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THEORY AND SIMULATION OF LASER PLASMA COUPLING" 

W. L. Kruer 

Un'vers'ty of California. Lawrence Livennore Laborato-y 
Livermore. California 94550 

Abstract 

The coupling of intense laser light with plasmo? s a tope if great 
interest. Collective processes play an important role in this ccup'ing. 
!n these lectures, we consider the theory atd simulation of these 
processes, with particular emphasis on their nonlinear evolution. r = rSt 
a brief introduction to computer simulation of plasmas uf'ng part'e'e 
codes is given. Then the absorption of light via the generation of 
plasma waves is considered, followed by a discussion of stimulated 
scattering of intense light. Finally these calculations are compared 
with experimental results. 

"Work performed under the auspices of the U.S. Department of Energy by 
the Lawrence Livemore Laboratory under contract number W-7405-ENG-48. 
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T>tp -ilea <•>' us'ng .arge. Mgh-pcue*' lasers to congress and heat 

' <r- -•* fje' to therinonjc 1 ear conditions is basically very s-mp'e: a 

p.'s.--" 'ase- car focus energy onto a saa^l target. corap'-'^S'no and 

*">>" "1 tne 'io' -is-de to >gn»t>on conditions. T»e •esu'ting plasma -s 

-•-' -erf by 11 ̂  own 'nertia 'ong enouqh for thermonuc '<"«•• reactions to 

*?•* r'are. "̂ .-•put*"- 'a'c^'at'OUs have nd'cated tha' «.'"jnif-'cant target 

-]» ^ T q H * he achieved- tha* 'S. the energy produced '-on fus'on can 

• • •• t n.-wi 'he 'jse>- enp-gy necessary to implode *^0 *arqe* . A large 

" ' • • r : ! f M ' of*ov» •<; >jndp** way *o "vest-gate the f**r* *hM 'tv of ' iser 

• .• -" energy. 

"he '•o-jp'-nq of -ntense lase- ''cjht to targets 'S obviously one very 

-ip -*ant component nf 'ase- fusion studies. These i»rtu'es aro 'ntpnded 

"> bp a t>r-»f mtrodiiction to laser plasira coup'ing. The spec :fic tnp'rv. 

I'-p 'hosen to be representative and to focus attention on some of the 

•nipr>i-tant nonlinear features of the coupling. I" the fi'st lecture, a 

br-e' introduction is given to p'asma simulation usinq partic'e codes. 

In tne secmd and th>"-d 'ectures. l>aht absorption v a the generation .->* 

p'asms waves 's examined. The fourth lecture is a d'scjssion of 

st'mu'ated scattering, a process whereby laser light ;s scattered t V o m 

plasma wa^es. In the final lecture, ca'culations are briefly compared 

with experimental ro-uUs. Throughout these lectures, the emphasis will 

be on a physical introduction to important concepts and nonlinear 

results, rathe- than on an exhaustive survey of the field. 
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LECTURE ONE: PLASMA SIMULATION USING PARTICLES COOES 

INTRODUCTION 

:' s well known that a coi1isionless plasma will support waves 'or 
c- 'art je modes of oscillation) and that such waves are often driven 
i'-s' i s An understanding of the resulting plasma nrcroturbulence can 
.v> ,.->••, uportant for many practical applications, such as laser-induced 
pe''.?t f ,<;'on or fusion via magnetic confinement. The turbulenr stat" is 
sjfric'p-itly complex that the interpretation of experiments requires a 
pn.'.o know'edge of what effects are produced by the many compet'ng plasma 
non1 ;iearities. In general, analytic theory is not capable of describing 
the non'inear behavior, except in a very weak turbulent regime. Such 
i-heory is extremely valuable but has a limited domain of applicability 
md s itself often intractable. Hence it has been essential to augment 
experiments and analytic theory by direct numerical simulation. 

Particle codes have proven to be a very powerful tool for the 
numerical simulation of plasmas. In this first lecture, a brief and 
physical introduction to the concepts and techniques involved in such 
codes will be gnen. Then these concepts will be tested by comparing the 
results from a particle code with a numerical solution obtained by an 
independent and quite different approach (as well as with the results of 
an experiment). In subsequent lectures, several examples will be given 
of recent applications of particle codes to laser plasma interactions. 
These examples illustrate many of the strong points and limitations of 
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such codes. The discussion will be aimed at a general technical audience 
and is intended to be an introouction rather than an exhaustive survey. 

A PHYSICAL INTRODUCTION TO THE CONCEPTS AND TECHNIQUES 

The use of a particle code is a very direct and fundamental way to 
1-9 follow the behavior of a collisionless plasma. One simply considers 

a large collection of electrons and ions. As indicated schematically in 
Figure 1, the positions and velocities determine the charge and current 
densities. Maxwell's equations then give the electric and magnetic 
fields, sllowing the positions and velocities to be updated according to 
Newton's laws. One continues around this basic cycle with a time step 
sufficiently small to resolve the fastest behavior in the problem, which 
is often the electron plasma frequency time scale. The electron plasma 

-1"1?-, where n is the electron density, m 
Of course it is only practical to use a rather limited number of 

simulation particles and to calculate their behavior on a sufficiently 
coarse spatial grid. Fortunately a rather coarse computational grid is 
adequate. Due to the long range of the Coulomb force, the net force on a 
charge in a collisionless plasma is determined by the collective motion 
of the charges rather than by short-range, binary-type encounters. The 
resulting collective modes of oscillation (waves) have wavelengths which 
are typically ~ the electron {or sometimes the ion) Debye length 
(,\n. = v - — s - , where 6 is the electron temperature and n the 

u e lune^ e 

electron density). Hence one can resolve the forces on a computational 
grid whose spacing is of order the Debye length rather than the typical 
inter-particle spacing. 
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The basic techniques are best illustrated by discussing a 
one-dimensional, electrostatic particle code. (In the electrostatic 
limit, the magnetic field generated by plasma currents is negligible, 
and Maxwell's equations reduce to Poisson's equation. 7 • E = t-o.l 
Thp'-e are several different schemes commonly used to map the particles 
onto the spatial grid. Consider a particle with charge q located a 
d'stince ' to the right of its nearest grid point (labeled i). In the 
NGP scheme, one simply assigns the charge of the particle to that nearest 
gr ;d po'it; i.e.. i (il = q. It is more common to linearly interpolate 
the charge of the particle to its neighboring grid points; i.e.. pfil = 
q'l-'l and .'(i + 11 = qC. where the cell size " = 1. In this so-called PIC 
or CIC scheme, the charge density is mapped onto the spatial grid 
co'-rectly to dipole order. 

One next solves for the electric field due to this charge density. 
This can be done by a direct finite differencing of Poisson's equation or 
by Fourier transforms. Due to the existence of the fast Fourier 
transform algorithm, the two approaches are generally competitive in 
speed. It is theoretically appealing to work in terms of Fourier 
components, but complicated boundary conditions are more easily 
incorporated when the finite-difference approach is used. 

Finally, the electric field is mapped from the grid to the particles 
by a scheme consistent with that used in assigning the charge density. 
For example, in the (PIC. CIC) scheme, the electric field is linearly 
interpolated to the particle position. In the previous example, 
the force on the particles is then q [(1-0 E(i) + £E(i + P ] . The 
velocities and positions are updated by a standard leap-frog algorithm. 
By defining the position and velocity one-half time step apart, one in 
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effect achieves second order accuracy in the time step with a minimum 
number of operations, as can be readily confirmed by performing a 
Taylor-expansion. 

From a computationa1 viewpoint, a particle code is clearly rather 
straightforward. Not surprisingly, numerical instabilities are rarely a 
problem. One noteworthy instability is associated with the aliasing 
introduced by the spatial grid. Aliasing arises from the fact that 
one cannot distinguish a disturbance with wave vector k from one with 
wave vector k + _ . where 6 is the grid spacing and n an integer. A 
heuristic argument can be given. One can avoid this problem by ensuring 
that the aliased modes have a phase velocity less than the thermal 
velocity of the particles; i.e. (k + -4̂ -) ̂ D e-'- n j" 0. Since the 
modes we wish to describe have kA_ < 1. this gives the condition that 
2 De <S > 2. or -'._ z - . In other words, one cannot describe too 6 ' De IT 

many Debye lengths with a single cell. 
Of course, particle codes become somewhat more complex when the full 

set of Maxwell's equations is allowed and magnetic forces operate on the 
particles. But the basic concepts are the same: the use of a spatial 
grid whose spacing is chosen to resolve the collective behavior and the 
mapping between t hat discrete grid and the particles. A very appealing 
physical interpretation of these procedures can be given in terms of 
finite-size particles. A particle of finite spatial extent does not 
support fluctuations over distances much less than its size (al. This 
provides a natural suppression of the short-wavelength fluctuations 
associated with collisional effects. Yet the behavior of a collection of 
extended particles exhibits the same long-wavelength (A =>> a) behavior as 
do point particles (with minor modifications of the dispersive properties 
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of the waves). Furthermore, the mapping of such particles onto the 
spatial grid proceeds in a natural and systematic way as a Taylor 
expansion about the grid location nearest to the center of the extended 
charge. 

Again it is instructive to consider a simple one-dimensional 
example. The charge density due to a collection of Gaussian-shaped 
charges is 

:>(>•) = 

where x. is the center of the j charge and a is its half-width. A 
Fourier transform yields 

- k 2a Z
 r -ikx. 

p. = q e ---- I e j 

which is identical to the result for a collection of point particles 
-k 2a 2/2 except for a form factor (e ). This form factor explicitly 

shows that fluctuations with wavelengths A £ a are suppressed, whereas 
long wavelength ones (X » a) are relatively unaffected by the particle 
size. 

To introduce the spatial grid, one expresses x. in terms of the 
nearest grid point location plus a displacement, 

x. = n. 6 + Ax. 

and expands the exponential assuming 6 « a. This yields p t = 
-k 2a 2 . 

qe 2 r e " 1 k n j 6 Z (-ikax^Vi! • Note that the summation over £ 
j i- J 

is a summation over the multipole moments of each extended charge with 
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respect to its nearest grid location. Truncating the multipole 
expansion at the dipoie order and rearranging the sum o v - 1'. one obtains 

-.61 
< k = e 2 FT [N(n) - ikAR(n)]. 

FT denotes a Fourier transform and N(n) and AR(n) are the Met monopole 
and dipoie charge as?"iated with each grid point; i.e.. 

N(n) = Y. q 
jcn 

AR(n) = I qAx- . 
jen J 

Physicaliy one has replaced each extended charge by an extended charge 
plus an extended dipoie located at its nearest grid point. The (PIC, 
"IC) scheme previously mentioned is in these terms an expansion to dipoie 
order. 

A similar multipole expansion can be used to determine the force on 
an extended charge. The net force is then expressed as the monopole 
charge times the electric field plus the dipoie charge times the 
derivative of the field. Since the general procedure has been 
illustrated, no further details will be given. 

COMPARISON WITH AN INDEPENDENT TECHNIQUE 

These concepts are plausible, but how well do they work in practice' 
Can one describe the behavior of a coilisioniess plasma using a practical 
number of particles, which inevitably is far fewer than nature uses? It 
is well known that the Vlasov equation can be used to describe a plasma 
in the collisionless limit; i.e., when the number of particles per Debye 
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sphere (nX- ) is infinite. Hence a good check on the results of a 
particle code is to compare them with direct numerical solutions of this 
equation. Such comparisons have indeed been carried out for a number 
of different ronlinear problems, establishing good agreement between the 
results from a particle code and from the Vlasov equation. 

As an example, consider the nonlinear behavior of a large amplitude 
electron plasma oscillation on a time scale for which ion motion can be 
neglected. In a one-dimensional, electrostatic limit the Vlasov equation 
becomes 

a£ + v fl . e E ot , 0. 
at sx m ;°v 

f(x.v.t) is the phase space distribution function of the elect'ons. and E 
is the electric field determined from Poisson's equation: 

£ = . 4,e[/fdv - n 0] , 

where n is the uniform background ion density, "he numerical solution 
of these equations was carried out by Fourier expanding the distribution 
function in both position and velocity space, and then solving the 
coupled equations for the Fourier components by the method of 
characteristics. 

Figure 2 shows the computed evolution of the wave energy in both the 
large amplitude plasma wave and its lower sideband (the lowet wavenumber 
and frequency plasma waves). The open symbols denote the solution of the 
Vlasov equation, and the solid symbols denote the results from a particle 
cod? (with 80,000 particles). The large plasma wave exhibits 
oscillations in energy due to the bouncing of electrons in the potential 
troughs associated with the wave. Simultaneously the lower sidebands 
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exponentiat? in energy, denoting what has been called a trapped particle 
1? instability. From a computational viewpoint, this '-. quite a 

diffict'lt problem, since cne must follow both sizeable variations in the 
energy of the large wave and the concomitant growth of nearby waves over 

many orders of magnitude from the noise. Even so, the Vlasov and 
particle code results are in quite good agreement. It should be noted 
that these computational results are also in substantial agreement with 
experiment. Figure 3 shows th« experimentally measured evolution of 
the energy in a large plasma wave and in its lower sidebands. The large 
plasma wave was launched from a probe, and then its behavior monitored a; 

a function of distance. (Hence this is the spatial analogue of the 
temporal problem considered in the Emulations.) The simulations 
correctly describe both the main wave oscillations and the sideband 
growth. This example is a good illustration of how experiment, theory. 
and numerical simulation can mutually Interact to clarify the nonlinear 
behavior of plasmas. 

STQTE OF THE ART OF PARTICLE CODES 

Particle codes have been developed to a high level of sophistication 
and have been used to study numerous problems throughout plasma physics. 
Figure 4 shows a schematic of a state-of-the-art computer simulation 
which is a good indication of the current capability of particle codes. 
One uses a 2-D electromagnetic, relativistic particle code and propagates 
laser light from a vacuum into an inhomogeneous plasma slab. The plasma 
response is followed not only along the electric field vector of the 
laser light but also along its direction of propagation. Such 
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simulations have allowed the study of light absorption both via 
instabilities and via direct resonant excitation of plasma waves. 

Although an invaluable tool, these 2-D simulations are a good example 
of some practical limitations in the use of particle codes. One is 
fairly restricted in both the size of plasma which can be simulated 
and the length of time for which the behavior can be followed. This can 
be illustrated by some simple estimates based on using a CDC 7600 
computer. The largest practical spatial grid is composed of ^0.000 gr ?d 
points, since there are at least six arrays defined on this grid <n the 
2-D code. A single ceil is used to describe no more than 2-3 '•-
(electron Debye lengths) in order to avoid the grid instabilities 
previously mentioned. Hence the simulated plasma can have a maximum s ;ze 
of -400 1. by 400 >. , although of course the system need not be 
square. For typical laser plasma parameters, the size of the simulated 
plasma is then ~ 6 A by 6X , where x is the laser light o o o = 

wavelength. As compared to an experiment, this is a small region of 
plasma. 

Furthermore, to maintain minimal particle statistics (and hence mvse 
levels), one uses at least 5-10 particles per Debye square, which 
translates to ~10 simulation particles for this large problem. A 
reasonably fast 2-D relativistic particle mover using the electromagnetic 
fields takes ~25 usec/particle. Hence a computer simulation of 2500 time 
steps consumes about 20 hours of computer time. Since a typical time 
step is .2 u D " , the total time simulated is -500 w or 
100 laser light periods, again much shorter than experimental time 
scales. Of course, one can usually isolate th important physical 
mechanisms in much s"!̂ 'ler systems, and can often improve the speed by 



_,.,:.,.,^-.„._ , _. »i,.-iW ru-ribe's give some idea of the pratical 

;" "**s. 

: •••'.-• •-•_ • "--vis •"-» r.-c'O-tu'bu'ent behavior of a 

• • • - ? ' ••-. :h-> • ;-S:i'er-e ">n a sho't time and space scale. Not 

• - ',. <,••*' f "e s-a'e ra'cj'ations can be carried out for only 

-* -'" r" »s-3s an-4 shor; time?. One generally uses pa-'ticle 

•-•.»—.-J «nrf Ti-cot irbj'ence affects the 'oca 1 p'asma 

• ;-" is e-?rgj. absorption >-ates » nd t-Mnspo>-t coefficients. 

--••-i*--- ^ "ion input ether intn theory and'or 

-.-»—-*.voe ~?des ;n order to determine the global behavior of the 

- ' j s .v. pa'-t^cle codes are a powerfu' and often • id Hspensable 

" s* jiy st--oio plasraj turbulence. The detailed d ;agnostics from 

-_-,. --7 -.'ten allow one to isolate and parameter'ze the important 

"/••• ?-fec:s. However, such C O U J S of course operate on sho--t time 

:'.:" ='es. "he'- -esults genera 1 1/ serve as an :op,t to theory 

i -vd-odynamc codes. 
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LECTURE TWO: LASER PLASMA HEATING - PARAMETRIC INABILITIES 

INTRODUCTION 

One of the central questions in la^er fusion sJud'es concerns the 
mechanisms by which laser light is absorbed by a plasma. Since a hot 
p'-r-i becomes coll isionless. classical joule heatinq -s isuaMy 
"is.i'ficient unless very short wave'ength or low intensity 1ase' Tqht 
; r.ed. Fortunately one can heat even a coll is'on'ess plasma. Th-s 
'anomalous absorption" arises '.;nce 'ntense 'asp'- ' :qit " V C ^ P S P -'a 
waves 'or charge density fluctuations). The electric fields .assor -ted 
with such charge fluctuations in tu'n accelerate and heat the p'as'na 
oart icles. 

A crude estimate of the efficiency of class'ca1 jou'e heat^nq can be 
g^ven. Physically this heating occurs because electron-;on c o u p o n s 
convert the coherent energy of osciltat'on of elections 'i the e'ect"-'c 
cie'd ar the light wave into random thermal energy. It ;s easy to show 
that the energy damping rate of • 'ight wave then 's = ,- -__'. 

where >J . is an electron-ion collis;on f--equency: 
v g i - 3 x 10 n.Z In,*, •^•^ H g r e ^ i s t h e .Qn d e n , U y _ 7 

the ionization state, w the plasma frequency. _ the 1'ght frequency. 
and Jo the electron temperature in ev. As a simp'e -?<anple. fo'- '.06 .. 
laser light in a olasma with " - 10 and Z = 3. the c'ass'cal 3 ev 
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•••p'-fin 'enqth npa- the C ' t ' c a " density is j b m t 'iv* . As the 

••"i he j*s . t h : s absorption 'enqth becomes ev?n 'onq»" as 

4cnr? - . ^ "oc t ' ve heat'nq ' v ' l p'aSTia K jv f l < ' "> !- f*pn the 

••• -".lurce '"• 'ase1* ' ' qh t absorption. 

"" bas : - m?cnar ,"s-i for the - x c i t a t ' i n nf p ' jsna .(Jv1-- "s the 

.•<-ir. 0f ^ lec t 'ons by the ('''ecf'c f i e ' d of the ' -nt irons'; •, 

v nn ••-. p'is-ia dens' tv . T n i s drives a cha-qe Jens ' >• f" jr*t iat 'nn 

n ' x ' 

• •• • •• • - et, 'm i t is apparent tha t . ; f • • ' ' h i t 

' 'he 'ase ' ' g h t frequency : s prope-^y matched t~ the »'ect'-on 

, ' r . i ; ' -equency' . elect""fn p^sma waves a^e ""sonant 'v d- 'ven. The 

.» • •? • - in in len^ i ty can be due to the ove ra ' ' Jens' tv g r id 'en t due tn 

o isiiT etpjns'Of 'th>s leads to resonance absorpt ion. «h ; -n w ; " he 

: i r jssed in the nest lec ture ! 3r t 0 the densitv f l uc f J at ' ins issoc 'at*- ' 

w . ' i ' ither r '3" "a waves, such as ion acoustic waves ' a ' l m e f ' c 

•ns'.ab" 1't ies near the c r i t ' C ^ 1 density a>-e a s'mp'e examp'e n* th-s 

>t»er e f f e c t . 

In O'-der to understand why such instabilities occii-". we need on'y 
;"t'-oduce one other concept: the ponderomot*"e force. The basic ":dea 

s v? y simple: ""hê e is a force due to a grad'ent ii electric field 

intensity just as there's a force due to a gradient in plasma pressure. 

3y using the two-fluid equations to deccHbe the plasma response to an 

high frequency electric field, with amplitude EfxK :t is readily shown 

that F - - u" fc V < i (-../S > where the brackets denote a 

time average over the- high frequency oscillations. 
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The fallback 'oop leading to instability is illustrated in Fig. 5. 
or- ip- .1 thr-'tna' leve') sma'l density fluctuation associated with an 
ir > 'jo u: wavp. The * ight field (E. 1 couples with the density 

'' . ' ,>-iin ' :n' to drive a high frequency electric field (E * 
• •-.'. • v>,i w i M i an p'ectron plasma wave 'E.^n -• E l . In turn, this 
.'.> •.- - «>,>!,) rniples with the light wave field to produce a 
•' if .<• on (n f'p'd pressure which enhances the density fluctuition 

r. • n". ll«ncp 'nstability is passible, in this case leading to 
•'\pnm>i- al q'-owth of both electron plasma waves and ion accousUc waves 
T w l e l . „ ' • • • • This is called the ion acoustic o pr 'a 
n^ta:• - * it v. There is also another branch of instability in which the 
• •"• i'?n^'t, fluctuation is not a "normal mode" of the undriven plasma 
'-.' -ither a zero-frequency, purely growing mode. This is called the 
is- " 1 at' ng two-st.-eam instability. Both branches of instability are 
-ead'ly derived' from the coupled wave equations for the high and low 
r-equency waves. In this second lecture, we will now briefly consider a 
s np :e and instructive example of the nonlinear evolution of these 
instab ilities. 

NONLINEAR EVOLUTION OF PARAMETRIC INSTABILITIES 

In order to focus on the nonlinear evolution, we consider the 
simplest model problem: a plasma with uniform density which is driven 
by an imposed s-'-tially-independent pump field (E slnu H with a 
frequency (u> ) near the electron plasma frequency. Such a pump field 
models the electric r'ield of a light wave near its critical density 
under the assumption that the wave number of the light wave is 
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neg'ig'ble compared with the wave numbers of the plasma waves which are 

etcited. Since the unstable plasma waves preferentially grow along the 

electric vector of the pump field, a great deal can be learned by using 

a one-dimensional electrostatic particle code. 
17 A few simple results from a sample simulation illustrate 

inpo-tant features of the collective heating. In this example, u, = 

' .0". . eE'mJ = 0.5v (the electron thermal velocity!, and the pe pe e 
ion-election mass ratio is 100. which is sufficient to clearly separate 

the electron and ion time scales. Figure 6a shows the evolution of the 

ene-gy in plasma waves, and Fig. 6b shows the evolution of the kinetic 

energy of the simulated plasma. At first there is essentially no plasma 

heating, reflecting the fact that the plasma is nearly col 1isionless. 

Meanwhile the plasma waves are exponentiating in amplitude. Finally 

these waves saturate, concomitant with the onset of rapid plasma heating 

due to an acceleration of plasma particles by the large amplitude plasma 

waves. An effective collision frequency corresponding to this 

anomalous heating is very large, v * * C 0 6 w , ,'here v* describes the 

rate at which the plasma energy increases with time in the nonlinear 

state. 

Another particularly important feature of the anomalous heating was 

first discovered in the computer simulations. Figure 7 shows a typical 

heated electron velocity distribution calculated with the particle 

code. The heating has been principally a production of ve»\y high 

velocity tails on the distribution. This generation of very high 

velocity electrons takes place since large amplitude electron plasma 

waves readily accelerate particles out to their phase velocity. As 

shown in Fig. 8. the generation of such nonthermal distributions have 
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been confirmed in a laboratory experiment on microwave heating of a 
18 

low-density plasma. 
The physics of the nonlinear saturation can be very rich. There are 

a number of different regimes depending on the pump field intensity. When the ilasma is strongly driven (eE /mi*, v i 1). the dominant 3 J o T>e e ~ 
process is simply electron trapping in the most unstable plasma wave. 
T,-apping occurs when electrons are nonlinearly brought into resonance 
with the wave. A large energy transfer then occurs, as the electrons 
are efficiently accelerated by the wave. In a cold plasma, this 
obviously occurs when the velocity of oscillation of an electron in the 
wave (t = eE/mw ) becomes equal to its phase velocity fv >. In w pe p 
d wa^m plasma, trapping occurs at a significantly smaller amplitude for 
several reasons. Faster electrons are more easily brought in resonance, 
and the sizeable pressure force associated the density fluctuation of the 
wave gives an additional acceleration. 

We can crudely model the effect of temperature on electron trapping 
by considering a ivaterbag model, which corresponds to replacing a 
Maxwellian distribution with a velocity distribution which is constant 
between *y[3\i . !n this description which assumes fixed ions, the 
average density (n) and velocity (u) satisfy the same equations as those 

15 for a warm electron fluid: 

M+4M^mnll • 
3 where p/n is a constant. Introducing E = - 3<t>/3x and transforming to 

the wave frame with velocity v gives 
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"o v p 

m \n / p e 

Here n is the density of the uniform, unperturbed plasma. Hence 

•© IT -3 •% = £- - 1 - P+ 6 
tnv' v ' 

P P 

aihi'ri? - 3v /v . By di f ferent iat ing with respect to u. i t is 

easy to see that <t> has an extremum (* ) when u/v = yj 6 . The 

cor-esponding potential is 

my 

This simply corresponds to the condition ;.hat the net energy of the 
fastest electron be zero in the wave frame. 

To determine the critical value of the electric field, we consider 
Poisson's equation: 

-2 
j~£ = 4ire(n-n0) x 

Multiplying by 3<)>/3x and usi tg equation I I - l gives fin the wave frame) 

| - + 4ir /n0e<f. - mnu2 - nomvjj / £ 1 I = I I - 5 
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The constant has been evaluated by noting that i>, = o when 0 = 4 . 
The maximum electric field obtains when <t> = 0; 

S.I"J1 2 = 1 + z V F - 8/3 ^ F - 3 / 3 . II-6 
4"n mv o p 

Let us now use this result to estimate the saturation in the 
simulations, considering an example in the trapping regime: 
eE./mi.! v = 1.0 and u> = 1.04 u Linear theory atplied to o o e o pe •r 

this case predicts that the most unstable plasma wave has a wavenumber 
k - 0.25 >>> /v for the electrnn-ion mass ratio of 0 01 used in this 
simulation. Equation II-6 then predicts that trapping onsets when 
eE/muj v •= 0.8. which compares reasonably well with the computed 
value of eE/mi.' v ~ 0.6 at saturation, pe e 

A simple estimate of the anomalojs heating rate can also be given. 
The instability theory allows us to estim^L; the energy transfe- from 

o 
the external driver to the electron plasma oscillations as 2 Y < £ " / / I T : ^ 

, r w 
where "r is the growth rate and <E >/4ir is the energy associated 
with the plasma oscillations. The transfer of energy to the particles 
is given by our definition of the anomalous heating rate as 
u*E /8TT. When the plasma oscillations saturate, these energy flows 
balance. Hence, we estimate v* as 

v* = 4v ( < E W
2 V E 0

2 ) , II-7 

where <E > is the mean square electric field at saturation. For the 



-19. 

example discussed above, Eq. II-7 predicts v* = 0.04 w which again 
compares reasonably well with the computed value of \>* - 0.06 u . 

20 
There are many other nonlinear regimes. A particularly interesting 

onr obtains when ^0^m%e

v

e
 < < '•• Then the excited plasma waves 

obtain an wiplitude E ~ E without trapping. Hence they in turn act 
like efficient "pumps" to drive other plasma waves unstable, and so on. 
The net result is a cascade (collapse) of energy from long wavelength 
v*aves to short wavelength ones which Landau damp. Again the saturated 
<tite is characterized by a steady transfer of energy from the pump 
fii>ld to plasma waves to a heated tail of electrons. 
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LECTURE THREE: RESONANCE ABSORPTION OF INTENSE LASER LIGHT 

INTRODUCTION AND LINEAR THEORY 

In this third Ir-'ture we will consider resonance absorption. In an 
inhomogeneous plasma, electrostatic waves are generated whenever light 
has a component of its electric vector along the direction of the 
density gradient, fnergy flows from the light wave into an 
electrostatic wave which then heats the electrons. First we will give 
a physical model for resonant coupling into a plasma wave and then show 
how an obliquely incident light wave can provide the coupling. This 
sir.iple treatment is sufficient to both elucidate the physics and to 
exhibit the important dependences of resonance absorption. Finally we 
will discuss the nonlinear evolution of resonance absorption as 
illustrated in computer simulations. 

'1 To investigate the resonant coupling, ' consider a one 
dimensional capacitor problem: a nonuniform plasma externally driven 
by a spatially uniform electric field with amplitude E d and 
frequency <D From Maxwell's equations we have 

If + 4l,J = <ff + 4lTj > II1-1 

where E is the electrostatic field. J is the current density and the 
brackets denote the spatially independent component. If we neglect ion 
motion and linearize, the current density is 
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J = - e n 0 ( z ) v . II1-2 

Here v Is the o s c i l l a t i o n ve loc i t y o f electrons in both the imposed 

f i e l d (E . cos ID t ) and the se l f -cons is ten t f i e l d (E) due to the 

plasma. Taking time der ivat ives of equations ( I I I - l ) and ( I I I - 2 ) and 

using the l inear ized equation of motion, we then obtain 

±4 + '-"LUIE + ^ I T = - f^Ltz) -< " L u ^ l E^ coswt. in-3 
~.t2 pe ' e i at I pe pe J d o 

Taking E^ e 1 w o , assuming a l inear density p r o f i l e , and solv ing 

for the driven response gives 

" p e ^ ^ d . I I I - 4 

% " V ( z ) + Ueiuo 

Note the resonant response when w = w . 
o pe 

The f lux of energy U A R S ) which must be supplied by the 

ex terna l ly imposed dr iver f i e l d is now read i l y obtained by computing 

the energy lost by the pump f i e l d : 

-1 vei LUi IABS = j \ i ml d x 

I f we again assume a l inear density gradient (n = n z / L ) , 

u n L E H 2 

'ABS * - V - • n l " 5 
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Note that v . cancels out, and so the energy flow is independent of 
the detailed mechanism which provides the damping of the electrostatic 
field. Physically the height of the resonance is a l / u and the 
width of the resonance is av> .; hence the cancellation. 

Equations (Hi-4) and (III-5) show that whenever a driver field 
oscillates electrons across a density gradient, an electrostatic 
oscillation is resonantly driven near the critical density (i.e., where 
"o = " e^' ^ u c h a d"'iver field is provided by a light wav-* 
obliquely incident onto an i.-homogeneous plasma if a compo.-ent of its 
electric field vector is along the direction of the density gradient. 

Consider now a light wave obliquely incident onto an inhomogeneous 
plasma slab. As shown in Fig. 9, we take the propication k vector of 
the wave to be in the y-z plane (without loss of generality), the 
density gradient to be in the z direction, and the angle between Vn and 
k in vacuum to be e. Since the density is only a function of z, k 
is conserved and so equals w / c cos G. The dispersion relation for 
the light wave then becomes 

u 2 = u 2 + ID 2
 S i n 2 0 + |<2c2 . III-6 

o pe c z 
The maximum density which the wave reaches (n t) is given by the 
cutoff condition k = 0: 

nt = ncr c o s ' I I I _ 7 

Note that the wave reflects below the critical density, although of 
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course the fields do penetrate roughly a few skin depths into the 
higher density region. 

The occurrence of resonance absorption depends on the orientation 
of the electric vector (E, ) of the light. If E, is in the 
x-direction (i.e., out of the pla?e of inciJence which is the plane 
defined by Vn and kj, the electric field has no component along the 
density gradient and so does not excite the resonance. This is called 
'-polarized light. If L, is in the plane of incidence (i.e., in the 
y-z plane), it does have a component along the density gradient. This 
is called p-polarized light. Although the obliquely incident light 
reflects at a density ower than critical, its fields will still tunnel 
to the critic?) density region and so excite the resonance. 

A very simple estimate can be given for the resonance absorption of 
p-polarized light. Basically we need only to estimate the component of 
the electric field which drives the resonance (E.) and then use 
equation III-5. To do this it is most convenient to work in terms of 
the magnetic f. u of the light wave. If we assume p-polanzed light 
and the geometry depicted in Fig. 9, 

3 = xB(z) exp(-iut + 'a)0y sinO/c). 

From Ampere's law we then obtain 

c - sin 9 B(z) 
Ez " E (z) ' 

where ' i s the dielectric function of the plasma, 

equation I I I - 4 , 

I I I - 8 

By analogy to 
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E d = sin, B(n = n c r ) . ::i-<3 

The macnetic field at the critical density [B(n = n )] can be 
simply estimated as its value at the turning point density times the 
<2xpoi.ential decay of the field into the critical density region, if we 
assume a linear density ramp and then use the well-known Airy function 
solution for light propagation in a linear profT. . 

92E 
V ) ~f^)V6 exp(-2/3„ 0L/csin 3,) , 111-10 

where EF<- is the free-space value of the electric field of the 
light. The (k L) term comes from the decrease of the magnetic 
field from its free space value as the group velocity of the wave 
becomes small. Inserting equation III-10 into equation III-9 then gives 

.92£„ 
_ r - J r--;«/-\ „ „ « /_ .o /*3 . , i t<~ <-•;« *>c.\ I I I - H E, = r ^ w c sinO exp (-2/3 n>L/c sin JG) 

The absorption is now readily estimated using equation I I I -11 in 
2 

equation III-5. Noting that I, g s - f cEp S/8 , and defining -. -
1/3 (k L) ' sin e gives 

. 2 

where f is the fractional absorption and 

6(T) --• 2.31 T exp (-2/3T 3) HI-12 



~m> --po'-; a"t *"eat j--es of '"esonance absorption can he deduced from 

.-_„...„„ 0- %_ Krifrh - s plotted ;n fig. !0. Note that the 

. -n*--i-. v'h-h -s equa' to » ' *'?. vanishes at = 0 no 

~T ̂ "ant ^f the t'"ectt*ic ""ield 3lonq the dir©c*;on of the density 

i' •"' . ""he ?;-sf""ptî n -s very sma 1' for l?.rgp angles such that 

'' •!••> ••f'ds have to tunnel th.-oigh too large a d'stancel. 

,-n r'.-jt-i" occurs "o>" an angle „.„. defined by f.S. and 

!"™ -* ifj'-'s for wh-'ch the absorption *s s'-~ible 'S ' ,,.^. 

• -i-' s ir -'"• cifi'-e of '-esonance absorptin depends sfongly on the 

v ' ••: -i-'T-"-'/ gradient length near the critica1 density. Tf 

c, ,o, v ' ..rq», this ibsorption is effective for only a nar.-ow 

• ;••-•• •*" arV-'s. Tf • L 'z '- '0. resonance absorat'on occurs fo*- a o 
- .- -ime ->f ani'es. The optimum absorption ;n a l;near profile '? 

•—---.hat ->ve'--est'Tiated by fhis simple model and is actuary 0.?. 

--.-.,?.- t*->n 3.85. 

?T-'=JTER 3iryiAT:ON5_OF_RE_SONANCE ABSORPTION 

i:en thojgh the basic process is linear, nonlinear effects p'ay a 

•en*.'a' 'o'e *n resonance absorption of intense 'ase r l ;ght. Nonlinear 

ejects determine the self-consistent density gradient 'ength. the size 

of the- -esonant ly-generated f'e'ds. and :ne heated electron 

•i -str^but'ons. To explore these ion , ;near aspects, we again turn to 
?3-?6 computer simulations." " 

These simu'ations are carried out with a two-dimensional code 

which solves the complete set of laxweil's equations and -ncludes 
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«'at'« stic pa't-cie dynam-cs. Plane light waves a'e propagated f'OT 

vac-iiim -nto an '^homogeneous slab of p'astna. Variations a'e fo'lowed 

•'id J'""11 the propagation vector of the light and along its elect''C 

*'••>.-*<•-. which allows for resonance abso'pti'on and for the gene'ation of 

nvTv'i'-i- iri?;ab' i it ies. Reflected light waves are allowed to f-ee'y 

31" " ." "if the system. Particle bounda'y conditions are chosen to 

mni-' i •••ee'y expanding plasma adjacent to a rese'vor of constant 

'•^-pev'* J*'? p'asma The inHia 1 density varies with x 'the d^'ection 

i~-nj' • •, the s"aD' from zero to a supercritical value. A --eg^on o f 

.•3 . ,m s ;icljded adjacent to the low density boundary to a'law for 

• -?f e>??ns ;on of the p'asma. Particles impinging on the high density 

'n;"la--/ 3>-e ''eplaced with equal incoming flux distributed acco'ding to 

v f 'v . where v is the component of the velocity no'tnal to the 
u-ijnda>"y and f 'v) is the initial Maxwellian velocity distribution. 

J m 
The p'Msma evo'ution is followed unti 1 a quasi-steady state has been 

?s* 3b1'shed. 

A typical situation will again illustrate the principal effects. 

Tn th-s example, p-polarized light is incident at an angle of ?4 

onto an initial density profile which rises linearly from 0 to 1.7 n 

in a distance of 3\ (where \ is the free space wavelengths^. The 

f'ee space amplitude of the electric field of the light is eE/m . c = 

0.09. which corresponds to an intensity of I - 10 W u /cm 

The initial electron temperature is 4 keV. and the ion-elect'on mass 

ratio is 100. 

After the light wave penetrates to its turning point, an 

electrostatic field Is resonantly excited at the critical density. The 

magnitude cf this field initially grows linearly in time, becoming nore 



-:/-

• ••: . „ca i i2ec to the c r i t i c a l density surface as expected from 

: ' i ' . : ; - . i . n u i i j t'\e resonant ly-dr iven f i e l d becomes 

• ••: . mtenst and local ized that electrons can be accelerated 

. :• : i'" one i i . i l i a t i o n per iod, a process cal led wavebreaking. 

•• . ono' t ion ;s s a t i s f i e d , electrons which enter tne o s c i l l a t i n g 

.- ' " '. •. proper pnase are e f f i c i e n t l y heated, taking energy from 

-• . •"• " ' IH : jno saturat ing i t s growth. 

;vipie - .odei ' ' can be used to estimate the s ize of the 

:• i I./-J--1 ven f i e l d at waveureaking. We again consider a capacitor 

--.in 1'ihomogeneous plasma driven by an imposed f i e l d E, s in 

.• *<- assume a co ld , one-dimersional plasma and f ixed ions, the 

,.r.o evo l j t i on is readi ly described in terms of the Lagrangian 

.a&ie > x

0 )> which is the displacement of an e lect ron i n i t i a l l y at 

Using Poisson's equation and the equation of 

«e obtain 

2 ? !? we assume a l inpar densi ty p r o f i l e ('- = . . x / L ) , the solut ions J pe o o 
f : r ana "••; /»x at the resonant point are t r i v i a l : 

= xd • J o t ' ' 2 c o s u ) o t * I I I - 1 4 
, / 3 * o = " x d ' ' 8 L ' ^ o 1 ' 2 s i n V ' III-1S 

where x . = eE./mui and i t is assumed that x . /L << 1. d d o a 
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wavebreak ing occurs when electrons cross one anothp- ( ' . ' / ' J X = -1) 

whicn n.ippens when ' =\/2x L. Hence the amplitude of the 

rvsonani ly-dr iven f i e l d at wave breaking is 

\ /2eE d L/m . 111-16 

'•!.•• phys ica l ly , we can think of wave breaking as simply e lect ron 

t ' - jppvi: ; by the local ized o s c i l l a t i n g f i e l d . We f i r s t define the 

e f fec t i ve wave number of the driven wave as k* = l / r . - H / 5 x , where we 
o 

•f i.ojfse mean the ratio of the amplitudes of these oscillating 
quantities. Using equations III-14 and 111-15 then gives k* -

:,(U,i. Wave breaking occurs when the oscillation velocity of an 
electron in che resonantly-driven field (v = u' •:,) equals the phase 
velocity of tne wave (v = u /k* ) . This condition again yields I- -̂  
equatIon III -lb. 

n£ can now estimate the amplitude of the resonantly-driven field at 
saturation by using equation III-ll to relate E, to the electric 
fieU of the incident laser light. For the parameters of the sample 
simulation, this cold plasma prediction becomes eE/im. c = 0.47, which 
compares reasonably well with the observed value of eE/m,.- c - 0.3. 28 To obtain closer agreement, we must incorporate warm plama effects 
which, of course, reduce the wave breaking ("trapping") amplitude as 
discussed in the previous lecture. 

The 'eedback of these intense fields (and the concomitant localized 
heating) on the plasma density profile is a crucial feature of the 
long-time evolution of the coupling. The pronounced profile 
modification is demonstrated in Fig. 11, which shows three snapshots of 
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the density profile as it evolves from its initial linear profile to a 

Til*'-steady, very steepened profile. The ponderomotive force due to 

MIP intense, localized electrostatic field ejects plasma, digging a 
lir v -n the plasma density at the critical surface. The plasma ejected 

' -'i-. i'-'-ls the vacuum expands away, leaving a locally steepened density 

•?••• f;,.-> which ;s supported by the pressure of both the localized 

.-.'.i,—."-/at'c wave and the reflecting light wave. 

~'vs profile steepening has important consequences for t.'ie mix of 

>'""'pt-n! D'-ncesses. In particular, -esonance absorption becomt-i 

•-nn-'-int f.- a w ;de range of angles of incidence. This is 

Ipmnnstrated MI Fig. 12, which is a plot of the ."ractional absorption 

->f p-3o1a,-v(»d light (after the profile steepening) versus angle of 

•n-'-ience as computed in a series of simulations with the same initial 

plisna conditions as the sample simulation. Note that the absorption 

D»a;:s at about 50% for a sizeable angle of incidence (;• ?( 1 
^ max 

and is quite 'a>-ge over a broad range of angle.; (AO - f l
m a x'- This is 

Tentatively as expected from our simple theoretical discussion of 

resonance absorption. In addition, parametric instabilities near the 

critical density (discussed in the previous lecture! are strongly 

linited. since there's a very small region of p!asma in which these 

instabilities can operate. Note that the absorption is only about 15% 

for normaHy incident light. 

Finally, the profile steepening strongly reduces the heated 

electron energies due to the resonantly-generated wave. At 

wavebreaking. a small fraction of the electrons (those entering the 

wave with the proper phases) are strongly heated to an effective 
2 temperature of order m v . where v, is the oscillation velocity 
W W J 
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ot .in electron in the resonantly-driven wave 'v = eE'm.^). As is 

apparent from the simple model of wavebreaking, the resonantly-driven 

'"••>id decreases in amplitude as the profile steepens. Physically, the 

wave then has a smaller spatial extent which corresponds to a 'ower 

effect-ve phase velocity. Hence it traps electrons at a lower 

amp ' • t ile and heats them to a lower energy. 
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LECTURE FOUR: STIMULATED SCATTERING OF INTENSE LASER LIGHT 

INTRODUC.TION 

In this fourth lecture, we will focus on soir« of the plasma processes 
wn\-i- can be significant when there's a sizeable region of plasma with 
.lens i ty less than the critical density. In particular these processes 
'-ep'-esent instabilities which can be thought of as the resonant decay of 
the incident light wave into two electron plasma waves (the two-plasmon 

29 
decay instability ). into a scattered light wave plus an electron 
plasma wave (the Raman instability), or into a scattered light wave plus 
an ;on acoustic wave (the Brillouin instability). These latter two 30 instabilities give rise to the possibility that the incident light 
will be scattered before it reaches the higher densities near the 
critical density where the absrrptive processes are most efficient. In 
practice, this means that the laser plasma coupling may be considerably 
altered when an extensive region of underdense plasma is created eithe*-
by use of a prepulse or a long pulse. 

The Brillouin instability is potentially the most dangerous of these 
instabilities. As can be seen from the frequency matching conditions 
('.o = u t

 + in- , where u is the frequency of the laser light. 
Uj is the frequency of the scattered light wave.and u- is the 
frequency of the ion wave), this instability is operative throughout the 
underdense plasma. In addition, by the Manley-Rowe relations, nearly all 
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the energy of the incident light can be transferred to the scattered 
liqht wave since "i ,/w « i. Hence we will focus ou»- attention on 3 1a o 
this instability. First we will briefly consider the linear theory and 
the effect of plasma inhomogeneity on the instability threshold. Then we 
will consider some simulations and nonlinear theory to provide estimates 
for how much scatter is possible. 

BRILLOUIN INSTABILITY 

We begin by describing the propagation of a light wave in an 
inhomogeneous plasma with density n(x). Maxwell's equations readily 
yield an equation for the evolution of the electric vector of the light: 

3 2E 2 2 3 J -g-j-cVl- -**£ - IV-

Here J is the plasma current density due to the response of electrons to 
the high frequency wave: i.e. jl = -n(jOei£, where n(x) is the plasma 
density and £ is the oscillation velocity of the electrons. Using the 
linearized force equation to describe the oscillation gives 

3 J n(x)e 2E 

Combining these two equations yields the wave equation 
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f^-cV + >
2 ( x ) | E = 0. TV-3 

where ,.u = 4nne /m. 
We next specialize to one dimension, which is sufficient to treat 

back scatter, and decompose the density into a uniform value n plus a 
low frequency fluctuation iSn, which couples the incident light wave 
(E.) to a reflected light wave (El. Then 

3 2 „2 3 ? . 2\ r . 2 «n r TV A 
• —r, - C —-y + ui„„ | E = - ui„„ -„-• E, . IV-1 
3t^ 3X^ 

The physical interpretation of this equation is clear. In the presence 
of a low frequency density fluctuation, the oscillation of electrons in 
the electric vector of the incident light wave gives rise to a transverse 
current which generates another (reflected) light wave. 

To derive an equation for the evolution of the density fluctuation, 
we simply use the 2-fluid description for the plasma and linearize. The 
low frequency component of the electron force equation gives: 

3",=, l Q. ,,„ e 2 3 

m -£_ = - eE - •— -d-^ - - S - , -2- (2E E ) 
3 t "o 3 X ^ ! 3 * A ' 

where 0 is the electron temperature, u * is the low frequency 
component of the velocity of the electron fluid, and cu is the 
frequency of the incident light wave. An isothermal equation of state 
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has been assumed, and the last term is the ponderomotive force briefly 
discussed in the second lecture. Neglecting electron inertia then gives 

eE5- = - ̂ e-!§-n - s L A (E.E ) IV 5 
o mw 0 

This low frequency electric field transmits the ponderomotive force to 
the ions. 

We next consider the continuity and force equations for the ion 
f'uid. If we neglect ion pressure, and note that the low frequency ion 
density fluctuation is = 6n, these equations become 

a 3 ui 

i^-wE* - V i - »-7 

Here Z is the ion charge state and M the ion mass, and a 
phenomenological damping rate v. has been included to model Landau 
damping. Taking a time derivative of equation IV-6, a spatial derivative 
of equation IV-7, and combining yields an equation for the evolution of 
the density fluctuation 

.2 , , ,2 \ Zne 2 2 
3 + v,. J - c f » « n » - ° - ^ ( E , E J , IV-8 i "at " us —2" P" 2" 1 K i V 

where c =yJlQ /M is the ion sound velocity. The physical 
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interpretation is again clear. The incident and reflected light waves 
beat together to produce a fluctuation in field intensity, which drives 
an ion density fluctuation (ion sound wave) via the ponderomotive force. 

The instability is readily obtained from the two coupled equations 
for E and fin. To derive the dispersion relation, insert E. = 
E. cos{'< x - u t) and Fourier-analyze. 

2 E 
D(k, u) Er(k,io) = - i i e _ 5 i r 5 n ( k . k o ; [ i j . ^ ) + 6n(k+ko.„+,,o)J IV-9 

Zn e k E 
(J + K.V. - k 2 c 2 ) Sn(k,o>) = — V - r

L i r E r ' k - k n > u i - ' " o ^ E r ( k + k

0 - u + " ' o ' l -

IV-10 
2 2 2 2 

where D(k,u>) = w -k c -IA.P- Next choose u to be low frequency 

(u « i i i ) , subs t i tu te equation IV-9 in to equation IV-10. and neglect as 

of f - resonant any responses wi th frequency nu which have | n | > 1 . This 

determines the dispersion r e l a t i o n : 

2 2 

w 2 + i u \ J . - k 2 C 2 = <<i . — T ^ Ipr, n--i—r + K7 V T T - T , IV-11 
i s p1 4 [DT^Tk-1^7 BT^.TFIT)]' 

where v = eE./mo and m . is the ion plasma frequency. 
For back scatter k = 2k , and the unstable root is readily 

obtained. For example, for y « kc , 

<° = kc + iY , 
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If we include collisional damping of the light wave via an energy damping 
rate >, (\', = i" /<*> v .. where v . is the electron-ion L L pe o ei ei 
collision frequency), instability requires that 

> V \ Y i , IV-13 

where y. - J./2 and y. = v /2. This equation defines an 
intensity threshold for instability: 

m 2 V . V. _ 2 _e 1 i 
T k (D_ k.C~ 
Th o o s 

In practice, the threshold intensity is usually determined by 
gradients in the plasma density and expansion velocity rather than by 
collisions. Plasma inhomogeneity limits the region over which three 
waves can resonantly interact, and propagation of wave energy out of this 
region introduces an effective dissipation which must be overcome. 
Noting that the wave numbers are now a function of position, let us 
define K = k-,(z) - k 2(z) - k,(z). At some point. K ~ 0 (i.e., the 
waves are resonantly coupled), but away from this point a misr.atch 
develops. The resonant coupling is spoiled when a significant phase 
shift develops. Hence we can estimate the size ? n- n t of the interaction 

/
lint 

K d z ~ 1/2 Taylor expanding about the 
matching point (K = K(0) + K z) then gives 
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1 . IV M tint 

Propagation of wave energy out of this interaction region introduces an 
effective damping rate of approximately v

ai-/^nt. where v . is the 
qroup velocity of the i wave. Inserting these damping rates into 

31 equation IV-13 then gives the Rosenbluth condition for amplification 
in an inhomogeneous pljsma: 

1 > l . iv 1! 
iK v_,v givg2l 

where ' and 2 refer to the growing waves. If we apply this equation to 
B>-i 1 louin back scatter in a plasma with a density gradient length I, 

J. /c.1 L. and the threshold condition becomes K 1 ' 

/ : - • ! os\ 
I*!/ Th ^ IV-1.6 

NONLINEAR EVOLUTION OF BRILLOUIN BACK SCATTER 

What controls the level of the Brillouin scatter when the threshold 
intensity is far exceeded? T^ gain insight into the nonlinear behavior 
of this instability, let us first consider some computer simulations of 

32 7 3 Brillouin backscatter '" and then briefly r'iscuss some nonlinear 
estimates. 
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The simulations we will discuss here are carried out using a 1 5 
dimensional particle code (two velocities, one spatial dimension) which 
allows for electromagnetic waves and relativistic particle dynamics. To 
focus on back scatter, intense laser light is propagated through a slab 
of totally underdense plasma with an initial density profile 'ising from 
zero to 0.7 n in 10 1 . The initial electron temperature is ' keY, 
the initial ion temperature is 0.2 keV. and the ion-electron mass ratio is 
300. A region of vacuum is included at both boundaries, and 
electromagnetic waves either reflected or transmitted are allowed to 
freely pass out of the system. 

Fig. 13 shows the evolution of the reflectivity computed in a sample 
simulation. In this simulation, the incident laser light has an 
intensity such that eE. /»» c =0.1 where E. is the free-space value 
of the electric vector of the light. This corresponds to an intensity of 
=10 H/cm for 1.06 u light, which is far above the threshold 
intensity. Note that the reflectivity rapidly increases as the ion waves 
grow. It finally saturates at a value of = 50% as the ion wave amplitude 
becomes limited by ion trapping. 

The variation of the reflectivity with incident intensity 's shown in 
Fig. 14, which is a plot of the fraction of the incident light energy 
which is Brillouin bacf scattered as a function of (v /v 1 . This 

os e 
reflection is averaged over a time much greater than the time for 
instability growth and saturation, but is short-term in the sense that 
gross changes in either the density profile or background plasma 
conditions can occur on a longer time scale. A significant reflectivity 
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"SPts wher '.ne 'itens'ty is about 3-3 t'mes the intensity threshold due 

•••" d-'r.v.y g'adient. which is estimated in equation IV-ltj. The 

^'•?r*ivi'y ?JSsequent\v increases with intensity up to values of 

~ " - = 3 * . •?;••'-•) •".?•• this rather sinjlJ p'asma. 

•-sijht into the size of the scatter can be gained by a very simple 

-' •.'>' -!ni-->". Assuming that the instability -:s w e " above the 

-••'.-''; s-'t iv g-'ad-ents. let JS cons'der a s'ab of :r-'orm unde'dense 

, -, ,.. •- -Br,t--V r ^nd 'enath I. Further *e w i ; i ^5<; ime that the P 
" o-.'e ass^'-jter; with B^'Mou-n back scatter has been d'-ven to a 

»'..- o '-i-'aj by ;on trapping is typically shown by the simulations. 

••- "ebarate out the fast tine and space dependences, equation Iv-4 and 

•-"'^q-is equation for E ; g've 

•-Er -n . 
n ~ ; 

P 
"n -

IV 17 

«ie-e i, and he slowly varying amp 1'tudes and 

pe 7 T" •f".- -f?., 

"hese coupled equations are readily integrated to determine the 

-eflectivity. -~. Assuming that E r(Ll <• E ^ O ) = E.. we then find 

r = tanh 2 ", IV 13 
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, - - - • „ " L . 
P 

T i PS*. imate the value of the density f l uc tua t i on in the trapping 

' T-*. . *••- appeal to an argument s imi lar to that discussed in the second 

i r " i " . ConOder an ion wave wi th potent ia l Jl and t reat the ions as 5 

.••Ue'-liiq -Us t - ' bu t i on . "hen the condit ion that the fastest ion be 

:•"• ' " ••&'•*. 'n the wave frame ( i . e . . be nonl inear ly brought into 

•x ' -v i imte 1 's 

e ^ 5 f c s - V » , ! 2 

..jho'p V 's the ion mass and c is the ion sound velocity. The 
.Sn = e0 ]•-•-ospnnling value of the density fluctuation. — 
P e 

K" = If ' " ^ ~̂"~ 

is 

y 
^ V 3 • 

e / 
TV 'a 

2 2 As an example, let us consider •'•'c
: °-2, •'pe/i--Q = "-35 

>ts average value in the sample simulati -.V and L = '0' o- Then 

equation IV-19 predicts *n/n ~ 0.12. And equation IV- 18 predicts 

45*. comparable to the reflectivities observed at the higher 

"Intensities. 

Although these calculations provide a rough estimate of the size of 

the short-term scatter, they can clearly overestimate the net scatter in 

experiments. There are several different long-term effects which lower 

the scatter as emphasized by both simulations and theory. First, if the 

light pressure is much greater than the plasma pressure in the underdense 

region, the momentum deposition due to the reflecting light can gradually 

push the underdense plasma out of the way. Secondly, even if the 
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' -'nht p'-es'.jre is less than or comparable to the plasma pressure, there 

"ii :>' i very s''gn;-f-cant long-term heating of the ions by the ion 

«i',«!, As the effective ion temperature increases, the ion wave 

--:',;*ida dec-eases, lowering the reflectivity. Recent calculations 
f-"i.''na m this long-term self-consistent ion heating 'tail formation! 

•i,i' >»i that hundreds of wavelengths of underdose plasma are then 

• ---loi to provMe a reflectivity of - 50%. 

F'i.i"'y. it is not yet known how multi-dimensional effects modify 

*'v>-.e •-•̂ sults. Back scatter has the largest growth rite, but the 

5. 'I'n'j-h 'nstab'lity can of course scatter light over a broe.i , inge of 

"ip'es. !ndeed. in an inhomogeneous plasma, side scatter has ;• lowe" 

•n.-a^ho'd -ntensUy than does back scatter, since the side scattered 

' ght nave spends a longer time in the interaction region. There i-e 

1'-,-: other muI'.i-dimensional effects which must be considered. For 

e<ano'e. a perturbation in the intensity profile of the incident 1'ght 

bean "-eates a depression in plasma density via the ponde^omotive force. 
Th-s densit> depression refracts the light inward, increasing the 

'ntens'ty pe-turbation. The result is the so-called filamentation 

'nstab'Hity . vrh'ch can lead to a break up of the incident light beam 

•nto intense filaments. This instabi1'"v.y has a smaller growth rate than 

the Brillou'n instability unless the ion and electron temperatures are 

comparable, but little is known about the compel-lion of these effects in 

the nonlinear state. 
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LECTURE FIVE: COMPARISON OF CALCULATIONS WITH EXPERIMENTS 

I_NTROD!JC_x_ip_N 

In the previous ^ctures, we discussed a number of different 
D>-pcesses which play a role in the coupling of intense lase*- light with 
plasmas. These processes were chosen to illustrate general features of 
the ' iqht-plasma coupling. For example, in the second and third 
lectures, we described enhanced absorption of laser light via its 
:oup 1ing into plasma waves near the critical density. Important features 
•i( this coupling were nonlinear profile steepening and the ge. eration of 
!iigh energy electrons. In the fourth lecture, we described enhanced 
reflection of laser light via its stimulated scattering by ion acoustic 
waves in the lower than critical density plasma. The calculations 
indicated that a sizeable reflectivity was possible in large underdense 
Dlasmas. In this final lecture, let us consider some of the experimental 
evidence for these various plasma processes. 

From a theoretical viewpoint, it is clearly appropriate to divide 
laser plasma experiments into two rather broad categories depending upon 
the size of the underdense plasma. If the characteristic size L of the 
underdense plasma is i:;iall (L/,\ < p (10), where A is the free space 
wavelength of the light), then it has little effect on the incident 
light, and one is primarily investigating how light is absorbed near the 
critical density surface. On the other hand, if there is an extensive 



-43-

region of underdense plasma [LA - o(100v]» theory indicates that 
effects such as Brillouin scatter, filamentation. and inverse 
tv-emsst'-ahlung can play a sizeable role. 

We can estimate the size of the underdense plasma in laser-irradiated 
targets as the minimum of c* ' or R. where c* is a typical plasma 
expansion velocity. : is the pulse lerjth of the laser light, and R is 
the 'oca1 spot >-adius. To give some feeling for the members. 1/ \ -

|/ x !0 - !ns \ Ri'.-l] . /1. ():), where an expansion velocity of 
3 * 10 cm/sec has been taken, r is measured in ns. and R and ,\ are 

o 
measured in ;.. Hence experiments with 1.06 JI light and pulse lenths of 
i. 30 ps have rather small underdense plasmas, whereas experiments with 
pulse \?ngths ; Ins have large underdense plasmas. Note also the scaling 
r, -i • U U h this distinction in mind, we will first examine some 
short-pulse-length experiments (with small underdense plasmas) and then 
b'-iefly consider some longer pulse-length ones. 

DENSITY PROFILE STEEPENING 

As we discussed in the third lecture, calculations predict a 
pronounced steepening of *'.s density profile near the critical density. 
This steepening is very important because the scale length near the 
critical density affects the mix of absorption processes and the heated 
electron temperatures. This profile steepening has been eonf rmed by 
interferometric measurements of the density of a laser-heated plasma. In 

37 the experiment a 41-u diameter glass microballoon was irradiated with a 
14 ? 

30 ps, 1.0C y laser pulse at an intensity of 3 x 10 W/cm". An 
interferomgram was taken and Abel-inverted to determine the axial 
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electron density profile plotted in Fig. 15. In both experiment and the 

simulations discussed in the third lecture, the profile is steepened to 

an upper density n that is roughly determined by pressure balance: 

n n I"! * 'v /v ) ?1 , u cr |_ os e' J 

where v is the oscillation velocity of an electron in the laser light 

field, v is the electron thermal velocity, and n is the .vritical 

density. The profile is steepened down to a lower density that is 

determined by how the light pressure and localized heating dams the 

p'asma flow. This lower density typically appears to be somewhat less in 

experiments than in the particle simulations, perhaps because of 

energy-transport inhibition. 

Calculations with a focused light beam show an additional 

effect: cratering of the critical density surface. Physically, the 

density surface is preferentially pushed in where the light intensity is 

greatest. This effect has also been observed in experiments. Fig. 16 
37 shows an Abel inverted density contour measured in an experiment in 

which a disk target was irradiated with 1.06u light with an intensity of 

: 3 x 10 W/cm . The density cavity has a transverse scale 

approximately equal to that of the incident light beam. A smaller scale 

rippling of the critical density surface has also been inferred in 

experiments using higher intensity light. These ripples are probably due 

to hot spots in the incident light beam and/or to a critical surface 
on 

instability found in computer simulations. 
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ABSORPTION OF INTENSE. SHORT PULSE-LENGTH LIGHT 

Calculations have also predicted many important features of the 
?bso'-ption in experiments with short pulse length, high intensity laser 
light. In such experiments, the underdense plasma has both a high 
temperature and a small spatial extent. Because collisional absorption 
varies as •'" • ('. is the electron temperature) and as the scale 
length of the plasma, it is weak in these experiments. However, as 
discussed in the third lecture, computer simulations showed that there 
would stiT1 be a sizeable absorption due principally to resonance 
absorption with a small additional absorption due to 
nonlinearly-generated ion fluctuations. These early simulation results 
assumed plane waves incident onto a plasma slab. In practice, a focussed 
light beam (say, with hot spots) both craters and ripples the critical 
density surface as discussed in the previous section. These surface 
ripples average the absorption over angle as wall as change part of the 
p-polarized light i.ito s-polarized light and vice versa. A simple 
theory was used to extend the ideal simulation results to crudely 
include this additional critical surface rippling. The result for the 
absorption as a function of polarization and angle of incidence is shown 
by the black line in Fig. 17. 

The absorption was measured in detail in recent experiments. ? 

41 In these experiments. , plastic disks were irradiated with about 30 ps 
pulses of 1.06 u light with an intensity of 1 0 1 5 - 1 0 1 6 W/cm 2. The 
measured absorption, denoted by the circles in Fig. 17, was both 
polarization-dependent and broad in angle. The absorption of p-polarized 
light peaked at approximately the predicted angle, and the absorption of 
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s-polarized light monotonically decreased with angle of incidence. The 
magnitude of the absorption was also in reasonable agreement. The 
principal discrepancy is an additional 10-15% absorption, rather 
independent of angle of incidence and polarization. This additional 
absorption may be due to ion turbulence generated by heat-flow 
instabilities, self-generated magnetic fields, or the 2w instability. 

HEATED ELECTRON TEMPERATURES 

A very important question is the magnitude of the heated-matter 
energy produced when laser light is absorbed. This light primarily heats 
electrons, since their motion in the oscillating fields is much larger 
than that of the massive ions. As discussed ii. the second and third 
lectures, absorption via plafma waves does not in general lead to a 
simple temperature electron distribution. Physically this is because 
plasma waves tend to preferentially heat the faster (more nearly 
resonant) electrons. The simulations of resonance absorption discussed 
in the third lecture predict that a two-temperature distribution will 
result. The lower temperature is that typical of electrons streaming 
into the absorption region and is determined by how the heat transports 
to higher density. The hot temperature is that characteristic of the 
electrons heated by resonance absorption, which the simulations predict 
will have a quasi-Maxiwillian distribution. 

Tiic; existence of a two-temperature electron distribution is supported 
by measurements of the x-ray spectrum in many different experiments using 
short-pulse-length laser light. As an example. Fig. 18 shows the x-ray 
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spectrum observed <n an experiment in which a plastic disk was 

i-radiated with a 80 ps pulse of 1.06 u light at a peak intensity of 2 
15 ? x 10 /cm . The low energy x-rays indicate a temperature of =• 700 

ev. and the high energy x-rays a temperature of = 8 keV. 

Fig. 19 shows the heated electron temperature inferred from the high 

energy x--ays over a wide intensity regime. The various symbols with 

e->-o>- ba'-s represent experimental data from a series of experiments 

in which disks or microballoons were irradiated with 1.06 ;> light with 

pulse lengths in the range of about 50-200 ps. The open x's are values 

of the resonantly-heated electron temperature calculated in a series of 

two dimensional simulations of resonance absorption. Both the 

magnitude and intensity scaling of the heated electron temperatures are 

in reasonable agreement, especially in view of the fact that the 

simjlations are quite ideal and do not include the space-and 

time-averaging inherent in the experiments. Experiments using laser 

light with other wavelengths have given quite similiar results. One 
o 

simply has to scale the intensity as I"\' (where > is the 

free-space wavelength of the i.jht), as theoretically expected. 

We expect that the high energy x-ray spectrum will not in general 

indicate only a single hot electron temperature. Resonance absorption is 

not the only process heating the plasma. For example the Raman and 
2'. instabilities ear.i produce hot electrons in the lower than pe r 

critical density plasma. Such effects will probably be especially 

noticeable in longer pulse-length experiments. In fact, recent 
47 experiments using Ins pulses of 1.06u light do indicate the presence 

of hot electrons with several different temperatures. 
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BRILLOUIN SCATTER 

We have been discussing short-pulse-length experiments; that is. 
experiments characterized by a small region of plasma with density less 
than n . Such experiments have been typical of the exploding-pusher 
target experiments carried out in the past--early laser fusion 
experiments with violent nonadiabatic compression of deuterium-tritium 

3 gas to high temperature but to a density of only about 0 1 g/cm . 
Prescriptions for the calculated absorption and hot electron temperature 
were incorporated into a target design code, which did reasonably well in 

48 tracking these impTosion experiments. 
Laser-plasma coupling is more difficult to compute in 

long-pulse-length experiments, however, because the underdense plasma is 
then much larger. In large regions of underdense plasma, effects such as 
collisional absorption, Brillouin and r.aman scattering, and filamentation 
can all play a much more important role in the laser plasma coupling. In 
general, the magnitude of these effects and their competition is poorly 
understood, both theoretically am' experimentally. 

Some progress 'las been made in beginning to understand the importar: 
role of Brillouin scatter in long-pulse-length experiments. Both 
simulations and a simple theoretical model were used to predict sizeable 

49 Brillouin scatter in experiments with large regions of underdense 
plasma. As shown in Fig. 20, this backscatter was predicted to be on the 
order of 50% when the characteristic size of the underdense plasma 
becomes about 100 free-space laser light wavelengths. The line is the 
prediction of a simple theoretical model for Brillouin backscatter. which 
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takes into account the self-consistent ion heating that accompanies the 
instability. The squares denote simulation results using a hybrid code 
with fluid electrons and particle ions. 

49 Experiments in which plastic disks were irradiated with 1.06p 
light with pulse lengths of 200 to 400 ps and focused intensities of 
about 3 x 10 to 3 x '0 W/cn/ support these predictions. As 
shown in Fig. 21. the absorption was found to be reduced by a factor of 
about two in these experiments as compared with that observed in the 
analogous short-pulse-length experiments . Measurements of the 
frequency spectra of the reflected light showed frequency shifts 
consistent with Brillouin scatter. Subsequent longer pulse-length 'lnsl 

50 experiments using high-Z targets have also indicated sizeable 
Brillouin scalcer. 

A larger underdense plasma can also be created by use of a prepulse. 
As shown in Fig. 22, the addition of a prepulse about 2 ns prior to a 75 

51 ps main pulse was found to increase the backscatter of the main 
pu'se which was normally incident onto a CH slab. As the prepulse energy 
was increased, the fraction of the main pulse which was back-reflected 
increased from = 15% to = 40% and the net absorption decreased from ~ 50% 
to =20%. For a fixed ratio of prepulse energy to main pulse energy, the 
back-scattered light increased with the intensity of the main pulse and 
was rather insensitive to the angle at which the targets were tilted, as 
shown in Fig. 23. In addition, it was found that the light rays retraced 
their path. All these features are as expected if the light reflection 
is due to the Brillouin instability in the underdense plasma. 
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OTHER PLASMA PROCESSES 

Finally, there s also experimental evidence for many other plasma 
processes in laser-produced plasmas. These processes include: 

1. Brillouin side scatter as inferred from a substantial 
52 asymmetry of the scattered light with respect to its plane of 

polarization; 
52 ?.. filamentation as inferred from hot spots in x-ray microscope 

pictures of the heated plasma or from enhanced intensity 
structure in the reflected and transmitted team; 

3. instabilities near one-fourth the critical density as deduced 
53 from one-half and three-halves harmonic emission; 

54 
4. self-generated magnetic fields, which have been measured at 

values of several mega-gauss; 
5. and parametrically-generated ion turbulence near the critical 

density as inferred from frequency shifts in the second harmonic 55 emission. A more detailed discussion of these many different 
effects is beyond the scope of this lecture. 

In summary, plasma processes play a significant role in the coupling 
of intense laser light to targets. Calculations have predicted many 
important features of laser plasma experiments. In turn, the 
experimental feedback has been very important. Although encouraging 
progress has been made, the understanding is weak in many crucial areas. 
For example, there is a great deal to learn about the competition of 
inverse bremsitrahlung, Brillouin back and side scatter, and 
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f i lamentat ion in long-pulsa-length experiments. In add i t i on , we need to 

develop an Improved understanding of e lectron transport and the various 

mechanisms which can i n h i b i t t h i s t ranspor t . 
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FIGURE CAPTIONS 

-'q. 1. A schematic of the basic cycle of a plasna simulation code 

using particles. 
11 • 3 . ?. The computed evolution'' of the wave energy in a large 

amplitude p.asma wave Supper curve) and n >ts lower sideband 

Mower curve). The open (solid) symbols are '"esu'ts from the 

Vl.isov equation (particle code). 
17 

r 3. 3. The experimentally measured evolution " of the energy in a 

'arge plasma waves and in its lower sideband. 
r a. 4. A schematic of a 1 D simulation of plasma heating by 'aser 

1; ght using an electromagnetic, relativistic particle code. 

• a. S. A schemat;c illustrating the feedback mechanism leading to 

instabi 'Uy. 
r'q. K. Tnc computed evolution" of al the p isma wave energy and b 1 

the kinetic energy of a plasma driven by a electric field 

osci 1 lat inq near .. 
3 pe 

Fig. 7. A typical heated electron velocity distribution predicted by 

the particle code. 

Fig. 8. A heated electron velocity distribution measured in an 
18 experiment on anomalous plasma heating by microwaves. 

Fig. 9. A sketch illustrating a light ray obliquely incident onto an 

inhomogeneous plasma slab. 



Fig. 10 A plot of the function <Kr), which characterizes the 

efficiency of resonance absorption. The dashed line is the 

simple estimate derived in the text. The solid line is from 

reference 22. 

24 Fig. 11. The ion density profile from the sample simulation at three 

diffe-ent times: a) the initial profile, b) the profile after 

the resonant field has grown, and c) the asymptotic profile 

wh-'ch shows a characteristic step-plateau feature. 

Fig. 12. The fractional absorption after profile steepening vs angle of 
24 incidence, as computed in a series of simulations with the 

same initial plasma conditions as the sample simulation 

discussed in the text. 

Fig. 13. The evolution of the back reflection computed in the samp^ 

simulation discussed in the text. 

Fig. 14. The scaling of the short-term back reflection with 
2 32 

(v /v ) , as computed in a series of simulations with 

the same initial plasma conditions as the sample simulation 

discussed in the text. Here v = eE./mu , and v is 

the initial electron thermal velocity. 
37 Fig. 15. A measured density profile in a laser-irradiated target. A 

1.06 vi laser pulse with an intensity of about 5 x 10 W/cm 

was incident onto a glass microsphere. The profile was measured 

by interferometry using a frequency doubled light pulse 



Fig. 16. An axial density profile measured by interferometry. In 
this experiment, a 1.06 p laser pulse with an intensity of about 

14 2 3 x 10 W/cm was incident onto a flat disc. 

Fig. 17. Absorption as a function of angle of incidence and polarization 
for (a) p-polarization and (b) s polarization. Black lines are 
obtained by modifying the simulation results discussed in the 
third lecture to include an additional rippling of the critical 
density surface due to inhomogeneities in the incident light 
beam- Circles denote the absorption that was measured in a 
series of experiments in which plastic disks we re irradiated. 
The 1.06-pm light was focused with an f/10 "Uns to an incident 
intensity in the »-ange of 10 5 to 10 W/cm . 

Fig. 18. The x-ray spectrum measured in an experiment in which a 
plastic disc was irradiated by a 50 ps pulse of 1.06 u light 

•IK r> 

with an intensity of about 2 x 10 W'cm . 

Fig. 19. The heated electron temperature as a function of intensity. 
The various symbols with error bars represent the values 

AC 

inferred f''om the high energy x-rays in experiments in which 
disks or microballoons were irradiated with 1.06-um light. The 
triangles are values calculated in a series of two-dimensional 
simulations using plane waves incident onto a plasma s 7ab. 



Fig. 20. The fraction of the incident light the* is Brillnuin 
backscattered as a function of the size of a uniform underdense 
plasma. The lines are results from a one-dimensional theoretica 
model in which ion heating by the driven ion waves provides the 
stabilization. The squares denote simulation results using a 
one-dimensional code. The initial electron temperature was 2 
keV; the incident light intensity was 2 x 10 W'cm . 

Fig. 21. The absorption as a function of pulse length and focal spot 
49 size measured in an experiment in which plastic disks were 

irradiated with 1.06-vm light. The experiments with longer 
pu">se lengths and, hence, larger regions of unde>-dense plasma 
exhibited less absorption, consistent with the presence of 
Brillouin scatter. 

Fig. 22. The fraction of the main pulse energy which was back reflected 
versus the prepulse level. The prepulse was introduced 2 ns 
prior to the main 75 ps (FWHM) pulse, which has a focused 
intensity of = 5-10 x 1 0 1 5 W/cm 2. 

51 Fig. 23. Back reflection of the main laser pulse versus a) target 
angle 0 and b) the incident energy or intensity. ((o)e = 
0°, ( • ) 0 = 45°). The ratio of the prepulse energy to the 
main pulse energy was 0.2. 
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