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ABSTRACT

We suggest that ‘the TDHF method be viewed, not as an approximation to
but as a model of the exact Schrddinger system; that is, as a gedanken many-
body experiment whose analysis with digital computers provides data worthy
in itself of theoretical study. From such a viewpoint we focus our atten-
tion on the structural analogies of the TDHF system with the exact theory
rather than upon its quantitative equivalence, and we study the TDHF many-
body system as a challenge of its own which, although much simpler than
the realistic problem, may still offer complexity enough to educate

theorists in our present state of knowledge.

In this spirit, the TDHF description of continuum reactions can be re-
structured from an initial-value problem into a form analogdus.to the S-
matrix version of tha Schrbdinger theory. The resulting TD- of-HF theory
involves only self-consistent single determinantal solutions of the TDHF
equations and invokes time averaging to obtain a consistent interpretation
of the TDHF analogs of quantities which are constant in the exact theory,

such as the S-matrix and the asymptotic reaction channel characteristics.

Periodic solutions then play the fole of stationary eigenstates in the
construction of suitable asymptotic reaction channels. If these periodic
. channel states occur only at discrete energies, then the resulting chan-
nels are mutually orthogonal (on the time average) and the theory exhibits
. a structure fullyanalogous ﬁo the exact theory. In certain special cases
where the periodic solutions are known to occur as an energy continuum, the
requirement that the periodicity of the channel solutions be gauge invariant
provides a natural requantization condition which (suggestively) turns out : Q
)

to be identical with the Bohr-Sommerfeld quantization rulemsmmmm% oF 1:H|S DGCUTIENT 15 UNLINITED



I. INTRODUCTION

Since the TDHF method [1] was first computerized as a nuclear model [2),

studies based upon its numerical calculation have burgeoned [3]. As an

approximation to the Schrddinger equation, the precise limits of its applic-

able physical range have remained largely unspecified. As a model pf the
Schrodinger system, stemming from the same variational principle with only
the single additional restriction to single determinants, deeper questions

arise regarding the very interpretation of the TDHF solution for the reac-

tion process: In what sense is it at all a proper Schridinger wave function?

Can it describe amplitudes for reactions leading to specific internal states

of the final ejectiles, or does it contain only information averaged (in
what manner?) over many final states? Or more generally, what is the pre-
cise effect on the physical content and the mathematical structure of the

theory of the additional restriction to single determinants?

In addition, certain fundamental difficulties in the interpretation
of sovlutions c¢alculated to describe reactions remain unsolved and appear
insoluble within the init{ial value TDHF framework. For example, conven-
tionalATDHF predicts an amplitude for the internal characteristics of the
ejectile which depends upon the location of the measuring apparatus (non-
asymptoticity)., In addition, the mean field so essential to the whole
method is structurally incapahle of describing adequately the full kinema-

tic range of final reaction channels (spurious cross-channel correlation).

Iﬁ this paper we review certain aspects of the ;?—matrix approach to
these questions [6], and report new developments based on the nature of
the periodic TDHF solutions to certain model problems [7]. We show that

a consistent description of quantum reaction amplitudes, which is struc- .



turally fully analogous to the Schrddinger theory, can be built upon (the

whole set of) self-consistent TDHF solutions, provided that the asymptotic

" channel states employ gauge invariant periodic solutions as the analogs of
Schrédinger eigenstates and the physical implications of the fheory are

interpreted on a time-averaged basis. The corollary implication for nuclear

structure theory, that gauge invariant periodic TDHF solutions are the ap-

propriate "TDHF-eigensolutions" for describing bound states in the time- .

dependent framework is noted [7].

II. COMMON VARIATIONAL ORIGINS OF TDHF AND SCHRODINGER THEORIES

The Variational Principlet
2
61 = § J <¥|(H-if3/at) |¥>dt' =0 (1)
51
implies the exact nonrelativistic time-dependent SchrBdinger equation [8].
If the wave function ¥ is required to be a single determinant, the same
principle yields the unique "Constant—<3¥3" time-dependent Hartree-Fock
equation [9]. Since the origins of the TDHF model and those of the
Schrddinger theory lie so close, a close structural.parallel between them
is reasonably to be expected. It is that analogy which is discussed in

. this paper.

III. SIX ASPECTS OF THE TDHF-SCHRODINGER PARALLELISM
The discussion will consider six interrelated aspects of the TDHF-
Schrddinger parallelism, as follows; - _ '

(a) the Asymptoticity of the reaction theory--whether its predicted
results depend upon the precise location of the distant measuring
apparatus or not;

(b) the Periodicity of solutions for isolated system;

(c) Time-Averaging, under which periodic solutions become character-
ized by constants and allowed a role analogous to the stationary
state eigensolutions of the exact theory;

(d) Asymptotic Channel Orthogonality, which does not prevail among
the solutions of the nonlinear TDHF theory, but which by time -
averaging can be regained for asymptotic channels describing
periodically vibrating droplets, provided that their energies are
discrete rather than continuous; | 5

(e) Requantization, by which certain periodic solutions of discrete

energy can be selected from a continuum of periodic solutions



to serve the role analogous with that of the channel eigenfunc-
tions of the exact theory;

(f) Gauge Invariance--the property of the exact eigensolutions which
offers a natural basis for the requantization of'the continuoﬁs
periodic TDHF spectrum (and which leads, remarkably, for certain
model problem to the same quantized states as the Bohr-Sommerfeld

quantization rules would select).

IV. ASYMPTOTICITY IN A REACTION THEORY

In the exact Scﬁrﬁdinger theory, the wave function desecribing the sys-
tem for times l1nng after the collisiovn prucess can be expanded upon .2 com-
plete mutually orthogonal basis of channel states, constructed from the
eigenstates of every possible pair of fragments, and the functions describ-
ing their relative motion. It follows that the probability of measuring
a certain value for any internal physical property of an cjected fraguent
- is predicted not to depend upon the precise location of the measuring
apparatus with respect to the collision volume, provided only that it ié .
sufficiently distant to guarantee that the interactions between thé frag-
ments vanish. This independence of the bredictive content of a reaction
theory of the.precise location of the measurement, we refer to as the
"Asymptoticity' property of the theory. Clearly the Schriddinger theory
exhibits this property.

V. INITIAL VALUE TDHF THEORY LACKS ASYMPTOTTCITY

Asymptoticity is not a general property of the conventioﬁal‘initial
_ value TDHF theory, because of the fact that the self-consistency condition
1éads to a time evolution operator (the Hartree-Fock "Hamiltonian", 3¢)
which is a functional of its solution, and therefore continues to be time-
dependent, even long after the collision. Needless to say, this non-asymp-
toticity of TDHF lles at the root of the difficulties of the precise inter-
pretation of the physical implications of conventional initial-value TDHF
descriptions of complex reactions. As a result, only a few "trajectory"
characteristics, which remain ‘constant once the fragments separate have
been extracted from the numerical TDHF studies of nuclear system, in pale
contrast with the rich detail which the corresponding Schr8dinger solution
would, in principle, yield. For what useful meaning could be attributed
to theoretically predicted reaction amplitudes which vary with the location

of the counting apparatus?



Thus, although the expectation has frequently been expressed that some
such an unambiguous interpretation would be found for the late time wave
functions of conventional intitial-value TDHF theory, only ene report of an
explicit attempt is known to the present authors [10]. The result was that

the expansion coefficients remained time-dependent indefinitely.

VI. TIME-DEPENDE&T s§#-MATRIX HARTREE-FOCK REACTION THEORY

. The TD—;?—HF approach to the single determinantal reaction theory [6]
has been evolved by requiring the closest possible analogy between the
self-consistent TDHF'description and the exact Schrédinger theory. -In par-
ticular, the general requirement has been .imposed at every stage that the
TDf,y—HF must reduce identically to the Schrddinger description in case the

exact solution happens to be a single determinant.

The S-matrix form of the Schrédinger reaction theory for localized
wave packets has been chosen as the model to be imitated. Thus, the sym-lf
metry in time which that theory displays is retained, together with the
clbse parallel impligd between possible initial and final reaction channel

states.

Two rigidvconditions imposed upon the theory have been set as axioms,
The first specifies the‘precise meaning of TDHF self-consistency, by re-
quiring that every wave function allowed in the theory must be a single de-
terminaht and must propagate in time according to the self-consistent TDHF
equation, '

Axiom (A): HLe) - ¢ = ifio. (2)

The second requires every wave function allowed in the theory to be
subject to the statistical interpretation of quantum mechanics, in the

sense that the spatial integral,

Axiom (B): ag; = <t je>, . (3)

£i

specifies the probability amplitude that a system described by ¢, will under

physical measurement exhibit the characteristics of the system discribed by
¢f.
Without Axiom (A) a theory is not a self-consistent TDHF theory; lack-
ing Axiom (B) the solutions are not Schrddinger wave.functions, properly so
called. It is hard to imagine any objection to either; the question is
rather whether they can be sustained without preventing the construction

of a theory reasonably analogous to the Schr&dinger theory.



As its name implies, the TD-;JLHF reaction theory casts the Schrédin-

ger S-matrix in a prominent role. Indeed, the S-matrix ahalog,'
. ,,’ TZ .
sfg; = (117 J <@ (x,t) |6, (K, e)>det, ()
i 1 f i

‘ A !
describes the transition probability from an initial to a final self-con-
sistent TDHF reaction channel. " In ref. [6] the form (2) for ;}iis obtaine&
heuristicallyiby analogy with the exact Schrodinger theofy in such a way
that it reduces exactly to the S-matrix when the single determinantal
‘solutions, ¢, are also solutions of thg exact Schrddinger equétion. In
addition, the palpable physical error introduced by the spurious cross.
channel correlations of the conventional Hartree-Fock description during
the postbreakup phase, when the description of several channels is imposed

upon the single determinant, is eliminated from the theory.

VII. ASYMPTOTICITY AND PERIODICITY '

Under the ansatz (4) the single determinantal description is released
from the narrow constraints of the initial value formulation. One result
is a freedom, and a need, to select reaction "channels" suitable for the
physical description required. Then by selecting the reaction channels so
as to assure that the physical properties of the emergent dropiets remain
constant in time, one achieves the first step towards guaranteeing asymp-

toticity for the new theory.

- This condition requires that a reaction channel wave function must
descrlbe stationary TDHF states of the" emergent droplets. Or, if periodic
TDHF states are allowed as channel states, then their physical properties

can be considered as constant if interpreted on a time-averaged basis.

VIII. INITIALIZABILITY AS A NECRSSARY CHANNEL PROPERTY

The construction (4) of the.sJéi

¢ (x t) correspond with each channel, specified by a set of labels {f}.

reaction requires that one solution

Together with the TDHF self-consistency axiom, eq. (2), it impoacs the
requirement of "initializability" upon each channel: the labels for any
channel {g} must be precisely those required to initialize a unique TDHF
calculation for the solution, @g. In ref. {6] this selecfion is discussed

in some detail with the conclusion that the labels,

(£} = (@, 030y P 0Py 3D v R D3 o)

o



suffice to specify the state of two subdeterminants #1 and #2 located at

+§ 1)

and comprlslng subdeterminantal fragments of A
2D (@ (@)
f f f

at time tf are defined by two sets of parameters, {A(l)} {A(Z)} E.g., for

the periodic internal states, {X( )} would identify the partlcular periodic

at some large standard separatlon distance IR |, moving with velocities
and v (related by the requirement of zero center of mass momentum)
(1) (2) (l)
f

nucleons (or N

neutrons and protons, respectlvely), whose internal states

state and specify the point in its period at which it is found at the in-
itializing time t = tf.
IX. TIME AVERAGING IN THE TD-gf—HF THEORY

The use of periodic solutions to play the role of the exact eigen-
states for the descrip;ion of TDHF droplets in:the asymptotic channel
states, implies that their asymptotically constant physical characeteris-
tics must be characterized by time averages (over the period) of physical
operators. We note that also in the definition of ,f,'the time averege de-.
fined by eq. (2) was a consequence of the fact [6] that the overlap of two
TDHF solutions, in contrast with the S-matrix o#erlap between exact solu-
tions; is not constant in time. Thus (2) specifies that the reaction am-
plitude is to be obtained by time averaging over the whole interaction

interval.

X. TIME AVERAGING AND ASYMPTOTIC CHANNEL ORTHOGONALITY

Still a third cause for a time averaged interpretation arises now in
connection with the asymptoticity of the channel states built upon the
periodic TDHF solutions proposed to describe the droplets--this time stem-
ming from the mutual non-orthogonality of such solutions. Here again
we deal with a deviation of the TDHF from the exact. theory which arises
from the self-consistency condition: the eigenstates of the exact linear
Schrdédinger Hamiltonian form a complete, orthogonal, linearly superposable
set, while the TDHF '"Hamiltonian'" generates a set of stationary (and per-
iodic) solutions which are not mutually orthogonal and which cannot be
superposed to form erbitrary solutions, because of the nonlinearity of the -

TDHF equations fhey obey.

As a result of the non-orthogonality of the TDHF solutions, overlap

amplitudes between distinct final channel funectinns, such as

agf = A<¢g(;’t),|¢f(;"t)»>’ : | (6)



do not automatically vanish. It follows that under the statistical inter-
pretation of quantum mechanical amplitudés (Axiom B in eq. (3)), the state-
~ment that a system is described by the solution, ¢f,'ﬁust also assert with ~

a probability, a that a measurement would show it to have the properties

gf’ = .
of channel {g}. Then the reaction amplitudes ‘f}i’ would not correspond

. one-to-one with the theoretical predictions for meaéured préperties, {f}.

This difficulty also is resolved by the assumption ;hat-thevamplitudes
(3) must be interpreted not instantaneously, but on a time ‘averaged basis.

Then, not agf~of (6), but its time average value,

t4t o - ;
ag = (20 j <o Gt o (K eh)aet )
t-T

is to be interpreted'as the amplitude that a system described by the solu-
tion, Qf, will be measured to havgtju!physical properties of channel {g}.

(In eq. (7), T must be taken large enough for a__ to be independent of the

gt _
interval, t; in the asymptotic region, this is always possible.) Then,
as was shown in ref. [6], the time averaged overlaps between, distinct

. L
asymptotic channels all vanish,

a5 = 0 {g} # (£} : . (8).

if only the energies nf the periodic channel solutions are dlscrete and

nondegenerate.

Thus, for channel states built upon a discrete nondegenerate set of
periodic TDHF solutions, the time averaged rhannel drthogonality.property
(8) prevails. Then the one-to-one correspondence between the reaction am- °
plitudes and the theoretically predicted values of the (now time averaged)
physical measurements which prevails in the exact reaction theory is re-
trieved for the TD- of -HF theory; |

XI.  REQUANTIZATION AND GAUGE INVARTANCE’ _

Although it 1s not known whether the periodic TbHF solutions for
isolated TDHF droplets occur always with a céhfinuéus range of energies,
Kan, et al. [7] have recently studied specialdcagés for which this situa-
tion prevails. (Note that the harmonic solutions obtained.ih TDHF in the
small ampliiude approximation [11] do not suffice as examples to thisﬁoint,
since one does not know whether .or not the corresponding exact TDHF solu-
tions are truly periodic, obeying for all t the identity,

¢p(§;c+T) = ¢p(§,t), (9
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or merely obey it approximately over some limited time interval.) Kan's
work therefore forces one to deal with the Requantization process discussed
in ref. [6], by which some set of solutions discrete in energy is selected
from the continuous spectrum of periodic TDHF solutions to serve as reac-
tion channel wave functions; or else to conclude that the single determinan-
tal reaction theory, since it would then lack reaction channel orthogonal-
tiy, and thérefore could not consistently predict physical measurements in
one-to-one correspondence with the reaction channel amplitudes character-

izing the reaction process, was of an essentially different character,

structurally, from the exact theory--an "intrinsically dissipative" trajec-

tory theory, in the terminology of ref. I6].

We again proceed by analogy with the Schrddinger theory, this time
utilizing the gauge invariance of its physical content. Then, remarkably,
one finds that the requirement that the TDHF solutions behave like the
exact stationary eigénstates, and particularly that they be invariant under
gauge transformations, leads to a unique and unambiguous selection of a
discrete set of gauge invariant periodic functions as suitable eigenstate

analogs.

One can view this process as a requantization procedure dictated by
the gauge properties. Alternatively, oné might take the view that, in
spite of the fact that the periodic spectrum of TDHF solutions may in some
cases be continuous, neverfheiess the periodic solutions capable of play- ‘

ing the role of eigenstates, especially as regards gauge transfofmation

'properties, occur only as a discrete set.

XII. GAUGE INVARIANCE OF THE TIME-DEPENDENT SCHRODINGER THEORY

Consider the Schrddinger system characterized by the (time-independent)
Hamiltonian, H, and the set of time-dependent descriptions specified by
the gauge transformed Hamiltonian operators, ﬁ, of the form

| H-H=H+ 8(t) (10)

where B8(t) is an arbitrary space and momentum independent function of time.

Then the physical content of each of the transformed descriptions is
exhausted by the matrices of all the possible physical observables, ¢?1§,3).
Moreover, every such matrix of the system, H, is identical with the corres-
ponding matrix of the system, ﬁ, element by element,

<@i1&(§,3) |@j> = <wi(§,c)|0’(§,3) |\yj (x,t)>. (11)
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Equation (11) follows from the fact that a change in B(t) alters each of
the solutions only by a. time-dependent complex phase factor which is the
same for every solution, Wi. (In passing, we contrast thisluniversal
phase factor with the state-dependent phase factors implied by the TDHF
variational principle, as discussed in ref. [91.) e ,

-Note that among the physical observables, there must occur the energy

operator, given by the Hamiltonian, H(;,;). Obviously, under the trans-

formation (10) the diagonal matrix elements of H (but not the off—diagbnal.

‘elements) in (11) all shift by the amount, B(t). Siﬁce; in fact, only en-

ergy differences are physically ohserved, and not absolute values of the
energy, such a shift daes nnt affect the physical cunlent of thé theory,
XIII. GAUGE INVARIANCE OF EILGENSTATES

Then consider the time-dependent Schr8dinger solution initiated at
t = tO as an eigenfunction, wk(;)’ such that,

Hy (X) = E, ¥, (%) - (12)

o YA BN

(We use the Greek subscript to distinguish the eigenfunction case from the

more general initial conditions denoted by Latin subscripts.) Such a time-

. dependent solution is, for arbitrary gaugé, B(t) in (10), of the form,

t
RERR wx(;)fexp-(i/ﬁ)[E)\(t=to) + J BSt')dt']] ;1;)
. : tU
T
= lp)‘(;){exp— (i/4) [ <wA|ﬁ(t-)wA>dt'}, 3 (14)
L
0

The latter form in (14) is written to emphasize the fact that under gauge
transformation, (10), only the phase factor is altered, while the slatlonary
state remains invariant. By ahalogy with the statianary pigpnfunctionb,

then, we shall insist that the periodic channel solutions of TDHF must also

be invariant under arbitrary gauge transformation.

XIV. "TD—;J—HF EIGENSOLUTiONS": PERiODIC STATES AS GAUGE ANALOGS OF THE
EXACT STATIONARY EIGENSTATES '
In the Hartree-Fock case, consider the "Coanstant—<@>" solutions de-

fined by the equation,

0] - & = {HO[o] + <o[H-H[o]]e>} - 0 = ind, . . (15)

and a specified initial-value determinant. The TDHF "Hamiltonian", ¢, of
eq. (14) is uniquely prescribed [9] by the variational principle (1). Then

o - ‘ . . .
7¥ may be the conventional self-consistent Hartree-Fock Hamiltonian, or
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that Hamiltonian augmented by any arbitrary additive function of time
only. Now consider the effect upon a periodic solutionm, ¢p(;,;), of (15)
of a gauge transformation (9). The new solution is related to the old by

a phase factor, ¢

o(x,t) = ¢p<§,t){exp—('1/4i) J B(t")dt'}. - (16)
. : ) | E to' -
Obviously, ¢ need not be periodic even when ¢p is periodic. Therefore, it

is not possible for periodicity in general to be a guage invariant property.

Then to sustain ‘the analogy between the exact theory and TDHF under
gauge invariance, we must seek channel solutions in the form of a product

of a periodic function and a phase factor determined by H alone; i.e.,
t .

@(;,t) = <I>p(;,t){exp-(i/‘h) I <H(t')>dt'} (17)
. to
where Qp is a periodic function satisfying (9). A function of the form
(17) will transform under the gauge transformatin of H in preicsely :the
same way as- -the exact solution (14), and the periodic solution, @ (x t) is

prec1se1y the anlogy of the stationary eigenstate, wx(x)

XV. GAUGE INVARIANT TDHF EQUATION
Of course, the function (17) must satisfy the (unique!) TDHF equation
(14) implied by the variational principle (1). Then the periodic factor, .
Qp’ of (17) s;tisfies the following equation, , :
el - <¢p|7¥|¢p>} o= b ’ - (18)
We refér to (18) as the gauge invariant TDHF equation, since it is manifes-

tly unaffected by any transformation of the form (10).

XVI. CONTINUA OF PERIODIC TDHF SOLUTIONS: GAUGE REQUANTIZATION

For certain model problems, Kan, et al. [7] show that eq. (15) exhib-
ite, for.timc~independent I, a coutlnuous ser of periodic solutioms. But
among such a continuum, only those solutions whose energy is related to
the period, T, by the equality, Q

E = <¢p|H|¢p> = 2Nmh/T, (19)

are of the form (17) with a periodic factor which satisfies the gauge in-
variant TDHF equation (18). Then (19) selects a discrete subset of the ‘
periodic contlnuum, for which the space-dependent periodic factor, Qp”
is invariant under the gauge transformation (10), exactly as are the

eigenstates of the exact Hamiltonian.
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Thus, condition (19) offers a natural basis for the requantization of -
the continuum of periodic TDHF solutions into a discrete set of TDHF eigen-
functions. It selects those periodic states which remain periodic, just as ”

the eigenstates remain stationary, under an arbitrary gauge transformation.

q.

In turn, the TD- xf-HF channel wave functions are all initializable in terms
of specific periodic states, independent of the choice of gauge. And their
discreteness in energy guarantees also the mutual (time averaged) orthogon-
ality property (8) for them, providing thereby under the statistical inter-
pretation of the wave functions, a consistent one-to-one correspondence
between the reaction amplitudes and the theoretical predictions of the

- k4 .

internal droplet properties.

Alternatively, one could have sought in the first place as suitable
analogs of the stationary eigenstates on1§ those solutions whose periodity
is a gauge invariant periodic function, like the stationarity of the
eigenstates. Then one would at the outset have recognized only the dis-
crete periodic spectrum of (18) as aeceptable channel states, rather than

the continuous set of periodic sclutions of (15).

We note that Kan, et al., [7] have also demonstrated the equivalence of

the condition (19) with the Bohr-Sommerteld quantization condition.

XV. "TDHF EIGENSTATES"

The gauge invariant periodic solutions offer a discrete spectrum of
TDHF states which share the gauge transformation properties of ekact'tine-
dependent eigenstate solutibns;"These'states are therefore natural objects
to describe the large amplitude TDHF analogs of tne Schrusdinger eigenstates

within the time-dependent framework.

Indeed, by numerical calculation for certain model problems whose
exact eigenstates are known, Kan, et al. [7] have shown excellent agree-
ment between the energies of these gauge invariant periodic solutions (for
which we therefore suggest the name, "TDHF eigenstates") and the exact

energy eigenvalues. : . . ' -

XVI. SUMMARY

¢

The TDHF description of continuum reactions éan'be restructured from
an initial-value problen into a form analogous to the S-matrix version of
. the Schrtdinger theory. The resulting TD- >§-HF theory involves only self=-

consistent single determinantal solutions of the TDHF equations, and in-
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vokes time averaging to obtain a consistent interpretation of the TDHF
analogs of quantities which are constant in the exact theory, such as the

S-matrix and the asymptotic reaction channel properties.

Periodic TDHF.solutions then play the role of stationary'eigenstates
in the construction of suitable asymptotic reaction channel states. If
these.periodic channel states occur only at discrete energies, then the
resulting channels are mutually orthogonal (on the time avefage) and the

theory exhibits a structure fully analogous to the exact theory.

In certain special cases where the periodic solutions are known to
occur as an energy continuum, the requirement that the periodicity of fhe
channel solutions be a gauge invariant property provides a natural requan-
tization condition, which turns out to be identical with the Bohr-Sommer-

feld quantization rule. Thus it emerges that the TD—x?—HF description can

Lan

always exhibit a structure analogous to that of the Schrodinger reaction . %

theory: the qualitative effect of thesingle determinantal assumption, : n

.. " Tae

overall, is to impose the requirement of time averaging upon the interpre- i
tation of the physical quantities in TD—QSLHF whose Schrédinger analogs are

constant.

For nuclear structure physics, the "IDHF eigensolutions" offer a time-
dependent description of stationary states which agrees well with the exact o
eigenstates for the model problems considered so far [7], and which invites

comparison with the corresponding stationary RPA states.

This research is supported by the U. S. Department of Energy.
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