer systems, giving
the overall inachine vnormous capabilitics for otorage and computational complex--
ity. Our studies have shown that the disk at every node will be effectively utilized,
and a system resource which will enhance the capabilities of the machine.

The machines at each node will contain high speed arithmetic units to provide
enhanced throughput capabilities. The detaching of the instruction decoding from
the operand accesa und instruction execution provides a means of streaming data
threugh the high speed arithmetic units. The optimum organization of the consti
turnt parts into 1 system is still under investiga tion, but our studies indicate that

we sheuld be able vo keep the arithiaetic units busy 90% of the time.

We have written a simulator which allows execution of real, non-trivial pro-

grams to study the decomposition of problems onto the hypercube structure. This
simulator has shown that programs with inherent parallelism can be prepared for
the hypercube organization with few changes aud compatible results.

[1)

12]

3]
[4]
15]

6]

7]

18}
9]
[10]

(1]

[12]

[13]

REFERENCES

W. Millad, i i i ecti
mg_nf_legltal Design, vol. 5, no. 11, p. 20, 19%%.

N. M. Allakhverdiyev and S. S. Sarafaliyeva. Choice of Multiprocessor
System Configuration for Digital Sigznal Processing, SR Report - Cyber—
natics, Computers and Automation Technology, Foreign Broadcast Informa-
tion Service, July 7, 1983.

David J. Evans, in Parallel Processing Systems, pp. 227-228, Cambridge
University Press, 1982,

R. W. Hockney and C. R. Jesshope, in Parallel Computers, pp. 10, 42, 321,
323-324, Adam Hilger, Ltd., 1981.

Geoffrey C. Fox and Steve W. Otto, algorithms for concurrent pr.<essors,
Physics Todcy, May 1984.

Geoffrey Fox, Anpual Report of the Caltech Concurrent Processor
Project July 1984, in Caltech/JPL Concurrent Computation Project Annual
Report 1983-1984 and Recent Documentation, August 30, 1984.

Greg Lyzenga, The Nearest Neighbor Concyrrent Processor: A User's
Tutorial Guide Augyst, 1984, in Caltech/JPL Concurrent Computation
Projeci Annual Report 1983--1984 and Recent Docuinentation, August 10,
1984,

B. T. Werner and P. K. Haff, Grain_Dvnamics Simulations on the Caltech
Concurrent Processors, in Caltech/JPL Concurrent Computation Project
Annual Report 1983-1984 and Recent Documentation, August 30, 1984,

Steve W. Otto, Lattice Gauge T[heories on a Hypcrcube Computer, in
Caltech/JPL Concurrent Computation Project Annual Report 1983-1984
and Recent Documentation, August 30, 1984.

Edward Felton, Scott Kariin and Steve Otto, Sortiny on the NNCP, in
Caltech/JPL. Concurrent Computation Project Annuzl Report 1983 1984

and Recent Documentation, August 30, 1984.

F. Fucito and S. Solomon, Qu_;hg__ﬂgjﬂm_m: the Coulomb Gas
and the Lattice XY Model April 3, 1984, in Caltech/JPL Concurrent
Computation Project Annual Repor. 1983-1984 and Recent Documentation,
Augusat 30, 1984.

F. Fucito and 8. Solomon, Long Range Forces ou NNCP, in Caltech/JPL

(,()ncurrcnt. Computation l’rojcct Annual Report 1983 ‘1984 and Recent Decu
m.entation, August 30, 1984,

l". Fucito and 8. Solomon, Mopte Carlo. arallel Algorithm_ for Long
Ronge Ipteractions June 7, 984, in Caltech/JPL Concurrent Computation
Project Annual Report 1983 1984 and Recent Documentation, August 30,

[14]

(15

16

17

(18]

[19]

[20]

1984.

Mark Alaa Johnson, A Statistical Physics Simulation op the Hypercube,
in Caltech/JPL Concurrent Computation Project Annual Report 1983-1984
and Recent Documentation, August 30, 1984.

John Salmon, An Astrophysical N-bodvy Simulation on the Hypercube, in
Caltech/JPL Concurrert Computation Project Annual Report 1983-1984
and Recent Documentation, August 30, 1984,

D. Meler, MM&MMMM&MMM

in Caltech/JPL Concurrent Comput.atlon pl'o_|ect: Annual Report 1983
1984 and Recent Documentation, August 30, 1984

Robert W. Clayton, Finj 'ﬂ' f t Wav

in Caltech/JPL Coacurrent Compu—
tation Pro_lect. Annual Report 1983 1984 and Recent Documentation, August
30, 1984.

Paul Hipes and Aron Kuppermann, Sim.lation of Atom-Diatom
Collisions on_Paralle] Computers, in Caltech/JPL Concurrent Computation
Project Annual Report 1983-1984 and Recent Documentation, August 30,
1984.

Jung P. Hong, Robert D. Tomlinson and Nisheeth Patel, An Example

of How to Use the Hypercube Simulator with a Fortran Program, in
Formal Report LA-UR-1405, Los Alamos National Lakoratory, April 18, 1984.

James E. Smith, decoupled access/execute computer architectures, ACM

Transactions on Computer Systems, Vol. 2, No. 4, November 1984.

