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THEORY AND SIMULATION OF LASER PLASMA COUPLING®

W. L. Kruer

Lniversity of California. Lawrence Livermore Laborato-y

Livermore. Califarnia 94550

Abstract

The coupling of intense laser light with plasmass 's s top-c >f great
interest. Collective processes play an important rgle in this ccupling.
Tn these lectures, we consider the theory ard simuldtion of these
processes. with particular emphasis on their nnnlinear evolution. Firgt
2 brief introduction to computer simulation of plasmas ucing partic'e
codes is given. Then the absorption of light via the generation of
plasma waves is considered, followed by a discussion of stimulated
scattering of intense light. Finally these calculations are compared

Wwith experimental results.

*Work performed under the auspices of the U.S. Department of Energy by

the Lawrence Livemore Laboratory under contract number W-7405-ENG-48.
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The rdea of using iarge. high-power lasers to crmpre<s and heat
€ic v fae’ to thermonuclear conditions is basically very s mple: a
D.'se Taser car focus energv ontn a <ma') target. comprosstna and
b3t g the fio° wmscde to ignition ronditions. The vesu'ting plasma -4
~ré ced by 1ts own cnertya ong ennugh fov thesmonuc ‘ear reactions to
e lace. Trmputer ~atcutatyons have ndicated tha' «canificant target
11 ©< Tgh* Me achteved. that °s. the energy produced ‘rom fusian can
2Ty ewcapd the Cgser enevgy hecessary to Smplode tue target. A large
nteretoana’ offart cs oynder way 'o nyestigate the feac hility of Tiser
“ .o o enerqy
The coup’ing 07 cnrtense laser °ght to targets s abviously one very
=p -*ant component nf Yaser fusion studies. These lertures are 'ntended
‘~ be a proaf ntrodaction to laser plasma coup’ing. The specific topics
1= ~hosen tn be representative and to focus attentinn on same of the
‘mportant nonlinear features of the coupling. In the fi-st lecture. a
Sreef introduction is given to plasma simulation using pa-tic'e codes.
in tne secend and third Yectures. 'ight abserption v-a the generation o
p’asma waves ‘s examined. The fourth lecture is a discussion of
st mutated ccattering. a process whereby laser light ‘s scattered from
plasma waves. In the final lecture. ca’culations are briefly compared
with experimenta! re:ylts. Throughout these lectures. the emphasis will
be on a physical introduction to important concepts and nonlinear

results. rathe~ than on an exhaustive survey of the field.
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LECTURE ONE: PLASMA SIMULATION USING PARTICLES CODES

TNTRODUCTION

~ well known that a collisiaonless plasma will support waves for
¢: “ert e modes of oscillation) and that such waves are often driven
im~*31% . An understanding of the resulting plasma microturbulence :an
Do oyory cTportant for many practical applications. such as laser-induced
pe''at f.<ion or fusion via magnetic confinement. The turbulent state ig
suf“ic "oatly complex that the interpretation of experiments requires a
3703 xnow'edge of what effects are produced by the many compet ‘ng plasma
non'inearities. In general, analytic theory is not capable of describing
the non’inear behavior, except in a very weak turbulent regime. Such
thegry is extremely valuable but has a limited domain of applicability
ind ‘s itself often intractable. Hence it has been essential to augment
experiments and analytic theory by direct numerical simulation.

Particle codec have proven to be a very powerful tool for the
num.rical simulation of plasmas. In this first lecture, a brief and
physical introduction to the concepts and techniques involved in such
codes will be given. Then these concents will be tested by comparing the
results from a particle code with a numerical salution obtained by an
independent and quite different approach {as well as with the results of
an experiment). In subsequent lectures. several examples will be given
of recent applications of particle codes to laser plasma interactions.

These examples illustrite many of the strong points and limitaticns of

s ot e i 2



such codes. The discussion will be aimed at a general technical audience

and is intended to be an introauction rather than an exhaustive survey.

A PHYSICAL INTRODUCTION TO THE CONCEPTS AND TECHNIQUES

The use of a”nartic]e code is 3 very direct and fundamental way to

1-9 One simply considers

follow the behavior of a collisionless plasma.
a large collection of electrons and ions. As indicated schematically in
Figure 1, the positions and velocities determine the charge and current
densities. Maxwell's equations then give the electric and magnetic
fields. s1lowing the positions and velocities to be updated according to
Newton's laws. One continues around this basic cycle with a time step
sufficiently small to resolve the fastest behavior in the problem. which
is often the electron plasma frequency time scale. The electron plasma
frequency is ﬁfﬁg?, where n is the electron density.

Of course it is only practical to use a rather Timited number of
simulation particles and to calculate their behavior on a sufficiently
coarse spatial grid. Fortunately a rather coarse computational grid is
adequate. Due to the long range of the Coulomb fogrce. the net force on a
charge in a collisionless plasma is determined by the collective motion
of the charges rather than by short-range, binary-type encounters. The
resulting collective modes o oscillation (waves) have wavelengths which
are typically 2 the eiectron (or sometimes the ion) Debye length
(XDe = QES;EE; where Ge is the electron temperature and n the
electron density). Heace one can resnlve the forces on a computational
grid whose spacing is of order the Debye length rather than the typical

inter-particle spacing.



The basic techniques are best illustrated by discussing a
one-dimensional. electrostatic particle code. {In the electrostatic
'imit. the magnetic field generated by plasma currents is negligible,
and Maxwell's equations reduce to Poisson's equation. T . E = 4-a.)

There are several different schemes commonly used to map the pa~ticles
onto the spatial grid. Consider a particle with charge q located a
distance " to the right of its nearest grid point (labeled i}, In the
NGP scheme. one simply assigns the charge of the particle to that nearest
grid point; i.e.. {1} = q. It is more common to linearly inte-polate
the charge of the particle to its neighboring grid points: i.e.. pfi) =
q/1-"Y and o{i+1Y = qf, where the cell size & = 1, In this so-called PIC
or CIC scheme. the charge density is mapped onto the spatial grid
corectly to dipole order.

One next solves for the electric field due to this charge density.
This can be done by a direct finite differencing of Poisson‘s equation or
by Fourier transforms. Oue to the existence of the fast Fourier
transform algorithm, the two apprcaches are generally competitive in
speed. It is theoretically appealing to work in terms of Fourier
components, but complicated boundary conditions are more easily
incorporated when the finite-difference approach is used.

Finally, the electric field is mapped from the grid to the particles
by a scheme consistent with that used in assigning the charge density.
For example, in the {PIC, CIL) scheme, the electric field is linearly
interpolated to the particle position. In the previous example.
the force on the particles is then q [{1-£) E(i) + g€(i+1']. The
velocities and positions are updated by a standard leap-frog algorithm.

By defining the position and velocity one-half time step apart, one in
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effect achieves second order accuracy in the time step with a minimum
number of pperations. as tan be readily confirmed by performing a
Taylor-expansion.

From a computationa viewpoint. a particle code is clearly ralther
straightforward. Not surprisingly, numerical instabilities are rarely a
problem. Qne noteworthy instability is associated with the aliasing
introduced by the spatial gr'id.]0 Aliasing arises from the fact that
one cannot distinguish a disturbance with wave vector k from one with
wave vector k + E%f. where § is the grid spacing and n an integer. A
heuristic argument can be given. One can avoid this problem by ensuring
that the alidsed mades have a phase velocity less than the thermal
velocity of the particles; i.e. (k + g%ﬂJ XDez 1.n#0. Since the
ggdes we wish to describe have kxDe < 1. this gives the condition that

Oe

ky
——2 2. or ADe 2 % . In other words, one cannot describe too

0

many Debye lengths with a single cell.

Of course. particle codes become somewhat more complex when the full
set of Maxwell's equations is allowed and magnetic forces operate on the
particles. But the basic concepts are the same: the use of a spatial
grid whose spacing is chosen to resolve the collective behavior and the
mapping between that discrete grid and the particles. A very appealing
physical interpretation of these procedures can be given in terms of
finite-size partic]es.7 A particle of finite spatial extent does not
support fluctuations over distances much less than its size {a). This
provides a natural suppression of the short-wavelength fluctuations
associated with coliisional effects. Yet the behavior of a collection of
extended particles exhibits the same long-wavelength {1 >> a) behavior as

do point particles (with minor modifications of the dispersive properties



-6-

of the waves). Furthermore, the mapping of such particles onto the
spatial grid proceeds in a natural and systematic way as a Taylor
expansion about the grid locatjon nearest to the center of the extended
charge.

Again it is instructive to consider a simple one-dimensinnal
example. The charge “znsity due to a collection of Gaussian-shaped

charges is

4
g ] (x - x,)
3(),) = \/_(_,"Ia :j exp [_ .,Ea.z,\],_} ’

where Xj is the center of the jth charge and a is its half-width. A

Fourier transform yields

- kgag

o, =qe K2l ¢ e—1kxj
k 2 3

which is identical to the result for a collection of point particles
except for a form factor (e'kzaz/z). This form factor explicitly
shows that fluctuations with wavelengths X < a are suppressed, whereas
long wavelength ones () >>a) are relatively unaffected by the particle
size.

To intreduce the spatial grid, one expresses xj in terms of the

nearest grid point locatien 5ius a displacement,
X. =n.8% Ax.
38t B

and eé?%?ds the exponential assuming 8 << a. This yields o =
-kca

ge 2 I e”knj6 z (-ikij)l/L! . Note that the summation over %
3 3
is a summation over the multipole moments of each extended charge with
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respect to its nearest grid location. Truncating the multipole
expansion at the dipole order and rearranging the sum ave+ i, one abtains
-kza2

o= 2 FT[N(n) - ikaR(n)].

FT denotes a Fourier transform and N(n) and AR(n) are the 1et monopole

and divole charge ass~~jated with each grid point; i.e..

N{n) =% g
jen
AR{n) = T qix, .
Jen J

Physizally one has replaced each extended charge by an extended charge
plus an extended dipole located at its nearest grid point. The (PIC,
~IC) scheme previously mentioned is in these terms an expansion to dipole
order.

A similar multipole expansion can be used to determine the force on
an extended charga. The net force is then expressed as the monopole
charge times the electric field plus the dipole charge times the
derivative of the field. Since the general procedure has heen

iliustrated, no further details will be given.

COMPARISON WITH AN INDEPENDENT TECHNIQUE

These concepts are plausible, but how well do they work in practice?
Can one describe the behavior of a coilisionless plasma using a practical
number of particles, which inevitably is far fewer than nature uses? It
is well known that the Vlasov equation can be used to describe a plasma

in the collisionless 1imit; i.e., when the number of particles per Debye
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sphere (nADe3) is infinite. Mence a good check on the results of a
particle code is to compare them with direct numerical solutiaons of this

n have indeed been carried out for a number

equation. Such comparisons
of different ronlinear problems, establishing gaad agreemeat bhatween the
results from a particle code and from the Ylasov eguation.

As an example. consider the nonlinear behavior of a large amplitude
electron plasma oscillation on & time scale for which fon motion can be
neglected. 1In a one-dimensional, electrostatic limit the Vlasov equation

becomes

=
I—
3

>
3|m

+ v

ar
=

o

f(x.v.t) is the phase space distribution function of the elect-ons. and E

is the electric field determined from Poisson's equation:

ok
ik -thxe['/‘fdv -0l

where Ny is the uniform backgreund ion density. “he numerical solution
of these equations was carried out by Fourier expanding the distribution
function in both position and velocity space. and then solving the
coupled equations for the Fourier camponents by the method of
characteristics.

Figure 2 shows the computed evolution of the wave energy in both the
large amplitude plasma wave and its lower sideband (the lower wavenumber
and frequency plasma waves). The open symbols denote the solution of the
Vlasov equation, and the snlid symbols denote the results frum a particle
code (with 80,000 particles). The large plasma wave exhibits
oscillations in energy due to the bouncing of electrons in the potential

troughs associated with the wave. Simultaneously the lower sidebands
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exponentiats in energy, denoting what has been called a trapped particle
instability.12 From a computational viewpoint. this "5 quite a
difficr1t problem, since cne must follow both sizeable variations in the
energy of the large wave and the concomitant growth of nearby waves over
many orders of magnitude from the noisa. Even so, the Vlasov and
particie code results are in quite good agreement. Tt should be noted
that these computational results are also in substantial agreement with
experiment.]3 Figure 3 shows thn experimentaily measured evolution of
the energy in a large plasma wave and in its lower sidebands. The large
plasma wave was launched from a probe, and then its behavior monitored a3
a function of distance. (Hence this is the spatial analogue of the
temporal problem considered in the simulations.) The simulations
corvectly describe both the main wave oscillations and the sideband
growth. This example is a good illustration of how experiment. theory.
and numerical simulation can mutually interact to clarify the nonlinear

behavigr of plasmas.

STATE OF THE ART OF PARTICLE CODES

Particle codes have been developed to a high level of sophistication
and have been used to study numerous problems throughout plasma physics.
Figure 4 shows a schematic of a state-of-the-art computer simu1ation]4
which is a good indication of the current capability of particle codes.
One uses a 2-D electromagnetic, relativistic particle code and propagates
Taser light from a vacuum into an inhomogeneous plasma slab. The plasma

response is followed not only along the electric field vector of the

Taser light but also along its direction of propagation. Such
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simulations have allowed the study of light absorption both via
instabilities and via direct resonant excitation of plasma waves.
Although an invaluable tool, these 2-D simu]itions are a good example
of some practical limitations in the use of particle codes. One is
fairly restricted in both the size of plasma which can be simulated
and the length of time for which the behavior can be followed. This can
be i1lystrated by some simple estimates based on ﬁsing a €DC 7600
computer. The largest practical spatial grid is composed of - 10.000 grid
points. since there are at least six arrays defined on this grid in the
2-D code. A single ceil is used to describe no mpre than 2-3 " pe
(electron Debye lengths) in order to avoid the grid instabilities
previously mentioned. Hence the simulated plasma can have a maximum size

of -400 Ape by 400 3. although of course the system reed not be

De
square. For typical laser plasma parameters, the size of the simulatad
plasma is then ~'6}b by GAO, where A is the laser light

wavelength. As compared to an experiment, this is a small region of
plasma.

Furthermore. to maintain minimal particle statistics {and hence noise
levels), one uses at least 5-10 particles per Debye square. which
translates to ~106 simulation particles for this large problem. A
reasunably fast 2-D relativistic particle mover using the electromagnetic
fields takes ~25 ;sec/particle. Hence a computer simulation of 2500 time
steps consumes about 20 hours of computer time. Since a typical time
step is .2 mpe‘], the total time simulated is ~500 mpe“ or
10C laser iight periods, again much shorter than experimental time
scales. Of course, one can usually isolate tk important physical

mechanisms in much sma‘ler systems, and can often improve the speed by



e ZeNIeRTIAG, L0 those nuthers give some idea of the pratical
Lo otcTe stz t TTews e mroeo-turbulent behavior of a
soirmaoiteat 1 tha ¢ oebglanca an 3 short time and space scale.  Not
“room T et fome sraa ratcyglations can be carried out for only
Tt ~¢ ~¢ aTas~31g an? short times. One generallv uses pa-ticle

totataemees mag ool irhulence affects the Yoca' plaswma

motene st s itno3s erargy absorprion »ates and t-ansport coefficients.
- mreTrttte g then faput e-ther inta theory and/or
s.c t.-rmiootype 2ad3s Cnogedar to determine the global behavior of the

- ~-Ta8 3. particle cndes are a powerfu?l and often -idispensable
tt ot =t ady stoone plasma turbulence.  The detailed diagnostics from

sreomom Tar =nc aften allow pne to isolate and par-ameterize the important

-7 rey o fectg. dowever. such cou2s of course operate on short time
o o] z7es.  Theis r~esults genera’’y serve as an ‘np.t to theory

art s eydeadynamic codes.
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LECTURE TWO: LASER PLASMA HEATING - PARAMETRIC INSTABILITIES

INTROOUCTION

One of the ceatral guestions in laser fusion studies concerns the
mechanisms by which laser Tight is absorbed by & plasma. Since a hnt
7131 becomes collisionless. classical joule heating ‘s isua’ly
‘nsaficient unless very short wavelcngth or low intensity lase~ light

i 1m2d. Fortunately one can heat even a coliision’ess plasma. This
"anamalous absorpticr” arises .ince intense Tases ignt oaxcites p 73
waves for charge density fluctuations). The electric fields assnc :ted
with such charge fluctuations in turn accelerate and heat the plasma
particles.

A crude estimate of the efficiency of classica’ jou's heiating can be
given. Physically this heating occurs because electron-‘on collisions
convert the coherent energy of oscillation of electrons ‘n the e’ectric

“ie'd of the light wave into random therma! energy. It S 2135y to shew

. 1 4
that the energy damping rate of . 'ight wave then ‘s L o “ﬁe/'z
2 0
where Vo is an electrown-ion collision frequercy:
-6 2 37
Vst 2%na, 2 ; : .
e 3x 10 nys nd oy . Here n. is the jon density. 2

the tonization state, “be the plasma frequency. “0 the light frequency.

and _ v the electron temperature in ev. As a simp’e ~2xampl2. fo~ 1.06 .

@

Taser light in 3 nlasma with “ov T 103 and Z = 3. the class‘cal
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v oan length nea- the critica’ density s ahoat TN A< the
n'rimy heats. this absarptian Yength becomes even ‘angar “as

Henra ~ntlactive heating ‘vt pTasma waved' c< ofien the
mytoe <ayrce ~° Tases Yight absorption.
» has - mecnancsm for the wxcitat an af pliasma wayen ce the

secc T ateomoof alecteons by the electrec fie'd of the 7t acrnss «

¥ omocn pYicma density, Tnis drives a chacqe Jen< v fractuat 'on

v~ eg,'m [t is apparent that. f " “pe "that

€ *he 'aser “‘ght frequency 'S properly matched t~ the o'ectran
. Tismy feequency’. 2Yeclren plasma waves are ~osonant’y deiven.  The
~a'v3°°an in jencity can be due to the overal® density gradient Jue tn
0 2¢mz exp3nsior ‘this leads top resonanze absorption. whi-hn w''' Se
Trscussed in o the next lecture! ar to the densitv fluct iasiang associate?
w T ather ©737w3 waves. such as ion acoustic waves. Pavamet-ic
"nctanclities near the critica’ density are @ simp'e examp’e Nt th's

wtter effect.

In o-der to understand why such instabi!ities occur. we need on'y
‘nt-oduce one other concept: the ponderomotive force. The basic ‘dea
s vecy simple: there is a force due to a grad'ent in electric field
intensity just as there's a force due to a gradient in plasma pressure.
3y using the two-fluid equations to deccribe the plasma response to an
high frequency electric field. with amplitude £/x). 't is readily shown
that F_ = - ugeﬁug V< Ez(ﬁkfﬂ > where the brackets denote a

B
time average over thz high frequency oscillations.
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The fesdhack "eop leading to instability is illustrated in Fig. 5.
“are dee 3 ‘theema’ leve') sma!l density fluctuation associated with an
Wi st e wave.  The Tight field (EL¥ couples with the density

€.t on it to drive a high frequency alectric field (ED\

rier 3o with an electron plasma wave 'E Sn > E_ Y. In turn, this
p L p

Pacce = fealy cngples with the light wave field to produce a
it v oon in fie'd pressure which enhances the density fluctuition
f,?p < n'. Hence 'nstability ‘s passihle, in this case leading to

svpoanen al gqeowth of both electron plasma waves and ion accoustic waves
ovcdet pe b This s called the ion acoustic

nstar - ity,  There is also another branch of instability in which the
sarofangtty fructuation is not a "normal mode” of the undriven ptasma
“.* -~ather a zero-frequency. pu-ely growing mode. This is called the
so “Tating two-stream instability. Both branches of instability are
ceadily dev‘ived16 from the coupled wave equations for the high and low
fvequency waves. In this second lecture. we will now briefly consider a
s'mp'e and instructive example of the nonlinear evolution of these

instabilities.

NONLINEAR EVOLUTION OF PARAMETRIC INSTABILITIES

In order to focus on the nonlinear evolution, we consider the
simplest model problem: a plasma with uniform density which is driven
by an imposed s~~tially-independent pump field (Eosinubt\ with a
frequency (“b) near the electron plasma frequency. Such a pump field
models the electric rield of a light wave near its critical density

under the assumption that the wave number of the light wave is
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neg’igihle compared with the wave numbers of the plasma waves which are
exrited, Since the unstable plasma waves preferentially grow along the
electric vector of the pump field. a great deal can be learned by using
a one-dimensional electrostatic particle code.

A few simple results from a sample simulation17 illystrate
inpo-tant features of the collective heating. In this example. wy ®
‘AOG~DQ. eE/m 38 = 0.5ve {the electron thermal velocity). and the
ton-@lectron mass ratio is 100, which is sufficient to clearly separate
the olactren and ion time scales. Figure 6a shows the evolution of the
engrgy in plasma waves, and Fig. 6b shows the evolution of the kiretic
eng~gy of the simulated plasma. At first there is essentially no plasma
heating. reflecting the fact that the plasma is nearly collisionless.
Meanwhile the plasma waves are exponentiating in amplitude. Finally
these waves saturate, concomitant with the onset of rapid nlasma heating
due to an acceleration of plasma particles by the large amplitude plasma
waves. An effective collision frequency corresponding to this
anomaious heating is very large. v* (.06 Wy vthere v* describes the
rate at which the plasma energy increases with time in the nonlinear
state.

Another particularly important feature of the anomalous heating was
first discovered in the computer simulations. Figure 7 shows a typical
heated electron velocity distribution calculated with the particle
code. The heating has been principally a production of very high
velocity tails on the distribution. This generation of very high
velocity electrons takes place since large amplitude electron plasma
waves readily accelerate particles out to their phase velocity. As

shown in Fig. 8. the generation of such nonthermal distributions have
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been confirmed in a laboratory experiment on microwave heating of a
low-density p’lasma.18

The physics of the nonlinear saturation can be very rich. There are
a number of different regimes depending on the pump field intensity.
When the Jlasma is strongly driven (eEn/m"beve > 1). the dominant
process is simply electron trapping in the most unstable plasma wave.
Trapping occurs when electrons are nonlinearly brought into resonance
with the wave. A large energy transfer then occurs, as the electrons
are efficiently accelerated by the wave. In a cold plasma. this
obviously occurs when the velocity of oscillation of an electron in the
wave {vw = eE/mube) becomes equal to its phase velocity (vp‘. In
d wa'm plasma, trapping occurs at a significantly smaller amplitude for
several reasons. Faster electrons are more easily brnught in resonance.
and the sizeable pressure force associatod the density fluctuation of the
wave gives an additional acceleration.

We can crudely modei the effect of temperature on electron trapping
by considering a waterbag model, which corresponds to replacing a
Maxwellian distribution with a velocity distribution which is constant
between :\I§Ve. In this description which assumes fixed ions. the

average density (n) and velocity (u) satisfy the same eguations as those

for a warm electron f]uid:19
an 9 -
—a—t+§—inu<0
an ., U, e 1 9p 11-1

ot 7 ax m- Cmn 8x

where p/n3 is a constant. Introducing E = - 9¢/9x and transforming to

the wave frame with velocity Yo gives
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nu = ngvp

N 2
5. 2843 2(,".3- 2, 4,2 .
" Ve o Y p+ 3v e " Ir-2

Here "o is the density of the uniform. unperturbed plasma. Hence

2
2 v
7»e':’ - L?‘_, R T (P4 (_g.) . 11.3
mv. v u
P
wherp . = BVeB/vpz. By differentiating with respect to u. it is

_A
easy to see that ¢ has an extremum (¢Cr) when u/vp = \/b . The

corr~esponding potential is

zey
cr 2
iy i (1 A8} . I1-4
my

&

This simply corresponds to the condition .hat the net energy of the
Ffastest electron be zero in the wave frame.
To determine the critical value of theelectric field. we consider

Poisson's equation:

.2
R
5;2 = dre{n-ny)

Muttiplying by 9¢/3x and usiig eguation II-1 gives (in the wave frame)

3
2
%’_ + Am [noetil - mnu2 - nom\rg (%o)] = 11-5
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2 2 4
-2--n0mvp [(1 -\[E‘) + 8/3 \[Zz,‘]

The constant has been evaluated by noting that é = 0 when ¢ = ¢cr‘

The maximum electric field obtains when ¢ = 0:

.2

v max  _ 1]

g = 1+ 2\/ - 8/3 \[B -B73 . 11-6
4 nomvp

Let us now use this result to estimate the saturation in the
simulations. considering an example in the trapping regime:
EEO/mmove = 1.0 and Wy = 1.04 wpe‘ Linear theory acplied to
this case predicts that the most unstable plasma wave has a wavenumber
k - 0.25 upe/ve for the electrnn-ion mass ratio of 0 01 used in this
simulation. Equation I1-6 then predicts that trapping onsets when
eE/mwpeve = 0.8, which compares reasonably well with the computed
value of eE/mwpeve ~ 0.6 at saturation.

A simple estimate of the anomalous heating rate can also be given.
The instability theory allows us to estim... the energy transfe from

the external driver to the e1ectron plasma oscillations as 2Y < E /dr >
where v is the growth rate and <E >/ﬂﬂ1s the energy assoc1ated

with the plasma oscillations. The transfer of energy to the particles
is given by our definition of the anomalous heating rate as
\FEOZ/Bn. When the plasma rscillations saturate. these energy flows

balance. Hence. we estimate v* as

vy E2ED) 1-7

where <Ew2> is the mean square electric field at saturation. For the
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exampie discussed above, Eq. I1-7 predicts v = 0.04 mpe‘ which again
compares reasonably well with the computed value of v* = 0.06 wpe'
| - There are many other nonlinear regimes.z0 A particularly interesting
one ohtains when EEo/m“beve << 1, Then the excited plasma waves
ohtain an amplitude E “Eo without trapping. Hence they in turn act
like efficient "pumps" to drive other plasma waves unstable. and sc on.
The net result is a cascade (collapse) of energy from Tory wavelength
waves to short wavelength ones which Landau damp. Again the saturatad

ctite is characterized by a steady transfer of energy from the pump

fiald to plasma waves to a heated tail of elecirons.

:
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LECTURE THREE: RESONANCE ABSORPTION OF INTENSE LASER LIGHT

INTRODUCTION AND LINEAR THEORY

In this third le~ture we will consider resonance absorption. In an
inhomogeneous plasma, eiectrostatic waves are generated whenever 1ight
has a ccmponent of its electric vector along the direction of the
density gradient. tnergy flows from the Tight wave into an
electrostatic wave which then heats the electrons. First we will give
a physical model for resonant coupling into a plasma wave and then show
how an obliquely incident 1ight wave can provide the coupling. This
siniple treatment is sufficient to both elucidate the physics and to
exhibit the important dependences of resoqance absorption. Finaliy we
will discuss the nonlinear evolution of resonance absorption as
illustrated in computer simulations.

To investigate the resonant couph’ng.')'1 consider a one
dimensional capacitor problem: a nonuniform plasma externally driven
by a spatially uniform electric field with amplitude Ed and

frequency Wy From Maxwell's equations we have

3 3F
e (B 1I-1

where E is the electrostatic field. J is the current density and the
brackets denote the spatially independent component. If we neglect ion

motion and linearize. the current density is
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J = ~en0(z)v . 111-2

Here v is the oscillation velocity of electrons in both the imposed
field (Ed cos mot) and the self-consistent field (E) due to the
plasma. Taking time derivatives of equations (II1-1) and (I11-2) and

using the linearized equation of motion, we then obtain

.2
o E 2 oE _ 2 _ 2 , R
2t whel2)E * oy 35 = - |wpe(2) -<wp (z) >] Eg4 cosw t. 111-3

Taking E~ ei“bt, assuming a linear density profile, and solving

for the driven response gives

2
‘- woe(2)Eq ) 111-4

F .
- + .
wg mpe(z) TVa 3%,

Note the resonant response when W = mpe.
The flux of energy (IABS) which must be supplied by the
externally imposed driver field is now readily obtained by computing

the energy lost by the pump fieid:

[f we again assume a linear density gradient (n = z/L),

nCT‘

1 -0 d . I11-5




-

w = 0
0 pe

Note that Va3 cancels out, and 50 the energy Tlow is independent of

the detailed mechanism which provides the damping of the electrostatic

field. Physically the height of the resonance is 1/\é, and the

i
width of the resonance is av, s hence the cancellation.

Equations (IIi-4) and (III-5) show that whenever a driver field

oscillates electrons across a density gradient, an electrostatic

oscillation is rescnantly driven near the critical density (i.e., where

=

). Such a driver field is provided by a light wav»

obliquely incident onto an isvomogeneous plasma if a compo..ent of its

electric field vector is along the direction of the density gradient.

Consider now a light wave obliquely incident onto an inhomogeneous

plasma slab. As shown in Fig., 9, we take the propugation k vector of

the wave to be in the y-z plane (without loss of generality), the

density gradient to be in the z direction, and the angle between Vn and

k in vacuum to be ©. Since the density is only a function of z, k

is conserved and so equals mo/c cos 9. The dispersion relation for

the light wave then becomes

mg = mse + mg Sinz @ + kscz

The maximum density which the wave reaches (nt) is given by the
cutoff condition kZ =0:
2

n, = N.. €Os g .

Note that the wave reflects below the critical density, although of

III-6

111-7
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course the fields do penetrate roughly a few skin depths into the
higher density region.
The occurrence of resonance absorption depends on the orientation
of the electric vector (EL) of the light. If E{ is in the
x-direction (i.e., out of the plare of incidence which is the plane
detined by Un and k), the electric field has no component along the
density gradient and so does not excite the resonance. This is called
c-polarized light. If ;L is in the plane of incidence (i.e., in the
y-z plane}, it does have a component along the density gradient. This
is called p-polarized light, Although the chliguely incident light
reflects at a density ower than critical, its fields will still tunnel
to the critice! density region and so excite the resonance.
A very simple estimate can be given for the resonance absorption of
p-polarized light. Basically we need only to estimate the component of
the electric field which drives the resonance (Ed) and then use
equaticn [11-5. To do this it is most convenient to work in terms of
the magnetic f. 'u sf the light wave. If we assume p-polarized light

and the geometry depicted in Fig. 9,

8 = %B(z) exp(-.wt + Twgy sin®/c),

From Ampere's law we then obtain

£ = sin 0 B(z
z e (Z) * 111-8

where ~ is the dielectric function of the plasma. By analogy to

equation I111-4,
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=
‘
wr

Ed = sin_ B(n = ncr)

The magnetic field at the critical density [B(n = "cr)] can be
simply estimated as its value at the turning point density times the
exponential decay of the field into the critical density region. If we
assume 3 linear density ramp and then use the well-known Airy function

solution for light propzgation in a linear profii |

.92E
B(n=n_) = —1F5 exp (-2/3u L/c sind

o) <w°L)1/6 3, 111-10

C

where Ep¢ is the free-space value of the electric field of the

1/6

light. The (koL) term comes from the decrease of the magnetic

field from its free space value as the group velocity of the wave

becomes small. Inserting equation [[1-10 into equation 1I[-9 then gives

.92EFS

d = wok 176
(&)

E 5100 exp (-2/3 wL/c sin %y . 111-11

The absorption is now readily estimated using equation III-11 in
equation III-5. Noting that IABS =f CEES/B , and defining © =

(koL)l/3 sin @ gives

2
f Loolr)

2 )

where f is the fractional absorption and

ot) - 2.31 rexp (~2/37 %) [11-12



na smoneiant fazt s of resonance absorption can be deduced from
Surcccan gl Y owhich ‘g platted o fig. 10. Note that the
*oceattan . wncthofs egual to g V/2 . vanishes at ~ = 0 ‘no

mronear of the slectric field along the direct ‘an of the density

1‘ 1 ent

“he abeneptinon ‘s very sma'’ for large angles such that
i © tea csnds have to tunnel through too large a distance).
' ©tumoamenrdtcae pecurs ‘ovoan angle MAX defined by - - 0.8, and

mma ~f 3rztag for which the absorption is s¥--adle s MAY
‘s goar-roanse of resanance absorptin depends strangly on the
1¥ v e demeivy gradient length near the critica’ density, If
< gery Targe, this 3bsorption is effective for only i narrow
arntes,  TF -OL’: L '0, resonance absoration occurs for a

s+ eange ~f oany’es, The optimum absorption ‘n a Yinear profile ig
Tamanhal aver-estimatad by this simple model and s actua’'y 0.5,

cytepe than 085

TTERITER SIMJLATIONS OF RESONANCE ABSQORPTION
T.en thoigh the basic process is linear. non'inear effects play a
~ent-ca’ role ‘n resonance absorption of intense 'aser light. Nonlinear
29¢zcts determine the self-consistent density gradient ‘ength. the size
nf the -~espnantly-generated field;. ancd ine heated elect-on
i-st~‘hutions. To explore these 1on’‘near aspects. we again turn to
cemputer simulations.23'26
These simu’ations24 are carrizd out with g two-dimensignal code

wnick solves the complete set of Maxwell's aquations and ‘ncludes
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ratatrvostic particle dynamrcs. Plane light waves are praopagated from
£3Caum ‘nto an innomogenenus slab of plasma. Variatinng are fo'lowed

nith 27any the propagation vector of the light and along its elect-ic

easthe . which allows far responance ansorption and for the gene~ation of
pyametei- instabilities. Reflected light waves are allowed to freely
21 .0 of the system. Particle bounda-y conditions are chosen to

mnds’ + Feap’y sxpanding plasma adjacent to a reservo’r of constant
ampec:t re plasma  The initia’ density varies with x "the d-raction
accmit ooy the sTapt from zern to a supercritical valus. A region of
c30..m o facluded adjacent to the low density boundary to a'low for
“-ae arvpansion of the plasma. Particles impinging an the high density
sngndasy are replaced with equal incoming flux distributed according to
»“m’v . where vy is the companent of the velocity normal to the
~aundary and fm’v) is the jnitial Maxwellian velocity distribution.
The plasma evolution is followed unti' a quasi-steady state has heen
25+ 3h7 ished.

A typical simulation will again illustrate the principal effects.
'a th's example. p-polarized light is incident at an angle of 24°
nto an initial density profile which rises linearly from 0 to 1.7 Ner

1 a distance of 3\0 {where Ay is the free space waveiengths). The

free space amplitude of the electric field of the 1ight is eE/onc =

2

1 .
0" 10 6 W u7/cmc

0.09. which corresponds to an intensity of I
The initial elactron temperature is 4 keV. and the ion-electron mass
ratio is 1G0.

After the light wave penetrates to its turning point, an

electrostatic field is resonantly excited at tne critical density. The

magnitude cf this field initially grows linearly in time, becoming rmore
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e Lc3i12ec to the cratical densaty surface as expected from
woLli-3. Fanaliy tne resonantly-driven tield becomes
+ Intense and iacalized that electrons can be accelerated
Lot oone s oaliation period, a process called wavebreaking.
ater . gnartion s satisfied, electrons which enter tne oscillating
« tmotl oryper pnase are efficiently neated, taking energy from
Lor T oani saturating its growth.
e mooei“7 can be used to estimate the size ot the
s Lag-d7tven fled at wavebreaking., We again consider a capacitor
-ar 1nhomogeneous plasma drivern by an imposed field Ed sin
t. .* we assume a cold, one-dimersional plasma and fixed ions, the
:.he evoistion is readily described in terms of the Lagrangian
s Labhe \xo), which is the displacement of an electron initially at
sTLean X «—— Using Poisson's equation and the equation of
B.1TLT, wWe 0oblain

- X 1 = Eiﬂ sin .t 111-13
“petTo’ T o 0 . v

iv we assume a linear density profile { se = IgXO/L), the solutions

f:r  ang 1i/%x0 at the resonant point are trivial:

= Xy Jot/Z cos mot R I11-14

2y = Xy /B (wot)2 sin ot I1-15

= of 2 e <
where Xq = e‘d/mu,0 and it is assumed that xd/L << 1
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Wavuebredk ing occurs when electrons cross one another (‘-'/'ax0 = -1),
#h1cn nappens when ° = Zxdf. Hence the amplitude of the

resonant ty-driven field at wave breaking is
ch,m, = \/EeEdL/m . 11-16

W0 physically, we can think of wave breaking as simply electron
trapp oy by the locaiized oscillating field. We first define the
affective wave number of the driven wave as k* = 1/ ?‘i/%xo, where we
1+ ourse mean the ratio of the amplitudes of these oscillating
gquantities. Using equations II1-14 and IIl-15 then gives k* =

iadlrgp. Wave breaking occurs when tne oscilltation velocity of an
electron 1n che resonantliy-driven fieid (vw = uoi) equals the phase
velocity of tne wave (vF =.n5/k*). This condition again yields
equation Ill-1b.

AC Can now estimate the amplitude of the resonantly-driven field at
saturation by using equation IIl-11 to relate Ed to the electric
fieid of the incident laser light. For the parameters of the sample
simulation, tnhis cold plasma prediction becomes eE/mhoc = 0.47, which
compares reasonably well with the observed value of eE/muoc = 0.3.

To obtain closer agreement, we must incorporate warm plama effects28
which, of course, reduce the wave breaking ("trapping”) amplitude as
discussed in the previouc lecture.

The ~eedback of these intense fields (and the concomitant localized
heating) on the piasma density profile is a crucial feature of the
long-time evolution of the coupling. The pronounced profile

modification is demonstrated in Fig. 11, which shows thi.ee snapshots of
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tne density profile as it evolves from its initial! linear profile to a
Ju3ci.steady. very steepened profile. The ponderomotive force due to
the intensa, localized electrostatic field ejects plasma. digging a
he'e in the plasma density at the critical surface. The plasma ejected
*aw2ds the vacuum 2xpands away. leaving a locally steepened density
o 8 7a which s supported by the pressure of both the localized
stactengtatic wave and the reflecting 1ight wave.
“nis profile steepening has important consequences for the mix of

o wntfan preacesses.  In particular., resonance absorption becomes
=potant fe 3 wide range of angles of incidence. This is
femanstrated 'n Fig. 12, which is a plot of the iractional absorption
»f p-on’avizeq light {after the profile steepening) versus angle of
n-“dence as computed in a series of simulations with the same initial
piiema conditions as the sample simulation. Note that the absorption
pAats at about 50% for a sizeable angle of incidence (:- 242

max
and is quite ‘arge over a broad range of angles (ac: ~ ”max)' This is
nualitatively as expected from our simple theoretical discussion of
resonance ahsorption. In addition. parametric instabilities near the
critical density {discussed in the previous lecture) are strongly
limited. since there's a very small region of plasma in which these
instabilities can operate. Note that the abssrption is only about 15%
far normally incident light.

Finally. the prnfile steepening strongly reduces the heated

electron energies due to the resonantly-generated wave. At
wavebreaking. a small fraction of the electrons (those entering the

wave with the proper phases) are strongly heated to an effective

temperature of order mvs. where Vie is the oscillation velocity
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at an electron in the resonantly-driven wave ’vw = eE/m.o). As is
apparent from the simple mode! of wavebreaking, the resonantly-driven
c.ald decreases in amplitude as the profile steepens. Physically. the
wave than has a smaller spatial extent which corvesponds to a 'ower
affact ve phase velocity. Hence it traps electrons at a lower

amp 't de and heats them to 2 lawer energy.
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LECTURE FOUR: STIMULATED SCASTERING OF INTENSE LASER LIGHT
INTRODUCTION

In this fourth Tecture. we will focus on sora nf the plasma processes
wnich can be significant when there's a sizeable region of plasma with
density less than the critical density. In particular. these processes
represent instabilities which can be thought of as the resonant decay of
the incident light wave into two electron plasma waves {the two-plasmon
decay 1nstabi1ity29). into a scattered Tight wave plus an electron
plasma wave (the Raman instability), or into a scattered light wave plus
an ‘on acoustic wave (the Brillouin instability}. These latter two
instabﬂities30 give rise to the possibility that the incident light
will be scattered before it reaches the higher densities near the
critical density where the abscrptive processes are most efficient. In
practice, this means that the laser plasma coupling may be considerably
altered when an extensive region of underdense plasma is created either
by use of a prepulse or a long pulse.

The Brillouin instability is potentially the most dangerous of these
instabilities. As can be seen from the frequency matching conditions

(mo =wy t , where W, is the frequency of the laser light.

Yia
wy is the frequency of the scattered light wave, and wia is the
frequency of the fon wave), this instability is operative throughout the

underdense plasma. In addition, by the Manley-Rowe relations. nearly all
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the energy of the incident light can be transferred to the scattered
light wave since f%a/ub << 1. Hence we will focus our attention on

thic instability. First we will briefly consider the linear theory and
the effect of plasma inhomogeneity on the instability threshcld. Then we
will consider some simulations and nonlinear theory to provide estimates

for how much scatter is possible.

BRILLOUIN INSTABILITY

We begin by describing the propagation of a light wave in an
inhomogeneous plasma with density n{x). Maxwell's equations readily

yield an equaticn for the evolution of the electric vector of the light:

BZE 2 2 EN

a—tz-cvghans% . Iv-
Here J is the plasma current density due to the response of electrons to
the high frequency wave: i.e. J = -n(x)eu, where n(x) is the plasma
density and u is the oscillation velocity of the electrons. Using the

Tinearized force equation to describe the oscillation gives

a0 n(x)e’e

-t = —p v-2

Combining these two equations yields the wave equation
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her 2 . 4 2
where “pe Tne = /m,

We next specialize to one dimension. which is sufficient to treat
back scatter. and decompose the density into a uniform value " plus a
Yow freguency fluctuation §n, which couples the incident light wave

(Ei’ to a reflected light wave (Er\. Then

2 2
(ZQZ -l 537 + u\pg\ E, =-wp§ 22 E; - IV-4

The physical interpretation of this equation is clear. In the presence
of a low frequency density fluctuation, the oscillation of electrons in
the electric vector of the incident light wave gives rise to a transverse
current which generates another (reflected) light wave.

To derive an equation for the evolution of the density fluctuation.
we simply use the 2-fluid description for the plasma and linearize. The

Yow freguency component of the electron force equation gives:

ju.’ 2

(o]

2
£ - _.&3sn e 3
Y ek , gm";gax (28;E)

where Oe is the electron temperature, uei is the Tow frequency
component of the velocity of the electren fluid, and w is the

frequency of the incident light wave. An isothermal equation of state
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has been assumed, and the last term is the ponderomotive force briefly

discussed in the second Teciure. Neglecting electron inertia then gives

)
m
1l
1
;
]
3 |o
o'y
o
x|
—_
m
J
m
.
1
—
-2
wn

This low frequency electric field transmits the ponderomotive force to
the ions.

We next consider the continuity and force equations for the ion
fluid. If we neglect ion pressure, and note that the Jow frequency ion

density fluctuation is = 6n, these equations become

U,

] i

3 on + no w - 0 V-6
) _le %

U T E™ - Vils s v-7

Here Z is the ion charge state and M the ion mass, and a

phenomenological damping rate v; has been included to model Landau
damping. Taking a time derivative of equation IV-6. a spatial derivative
of equation IV-7, and combining yields an equation for the evelution of

the density fluctuation

2
2 2 et 2
A e A F SO ST 1v-8
(;EZ T s ;;? th? a;? el

where ¢ =V2cb/M is the ion sound velocity. The physical
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interpretation i35 again clear. The incident and reflected 1ight waves
beat together to produce a fluctuation in field intensity, which drives
an ion density fluctuation {ion sound wave) via the ponderomotive force.

The instability is readily obtained from the two coupled equations
for Er and §n. To derive the dispersior relation, insert Ei =

EL cos{x x - wot) and Fourier-analyze.

2E
dne” "L
D(kuw) E.fkow) = T8 o Fn(k-ko,m-wo) + 5”(k+ko->‘+“o)] 1v-9

2.2
Wl + i, - 122y (ko) = 5 E (KoK, y -o )*E (KM w + u)
v i s “he m_M:T'MZ b [r‘ o*Ww UG/ T o Yo ] .
[o]

v-10
where D{k,w) = u\z-kzcz-mge. Next choose w to be low frequency
(w << f.uo), substitute equation IV-9 into equation IV-10. and neglect as
off -resanant any responses with frequency My which have |n| > 1. This

determines the dispersion relation:

2,2
2, . 22 _ 2KV 1 1
w" + "‘Ni"k CS = (Alp1 -7 m-:k-p- + DT&EJWOT s Iv-11
where Vos = eEL,/lTu.)O and mpi is the jon plasma frequency.

For back scatter k = Zko, and the unstable root is readily

obtained. For example, for Y << kcs,

w = ke + iy,
CS ¥

_ 1
Y _z-qfkovos wpi/\/woliocs . Iv-12
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If we include collisional damping of the light wave via en energy damping
. : Coe ol sl . iy

rate L (\L = “pe/'Bvei‘ where Vi 8 the electron-ion

collision frequency), instability requires that

vo? VYLYi y 1v-13

where i JL/Z and Y s Vi/2. This equation defines an

intensity threshold for instability:

In practice, the threshold intensity is usually ~etermined by
gradients in the plasma density and expansion velocity rather than by
collisions. Plasma inhomogeneity 1imits the region over which three
waves can resonantly interact. and propagation of wave energy out of this
region introduces an effective dissipation which must be overcome.
Noting that the wave numbers are now a function of position. let us
define K = kl(z) - kolz) -~ k3(z). At some point. K = 0 (i.e., the
waves are resonantly coupled), but away from this point a misr.atch
develops. The resonant coupling is spoiled when a signiTicant phase
shift develops. Hence we can estimate the size ?;,, of the interaction
region by the condition jGVInKUZ'” 1/2  Taylor expanding about the

matching point (K = X(0) + Klz) then gives
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! w14
Sint ~ kT
Prepagation of wave energy out of this interaction region introdu.es an
effertive damping rate of approximately Vgi/lint‘
group velocity of the ith wave. Inserting these damping rates into

where Vgi is the

equation IV-13 then gives the Rosenbluth condition31 for amplification

in an inhomogeneous plusma:

2

AN v 15
|K Vglvgzl
where 1 and 2 vefer to the growing waves. [If we apply this equation to
Brillouin back scatter in a plasma with a density gradient length L,
?

k! - “ﬁe/c“oL‘ and the threshold condition becomes

(Y ? 8
0s -
\Ve ) Th ko ) e

NONL INEAR EVOLUTION OF BRILLOUIN BACK SCATTER

What cortrols the level of the Brillouin scatter when the threshold
intensity is far exceeded? Ty gain insight into the nonlinear behavior
of this instability. let us first consider some computer simulations of

32,23

Brillouin backscatter and then briefly ¢iscuss some nonlinear

estimates.
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2 ; s s :
3 we will discuss here are carried out usinga ! 5

The simulations
dimensional particle code (two velocities, one spatial dimension) which
allows for electromagnetic waves and relativistic particle dynamics. To
focus on back scatter, intense laser light is propagated through a slab
of totally underdense plasma with an initial density profile rising from
zeros to 07 Ner in 10 \0. The initial electron temperature is * xeY,
the initial ion temperature s 0.2 keV. and the ion-electron mass ratio is
300. A region of vacuum is included at both boundaries. and
electromagnetic waves either reflected or transmitted are allowed to
freely pass out of the system,

Fig. 13 shows the evolution of the reflectivity computed in a sample
simulation. In this simulation, the incident laser light has an
intensity such that eEL/mubc =0.1 where EL is the free-space value
of the electric vector of the light. This corresponds to an intensity of
=100 w/cm? for 1.06 » Tight. which is far above the thresheld
intensity. Note that the reflectivity rapidly increases as the ion waves
grow. It finally saturates at a value of = 50% as the jon wave amplitude
becomes 1limited by jon trapping.

The variation of the reflectivity with incident intensity is shown in
Fig. 14, which is a plot of the fraction of the incident Tight enerqgy
which is Brillouin bac! scattered as a function of (voslve)z. This
reflection is averaged over a time much greater than the time for
instability growth and saturation. but is short-term in the sense that
gross changes in either the density profile or backg-ound plasma

conditigns can occur on a longer time scale. A significant reflectivity



~rgets whas tng tntensity is about 2-4 times the intansity threshold due
* tne dangt .y gradient, which is estimated in equation IV-16. The

seflartivity cubkequenty increases with intensity up to values of

a1 “ar thig »ather small plasma.

“ncight into the size of the scatter can be gained by 3 very simple
- =3t mataT. Assuming that the instability s wa'' above the
ceeenme T3 get oy gradtents. let as consider a s'ab of u-form unde-dense
Tty ot zencty "a and ‘ength L. Furthe~ we wiil is<ime that the
Ati2 355770 3te? with Br@'1outn back scatter has been drSven to a

L2 o Tiectaed hy ‘on trapping  2s typically chown by the simulations.

1Y oas caparate gut the fast time and space dependences. equation (V-4 and

sreoamaTagn s egaation for £, give

e n .
NS , Nr
i} 3 n
T

:. . v
P
X ‘n te

p

e I ang © ave the siowly varying amplitudes and

2 ? 12
. _ pe, v pe
777 a = .
Q -~ “o

Thase coupled equations are readily integrated to determine the !

-eflactivity. r. Assuming that E (L) < E;/D)} = £ . we then find

r = tanh? S 18
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Ty escimate the value of the density Tluctuation in the trapping
T omot . w2 appeal to an argument similar to that discussed in the second
ac+en. Concider an ign wave with potential ¢ and treat the jons as 2
«3terhaq dist-‘bution. “hen the condition that the fastest ion be
B, et otnoeeqt in the wave frame (i.e.. be nonlinearly brought into

esanancal s

M. 2 .
~e¢+?‘cs-JTvi1 =0

shera ¥ -5 the ion mass and € is the ion sound velozity. The

R . in = .
carrespaniing value of the density fluctuation, Eﬂ et . is
p e

%’! = 12(\]1— . A E\)Z . v 1a
p e

. ay 2,2
As an example. let us consider Ji/'e 0.2, 'pe/“o = 0.35
its average value in the sample simulat: ). and L = 1O‘lo. Then

equation 1V-19 predicts in/np ~0.12. And equation IV-'8 predicts
-  45%. comparable to the reflectivities observed at the higher
ntensities.

Although these calculations provide a rough estimate of the size of
the short-term scatter, they can clearly overestimate the net scatter in
experiments. There are several different long-term effects which Tower
the scatter as emphasized by both simulations and theory. First, if the
light pressure is much greater than the plasma pressure in the underdense

region. the momentum deposition due to the reflecting light can graduaily

push the underdense plasma out of the way.34 Secondly. even if the
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'iqnt pressure i Tess than or comparable to the plasma pressure, theve
Tan 0o 1 very significant long-term heating of the ions by the ion
«1ns.  As the effective ion temperature increases. the jon wave
sent it uds decreases. lowering the reflectivity, Recent ca]chations35
fa-1.%ng on this Inng-term self-consistent ion heating /tail formation}
ndioata that hundreds of wavelenglhs of underdense plasma are then
< oadet to provide a reflectivity of ~ 50%.

fraa"'y. it is not yet known how multi-.dimensional effects modify
‘nene masults,  Back scatter has the largest growth sate, but the
i nutn instability can of course scatter light over a broai ringe of
*11°@¢.  Indeed. in an inhomogeneous plasma, side scatte~ has + lowe-
‘neacho'q ‘ntensity than does back scatter. since the side scattered
‘-gnht wave spends 2 longer time in the interaction region. There are
1757 ather mylti-dimensional effects which must be considered. For
2xamp’e, a perturbation in the intensity profile of the incident 1light
beam ~reates a depression in plasma density via the ponderomotive force.
Th:s density depression refracts the 'ight inward, increasing the
intansity pe-turbation. The result is the so-called €ilamentation

:nstabflityBG

. vnich can lead to a break up of the incident light beam
‘nto intense filaments. This instabi™“ly has a smaller growth rate than
the B»illouin instability unless the ion and electron temperatures are
comparable. but little is known about the compeiiiion of these effects in

the noniinear state.
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LECTURE FIVE: COMPARISON OF CALCULATIONS WITH EXPERIMENTS

INTRODYC " ION

In the previous Yectures, we discussed a number of different
orocesses which play a role in the coupling of intense laser light with
plasmas. These processes were chosen to illustrate general! features of
the 'ight-piasma coupling. For example. in the second and third
lectures. we described enhanced absorption of laser light via its
<oupling into plasma waves near the critical density. Important features
af this coupling were nonlinear profile steepening and the ge.eration of
‘ligh energy electrons. In the fourth lecture, we described enhanced
reflection of laser light via its stimulated scattering by ion acoustic
waves in the lower than critical density plasma. The calculations
indicated that a sizeable reflectivitv was possible in Targe underdense
plasmas. In this final Tecture, let us consider some of the experimental
ayidence for these various plasma processes.

From a theoretical viewpoint. it is clearly appropriate to divide
laser plasma experiments into two rather broad categories depending upon
the size of the underdense plasma. If the characteristic size L of the
underdense plasma is cmall (L/,\0 < ¢ (10), where Ag T the free space
wavalength of the light), then il has little effect on thc incident
light, and one is primarily investigating how light is absorbed near the

critical density surface. On the other hand. if there is an extensive
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region of underdense plasma [L/), - 2(100]. theory indicates that
effects such as Brillouin scatter, filamentation. and inverse
premsstrahlung can play a sizeable role.

We can estimate the size of the underdense plasma in laser-irradiated
targets as the minimum of c* - or R. where c* is a typical plasma
expansion velocity. : is the pulse ler sth of the laser light, and R is
the focal spot radius. To give some feeling for the members. L/ % ~

Lo 102 '(ns‘,ng\J /3§ ), where an expansion velocity nf

min’ ‘o

3« !07 cm/sec has been taken. 7 is measured in ns. and R and Ao are
measured in ;.. Hence experiments with 1.06 u light and pulse lenths of
< 30 ps have rather small underdense plasmas. whereas experiments with
pulse “engths > Tns have large underdense plasmas. Note also the scaling
15 I’a' With this distinction in mind. we wil! first examine some
short-pulse-length experiments (with small underdense plasmas) and then

briefly consider some longer pulse-length ones.

DENSITY PROFILE STEEPENING

As we discussed in the third Tecture, calculations predict a
pronounced steepening of *'.2 density profile near the critical density.
This steepening is very important because the scale length near the
critical density affects the mix of absorption processes and the heated
electron temperatures. This profile steepening has been conf rmed by
interferometric measurements of the density of a laser-heated plasma. In
the experimenle 41- v diameter glass microballoon was irradiated with a

014

30 ps, 1.0€ u laser pulse at an intensity of 3 x 1 N/:mg. Ar

interferomgram was taken and Abel-inverted to determine the axial
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electron density profile plotted in Fig. 15. 1In both experiment and the
simulations discussed in the third lecture. the profile is steepened to

an upper density n, that is roughly determined by pressure baiance:

vaty Y
T Mer [ os'Vel "

where Vos is the oscillation velocity of an electron in the laser light
field. Yo is the electron thermal velocity. and Ner is the critical
density. The profile is steepened down to a lower density that is
determined by how the light pressure and localized heating dams the
plasma fiow. This lower density typically appears to be somewhat Tess in
experiments than in the particle simulations, perhaps because of
energy-~transport inhibition.

38 show an additional

Calculations with a focused light beam
effect: cratering of the critical density surface. Physically. the
density surface is preferentially pushed in where the light intensity is
greatest. This effect has also been observed in experiments. Fig. 16
shows an Abel inverted density contour measured in an experiment37 in
which a disk target was irradiated with 1,06 1 1light with an intensity of
>3 x 1014 W/cmz. The density cavity has a transverse scale
approximately equal to that of the incident Tight beam. A smaller scale
rippling of the critical density surface has also been inferred in
experiments using higher intensity light. These ripples are probably due
to hot spots in the incident light beam and/or to a critical surface

instability found in computer simu]ations.3g
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ABSORPTION OF INTENSE. SHORT PULSE-LENGTH LIGHT

Caiculations have also predicted many important features of the
absorption in experiments with short pulse length, high intensity laser
light. 1In such experiments, the underdense plasma has both a high
temperature and a small spatial extent. Because collisional absorption

varies as »;3’2 (<

o is the electror temperature) and as the scale

Tenath of the plasma, it is weak in these experiments. However. as
discussed in the third lecture. computer simulations showed that there
would still be a sizeable absorption due principally to resonance
absorption with a small additional absorption due to
nonlinearly-generated ion fluctuations. These early simulation results
assumed plane waves incident onto a plasma slab. In practice. a focussed
light beam {say, with hot spots) both craters and ripples the critical
density surface as discussed in the previous section. These surface
ripples average the absorption over angle as wall as change part of the
p-polarized light i.ito s-polarized light and vice versa. A simple
theory40 was used to extend the ideal simulation results to crudely
include this additional critical surface rippling. The result for the
absorption as a function of polarization and angle of incidence is shown
by the black 1ine in Fig. 17,

The absorption was measured in detail in recent experiments.“’42
in these experiments.AI, plastic disks were irradiated with about 30 ps
pulses of 1.06 1 Tight with an intensity of 10'> - 10'6 w/cm. The
measured absorption, denoted by the circles in Fig. 17, was both

polarization-dependent and broad in angle. The absorption of p-polarized

light peaked at approximately the predicted angle, and the absorption of
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s-polarized 1ight monotonically decreased with angle of incidence. The
magnitude of the absorption was also in reasonable agreement. The
principal discrepancy is an additional 10-15% absorption, rather
independent of angle of incidence and polarization., This additional
absorption may be due to ion turbulence generated by heat-flow

instabilities, self-generated magnetic fields, or the Zmpe instability,

HEATED ELECTRON TEMPERATURES

A very important question is the magnitude of the heated-matter
energy produced when laser light is absorbed. This light primarily heats
electrons, since their motion in the oscillating fields is much targer
than that of the massive jons. As discussed in the second and third
lectures, absorption via plasma waves does not in general lead to a
simple temperature electron distribution. Physically this is because
plasma waves tend to preferentially heat the faster (more nearly
resonant) eiectrons. The simulations of resonance absorption discussed
in the third lecture predict that a two-temperature distribution will
result. The lower temperature is that typical of electrons streaming
into the absorption region and is determined by how the heat transports
to higher density. The hot temperature is that characteristic of the
electrons heated by resonance absorption. which the simulations predict
will have a quasi-Maxiwillian distribution.43

Tie existence of a two-temperature electron distribution is supported
by measurements of the x-ray spectrum in many different experiments using

short-pulse-length laser 1ight. As an example, Fig. 18 shows the x-ray
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spectrum gbserved in an experiment44 in which a plastic disk was
ivradiated with a 80 ps pulse of 1.06 u 1ight at a peak intensity of ~ 2
X 1015 /cmz‘ The low energy x-rays indicate a temperature of = 700

2v, and the high energy x-rays a temperature of = 8 keV.

Fig. 19 shows the heated electron temperature inferred from the high
anergy x-vays over a wide intensity regime. The various symbols with
2ror bars represent experimental data from a series of experiments45
in which disks or microballoons were irradiated with 1.05 3t light with
2ulse lengths in the range of about 50-200 ps. The open x's are values
of the resonantly-heated electron temperature calculated in a series of
two dimensional sw’m\ﬂatw'onsa3 of resonance absorption. Both the
magnitude and intensity scaling of the heated electron temperatures are
in reasonable agreement, especially in view of the fact that the
simylations are quite }deal and do not include the space-and
time-averaging inherent in the experiments. Experiments using laser
Tight with other wavelengths have given quite similiar results., One
simply has to scale the intensity as Iag (where ;o is the
free-space wavelength of the 1.3ht). as theoretically expected.46

We expect that the high energy x-ray spectrum will not in general
indicate only a single hot electron temperature. Resonance absorption is
not the only process heating the plasma. For example the Raman and
Z’pe instabilities eara produce hot electrons in the Tower than
critical density plasma. Such effects will probably be especially
noticeable in Tonger pulse-length experiments. In fact. recent

experiments47 using Ins pulses of 1.06u 1light do indicate the presence

of hot electrons with several different temperatures.
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BRILLOUIN SCATTER

We have been discussing short-pulse-length experimentc; that is.
experiments characterized by a small region of plasma with density less
than Neps Such experiments have been typical of the exploding-pusher
target experiments carried out in the past--early laser fusion
experiments with violent nonadiabatic compression of deuterium-tritium
gas to high temperature but to a density of only about 0.1 g/cm3.
Prescriptions for the calculated absorption and hot electron temperature
were incorporated into a target design code. which did reasonably well in
tracking these implosion experiments.48

Laser-plasma coupling is more difficult to compute in
Tong-pulse-length experiments. however, because the underdense plasma is
then much larger. In large regions of underdense plasma, effects such as
collisional absorption, Brillouin and Faman scattering, and filamentation
can all play a much more important role in the laser plasma coupling. In
general, the magnitude of these effects and their competition is poorly
understood, both theoretically anc experimentally.

Some progress “as been made in beginning to understand the importar:
role of Brillouin scatter in long-pulse-length experiments. Both
simulations and a simple theoretical model were used to predict sizeable
Brillouin scatter in experiments49 with Targe regions of underdense
plasma. As shown in Fig. 20, this backscatter was predicted to be on the
order of 50% when the characteristic size of the underdense plasma
becomes about 100 free-space laser light wavelengths. The 1line is the

prediction of a simple theoretical model for Brillouin backscatter. which
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takes intn account the self-consistent ion heating that accompanies the
instability. The squares denote simulation results using a hybrid code
with fluid electrons and particle ions.

Experiments49 in which plastic disks were irradiated with 1.06 u
light with pulse lengths of 200 to 400 ps and focused intensities of

15 to 3 x \016 W/em® support these predictions. As

bout 3 x 10
shown in Fig. 21. the absorption was fuund to be reduced by a factor of
about two in these experiments as compared with that observad in the
analogous short-pulse-length experiments. Measuremenis of the
frequency spectra of the reflected light showed frequency shifts
consistent with Brillouin scatter. Subsequent longer pulse-length (1ns)
experimentsso using high-Z targets have also indicated sizeable
Brillouin scalcer.

A larger underdense plasma can also be created by use of a prepulse.
As shown in Fig. 22, the addition of a prepulse about 2 ns prior to a 75
ps main pulse was foundS] to increase the backscatter of the main
pu'se which was normally incident onto a CH slab. As the prepulse energy
was increased, the fraction of the main pulse which was back-reflected
increased from = 15% to ~ 40% and the net absorption decreased from ~ 50%
to =20%. For a fixed ratio of prepulse energy tc main pulse energy. the
back-scattered light increased with the }ntensity of the main pulse and
was rather insensitive to the angle at which the targets were tilted. as
shown in Fig. 23. In addition. it was found that the light rays retraced
their path. All these features are as expected if the light reflection

is due to the Brillouin instability in the underdense plasma.
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OTHER PLASMA PROCESSES

finally. there 's also experimental evidenc2 for many other plasma
processes in laser-produced plasmas. These processes include:
. Brillouin side scatter as inferred from a substantial

52 of the scattered light with respect to its plane of

asymmetry
polarization;

2. filamentation as inferred from hot spot552 in x-ray microscope
pictures of the heated plasma or from enhanced intensity
structure in the reflected and transmitted beam;

3. instabilities near one-fourth the critical density as deduced

from one-half and three-halves harmonic emission;53

4. self-generated magnetic fields, which have been measured®® at
values of several mega-gauss;

5. and parametrically-generated ign turbulence near the critical
density as inferred from frequency shifts in the second harmonic

55

emission. A more detailed discussion of these many different

effects is beyond the scope of this lecture.

In summary, plasma processes play a significant role in the coupling
of intense laser light to targets. Calculations have predicted many
important features of laser plasma experiments. In turn. the
experimental feedback has been very important. Although encouraging
progress has been made, the understanding is weak in many crucial areas.
For example, there is a great deal to learn about the competition of

inverse bremsstrahlung, Brillouin back and side scatter, and
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filamentation in long-pulsa-length experiments. 1In addition. we need to
develop an improvad understanding of elactron transport and the various

mechanisms which can inhibit this transport.
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FIGURE CAPViIONS

A schematic of the basic cycle of a plasma simulation code
using particles.

The computed evo!ution!! of the wave energy in a large
amplitude p.asma wave ‘upper curve) and ‘n Sts lower sideband
"lower curve). The open (solid) symbals are resu’ts from the
Ylisnv equation (particle code).

The experimentally measured eonution‘3 of the energy in a
'arge plasma waves and in its lower sideband.

A schematic of a 2 D simulation of plasma heating by laser
T<ght using an electromagnetic, relativistic particle code.

A schematic illustrating the feedback mechanism leading to
instabitity.

The computed evo!ution17 of a' the p asma wave energy and b’
the kinetic energy of a plasme driven by a electric field
asciltating near ~pe
A typical heated electron velocity distribution predicted17 by
the particle code.

A heated electron velocity distribution measured in an
experiment18 on anomalous plasma heating by microwaves.

A sketch illustrating a Yight ray obliguely incident onto an

inhomogeneous plasma s'tab.
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A plot of the function ¢(r), which characterizes the
efficiency of resonance absorption. The dashed line is the
simple estimate derived in the text. The solid line is from

reference 22.

The ion density profile from the sample simulation24 at three
diffe-~ent times: a) the initial profile, b) the profile after
the resonant field has grown, and c) the asymptotic profile

wnich shows a characteristic step-plateau feature.

The fractional absorption after profile steepening vs angle of

28 Lith the

incidence. as computed in a series of simulations
same initial plasma conditions as the sample simulation

discussed in the text.

The evolution of the back reflection computed in the sample

simulation discussed in the text.

The scaling of the short-term back reflection with
(voslve)z. as computed in a series of simu?ation532 with
the same initial plasma conditions as the sample simulation
discussed in the text. Here Vos = EEL/m“b’ and Vo 18

the initial electron thermal velocity.

. A measured density prof17e37 in a laser-irradiated target. A

1.06 u laser pulse with an intensity of about 5 x 10]4 w/cm2
was incident onto a glass microsphere. The profile was measured

by interferometry using a freguency doubled light pulse



Fig. 16. An axial density profile measured by interferametry.

Fig.

Fig.

Fig.

17,

18.

19.

37 14

this experiment, a 1.06 u laser pulse with an intensity of about

14 2 was incident onto a flat disc.

3 x 10 Wem
Absorption as a function of angle of incidence and polarization
for (a) p-polarization and (b) s polarization. Black lines are
obtained by modifying the simulation results discussed in the
third lecture to include an additional rippling of the critical
density surface due to inhomogeneities in the incident 1ight
beam- Circles denote the absorption that was measured in a
series of experiments in which plastic disks were irradiated.
The 1.06-pm light was focused with an f/10 lans to an incident

intensity in the range of 1015 to 10]6 w/cmz.

The x-ray spectrum measured in an expe*iment44 in which a
plastic disc was irradiated by a 50 ps pulse of 1.06 u light

with an intensity of about 2 x 10]5 Nfcmz.

The heated electron temperature as a function of intensity.
The various symbols with error bars represent the values

45 in which

inferred from the high energy x-rays in experiments
disks or microballoons were irradiated with 1.06-um light. The
triangles are values calculated in a series of two-dimensional

simulations using plane waves incident onto a plasma slab.



Fig. 20.

Fig. 21.

Fig. 22.

Fig. 23,

The fraction of the incident light the* is Brillnuin
backscattered as a function of the size of a uniform underdense
plasma. The lines are results from a one-dimensional theoretical
model in which ion heating by the driven ion waves provides the
stabilization. The squares denote simulation results using a
one-dimensional code. The initial electron temperature was 2

keV; the incident 1ight intensity was 2 x 1015 N/cmz.

The absorption as a function of pulse length and focal spot
size measured in an experiment49 in which plastic disks were
irradiated with 1.06-ym light. The experiments with longer
pulse lengths and, hence, larger regions of underdense plasma
exhibited less absorption, consistent with the presence of

Brillouin scatter.

The fraction of the main pulse energy which was hack reflected
versus the prepulse 1eve1.51 The prepulse was introduced 2 ns
prior to the main 75 ps (FWHM) pulse. which has a focused

15 W/cmz.

intensity of = 5-10 x 10
Back reflection of the main laser pu15e5’ versus a) target
angle © and b) the incident energy or intensity. ({0}0 =
0% (s) 0= 450). The ratio of the prepulse energy to the

main pulse energy was 0.2.
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