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b?k The k Alamos National Laboratory and the Univemity of New
Mexico are working o.~ EJC, a hypercube project for large problems. A hypercube of
1024 nodes is being d-igned; implementation of a machine of at least 16 ncdes is
undemay. The nodes of the machine are complete computer systems, including
mm9 storage and a large main memory.

The computational abilities of each nale are enhanced by using a detached
Instruction fetch-execute+. ore organization. This allows the execution rate ta
achieve a consistently high level, approaching Q!)%of optimum, Trace-offs in the
implementation methodu indicate the speeds aveilable with acceptable hdware
inyedments.

A simulatir he~ ken writ&en which allows execution of high !evel programs on
a hypercube organi~ation. The oimulator hm shown that progra~ns prepnred for
execution on a single IItream machine can be easily modified to ure the resources of
a Pardld machine, and that the results are identical to previoue executions.

~W A hypercube[]] of computem was diucussed in the mid 1970’s,
and the Ruauians[2] built a 32-rmde hypercube in the Iatc 1970’9. In wldition to
theec instanceu, there are other references to hypercubes[3,4] in the Iitcraturc,
Researched at Caltech built a 64-node hypercube in the early 19u0’s. Thc;r cfrorta,
along with othem, have demonstrated that many problems ill phy -
sics[5)6t7,8)9110tllj12)13,14) 15j16t17jJ81’9] can be implcmcntcd efficiently on a
hypercube,

t 11.S, Arllly IInlllslh Itamnrrh Imlx,mt{lry

Thb work b ●upportod by the U.S. Army Ihllhtk Ibaaarch lalxwmio~ under Project ordars 1!1{1.
1’064-86, IIRL PO 76-86 and JYI.L PO 18 86, nnd by 1$. ().S, Army Iboouch Inatltut~ for tho
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The hypercube is a structure in which there k a node at each vertex of a cube
in n-th order space. When referring to a computer organization, each node in this
hypempace contains a computational element. In the HC project at Lou Alamoa
National Laboratory and the University of New Mexico, we are using this organiza-
tion to provide sufficient computing resources to address some coniplnx problems.
One approach is to implement the parallelism by utilizing a simple CPU as the
computational element. Instead or using nodee with minimal computing resources,
we have elected to implement the architecture using nodee with sufficient comput-
ing resources to address interesting problems. Thus, each node is itself a complete
computer system, with a disk and an operating system.

This ememble of computem is then connected to form a hypercube in R space
by connecting each ci the N = 2R computem to its R logica! nearest neighbors,
Communication is accomplished by asynchronous writes and eynchronoua reads.
That is, a nude generates a meeaqy whenever it needs to send information to
another node, and then continues with its computation. However, when informa-
tion is needed by a node to continue ita work, then the node waits until that data is
available before proceeding. This read mechanism is the cnly method available for
bringing the nodee in step with each other.

IJ=dware RWKAAQL
,.

One of the attractive features of an ensemble archi-
tecture such as the hypercube is that a machine can be sized to fit problems of a
particular nature, At Los Ahrnos National Laboratory we have been looking at a
clsas of problems for the Balistics Research Laboratory of the Army and others
which requires a large amount of computing resources, and which maps well onto
the structure of the hypercube, An order 10 hypcrcube (1024 nodes) is being
designed to address these problems. ‘l’his machine will have sufTicicnt cornputa-
tiomd capability to address real problems of a size which would not fit well on other
architectures. An order 4 macl:; ne (16 nodes.) will be bliilt to provide a test vchic]c
fof experimenting with the concepts involved; a full machine will bc implwncntcd
only when the preliminary portions show positive resultn,

Rather than approach the problem of implementing parallelism by uming nodes
with minimal computing resources, we have elected to im;dcment the architccturw
using nodes with sufficient computing resources to adcir:~ interesting problems,
Thus, each node is itself a complete computer system, capable of running (JNiX;@
the actua! system software will start with UNI?( and be cut down to mnmvc
unneeded overhead, All of the nodes in the machine will be idonticd, with the
exception of a number which will uniaucly idcnt.ify the m~-,hine within the ntruc
turc and also identify itn nearest ncighlxxs, connected to it hy direct links. Not
only are aJl nodes idcntjcal, but there in no ‘host” machine; mwh node has the cnpa

bility to ~x,rforrnthe work done by a hod,

...—.
● [I NIX h n t“>,,li Olll,tIk I)f A’l’&’ll



a disk controller, an Ethernet port, links b other nmh~, and a prt inti the
memory of the node. Each node will have attached to it a large disk, with a capa-
city of greater than WI million bytes, capable of trusfer taka of 2.4 million
byka/sec. This disk can be ueecl to store data and red tn as neeckl, ao well aa
whatever system programE are necessary. The Ethernet accem in intended for
development and engineering acc~, and not for w aa a general resource when the
machine is operating aa a hypercube; however, it can be used to tiansfer data to
and from the nod= and disks when preparing for a computation or examining
ruulti, The links are pamllel ports which can transfer data between nodes at ratea
in exe- of 5 million bytes/see; however, the aggregate datn rate of all of the links
at a nwle is limited by the bandwidth of the bus in the 1/0 wction. Currently this
limit is 10 million bytes/see, but the limit could be increti if studies indicak that
a higher inter-node communication rak is needed.

The computational section haa been designed to utilize currently available
te:hnobgy to speed up overall data rata. A conceptual blcuk diagram of the sec-
tion is shown in Figure 1.
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This organization b similar to the technique proposed by Smith[’20]. The Quad
Generator is responsible for dir=ting the sequence and action cf the computations.
Each computation is identifid by an operation to he perfornd, the operands on
which to perform th-wwork, and the location of the destination. This infommtion is
given ‘to the Input Queue which is mprmsible for obtaining the operandn ndd in
the comput.atio~, either from the Memory Module or from reaulta of ● previous
operation which ia available in the Output Queue. The Memory Module contains
between 16 and 64 million bytes of memory, sufficient to hold the data needed for
hwge and interesting problems. This memory ia organkd in multiple banks to per-
mit efficient accesu for information transfem. AS the operands become available
they are supplied, along with the operation to be performed, to the Computational
Module The Computational Module contains two AMD29325 floating point com-
putational units which are connected to permit calculation of ~Xi Yi at the rate
of one term per cycle. Anauming a clock rate of ten megahertz, this is a computa-
tional rate of twenty megaflo~. When reaulta are available, they are eupplied,
along with the destination information, to the Output Queue module, which is
responsible for directing the resulti h the proper l~ation. All of these modules
work together under the direction of a 32032 house keeping computer, which is
reqxmsible for initiating the work which needs ta be done.

The effect of dc~aching the instruction fetch and decode fro.n operand access
and instruction execution is to speed up the effective computational rate of the sys-
tem, The Quad Generator performs much of the work which would normally be
done by the instruction execution unit in a conventional architecture. This Ieavcs
the Computational Madule free to perform the computations needed to solve the
problem. The Quad Generator can cause the operations to be performed in an
order similar to a vector type of operation, or the operations could be Perforr,led in
a sequence more clceely matched to the underlying problem being mlved.

The size and capability of the vn.rious portions of the system have been under
study, and matching functional capJbllity with buildable technology remains a ?,opic
of interest. If the v~ious compcmenta me kept small they can be built with few
problems; however, the performance nmy not approach the desired level. On the
other ham!, the implementation problemz associated with n more complex unit may
render the whole machine unbuildable or unreliable. Studim of the trade-ofls
involved are underway, and oome of the results are shown in Figures 2 and 3. Fig-
ure 2 gives an indication of the effect that the number of lmnhs in the memory hruq
on system performance. Th’. graph shows the percentage of full lGad for the f,~~t
floating point unit for difierent memory npeede. The lines ,vhich make up anrh
band represent ditTerent probabilities that a calculation wiil U.M an opcron(l
identified in a calculation already in the pipe. Ihch band represents a division of’
the memory into a different number of banks. M expected, incrmaing the bar,killp,
factor dom indeed improve the oystem throughput, llowcv?r, the graph also give!

sorllc insight into the tradcoffn between fmstcr and more cxpcnsivc Incrnory, nflfi
slower mcllwry with more banks. Figure 3 is a look nt Anotlwr fa.cct: the cfrcct of
ttw length of the input queue on the rate of cdculati(~u. Increasing the lcl~gth of
f,ll(.illljut (lIICII(I(Iorw il)dcrd itl)provc pcrforlllnl]cr, l~llt ltlr gr{il)h in(licnlrw ttlr ty lw
of j~’rforlllnllcv ilt)l)rov(’lll(’lltpl CHFIIN rx~wctml I)y (Ioul)lillg ttlc I)nrxlwnrr if)vvsl,
IIwllt. Morv AtI(l c,lwwr I(x)ks at thr vmrious drsigll ~)rtrmtilvtt~rs will Iw IIrv(l~vl1)(’f~)r(’



the nwchine can be further defined.
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Alv~rc~be $lm~lator.
.

In order to explore the space of communication and
computation problems associated with putting a problem on the hypercubei a simu-
lator capable of large, and hence realistic, program ex=ution haa bean deve!oped.
This simulatir has been used to show that certain important chwea of numerical
computations match claely the hypercube organi~ation. Hydrod yntics and
Monte Carlo programs have been exeeutd wing the simulation system.

The simulator executes in the 4.2 BSD UNIX environment, where each node of
the hypereube is a proews, Within the 4.2 BSD UNIX environment, this guaran-
tees that there will not be accidentally s!med memory, resulting in an exact model
of how the hypercu”x will be physically arranged. The user process can crea~e,
read, and write files. In face, ordinary programs can be executed on a node.
Within a node, all UNIX programming tals and conventions are available, includ-
ing forking. There raecl not be any new language nor operating system for the
node, Very large prograrn9 may be written for each node.

Inter-ncde communications are simulatd by sockets. From the uww’s point
of view, a node does a read or wrih to another node. ‘ihe use of the meket formal-
ism means that programs written for the simulator will execute on the hypercube
hardware.

The simulator has executed progr- written in Fortran and C. Once again it
is stressed that no special programming language is required. One example of a
program that was executed on the simulator is about one thousand lines of ordinary
Fortran composed of eight subroutines. It is computationally inten9e, t.llerc being a
sequence of over one hundred fifty thouwmd floating point operations in one sub–
routine.

c A Fortran program, writterl lxfore the author of the ~ode was aware of the

hyrwrcuk simulator, was put or the hypercube simulator with small modifications.
The output from a simulation on lti nocies waa exactly i he sarnc M the original rmt-
put from the !ineax program, bit for bit, It rhow ed that the number of charqys
that had to be nm.de was Jrrdl. It also showed that the intwr–node com,m~nicatlons
and the synchronizations required for this code.

~ We are in the prcxesa of designing a Iargc scale hypcrcube of com -
puters, the opwatiol~ of which will be an eflective LOOIin the ~tudy of large scale
problems. The nodes of this hypercllk will be complete computer ~ystcmM, giving

the. overall ]nachine unormoue capal)ilitics for otorage. and computational complex-
ity. Our studies have Hhown that the disk at every node will k effectively uti]imd,
and a sy~tem ~esourcu which will enhance the capabilities of the machine,



We have written a simulator which zdlows execution of reaJ, non-trivial pro-
gram to study the decomposition of problems onto the hypercube dructure. This
simulator haa shown that programa with inherent parallelism can k prepared for
the hypercube organization with few changea aud compatible rem.dta.
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