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SUMMARY

The Al15 layer of a commercial Airco wire containing 2869 Nb filaments
was analyzed as a function of heat treatment. Its microstructure is
composed of three morphologically distinct concentric shells. The cen-
tral shell consists of fine equiaxed grains and has a nearly stoichio-
metric Sn concentration., High resolution electron microscopic analysis
suggests that the fine grains are formed through the polygonization of
dislocations., The homogeneous composition through the fine—grained
layer is a probable consequence of the small grain size, which permits
relatively rapid chemical redistributions through grain boundary diffu—
sion., In contrast, the chemical gradient in the large—grained inner and
outer shells is steep.

The microstructure is established by the reaction heat treatment, and
determines the critical current. The best combination of grain size,
composition, and volume of the fine—grained shell is obtained with an
intermediate reaction temperature (700 to 730°C); this temperature range
also yields the best values of Jc. Various two—step heat treatments were
studied and compared to isothermal aging, The best microstructure and,
hence, the best critical current characteristic was obtained by aging the
specimen at 700°C for 4 days followed by 730°C for 2 days.

The onset transition temperature and the transition width were measured
inductively. The inductive signal is apparently determined by the
properties of the smallest volume of superconducting phase that is
sufficient to expel the external magnetic flux. The composition gra-
dient within this volume is then reflected in the transition width. The
critical temperature first increased (to ~18K) and then decreased with
increasing reaction time.

The J_ characteristic of the multifilamentary wire is compared to that
found in preliminary tests on an 'internal tin' bronze—processed wire
fabricated by Intermagnetics General. The internal tin wire appears to
have a much better critical current density at lower field. Possible
metallurgical sources of the higher current density are discussed.
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Figure 1. A scanning electron micrograph of a typi‘cal
reacted bronze-processed multifilamentary wire.
Notice that the Ta diffusion barrier constra.ins
the volume expansion of the active core during
the diffusion reaction, hcnce,.the NbySn diffun
sion layer experiences a radial compressive
strain. Without this restrictive layer, the
bronze matrix would be able to expand freely and
not exert as wuch stress on the NbySn layer.
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Figure 2.

A scanning electron micrograph showing the Nb3Sn
layer and the residual Nb filaments after the
bronze matrix has been removed. Voids in the
Al5 layers, predominately at the periphery of
the filaments, are believed to arise from the
preferential etching of the Al5 grain boundaries
due to their high copper concentration.
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Figure 3.

A-15 NbSn Diffusion Layer

Schematic representation of the grain morphology
of the Al5 diffusion layer. The direction cf
the reaction is inward to the Nb filement. As a
consequence, a successive layer formation fol-
lowed the order: columnar grains, fine equiaxed
grains end coarsened grains. The transformaticn
of columnar graias to the fine grains is due to
the polygonization of dislocation walls to re-
duce the strain energy associated with the Nb3Sn
layer formation.
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Figure 4.

The selected area electron diffraction pattern
of the boundary region between the Al5 and the
residual Nb. The square pattern near the center
maximum is the (001) Al5 zone axis pattern and
the BCC (111) is represented by the brightest
diffraction spots.
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Figure 5. The corresponding bright field micrograph of
Fig. 4 showing the columnar nature of the Al5S
grains near the Nb interface.
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Figure 6.

A TEM micrograph showing a typical NbsSn grain
morphology near the Nb,Sn- bronze interface.
The coarsened large—-grain layer can be seen at
the periphery of the reacted filament with the
fine equiaxed grain layer adjacent to it.
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Figure 7.

A TEM micrograph revealing the nature of the low
angle boundaries between fine equiaxed grains
along the direction of elongation of the colum-
nar grains. The columnar grains are to the
upper right of the micrograph. Several low-
angle grain boundaries are indicated by arrows.
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Figure 8.

A high resolution TEM micrograph showing dislo-
cation walls in the columnar grains near the Nb
interface. Several distinctive dislocation
walls are indicated by arrows. The driving
force of the dislocations' multiplication and
polygonization is believed to be the reduction
of the transformation strain energy.
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Figure 9.

-10-

Another high resolution TEM micrograph showing
the dislocation walls in the columnar grains
near the Nb interface. Notice in the upper
right corner of the micrograph that some dislo-
cations polygonized into subgrains while some
others are still in the process of polygoniza-
tion.

XBB 825-4151



Figure 10.
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Scanning electron micrographs of the fracture surface
of individual filaments heat treated to near 90% reac-
tion at different temperatures. The apparent grain
boundaries can be distinguished by the predominate
intergranular fracture mode. Lower temperature aging
produces a finer grain size. However, the equiaxed
grain boundaries are not revealed on the fracture sur-
face due to the nature of the low—angle boundaries.
Therefore, to accurately determine the grain size,
transmission electron microscopy is required.

XBB 831-229A



=9

[ [ | IR | | |
| BRONZE PROCESS NbzSn GRAIN SIZE :
- a4 } Scanlan et al. 3
o I - 7
b ¥
5000 O Shaw ’/,r
; VAN 2
i ® This work
(layer thickness [.7~1.9 um) o -0
b y = =t i e
> il
02 /A/ O/ £
» 2000+ o r -
) A P
i 7~
n £ /’/, /,’73
& G
o A D m]
I000}— AL P <3 W e
— < A =l —
/ -
= d_,—” =
s ,/' O &
500
=]
300 l l l ] L I8 I
650 750 850 950
. (-]
Aging Temperature ( C)
XBL 824-56lI
Figure 11. The results of grain size versus aging tempera-

ture (650° to 800°C) as determined by a TEM
study. The specific data shown in this [igure
are from the samples heat treated up to the time
required to yield a layer thickness ranging from
1.7 to 1.9 ;m. Two other data in the literature
on grain size are also included for comparison.
It can be concluded that the grain size in-
creases with increasing aging temperature and
time, and decreases with decreasing filament
diameters.
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Figure 12. Tin concentration profiles determined by
STEM/EDXS analysis across the reacted Al5 layer
for samples aged to near 90% reaction at various
temperatures. The tin concentration decreases
monotonically through the layer from a Smn-rich
composition at the bronze interface to a Sn-poor
composition at the Nb interface. The central
region of the Al5 layer, where the grain size is
small and equiaxial, has a composition close to
stoichiometry. The general trend is for the tin
concentration gradient to decrease with increas-
ing aging temperature and time.
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The volume fraction of the fine-grain layer with
respect to the original Nb volume versus aging
temperature for samples near full reaction.
Since this layer contains high density grain
boundaries and a near stoichiametric composi-
tion, it is the volume that carries the majority
of the current near J.. Two competing factors
determine the volume of the fine-grain layer:
the mobility of dislocations to polygonize and
grain coaraening, Therefore, an optimuwm temper—
ature (from 700 to 730°C) produces the maximum
fine-grain volume.
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Figure 14. A schematic representation of (a) the grain
structure and (b) the tin concentration profile
across the Al5 layer. It is believed that the
tlat concentration profile in the fine-grain layer
is due to the fast distribution of tin along the
grain boundaries.
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Figure 15. The inductive T_ midpoint and transition width

versus aging time for 650, 730 and 800°C. The
Tc midpoint increases (to near 18K) and its
width decreases with aging time. This behavior
iy yuite genecal for hranze proccascd wiros. It
can be concluded that the inductive measurement,
which measures the change in slope of M-H curve

within the field range of the applied oscilla-—

ting field amplitude, yields only the informa=
tivn abuoul the volume of swperconducting phase
enough to expel the external flux, In our mea-
surement, this volume is estimated to be ~1 um
in layer thickness.
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The J_(H) characteristics of samples aged at
650°C. Microstructural studies revealed that
the fine grain size for short heat treatments
are responsible for the high J. at lower fields
even though the volume of the fine grain layer
is smaller and has a higher concentration gra-
dient. Prolonging the aging time to 16 days
mainly increases J. at higher fields.
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Figure 17. The JC(H) characteristics of samples heat treated
in the temperature range 700 to 800 °C. Heat
treatments at intermediate temperature and time
give the best J_(H) characteristics. For example,
samples aged at 700°C for 6 days and 730°C for 2
days show the best J, at all fields.



800
L 750
[V
5
S
Q
£
@ 700
o
c
o
<

650

R.T.

-19-

|
|
|
ﬁ»
|

Double Aging Treatments

| | | | 1 1 | 1 1 i 1

Figure

18.

Aging Time (days)

XBL825-5643%

Schematic heat treatment schedules to improve
the microstructural state of Al5 layers. The
first-stage heat treatment is at a low tempera-
ture to establish a fine-grain structure and the
second-stage heat treatment at higher tempera-
ture is designed to redistribute the tin within
the fine-grained layer. The necessary condition
for this modified heat treatment to work is that
the redistribution of tin be a faster process
than the Nb3Sn grain coarsening introduced by
the second-stage higher temperature treatment.
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- Figure 19. The volume fraction of the fine grain layer for

‘'several double-aged specimens as compared with
Lthat of Lhe isulhermally prepared sawples. The
samples aged at 700°C aud then Ffolluowed by 7309C
show an increase in the volume fraction, while
the 650°C + 800°C heat treatment produces a
lower fraction. This can be attributed to the
increase in the dislocation mobility without
significant coarsening at the 730°C treatment.
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Figure 20. The STEM/EDXS analysis of the tin concentration

profiles of three double-aged specimens. The
small composition gradient of the 700 + 730°cC
aged specimens shown in this figure is favor-
able, while the steep gradient of the sample
treated at 650°C for 16 days + 800°C for 4 hours
is undesirable and yields inferior J..
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Figure 21. The J,(H) characteristics of double-aged speci-
mens starting with 650°C and followed by various .
higher temperature treatments, From the data it
is clear that the higher the second aging tem-—
perature, the smaller the J. enhancement.
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Figure 22. The JC(H) characteristics of several double-aged

samples with 700°C as the starting heat treat-

ment temperature. The J (1) of the 700°¢/6 days

sample is also included, representing the best

obtained by isothermal aging. The 700°C/4 days

+ 730°C/2 days sample has about a 50% increase

in the J_ over that of the 700°C/6 days.
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Figure 23.

The SEM micrographs of the fracture filaments
aged at (a) 650°C/14 days + 730°C/2 days, and
(b) 800°C/2 days. A significant difference in
the apparent grain size with varying heat treat-
ment conditions can be noticed. Also, the in-
tergranular fracture mode of the Al5 phase is
very distinct (b).
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Figure 24. A comparison of I (H) divided by the initial Nb

area of the 'internal bronze' Airco wire and the
'internal tin bronze' IGC wire. The Airco wire
data in Llhis [iguie 18 the best obtained by
double-aging treatment. The IGC sample cited in
this figure represents the best heat treatment
condition of a recent preliminary study. By
optimizing the heat treatment, it is expected
that this value can be improved further. A
eignificant increase in J,, especially in the
lower field range, is clear. The improvement is
most likely due to the microstructural sources
introduced by the change of diffusion condition.
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Figure 25. Schematic rep resentations of the 'internal bronze' and
the 'internal tin bronze' processes for the multifilamen-—
tary NbySn wire. It can be recognized that the main
difference between these two processes is that the 'inter-
nal tin bronze' process has a continuous supply of tin
instead of sequential depletion of tin in the bronze
matrix., The grain size will be smaller due to a higher
nucleation rate., The fact that it is easier to draw the
wire down to smaller size encourages finer filaments. The
fine filaments will, react thus eliminating the low tin
con centration boundary at the Nb interface. As a result,
a larger volume of the Al5 phase can be closer to
stoichiometric composition.
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