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James J. Griffin, Maria Dworzecka, Kit-Keung Kan, and Peter C. Lichtner
Dept. of Physics and Astronomy, University of Maryland,
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I. INTRODUCTION |

Since the TDHF methdd [1] was first.computerized as a nuclear model
[2],studies based upon its numerical calculation have burgeoned [3]. As an
approximation to the Scﬁroedinger equation, the precise limits of its ap-
plicable physical range have remainéd largely unspecified. As a model of
the Schroedinger systenm, deeper questions arise regarding the very physical
interpretation of the TDHF solution for the reaction process: In what sense
is it at all a propet Schroedinger wave function? Can it describe ampli- -
tudes fbr reactions leading to specific internal states of the final ejec-
tiles, or does it contain only information averaged (in what manner?) over
many final states?

in this"paper we review certain aspects of the gf-mwtrix approach to
these questions [6], and report new developments based on the nature of the
periodic TDHF solutions to certain model problems [7]. We propose that a
consistent description of quantum reaction amplitudes, which is structural-
ly fully analogous to the Schroedinger theory, can be built upon (the whole
set of) self-consistent TDHF solutions, provided that the asymptotic chan- ‘
nel states are built from gaﬁge invariant periodic solutions, and the phys-

ical implications of the theory are interpreted on a time averaged basis.

I1I.COMMON VARIATIONAL ORIGINS OF TbHF AND SCHROEDINCER THEORIES
) ¢

The Variational Principle,
2. .
) 8T = & [ <¥|(H-if3/st) |y>dtt = Q Q@)
'ﬁimplieé the exact non—-relativistic time-dependent Schrdedinger equation
=[8}. Tf the wave function ¥ is required to be a single determinant, thé
ésame principle yields the unique "Conétant-<3¥>" time-dependént Haftree-
| GISTRIRUTISH GF TH'S DICUMERT 3 URLIMITED
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Fock equation [9]. Since the origins of the TDHF model and those of the
" Schroedinger theory lie so close, a close structural parallel between them
is reasonably to be expected. It is that analogy which is diScussed in

this'paper.

III.-SIX ASPECTS OF THE TDHF-SCHROEDINGER PARALLELISM
The discussion will consider six interrelated aspects of the TDHF-
Schroedinger parallelism; as follows, _ ' ”

a) The Asymptoticity of the reaction theory-—whether its pre-
dicted results depend upon the precise location of tne distant meaé-
nring apparatus. or not;

b) The Periodiéity of solutions for isolated systems;

c) Time Averaging; under which periodic solutions become char-
acterized:by constants and allowed a role analogous to the stationary
state eigensolutions of the exact theory;‘

4.d) Asymptotic Channel Orthogonality, which does not prevail a-
‘mong the solutions of the non-linear TDHF theory, but which by |
‘time averaging can be regained for asymptotic channels describing
periodically vibrating drnplets, provided that their energies are
diécrete rather than continuous; -

e) Réquantization, by which certain periodic solutions of dis-
crete energy can be selected from a continuun of periodic solutions
to serve the role analogous with that of the channel eigenfunctions
of the exact theory; i'

f) Gauge Invariance-—the property of the exact eigensolutions
which offers a natural basis for the requantization of the contin%
uous periodic TDHF spectrum (and which leads, remarkably, for cer-
tain model problems to the sdme quantized states as the Bohr-Sommer-

feld quantization rules would select).

Iv. ASYMPTOIICITY IN A REACTION THEORY

In the exact Schroedinger theory, the wave function describingAthe
system for times long after the coilision process can be expanded nnon a
complete mutually orthogonal basis of channel states, constfgcted from the
eigenstates of every possible.pair of fragments, and the funétions des-
cribing their relative motion. It follows that the probabiligy of meas-

uring .a certain value for any internal physical property of gn ejected



'fragment is predicted not to depend upon the precise location of the meas-
uring apparatus with respect to the collision volume, provided only that
it 1s sufficiently distant-to guarantee that the intefactions between the
fragments vanish. This independence of the predictive content of a reac-
tionAtheory of the precise location of the measurement, we refer to as the
"Asymptoticity"” property of the theory. Clearly the Schroedinger theory
 exhibits this property.

V. INITIAL VALUE TDHF THEORY LACKS ASYMPTOTICITY

Asymptoticity is not a general property of the conventional initial
value TDHF theory, because of the fact that the self-consistency cbndi;ion
leads to a time evolution operator (the Hartee-Fock "Hamiltonian",zﬁf)
which is a functional of its solution, and therefore continues-to be time-
dependent, even long after the collision. Needless to say, this non—aéymp-
ptoticity of TDHF lies at the root of the difficulties of the precise in-
terpretation of the physical implications of conventional initial-value
TDHF descriptions of complex reactions. As a result, only a few "trajec-
tory” characteristics which remain constant once the fragments separate
~have been extracted from the numerical TDHF studies of nuclear systems, in
pale contrast with the rich-detail which the corresponding Schroedinger
solution would, in principle, yield. For what useful meani@g could be
attributed to theoretically predicted reaction amplitudes which vary with
the location of the counting apparatus?

Thus, although the expectation has frequently been expressed that such"
an interpretation would be found for the late time wave funetions of con-
veritional initial-value TDHF theory, only one report of an explicit attempt
is known to the present authors [10}. The result was that the expansion

coefficients remained time-dependent indefinitely.

VI. TDﬁxf—HF: ASYMPTOTICITY AND PERIODICITY
In the TD-sf-HF restructuring of the single determinantal reac-

tion theory [5], the S-matrix ana%og,

2
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describes the transition probability from an initial to a final self-con-
sistent TDHF reaction channel. Tn reterence [6] the form (2) for of 1s
obtained heuristically by analogy with the exact Schroedinger theory in
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such a way that it feduces exactly to the S-matrix when the single deter-
minantal solutions, ¢, are also solutions of the exact Schroedinger equ-
ation. In addition, the palpable physical error introduced by the conven-
tional Hartree-Fock description during the postbreakup phase, when the des-
cription of several channels'is imposed upon the single determinant, 1s
eliminated from the theory. '

Under the ansatz (2) the single determinantal description is released
from the narrow constraints ofAthe initial value formulation. One result
is a freedom, and a need, to select reaction "channels"” suitable for the
physical description required. Then by selecting the reaction channels so.
as to assure that the physical properties of the.emergent'dfoplets remain
~constant in time, one achieves the first step towards gﬁaranteeing asymp-
toticity for the new theory;

. This condition requireé that a reaction channel wave function must
describe statiOnary TDHF states of the emergent droplets. Or, if periodic
TDHF states are allowed as channel states, then their physical properties

can be considered as constant if interpreted on a time—-averaged basis.

VII. TIME AVERAGING IN THE TD-sf-HF THEORY

The use of periodlc solutions to play the role of the exact eigen—
states for the description of TDHF droplets in the asymptotic channel
states, implies that their asymptotically constant physical characteris-
ticg.must be characterized by time averages (over the periéd) of phys-
ical operators. We note that also in the definition of ,Ji the time -
éﬁéraéé defined by equation (2) was a consequence of the fact [6] that
the overlap of two TDHF sqlutiOns, in contrast with the S-matrix overlap
between exact solutions, is not constant in time. Thus (2) specifies
thét the reaction amplitude is is to be obtained by time-averaging

over the whole interaction interval.

.VIII. TIME AVERAGING AND ASYMPTOTIC CHANNEL ORTHOGONALITY

Still a third cause for a time averaged interpretation arises now
in connection with the asymp;oticity of the channel states built upon the
periodic TDHF solutions proposed to describe the droplets——this time
stemming from the mutual non-orthogonality of such solutioqé. Here again
we ‘deal with a deviation of the TDHF from the exact theory ghich arises

from the self-consistency condition: the eigenstates of.the~exact linear
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Schroedinger Hamiltoniaﬂ form a complete, orthogonal, linearly superpos-
able set;, while the TDHF "Hamiltonianf‘generates a set of stationary (and
periodic) soiutions which are not mutually orthogonal and which cannot be
superposed to form arbitrary solutions, because of the nonlinearity of the
TDHF equations they obey. - N .

As a result of the non-orthogonality of the TDH? soluﬁions, overlap“-
amplitudes between distinct final channel functions, such és

> >

ae = <<l>g(x,t) |¢f(x,c)> (3)
do not automatically vanish. It follows that under the statistical inter-
pretation of quantum mechanical amplitudes, the statement that a system is
described By‘fhe solution, Qf, must also assert with a probébility, lAgflz’
that a measurement would show it to have the properties of channel {g}.
Then the reaction amplitudes, *j;i’ would not correspond one-to-one with .
the theoretical predictions for measured properties, {f}.

This difficulty also is resolved by the assumption that the ampli—'
tudes (3) must be interpreted not instantaneously, but on a time averaged
basis. Then, not agf of (3),_but its time average vaiue, ‘

t+T

—_— -1 C > > .
ags = 2™ | <¢g(x,t')»|¢f(x,t")>dt', | 4y

t-T
is to be interpreted as the amplitude that a system described by the solu-
tion, ¢f, will be measured to have the physical properties of channel

'{f}.A(In equation (4), T must be taken large enough for a.s to be in-

dependent of the interval, t; in the asymptotic region, this is always
possible.) Then, as was shown in reference [6], the time averaged overlaps

betweén distinct asymptotic channels,

ae =0 {g) # (£}, O

all vanish, if only the energies of the periodic channel solutions.are
discrete and nondegenerate. ' ‘ ‘
Thus, for channel states built upon a discrete nondegenerate set of
periodic'TDHF solutions, the time avéraged channel orthogonaiity property
(5) prevails. Then the one-to-one correspondence between the reaction
amplitudes and the theoretically predicted values of the (now time-aver-
aged) physical measurements which prevails in the exact reéption theory

is retrieved for the TD—gf—HF theory.



IX. REQUANTIZATION AND GAUGE INVARIANCE

- Although it is not known whether the periodic TDHF solutions for
isolated TDHF droplets occur always with a continuous range of emnergies,
Kan, et al. [7] have recently studied special cases for which this situa-
tion prevails. (Note that the harmonic solutions obtained in TDHF in the y
small amplitude approximation'do not suffice as examples to this point,
since one does not know whether or not the corrésponding exact TDHF solu-
tions are truly periodic, obeying for all t the identity,

¢(”t+T)=q>(*t) (6)

or merely approximately s0 over some time interval.) Kan's work therefore
forces one to deal with the Requantization process discussed in reference
[5], by which some set of solutions discrete in energy is selected from
the continuous spectrum of periodic TDHF solutions to serve as reaction
channel wave functions; or else to conclude that the single determinantal
reaction theory, since it would then lack reaction channel orthogonality,
and therefore could not consistently predict physical measurements in one-
to-one correpondence with the reaction channel amplitudes characterizing
'the,reaction process, was of an essentially different character, structur-
ally, from the exact theory—an "intrinsically dissipative"” trajectory
theory, in the terminology of reference [6]

We again proceed by analogy with the Schroedinger theory, this time
utilizing the gauge invariance of its physical content. Then, remarkably,
one finds that the requirement that the TDHF solutions behave like the ex-
act stationary eigenstates, and particularly that they be'invariant under,
gauge transformations, leads to a unique and unambiguous selection of a
discrete set of gauge invariant periodic functions as suitable eigenstate
analogs. ' ‘

' One can view this process as a requantization procedure dictated by
the gauge propertiés. Alternatively, one might take the view that, in
spite of the fact that the periodic spectrum of TDHF solutions may in some
cases be continous, nevertheless the periodic solutioms capable of playing‘
the role of eigenstates, especially'as regards gauge transformation proper-

ties, occur only as a discrete set.

X.GAUGE INVARIANCE OF THE TIME DEPENDENT SCHROEDINGER THEORY
Consider the Schroedinger system characterized by the (time-independent)
Hamiltonian, H, and the set of time—dependent descriptions specified

by the gauge transformed time evolution operators, H sof the form



H=8H+8(t) (7
where 8(t) is an arbitrary space and momentum independent function of
time. . '

Then the physical content of each of the transformed descriptions
is exhausted by the matrices of all the possible physical observables,
é’(x,p). Moreover, every such matrix of the system, H, is identical with

~

the corresponding matrix of the system, H,n element by element

GTEDIEp = @ |TGD v (8)

Equation (8) follows from the fact that a change in B(t) aiters each of
the solutions only by a timé-dependent complex phase‘faetor which is the

-same for every solution, ¥,. (In passing, we contrast this universal

phase factor with the stati-depehdeht phase factors implied by the TDHF
variational principle, as discussed in reference [9].)

Note that among the physical observables, there must.occur the energy
operator, given by the Hamiltonian, H(;,;). We have defined the gauge
transformation (7) as a transformation of the time evolution operator only.
Therefore the energy operdtor, like all the other operators for physical

observables, is unaffected by it.

XI. GAUGE INVARIANCE OF EIGENSTATES
Then consider the time—dependent.Schroedinger solution initiated

at t=tgas an eigenfunction, wk(;)’ such that,

Hy (X) = E v, (). 9

(We use the Greek subscript to distinguish the eigenfunction case from
the more general initial conditions denoted by Latin subscripts ) Such
a time—dependent solution is, for arbltrary gduge, B(t) In (7), of the
form, _ '
; ¥, (K,0) = v, () exp - (WM [E, (e-t) + [ eenaer - o
to
\pl(x) exp - (1/41) tj <y IH(t )l\y >dt’ - an
0
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The latter form (11) 1is written to emphasize the fact that under gauge
transformation, oniy the phase factor is altered, while the stationary
state remalns invariant. Bj.analogy, then, we shall insist that the per-
iodic channel solutions of TDHF must also be invariant under arbitrary

gauge transformationms.

XI1I. TD-,?—HF: PERIODIC STATES AS GAUGE ANALOGS OF EIGENSTATES
In the Hartree-Fock case, consider the “"constant—<¥¥>" solutions de-

fined by the equation,
A[0] - 0 = {MHO[o]+<a|H-H|0} - 0 = ind (12)

and a specified initial-value determinant. The TDHF "Hamiltonian", ¢,
of equation (12) is uniquely prescribed [9] by the variational principle

(0. Thenlsqﬂ)umy be the conventional self-consistent Hartree-Fock Ham-—

iltonian, or that Hamiltonian augmented by an arbitrary additive function
of time only. Now consider the effect upon a periodic solution, ¢p(;,t),
of (12) of a gauge transformation (7). The new solution 1is related to the
old by a phase factor,

~ s t '
O(x,t) = _¢p(§,c) exp- (i/4) [ B(t")dt'. (13)

‘o
Obviously, ¢ need not be periodic even when @p is periodic. Therefore,
it is not possible for periodicity in general to be a gauge invariant prop-
erty. Then to sustain the analogy between the exact theory and TDHF under
gauggAinvariance, we must seek channel solutions in the form of a product
of a perlivdic function and a phase factor determined by II alone; i.e.,
t
<> -> . ' 1 .
o(x,t) = & (x,t) exp- (i/1) f <H(t')>dt (14)
P t
where ¢p is a periodic function satisfying (6). A function of the form
(14) will transform under the gauge transformation of H in precisely the
same way as' the exact solution (11), and the periodic sovlutiun, Qp’ is

precisely the analogy of the stationary eigenstate, wx(x).

XIII. GAUGE INVARIANT TDHF EQUATION

Of course the function (14) must satisfy the TDHF equation (12) im~

plied by the variational principle (1). Then the periodic gactor; ép, of

(14) satisfies the following equation,



p T2 = ifip_. 15

¥ <¢p|9‘(|q>p>]q>p o, (15)
We refer to (15) as the gauge invariant TDHF equation, since it is
manifestly unaffected by any transformation of the form (7).

XIV. CONTINUATION OF PERIODIC TDHF SOLUTIONS: GAUGE REQUANTIZATION

 For certain model problems, Kan shows that equation (12) exhibits,
for time-independent H, a continuous set of periodic solutiéns. But among
- such a continuum, only thbse}solutions whose energy is.rela;ed to the per-
iod by the equality;
' E = 2¢p|u|¢p> = INTh/T (16)

are of the form (14) with a periodic factor which satisifies the gauge .
';invariant'TDHF equation (15). Then (16) selects a discrete subset of the
periodic continuum, for which the Space¥dependent periodic factor; Qp,
is invariant under the gauge transformation (7), exactly as are the eigen—
states of the exact Hamiltonian. A
Thus, condition (16) offers a natural basis for the requantization
of the continuum of periodic TDHF solutions. It selects those periodic
states which rgmain periodic, just as the eigenstates remain sta;ionary,
ﬁnder an arbitrary gauge transformation. In turn, the TD-f-HF channel
waﬁe functions are all initializable in terms of specific periodic
states, no matter what'the cholce of gauge. And their discreteness in en-
ergy guarantees also the mutual (time-averaged) orthogonality property (5)
for them, providing thereby under the statistical interpretation of the
wave funétions, a consistent one-to-one correspondence between the reac-
-tiom émplitudes and the theoretical predictions of the internal droplet
properties. _ _
Alteranatively, one could have sought in the first place as suitable
analogé of the stationary eigenstates only those solutions whose period-
ity 1is a gauge invariant periodic function, like the stationarity of the
' eigenstatgs. Then one would at the outset have recognized only the dis-
crete periodic spectrhm of (15) as acceptable channel states, rather than
the continuous set of periodic solutions of (12). Finally, we note that
Kah,et;al, [7] have also demonstrated the equivalence of the condition (16)
with the Bohr—-Sommerfeld quantization condition for the model examples they
have analyzed, an intriguing. coincidence which is still under study.



XV. SUMMARY

The TDHF description of continuum reactions can be restructured from
an initial—-value problem into a form analogous to the S-matrix Qersion of
the Séhroedinger theory. The resulting TD-xY—HF theory involves -only self-
coﬁsistent éingle determinantal solutions of the TDHF equations, and in-

vokes time averaging to obtain a consistent interpretation of the TDHF

'anaiogs of quantities which are constant in the exact theory, such as

the S—matrix and the asymptotic reaction channel labels.

Periodic TDHF solutions then'play the role of stationary eigenstates,
in the construction of suitable asymptotic reaction channei states. If
these periodic‘channel states occur only at discrete energies, then the
resulting channels are mutually orthogonal (on the time average) and the
theory exhibits a structure fully analogous to ‘the exact theory.

In certain special cases where the periodic solutions are known to
occur as an energy continuum, the requirement that the periodicity of the
channel solutions be a gauge invariént property provides a natural re-—:
quantizafidn condition, which. (suggestively) turns out to be identical
wiph'the Bohr-Sommerfeld quantization rule. ‘
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