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I. INTRODUCTION 

S ince  t h e  TDHF method [ l ]  was f i r s t  computerized a s  a n u c l e a r  model 

[ 2 ] , s t u d i e s  based upon i t s  numerical c a l c u l a t i o n  have burgeoned [ 3 ] .  As a n  

approximation t o  t h e  Schroedinger  equa t ion ,  t h e  p r e c i s e  l i m i t s  of  i t s  ap- 

p l i c a b l e  phys i ca l  r a n g e  have remained l a r g e l y  unspec i f ied .  As a model of 

t h e  Schroedinger sys tem,  deeper  ques t ions  a r i s e  regard ing  t h e  v e r y  phys i ca l  

i n t e r p r e t a t i o n  of t h e  TDHF s o l u t i o n  f o r  t h e  r e a c t i o n  process:  I n  what s ense  

i s  i t  a t  a l l  a  p rope r  Schroedinger  wave func t ion?  Can i t  d e s c r i b e  axripli- 

t udes  f o r  r e a c t i o n s  l e a d i n g  t o  s p e c i f i c  i n t e r n a l  s t a t e s  of t h e  f i n a l  e j ec -  

t i l e s ,  o r  does i t  c o n t a i n  only informat ion  averaged ( i n  what manner?) over  

'many f i n a l  s t a t e s ?  

I n  t h i s  ' pape r  w e  r e v i e w  c e r t a i n  a s p e c t s  of  t h e  -matrix approach t b  

t h e s e , q u e s t i o n s  [ 6 ] ,  and r e p o r t  new developments based on t h e  n a t u r e  of . the 

p e r i o d i c  TDHF s o l u t i o n s  t o  c e r t a i n  model problems [7] .  We propose t h a t  a  

c o n s i s t e n t  d e s c r i p t i o n  of quantum r e a c t i o n  ampli tudes,  which i s  s t r u c t u r a l -  

l y  f u l l y  analogous t o  t h e  Schroedinger t heo ry ,  can  be b u i l t  upon ( t h e  whole 

s e t  o f )  s e l f - c o n s i s t e n t  TDHF s o l u t i o n s ,  provided t h a t  t h e  asymptot ic  chan- 

n e l  s t a t e s  a r e  b u i l t  from gauge i n v a r i a n t .  p e r i o d i c  s o l u t i o n s ,  and t h e  phys- 

i c a l  imp l i ca t ions  of t h e  t h e o r y . a r e  i n t e r p r e t e d  on a t ime averaged b a s i s .  

1I.COMHON VARIATIONAL ORIGINS OF TDW AND SCHROEDINCER THEORIES 
t 

The V a r i a t i o n a l  P r i n c i p l e ,  

' imp l i e s  t h e  e x a c t  n o n - r e l a t i v i s t i c  time-dependent Schroedinger  e q u a t i o n  

[R]. f f  t h e  wave f u n c t i o n  Y i s  r e q u i r e d  t o  be a  s i n g l e  de te rminant ,  t h e  

same p r i n c i p l e  y i e l d s  t h e  unique "constant-<*" time-dependent Har t ree-  
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~ o c k  eqiiation [ 9 ] .  Since t h e  o r i g i n s  of  t h e  TDHF model and those  of the  

. 'Schroedinger theory l i e  so  c l o s e ,  a  c l o s e  s t r u c t u r a l  p a r a l l e l  between them 

. 'a. 
i s  reasonably t o  be expected. It i s  t h a t  analogy which i s  discussed i n  

t h i s  paper. 

111. SIX ASPECTS OF THE TDHF-SCHROEDINGER PARALLELISM 

The discuss ion w i l l  consider  s i x  i n t e r r e l a t e d  a s p e c t s  of t h e  TDHF- 

Schroedinger pa ra l l e l i sm;  a s  fo l lows,  

a )  The Asymptotici ty of t h e  r e a c t i o n  theory---whether i t s  pre- 

d ic t ed  r e s u l t s  depend upon t h e  p r e c i s e  l o c a t i o n  of  t h e  d i s t a n t  meas- 

ur ing  appara tus  o r  n o t ;  

b )  The P e r i o d i c i t y  of s o l u t i o n s  f o r  i s o l a t e d  systems; 

c )  Time Averaging, under which pe r iod ic  s o l u t i o n s  become char- 

a c t e r i z e d  by cons tan t s  and allowed a  r o l e  analogous t o  the  s t a t i o n a r y  

s t a t e  e igenso lu t ions  of the  exac t  theory;  

d )  Asymptotic Channel Orthogonali ty,  which does  not  p r e v a i l  a- 

mong the  s o l u t i o n s  of the  non-l inear  TDHF theory ,  bu t  which by 

time averaging can be regained f o r  asymptotic channels  desc r ib ing  

p e r i o d i c a l l y  v i b r a t i n g  d r o p l e t s ,  provided t h a t  t h e i r  ene rg ies  a r e  

d i s c r e t e  r a t h e r  than continuous; 

e )  Requantizat ion,  by which c e r t a i n  pe r iod ic  s o l u t i o n s  of d is -  

c r e t e  energy can be s e l e c t e d  from a continuum of p e r i o d i c  s o l u t i o n s  

t o  $enre the  r o l ?  analogous wi th  t h a t  6f  the  channel  eigenfl inct ions 
' ., 

of the  exact  theory;  

f )  Gauge Invariance--the proper ty  of  t h e  e x a c t  e igenso lu t ions  

which o f f e r s  a  n a t u r a l  basis f o r  t h e  r e q u a n t i z a t i o n  of the contin-  

uous pe r iod ic  TDHF spectrum (and which,leads,,remarkably, f o r  cer- 

' t a i n  model problems t o  the  same quant ized  s t a t e s  as t h e  Bohr-Sommer- 

f e l d  quan t i za t ion  r u l e s  would s e l e c t ) ,  

I V .  ASYMPTOTICITY I N  A REACTION THEORY 

I n  t h e  exact  Schroedinger theory ,  t h e  wave f u n c t i o n  desc r ib ing  the  : 

system f o r  t imes long a f t e r  the  c o l l i s i o n  process can be  expgnded upon a  

complete mutually orthogonal  b a s i s  of channel s t a t e s ,  c o n s t r u c t e d  from the  
. .  . 

e igeno ta tcs  of every p o s s i b l e . p a i r  of fragments, and the func t ions  des- 

c r i b i n g  t h e i r  r e l a t i v e  motion: It fol lows t h a t  the  p r o b a b i l i t y  o f  meas- 

u r i n g . ~  c e r t a i n  value f o r  any i n t e r n a l  phyeica l  p roper ty  of en e j e c t e d  



fragment i s  predic ted  not  t o  depend upon the  p rec i se  l o c a t i o n  of the  meas- 

uring, apparatus with r e spec t  t o  the  c o l l i s i o n  volume, provided only t h a t  . 
i t  i s  s u f f i c i e n t l y  d i s t a n t  t o  guarantee t h a t  the  i n t e r a c t i o n s  between t h e  

I!* . 
fragments vanish. This  independence of t h e  p red ic t ive  c o n t e n t  of a  reac- 

t i o n  ' theory of t h e  p r e c i s e  l o c a t i o n  of the  measurement, w e  r e f e r  t o  a s  t h e  

"Asymptoticity" proper ty  of t h e  theory. Clearly t h e  Schroedinger theory 

e x h i b i t s  t h i s  property.  

V. INITIAL VALUE TDHF THEORY LACKS ASYMPTOTICITY 

Asymptoticity i s  no t  a  genera l  proper ty  of t h e  convent ional  i n i t i a l  

va lue  TDHF theory,  because of t h e  f a c t  t h a t  the  se l f -cons is tency cond i t ion  

l eads  t o  a  time evolut ion  opera to r  ( t h e  Hartee-Fock "Eiamiltonian", s) 
which i s  a  func t iona l  of i t s  s o l u t i o n ,  and the re fo re  c o n t i n u e s -  t o  be time- 

dependent, even long a f t e r  t h e  c o l l i s i o n .  Needless t o  s a y ,  t h i s  non-asymp- 

p t o t i c i t y  of TDHF l i e s  a t  the  r o o t  of t h e  d i f f i c u l t i e s  of  t h e  p r e c i s e  in-  

t e r p r e t a t i o n  of t h e  physica l  impl ica t ions  of conventional  i n i t i a l - v a l u e  

TDHF d e s c r i p t i o n s  of complex reac t ions .  A s  a  r e s u l t ,  o n l y  a  few " t r a j e c -  

tory"  c h a r a c t e r i s t i c s  which remain constant  once the  fragments s e p a r a t e  

-have been ex t rac ted  from the  numerical TDHF s t u d i e s  o f  nuclear  systems, i n  

pa le  c o n t r a s t  with t h e  r i c h . d e t a i 1  which the  corresponding Schroedinger 

s o l u t i o n  would, i n  p r i n c i p l e ,  y i e ld .  For what use fu i  meaning could be 

a t t r i b u t e d  t o  t h e o r e t i c a l l y  p red ic ted  r e a c t i o n  ampl i tudes  which vary with 

the. l .ocat ion of the  counting appara tus?  

Thus, al though the  expecta t ion  has f requent ly  been expressed t h a t  s u c h '  

an i n t e r p r e t a t i o n  would be found f o r  t h e  l a t e  time wave func t ions  of con- 

ven t iona l  i n i t i a l - v a l u e  TDHF theory ,  only one r e p o r t  o f  an e x p l i c i t  at tempt 

i s  known t o  t h e  present  authors  [LO]. The r e s u l t  was that the  expansion 

c o e f f i c i e n t s  remained time-dependent i n d e f i n i t e l y .  ' 

V I .  TD-d-HF: ASYMPTOTICITY AND PERIODICITY 

In  the  TD-d-HF r e s t r u c t u r i n g  of the  s i n g l e  d e t e m i n a n t a l  reac- 

t i o n  theory  [5], t h e  S-matr ix  analog,  
T, 

I I L I L A 
d T1 

descr ibes  the  t r a n s i t i o n  p r o b a b i l i t y  from an i n i t i a l  t o  a  f i n a l  self-con- 

s i s t c n t  TDHF r e a c t i o n  channel. Tn rekerence [6]  t h e  fotm ( 2 )  f o r d  i 6  

obtained h e u r i s t i c a l l y  by analogy wi th  t h e  exact  ~ c h r o e d i n ~ e r  theory i n  



I 

. . such a way t h a t  i t  reduces exac t ly  t o  t h e  S-matr ix  when t h e  s i n g l e  de ter -  

minantal so lu t ions ,  @,, a r e  a l s o  s o l u t i o n s  of the  e x a c t  Schroedinger equ- 

a t ion .  ~ n ' a d d i t i o n ,  t h e  palpable phys ica l  e r r o r  in t roduced by t h e  conven- 

. G -. t i o n a l  Hartree-Fock desc r ip t ion  dur ing the  postbreakup phase, when the  des- 

c r i p t i o n  of s e v e r a l  channels i s  imposed upon the  s i n g l e  determinant ,  is 

.el iminated from t h e  theory. 

Under t h e  ansa tz  ( 2 )  the  s i n g l e  d e t e r m i ~ n t a l  d e s c r i p t i o n  i s  re leased  

from t h e  narrow c o n s t r a i n t s  of t h e  i n i t i a l  value formulat ion.  One r e s u l t  

i s  a freedom, and a need, t o  s e l e c t  r e a c t i o n  "channels" s u i t a b l e  f o r  t h e  

physica l  desc r ip t ion  required. Then by s e l e c t i n g  t h e  r e a c t i o n  channels s o .  
. . 

a s  t o  a s su re  t h a t  t h e  physical  p r o p e r t i e s  of the, emergent d r o p l e t s  remain 

constant  i n  t i m e ,  one achieves t h e  f i r s t  s t e p  towards guarantee ing asymp- 

t o t i c i t y  f o r  t h e  new theory. 

This  condi t ion  r e q u i r e s  t h a t  a r e a c t i o n  channel wave func t ion  must 

descr ibe  s t a t i o n a r y  TDHF s t a t e s  of t h e  emergent d r o p l e t s .  Or, i f  pe r iod ic  

TDHF s t a t e s  a r e  allowed a s  channel s t a t e s ,  then  t h e i r  phys ica l  p r o p e r t i e s  

can be considered a s  cons tant  i f  i n t e r p r e t e d  on a time-averaged basis .  

V I I .  TIME AVERAGING I N  THE TD-$-HF THEORY 

! The use of p e r i o d i c  s o l u t i o n s  t o  play t h e  r o l e  of t h e  exact  eigen- 

s t a t e s  f o r  the  d e s c r i p t i o n  of TDHF d r o p l e t s  i n  the  asymptotic  channel 

s t a t e s . ,  implies t h a t  t h e i r  asymptot ica l ly  cons tant  phys ica l  cha rac te r i s -  

t i c a m u s t  be cha rac te r i zed  by time averages (over t h e  pe r iod)  of phys- 

i c a l  operator.. We n o t e  t h a t  a l s o  i n  the  d e f i n i t i o n  of 2, t h e  time 
. . .  

average defined by equat ion  ( 2 )  was a consequence of t h e  f a c t  [6] t h a t  

the  over lap  of two TDHF s o l u t i o n s ,  i n  c o n t r a s t  with t h e  S-matr ix  over lap  

between exact  s o l u t i o n s ,  i s  not  cons tan t  i n  time. Thus (2)  s p e c i f i e s  

t h a t  t h e  r e a c t i o n  amplitude i s  i s  t o  be obtained by time-averaging 

over the  whole i n t e r a c t i o n  i n t e r v a l .  

. V I I I .  TIME AVERAGING AND ASYMPTOTIC CHANNEL ORTHOGONALITY 

S t i l l  a t h i r d  cause f o r  a time averaged i n t e r p r e t a t i o n  a r i s e s  now 

i n  connection with the  asymptot ic i ty  of the  channel s t a t e s  b u i l t  upon t h e  

pe r iod ic  TDHF s o l u t i o n s  proposed t o  desc r ibe  the  d rop le t s - - th i s  time 

stemming from t h e  mutual non-orthogonality of such s o l u t i o n s .  Here again  

wc ,dea l  with a dev ia t ion  of the TDHF from t h e  exact  theory  yhich arises 

from t h e  se l f -cons is tency condi t ion:  t h e  e i g e n s t a t e s  of t h e  exac t  l i n e a r  



Schroedinger Hamiltonian form a complete, orthogonal, linearly superpos- 

able set, while the TDHF "Hamiltonian" generates a set of stationary (and 

periodic) solutions which are not mutually orthogonal and which cannot be , ' 

superposed to form arbitrary solutions, because of the nonlinearity of the 

TDHF equations they obey. 

As a result'of the non-orthogonality of the TDHF solutions, overlap ' .  

amplitudes between distinct final channel functions, such as 

do not automatically vanish. It follows that under the statistical inter- 

'pretation of quantum mechanical amplitudes, the statement that a system is 

described by the solution, 6 must also assert with a probability, 1 a I*, f' . gf 
that a measurement would show it to have the properties of channel' ( g) . - 
Then the reaction amplitudes, dfi, would not correspond one-to-one with 

the .theoretical predictions for measured properties;'. {f ). 
This difficulty a1so.i~ resolved by the assumption that the ampli- 

tudes (3) must be interpreted not instantaneously, but on a time averaged 

basis. Then, not a of (3), but its time average value, 
g f 

7 

t+'T 
a g f = ( 2 ~ ) - 1  j .  <Q (Z,tl)l~f(Z,tf)>dtl, 

g 
( 4  s 

t -.T 

is to be interpreted.as the amplitude that a system described by the solu- 

tion, Q will be measured to have the physical properties of channel 
f' - 

if). (In equation ( 4 ) ,  T must be taken large enough for a to be in- 
. gf 

dependent of the interval, a r ;  in the asymptotic region,-this is always 

possible.) Then, as was shown in reference [ 6 ] ,  the time averaged overlaps 

between distinct asymptotic channels, 

all vanish, if only the energies of the periodic channel solutions.are 

discrete and nondegenerate. 

Thus, for channel states built upon a discrete nondegenerate set,of 

periodic. TDHF solutions, the time averaged channel orthogonality property 

(5) prevails. Then the one-to-one correspondence between the reaction 

amplitude6 and the theoretically predicted values of the (now time-aver- 

aged) physical measurements which prevails in the exact rea~tion theory 

is retrieved for the TD-d-HF theory. 



I X .  REQUANTIZATION AND GAUGE INVARIANCE 
, . 

Although i t  i s  not  known whether the  pe r iod ic  TDHF s o l u t i o n s  f o r  

i s o l a t e d  TDHF d r o p l e t s  occur always wi th  a continuous range  of ene rg ies ,  

Kan, e t  a l .  [7]  have r e c e n t l y  s t u d i e d  s p e c i a l  cases  f o r  which t h i s  s i t u a -  

t i o n  prevai ls .  (Note t h a t  t h e  harmonic s o l u t i o n s  ob ta ined  i n  TDHF i n  t h e  

sinall amplitude approximation do not '  s u f f i c e  a s  examples t o  t h i s  po in t ,  

s i n c e  one does no t  know whether o r  n o t  t h e  corresponding exac t  TDHF solu-  

t i o n s  a r e  t r u l y  pe r iod ic ,  obeying f o r  a l l  t the  i d e n t i t y ,  

Q ~ G , ~ + T )  = @ d,  t )  (6) 
P 

o r  merely approximately so over some time i n t e r v a l . ) ,  Kan' s work t h e r e f o r e  

fo rces  one t o  dea l  with t h e  Requantizat ion process d i scussed  i n  r e f e r e n c e  

[ 5 ] ,  by which some s e t  of s o l u t i o n s  d i s c r e t e  i n  energy i s  s e l e c t e d  from 

the  continuous spectrum of p e r i o d i c  TDHF s o l u t i o n s  t o  s e r v e  a s  r e a c t i o n  

channel wave..functions; o r  e l s e  t o  conclude t h a t  t h e  s i n g l e  de terminanta l  

r e a c t i o n  theory,  s ince  i t  would then l a c k  r e a c t i o n  channel  o r thogona l i ty ,  

and the re fo re  could not  co 'ns i s t en t ly  p r e d i c t  phys ica l  measurements i n  one- 

to-one correpondence with t h e  r e a c t i o n  channel ampl i tudes  c h a r a c t e r i z i n g  
. . 

, t h e ,  r eac t ion  process,  was of an  e ' s s e n t i a l l y  d i f f e r e n t  cha rac te r ,  s t r u c t u r -  

a l l y ,  from the  exact  theory-an " i n t r i n s i c a l l y  d i s s i p a t i v e "  t r a j e c t o r y  

theory ,  i n  the  terminology of r e f e r e n c e  [6].  . . 

We again  proceed by analogy wi th  t h e  Schroedinger theory,  t h i s  t i m e  

u t i l i z i n g  the  gauge invar iance  of i t s  physica l  con ten t .  Then, remarkably, 

one f i n d s  t h a t  t h e  requirement t h a t  t h e  TDHF s o l u t i o n s  behave l i k e  the  ex- 

a c t  s t a t i o n a r y  e i g e n s t a t e s ,  and p a r t i c u l a r l y  t h a t  t h e y  be i n v a r i a n t  under 

gauge t ransformat ions ,  l e a d s  t o  a  unique and unambiguous s e l e c t i o n  of a  

d i s c r e t e  set of gauge i n v a r i a n t  p e r i o d i c  func t ions  a s  s u i t a b l e  e i g e n s t a t e  

analogs. 

One can view t h i s  process a s  a  r equan t i za t ion  procedure d i c t a t e d  by 

the  gauge proper t ies .  A l t e r n a t i v e l y ,  one might t a k e  t h e  view t h a t ,  i n  

s p i t e  of t h e . f a c t  t h a t  t h e  p e r i o d i c  spectrum of TDHF s o l u t i o n s  may ' in some 

cases  be continous,  never the less  t h e  pe r iod ic  s o l u t i o n s  capable of p laying 

t h e  r o l e  of e i g e n s t a t e s ,  e s p e c i a l l y ' a s  regards  gauge t ransformat ion  proper- 

t i e s ,  occur only a s  a  d i s c r e t e  s e t .  

* X.GAUGE INVARIANCE OF THE TIME DEPENDENT SCHROEDINGER THEORY 

Cons tdqr t h e  Schroedinger sys tea charac te r i zed  by t h e  (t ime-independent) 

~ a m i l f o n i a n ,  H, and the  set of  time-dependent d e s c r i p t i o n s  s p e c i f i e d  .. 
by t h e  gauge transformed time evo lu t ion  opera to r s ,  H,of t h e  form 



where @ ( t )  i s  an  a r b i t r a r y  space and.momentum independent func t ion  of 

time. 

Then t h e  physica l  content  of  each of t h e  transformed d e s c r i p t i o n s  

is. exhaus'ted by t h e  matr ices  of a l l  t h e  poss ib le  p h y s i c a l  observables,  
3 3 

@ ( x , ~ ) .  Moreover, every such matr ix  of t h e  system, 8, i s  i d e n t i c a l  with 
C 

t he  corresponding matr ix  of the  system, H ,  element by element, 

Equation (8) fol lows from the  f a c t  t h a t  a  change i n  B ( t )  a l t e r s  each of  

t h e  s o l u t i o n s  only by. a  time-dependent complex phase f a c t o r  which i s  t h e  

same f o r  every' so lu t ion , 'Y  ( I n  passing,  we c o n t r a s t  t h i s  un ive r sa l  
i* . . 

phase f a c t o r  with t h e  state-dependent phase f a c t o r s  implied by t h e  TDHF 

v a r i a t i o n a l  . . p r i n c i p l e ,  a s  d iscussed i n  reference  [9] .)  

Note t h a t  among t h e  physica l  observables,  t h e r e  must occur t h e  energy 
3 -+ 

opera to r ,  g iven by the  Hamiltonian, H(x,p). We have de f ined  t h e  gauge 

t ransformat ion  (7)  a s  a  t ransformat ion  of the  time e v o l u t i o n  opera tor  only. 

Therefore t h e  energy operator, ,  l i k e  a l l  t he  o the r  o p e r a t o r s  f o r  physica l  

o b s e r v a b l e ~ ,  i s  unaffec ted  by it. 

X I .  GAUGE INVARIANCE OF E IGENSTATES 

Then consider  t h e  time-dependent Schroedinger s o l u t i o q  i n i t i a t e d  
3 

a t  . t = Q a s  an e igenfunct ion ,  $X(X), such t h a t ,  

(We use the  Greek s u b s c r i p t  t o  d i s t i n g u i s h  t h e  e igenfunc t ion  case  from 

t h e  more genera l  i n i t i a l  condi t ions  denoted by La t in  s u b s c r i p t s . )  Such 

a time-dependent s o l u t i o n  I s ,  lor a r b i t r a r y  gauge, B(t) In (7 ) ,  of the  

form, 
-+ 3 

t 
. Y,(x,t) = $,(XI e*p - (i/*) [EA(t-to) + I B ( t 1 ) d t ' 1  (10) 

3 
t 

= $,(XI exp - (i/*) < ~ , l i ( t ' )  l ~ ~ > d t ' .  - (11) 

' .  



The l a t t e r  form (11) i s  w r i t t e n  t o  emphasize the  f a c t  t h a t  under gauge 
' . t ransformation,  only t h e  phase f a c t o r  i s  a l t e r e d ,  while t h e  s t a t i o n a r y  

, e s t a t e  remains invar i an t .  B~ analogy,  then,  we s h a l l  ins i s t  t h a t  t h e  per- 

i o d i c  channel s o l u t i o n s  of TDHF must a l s o  be i n v a r i a n t  under a r b i t r a r y  
G 

. - gauge transformations.  

In  the  Hartree-Fock case ,  cons ider  t h e '  "constant-&>" s o l u t i o n s  de- 

f ined by the  equat ion ,  

and a spec i f i ed  i n i t i a l - v a l u e  determinant.  The TDHF " H a m i l  tonian" , s, 
of equation (12) i s  uniquely p resc r ibed  [9] by t h e  v a r i a t i o n a l  p r i n c i p l e  

0 
(1) .  Then ';;lf may be the  conventional  se l f - cons i s t en t  Hartree-Fock Ham- 

i l t o n i a n ,  o r  t h a t  h m i l t o n i a n  augmented by an  a r b i t r a r y  a d d i t i v e  f u n c t i o n  

o f .  time only. Now consider  t h e  e f f e c t  upon a  pe r iod ic  s o l u t i o n ,  Q ( z , t ) ,  
P  

of (12) of a  gauge t ransformat ion  (7) .  The new s o l u t i o n  i s  r e l a t e d  t o  t h e  

o l d  by a phase f a c t o r ,  

- 3  . L 
-+ 

Q ( x , t )  = Q ( x , t )  exp - (il*) I B( . t l )d t ' .  
P  

A 

Obviously, Q need not  be pe r iod ic  even when Q is  pe r iod ic .  Therefore,  
P  

i t  is  not poss ib le  f o r  p e r i o d i c i t y  i n  genera l  t o  be a  gauge i n v a r i a n t  prop- 

e r t y .  Then t o  s u s t a i n  the  analogy between t h e  exact  theory  and TDHF under 

gauge invar iance ,  we must seek channel s o l u t i o n s  i n  t h e  form of a  product 

of  a per ludlc  f ~ ~ c t i o ~ i  a~lll  a  phase f a c t o r  determined by I1 alone;  i.e., 

-+ -b 
t 

~ ( x , t )  = Q ( x , t )  e x p -  ( i I 5 )  I < H ( t ' ) > d t l  
P 

where Q i s  a  p e r i o d i c  func t ion  s a t i s f y i n g  .(6). A f u n c t i o n  of t h e  form 
P 

(14) w i l l  t ransform under t h e  gauge t ransformat ion  of  H i n  p r e c i s e l y  t h e  - 

same way as.the exact s o l u t i o n  ( l l ) ,  and t h e  pe r iod ic  s u l u t l u n ,  8 i s  
P ' 

p r e c i s e l y  the  analogy of the  s t a t i o n a r y  e i g e n s t a t e ,  JIA(x). 

XII I. GAUGE INVARIANT TDHF EQUATION 

, . Of course t h e  func t ion  (14) must s a t i s f y  t h e  TDHF equat ion  (12) im-  

.pl ied by the  v a ~ i a t i o n a l  p r i n c i p l e  (1). Then the  p e r i o d i c  gactor ,  @p of 

(14) s a t i s f i e s  t h e  following equat ion ,  



W -  ~mpl~lmp>lrp = in; . 
P 

We refer to (15).as the gauge invariant TDHF equation, since it is 

manifestly unaffected by any transformation of the form (7). 
44' 

t .  
. - 

XIV. CONTINUATION OF PERIODIC TDHF SOLUTIONS: GAUGE REQUANTIZATION 

For certain model problems, Kan shows that equation (12) exhibits, 

for time-independent H, a continuous set of periodic solutions. But among 

such a continuum, only those solutions whose energy is related to the per- 

iod by the equality, 

are of the form (14) with a periodic factor which satisifies the gauge. 

,invariant 'TDHF equation (15)... Then (16) selects a discrete subset of the 

periodic continuum ,. for which the space-dependent periodic factor.; 4 
P' 

.is invariant under the gauge transformation ( 7 ) ,  exactly as are the eigen- 

states of the exact Hamiltonian. 

Thus, condition (16) offers a natural basis for the.requantization 

of the continuum of periodic .TDHF solutions. It selects those perio'dic 

states which remain periodic, just ,as the eigenstates remain stationary, 

under an arbitrary gauge transformation. In turn, the TD-2-HF channel 

wave functions are all initializable in terms of specific periodic 

states, no matter what the choice of gauge. And their discreteness in en- 

ergy guarantees also the mutual (time-averaged) orthogonality property (5) 

for them, providing thereby under the statistical interpretation of the 

wave functions, a consistent one-to.-one correspondence between the reac- 

.tion amplitudes and the theoretical predictions of the internal droplet 

properties. 

Alternatively, one could have sought in the first place as suitable ' . 

analogs of the stationary eigenstates only those solutions whose period- 
1 

ity is a gauge invariant periodic function, like the stationarity of the 

?igenstates. Then one would at the ' outset have recognized qnly the dis- 
c+, crete periodic spectr'um of (15) as acceptable channel states, rather .than 

the continuous set of periodic solutions of (12). Finally, we note that 
* Kan,et.al, [7] have also demonstrated the equivalence of the condition (16) 

with the Bohr-Somerfeld quantization condition for the mod=l examples they 
have analyzed, an intriguing, coincidence which is still undgr study. 



xv. SUMMARY 

The TDHF d e s c r i p t i o n  of cont inuum r e a c t i o n s  can  b e  r e s t r u c t u r e d  from 
'! a n  i n i t i a l - v a l u e  problem i n t o  .a form ana logous  t o  t h e  S l n a t r i x  v e r s i o n  of 

t h e  ~ ' c h r o e d i n ~ e r  theory.  The r e s u l t i n g  TD-$-HF t h e o r y  i n v o l v e s  .only s e l f -  
U 

c o n s i s t e n t  s i n g l e  d e t e r m i n a n t a l  s o l u t i o n s  of t h e  TDHF e q u a t i o n s ,  and i n -  
, . 

. - 
vokes t ime averaging t o  o b t a i n  a c o n s i s t e n t  i n t e r p r e t a t i o n . o f  t h e  TDHF 

'ana logs  of q u a n t i t i e s  'which a r e  c o n s t a n t  i n  t h e  e x a c t  t h e o r y ,  such  as 

t h e  S -ma t r ix  and t h e  a sympto t i c  r e a c t i o n  channel  l a b e l s .  

Pe r iod ic  TDHF s o l u t i o n s  t h e n  p l a y  t h e  r o l e  of s t a t i o n a r y  e i g e n s t a t & s ,  

i n  t h e  c o n s t r u c t i o n  of  s u i t a b l e  a sympto t i c  r e a c t i o n  c h a n n e l  s t a t e s .  I f  
. . 

t h e s e  p e r i o d i c  channel  s t a t e s  o c c u r , o n l y  a t  d i s c r e t e  e n e r g i e s ,  t hen  t h e  

r e s u l t i n g  channels  a r e  m u t u a l l y  o r t h o g o n a l  (on  t h e  time. a v e r a g e )  and t h e  

t h e o r y , e x h i b i t s  a  s t r u c t u r e  f u l l y  ana logous  t o ' t h o  e x a c t  theory.  

I n  c e r t a i n  s p e c i a l  c a s e s  where t h e  p e r i o d i c  s o l y t i o n s  a r e  known t o  

occur  a s  a n  energy continuum, t h e  requi rement  t h a t  t h e  p e r i o d i c i t y  of t h e  

; channel  s o l u t i o n s  be a  gauge  i n v a r i a n t  p r o p e r t y  p r o v i d e s  a n a t u r a l  re - -  

q u a n t i z a t i o n  cond i t i on ,  w h i c h - ( s u g g e s t i v e l y )  t u r n s  ou t  t o  be  i d e n t i c a l  . .  

with,  ' t h e  Bohr-Sommerfeld q u a n t i z a t i o n  r u l e .  
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