

Evaluation of Nuclear-Facility Decommissioning Projects

NUREG/CR--3336
DE83 902762

Summary Report
Ames Laboratory Research Reactor

Manuscript Completed: May 1983
Date Published: July 1983

Prepared by
B. W. Link, R. L. Miller

UNC Nuclear Industries
Decommissioning Programs Department
Richland, WA 99352

Prepared for
Division of Engineering Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, D.C. 20555
NRC FIN B7568

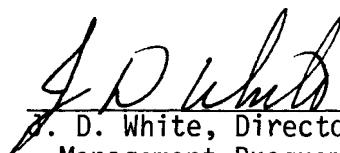
NOTICE
PORTIONS OF THIS REPORT ARE ILLEGIBLE.
It has been reproduced from the best
available copy to permit the broadest
possible availability.

MASTER

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

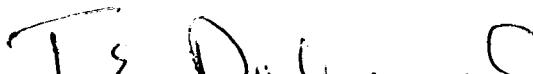

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

EVALUATION OF NUCLEAR FACILITY DECOMMISSIONING PROJECTS

SUMMARY REPORT

AMES LABORATORY RESEARCH REACTOR

Reviewed By DOE-RL:

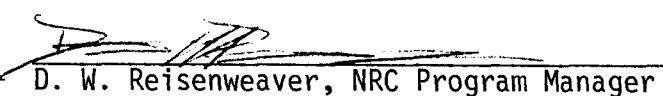


J. D. White, Director, Surplus Facilities Management Program Office

6/19/83

Date

Approved By UNC:



T. E. Dabrowski, Director, Decommissioning Programs Department

6/18/83

Date

Approved By NRC:

D. W. Reisenweaver, NRC Program Manager

6/16/83

Date

ABSTRACT

This document summarizes the available information concerning the decommissioning of the Ames Laboratory Research Reactor (ALRR), a five-megawatt heavy water moderated and cooled research reactor. The data were placed in a computerized information retrieval/manipulation system which permits its future utilization for purposes of comparative analysis. This information is presented both in detail in its computer output form and also as a manually assembled summarization which highlights the more important aspects of the decommissioning program. Some comparative information with reference to generic decommissioning data extracted from NUREG/CR 1756, "Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors," is included.

NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability of responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights.

Availability of Reference Materials Cited in NRC Publications

Most documents cited in NRC publications will be available from one of the following sources:

1. The NRC Public Document Room, 1717 H Street, N.W.
Washington, DC 20555
2. The NRC/GPO Sales Program, U.S. Nuclear Regulatory Commission,
Washington, DC 20555
3. The National Technical Information Service, Springfield, VA 22161

Although the listing that follows represents the majority of documents cited in NRC publications, it is not intended to be exhaustive.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room include NRC correspondence and internal NRC memoranda; NRC Office of Inspection and Enforcement bulletins, circulars, information notices, inspection and investigation notices; Licensee Event Reports; vendor reports and correspondence; Commission papers; and applicant and licensee documents and correspondence.

The following documents in the NUREG series are available for purchase from the NRC/GPO Sales Program: formal NRC staff and contractor reports, NRC-sponsored conference proceedings, and NRC booklets and brochures. Also available are Regulatory Guides, NRC regulations in the *Code of Federal Regulations*, and *Nuclear Regulatory Commission Issuances*.

Documents available from the National Technical Information Service include NUREG series reports and technical reports prepared by other federal agencies and reports prepared by the Atomic Energy Commission, forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books, journal and periodical articles, and transactions. *Federal Register* notices, federal and state legislation, and congressional reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings are available for purchase from the organization sponsoring the publication cited.

Single copies of NRC draft reports are available free upon written request to the Division of Technical Information and Document Control, U.S. Nuclear Regulatory Commission, Washington, DC 20555.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at the NRC Library, 7920 Norfolk Avenue, Bethesda, Maryland, and are available there for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from the American National Standards Institute, 1430 Broadway, New York, NY 10018.

CONTENTS

	<u>Page</u>
1.0 INTRODUCTION	1
1.1 Acronyms & Definitions	2
2.0 FACILITY SUMMARY REPORT	4
2.1 Facility Description	4
2.2 Summary of Costs and Radioactive Waste	4
2.3 Comparisons of Cost Items	5
2.3.1 Dollar Costs	5
2.3.2 Man-Rem Costs	5
3.0 DESCRIPTION OF COMPUTER REPORTS	6
3.1 General Information	6
3.2 Decommissioning Code Table/Index	6
3.3 Significant Event Report	7
3.4 Radionuclide Inventory	7
3.5 Project Cost/Exposure Report	7
3.6 Dose Rate and Contamination Report	7
3.7 Project Labor Report	7
3.8 ALARA Report	7
3.9 Shipment Report	8
3.10 Disposal Costs	8
3.11 Surveillance Report	8
3.12 Public Dose Rate	8
4.0 COST ADJUSTMENTS	9
5.0 FINAL SITE CONDITION	11
5.1 Criteria	11
5.2 Final Site Condition	12

CONTENTS - continued

	<u>Page</u>
5.2.1 Site, Other Structures and Reactor Building Other than Reactor Room	12
5.2.2 Reactor Room and Basement	13
6.0 CONCLUSIONS AND LESSONS LEARNED	15
7.0 COMPUTER REPORTS	16
General Information	17
Decommissioning Code Table Index	22
Significant Event	24
Radionuclide Inventory	25
Project Cost/Exposure	26
Dose Rate and Contamination	28
Project Labor	30
ALARA	32
Shipment	33
Disposal Costs	37
Surveillance	39
Public Dose Rate	40

1.0 INTRODUCTION

This document summarizes the available information concerning the decommissioning of the Ames Laboratory Research Reactor (ALRR) in the DECON mode, as defined in Section 1.1. Although the removal and disposal of the reactor and all reactor-associated equipment and material was completed, the existence of very low levels of residual radioactivity precluded the facility's release for "unrestricted use". Further information on final site conditions is presented in Section 5.0.

The decision to shut down and decommission the ALRR, made jointly by the Department of Energy and the Ames Laboratory, was brought about by continuing reductions in funding for basic nuclear research. Because the space utilized by the reactor and its associated equipment was considered desirable for future Laboratory activities, the DECON decommissioning mode was chosen in order to clear the space in question for "unrestricted use".

The prompt institution of the decommissioning program was determined to be necessary for several reasons; among them, a knowledgeable staff of reactor employees was available and could be maintained, and the inflationary escalation of costs could conceivably be minimized.

The services of a nuclear consultant firm were utilized for preparation of the necessary documentation, and in the pre-decommissioning cost estimates. The original sum budgeted for the decommissioning program was 4.5 million dollars. The decommissioning schedule called for completion of the physical work in 3 years and of post-decommissioning documentation in an additional six months. The actual work was completed nine months later than the original schedule and the large majority of required documentation completed at approximately the same time.

The decommissioning data were assembled in a form that permitted its input into a computerized data-handling system. The computer program used results in a flexible data accumulation, manipulation and retrieval system which can provide such benefits as:

- Greater accuracy of cost, labor and radiation exposure estimates
- Increased perception concerning ALARA responsiveness
- Guidance in time schedule projections
- Predictability of radiation and contamination levels

- Identification of special areas of difficulty in the decommissioning process

As the accumulation of data from actual decommissioning projects mounts, the value of the program as a decommissioning aid is enhanced. Some comparative information with reference to reference research and test reactors is included in Section 2.0.

1.1 Acronyms - Abbreviations - Definitions

Definitions of Decommissioning Alternatives

DECON - to immediately remove all radioactive material to permit unrestricted release of the property.

SAFSTOR - to fix and maintain property so that risk to safety is acceptable for period of storage followed by decontamination and/or decay to an unrestricted level.

ENTOMB - to encase and maintain property in a strong and structurally Tong-Lived material (e.g., concrete) to assure retention until radioactivity decays to an unrestricted level.

Acronyms - Abbreviations

A/C	Activated or Contaminated
AEC	Atomic Energy Commission
ALARA	As Low As Reasonably Achievable
Alum	Aluminum Metal
ANL	Argonne National Laboratory
BARN	Barnwell, S. Carolina (waste disposal site)
BIO	Biological
CH	DOE Chicago Operations
Ci	Curie
CS	Carbon Steel
Cu Ft	Cubic Feet
DDS	Decommissioning Data System
DNA	Data Not Available
DOE	Department of Energy
DOS RED FCT	Dose Reduction Factor
DPM	Disintegrations per Minute
H VAC	Heating, Ventilation, Air Conditioning
HX	Heat Exchanger
LSA	Low Specific Activity
MAPPER	Maintain, <u>P</u> repare, and <u>P</u> roduce <u>E</u> xecutive <u>R</u> eports
MW	Megawatt
MWd	Megawatt Days

MWdt	Megawatt Days Thermal
MWt	Megawatt Thermal
N/A	Not Applicable
NRC	U.S. Nuclear Regulatory Commission
OSU	Oregon State University
RICH	Richland U.S. Ecology Disposal Site
RHO	Hanford DOE Disposal Site (Operated by Rockwell Hanford)
SPEC NO	Specification Number
SS	Stainless Steel
SYS/COMP	System Component
TRIP LEN	Trip Length
TYP	Type
UNC	UNC Nuclear Industries, Operations Division

2.0 FACILITY SUMMARY REPORT

This section contains a manually summarized duplication of the computer-output information presented in Section 7.0, and comparative information with reference to generic decommissioning data extracted from NUREG/CR 1756, "Technology, Safety and Costs of Decommissioning Nuclear Research and Test Reactors."

The purpose for this section is two-fold: (1) to provide the reader with a condensed overview of the decommissioning of a 5Mwt D₂O research reactor, similar to several U.S reactors which will, of course, eventually be decommissioned, and (2) to present a brief comparison of major facets of the above decommissioning project with those of the generic decommissioning of a reference 1 Mwt research reactor (RRR) and of a reference 60 Mwt Test Reactor (RTA).

Cost information for RRR and RTA is assumed to be in 1981 dollars, while comparative ALRR information is assumed to be in approximate 1980 dollars. As ALRR cost items became due, they were paid on approximately the completion dates of the specific cost items being charged.

2.1 Facility Description

Name:	ALRR	RRR	RTA
Ames Laboratory Research Reactor	Reference Research Reactor	Reference Test Reactor	
Location: Ames, IA	Corvallis, OR	Sandusky, OH	
Owner: Department of Energy	Oregon St. University	NASA	
Operator: Ames Laboratory	OSU	NASA	
Reactor Type: Research (D ₂ O)	TRIGA (Pool-Type)	Test, (H ₂ O)	
Operating Lifetime: 12 yrs	40 yr. (5% operating)	40 yr.	
Decommissioning Mode: DECON	DECON	DECON	
Power Rating: 5 Mwt	1 Mwt (Steady State)	60 Mwt	
Lifetime Power: 15200 MWdt	740 MWdt	98000 MWdt	
Reason for Decommissioning:	Reduced funding	End-of-Life	

2.2 Summary of Costs and Radioactive Waste

	<u>ALRR</u>	<u>RRR</u>	<u>RTA</u>
Total Decommissioning Cost, Dollars:	4,335,000	850,000	15,600,000
Personnel Exposure, Manrem:	69.4	18.3	322

	<u>ALRR</u>	<u>RRR</u>	<u>RTR</u>
Radwaste Volume, Cu. Ft.:	40,830	5650	174,200
Radionuclide Inventory, Radwaste, Curies:	6832	1500	369,000

2.3 Comparisons of Cost Items

2.3.1 Dollar Costs

The following listed items are compared to total dollar costs for the decommissioning project.

<u>Item (Unit)</u>	<u>ALRR</u>		<u>RRR</u>		<u>RTR</u>	
	<u>No. of Units</u>	<u>No. of \$ Per Unit</u>	<u>No. of Units</u>	<u>No. of \$ Per Unit</u>	<u>No. of Units</u>	<u>No. of \$ Per Unit</u>
Radionuclide Inventory (Ci.)	6832	634.43	1500	<u>566.67</u> 56.67 150.44	369000	42.28
Radwaste (Cu. Ft.)	40830	106.18	5650	<u>75.04</u> 75.04	174200	89.55
Lifetime Pwr. Output (MWdt)	15200	285.16	740	<u>1148.65</u> 114.86	98000	159.18
Spending Rate (Mon)	45	96320	8.5	100000.	25	624000

2.3.2 Man-Rem Costs

The following listed items are compared to the total personnel exposure to radiation during the decommissioning program.

<u>Item (Unit)</u>	<u>ALRR</u>		<u>RRR</u>		<u>RTR</u>	
	<u>No. of Units</u>	<u>No. of Units Per Manrem</u>	<u>No. of Units</u>	<u>No. of Units Per Manrem</u>	<u>No. of Units</u>	<u>No. of Units per Manrem</u>
Radionuclide Inventory (Ci.)	6832	98.44	1500	81.97	369000	1145.96
Radwaste Volume (Cu. Ft.)	40830	588.33	5650	308.74	174200	540.99
Decommissioning Costs (\$)	4335000	62460	850000	46450	15600000	48450

3.0 DESCRIPTION OF COMPUTER REPORTS

The reports described below are the basic reports used in the DDS program. The descriptions, as presented, are intentionally idealized. It should be understood that all functional facets of the reports will not always be utilized, simply because the documentation of decommissioning information will vary from project to project. In addition to the basic reports, MAPPER provides the ability to produce supplementary reports by manipulating the data available in the basic reports.

3.1 General Information

This report is a free format input report designed to accommodate descriptive data of any kind. Entries may be given any title and related to any facility system by a system component number. Data are entered in any format on any subject. The report should be used to record information that does not fit into any of the report types organized by column. This includes facility location, description, owners, operators, builders. Summary data may also be included where it is not readily derivable from other reports or for convenient reference.

3.2 Decommissioning Code Table/Index

This report contains a list of unit items, including facility buildings, systems and system components, and budgetary items, with a corresponding identification number for each unit. The identification system is used throughout DDS to relate data to specifically identified units.

This basic report type may be expanded to include tables or indices of other kinds related to facility decommissioning. Candidate tables are labor category wage rates, shipping company rates, shipping company name codes, disposal site name codes and rates, or archived file tape names.

One of the basic values of this report is the fact that, by utilizing an index which can ultimately be made common to all reactor facilities included in the program, the report can become the intercomparison base for the DDS. The full utilization of this base will not be possible until a certain minimum number of facilities as yet unspecified, are included in the DDS.

3.3 Significant Event Report

This report is used to record the facility's operating history, which in some cases could impact facility decommissioning. It contains dates, system/component numbers, and event descriptions. Noteworthy events such as construction completion, startup, shutdowns, significant incidents, and accidents are recorded in this report.

3.4 Radionuclide Inventory

An inventory of radionuclides present in each facility system will be made prior to the start of decommissioning. The amount of each radionuclide or its concentration, the measurement date, and a description of each system's material composition will be recorded. It will be noted whether a radionuclide present in a system is the result of neutron activation or contamination.

3.5 Project Cost/Exposure Report

Costs, schedules, man-hours, man-rem, both estimated and actual, are listed for each activity specification number. These costs may be broken out on lines having a subactivity specification number. This report is the main repository of cost and exposure information for a decommissioning project.

3.6 Dose Rate and Contamination Report

Dose rates at locations throughout each facility are recorded prior to decommissioning. Locations relative to a reference map, elevation, system/component number, and type of measurement are recorded for each measurement. Both upper and lower limits of dose rates or contamination levels (in disintegrations per minute) are listed.

3.7 Project Labor Report

Decommissioning labor costs, exposure, and man-weeks for each activity specification are recorded at a to-be-determined frequency. This supplements the project cost/exposure report by providing data on how costs and exposures accumulate over the course of a decommissioning project.

3.8 ALARA Report

The ALARA report contains records of ALARA efforts by activity specification number. The affected facility system, date, cost items, exposure information, and a description of the ALARA effort are listed. This report can be used to calculate by activity

specification number or for all activities the total estimated man-rem saved as well as total cost incurred through the implementation of the ALARA effort.

3.9 Shipment Report

Volumes, weights, and other physical data are recorded by waste type for material produced by each activity specification. These data are listed for each shipment of material from the decommissioning site. Trip lengths and vehicle dose rates are recorded in order to calculate public exposure.

3.10 Disposal Costs

The costs associated with each waste disposal shipment are recorded in the Disposal Costs Report. Costs are divided into transportation, burial, and container categories. Costs for each container type on the shipment are also listed.

3.11 Surveillance Report

The surveillance report is used to record annual costs and exposures associated with long term surveillance of a decommissioned facility. Under normal conditions a surveillance report would not be required for a facility decommissioned under Mode DECON.

3.12 Public Dose Report

The exposure of the public to radiation which results from the decommissioning of nuclear facilities is one criterion which is to be considered during the pre-decommissioning evaluation phase. This report presents an estimate of such exposure information, based on extrapolations of measurement data and numerous assumptions, including both routine and accident conditions.

4.0 COST ADJUSTMENTS

All cost information included in this document is presented in actual dollars as the charges were paid through the decommissioning program. For adjusting costs listed in the computer reports to year of interest, use the inflation rate table below.

Normalized Cost Escalation Table

<u>Annual Inflation Rate *</u>	<u>Year</u>	<u>1970</u>	<u>1971</u>	<u>1972</u>	<u>1973</u>	<u>1974</u>	<u>1975</u>	<u>1976</u>	<u>1977</u>	<u>1978</u>	<u>1979</u>	<u>1980</u>	<u>1981</u>	<u>1982</u>
0.029	1966													
0.029	1967													
0.042	1968													
0.054	1969													
0.059	1970	1.000												
0.043	1971	1.043	1.000											
0.033	1972	1.076	1.033	1.000										
0.062	1973	1.138	1.095	1.062	1.000									
0.110	1974	1.248	1.295	1.172	1.110	1.000								
0.091	1975	1.339	1.296	1.263	1.201	1.091	1.000							
0.058	1976	1.397	1.354	1.321	1.259	1.149	1.058	1.000						
0.065	1977	1.462	1.419	1.386	1.324	1.214	1.123	1.065	1.000					
0.077	1978	1.539	1.496	1.463	1.401	1.291	1.200	1.142	1.077	1.000				
0.113	1979	1.652	1.609	1.576	1.514	1.404	1.313	1.255	1.190	1.113	1.000			
0.135	1980	1.787	1.744	1.711	1.649	1.539	1.448	1.390	1.325	1.248	1.135	1.000		
0.089	1981	1.876	1.833	1.800	1.738	1.628	1.537	1.479	1.414	1.337	1.224	1.089	1.000	
0.060**	1982	1.936	1.893	1.860	1.798	1.688	1.597	1.539	1.474	1.397	1.284	1.149	1.060	1.000

Example: A cost paid in 1971 dollars would increase to a cost of 1.893 times the original, if paid in 1982 dollars.

*Source: Statistical abstract of the United States, 1981 Consumer Price Index.

**1982 data are interim estimated.

In planning for large decommissioning projects which cover long time spans or are scheduled to start at some time in the future, cost estimates should consider the "worth" of current money and then adjust cost estimates to reflect this consideration. This exercise, referred to as a "time value cost analysis", considers the year of expenditure, interim surveillance and maintenance costs, major non-routine maintenance costs, and inflation rates. "Worth" of current money is usually based upon an average yield on stable, non-speculative investments such as long and short-term treasury bills. A "time value cost analysis" results in a percentage value, referred to as the discount rate, which is used to discount the cost of a future project to the current "worth" of money. This discount rate includes consideration of financial uncertainties, such as project cost overruns, recovery costs for major accidents, etc.

Example - A discount rate of two percent yields the following table:

<u>Year</u>	<u>Discount Factor</u>	<u>Year</u>	<u>Discount Factor</u>
1	0.9804	6	0.8880
2	0.9612	7	0.8706
3	0.9423	8	0.8513
4	0.9238	9	0.8535
5	0.9057	10	0.8204

If project is estimated to cost \$10,000 during a time period six years from today, the amount of money presently required to be invested is (\$10,000) (0.8880) or \$8,800.

Detailed discussions and suggested assumptions may be found in the following references:

1. Methodology for Establishing Decommissioning Priorities
U.S. Department of Energy, Richland Operations Office,
RLO/SFM-82-7, June, 1982.
2. The Rate of Discount for Evaluating Public Projects
Mikesell, R. F., 1977

American Enterprise Institute for Public Policy Research,
Washington, D.C.
3. Navigating through the Interest Rate Morass: Some Basic
Principles Santoni, G. J., and C. C. Stone 1981
Federal Reserve Bank of St. Louis Review, March, 1981

5.0 FINAL SITE CONDITION

5.1 Criteria

The original goal for decommissioning the ALRR as stated in the Environmental Impact Assessment was to place the building and site in condition for unrestricted use by removing the reactor-related radioactivity. The radiochemistry laboratories in a laboratory wing, the laboratory part of a Warehouse/Laboratory Building, and the Waste Disposal Building were excluded from the goal of unrestricted use since it was considered that they would be in continued use involving radioactive materials. However, removal of reactor-related radioactivity from these areas was included in the decommissioning plan.

The exact values of residual levels of radioactivity acceptable for unrestricted use were not well-defined and appeared to undergo change during the course of decommissioning. Guidelines used were those of DOE Order 5480.1, Chapter XI, Table II (also in 10-CFR-20, Appendix B), and the unrestricted use levels of NRC Regulatory Guide 1.86. The former are maximum values averaged over a year for the concentrations of radioactive isotopes in water and air releasable to the general public. The relationship between allowable residual radioactivity in soil and concrete and these values is not at all clear. The criteria originally suggested were that concentrations of radioactivity in water, soil and concrete of 10% of the Table II value for water could be allowed to remain. This was to be defined on a weight basis, i.e., concentrations in uCi/g of the material in place of uCi/ml of water used in Table II.

In informal discussion with CH, it was indicated that levels in the range of 1-3% of the Table II value should be the goal rather than 10% in guiding the removal of soil in areas which contained low levels of contamination.

The discovery of widespread low-level diffusion of tritiated water into the concrete of the reactor room floors and walls made it obvious that the criterion of 1-3% of the Table II value could not be met for tritium in this part of the building. An ANL-based Radiological Survey Group* stated in their report, "Interim Overview/Certification Activities Report for the Ames Laboratory Research Reactor Facility, Ames, Iowa" of February 11, 1981 that, "It is also quite evident, from

*Authorized to perform in behalf of the Department of Energy in matters concerning radiological safety.

the airborne tritium levels encountered, that the release of this structure for unrestricted use is not possible at this time or in the near future." This conclusion was endorsed by CH and agreed to by the Ames Laboratory and has been used as the basis for decontamination of the reactor room. However, this decision does not imply that the room cannot be used. Another conclusion by the Survey Group was that it appears possible "to essentially allow uncontrolled access" to the room as long as Health Physics surveillance of airborne tritium is maintained.

Exemptions from strict adherence to the unrestricted criteria for removal of radioisotopes other than tritium were granted for several pipe lines buried in concrete. These aspects of the problem are discussed in the next section.

5.2 Final Site Condition

The reactor and its associated systems, components and wastes were removed, and major decontamination was completed. Only the tasks of final detailed survey remain to be completed, and will be documented in the form of interim and final addenda to the final decommissioning report referenced in the General Information Report of Section 7.0.

5.2.1 Site, Other Structures and Reactor Building Outside the Reactor Room

In August and September 1981, soil samples were taken at two depths from 65 sites around the reactor building using a grid based on quadrant/radial segment areas centered on the reactor, including area inside and outside of the reactor exclusion fence. Samples were also taken from five control sites. To this date all control site samples and seven of the reactor site samples have been analyzed by gamma spectroscopy. All samples contain ^{137}Cs , but with no significant difference between reactor site and control samples. Additional samples have been prepared for gamma analysis and sufficient samples will be analyzed to provide adequate documentation.

Traces of radioactivity dating to pre-reactor days remain in a controlled waste holding area on the site which has been used by the Laboratory since 1950. Most of the radioactive material stored in this area was removed, and much of it included with decommissioning waste shipments. Survey results showed small areas of slightly contaminated soil, with uranium and thorium the major components.

The laboratory half of the Warehouse/Laboratory Building was not cleared of radioactivity because work with radioactive materials is expected to continue in these laboratories. However, no radioactivity

produced from or related to the ALRR remains. At present some neutron diffraction equipment which was slightly activated at the face of the reactor is stored in the warehouse half of this building. This equipment is considered by the experimenter to be too valuable to consign to waste and continues to be of potential usefulness in the continuing program in neutron scattering conducted by Ames Laboratory scientists at the Oak Ridge Reactor. This equipment is catalogued and will be kept on the record as radioactive as long as it shows radiation levels above background.

The Radioactive Waste Disposal Building will be maintained for handling, packaging and temporarily storing radioactive waste. Since shipments of waste in less than truck load quantities presents problems, storage may last for more than a year.

The Laboratory Wing of the Reactor Building includes several laboratories in which radioactive material from the ALRR was handled and used. It was earlier considered that these laboratories would continue to be utilized for radiochemical research, but programs which do not involve radioactivity were installed after decommissioning was completed, and the laboratories were decontaminated. The hood exhausts in the laboratories included horizontal runs of square ducts made of an asbestos composition. Since the ducts were slightly radioactive, they were removed, crushed, boxed and included in last waste shipments. The vertical runs of the hood exhausts to the roof, the exhaust fans and the fume hoods were surveyed for removable and fixed contamination and were decontaminated where necessary. One hood was decontaminated, removed and stored for future use within the *Laboratory*. The laboratories were decontaminated and surveyed. With the exception of tritium contamination the final survey showed the facility could be released for unrestricted use using the guidelines from NRC Regulatory Guide 1.86, "Termination of Operating Licenses for Nuclear Reactors."

The Staging Area section of the Reactor Building were cleared and surveyed. The accessible floors and walls were determined to be free of removable contamination.

5.2.2. Reactor Room and Basement

As stated above, it is not possible to release the Reactor Room for unrestricted use at this time because of the tritium present as tritiated water of hydration in the concrete. Since this action permits the use of the room as laboratory space, the removal of other radioisotopes which might further restrict the use of the room remained the objective with the unrestricted use criteria as the basis.

This objective has been achieved in all but a few inaccessible locations in buried drain lines. Exemption from strict application of the removal criteria for radioisotopes other than tritium was made on the basis of inaccessibility and the very small amounts of radioactivity. The walls and floor of the reactor room and basement were washed down and surveyed for both removable and fixed contamination. Removable activity met the unrestricted use criteria in all areas. In small areas scattered over the reactor room floor, the residual fixed activity level was above these criteria. A survey by the Radiological Survey Group showed a number of these areas, and others were found in a thorough survey by the Laboratory Health Physics Group. Since further scrubbing did not remove all of the radioactivity, various abrasive and chipping devices were used to remove a surface layer of concrete from 1/8 to 1/2 inch deep in these areas. The only reactor-related radioactivities identified in samples of the surface concrete by gamma spectroscopy were ^{137}Cs and ^{60}Co . Removal of a single thin layer of concrete usually reduced the contamination to below unrestricted use criteria. If the activity still exceeded these levels, the process was repeated. The ceiling, walls and floor areas of the main floor of the reactor room were brought to levels below the unrestricted use level of NRC Regulatory Guide 1.86 for all radioisotopes other than tritium.

On completion of this survey and decontamination effort, and of similar work in the reactor basement, staging area and other possibly contaminated areas, documentation will be presented in addenda to the final decommissioning report.

6.0 CONCLUSIONS AND LESSONS LEARNED*

Decommissioning of the Ames Laboratory Research Reactor was accomplished within the original budget authorization of \$4.5M. Because of escalation, the cost of decommissioning cannot be directly compared to the construction costs.

A delay of approximately seven months occurred in one task as a result of contractor's problems and an unforeseen error in as-built drawings. Change in DOE policy on waste disposal caused a delay of about one month. With these exceptions, the original schedule was followed fairly closely. Completion was six to nine months later than scheduled, but preparation of the final report was not delayed as much.

The decision to proceed with decommissioning immediately after shutdown seems to have been correct. Although this action resulted in funding on an annual rather than a continuing basis, the original staff was intact to begin the work, and it otherwise would have been necessary to bring in more contract workers with much less knowledge of the system to be removed, in all likelihood at a greater cost. Also, the rate of inflation during the years of decommissioning has been usually high. Although this was not predictable, if the work had been postponed, the total cost would have been considerably greater.

The use of annually appropriated rather than line item funds which could be carried into subsequent fiscal years did create problems, particularly because of the delay in completion of one contract and the mandatory postponement of following work. The time available between the decision to shut down the reactor and the scheduled start of decommissioning was not sufficient to obtain funding as a line item.

The matter of the type of subcontracts to be used was discussed in planning the decommissioning. As is customary in the DOE, contracts were awarded on a fixed-bid basis, but some consideration was given to the use of cost-plus-fixed-fee contracts. In this project, the cost for subcontract work was unquestionably less with the fixed bid procedure. In two of the contracts, the low bid may have led to a substantial loss by the contractor. Soliciting bidders on a cost-plus

*The information presented in this section was taken from the final ALRR decommissioning report referenced on page 17 under "References".

basis would have cost more, but could have provided personnel with more experience leading to more prompt completion of the work. Whether greater prior experience is required and whether completion on schedule is worth the extra costs are debatable questions which depend on other circumstances.

It was suggested by subcontractors that they would rather see the complete work as a single package. It might be advantageous to include all of those tasks for which contractors were hired, e.g., core tank and thermal shield removal and pedestal demolition, in a single package to enhance continuity. However, time would still be required to prepare the bid specifications and it is doubtful if any savings in time or money would be realized. Several vendors would have welcomed the opportunity to provide managerial and/or engineering services for the complete task. Such contracts were not considered and it seems doubtful if the work would have proceeded any more smoothly or at a comparable cost under such an arrangement.

In future decommissioning projects it is suggested that the bid specifications be expanded to include more information on radiation levels and radioactivity content in order to assist the vendors in planning and preparing cost proposals. A major problem in providing this information is the potential exposure of personnel in obtaining it. The cost and time for the preparation of specifications would also be increased.

7.0 COMPUTER REPORTS

The following section comprises the basic computerized data which was taken from available documentation, stored reactor records and on-site interviews with Ames Laboratory employees associated with the decommissioning program.

WP#1195F

PAGE NO. 2

ALRR-DECON UNC DECOMMISSIONING DATA SYSTEM GENERAL INFORMATION REPORT 72C1104

* ,SYS/COMP

* SYSTEM/COMPONENT . NUMBER . ENTRY TITLE

----------*-----*-----*-----*-----*-----*-----*-----*-----*-----*

• DECOMMISSIONING PLANS
• 'PLAN FOR DISMANTLING THE AMES LABORATORY
RESEARCH REACTOR' REACTOR DIVISION, AMES

LABORATORY
PART A: 'PLACING THE REACTOR IN STAND-BY'

PART B: 'DISPOSAL OF REMOVABLE PARTS', STATUS', NOV '77

AUG '78
PART C: 'REMOVING REACTOR INTERNAL STRUCTURE'
SECTION 1: EX78 PORTION - NOV '78

SECTION 1: FY/9 PORTION, NOV '78
SECTION 2: FY80 PORTION, AUG '79
PART D: 'REMOVAL OF REMAINING RADACTIVITY'

PART D: 'REMOVAL OF REMAINING RADIODUCTIVITY'
MARCH '81

OPERATING LIMITS AND POLICY IN ABOVE DECOMMISSIONING PLANS, ALSO

'ADJUSTMENT OF ALRR OPERATING POLICY', MAR'81

'OPERATING POLICY', MAY '8

BID SPECIFICATIONS, PREPARED BY CONSULTANT FIRM, REVISED BY ALRR STAFF,
REVISED AND APPROVED BY CHICAGO OPERATIONS OFFICE, DOE

'REMOVAL AND DISPOSAL OF THE ALRR TOP PLUG'
DEC'78

'REMOVAL AND DISPOSAL OF THE ALRR D20 TANK
FEB '79

'REMOVAL AND DISPOSAL OF THE ALRR THERMAL SHIELD', APRIL '79
'REMOVAL AND DISPOSAL OF THE ALRR THERMAL SHIELD TANK AND CONCRETE REACTOR PEDESTAL',
AUG '79

• QUARTERLY PROGRESS REPORTS ISSUED FROM JAN '78 THROUGH SEPT '81

• PERSONNEL RADIATION EXPOSURE

- NUMBER OF PERSONNEL MONITORED: 92
- AVERAGE DOSE IN MANREM: 0.754

TOTAL MANREM USED: 69.4

DOSE TO PUBLIC IN MANREM: DNA

1
88
1

PAGE NO. 4

ALRR-DECON UNC DECOMMISSIONING DATA SYSTEM GENERAL INFORMATION REPORT 72C1104

* .SYS/COMP.

* SYSTEM/COMPONENT . NUMBER . ENTRY TITLE

*=====

• OTHER COSTS (TOTAL THRU DECOMMISSIONING PERIOD)

UTILITIES:	4.186E5
MISC. SUPPLIES AND	
SERVICES:	6.362E5
NUCLEAR INS.:	N/A
LICENSE FEES:	N/A
FINAL SITE SURVEY:	SEE SPECIAL SECTION AT END OF THIS REPORT
TAXES:	N/A
REAL ESTATE SALE VALUE:	N/A

MATERIAL DISPOSAL INFORMATION

RADIOACTIVE WASTE

SALVAGE DISPOSAL

NUMBER OF SHIPMENTS:	83	NUMBER OF SHIPMENTS:	27
TOTAL VOLUME:	40830 CU. FT.	TOTAL VOLUME:	4400 CU.FT.
TOTAL MASS:	1350 TONS	TOTAL WEIGHT:	14.9 TONS
NUMBER OF CONTAINERS:	933	SPENT FUEL, CURIES:	3.12E5
TOTAL RADWASTE		D2O AND CONTAMINATED	
INVENTORY, CURIES:	6832	EQUIPMENT,CURIES:	1.2E4
		TRANSPORT COSTS:	\$37400

.FINAL SITE CONDITIONS, SUMMARY

• BASIS FOR CRITERIA: DOE ORDER 5480.1, CHAPTER XI, TABLE II
• NRC REGULATORY GUIDE 1.86
• UNOFFICIAL LIMITS ENDORSED BY DOE-CH
• CRITERIA SUMMARY: UNRESTRICTED RELEASE UNATTAINABLE--'MONITORED USE'
• CRITERIA UTILIZED

INSTRUMENTS USED: TECH. ASSOC. PUG 1E ORNL CP-5
EBERLINE PAC 4G VICTOREEN 470A
NMC SMEAR COUNTERS VICTOREEN THYAC III
TELETOCTOR R METERS TRACOR NORTHERN GE LI DETECTOR
SURVEY RESULT SUMMARY: FINAL SURVEY INCOMPLETE-WILL BE PUBLISHED AT A
LATER TIME

PAGE NO. 5
ALRR-DECON UNC DECOMMISSIONING DATA SYSTEM GENERAL INFORMATION REPORT 72C1104
* .SYS/COMP.
* SYSTEM/COMPONENT . NUMBER . ENTRY TITLE
*=====,=====,=====,=====,=====.

.COMPARISON ITEMS

. TOTAL COST OF DECOMMISSIONING: 4.3344E6

. DECOMMISSIONING COST
----- = COST/UNIT
NO. OF UNITS

ITEM	NO. OF UNITS	COMPARISON COSTS
CURIES	6832	634.43 DOLLARS/CURIE
RAD WASTE (CU FT)	40830	106.18 DOLLARS/CU FT
SPENDING RATE (MONTHS)	45	96320 DOLLARS/MONTH
POWER RATING (MWE)	N/A	N/A DOLLARS/MWE
LIFETIME (MWDT)	1.52E4	285.16 DOLLARS/MWDT

. TOTAL MANREM USED: 69.4

. NO. OF UNITS
----- = UNITS/MANREM
TOTAL MANREM

ITEM	NO OF UNITS	COMPARISON
RADIONUCLIDE INVENTORY (CURIES)	6832	98.44 CURIES/MANREM
RAD WASTE (CU FT)	40830	588.33 CU.FT./MANREM
TOTAL COST (\$)	4.3344E6	62455 DOLLARS/MANREM
LIFETIME MEGAWATT DAYS	1.52E4	219 MWDT/MANREM
* THERMAL (MWDT)		
POWER RATING (MWE)	N/A	N/A MWE/MANREM

.COST CONDITIONS

. ALL COSTS ARE AS CHARGED, AND WERE PAID AS THEY WERE PRESENTED THROUGH
. THE APPROXIMATE FOUR YEAR DECOMMISSIONING PERIOD.

PAGE NO. 1

.ALRR-DECON U.N.C. DECOMMISSIONING DATA SYSTEM - DECOMM CODE TABLE/INDEX 72B1102

* FACILITY .SYS/COMP.
* SYSTEM/COMPONENT . NUMBER :

01	A	PLACEMENT OF REACTOR IN STANDBY STATUS
01.01	A-1	DISPOSE OF FUEL
01.02	A-2	DISPOSE OF D2O
01.03	A-3	DISPOSE OF THERMAL SHIELD WATER
01.04	A-4	DISPOSE OF PLUG COOLING WATER
01.05	A-5	REMOVE EXPERIMENTAL EQUIPMENT
01.06	A-6	DISPOSE OF RADIOACTIVE PARTS (PRIOR USE)
01.07	A-7	REACTOR FACILITY SURVEILLANCE(PRE-FUEL DISPOSAL)
01.08	A-8	EFFLUENT AND ENVIRONMENTAL MONITORING
01.09	A-9	REPORT WRITING
01.10	A-10	FABRICATE DISMANTLING TOOLS
01.11	A-11	REMOVE COOLING TOWER
01.12	A-12	CONSULTANT SERVICES
01.13	A-13	REMOVE WATER TOWER
01.14	A-14	ADD REACTOR ROOM ACCESS DOOR
02	B	DISPOSAL OF REMOVABLE PARTS
02.01	B-1	DISASSEMBLY AND DISPOSAL OF CONTROL RODS
02.02	B-2	REMOVAL AND DISPOSAL OF CURRENT REACTOR PLUGS AND EQUIPMENT
02.03	B-3	REMOVAL AND DISPOSAL OF TOP PLUG (REACTOR TANK PLUG)
02.04	B-4	DISMANTLEMENT OF CONTROL ROOM ELECTRONICS AND CONSOLE
02.05	B-5	REACTOR FACILITY SURVEILLANCE (FUEL REMOVED)
02.06	B-6	EFFLUENT AND ENVIRONMENTAL MONITORING
02.07	B-7	(EXTENSION OF A-8) REPORT WRITING (EXTENSION OF A-9)
03	C	REMOVAL OF REACTOR INTERNAL STRUCTURES
03.01	C-1	REMOVAL OF ELECTRICAL GEAR FROM REACTOR BASEMENT
03.02	C-2	REMOVAL & DISPOSAL OF D2O PURIFICATION EQUIPMENT
03.03	C-3	CLEAN OUT PUMP ROOM AND REACTOR BASEMENT, INC. PRIMARY COOLING SYSTEM, PLUG COOLING SYSTEM, THERMAL SHIELD SYSTEM, HELIUM SYSTEM EMERGENCY COOLING SYSTEM, IRRADIATED AIR SYSTEM, SAMPLE TRANSFER (RABBIT) SYSTEM, SECONDARY COOLING SYSTEM.
03.04	C-4	REMOVE AND DISPOSE OF CORE TANK
03.05	C-5	SEAL THERMAL SHIELD TANK TO CONTAIN SHIELDING WATER
03.06	C-6	REMOVE, SEGMENT AND DISPOSE OF THERMAL SHIELD STEEL
03.07	C-7	REMOVE THERMAL COLUMN GRAPHITE & WATER CANS
03.08	C-8	DISPOSE OF REMOVABLE PARTS OF THERMAL SHIELD TANK

PAGE NO. 1

ALRR-DECON UNC DECOMMISSIONING DATA SYSTEM - SIGNIFICANT EVENT REPORT 7201106

*EVENT .SYS/COMP.

* DATE .NUMBER .. SIGNIFICANT EVENT DESCRIPTION

=====

61 FACILITY CONSTRUCTION STARTED

650101 FACILITY CONSTRUCTION COMPLETED

650217 INITIAL CRITICALITY

650712 INITIAL FULL POWER

660615 INSTITUTION OF ROUTINE OPERATION

741201 SHUTDOWN FOR MAJOR VALVE REPAIR OPERATIONS

750301 RE-INSTITUTED ROUTINE OPERATION

770501 REPAIRED MAJOR COOLANT LEAK RESULTING IN GROSS TRITIUM
* CONTAMINATION OF INTERNAL REACTOR PEDESTAL VOLUME

770601 INSTITUTED PRE-DECOMMISSIONING EFFORT INCLUDING DOCUMENTATION
* REQUIRED BY DOE, AND ENGINEERING AND COST ESTIMATES

771231 FINAL REACTOR SHUTDOWN AND INSTITUTION OF DECOMMISSIONING
* PROJECT

811001 COMPLETED DECOMMISSIONING PROJECT

PAGE NO. 1
.ALRR-DECON

DECOMMISSIONING DATA SYSTEM - RADIONUCLIDE INVENTORY H1116

* .A. MEASUR. <----- RADIONUCLIDE -----> .
* \$SYS/COMP. ./. ELEMENT CURIOS. DPM/ .
* NUMBER . SOURCE MATERIAL DESCRIPTION .C. DATE . NAME .CURIOS .FT#*3 .100CM2.
*****.=====.

02.01	CONTROL RODS	A	DNA	CO 60	750	DNA	DNA
02.02	COLLIMATORS, PLUGS, MISC. METAL	A		CO 60	24.9		
02.02	PLUGS, SHUTTERS, STORAGE LINERS, MISC. REACTOR SYSTEMS EQUIPMENT	A		CO 60	0.01393		
				EU 152	0.0003		
				CS 137	0.00023		
				ZN 65	0.00014		
02.03	GUIDE TUBE ASSEMBLY (SUPPORTED FUEL ELEMENTS AND CON- TROL RODS)	A		CO 60	14.286		
02.03	TOP PLUG, 2 SECTIONS	A		CO 60	0.029		
03.03	RABBIT TUBES, BEAM TUBES, EXPER. FACIL.	A		CO 60	33.1		
03.04	ALUMINUM CORE TANK	A		CO 60	450		
				ZN 65	50		
03.06	THERMAL SHIELD STAINLESS STEEL AND ASSOC. RESIDUE	A		FE 55	3573		
				CO 60	1162		
				NI 63	267		
				CD 109	11		
				AG 110	35		
04.02	REACTOR PEDESTAL CONCRETE AND ASSOC. RESIDUE	C		CO 60	145.198		
				H 3	64.0		
04.06	HOT CELL DEMOLITION RESIDUE & CO 60 SOURCE	A		FE 55	10.1		
				CO 60	21.7		
				TH 232	0.0026		
				NI 63	0.9		
04.09	NEUTRON GENERATOR EQUIP.	C		CO 60	0.6		
				CS 137	0.07		
				ZN 65	0.03		
				H 3	10.0		
04.14	STORAGE POOL DECOMM. RESIDUE	C		CO 60	0.107		
				CS 137	0.027		
04.15	ACOUSTIC MATERIAL, 60K LBS. (REMOVED FROM REACTOR CEILING) REMAINING MISC. RADIONUCLIDE INVENTORY	C		CO 60	0.0002		
				FE 55	146.44		
				CO 60	52.30		
				ZN 65	10.46		

*****.=====.
* RADIONUCLIDE INVENTORY TOTALS

*	NAME	CURIOS	*	NAME	CURIOS
*			*		
*	FE 55	3649.76	*	CD 109	11.0
*	CO 60	2734.094	*	H 3	74.0
*	NI 63	267.9	*	CS 137	0.097
*	ZN 65	60.49	*	TH 232	0.0026
*	AG 110	35.0	*	EU 152	0.0003

*

GRAND TOTAL-- 6832 CURIOS

PAGE NO. 2

ALRR-DECON UNC DECOMMISSIONING DATA SYSTEM - PROJECT COST/EXPOSURE

74R1122

*	COST ITEM/	C.SCHED	SCHED	ESTIM.	ESTIM.	ACTUAL	ACTUAL	ACTUL				
*	ACTIVITY	SYS/COMP	A.START	COMPL	MAN	ESTIM	TD	MAN				
*	SPEC NO.	ACTIVITY	NUMBER	T.DATE	DATE	HOURS	COST	\$	REM			
*	03.08	REMOVE PEDESTAL, THERMAL SHIELD TANK	D	800730	3806	815.0E3	14.84	800728	801130	2766	564.0E3	11.77

04.01	INCLUDED IN 03.08											
04.02	INCLUDED IN 03.08											
04.03	REMOVE EXHAUST SYSTEM, STACK	D	801230	64.0E3	0.28		810630	55.8E3				
04.05	REPLACE FLOOR	D	800930	2333	20.0E3	0.94	810630	1664	75.8E3	0.80		
04.06	REMOVE HOT CELL & * STORAGE BUNKER	D	811230		85.5E3	0.28	800430		118.5E3			
04.07	REMOVE HOTWASTE TANK & LINES	D	801230		33.5E3	0.58	810930		77.0E3			
04.08	DISPOSE OF STORAGE	D	801230		32.0E3		800330		30.5E3			
04.09	CASKS											
04.13	DISPOSE OF RESIDUE	D	801230		9.611		810930					
04.14	DECOMMISSION REACTOR	D			0.38		810630		11.9E3			
04.15	* DRAIN LINES											
	DECOMMISSION STORAGE	D				2.10	801110	810630		60.2E3		
	* POOL											
	04.15 REMOVE & DISPOSE OF ACOUSTIC MATERIAL	D					810330	1414	105.1E3	0.68		

NOTE 1- THE TOTAL TO BE OBTAINED FROM THIS COLUMN IS THE MEASURED PERSONNEL EXPOSURE TOTAL FOR THE ENTIRE DECOMMISSIONING PROJECT. ESTIMATION OF REACTOR EMPLOYEE EXPOSURE INFORMATION FOR INDIVIDUAL COST ITEMS WAS, HOWEVER, NECESSARY IN ORDER TO OBTAIN THAT TOTAL.

NOTE 2- INFORMATION INCLUDED HERE REPRESENTS TOTALS FOR LISTED COST ITEMS, INCLUDING SALARIES, SUPPLIES AND OUTSIDE SERVICES, CONTRACTS, PACKAGING, SHIPPING AND DISPOSAL.

NOTE 3- ACTUAL MAN-HOUR AND MAN-REM DATA SHOWN HERE INCLUDE ONLY CONTRACTOR INFORMATION FOR THE PERIOD OF TIME ENCOMPASSED BY THEIR CONTRACTS.

NOTE 4- RADIATION EXPOSURES INCURRED BY HEALTH PHYSICS EMPLOYEES ARE NOT SHOWN HERE, BUT INCLUDED IN EXPOSURE INFORMATION PRESENTED FOR ACTUAL INDIVIDUAL COST ITEMS.

PAGE NO. 1

ALRR-DECON U.N.C. DECOMMISSIONING DATA SYSTEM - DOSE RATE

722G1114

* DPM : DPM : MEASUR.

* MAP .ELEV .MAP .SYS/COMP . R/HR . R/HR .100CM2.100CM2.ELEMENT

* REFERENCE . BUILDING . FEET . COORD. NUMBER . TYP. LOWER . UPPER . LOWER . UPPER . DATE .

COMMENT

N/A	REACTOR	N/A	N/A	01.06	CON	10.01	1200	DNA	HORIZ. TANGENTIAL FACILITY PLUG 6 IN. DIAM. COMETION SCATTERING EXPERIMENT
*				01.06	CON	0.3			HORIZ. TANGENTIAL FACILITY PLUG, 4 IN. DIAM. REACTOR FACE NO. 3 (REMOVED EARLY)
*				01.06	CON	7.0	75.0		DRUMS OF FUEL ELEMENT CUTOFFS (UNFUELED ENDS)
*				01.06	CON	0.35			VERTICAL THIMBLE V-3, OLD,
*				01.06	CON	2.0			GRAPHITE CAN FROM INNER END OF H-5 PLUG
*				01.06	CON	90.0			HORIZ. BEAM PLUG H-5 7.5 IN. DIAM. (ORIGINAL)
*				01.06	CON	70.0			HORIZ. BEAM PLUG H-6 11 IN. DIAM (6R/HR Ø 3') INCLUDES FINAL FISSION PRODUCT
*				01.06	CON	50.0	500		GENERATOR (FPG) HARDWARE
*				01.06	CON	31.0			HORIZ. BEAM PLUG H-6 11 IN. DIAM. (ORIGINAL)
*				01.06	CON	18.0			INCLUDES SECOND FPG HARDWARE
*				02.01	CON	0.1		1.4E4	HORIZ. BEAM PLUG H-6 11 IN. DIAM. (ORIGINAL)
*				02.01	CON	2.5	7.0		VERTICAL PLUG THIMBLE V-1, (ORIGINAL)
*				02.01	CON	110.0			PLUGS AND SLEEVES, CONTROL ROD
*				02.01	CON	7.0E3			DRIVE SHAFTS, CONTROL ROD
*				02.01	CON	1.4E4			CONTROL ROD DRIVE PIECES, (CUTOFFS)
*				02.02	CON	1.0E3			CONTROL ROD, ORIGINAL DESIGN, USED 6 YEARS
*				02.02	CON	17.3			CONTROL ROD, RE-DESIGN IN USE AT SHUTDOWN
*				02.02	CON	100.0	2.0E5		HORIZ. BEAM PLUG H-7 4 IN. DIAM. INCLUDES
*				02.02	CON	100.0			ORIGINAL FPG HARDWARE (Ø1') (150R/HR Ø 3')
*				02.02	CON	350.0			HORIZ. BEAM PLUG H-8 4 IN. DIAM. (0.2 R/HR Ø 6')
*				02.02	CON	20.0			HORIZ. BEAM PLUG H-9 6 IN. DIAM. (BEAM COLLIMATOR)
*				02.02	CON	100.0			HORIZ. BEAM PLUG H-10 6 IN. DIAM. (BEAM COLLIMATOR)
*				02.02	CON	350.0			HORIZ. TANGENTIAL FACILITY PLUG, 4 IN.
*				02.02	CON	20.0			DIAM. REACTOR FACE NO. 9 (10 R/HR. Ø 3')
*				02.02	CON	0.3			HORIZ. TANGENTIAL FACILITY PLUG 6 IN. DIAM.
*				02.02	CON	2.5			REACTOR FACE NO. 9 (0.25 R/HR Ø 3')
*				02.02	CON	50.0			VERTICAL PLUG V-3
*				02.02	CON	15.0			VERTICAL PLUG V-5
*				02.02	CON	45.0			HORIZ. TANGENTIAL FACILITY PLUG, 6 IN.
*				02.02	CON	50.0			DIAM. REACTOR FACE NO. 3 (1.4 R/HR. Ø 3')
*				02.02	CON	50.0			HORIZ. LINER, H-2 6 IN. DIAM. (0.7 R/HR. Ø 3')
*				02.02	CON	65.0			HORIZ. LINER, H-4 4 INC. DIAM. (0.7 R/HR Ø 3')
*				02.02	CON	45.0			HORIZ. LINER, H-5 7.5 IN. DIAM. (1.5 R/HR. Ø 3')
*				02.02	CON	50.0			HORIZ. LINER, H-6 11 IN. DIAM. (2 R/HR. Ø 3')
*				02.02	CON	50.0			HORIZ. LINER H-7 4 IN. DIAM. (0.75 R/HR. Ø 3')
*				02.02	CON	50.0			HORIZ. LINER H-8 4 IN. DIAM. (0.75 R/HR Ø 3')

PAGE NO. 2

.ALRR-DECON U.N.C. DECOMMISSIONING DATA SYSTEM - DOSE RATE

7261114

*					DPM	DPM	MEASUR.					
*	MAP	ELEV	MAP	SYS/COMP.	R/HR	R/HR	100CM2.100CM2.EMENT					
*	REFERENCE	BUILDING	FEET	COORD.	NUMBER	TYP.	LOWER	UPPER	LOWER	UPPER	DATE	COMMENT
*												
*					02.02	CON	65.0					HORIZ. LINER H-9 6 IN. DIAM. (1.5 R/HR. @ 3')
*					02.02	CON	50.0					HORIZ. LINER H-10 6 IN. DIAM. (1.0 R/HR. @ 3')
*					02.02	CON	70.0					HORIZ. TANGENTIAL LINER, 4 IN. DIAM. (2.0R/HR @ 3')
*					02.02	CON	25.0					HORIZ. TANGENTIAL LINER, 6 IN. DIAM. (3.0R R/HR. @ 3')
*					02.02	CON	70.0					HORIZ. BEAM PLUG H-2 IN DIAM. (15 R/HR @ 3') (BEAM COLLIMATOR)
*					02.02	CON	500.0					HORIZ. BEAM PLUG H-3 6 IN DIAM. (7. R/HR. @ 3') (BEAM COLLIMATOR)
*					02.02	CON	50.0					HORIZ. BEAM PLUG H-4 4 IN DIAM. (1.0R/HR @ 3')
*					02.02	CON	1.0E3					HORIZ. BEAM PLUG H-5 7.5 IN. DIAM. (AT 2') STAINLESS STEEL CONSTRUCTION
*					02.02	CON	7.0	35.0				VERTICAL LINER PIECES (CUTOFF)
*					02.02	CON	0.1					HORIZONTAL PLUGS, THERMAL COLUMN, INNER ENDS
*					02.02	CON	0.35					VERTICAL THIMBLES, SEVERAL
*					02.02	CON	11.0					VERTICAL THIMBLE, V-5
*					02.02	CON	11.0					VERTICAL LINER, V-3
*					02.02	CON	20.0					VERTICAL LINER, V-5
*					02.02	CON	10.0					VERTICAL LINER, V-8
*					02.02	CON	0.6	1.0				FUEL ELEMENT HOLD-DOWN PLUGS
*					02.03	CON	0.015	1.0	3000			SHIELD PLUG OVER CORE TANK, LOWER SURFACE OF LOWER SECTION (0.13 R/HR @ 3')
*					02.03	CON	200.0	300.0				GUIDE TUBE ASSEMBLY (SUPPORTS F.E.'S & FISSION CHAMBER)
*					02.04	CON	0.5					PNEUMATIC SAMPLE TRANSFER BLOWER
*					03.03	CON			1000			PIPING, PRIMARY COOLANT, REM. FROM PUMP RM. CEILING
*					03.03	CON	0.01					PUMP ROOM BELOW CORE, SHINE THRU PENETRATIONS
*					03.03	GEN	0.85					PNEUMATIC SAMPLE SYSTEM LINER R-1, 1 IN.
*					03.03	CON	50.0					DIAM. (2 R/HR @ 3')
*					03.03	CON	150.0					PNEUMATIC SAMPLE SYSTEM LINER, R-3, 1 IN.
*					03.03	CON	45.0					DIAM. (5.0 R/HR, 3')
*					03.04	CON	150.0					PNEUMATIC SAMPLE SYSTEM LINER R-4, 2 IN.
*					03.04	CON	1.5E3					DIAM. (0.8 R/HR, @ 3')
*					03.04	CON	15.0					CORE TANK, OUTSIDE SURFACE
*					03.06		108.0					CORE TANK VOLUME CENTER, IN-PLACE, TAKEN THRU PLUG
*					03.06		450.0					LARGE DIAMETER ALUMINUM CORE TANK SUPPORT RING
*					03.07	CON	0.025	1.3				THERM. SHIELD STAINLESS STEEL ASSEMBLY (14 IN. FROM CONTACT) (60R/HR @ 4.5 FT)
*												THERM. SHIELD STAINLESS STEEL CUT PIECE, TAKEN FROM MOST ACTIVE SECTION
*												GRAPHITE STRINGERS FROM THERMAL COLUMN

PAGE NO. 1
 .ALRR-DECON U.N.C. DECOMMISSIONING DATA SYSTEM - PROJECT LABOR 74F1132
 *ACTIVITY. . MAN .LABOR .MAN-.
 *SPEC NO : DATE : LABOR CATEGORY .WEEKS .COST \$.REM .
 ======
 . PROJECT LABOR COSTS REPRESENT ONLY SERVICES OF REACTOR EMPLOYEES. ALL
 . OTHER LABOR COSTS WERE INCLUDED IN SUBCONTRACTS AND IN SERVICE CHARGES
 . BY OTHER AMES LABORATORY GROUPS.
 .+++++
 01.01 DNA DISPOSE OF FUEL DNA 1.3E4 DNA
 01.02 DISPOSE OF PRIMARY 2.0E4
 * COOLANT (D20)
 01.03 DISPOSE OF THERMAL SHIELD NOTE-1
 * COOLANT (H20)
 01.04 DISPOSE OF PLUG COOLANT NOTE-1
 * (H20)
 01.05 REMOVE EXPER. EQUIP. 5.7E4
 01.06 DISPOSE OF ACTIVE PARTS 2.01E5
 02.01 CONTROL ROD DISPOSAL NOTE-2
 02.02 PLUG & MISC. DISPOSAL NOTE-2
 01.07 SECURITY 1.09E5
 01.08 HEALTH PHYSICS, 5.57E5
 * MONITORING
 01.09 REPORTS & SUPV. 3.81E5
 01.10 FABRICATE TOOLS 1.5E3
 02.03 REMOVE TOP PLUG ASSM. 2.6E4
 02.04 REMOVE ELEC. SYS. 3.0E4
 03.01 CONTINUATION OF ABOVE NOTE-3
 02.05 RESTORE POOL CLARITY 2.39E4
 03.02 REMOVE D20 CLOSET 1.15E4
 03.03 CLEAN OUT REACTOR ROOM, 1.57E5
 04.09 PUMP ROOM, BASEMENT NOTE-4
 03.04 REMOVE CORE TANK 1.0E4
 03.05 SEAL THERM. SH. TANK 1.17E4
 03.06 DISPOSE OF THERMAL 1.15E4
 * SHIELD PLATES(SS)
 03.07 REMOVE THERM. COLUMN 7.5E3
 * GRAPHITE
 03.08 DISPOSE OF REMOVABLE 1.8E4
 * PARTS OF THERMAL
 * SHIELD TANK
 04.01 REMOVE PEDESTAL SKIN NOTE-5
 04.02 REMOVE PEDESTAL NOTE-5
 04.03 REMOVE/DECON EXHAUST 3.68E4
 * SYSTEM
 04.05 REPLACE/REPAIR FLOOR 1.00E4
 04.06 REMOVE HOT CELL AND 4.00E4
 * OUTSIDE STORAGE BUNKER
 04.07 REMOVE UNDERGROUND HOT 2.50E4
 * WASTE TANK & LINES
 04.08 DISPOSE OF MISCELL. 2.0E4
 SHIELDED CASKS
 04.13 DECOMMISSION EMBEDDED 5.0E3
 * HOT LINES

PAGE NO. 1 ALRR-DECON U.N.C. DECOMMISSIONING DATA SYSTEM - ALARA REPORT						72E1110
*	*	*	MAN-	DOS.		
*ACTIVITY, SYS/COMP.			ALARA, REM, INITIAL, FINAL, RED.			
*SPEC NO., NUMBER, DATE, ALARA COST ITEM			COST \$, SAVED, MR/HR, MR/HR, FCT.			ALARA EFFORT DESCRIPTION
=====						
N/A	N/A	DNA	CRANE MODIFICATION	DNA	DNA	DNA
*						DNA CRANE PENDANT MODIFIED TO EXTEND CRANE TRAVEL FOR FIXED OPERATOR LOCATION
*			CONTAMINATION CONTROL			USED WATER SPRAY TO CONTROL AIRBORNE CONTAMINATION DURING REACTOR EQUIPMENT MANIPULATION
*			CONTAMINATION CONTROL			APPLIED LINSEED OIL SPRAY TO REMOTELY FIX CONTAMINATION ON ACTIVATED EQUIPMENT TO BE MANIPULATED
*			RADIATION EXPOSURE CONTROL			MODIFIED EXISTING 2 INCH LEAD SHADOW SHIELDS IN CONJUNCTION WITH LEAD GLASS WINDOWS TO PROVIDE SHIELDED ENCLOSURES FOR HI-RAD OPERATIONS
*			CCTV			UTILIZED CLOSED CIRCUIT TELEVISION FOR HI-RAD MANIPULATIONS, E.G., INSERTION OF LOADED LINERS INTO CASK
*			FLEX DUCT VENTILATION			UTILIZED HI-VELOCITY FILTERED VENTILATION SYSTEM FOR CUTTING AND WELDING ACTIVATED/ CONTAM. MATERIAL, APPLIED DIRECTLY TO WORK WITH FLEX-DUCT
*			UNDERWATER CUTTING			UTILIZED HYDRAULICALLY DRIVEN CUTTING EQUIPMENT FOR UNDERWATER CUTTING OF ACTIVATED MATERIAL
*			FORK LIFT MODIFICATION			FABRICATED BOOM EXTENSION FOR REMOTE MANIPULATION
*			RADIATION EXPOSURE CONTROL			UTILIZED LEAD SHOT BAGS FOR HOT-SPOT SHIELDING WHERE REMOTE MANIPULATION WAS NOT FEASIBLE
*			TRUCK ENTRY TO REACTOR ROOM			PROVIDED REACTOR ROOM ENTRY FOR REMOTE CRANE USAGE IN LOADING HI-LEVEL WASTE DIRECTLY INTO TRUCK-MOUNTED CASKS
=====						

PAGE NO. 1

ALRR-DECON U.N.C. DECOMMISSIONING DATA SYSTEM - SHIPMENT REPORT

74C1124

* TRIP . T. . DOT .--> WASTE -->.
 * DATE .SHIP .LEN .MR/HR .MR/HR .MR/HR . RADIONUCLIDE ACTIVITY. WASTE .Y. PHYS. CHEMICAL .SHIP .CUBIC .
 * DATE .NUM .MILES.CONTCT.6 FEET. CAB . NAME .CURIES .SPEC NO .DESCRIPTION.P. FORM . FORM .CLASS.FEET . POUNDS.
 * .COMMENT: THE DOCUMENTATION STATES THAT , WITH THE EXCEPTION OF ACTIVATED CARBON
 * .STEEL ITEMS. CO 60 IS THE GREATLY PREDOMINANT RADIONUCLIDE IN ALL WASTE.
 .FISSION PRODUCT CONTAMINATION WAS VIRTUALLY NONEXISTANT.
 ++++++
 780807 1 1100 DNA DNA DNA CO 60 3.42 01.06 SHIELDED A LSA 90.00 10402
 * 780814 2 1100 DNA DNA DNA CO 60 6,520 01.06 SHIELDED A LSA 90.00 8496
 * 780814 3 1100 DNA DNA DNA CO 60 0.0146 01.06 DRUMS A LSA 424.67 27958
 * 780816 4 1100 DNA DNA DNA CO 60 250.0 01.06 SHIELD PIECES CONTROL A LSA 15.00 200
 * 780821 5 1100 DNA DNA DNA CO 60 .003 02.01 DRUMS A LSA 424.67 41120
 * 780825 6 1100 DNA DNA DNA CO 60 .022 01.06 SHIELD PIECES DRUMS A LSA 15.00 36120
 * 780906 7 1100 DNA DNA DNA CO 60 500.0 02.01 CONTROL A B 15.00 375
 * 781211 8 1100 DNA DNA DNA CO 60 .011 01.06 DRUMS C LSA 576.00 24900
 * 781218 9 1100 DNA DNA DNA CO 60 10,118 01.06 DRUMS IN A LSA 90.00 9680
 * 790413 10 1100 DNA DNA DNA CO 60 6.374 01.06 CASK BOXES A LSA 816.00 24950
 * 790601 11 1100 6.0 3.0 .03 CO 60 14.286 02.03 SHIELDED BOXES GUIDE TUBE A LSA 77.90 400
 * 790605 12 1100 40.0 0.3 .03 CO 60 0.005 02.03 ASSEMBLY (CASK) TOP PLUG A LSA 251.00 56000
 * 790608 13 1100 50.0 7.0 0.03 CO 60 0.024 02.03 SECTION TOP PLUG A LSA 177.00 55000
 * 790710 14 1100 100.0 10.0 0.9 CO 60 32.5247 CONCRETE C LSA 538.20 39600
 * 790723 15 1100 40.0 5.0 0.02 CO 60 0.040 BOXES (9) C
 * 790810 16 1100 60.0 5.5 0.50 CO 60 500.000 CORE TANK A
 * 790917 17 1500 100.0 13.0 0.13 CO 60 0.26468 DRUMS, C LSA 861.50 38601
 * 790921 18 1100 15.0 10.0 0.07 CO 60 33.100 BOXES C
 * 800222 19 1100 .07 0.03 0.03 CO 60 0.002 CASKS (2) A LSA 25.10
 * 800321 20 1100 1.10 0.07 0.03 CO 60 0.003 PLYWOOD C LSA 846.00 39200
 * 800321 20 1100 1.10 0.07 0.03 CO 60 0.003 PLYWOOD C LSA 1161.0 30000
 * 800321 20 1100 1.10 0.07 0.03 CO 60 0.003 BOXES (9) C

PAGE NO. 2

ALRR-DECON U.N.C. DECOMMISSIONING DATA SYSTEM - SHIPMENT REPORT

74C1124

PAGE NO. 3

ALRR-DECON U.N.C. DECOMMISSIONING DATA SYSTEM - SHIPMENT REPORT

74C1124

* TRIP .

* SHIP .SHIP .LEN .MR/HR .MR/HR .MR/HR . RADIOMUCLIDE .ACTIVITY. WASTE .Y .PHYS .CHEMICAL .SHIP .CUBIC .

* DATE .NUM .MILES.CONCT.6 FEET. CAB . NAME .CURIES .SPEC NO .DESCRIPTION.P. FORM . FORM .CLASS.FEET . POUNDS.

=====

800825	106	1500	0.15	0.08	0.04	CO 60	0.233	RUBBLE, C SOLID ELEM/OX	LSA	320	38499
						H 3	0.1027	REBAR			
800828	107	1500	0.15	0.05	0.03	CO 60	0.263	RUBBLE, C SOLID ELEM/OX	LSA	320	43622
						H 3	0.1159	REBAR			
800829	108	1500	0.70	0.12	0.04	CO 60	0.231	RUBBLE, C SOLID ELEM/OX	LSA	480	43196
						H 3	0.1018	REBAR			
800904	109	1500	0.20	0.05	0.03	CO 60	0.248	RUBBLE, C SOLID ELEM/OX	LSA	320	41402
						H 3	0.1093	REBAR			
800905	110	1500	0.05	0.04	0.04	CO 60	0.265	RUBBLE, C SOLID ELEM/OX	LSA	352	43670
						H 3	0.1168	REBAR			
800905	111	1500	0.05	0.03	0.03	CO 60	0.257	RUBBLE, C SOLID ELEM/OX	LSA	352	41559
						H 3	0.1133	REBAR			
800906	112	1500	0.06	0.04	0.04	CO 60	0.207	RUBBLE, C SOLID ELEM/OX	LSA	384	42588
						H 3	0.0912	REBAR			
800906	113	1500	0.06	0.04	0.05	CO 60	0.240	RUBBLE, C SOLID ELEM/OX	LSA	320	39662
						H 3	0.1058	REBAR			
800911	114	1500	0.15	0.07	0.04	CO 60	0.234	RUBBLE, C SOLID ELEM/OX	LSA	448	43026
						H 3	0.1031	REBAR			
800916	115	1500	0.14	0.04	0.04	CO 60	0.265	RUBBLE, C SOLID ELEM/OX	LSA	320	42296
						H 3	0.1168	REBAR			
800916	116	1500	0.80	0.07	0.04	CO 60	0.247	RUBBLE, C SOLID ELEM/OX	LSA	480	41029
						H 3	0.1089	REBAR			
800916	117	1500	0.15	0.05	0.03	CO 60	0.259	RUBBLE, C SOLID ELEM/OX	LSA	322	43004
						H 3	0.1142	REBAR			
800918	118	1500	1.30	0.07	0.03	CO 60	0.195	RUBBLE, C SOLID ELEM/OX	LSA	496	41976
						H 3	0.0860	REBAR			
*								ALUM.			
800920	119	1500	22.00	4.00	0.08	CO 60	9.946	RUBBLE, C SOLID ELEM/OX	LSA	576	43491
						H 3	4.384	REBAR			
800924	120	1500	32.00	5.50	0.05	CO 60	8.191	RUBBLE, C SOLID ELEM/OX	LSA	352	42724
						H 3	3.6104	REBAR			
800925	121	1500	50.00	9.00	0.07	CO 60	8.119	RUBBLE, C SOLID ELEM/OX	LSA	672	44018
						H 3	3.5787	REBAR			
*								ALUM.			
800925	122	1500	35.00	5.00	0.07	CO 60	4.365	RUBBLE, C SOLID ELEM/OX	LSA	608	42440
						H 3	1.924	REBAR			
*								ALUM.			
800926	123	1500	1.30	0.20	0.03	CO 60	0.112	RUBBLE, C SOLID ELEM/OX	LSA	528	42826
						H 3	0.0494	REBAR			
*								ALUM.			
800927	124	1500	10.00	1.90	0.03	CO 60	0.113	RUBBLE, C SOLID ELEM/OX	LSA	560	39173
						H 3	0.0498	REBAR			
*								ALUM.			
800927	125	1500	0.08	0.03	0.03	CO 60	0.028	RUBBLE, C SOLID ELEM/OX	LSA	560	39218
						H 3	0.0123	REBAR			
*								ALUM.			
801002	126	1500	27.00	4.50	0.15	CO 60	10.600	RUBBLE, C SOLID ELEM/OX	LSA	384	44244
						H 3	4.6722	REBAR			

PAGE NO. 4

ALRR-DECON U.N.C. DECOMMISSIONING DATA SYSTEM - SHIPMENT REPORT

74C1124

TRIP							T.		. DOT .<-- WASTE -->					
* SHIP		.LEN		.MR/HR		.MR/HR		.MR/HR		. RADIONUCLIDE .ACTIVITY. WASTE .Y, PHYS . CHEMICAL .SHIP .CUBIC .				
* DATE		.NUM		.MILES		.CONTCT		.6 FEET. CAB		. NAME .CURIES .SPEC NO .DESCRIPTION.P. FORM . FORM .CLASS.FEET . POUNDS.				
*=====		=====		=====		=====		=====		=====				
801003 127		1500		15.00		3.00		0.30		CO 60	13.500	RUBBLE, C SOLID ELEM/OX	LSA 320	43472
										H 3	5.9505	REBAR,		
* 801003 128		1500		30.00		3.00		0.07		CO 60	4.220	ALUM.		
										H 3	1.8601	RUBBLE, C SOLID ELEM/OX	LSA 400	35696
* 801006 129		1500		28.00		4.50		0.17		CO 60	12.940	REBAR, ALUM.		
										H 3	5.7037	RUBBLE, C SOLID ELEM/OX	LSA 496	43778
* 801006 130		1500		17.00		3.00		0.08		CO 60	11.110	REBAR, ALUM.		
										H 3	4.897	RUBBLE, C SOLID ELEM/OX	LSA 512	41866
* 801007 131		1500		21.00		5.00		0.04		CO 60	11.400	REBAR, ALUM.		
										H 3	5.0249	RUBBLE, C SOLID ELEM/OX	LSA 572	43302
* 801008 132		1500		20.00		5.00		0.09		CO 60	13.500	REBAR, ALUM.		
										H 3	5.9505	RUBBLE, C SOLID ELEM/OX	LSA 560	43754
* 801013 133		1500		30.00		5.00		0.08		CO 60	14.300	REBAR, ALUM.		
										H 3	6.3031	RUBBLE, C SOLID ELEM/OX	LSA 496	43504
* 801013 134		1500		5.00		0.60		0.12		CO 60	11.400	REBAR, ALUM.		
										H 3	5.0249	RUBBLE, C SOLID ELEM/OX	LSA 496	42443
* 801014 135		1500		4.00		0.25		0.03		CO 60	0.240	REBAR, ALUM.		
										H 3	0.1058	RUBBLE, C SOLID ELEM/OX	LSA 416	40260
801017 136		1500		0.30		0.09		0.03		CO 60	0.259	REBAR, RUBBLE,		
										H 3	0.1142	REBAR, C SOLID ELEM/OX	LSA 512	42976
801020 137		1500		7.00		0.15		0.03		CO 60	0.268	REBAR, RUBBLE,		
										H 3	0.1181	REBAR, C SOLID ELEM/OX	LSA 544	44126
* 801025 138		1500		3.50		0.40		0.03		CO 60	1.746	REBAR, RUBBLE,		
										H 3	0.7696	REBAR, C SOLID ELEM/OX	LSA 576	44702
* 801028 139		1500		15.00		1.00		0.03		CO 60	0.271	REBAR, ALUM.		
										H 3	0.1195	REBAR, C SOLID ELEM/OX	LSA 528	44875
* 801030 140		1500		75.00		7.00		0.04		CO 60	1.591	REBAR, ALUM.		
										H 3	0.7013	REBAR, C SOLID ELEM/OX	LSA 592	43420
* 801031 141		1500		1.00		0.09		0.03		CO 60	NEG	REBAR, ALUM.		
										H 3	NEG	REBAR, C SOLID ELEM/OX	LSA 548	42866
* 801110 142		1500		80.00		8.50		0.20		CO 60	1.891	REBAR, ALUM.		
										H 3	0.8335	REBAR, C SOLID ELEM/OX	LSA 432	38682
801111 143		1500		32.00		7.00		0.13		CO 60	0.232	REBAR, ALUM.		
										H 3	0.1023	REBAR, C SOLID ELEM/OX	LSA 560	37404
* 801111 144		1500		75.00		8.00		0.14		CO 60	0.559	REBAR, ALUM.		
										H 3	0.2464	REBAR, C SOLID ELEM/OX	LSA 624	40624

PAGE NO. 1

ALRR-DECON U.N.C. DECOMMISSIONING DATA - SURVEILLANCE REPORT

74E1130

* .S. .<---- ANNUAL ---->.

* . DECOM ./. EXPENDITUR. . MAN- .MAN- . COST .

*YEAR. MODE .M. ITEM .FREQ. REM .HOURS . \$. EXPENDITURE ITEM DESCRIPTION

- THE COST OF SURVEILLANCE ACTIVITIES REQUIRED SPECIFICALLY BECAUSE OF THE
- PAST EXISTANCE OF THE REACTOR IS ABSORBED IN THE COST OF OTHER SURVEILLANCE
- ACTIVITIES REQUIRED BY THE CONTINUING UTILIZATION OF RADIOACTIVE MATERIALS
- IN LABORATORIES AT THE FACILITY.
- MAINTENANCE COSTS ARE LIKEWISE ABSORBED. SECURITY ACTIVITIES IN AREAS WHICH
- WERE ORIGINALLY WERE REACTOR-ASSOCIATED ARE NO LONGER NECESSARY BECAUSE THOSE
- AREAS ARE ROUTINELY SECURED FROM CASUAL ENTRY.

PAGE NO. 1

ALRR-DECON UNC DECOMMISSIONING DATA SYSTEM - PUBLIC DOSE REPORT F3012

*

*

AVAILABILITY OF APPROPRIATE DATA IS INSUFFICIENT FOR REPORT GENERATION.