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Abstract

Networks have been used to model fixed-site securily systems and %o
Jetermine optimal travel routes of thieves or saboteurs. Considered n-re
is the problem of uperading the security by optimally investing in means
to increase the travel time and/or detection prohabilities over the arcs of
the network. It is shown how to formulate z single linear programming
problem to answer the following question. If the cost of increasing
travel time is linear for each arc, what is the minimum amount of money
one must invest to guarantee that there does not exist a path for thie?

or saboteur of length less than a fixed time T?

QISCLAIMER




1. Intro:siuction
When networks have teen used to model fixed-site security cyetems,
15 in ‘1,?‘3,51, onc oI the importart problems is to determine optimal

soteurs from 2 mource point O (crnerally

Lravel routor of thieves or oa
taxen te be the outside of the modelled Cacility) to a tarset roinl or
ovjeetive 6 (or Lo a collection af such points in the mod:l, Travel
router can be considered to be optimal if thev minimize travel time or
‘A-tection probability, or some combination of these two factors. If, tor

rele, one 15 interested in those rontes providing an adversary with the

minimun travel time M from D to &, one might further ve interestedd in
patte the naversary misht traverse with a travel time eclose to M. IT “here

et ne path from U to g

a time T (witn T > ¥, ani it is nececsary =

v
<1

have & Traversal tame lese tnan T, then one must increase iine travel time
?

ver all paths of length less than T, and not just the oririnal shoriest

in "6, it hns been noted that "travel time” a

cd in the context of travel times.

he disct
Standard network .~2rminolosy, as in EQ}, will he used. TIn particular,

network N has a node set V{I) and arc set A{N), where each arc a & A(N)
consists of an ordered pair (ui, Vi) of nodes from V(N). Node uy is the

P

tail of ass and vy is its tead,

Associated with each arc ai is the (non-
negative number Li which will represent its length or travel time. By
the length, or "time length,” of a (directed) patn P is meant the sum of
the lergths of the arcs in P. With the sovrce point S a designated node,
each node n £ V(N) has a "reach time" r which squels the length of a

shortest path from 3 to n. Of course, if 8 = - then r,=0. Asan

example, the network in Figure 1 has the arc lengths indicated and the
iple, Z

reach times tabulated.







and notw thet any S to (. path corresponds to n path in N from . Lo come Gi

. To produce an opldmal dodentaent protden

whose lenrth 1o exerily o e
equivalent to the protlem in N, incremse I by one, and then one need only
guarantee that none of these new (nonexistent} arcs will be designated ror
improvement. This can be accomplished by maxing the unit cost of improvement
extremely larse for each of these new ares.

Jarsiren's approach and method of solution can be summarizod as

follows. Astsume a "fixed number »t dolluars" (that is, a budget ' and
b4

to ortimslly zllocate this money over the arcs. As noten i? oy o=anL

path e S to oin N oimposec a nonstraint since its overall lenscti mhnet

ly large. The total numver of S io . paths can b cutremely

very and one is interssted only in increasim: the Lowg

feliawin,

re wnich are comparatively shert. One can therefore adopt i

solve

¥irst, determine all of ihe shortest .0 tc ¢ paths in H, and

"y

$ is one more than the

rrarming problerm whose numzer o

s whicn eppear irn at least one of these shortest pat and

- of constraints is one more than the number of patlis found,
In iriey, the solution Adztermines how to optimally allocate the hudret 1

~dses to maximize tre minimum lersth of tnis resiricted set of

I Lo g patns.

Zinec sne may have incronsed the length of each of these patis suf
cisnt tc :maxe them all longer than some other patnh in N, one mucgt iterate
the following step.

I. Azsuming B to 2e allocated over A(¥) as previously determine

and thus some of the arcs have been lengthened, fini the new
set of shortest 3 to ¢ paths, and assume each of tnem has length
L. Lev @ denote the collection of these paths along with all

of the paths found previously.
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11. Solve o linear procramin: provlen to dbeteemine Pos teoo

allocate the budoet Boaver the oo es 0 the padsr 142 o et

the minimun Lengi b oF opath In 90 Sl oomaer 07 es

maximis

ol P, and tie papter

atrainty will ne one mere than the

oAy o ares which uppear

variablens will oo Snee mere

in at least one path in o, Let L7 be fhe mindimear Joncth U
hoie 9 ounder {3is new al ernoaf e,
ar. ciently seally - .
renret ot T
u ooty

comparative edricieney

Pt e not all o the Lo s

“oare safficicntly fvien the

however, ~an be extremely largse in cowparison wit. wne

Assuming each arc in network N, in Figure & is directed Trom

ri; sl and they have the same lengti., L, then there are b,

(. patns of lengti -.L. The firct linear prorram to be run in Jacoisen's

al.orithm would therefore involve 73 variables and 4,097 constraints. .
seguen* linear programs in the algorithm would each be even laryer.

Tr: z2lternatc method described in the next section will run in

shortess patic (ar in

sinsle step and will not involve any compitaticn

e {sparse’

Zart I of cach step of Jacchbsen's alporithmi. A i

pre,srazmin: problem will be solved, The namper of constraints will e cre

more tharn the number of arcs, and the number cf variatles will equal *h
numcer of arcs plus the numler of vertices minus one, For network N. in

Figure 2, one tius has a single problem with 96 variables and only 75

constraints.
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Figure . A network with 4,006 8 to & shortest paths.

oL The Alternate View
The method previously described assumes a fixed budget ¥ and providec

far optirally allocating this meney over the arcs cf a network U

sa a8 to maximize the length of the shortest path in N frem nede O te node

G. An alternate view is to assume a time T for which no ° teo & path in N

~

will have lensth less than T. That is, for a chosen time value T one zsks

For the minimum value of 2 whose investment in inereasing the lenrtrs of

the arcs of ¥ can ma.- ire reach time of the otject ncde G at ieast as

Ccnsider, as an example, the network N3 in Figure 3 with source

S = 1 and object node § = 5 , The shortest path from 1 to 5 has
lergth seven (that is, r5 = 7). The starting reach velues are
ry - G, v, o= 2, r3 =2, r, =3 and rg = 7. How much, 3, must one invest

to increase r5 to T = 187

Since di represents the distance by which the ith arc will be increased,
and o4 represents the cost to increase di by one, the total cost is
cldl + c2d2 + c3d3 +oopdy + c5d5 + c6d6 + c7d7, and this should be mini-

mized subject to ro 2 18,
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2 4 4
L |
2 4
3
5:=1 b5=@
2 3 v

arc 11213 | 4151617
tail 1 V12213134
head 213344515
length 4, 2{2|3]al1 |94
unit cost ey 5(6(41{2(3(8(3
distance increased d; dy jd,[dy d, 'd5 d,|d;

Figure 3. Network N3 with desired reach time T - 12,

et ne consider the relationships amons the final reach values v,

o5 Too Ty wnd .. One must have Ty = 0 and 3 = 18, Furtherrorc, for
example, we can consider arc ag = (4,5) whose truvel time will e

1,{, + ‘1,7 = b+ d7. This implies that rL‘) £+ b :'T' by considerir. ar-
gy = (2,51 one sees that 1‘55 r‘a + 0. r."éA In generai, Jor zvc a.

(ui, vi‘ one will have Tv, < rul - Li ¢ "1 The partizular o

considered can thus te solved by the solution to

prosram. (Note again that T = G.;

* 305 ¢ 84

Minimize Sdl + 6(12 + 1+d3 + Zdh

+ ’Jr2 + Or3 + Oru + Or5



subject to r5 > 18
dl +0 - r, 2 -2
d2 + 0 - r3 = -2
d3 + r2 - r3 > -3
4 tr, -T2 -4
d5 + r3 -T2 -1

v
e

where d, =0, T

Sometimes it is more convenient to solve the dual -f the linear pro-
gramning provlem, In general, for the dual problem the numcter of constraints
will equal the number of arcs plus the number of vertices minus ore, and the
number of variebles will be one more than the number of arcs. The egquivalexnt

duzl maximization protlem for the precerding problem is the following,

Maximize 18x, - 2x, - 2x3 - 3, - hxs - Xg - W, - hxa

1A
!

cucject to X,

»
A IA
M ™

»
A
™ W




Wnere X, >0

3Tl

Tre solutior has @ = (dlidg’d3’jh’d5’db 7

3755

(N,T,0,0, 5,0,5,5,9,10,18) and P or (X, X, %0,X, Ko Xy X, X ) =
IR A A

~,1,3,3), and the value determined is B = 7k,

-the of ares (1,90 and (4,5) by four and of {1,3) by seves. I:

to (+ path now has length 18,

In gererzl, assure one has network N with node set V(N = '1,7,¢--,@)

and arc set [a,,a,,**‘,a : with a, = {u,,v.}. The original arc le N
172 q- i i’'1
11,42,-<~ the unit costs for each arc, C15Cps " " 7,C,, Are Anowm, and

T is chosen. The problem ta be solved is the following {whers r_ =" fer

source § = n, and K is the objective).

Minimize Cldl + °2d9 §oeee =
+ Orl F e+ Orp
sabject to rk =21
-y > -k
dl ! T v, "1
- -2
d2 + Tu? L.,
d roo- z-2
a Ty q
where 4, = Q, r.z0 .,
i i

The sparseness nf the problem is demonstrated by the fact that each counstraint

involves at most three variables,



As a final exgmple, consider the network N, in Fiuure L which is taken

from [6 and modified so that there is only a single obfective node.

linear programming problem corresponding to N,q is the fallowins~, where

Ty = O since 3 = 1,
N4
?=6
6
s=1
4
Are 1{z J'lrs sir[afofw|n]nalalufis]is ]
iftj2f2l2{3|3t4f4f5(5{77(86(7] 8138
2j3 |3 |4fsj4|s5)516|le|l7|a;6(8[BF O |9
Length 4 8141317141019 1917|124](4}8 12141 1
Unit cost cj 324|231 15(3}8B}6 71 4|33 |ooodicoss
Distence incremsed 4, dy |y [dy |dy |ds |dy [ d; [dg [do ditdy 412 d)4]d1 9| 416 4,
Node 1f2]3te]slsl7 8]
Original reach tize Djsi4f7{0jM{tafials
Finel. reach time 44
Figure L. Network N, with desired reach time r_ = T = Lb,
[ Cen ) s N N - s N s
Minimize 3d1 + 2d, + 463 + ‘dL- + 305 T dg ¥ 33, + 3 5 + oq9
+ + 3 + 7 + hg + 3., + 10 3
édlo 3d, 4y, lidya + 3dy, v 3dp. + 10,0008,
+ e
+ :LO,OOOdl7 O(r2 + + rg)
subject teo r =L
9
+ - = -
a, o) T, 6
[ - >l
d2 + 0 ry 2 +
4, +r,-r, =>-3



4 o +
d Fr, e, >t
5 o c
d. +r - -2
€ 3 8 4
d, + r, - r. 2=
- 3 5 =
g * 7y, - r‘) >~ 93
dr} TrL - 2 7
B + - - 12
llry r5 A7
a 4 - >-1L
5 r5 r, 2
AR ST
- > -t

15 o "
d oo -
 TARRT Ty = 1
+ - > -
dJ.? Ta T Z
where L2 0, r. it .
i i

vations

Obvisusly either spproach can be used to ootain an (approximate’
answer far the other gquestion ty running a cequence »f Trotlsms. Tror
example, assume one has a fixed budget E* and wantc to marimize the mini-
mum S to  travel time T* in N by using the apprcach deserized i-. Section
2. One could run a sequence of problems with times Tl’ T?, -+-, and

*
obtain answers P’l’ B2, ees . IF Bi < B one makes a2 appropriate chcice

X
of T, with T, > T.; if B, > B one makes an appropriate cheice of
fil itl it i PProx =
: s * N
T, with T, < T,. Clearly one can approximate T as closely as cre
i+l i-1 i -
desires.



An ac- antage to using the approach described in Section 2 is that
only a single (sparse) linear programming problem need be solved, the
size of which will often be smaller than the problem in each step of the
algorithm described in Section 1. Since one knows the number of vertices
and the number of arcs, the size of the linear programming problem to be
run is known. It will often be difficult or impossible to determine
beforehand how large the lineer programming problems in Jacobsen's
algorithr will grow to be.

Even when the size of the network (number of nodes and number of
arcs) is large, one may well be able to take advantage of the sparse
natu-e of the proposed solution problem. Note that each constraint

invo.ves a% most three variables, one di and two rj's,
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