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ABSTRACT 

We sugges t  t h a t ' t h e  TDHF method be viewed, n o t  a s  an approximation t o  

b u t  a s  a  model of t he  exac t  Schradinger system; t h a t  is ,  a s  a  gedanken many- 

body experiment whose a n a l y s i s  wi th  d i g i t a l  computers provides  d a t a  worthy 

i n  i t s e l f  of t h e o r e t i c a l  s tudy.  From such a  viewpoint w e  focus  ou r  a t t e n -  

t i o n  on t h e  s t r u c t u r a l  ana log ie s  of t h e  TDHF system w i t h  t h e  exac t  theory 

r a t h e r  than  upon i ts  q u a n t i t a t i v e  equivalence,  and we s tudy  t h e  TDHF many- 

body system a s  a cha l l enge  of i ts  own which, a l though much s impler  than  

the  r e a l i s t i c  problem, may s t i l l  o f f e r  complexity enough t o  educa te  

t h e o r i s t s  i n  our p r e s e n t  s t a t e  of knowledge. 

I n  t h i s  s p i r i t ,  t h e  TDHF d e s c r i p t i o n  of continuum r e a c t i o n s  can be re -  

s t r u c t u r e d  from an  i n i t i a l - v a l u e  problem i n t o  a form analogous t o  t h e  S- 

matrix v e r s i o n  of the Schrodinger theory.  The r e s u l t i n g  TD-$-HI? theory  

involves  only s e l f - c o n s i s t e n t  s i n g l e  de t e rminan ta l  s o l u t i o n s  of t h e  TDHF 

equat ions  and invokes time averaging t o  o b t a i n  a  c o n s i s t e n t  i n t e r p r e t a t i o n  

of t h e  TDHF analogs  of q u a n t i t i e s  which a r e  cons t an t  i n  t h e  exac t  theory ,  

such a s  t h e  S-matrix and t h e  asymptot ic  r e a c t i o n  channel  c h a r a c t e r i s t i c s .  

P e r i o d i c  s o l u t i o n s  then  p l ay  t h e  r o l e  of s t a t i o n a r y  e i g e n s t a t e s  i n  t h e  

c o n s t r u c t i o n  of s u i t a b l e  asymptot ic  r e a c t i o n  channels .  I f  t h e s e  p e r i o d i c  

channel  s t a t e s  occur  only a t  d i s c r e t e  e n e r g i e s ,  then  t h e  r e s u l t i n g  chin- 

n e l s  a r e  mutual ly or thogonal  (on t h e  t ime average)  and the  theory e x h i b i t s  

a s t r u c t u r e  f u l l y a a a l o g o u s  t o  t h e  exac t  theory.  I n  c e r t a i n  s p e c i a l  ca ses  

whcre the p e r i o d i c  s o l u t i o n s  a r e  known t o  occur  as an  energy continuum, t h e  

requirement t h a t  t h e  p e r i o d i c i t y  of t h e  channel  s o l u t i o n s  be  gauge i n v a r i a n t  

provides  a n a t u r a l  r c q u a n t i z a t i o u  c o ~ l d i t l o n  which ( sugges t ive ly )  t u r n s  ou t  

t o  be i d e n t i c a l  w i th  t h e  Bohr-Sommerfeld q u a n t i z a t i o n  r u l e  
~ I S ~ ! B U T [ Q P B  OF f HIS DQCU:,IEHT IS 



I. INTRODUCTION 

Since t h e  TDHF method [I]  was f i r s t  computerized a s  a  nuclear  model [ 2 &  

s t u d i e s  based upon i t s  numerical ca lcu la t ion  have burgeoned [3 ] .  A s  an 

. approximation t o  t h e  Schrodinger equation, the  p r e c i s e  l i m i t s  of i t s  appl ic-  

a b l e  phys ica l  range have remained l a r g e l y  unspecif ied.  A s  a  model of t h e  

Schrsdinger system, stemming from the  same v a r i a t i o n a l  p r i n c i p l e  with only 

t h e  s i n g l e  a d d i t i o n a l  r e s t r i c t i o n  t o  s i n g l e  determinants,  deeper ques t ions  

a r i s e  regarding the very i n t e r p r e t a t i o n  of the  TDHF s o l u t i o n  f o r  the  rrec- 

t i o n  process:  I n  what sense i s  i t  a t  a l l  a proper  Scllriidinger wave funct ion?  

Can i t  desc r ibe  amplitudes f o r  r eac t ions  leading t o  s p e c i f i c  i n t e r n a l  s t a t e s  

of the  f i n a l  e j e c t i l e s ,  o r  does i t  conta in  only informatlnn averaged ( i n  

what manner?) over many f i n a l  s t a t e s ?  O r  more genera l ly ,  what is the  pre- 

c i s e  e f f e c t  on the  physica l  content  and the  mathematical s t r u c t u r e  of t h e  

theory of t h e  a d d i t i o n a l  r e s t r i c t i o n  t o  s i n g l e  determinants? 

I n  add i t ion ,  c e r t a i n  fundamental d i f f i c u l t i e s  i n  the  i n t e r p r e t a t i o n  

of so lu t fons  ca lcu la ted  t o  desc r ibe  reac t ions  remain unsolved and appear 

i n s o l u b l e  w i t h i n  the  i n i t i a l  value TDHF framework. FOP example, conven- 

t i o n a l  TDHF predic ts  an amplitude f o r  the  i n t e r n a l  c h a r a c t e r i s t i c s  o f  t he  

e j e c t i l e  which depends upon the  l o c a t i o n  of the  measuring.apparatus (non- 

asymptot ic i ty) .  In add i t ion ,  the  mean f i e l d  s o  e s s e n t i a l  t o  the  whole ' 

method i s  s t r u c t u r a l l y  incapable of descr ib ing adequalely the  f u l l  kinema- 

t i c  range of f i n a l  r e a c t i o n  channels (spurious cross-channel c o r r e l a t i o n ) .  

I n  t h i s  paper,we review c e r t a i n  a spec t s  of the  $-matrix approach t o  

these  ques t ions  [6], and repor t  new developments based on the  na tu re  of 

the  p e r i o d i c  TDHF so lu t ions  t o  c e r t a i n  model problems. [ 7 ] .  We show t h a t  

a  c o n s i s t e n t  desc r ip t ion  of quantum r e a c t i o n  amplitudes, which is  s t ruc -  



t u r a l l y  f u l l y  analogous t o  t he  Schr0dinge.r theory,  can be G u i l t  upon ( t h e  

whole s e t  o f )  s e l f - c o n s i s t e n t  TDHF s .o lu t ions ,  provided t h a t  t h e  asymptot ic  
. . 

c.hanne1 s t a t e s  employ gauge i n v a r i a n t  p e r i o d i c  s o l u t i o n s  a s  t h e  analogs of 

Schradinger e i g e n s t a t e s  and t h e  phys i ca l  imp l i ca t ions  of t h e  theory a r e  

i n t e r p r e t e d  on a  time-averaged b a s i s .  Th'e c o r o l l a r y  imp l i ca t ion  f o r  nuc lea r  

s t r u c t u r e  theory ,  t h a t  gauge inva , r i an t  p e r i o d i c  TDHF s o l u t i o n s  a r e  t h e  ap- 

p r o p r i a t e  "TDHF-eigensolutions" f o r  desc r ib ing  bound s t a t e s  i n  t h e  time- 

dependent framework is noted [ 7 ] .  

The V a r i a t i o n a l  P r i n c i p l e  
t2  

imp l i e s  t h e  exac t  n o n r e l a t i v i s t i c  time-dependent Schrbdinger equat ion  [ 8 ] .  

I f  t h e  wave func t ion  Y is  requ i r ed  t o  be a  s i n g l e  determinant ,  t h e  same 

p r i n c i p l e  y i e l d s  t he  unique "constant-<H>" time-dependent Hartree-Fock 

equat ion  191. Since t h e  o r i g i n s  of t h e  TDHF model and those  of t h e  

Schrbdinger theory l i e  s o  c l o s e ,  a  c l o s e  s t r u c t u r a l  p a r a l l e l  between them 

is  reasonably t o  be  expected. It is  t h a t  analogy which i s  d iscussed  i n  

t h i s  paper .  

I SIX ASPECTS OF THE TDHF-SCHRODINGER PARALLELISM 

The d i scuss ion  w i l l  cons ider  s i x  i n t e r r e l a t e d  a s p e c t s  of t h e  TDHF- 

Schrbdinger pa ra l l e l i sm,  a s  fol lows;  

( a )  t h e  Asymptot ici ty  of t he  r e a c t i o n  theory--whether i t s  p red ic t ed  

r e s u l t s  depend upon t h e  p r e c i s e  l o c a t i o n  of t h e  d i s t a n t  measuring 

appara tus  o r  n o t ;  

(b) t he  P e r i o d i c i t y  of s o l u t i o n s  f o r  i s o l a t e d  system; 

(c)  Time-Averaging, under which p e r i o d i c  s o l u t i o n s  become charac te r -  

i zed  by cons t an t s  and allowed a r o l e  analogous t o  t h e  s t a t i o n a r y  

s t a t e  e igenso lu t ions  of t h e  e x a c t  theory;  

(d) Asymptotic Channel Orthogonal i ty ,  which does not  p r e v a i l  among 

t h e  s o l u t i o n s  of t h e  non l inea r  TDHF theory,  b u t  which by t i m e  

averaging can be  regained f o r  asymptot ic  channels desc r ib ing  

p e r i o d i c a l l y  v i b r a t i n g  d r o p l e t s ,  provided t h a t  t h e i r  e n e r g i e s  a r e  

d i s c r e t e  r a t h e r  than cont inuous ; 

( e )  Requantizat ion,  by which c e r t a i n  p e r i o d i c  s o l u t i o n s  of d i s c r e t e  

energy can be  s e l e c t e d  from a continuum of p e r i o d i c  s o l u t i o n s  



t o  se rve  the  r o l e  analogous with t h a t  of the  channel eigenfunc- 

t i o n s  nf t he  exac t  theory; 

( f )  Gauge Invariance--the property of the  exact  e igensolut ions  which 

o f f e r s  a  n a t u r a l  b a s i s  f o r  the  requant iza t ion  of the  continuous 

pe r iod ic  TDHF spectrum (and which leads ,  remarkably, f o r  c e r t a i n  

model problem t o  t h e  same quantized s t a t e s  a s  the  Bohr-Somerfeld 

quant iza t ion  r u l e s  would s e l e c t ) .  

I V .  ASYMPTOTICITY I N  A REACTION THEORY 
. . 

I n  the  exact  Schrodinger theory, the  wave func t i sn  descr ib ing the  sys- 

t e m  f o r  times lnng a f t e r  t h e ' c o l l i s i ~ i ~  p r u c e s s  can be expanded uPQn a cam- 

p l e t e  mutually orthogonal  b a s i s  of channel s t a t e s ,  constructed from the  

e i g e n s t a t e s  of every poss ib le  p a i r  of 'fragments, and the  funct ions  describ-  

ing  t h e i r  r e l a t i v e  motion. It follows t h a t  the  p robab i l i ty  of measuring 

a  c e r t a i n  value f o r  any i n t e r n a l  physical property of an c jec ted  f ~ a ~ l n e n t  

i s  p red ic ted  not  t o  depend upon the  p r e c i s e  loca t ion  of the  measuring 

appara tus  wi th  r e s p e c t  t o  t h e  c o l l i s i o n  volume, provided only t h a t  i t  is  
. . 

s u f f i c i e n t l y  d i s t a n t  t o  guarantee t h a t  the  i n t e r a c t i o a s  between t h e  f  rag- 

ments vanish.  This independence of t h e  p red ic t ive  content  of a  r eac t ion  

theory of . the p rec i se  l o c a t i o n  of the  measurement, we r e f e r  t o  as t l i ~  

"Asymptoticity" proper ty  of t h e  theory. Clearly the  SchriSdin~er theory 

e x h i b i t s  t h i s  property.  

V. INITIAL VALUE TDHF THEORY L A a S  ASYMPTnTT CITY 

Asymptoticity is not  a  genera l  property of the  conventional i n i t i a l  

va lue  TDHF theory, because of the  f a c t  t h a t  t h e  self-consistency c.nnddtion 

l eads  t o  a  time evo lu t ion  opera tor  ( t h e  Hartree-Fock "Hamiltonian", H) 
which is  a  func t iona l  of i ts  so lu t ion ,  and the re fo re  continues t o  be t i m e -  

dependent, even long a f t e r  t h e  c o l l i s i o n .  Needless t o  say, t h i s  non-asymp- 

t o t i c i t y  sf TDHF llus ac t he  roo t  of t he  d i f f i c u l t i e s  of the  p r e c i s e  i n t e r -  

p r e t a t i o n  of the  physica l  impl ica t ions  of conventional i n i t i a l - v a l u e  TDHF 

d e s c r i p t i o n s  of complex reac t ions .  A s  a r e s u l t ,  only a few " t ra jec tory"  

c h a r a c t e r i s t i c s ,  which re..main'constnnt once the  fragments sepa ra te  have 

been e x t r a c t e d  from the  numerical TDHF s t u d i e s  of nuclear  system, i n  p a l e  

c o n t r a s t  wi th  the r i c h  d e t a i l  which the  corresponding Schrtidinger s o l u t i o n  

would, i n  p r i n c i p l e ,  y i e ld .  For what u s e f u l  meaning could be a t t r i b u t e d  

t o  t h e o r e t i c a l l y  predic ted  reac t ion  amplitudes which vary with the  loca t ion  

of t h e  counting apparatus? 



Thus, a l though t h e  expec ta t ion  has  f r equen t ly  been ,expressed t h a t  some 

such an  unambiguous i n t e r p r e t a t i o n  would be found f o r  t h e  l a t e  time wave 

func t ions  of convent ional  i n t i t i a l - v a l u e  TDHF theory,  only one r e p o r t  of an 

e x p l i c i t  a t tempt  i s  known t o  t h e  p re sen t  au tho r s  [ l o ] .  The r e s u l t  was t h a t  

the  expansion c o e f f i c i e n t s  remained time-dependent i n d e f i n i t e l y .  

VI . TIME-DEPENDENT J-MATRIX HARTREE-FOCK REACTION THEORY 

The TD-d-HF approach t o  t h e  s i n g l e  de te rminanta l  r e a c t i o n  theory [ 6 ]  

has  been evolved by r e q u i r i n g  t h e  c l o s e s t  p o s s i b l e  analogy between t h e  

s e l f - c o n s i s t e n t  TDHF d e s c r i p t i o n  and . t h e  . exac t  Schr'ddinger theory.  , I n  par- 

t i c u l a r ,  t h e  gene ra l  requirement has  been .imposed a t  every s t a g e  t h a t  t h e  

TD-24-HF must reduce i d e n t i c a l l y  t o  t h e  Schr6dinger d e s c r i p t i o n  i n  ca se  the  

exac t  s o l u t i o n  happens t o  be  a  s i n g l e  determinant .  

The S-matrix form of t h e  Schrbdinger r e a c t i o n  theory  f o r  l o c a l i z e d  

wave packets  has  been chosen a s  t h e  model t o  be imi t a t ed .  Thus, t h e  sym- 

metry i n  time which t h a t  theory d i s p l a y s  is  r e t a i n e d ,  t oge the r  wi th  t h e  

c l o s e  p a r a l l e l  implied between p o s s i b l e  i n i t i a l  and f i n a l  r e a c t i o n  channel  

s t a t e s .  

Two r i g i d  cond i t i ons  imposed upon t h e  theory have been set a s  axioms. 

The f i r s t  s p e c i f i e s  t h e  p r e c i s e  meaning of TDHF se l f -cons is tency ,  by re-  

q u i r i n g  t h a t  every wave func t ion  allowed i n  t h e  theory must be  a  s i n g l e  de- 

terminant  and must propagate  i n  time according t o  t h e  s e l f - c o n s i s t e n t  TDHF 

equat ion,  

Axiom (A) : M I P ]  IP = mi. (2)  

The second r e q u i r e s  every.wave funct , ion allowed i n  t h e  theory  t o  be 

s u b j e c t  t o  t h e  s t a t i s t i c a l  i n t e r p r e t a t i o n  of quantum mechanics, i n  t h e  

sense  t h a t  t h e  s p a t i a l  i n t e g r a l ,  

Axiom (B) : 

s p e c i f i e s  t he  p r o b a b i l i t y  ampli tude t h a t  a  system descr ibed  by @ w i l l  under 
i 

phys i ca l  measurement e x h i b i t  t h e  c h a r a c t e r i s t i c s  of t h e  system descr ibed  by 
.7 

@ f a  

.a Without Axiom (A) a theory i s  not  a  s e l f - c o n s i s t e n t  TDHF theory;  lack-  . 

ing  Axiom ( B )  t h e  s o l u t i o n s  a r e  no t  Schradinger wave func t ions ,  p roper ly  s o  

c a l l e d .  I t  is  hard t o  imagine any ob jec t ion  t o  e i t h e r ;  t h e  ques t ion  is 

r a t h e r  whether they can be sus t a ined  without  prevent ing  the  c o n s t r u c t i o n  

of a  theory reasonably analogous t o  t h e  Schrtfdinger theory.  



A s  i t s  name imp l i e s ,  t h e  TD-9-HF r e a c t i o n  theory  c a s t s  t h e  SchrGdin- 

g e r  s-matr ix i n  a prominent r o l e .  Indeed, t h e  S-matrix analog,  
.F 

d e s c r i b e s  t h e  t r a n s i t i o n  p r o b a b i l i t y  from a n  i n i t i a l  t o  a f i na l .  self-con- 
C 

s i s t e n t  TDHF r e a c t i o n  channel .  ' .1n r e f .  [ 6 ]  t h e  form ( 2 )  f o r  p8 is  obta ined  

h e u r i s t i c a l l y  by analogy w i t h  t h e  e x a c t  Schrodinger theory  i n  such a way 

t h a t  i t  reduces e x a c t l y  t o  t h e  S-matrix when t h e  s i n g l e  de t e rminan ta l  

s o l u t i o n s ,  Q, a r e  a l s o  s o l u t i o n s  of t h e  exac t  Schradinger  equat ion .  I n  

a d d i t i o n ,  t h e  pa lpab le  p h y s i c a l  e r r o r  in t roduced  by t h e  spur ious  c r o s s  

channel  c o r r e l a t i o n s  of t h e  convent iona l  Hartree-Fock d e s c r i p t i o n  dur ing  

t h e  postbreakup phase, when t h e  d e s c r i p t i o n  of .  s e v e r a l  channels  i s  imposed 

upon t h e  s i n g l e  de te rminant ,  is  e l imina ted  from t h e  theory.  

V I I .  ASYMPTOTICITY AND PERIODICITY 

Under t h e  a n s a t z  ( 4 )  t h e  s i n g l e  de te rminanta l  d e s c r i p t i o n  is  r e l eased  

from the  narrow c o n s t r a i n t s  of t h e  i n i t i a l  va lue  formula t ion .  One r e s u l t  

is a freedom, and a need, t o  s e l e c t  r e a c t i o n  "channels" s u i t a b l e  f o r  t h e  

p h y s i c a l  d e s c r i p t i o n  rarllldred. Then by s e l e c t i n g  Lhe r e a c t i o n  channels  s o  

a s  t o  a s s u r e  t h a t  t h e  p h y s i c a l  p r o p e r t i e s  of t h e  emerget~r d r o p l e t s  remain 

c o n s t a n t  i n  t i n ~ e ,  one achieves  t h e  Eirst s t e p  towards guarantee ing  asymp- 

t o t i c i t y  f o r  t h e  new theory .  

This  cond i t i on  r e q u i r e s  t h a t  a r e a c t i o n  channel  wave func t ion  must 

d e s c r i b e  s t a t i o n a r y  TDHF s t a t e s  of the 'emergent  d r o p l e t s .  O r ,  i f  p e r i o d i c  

TDHF states a r e  allowed a s  channel  s t a t e s ,  t hen  t h e i r  phys i ca l  p r o p e r t i e s  

can be considered as cons t an t  i f  i n t e r p r e t e d  on a time-averaged b a s i s .  

V I I I .  INITIALIZABILITi AS A NECRSSARY C M N E L  PR(?P@RTY 
rC 

The c o n s t r u c t i o n  (4) of t h e  dfi r e a c t i o n  r e q u i r e s  t h a t  one s o l u t i o n  
I 

@f (%, t )  cor respond w i t h  each  channel,  s p e c i f i e d  by a s e t  of l a b e l s  I f} .  

Together w i t h  t h e  TDHF se l f - cons i s t ency  axiom, eq. (2 ) .  i t  impnocs the 

requirement  of " i n i t i a l i z a b i l i t y t t  upon each channel:  t h e  l a b e l s  f o r  any 

channel  { g )  must be p r e c i s e l y  those  r equ i r ed  t o  I n i t i a l i z e  a unique TDHF 

c a l c u l a t i o n  f o r  t he  s o l u t i o n ,  . I n  r e f .  [ 6 ]  t h i s  s e l e c t i o n  i s  d iscussed  
g 

i n  some d e t a i l  wi th  t h e  conclus ion  t h a t  the l a b e l s ,  

£ 1  = A , ,  A ~ , * , ~ ;  R ~ I R , ~ ,  ( 5 )  



s u f f i c e  t o  s p e c i f y  t h e  s t a t e  of two subdeterminants  /I1 and /I2 l oca t ed  a t  

t, a t  some l a r g e  s tandard  s e p a r a t i o n  d i s t a n c e  (R,  I, moving wi th  v e l o c i t i e s  
I '  

4 1 )  
v. and ;i2) ( r e l a t e d  by t h e  requirement of zero c e n t e r  of mass momentum) 

, ,?, I I 

and comprising subdeterminantal  fragments of A (2 )  nucleons ( o r  N (1) 
f  ' Af f '  

z!'), Ni2) ,  z!~) neutrons and pro tons ,  r e s p e c t i v e l y ) ,  whose i n t e r n a l  s t a t e s  
'* (2 a; t imeLt  ar: def ined  by two s e t s  of parameters ,  {A:')}, {Af 1 .  E.g., f o r  

f  \ 

t h e  p e r i o d i c  i n t e r n a l  s t a t e s ,  {A;" would i d e n t i f y  t h e  p a r t i c u l a r  p e r i o d i c  

s t a t e  and s p e c i f y  t h e  p o i n t  i n  i t s  period a t  which i t  i s  found a t  t h e  in-  

i t i a l i z i n g  time t = t f .  

IX. TIME AVERAGING IN THE TD-J-HF THEORY 

The use of p e r i o d i c  s o l u t i o n s  t o  p lay  t h e  r o l e  of t h e  exac t  eigen- 

s t a t e s  f o r  t h e  d e s c r i p t i o n  of TDHF d r o p l e t s  i n  t h e  asymptot ic  channel  

s t a t e s ,  impl ies  t h a t  t h e i r  asymptot ica l ly  cons t an t  phys i ca l  cha race t e r i s -  

t i c s  must be  cha rac t e r i zed  by time averages ( o v e r t h e  per iod)  of p h y s i c a l  

opera tors .  We no te  t h a t  a l s o  i n  t he  d e f i n i t i o n  of $, t h e  t ime average de- 

f i ned  by eq. (2) was a  consequence of t h e  f a c t  [ 6 ]  t h a t  t he  over lap  of two 

TDHF s o l u t i o n s ,  i n  c o n t r a s t  w i t h t h e s - m a t r i x  over lap  between exac t  so lu-  

t i o n s ,  is no t  cons tan t  i n  t ime. Thus (2) s p e c i f i e s  t h a t  t h e  r e a c t i o n  am- 

p l i t u d e  is t o  be obta ined  by time averaging over t h e  whole i n t e r a c t i o n  

i n t e r v a l .  

X. TIME AVERAGING AND ASYMPTOTIC CHANNEL ORTHOGONALITY 

S t i l l  a  t h i r d  cause f o r  a time averaged i n t e r p r e t a t i o n  a r i s e s  now i n  

connection wi th  t h e  asymptot ic i ty  of t he  channel  s t a t e s  b u i l t  upon t h e  

pe r iod ic  TDHF s o l u t i o n s  proposed t o  d e s c r i b e  t h e  d rop le t s - - th i s  t ime stem- 

ming from t h e  mutual non-orthogonality of such s o l u t i o n s .  Here aga in  . 

w e  d e a l  w i t h  a  d e v i a t h n  o f ' t h e  TDHF from t h e  e x a c t . t h e o r y  which a r i s e s  

from t h e  se l f -cons is tency  condit ion:  t h e  e i g e n s t a t e s  of t h e  exac t  l i n e a r  

SchrBdinger Hamiltonian form a complete, or thogonal ,  l i n e a r l y  superposable  

s e t ,  whi le  t he  TDHF "Hamil.tonian" genera tes  a s e t  of s t a t i o n a r y  (and per- 

i o d i c )  s o l u t i o n s  which a r e  not  mutual ly or thogonal  and which cannot be  

.A superposed t o  form a r b i t r a r y  s o l u t i o n s ,  because of t he  n o n l i n e a r i t y  of t h e  

TDHF equat ions  ' they obey. 

'a' 

A s  a  result of t h e  non-orthogonality of t he  TDHF s o l u t i o n s ,  over lap  

ampli tudes between d i s t i n c t  f i n a l  channel f ~ ~ n c t i n n a ,  such as 



do n o t  au toma t i ca l ly  vanish .  It fo l lows  t h a t  under t h e  s t a t i s t i c a l  i n t e r -  

p r e t a t i o n  of quantum mechanical amplitudes (Axiom B i n  eq. ( 3 ) ) ,  t he  s t a t e -  
, . 

ment t h a t  a system i s  descr ibed  by t h e  s o l u t i o n ,  m f ,  m u s t  a l s o  a s s e r t  w i th  . . 

a p r o b a b i l i t y ,  a  t h a t  a measurement would show i t  t o  have t h e  p r o p e r t i e s  . . g f '  - 
of channel  {g) .  Then t h e  r e a c t i o n  amplitudes Jfi, would no t  cdrrespond 

one-to-one wi th  the  t h e o r e t i c a l  p r e d i c t i o n s ,  f o r  measured p r o p e r t i e s ,  ( f )  . 
This' d i f f i c u l t y  a l s o  i s  reso lved  by t h e  assumption t h a t - t h e  amplitudes 

(3) must be  i n t e r p r e t e d  n o t  i n s t an t aneous ly ,  b u t  on a t ime.averaged b a s i s .  

Then, n o t  a  of (6) ,. b u t  i t s  time average va lue ,  
gf ' t+T 

t-T 

i s  t o  be i n t e r p r e t e d  as t h e  ampli tude t h a t  a  system descr ibed  by t h e  solu-  

t i o n ,  Q f ,  w i l l  be  measured t o  h a v e t h e p h y s i c a l  p r o p e r t i e s  of channel {g) .  

( I n  eq. ( 7 ) ,  T must be  taken  l a r g e  enough for a to be  independent of t h e  
g t  

i n t e r v a l ,  T; i n  t h e  asymptot ic  r eg ion ,  t h i s  is  always poss ib l e . )  Then, 

as was shown i n  r e f .  161, t h e  t ime averaged over laps  b e t w e e n . d i s t i n c t  
\ 

asymptot ic  channels a l l  vanish ,  

i f  on ly  the e n e r g i e s  nf t he  p e r i o d i c  chnnncl s o l u t i o n s  aLe J l s c r e t e  and 

nondegenerate . 
Thus, f o r  channel  states b u i l t  upon a  d i s c r e t e  nondegenerate s e t  of 

p e r i o d i c  TDHF s o l u t i o n s ,  t h e  time averaged channel o r thogona l i t y  proper ty  

(8) p r e v a i l s .  Then t h e  one-to-one correspondence between t h e  r e a c t i o n  am- 

p l i t u d e s  and t h e  t h e o r e t i c a l l y  p red ic t ed  va lues  of t h e  (now time averaged) 

p h y s i c a l  measurements which p r e v a i l s  i n  t h e  e x a c t  r e a c t i o n  theory i s  re-  

t r i e v e d  f o r  t h e  TD-d-HF theory.  

X I .  REQUANTIZATION AND GAUGE INVARTMCE 

Although i t  is n o t  known whether t h e  p e r i o d i c  TDHF s o l u t i o n s  f o r  - 

i s o l a t e d  TDHF d r o p l e t s  occur  always w i t h  a  continuous range of ene rg i e s ,  

Kan, e t  . a l .  [7]  have r e c e n t l y  s t u d i e d  s p e c i a l '  cages f o r  which t h i s  s i t u a -  

t i o n  p r e v a i l s .  (Note t h a t  t h e  harmonic s o l u t i o n s  obta ined  i n  TDHF i n  t h e  

s m a l l  ampli tude approximation [ l l ]  do no t  s u f f i c e  a s  examples t o  t h i s p o i n t ,  

s i n c e  one does n o t  know whe the r .o r  n o t  t h e  corresponding exac t  TDHF solu-  

t i o n s  are t r u l y  p e r i o d i c ,  obeying f o r  a l l  t t h e  i d e n t i t y ,  
+ m (:,t+~) = Q ~ ( X , ~ ) ,  (9) 

P 



.- 

or  merely obey i t  approximately over some limited'  time i n t e r v a l . )  Kan's 

work the re fo re  forces  one t o  dea l  with the  Requantization process discussed 

i n  r e f .  [6] ,  by which some s e t  of so lu t ions  d i s c r e t e  i n  energy i s  se lec ted  

from the  continuous spectrum of per iodic  TDHF so lu t ions  t o  serve  a s  reac- 

t i o n  channel wave funct ions ;  o r  e l s e  t o  conclude t h a t  the  s i n g l e  determinan- 

t a l  r eac t ion  theory, s i n c e  i t  would then lack  reac t ion  channel orthogonal- 

t i y ,  and the re fo re  could not  cons i s t en t ly  p red ic t  physica l  measurements i n  

one-to-one correspondence with the  r eac t ion  channel amplitudes character-  

i z i n g  the  r eac t ion  process,  was of an e s s e n t i a l l y  d i f f e r e n t  cha rac te r ,  

s t r u c t u r a l l y ,  from the  exact  theory--an " i n t r i n s i c a l l y  d i s s ipa t ive"  t r a j e c -  

tory theory, i n  the terminology o f .  r e f .  [6] .  

We again proceed by analogy with the  Schriidinger theory,  t h i s  time 

u t i l i z i n g  the  gauge invariance of i t s  phys ica l .  content.  Then, remarkably, 

one f i n d s  t h a t  the  requirement t h a t  the  TDHF so lu t ions  behave l i k e  the  

exact  s t a t i o n a r y  e igens ta tes ,  and p a r t i c u l a r l y  t h a t  they be i n v a r i a n t  under 

gauge transformations,  leads t o  a unique and unambiguous s e l e c t i o n  of a 

d i s c r e t e  s e t  of gauge i n v a r i a n t  pe r iod ic  funct ions  a s  s u i t a b l e  e i g e n s t a t e  

analogs. 

One can view t h i s  process a s  a requant iza t ion  procedure d i c t a t e d  by 

the  gauge p roper t i e s .  Al t e rna t ive ly ,  one might take t h e  view t h a t ,  i n  

s p i t e  of the  f a c t  t h a t  t h e  pe r iod ic  spectrum of TDHF s o l u t i o n s  may i n  some . 
cases be continuous, never the less  the  pe r iod ic  so lu t ions  capable of play- 

ing the  r o l e . o f  e igens ta tes ,  e s p e c i a l l y  a s  regards gauge transformation 

p roper t i e s ,  occur only a s  a d i s c r e t e  set. 

XII. GAUGE INVARIANCE OF THE TIME-DEPENDENT SCHRODINGER THEORY 

Consider the  SchrBdinger system character ized  by t h e  (time-independent) 

Hamiltonian, H,  and the  s e t  of time-dependent desc r ip t ions  s p e c i f i e d  by 
A 

t he  gauge transformed Hamiltonian opera tors ,  H,  of the  form 
A 

H + H = H + $ ( t )  (10) 

where $ ( t )  i s  an a r b i t r a r y  space and momentum independent funct ion  of time. 

Then the  physica l  content  of each of the  transformed desc r ip t ions  i s  
+ -P 

exhausted by the  matrices of a l l  t he  poss ib le  physica l  observables,  fl(x,p).  

Moreover, every such matr ix  of the  system, H, is i d e n t i c a l  with the  corres-  

ponding matr ix  of the system, i, element by element, 
+ +  A + -P <iil O(X,P)  lyj> : <yi(;,t) 1 #(X,P) I Y  (g,t)>= 

j 
(11) 



Equation (11) fo l lows  from t h e  f a c t  t h a t  a  change i n  B( t )  a l t e r s  each of 

t h e  s o l u t i o n s  only  by a. time-dependent complex phase. f a c t o r  which i s  t h e  . 

same f o r  eve ry  s o l u t i o n ,  . ( I n  pas s ing ,  we c o n t r a s t  t h i s  u n i v e r s a l  
ly i 

phase f a c t o r  w i th  t h e  s tate-dependent  phase f a c t o r s  impl ied  'by t h e  TDHF 

v a r i a t i o n a l  p r i n c i p l e ,  a s  d i scussed  i n  r e f .  [9] . )  " . 
I " 

. . 
Note t h a t  among t h e  p h y s i c a l  observables ,  t h e r e  must occur  t h e  energy 

-P + 
o p e r a t o r ,  g iven  by t h e  Hamiltonian, H(x,p).  Obviously, under t h e  t r ans -  

format ion  (10) t h e  d i agona l  m a t r i x  elements  of H (bu t  n o t  t h e  of f -d iagonal  

e lements)  i n  (11) a l l  s h i f t  by t h e  amount, B ( t ) .  Since ,  i n  f a c t ,  on ly  en- 

e rgy  d i f f e r e n c e s  are p h y s i c a l l y  nhserved, and n o t  a b s o l u t e  va lues  of t h e  

energy,  such  a s h i f t  rlnes n n t  a f f e c t  t h c  p h y s i c a l  c u u l e ~ i c  of the theory.  

XIII. GAUGE INVARIANCE OF EIGENSTATES 

Then c o n s i d e r  t h e  time-dependent Schradinger  s o l u t i o n  i n i t i a t e d  a t  
+ 

t = t a s  a n  e igen func t ion ,  $JA(x) ,  such  t h a t ,  
0  

H $JA (a = EA .4Ja (2 (12) 

(We use  t h e  Greek s u b s c r i p t  t o  d i s t i n g u i s h  t h e  e igen func t ion  c a s e  from t h e  

more g e n e r a l r i n i t i a l  cond i t i ons  denoted by L a t i n  s u b s c r i p t s . )  Such a  time- 

dependent s o l u t i o n  is, f o r  a r b i t r a r y  gauge, B( t )  i n  ( l o ) ,  of t h e  form, . . 

-T + 
q A ( x . t )  = yA(x) (exp - (il*,) [E X ( t - t  0 ) -k 

0 
The l a t t e r  form i n  (14) i s  w r i t t e n  t o  emphasize t h e  f a c t  t h a t  under gauge 

t ransformat ion ,  (10) , only t h e  phase f a c t o r  i s  altcrcd, wki 1 P tt,e LaL.J,vnary 

s t a t e  remains i n v a r i a n t .  By analogy w i t h  the  s t a t i o n a r y  ~ i g ~ n f u n c t i o n ~ ,  

then ,  we s h a l l  i n s i s t  t h a t  t h e p e r i o d i c  channel  s o l u t i o n s  of TDHF must a l s o  

be f n v a r i a n t  under a r b i t r a r y  gauge t ransformat ion .  

X I V .  "TD-d-HF EIGENSOLUTIONS": PERIODIC STATES AS GAUGE ANALOGS OF THE 

EXACT STATIONARY EIGENSTATES 

I n  t h e  Hartree-Fock case ,  cons ide r  t h e  " ~ o a s ~ a n ~ - i s , "  s o l u t i o n s  de- 

f i n e d  by t h e  equa t ion ,  
C 

*[a] a = {%'[@I + < @ I H  -%'[a] I @ > }  m = in&, . . (15) 

and a s p e c i f i e d  i n i t i a l - v a l u e  determinant .  The TDHF "Hamiltonian" , #, of 

eq. (14) i s  un ique ly  p re sc r ibed  [9]  by t h e  v a r i a t i o n a l  p r i n c i p l e  (1 ) .  Then 

X O  may be t h e  conirentional s e l f - c o n s i s t e n t  Hartree-Fock Hamiltonian, o r  



t h a t  Hamiltonian augmented by any a r b i t r a r y  a d d i t i v e  func t ion  of .  t ime 

only. Now consider  t he  e f f e c t  upon B p e r i o d i c  s o l u t i o n ,  Op(:, t ) ,  of (15) 

of a  gauge t ransformat ion  (9) .  The new s o l u t i o n  i s  r e l a t e d  t o  t h e  o l d  by 
izr 

a phase fac tor , '  

-b 
I ; ( x , t )  = m (2, t){exp - 

P 
(16) 

~ b v i o u s l ) ,  Q, need n o t  be p e r i o d i c  even when (P is  pe r iod ic .  .Therefore,  i t  
P 

is n o t  p o s s i b l e  f o r  p e r i o d i c i t y  i n  gene ra l  t o  be a  guage i n v a r i a n t  property. 

Then t o  s u s t a i n ' t h e  analogy between t h e  exact.  theory  and TDHF under 

gauge inva r i ance ,  we must seek channel  s .o lu t ions  i n  t h e  form of a  prbduct  

of a p e r i o d i c  func t ion  and a  phase f a c t o r  determined by H a lone ;  i .e. ,  

-b 
m(Z,t) - m p ( x , t ) ~ e x p - ( i / ~ )  < ~ ( t l ) > d t l }  i (17) 

where is a p e r i o d i c  func t ion  s a t i s f y i n g  (9 ) .  A func t ion  of t h e  form - . 
P 

(17) w i l l  t ransform under t he  gauge t r ans fo rma t in  of H i n  p r e i c s e 1 y : t h e  
-t 

same way a s - t h e  e x a c t  s o l u t i o n  ( l ( r ) ,  and t h e  p e r i o d i c  s o l u t i o n ,  cP+ ( x , t )  is 
-+ P 

p r e c i s e l y  t h e  anlogy of t h e  s t a t i o n a r y  e i g e n s t a t e ,  $ (x). 
h 

XV. GAUGE INVARIANT TDHF EQUATION . 

Of course,  t h e  func t ion  (17) must s a t i s f y  t h e  (unique!) TDHF equat ion  

(14) implied by the  v a r i a t i o n a l  p r i n c i p l e  (1) .  Then t h e  p e r i o d i c  f a c t p r ,  

Q of (17) s a t i s f i e s  t h e  fo l lowing  equat ion ,  
P ' 

{H[m I - <mpla/lrp>} m = ini . 
P P P 

We r e f e r  t o  (18) as t h e  gauge i n v a r i a n t  TDHF equat ion,  s i n c e  i t  i s  manifes- 

t l y  unaf fec ted  by any t ransformat ion  of t h e  form (10) .  

X V I .  CONTINUA O F  PERIODIC TDHF SOLUTIONS':' GAUGE P\EQUANTIZATION 

For c e r t a i n  model problems, Kan, e t  a l .  [ 7 ]  show t h a t  eq.  (15) exhib- 

i t ~ ,  f o r  t ime-independent  11, a cu~~LLnuuus ser: of p e r i o d i c  s o l u t i o n s .  But 

among such a  continuum, only those  s o l u t i o n s  whose energy i s  related to 

a the  per iod ,  T, by t h e  e q u a l i t y ,  

E = <@ / H I @  > = 2 N f i / T ,  
P P 

(19) - a r e  of t h e  form (17) wi th  a  p e r i o d i c  f a c t o r  which s a t i s f i e s  t h e  gauge in-  

v a r i a n t  TDHF equat ion  (18).  Then (19) s e l e c t s  a  d i s c r e t e  s u b s e t  of t h e  

p e r i o d i c  coi~tlnuum, for  which t h e  space-dependent p e r i o d i c  f a c t o r ,  Q 
P ' 

i s  i n v a r i a n t  under t h e  gauge t ransformat ion  ( l o ) ,  e x a c t l y  as are t h e  

e i g e n s t a t e s  of t h e  exac t  Hamiltonian. 



Thus, condi t ion  (19) o f f e r s  a  n a t u r a l  b a s i s  f o r  the  requant iza t ion  o f .  

the  continuum of p e r i o d i c  TDHF so lu t ions  i n t o  a  d i s c r e t e  s e t  of TDHF eigen- 

func t ions .  It s e l e c t s  those per iodic ,  s t a t e s  which remain pe r iod ic ,  j u s t  a s  

t h e  e i g e n s t a t e s  remain s t a t i o n a r y ,  under an a r b i t r a r y  gauge transformation. 

I n  tu rn ,  t h e  TD-J-HF channel wave, funct ions  a r e  a l l  i n i t i a l i z a b l e  i n  terms 

of s p e c i f i c  pe r iod ic  s t a t e s ,  independent of the  choice of gauge. And t h e i r  

d i s c r e t e n e s s  i n  energy guarantees a l s o  , the mutual (time ave~aged)  orthogon- 

a l i t y  proper ty  (8) fo r them,prov id ing  thereby under the  s t a t i s t i c a l  i n t e r -  

p r e t a t i o n  of the  wave f u n c t i o n s , . a  cons i s t en t  one-to-one correspondence 

between t h e  r e a c t i o n  amplitudes and the  t h e o r e t i c a l  p red ic t ions  of t h e  
* .  f ' . 

i n t e r n a l  d rop le t  p r o p e r t i e s .  

Al t e rna t ive ly ,  one could have 'sought  i n  t h e  f i r s t  p lace  as s u i t a b l e  

analogs of t h e  s t a t i o n a r y  e i g e n s t a t e s  only those so lu t ions  whose pe r iod i ty  

is  a  gauge i n v a r i a n t  pe r iod ic  funct ion ,  l i k e  the  s t a t i o n a r i t y  of the  

e i g e n s t a t e s .  Then one would a t  the  o u t s e t  have recognized only t h e  dis-  

c r e t e  p e r i o d i c  spectrum of (18) a s  acceptable  channel s t a t e s ,  r a t h e r  than 

t h e  continubus s e t  of pe r iod ic  s o l u t i o n s  of (15). ' 

We no te  t h a t  Kan, e t  a l . ,  [ 7 ]  have a l s o  demonstrated the  equivalence of 

the  condi t ion  (19) wi th  t h e  Bohr-Sommerfeld quant iza t ion  condit ion.  

XV. "TIIHF EIGENSTATES" 

The gauge i n v a r i a n t  p e r i o d i c  so lu t ions  o f f e r  a  d i s c r e t e  spectrum of 

TDHF s t a t e s  which s h a r e  t h e  gauge transformation p roper t i e s  of exact ' t ime-  

dependent e i g e n s t a t e  so lu t ions .  . T h e s e ' s t a t e s  a r e  the re fo re  n a t u r a l  ob jec t s  

t o  desc r ibe  the  l a r g e  amplitude TDHF analogs of the  Schrudinger e igens ta tes  

w i t h i n  t h e  time-dependent framework. 

Indeed, by numerical c a l c u l a t i o n  f o r  c e r t a i n  model problerns.whose 

exac t  e igens ta tes  are known, Kan, e t  a l .  [ 7 ]  have shown exce l l en t  agree- 

ment between the  ene rg ies  of these  gauge i n v a r i a n t  pe r iod ic  so lu t ions  ( f o r  

which we the re fo re  suggest  t h e  name, "TDHF eigens ta tes")  and t h e  exac t  

energy eigenvalues. 

XVI. SUMMARY 

The TDHF desc r ip t ion  of continuum reac t ions  can 'be r e s t ruc tu red  from . . 

an i n i t i a l - v a l u e  p o b l e ;  i n t o  a  form analogous t o  the  S-mairix vers ion  of 

. t h e  SchrCIdinger theory. The r e s u l t i n g  TD-9-HF theory involves only s e l f -  

c o n s i s t e n t  s i n g l e  de terminanta l  so lu t ions  of the  TDHF equations,  and in- 



vokes time averaging t o  o b t a i n  a  c o n s i s t e n t  i n t e r p r e t a t i o n  of t h e  TDHF 

analogs of q u a n t i t i e s  which a r e  cons tan t  i n  t h e  exac t  theory ,  such a s  t h e  

S-matrix and t h e  asymptot ic  r e a c t i o n  channel  p r o p e r t i e s .  . 

P e r i o d i c  TDHF.solutions then  p lay  t h e  r o l e  of s t a t i o n a r y  e i g e n s t a t e s  

i n  t h e  cons t ruc t ion  of s u i t a b l e  asymptot ic  r e a c t i o n  channel  s t a t e s .  I f  

t hese  p e r i o d i c  channel  s t a t e s  occur only a t  d i s c r e t e ' e n e r g i e s ,  then t h e  

r e s u l t i n g  channels  a r e  mutually or thogonal  (on t h e  t ime average)  and t h e  

theory e x h i b i t s  a  s t r u c t u r e  f u l l y  analogous t o  t h e  e x a c t  theory.  

I n  c e r t a i n  s p e c i a l  ca ses  where t h e p e r i o d i c  s o l u t i o n s  a r e  known t o  

occur a s  an energy continuum, the  requirement t h a t  t he  p e r i o d i c i t y  of t h e  

channel  s o l u t i o n s  b e  a gauge i n v a r i a n t  proper ty  provides  a n a t u r a l  requan- 

t i z a t i o n  condi t ion ,  which t u r n s  out  t o  be i d e n t i c a l  w i t h  t h e  Bohr-Sommer- 

f e l d  quan t i za t ion  r u l e .  Thus i t  emerges t h a t  t h e  TD-J-HF d e s c r i p t i o n  can 

always e x h i b i t  a s t r u c t u r e  analogous t o  t h a t  of t h e  Schrodinger r e a c t i o n  

theory: t h e  q u a l i t a t i v e  e f f e c t  of t h e s i n g l e d e t e r m i n a n t a l  assumption, 

o v e r a l l ,  is t o  impose t h e  requirement of t ime averaging upon t h e  i n t e r p r e -  

t a t i o n  of t h e  phys i ca l  q u a n t i t i e s  i n  TD-PB-HF whose Schrb'dinger analogs a r e  

cons t an t  . 
For n u c l e a r  s t r u c t u r e  phys ics ,  t h e  "TDHF e igensolu t ions"  o f f e r  a  time- 

dependent d e s c r i p t i o n  of s t a t i o n a r y  s t a t e s  which agrees  w e l l  w i t h  t h e , e x a c t  

e i g e n s t a t e s  f o r  t h e  model problems considered s o  f a r  171, and which i n v i t e s  

comparison wi th  t h e  corresponding s t a t i o n a r y  RPA s t a t e s .  

This  r e sea rch  is supported by t h e  U. S.  Department of Energy. 
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