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Abstract

Measurements of the Angle-Resolved Photoemission Extended Fine
Structure (ARPEFS) from the S(1s) core level of c(2X2)S/Ni(001) are
analyzed to determine the spacing between the S overlayer and the
first and second Ni layers. ARPEFS is a type of photoelectron
diffraction measurement in which the photoelectron kinetic energy is
swept typically from 100 to 600 eV. By using this wide range of
intermediate energies we add high precision and theoretical
simplification to the advantages of the photoelectron diffraction
technique for determining surface structures. We report developments
in the thecry of photoelectron scattering in the intermediate energy
range, measurement of the experimental photoemission spectra, their
reduction to ARPFES, and the surface structure determinaticn from the
ARPFES by combined Fourier and multiple-scattering analiyses.

Curved-wavefront corrections to the single scattering of =1
spherical waves are derived by applying lifting operators to the
addition theorem for £=0 waves; the resulting formulation facilitates
approximate calculation and physical interpretation because it
contains a dominant term plus curved-wave corrections appearing as
derivatives of the dominant term. A new addition theorem for
translating spherical waves, izhl(kr)Ylm(;). follows from a Taylor
series expansion of the Fourjer transform of these waves; the formula

may also be interpreted as approximation of a rotation-translation-



rotation sequence in which the magnetic quantum number expansion
(MQNE) is truncated. This Taylor series - MQNE theorem is applied to
the multiple scattering of photoelectrons in the context of a general
discussion of small-atom approximations to electron scattering from
non-overlapping potentials. We demonstrate that curved-wave
corrections are large for forward scattering angles in the
intermediate energy range even when the corrections for backscattering
may be neglected; the Taylor series - MQNE allows stepwise addition of
these corrections. Incorporating the new multiple-scattering method,
we re—examine the theory of photoelectron scattering in the
intermediate energy range arriving at a model which includes selected
multiple scattering events, curved-wave corrections, analytic aperture
integration, anisotropic thermal averaging within a correlated Debye
model, and an isotropic mean free path inelasic damping; we
demonstrate that electron refraction and dynamic screening do noct
affect ARPEFS for metallic systems. We show by example that curved-
wave forward focusing is a fundamental physical effect in
photoelectron diffraction: neither single-scattering nor plane-wave
treatments are adequate for ARPEFS.

Techniques for Fourier analysis of experimental ARPEFS spectra
are explored with general guidelines for taper weighting function
selection and adaptation of autoregressive linear prediction methods

for Fourier analysis being reported. These Fourier techniques are
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CHAPTER 1:

INTRODUCTION

This thesis de.c¢ribes the development of a rew approach to
determining the atomic geometry of surfaces. The method is based on the
analysis of electron kinetic energy dependent oscillations in the
partial cross section for core-level photoemission. The partial cross-
section oscillations .re observed with an angle-resolving photoelectron
spectrometer; the oscillations are superimposed upon an atomic-like
background and extend over the energy range from 50-1000 eV. Hence the
title of this work: Angle-Resolved Photoemission Extznded Fine Structure
(ARPEFS). The acronym ARPEFS describes both the measured oscillations
themselves and their use to determine surface structures. This thesis
will discuss a theory which quantitatively predicts the ARPEFS, and
experimental measurements of S(1s) ARPEFS from 2(2x2)S/Ni(100). The
result is a structure determination for the well-known c(2x2)S/Ni(100)
system by a new technique, a technique which has some unique
qualifications as a tool for more sophisticated surface systems.

The remainder of this introduction is divided into three parts. 1In
the first part--for the non-specialist--I will try to place this work
within the whole body of chemistry and physices. The work of graduate
students 1is necessarily obscure in detail and, to someone unfamiliar
Wwith the fields of surface structure determination or photoemission
spectroscopy, this thesis solves an unfamiliar and thus uninteresting
problem. The goal of the first part of this introduction is to outline
the scientific interest in research like that reported here. 1In the

second part--for the specialist--I will review previous work on partial



cross-gsection oscillations similar to what is called ARPEFS here. The
third part of the introduction contains an informal tour through the
remaining chapters as a guide to those interested in only a particular

aspect of this work.

I. INTRODUCTION FOR THE NON-SPECIALIST

The research reported here is a small contribution toward the
eventual understanding of chemistry on surf'aces. Chemistry can occur
when gases, liquid, or solid chemicals are mixed. When both
constituents in a chemical reaction are in the same state--say Hz(g) and
02(3)-—and freely mix, then the reaction is called homogeneous. Almost
all of classical chemistry is concerned with homogeneous chemistry,
partly because-every molecule in such a reaction is equivalent: the
mechanism of the chemical reaction can, in principle, be deduced by
studying the individual reactants without regard to their position in
space. The mechanism itself may require two molecules to meet along a
particular axis, but any arrangement of two molecules will occur
frequently when a large number of free molecules are mixed.

When the constituents in a reaction are in different phases--say
the reduction of H20 at an electrode--the reaction is called
heterogeneous. Surface chemistry is concerned with understanding
heterogeneous chemistry, in large part, because the chemistry which can
Occur at the interface between two phases is so much different than that
characteristic of a homogeneous reaction. Two of the most interesting
differences are the constraints placed on the chemical reaction by the

geometry of the interface, and the new dimension afforded by the

"passive" participation of the bulk in a reaction occurring at an
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interface. When a moleculz Adsorbs to a solid surface, it is no longer
free to reorient, and simultaneously its internal bond strengths are
changed. Such a molecule can be much closer to the transition state for
a reaction which would not occur without the surface. IJr one part of
the molecule may preferentially attach to a surface, placing adjacent
parts in close proximity to the surface; the reactivity of the parts
near the surface could be increased or decreased leading to selective
reactions. These are differences in chemistry which have direct
analogues in homogeneous chemistry, but when the passive role of the
interface is considered, very different chemistry can occur. The
surface of a metal can (perhaps) serve as a reservoir for electrons or
bonding orbitals, mediating a chemical reaction at a surface
€lectronically in a manner similar to the thermal mediation provided by
solvents in solution chemistry. A semiconductor, on the other hand, may
mediate a photochemical reaction, absorbing the light energy and
presenting it to a reactant molecule on the surface a: a new, high,
energy electronic state.

Surfaces are difficult tc study for the same reasons that they are
interesting. Foremost among the problems is che small ratio of surface
atoms to bulk atoms: any physical measurement which is not
preferentially sensitive to surfaces will have great difficulty
examining only surface properties as distinet from bulk properties.
Similarly it is sometimes difficult to distinguish if chemical reactions
run for the purpose of studying a surface are characteristic of that
surface or incidental surfaces or different, uninteresting sites on the
Same surface. Two approaches to this problem may be distinguished. 1In

the first, chemical systems are devised which have a high ratio of



surface area to volume, and techniques for studying bulk materials are
then applied. This approach has been especially fruitful for some
special materials (e.g. exfoliated graphite) and for studying catalytic
reactions which anyway occur on highly dispersed small particles. In
the second approach, idealized, tightly controlled chemical systems are
studied by techniques specifically chosen for their sensitivity to the
surface region. This second approach provides a closer contact to
idealized models of surface properties and allows a more detailed and
elementary view of the surface chemical reaction. Furthermore, most of
the idealized systems are solid single crystals providing an important
and fruitful overlap with the results of solid state physics.

The work reported in this thesis falls in the second group and
concerns new physical techniques for studying the surfaces of solid
single crystals. It addresses perhaps the most fundamental question
about an ideal surface: what is the arrangement of the atoms in the
surface region of the crystal?. It achieves sensitivity to the surface
by measuring electrons ejected into vacuum outside the ecrystal. This
brings us to the ARPEFS measurement itself.

Briefly, our experiment consists of the following. To be specific
we will describe the ARPEFS measurements of c(2x2)S/Ni(100) analyzed
here, but the same methods should apply to a variety of surface systems.
We begin with a single crystal of Ni which is cut and polished into a
disk ~1/4" in diameter and 1/16" thick with its surface parallel to the
(001) crystal plane of Ni. This crystal is mounted on a goniometer
capable of rotating the crystal about two perpendicular axes through the
polished surface and capable of heating the crystal to 1100°C. The

goniometer is mounted inside a stainless steel vacuum chamber equipped



Wwith an electron energy analyzer. The chamber is evacuated, and the
crystal surface is cleaned until only Ni atoms can be detected. The
crystal is then heated to heal any damage in the polished surface
yielding a surface which has--on the atomic scale--large regions of
ordered, crystalline, flat Ni(001) planes. This prepared crystal is
then exposed to HZS gas which decomposes to give an ordered, crystalline
overlayer of sulfur atoms on top of tne Ni planes. This is the surface
whose structure we wish to determine.

The crystal is lowered into a soft x-ray beam, and the electron
analyzer is adjusted to collect only those electrons emitted from the
crystal in a particular direction and coming from photoexcitation of the
sulfur (1s) orbital. The number of those electrons is recorded, and the
energy of the soft x-rays--and of the electron analyzer--is increased.
As the experiment proceeds, the number of electrons counted oscillates
as the electron kinetic energy is increased: this is the angle-resolved
photoemission extended fine structure (ARPEFS).

The physical explanation for the oscillations in photoemission
intensity is similar to the more familiar description of x-ray
diffraction. Both the ARPEFS oscillations and the x-ray diffraction
spots are caused by interference between two (or more) waves which were
at one point in phase but which have traveled different distances before
arriving at the detector. If the difference in distance is an integral
number of wavelengths—-x-ray wavelength for diffraction or de Broglie
wavelengths for electrons--then the waves will again be in phase at the
detector, and an x-ray spot or ARPEFS peak will be observed. If the
difference in distance is not an integral number of wavelengths, the

interference will not be purely constructive, and a lower intensity will



be observed. The reason that both methods are useful for structure
determination is that both x—-rays and electrons are directed into the
detector by scattering from atomic cores. Thus the difference between
two waves in distance traveled is directly related to the difference in
distancz between the atoms.

There are equally important dissimilarities between x-ray
diffraction and ARPEFS. Foremost is the strength of the interaction
between an electron and the atoms of a crystal compared to the
interaction between x-rays and those atoms. Electrons scatter very
Strongly and are absorbed by the c¢rystal very readily so that only a few
atomic layers are required to give a signal, and only a few atomic
layers are close enough to the surface to contribute to the signal.
X-rays scatter very weakly and are rarely absorbed so that many atomic
layers contribute to the x-ray diffraction. Thus whiie x-rays
characterize the bulk, electrons characterize the surface region.

The ARPEFS physics and x-ray physics also differ in the reference
point for the wave before it scatters into the detector. In x-ray
diffraction, a collimated beam of x-rays is directed at the crystal
sample: a plane perpendicular to the beam direction is the reference for
scattering phase in x-ray diffraction. In ARPEFS, the reference point
is the photoemitting S atom, and the interference occurs primarily
between the wave which travels directly from this S atom to the detector
and waves which scatter off nearby atom cores. Thus wihile x-ray
diffraction provides a signal characteristic of th entire crystalline
array illuminated by the beam, ARPEFS only contairs information about

the local geometry about the S atom.



The distinction between local and extended information is quite
important since the strong interaction that electrons have with the
crystal must be understocd in order to extract geometry information from
the measurements. There is a more direct analogy %o x-r-ay diffraction
which is based on electrons--Low Energy Electron Dirfract.on--where a
beam of electrons is sent into the crystal in place of x-rays. However
Low Energy Electron Diffraction must attempt to extract the extended
crystal information in the face of the electrons' strong interaction, a
very difficult task. By concentrating on the information concerning the
single emitting atom, ARPEFS has an easier job of extracting the
geometry.

Armed with the‘experimental measurements and the physical basis we
can proceed to develop a theory which connects the atomic geometries to
the oscillations and use it to devise some scheme for using experimental
oscillations to discover the atomic geometry. That is the contert of

the following chapters.

II. FOR THE SPECIALIST

This second introduction reviews the work which inspired the
investigation reported in the body of this thesis. The chapters
themselves review material for their specific topics, and we will
therefore cover only the larger plcture here.

The basic physical phenomenon being exploited here for structure
determination is the interference between the probability amplitude for
a8 photoemitted electron to travel directly from the ionized atom to the

detector and the probability amplitude for that electron to first




scatter off a nearby atom. This phenomenon has been called a "final-

1,

state interference effect" or photoelectron diffraction3 in previous
work. While the first term is accurate, it is not very specific; the
second term has come into wide spread use, and we must persist in its
use as a generic label for the phenomenon despite its implied,
misleading parallel to x-ray and low energy electron diffraction. We
have coined a new term,u Angle-Resolved Photoemission Extended Fine
Structure (ARPEFS) to highlight several distinctive features of our new
photoelectron diffraction technique. The name is entirely
phenomenological in that it refers only to the observed oscillations
rather t'iin their physical interpretation. We do, however, intend for
the ARPEFS to denote only those oscillations which have the same
character as the oscillations in the extended energy range. In other
words, there may be other final state interference effects particularly
at low energy which cannot be described in the same fashion as ARPEFS
and are not considered here.

The ARPEFS acronym does parallel Extended X-Ray Absorption Fine
Structure (EXAFS) which is also a photoelectron final-state interference
effect. The EXAFS oscillations cccur in the total x-ray absorption
cross section, and hence they are an integral of the ARPEFS oscillations
over all emission angle32 and overall final states excited at a
particular x-ray energy.5

The possibility of observing the diffraction of photoelectrons
originating from adsorbate atoms, and of deriving structural information
from this phenomenon, was suggested by A. Liebsch in 197’4.1 The effect
was reported independently by three groups in 1978.3'6'7 Normal

photoelectron diffraction, (NPD), in which the photoelectron intensity



was measured in the direction of the surface normal as a function of
electron wave number k, has been used to determine a number of adsorbate
geometries.a’9 In NPD the interference-modulated intensity, I(k), was
compared to curves predicted by a LEED-like "quasikinematic" theory
developed by S.Y. Tong and co-workers.10 The perpendicular distance dl
between the adsorbate overlayer and the substrate is the parameter to
which I(k) is most sensitive, and NPD results were usually expressed in
terms of dl.

The NPD approach to surface structure determination yielded
accurate structural parameters, but it suffered from two drawbacks.
First, it depended upon an implicit theoretical analysis, much like
LEED, albeit simpler. Second, it appeared to emphasize the single
parameter dl, rather than showing approximately equal sensitivity to
several structural parameters.

An apparently successful attempt11 was made to remedy the first
deficiency, by using Fourier-transformation analysis. Several peaks
appeared in the Fourier transform of theoretical curves at distances
near those predicted from interplanar spacings (in reality they actually
corresponded to path-length differences, as discussed later).

The second problem was addressed by studying of f-normal I(k) curves
collected in directions normal to low Miller index planes that were not
parallel to the crystal surface. The goal in these experiments was to
perform a complete structure determination by Fourier transforming I(k)
data taken in several directions, thereby obtaining dl values relative
to several planes, 1Initial attempts along these lines failed to yield
any new structural inf‘ormation.12 but more recent experimentsu using

sulfur-1s photoelectrons have succeeded beyond all expectations, leading
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to a new method for adsorbate structure determinations: angle-resolved
photoemission extended fine structure (ARPEFS).

There are three major differences between NPD and ARPEFS. First,
NPD concentrates on low kinetic energy photoelectrons, 30-150 eV, while
ARPEFS works in the range 100-500 eV. 1In the lower range, NPD gains
from the high photoemission cross section near threshold, but it suffers
because the electron scattering is more isotropic and more sensitive to
non-atomic details in the scattering potential. Although ARPEFS is more
difficult to measure, it can be analyzed with simpler theory. The
second difference between these diffraction methods is the energy range.
For NPD, a large energy range is only modestly valuable in improving the
confidence of structure assignment. For ARPEFS, the range must be as
large as possible to give high-resolution Fourier transforms. The third
difference is abvious: the emission angle in ARPEFS is not necessarily
selected to be normal. Normal emission can be a valuable choice for
many surface geometries, but typically it should be only one of several
directions measured.

In the course of this research, we have learned a great deal about
the nature of the electron scattering physics which leads to the ARPEFS
oscillations. To be cenfident of surface structure analysis with ARPEFS
we must have a thorough understanding of the electron scattering. There
is no large body of accurately known structures for adsorbate systems
which we might use to calibrate an empirical model for ARPEFS; there is
no analog to ARPEFS in the bulk of a material where known x-ray
diff.~action structures to be used for this calibration. Thus it seems
that ue must understand the electron scattering problem fundamentally.

Thus a large fraction of this thesis is directed toward a deeper
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understanding of electron scattering in solids in the intermediate
energy range. The detail of these chapters on theory must not obscure
the underlying simplicity of the ARPEFS oscillations themselves. Our
goal for ARPEFS is a surface technique capable of unambiguous, high
accuracy (+ 0.02A) structure determination, and this will require both
high precision experimental measurements and practical, high accuracy
theoretical models. The final steps toward a highly accurate theory are
the most painful ones, and this level of refinement is unnecessary for
the design of experiments to measure ARPEFS. Thus we will review the
single-scattering theory of ARFEFS of the basic phenomenon can be most
simply grasped in this way.

Photoelectron diffraction is caused by the interference between
direct photoelectron waves and waves which have scattered from ion cores
surrounding the photoemitter. A simple treatment for the direct and
scattered waves predicts the important physical effects. Fig. 1
illustrates the scattering geometry. We set our origin at the
photoemitter and label each scattering center by an index "j". The bond
vector ;j runs from the emitter to the scatterer; its length, rj = |;.|,

J
is the bond length. The photon polarization unit vector, e, makes an

~

angle Bj with the bond vector:

(1)

The scattering angle, Bj' is defined as the angle between the bond

vector and the direction to the detector ﬁ,
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Oj = QoS v_J . (2)

Figure 2 gives a schematic view of the scattering.

In our analyzer we measure a continuum wavefunction intensity w;wf.
This wave function contains contributions from a direct photoelectron
wave, wo' and a photoelectron wave scattered into the detector, wj:

bp = ¥ * LW (3)

j J

The direct wave for a 1s core level is a spherical p (%=1) wave:
ikr

e
T (4)

wo = M(k) cos Y

Here the matrix element for photcemission, M(K), serves as an
uninteresting scale factor, while Y measures the angle between the
observation direction and the photon polarization direction.

This same wave also propagates into the substrate. Electrons with
kinetic energies in the range 50-1000 eV scatter primarily from the
highly localized ion core region. Thus a scattered wave appears to

-
emanate from the position of the substrate atom at rj:

v, - =——— . (5)
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The scattered wave must be proportional to the amplitude of the original

phctoelectron wave in the region of the ion core. This amplitude is

ikr,
> e
wo(rj) = M(k) cos Bj krj (6)

where Bj is the angle between direction ;J and the polarization vector
-+

and r. = |r_|.

J J

The outgoing scattered wave is also proportional to the scattering
power klf(ej,k)l of the ion core for the scattering angle, ej, between
the original propagation direction and the detector direction. The
scattered wave is shifted in phase by a small amocunt ¢j by the potential

of the ion core, giving finally

1(kr, +4,) ik|r-r, |
(k) cos 8, &t klf(e,)] = : (7)
Y, = M —————— —_
J J KL 5 J k]r-rj\

Near our detector the difference between a spherical wave at the
origin and a spherical wave at ;J appears only as a phase shift equal to
- rJ cos BJ. (We can derive this by expanding the shifted spherical

wave or by examining Fig. 2). Therefore we write the scattered wave at

the detector (position R) as

if(ej)| ik(ry=ry cos 8,)+¢, eikR
wJ = M(k) cos BJ —e T (8)

J
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Now we calculate, to first order, the ratio of the interference

term to the direct term:

X = T = * (9)

* *
. wowj + ijo .

) % (10)
I v,

The direct term is simply:

Yo = M¥(K)M(K) cos®y (1)
wowo = 2.2 °

k"R

and the cross terms are

eik(rj-rj cos ej)+¢j If(“j)l

2Re{M(k)M*(k)cos Y cos B8, 1 (i2)
J

rJ k2R2

The cross section and 1/R2 dependence are lost when the ratio is found:

cos B |fej)|
x(k) = 2} =7 cos[k(r'j--rJ cos ej) + ¢j]. (13)

J J

This is the single-scattering ARPEFS formula for 1s photoemission. We
Will refer to the frequency of the entire argument of the cosine as the

scattering path-length difference and to (r —rj cos ej) as the

J
geometrical path-length difference.
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The general features of ARPEFS follows from tliis rormuia if we add

that

i)

ii)

iii)

iv)

If(ej)l is peaked in the forward (8, ~ 0) and backward

J
(ej -~ 180°) dir‘ections,13 (see figure 2),

the phase ¢J is usually rearly constant as a funection of k
with its linear component typically less than 10% of the
geometrical path-length difference (r-J--r'J Qos ej),

multiple scatterings are mostly forward focusing, giving
changes in amplitude and phase of the cosine but not in the
geometrically important frequency.1u and

exceptions to the usual behavior are due to properties of the
scattering ion cores predictable in advance by studying the

atomic ion core scattering amplitudes.15

The important consequences of the basic model are that

i)

ii)

iii)

iv)

v)

atoms in the photoemission final state nodal plane will not
produce ARPEFS oscillations, (see figure 2),

backscattering atoms give large oscillations,

the oscillation amplitude decays with the inverse of the bond
length,

the oscillation frequency varies with scattering angle from a
maximum of twice the bond length to, in principle, a zero
frequency "oscillation" equivalent to forward focusing, and
the scattering phase must be Inown with moderate accuracy to
connect the cosine frequency to the geometrical path-length

difference.

The most straightforward way to take maximum advantage of this

model would be to arrange the experimental geometry to maximize
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backscattering by positioning the angle-resolving electron analyzer
opening and photon polarization vector in parallel and rotate the
crystal to place substrate atoms behind the photoemitting adsorbate from
the analyzer. To maximize the simplicity of the curves and the size of
the ARPEFS, it is also advantageous to select a high symmetry emission
direction if possible. These guidelines were followed for the
exparimental study of c(2x2)S/Ni(001) described in this thesis with one
experimental geometry (normal emission) highlighting a second layer Ni
backscattering atom and having four-fold symmetry while the other
experimental geometry ([110] emission) selects a first layer Ni near
neighbor and has two-fold symmetry. A truly unknown system would
require a preliminary ARPEFS measurement before the most appropriate
geometry can be selected, and a low symmetry adsorption site may not
favor particular emission direction choices, but the challenge of
selecting the emission and polarization vector positions expresses the
rich variety of experimental conditions éﬁailable in the ARPEFS
technique.
III. OUTLINE

This thesis is organized into nine chapters counting this
introduction (Chapter 1) and the conclusion (Chapter 9). Each of the
main chapters is self-contained in having its own specific introduction,
central topic, and conclusion. When appropriate each chapter refers to
the others, but the remainder of this overall introduction will be
devoted to a more explicit description of their connections.

Chapters 2, 3, and 4 discuss aspects of the theory of wave
scattering from potentials. Chapter 5 uses the results of the preceding

chapters and some simple physical models of solids to construct a
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quantitative theory of ARPEFS. Chapter 6 explores the application of
modern methods for frequency analysis for the purpose of directly
displaying the scattering path-length differences by processing the data
without intervening theory. The measurement of the angle-resolved
photoemission spectra, the reduction of these spectra to ARPEFS curves,
and the analysis of the oscillations with the methods of the preceding
chapters are covered in Chapter 7. Chapter 8 is devoted to a discussion
by an unusual and interesting electron-scattering partial cross-section
resonance observed in the normal emission ARPEFS from c¢(2x2)S/Ni(001).
Finally in Chapter 9, general conclusions are drawn primarily concerning
the direction of future work.

Chapter 2 and Chapters 3 and U4 provide two separate but related
solutions to a paradoxical problem encountered at the outset of this
research. The problem is the physical description and numerical
calculation of electron scattering in solids; the paradox is that the
accuracy of very simple models of electron scattering improves as the
energy increases in the intermediate energy range, but the calculation
of electron scattering with more sophisticated models becomes increasing
difficult. It would seem that some model must exist which lies between
these extremes, providing accurate results over the whole range but
becoming less expensive at the higher energy. Pursuing such a model led
in two directions. Briefly, the simplest model for electron scattering
in a solid treats the electron probability amplitude as a plane-wave in
the region of each ion core, but in the 2ase of photoemission and
multiple scattering, the actual waves come from a point source and thus
are curved in the region of the ion core. Methods for incorporating the

curved-wavefront effect exist, but they are too complex for use in the
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intermediate energy range. Chapter 2 develops a step~wise method for
incorporating curved-wave corrections by starting with the basic
isotropic curved wave and applying derivative 1lifting operators. The
three dimensional derivatives required by these lifting operations are
cumbersome, so0 in Chapter 3 a series expansion employing rotation
matrices is derived. 1Insight from Chapters 2 and 3 are reformulated in
Chapter U4 to give a reasonably general discussion of wavefront curvature
models and to apply the expansion from Chapter 3 to multiple scattering
of photoelectrons.

Chapter 5 incorporates the multiple-scattering equations from
Chapter U4 into a framework for numerical simulation of the ARPEFS
measurements including a discussion of the photoabsorption, transport of
the photoelectron through the surface, thermal averaging, and aperture
integration. The results are compared to the experimental curves as a
progress check. This chapter would be a natural starting point for the
experimentalist; the theorist may also wish to refer to Chapters 2
through 4 only after the significance of the curved-wave multiple
scattering is evident. Furthermore the content of Chapter 5 is somewhat
more provocative in that several interesating theoretical and
experimental questions are posed by our re—-examination of electron
scattering in the intermediate energy range.

Chapter 6 is a slight detour in preparation for the data analysis
in Chapter 7. The cosine form for the ARPEFS oscillations suggests that
one might Fourier analyze the experimental curves and observe peaks in
the transform at the scattering path-length differences. Since the
scattering path-length difference is dominated by the geometrical path

length, such a Fourier analysis would provide a direct image of the
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surface structure information content of the ARPEFS measurement.
Unfortunately, the practical energy range of the ARPEFS measurement
limits the resolution of the Fourier spectrum so that individual Fourier
peaks may correspond to more than one scattering atom. This is a well-
Known problem of truncated Fourier series, and currently much active
research in the digital signal processing field is devoted to improving
the resolution of Fourier spectra for well behaved signals. Chapter 6
applies some of the most recently developed methods of frequency
analysis to the problem of extracting path-length differences from
ARPEFS, but the results are only partially satisfying because in fact
the ARPEFS signal is not always well behaved. The difficulty may be
traced to the functional dependence of the factors in front of the
cosine in the ARPEFS formula: if these factors combine to give an
envelope whose Fourier transform is not sharply peaked and symmetric,
then the Fourier transform of the ARPEFS curve will not peak at the
path-length difference. Nevertheless, frequency analysis is an
important qualitative tool for ARPEFS analysis, and Chapter 6 provides a
connection to a rapidly evolving field which might ultimately allow a
direct analysis procedure to be developed.

Experimental measurements of the S(1s) ARPEFS from c(2x2)S/Ni(001)
and their reduction to a surface structure determination are described
in Chapter 7. Both the Fourier analysis methods of Chapter 6 and least-
squares fits of the numerical simulation method proposed in Chapter 5
are applied to deduce the (known) S-Ni bond length and to suggest that
the interlayer spacing between the first and second Ni layers is
expanded from its bulk value by -3%. Sources of error for the complete

procedure are discussed.
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Chapter 7 concentrates on features of the Fourier spectrum which do
peak near scattering path-length differences. Chapter 8 reports the
observation of an elecftron scattering partial cross-section resonance.
The strong amplitude dependences which accompany this resonance
modulate the ARPEFS oscillations and split the corresponding Fourier
peak. The structure information can be extracted nevertheless, and the
resulting S-Ni bond length is in agreement with that derived in Chapter
7.

Finally, Chapter 9 concludes with a look to the future.. For every
question resolved in this thesis, two or more are posed by the solution.
While the power and experimentally feasible precisibn of ARPEFS as a
technique for surface structure determination are evident from previous
studies of photoelectron diffraction combined with our new understanding
of the advantages of the intermediate energy range, practical
measurements with high accuracy require further work. The conclusion in

Chapter 9 speculates on the directions that this future work might take.
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FIGURE CAPTIONS

Figure 1

Figure 2.

Cross-sectional view of a fcc crystal (001) surface showing
the experimental geometry and illustrating the parameters of
the scattering formula. The angle-recsolving detector lies
along the vector labeled e ([011] direction in this example),
the photon polarization vector is ;. The angle between these
two vectors is Y. The vector from the emitter to a scattering
atom j makes an angle B8

1 with the polarization vector and an

angle 6, with the emission direction.

J
Illustration of the scattering process. 71r2 direct wave has
an angular distribution dependent upon the ‘uitial state (1s)
and the photon polarization vector, ;. The scattering from
each atomic center depends upon its scattering angle ej‘ The
scattering amplitude calculated for 300 eV is shown

superimposed on the scattering atom. This amplitude is

'strongly peaked in the forward and backward directions. The

geometrical path-length difference is also illustrated.
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CHAPTER 2:

CURVED WAVEFRONT CORRECTIONS FOR PHOTOELECTRON SCATTERING

ABSTRACT

We derive new, simplified formulas for the scattering of =1
spherical waves from central potentials, as a basis for discussing
curved wavefront corrections to single-scattering plane-wave models for
Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and
Extended X-ray Absorption Fine Structure (EXAFS). A differential form
for the expansion of the screened spherical wave replaces the usual
Gaunt integral form to facilitate the summation over equivalent magnetic
sublevels in the scattered wave. Spherical wave scattering factors are
defined and interpreted as corrections to the plane--zve scattering
factor. We argue and demonstrate by example that the remarkable success
of plane-wave models does not result from reaching the spherical wave
asymptotic limit; instead successive partial wave corrections cancel for
backscattering at high energy. The new scattering formulas allow
curved-wavefront numerical calculations to be performed with little more

effort than plane-wave formulas.
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I. INTRODUCTION

Understanding the motion of unbound electrons in solids is an
interesting problem with important implications for surface structure
determination methods based on electron scattering. The energy range
from 20-200 eV has been studied extensively as a basis for the analysis

1-3

of Low Energy Electron Diffraction (LEED) data; more recent work in
the energy range 20-1000 eV has been inspired by the explosive growth in
the number of Extended X-ray Absorption Fine Structure (EXAFS)
measurements.u In the case of LEED, the incident electron plane wave is
simply described, but it excites every atom in the surface region,
leading to a complex scattering problem; in the case of EXAFS only a
single chemical element is excited by the x-ray beam, but the entire x-
ray absorption process must be understood and the observed modulations
correspond to a special multiple scattering event.5 Thus we suggest
that an even more recernt technique,6 Angle-Reaclved Photoemission
Extended Fine Structure (ARPEFS) may be a more straightforward
measurement for further understanding of electron scattering in the 50-
1000 eV range. ARPEFS measures partial cross—section oscillations of
photollectrons:; only electrons from a single chemical element are
measured and a 4w angular integration is not necessary. This paper
investigates one aspect of the theory of electron scattering in solids,
the role of curved wave corrections to the plane-wave single-scattering
of (1s) photoelectrons.

A more practical motivation for this work is the interesting
discrepancy between ARPEFS measurements and simple scattering theory
results for the c(2x2)S/Ni(100) system. Experimentally, a relatively

simple Fourier transform spectrum led to the conclusion that only
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nearest neighbor and backscattering non-neighboring atoms contributed
substantially to the observed spectrum.6 In other words, the number of
important scattering atoms was small, permitting a simple interpretation
of the Fourier spectrum. This conclusion has been recently challenged
by Bullock, Fadley, and Orders7 on the basis of single-scattering,
plane-wave theoretical calculations. They demonstrated that a great
many ion-cores should contribute to the theoretical curve under these
and certain other approximations and hence no simple assignment of the
Fourier peaks should be possible. Unfortunately, the reproduction of
the experimental oscillations by these theoretical calculations is very
poor, and we are lead to question the conclusions drawn from them.

To settle this issue, an improved theoretical calculation capable
of matching the measured curves within experimental accuracy seems in
order; if we know that the sum of the calculated scattering events is
correct, then we can compare the relative intensity of these events with
more confidence. The plane~-wave single-scattering calculations may be
improved by:

i) a more accurate atomic-like photoemission wavefunction

(unscattered, direct wave),

i1) curved wave corrections,

iii) multiple scattering,

iv) improved elastic scattering phase shifts, and
v) more accurate inelastic damping.

These improvements are somewhat entwined, but in this paper we will
concentrate on a single issue: when are curved wave (also called

spherical wave) corrections important?
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We will examine only the simplest case of spherical wave
scattering: single scattering of photoelectrons excited from a (13) core
level, We derive new formulas for this scattering in section 1II,
applicable to both ARPEFS and EXAFS experiments. These formulas
facilitate a qualitative discussion of curved wave corrections which
occupies section III. In section IV we evaluate individual terms in
these formulae for the example of a Ni atom potential. OQur discussion
in section V centers on possible generalizations to higher angular
momenta. Finally, we address the impact our results might have on

calculation of extended fine structure.

II. CURVED WAVE SCATTERING OF =1 PHOTOELECTRONS

Qur scattering system consists of a photoemitting atom and an array
of non-overlapping ion-core potentials. Zero—order calculation of the
photoemission partial cross-section would ignore the ion-core array and
only consider the atomic-like photoabsorption. Corrections caused by
scattering from the ion core potentials gives the ARPEFS oscillations.
Since we are only concerned with the oscillations, the details of zero-
order calculation are not relevant: we need only know the zero-order
wave function. With dipole selection rules, polarized light, a (1s)
core-level initial state, and complete metallic screening the zero-order

wave function is proportional to:
) ke)Y. (r) )
wo(r = ih1( r)Y, (r (1

Here hz(kr) is the spherical Hankel function of the first kind8 (we will

(1)
L

omit the usual superscript (1) as in h (kr) and we will not use
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spherical Hankel funetions of the second kind), Yzm(;) is the spherical
harmonic evaluated at the angles given by the unit vector, ;. in the
direction of ;, and k is the electron's wavenumber far from the
photoemitter. Notice that we have selected the polarization vector of
the light for our ; axis to simplify the zero-order wave function
description. The first-order corrections to this wave function are
generated by including scattered waves emanating from each nearby ion
core. The partial wave method9 for calculating these scattered waves
has three steps:
i) expand the incident wave as an angular momentum series
about the ion-core position,
i1) multiply each "partial wave" in this series by a (complex)
scattering amplitude (which also shifts the wave phase),
iii) sum the non-zero partial waves to give the full scattered
wave.

It is the first step which distinguishes plane wave from spherical wave

scattering.

A. PLANE WAVES

As a basis for our discussion of the curved wave effects we repeat
the derivation of the plane wave ARPEFS model first presented by Lee,5
but following more closely the method used by Lee and Pendr'y10 in their
derivation of the EXAFS formula.

In a plane wave approximation.5 the photoelectron wave is
represented near the scattering center by the value of the wave at the

center, times a plane wave:
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1/2 S
* ika-(r-a)
wo(r) = 1h1(kr) (ﬁ%) cos 8_,e (2)

where eea is the angle between the electric vector € and the bond vector
5. Since we have already ignored wavefront curvature with this

approximation, we replace the Hankel function by its asymptotic limit,

2 eika
i hz(ka) B 17y (3)

and apply the well-known Bauer formula,

+ ™
et T . ) (22+1)1IJ (kr)P_ (cos 8
220 L L

) )

to expand the photoelectron wave around the scattering center:

. 3 1/2 ika = %
Vo) = () cos 8 . —Ti= zzo (22+1)173 (k)P (cos 6, ,) (5)

Here Jl(kr) is the incoming spherical Bessel function, Pz (cos 8) is the
Legendre polynomial, and ;' = ; - ;. The scattering angle, ear" is
defined as the angle between the propagation vector for the incident
plane wave, k;, and the outgoing wave direction ;'.

To construct the scattered wave, we multiply each incoming partial

wave by

218 161

T,k) = Sle 1) =1sin 5, (6)
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where Gz(k) is the partial wave phase shift. Summing the new outgoing

wave gives

3 1/72 e1ka R'max .
w;(r') = (§2)  cos b, 3 g,Zo (22+1)T (K)i™hy (kr' )P (cos 8, ,)(T)

The sum of §{ may be stopped at zmax when all higher partial waves have
negligible amplitude, |T2(k)| ~0, &> % . At the angle resolved
detector, located along ﬁ, we may replace the outgoing spherical waves

by their asymptotic limit. Then a scattering factor is defined by

1 g'max
faR(k) - E-o (22+1)T2(k)Pl(cos eaR) (8)

to give the scattered wave at the detector as

> >
172 ik|rR-a| _ika
> 3 e e
w;(R) = (gg)  cos 8, /R = Tar (9)

+> >
The factor exp(ik|R-a|) corrects for the different origin of the

scattered wave and for |R| >> |a| we have |R-3| ~ |R| - |3| cos o.g°

The direct wave at the detector is

2 ikR

. 3 1/
“’O(R), - (H) cos eER “1kR (10)

and we calculate the ARPEFS oscillations due to a single atom as
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»*
(Yot ) (worw ) 2|f_ | cos e
w(k) = 0 *a 0 "a - aR
¥o¥o

€a
cos
a BeR

cos [ka(1-cos eaﬂ)+¢aR] (1)

where faR(k) = |faR] exp(i ¢aR)' This formula has been used to analyze

experimental ARPEFS data in ref. 6.

B. SPHERICAL WAVES
For spherical waves, the angular momentum expansion in its usual

form {8 much more complex:11

. - Am , -
ih (k)Y (r) = ) Gyogmgnl  dgn(kr"Y (rv) (12)

!'“m" !'"m"

where ;' + 5 - ;. This formula is the basis for Lee and Pendry's curved
wave EXAFS formula.10 To make physical arguments about the nature of
curved wave corrections to the plane wave formula, we need a simpler
form for this expansion, which we will refer to as an origin-shift
addition theorem.

An alternative expansion for spherical waves may be derived most
readily from Nozawa's original paper12 which describes expansions of
"Helmholtz's Solid Marmonics™, his term for the product of spherical
Bessel functions and spherical harmonics, which we will call "spherical

waves". Nozawa demonstrated that the origin-shift addition theorem

results when the raising operator for Helmholtz's Solid Harmonics,13
L m img  -1.™ 3 . 13" _(m),-1 3
i hl(kr)Pz(coa Ble - (F_) (3; + 3;) Pe (—E §E)h0(kr) (13)




34

is applied to the origin-shift addition theorem for ho(kr):

N - L
hy(kr) = lzo (28+1)17j o (kr*)i"h (ka)P (cos o__,

) (14)

Here Pém)(—ia/kaz) is the operator obtained by using (-i3/k3z) as the

argument of the mth derivative of the Legendre polynomial of order &. As
we shall see, this differential form for the expansion eliminates the
need for magnetic quantum numbers for the outgoing scattered wave and

leaves explicit the angle dependence hidden within Glml"m“ above.

For our particular case the raising operator formula is
ih, (kr)P (cos 8) = (- =2)n_(kr) (15)
1 1 k 92" 0

and the origin-shift addition theorem becomes‘u

ih, (kr)P (cos @) = )) (22+1)12"Jz“(kr')h0(ka)
=0

*{d1(ka)P1(cos eea)d )

lu(ka)Pz"(cos 9

ar'
3d, , (ka)
-i cos Gea ——3TEET— PQ"(COS Bar')

)
= (16)

(cos 8 pe—COS 8__cos @__,) BPzn(cos LI

d, . (ka)

-1 ka g a9(cos 8
ar

We have introduced dz"(ka) to represent the polynomial part of the

spherical Hankel function:
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ika

e
(ka) = ‘_ka [

g‘l

(ka) = hy (ka)d,,(ka) (n

!." 2.“

Note that for large ka >> 2"(g"+1), dE"(ka) = 1.0, and that dl(ka) may
be calculated by recursion: dl+1 = dz_1 - d1(21+1)/1ka.

As before, the scattered wave may be calculated by multiplying each
incoming partial wave amplitude by Tz(k) to generate an outgoing partial
wave; each outgoing wave may be replaced by its asymptotic limit when

>
the amplitude is calculated at the detector, position R.

We invent a generalized scattering factor based on our origin-shift

formula as
'3 n m
nm , max 9 dln(ka) ) Plu(cos 8.5’
far = Ik ) (22411, (K) = = (18)
L"=0 9(ka) o9{cos 8__)
aR
and the scattered wave is then
172 _ik|R-3|
-a
> 3 e (o]0]
w;(ﬂ) = (ﬁ?) 7R 3 (d (ka) cos © araR
-i cos © 80 .3 01[%39 -cos 8 _cos 8 __J1 (19)

€a " aR ka aR eR €a aR

If we label the factor within the braces Fopy * IF]exp(1¢SPH) we

parallel the plane wave construction of y(k) to find

I¥ sy

a cos 8
eR

x(k) = 2 cos[ka(1-cos eaR) + ¢SPH] (20)
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Clearly, F determines both the amplitude and phase of the

sph
oscillations we will measure. As ka becomes large, the factors f;g and
01 ' 00

faR(ka) fall to zero, dl(ka) becomes 1.0, f_. tends to f,g» and we have
FSPH + faR cos 0_, (21)

Thus by studying Fsph compared to faR coseEa Wwe can learn when curved

wave corrections will influence the single scattering of photoelectrons.

An alternative derivation for this formula is outlined in Appendix

The same method may also be applied to calculation of oscillations
in the total absorption cross section, the Extended X-ray Absorption
Fine Structure (EXAFS). Here the scattered wave must be projected back
onto the direct wave at the abscrbing atom: the oscillations are an
interference at the photoemitter. The derivation for (13) core levels

and polarized light is given in Appendix B. If we call

1 % nax g
Eqpy ™ IR zg-o (28 1Ty, (k) (=1) (22)

2 2
3d, , (ka) d,,(ka)
* {cos®s_,[d, (ka)dy, (Ka) - i—de—] - sin®e_ [L——1 1Ll

2
then we compare E to cos BE faR(ﬂ) to examine curved wave

sph
corrections for EXAFS.

a

We might proceed directly to numerical applications of these

formulae, but the qualitative success of the plane wave approximation
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suggests that some insight into electron scattering may be gained by
examining the individual terms in these spherical wave formulas compared

to results from a plane-wave model. We take up this topic in the next

section.

III. NATURE OF THE CURVED WAVE CORRECTIONS

In this section we examine the formulas derived in the previous
section for the exact single scattering of L = 1 spherical waves. We
know that the plane wave scattering model is substantially correct so we
concentrate on differences caused by allowing for wavefront curvature,
We begin this section with a brief examination of the mathematical
reduction of the spherical wave formulas to their plane wave limit.
This provides one method for studying curved wave effects, but to be
more specific we might inquire about the importance of the fundamental
spherical nature of the waves which is independent of angular momentum -
embodied in exp(ikr)/ikr - compared to additional curved wave
corrections due to the particular incident angular momentum. We will
demonstrate that each term in the differential form, eqn 19, corresponds
to specific curved wave corrections. The first term gives the 22212
correction common to all angular momenta, the second term corrects for
additional radial structure specific to the incident angular momentum,
while the third term corresponds to additional angular character
specific to angular momentum.

Our curved wave formulas approach the plane wave results whenever
the spherical Hankel functions can be replaced by their asymptotic

limits (eqn. 3). In our notation this is equivalent to replacing the
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polynomial part of the spherical Hankel function, dz(ka) by 1.0 in our

formulas:

L(2+1)

dz(ka) =[1 - >Tia

+ eee] - 1.0 (23)
Thus we must first discuss the size of L(2+1)/(2ika). Notice that the
angular momentum in this formula is the scattered wave angular momentum,
not the dipole selection rule momentum from the photoabsorption.

The contribution of each partial wave to the final scattered wave
is dictated by the partial wave amplitude (eqn. 6). For every
wavenumber, k, there will be some angular momentum lmax beyond which all
partial wave amplitudes may be neglected. With some criterion for this
cutoff we can define an equivalent range, ro, for the scattering

potential:15

2
1max(1max * - (kro) . (24)
In other words, the largest significant partial wave climbs in

proportion to k. The asymptotic criterion then reads

ke, r
2 (2) << 1 (25)

2
for the last significant partial wave. By this analysis we conclude
that the spherical Hankel function can be replaced by its limit only for
large a >> rs higher energy actually leads us away from the limit. Of

course, as the number of partial waves increases, the impact of the
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largest angular momentum on the value of the scattering factor
decreases. To properly assess this effect we should consider in detail
the weight of each partial wave, but for a crude estimate assume equal
weights. Then the contribution of the largest angular momentum

decreases roughly like (1/£max). giving an asymptotic criterion for the

sum as

r
1 0
- (a—) << 1 (26)

2
-»

We expect s to be = 18 and for |a| equal to the nearest neighbor
distance, ro/Za = 0.2. Under these assumptions the curved wave effects
are not too small; we turn to study the curved wave formulas for ARPEFS
and EXAFS.

For photoelectron scattering we have

00 10

FSPH = d1(ka) cos eeafaR - { cos eea faR

. f01 l:eos eeR-cos esacos eaﬂ] (27)
aR ka

The first term,

00
dl(ka)cos eeafaR

)

i cos eea max
-0 v 5] zzo (22+1)T (k)4 (ka)P (cos 8 ) (28)
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is the only one which survives in the asymptotic limit, ka >> 2(g+1).
By examining the origin-shift addition theorem for ho(kr) (egqn 1U4) we
can show that this first term corresponds to the single scattering of an

=0 wave - the fgg factor - multiplied by the =1 wave components—-the

00
dz(ka) cos eea part. The scattering factor, faB'

wave counterpart, raR' only by including a weighting on partial waves,

differs from the plane

dl(ka), dependent on ka. Since ho(ka) = exp(ika)/ika, we can see that
this weighting corrects the plane-wave scattering factor for the
variation in the spherical wave over the finite size of the ion core
potential due to (1/ika).

The second term,

10 -i cos eea Emax adl(ka)
-icos 8 f o = —— 120 (22+1)T1§k) —3TkaT Pl(cos 0,) (29)

contains the derivative of the polynomial part of the spherical Hankel

function. The expansion of d, in equation (23) gives the leading term

L
in the derivative as

adgka) 4 p(ge) (30)
a(ka) ika 2ika

Since ka ~ 10 in the ARPEFS energy range we can anticipate this

spherical wave correction being much smaller than the difference between

rgg and faR: the factor L(%+1)/2ika represents the leading correction to

the plane wave form and faR is smaller by 1/ka. This term is literally

the radial variation of fgg: it corrects the S wave origin shift, given
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by foo for the variation in h1(ka) over the potential not already

aR’
00
contained in raR'

The third ternm,

01

1 [ -= =
o (cos eER cos @_,cos eaR) faR (31)
(cos 8 _~-cos 8 __cos 6__) g'max P _ (cos 6__)
-1 eR ca R T (21T, (K)d, (Ka) —————2R
(ka)(ik) §-0 [} % d(cos GaR) '

contains both an unusual angular factor and a derivative with respect to

cos eaR' This term accounts for the variation in the spherical wave

amplitude laterally across the width of the potential. We can use

spherical trigonometry to rewrite this term in an instructive fashion.

If we place three unit vectors in the directions or e, the polarization
vector, ﬁ. the emission vector, and ;, the bond vector, at a common
origin, then the vector tips will define a spherical triangle on a unit

spher=s with sides eeR' e _, and ©

ca aR* Observing this triangle along the

>
vector a we see that

cos 6_p ~ co3 eea cos 8, = sin ®.a sin 8 (32)

R ar 3 %cap

R

Y
where ¢eaR is the dihedral angle between E and E through a. Since the

associated Legendre polynomials are defined

del(cos 8)

d(cos 8)™®

P: (cos 8) = sin™s 0sm3$ (33)
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we can write

(cos eER-cos eeacos eaR) 01
-1 ka far (34)
sin 6__cos ¢ zmax P1(cos 8..)
€a c€aR L aR
- ™ E-o (28+1)T, (k)d, (ka) Tra

Thus this correction to the plane wave form reaches its maximum when the
scattering potential is located in the nodal plane (cos esa = 0; sin esa

= 1) of the outgoing spherical wave. The maximum size of Pl (cos ea

R’

is (%+1)/2 but all of the partial waves do not reach this maximum for
the same angle. Nevertheless we can roughly say that this third term
will peak near eaR ~ 20°, giving a curved wave correction approximately
2{%+1)/2ka smaller than the first term.

To recap our assignment of the terms in the differential spherical
wave formula to specific curved wave corrections, we associate the first
term - containing fgg - with the fundamental, angular-momentum-
independent nature of the incident wave, the second term - containing

f1° ~ with radial corrections dependent on angular momentum, and the

aR
third term - containing r2; - Wwith angular corrections dependent on
angular momentum. From this assignment, we can expect significant
curved wave corrections to the single-scattering ARPEFS formula when
i) the scattering potential is near a node in the incident
wave angular distribution,
11) the scattering angle is near 0° (forward scattering), or

1ii) the scattering factor is near resonance.

We now consider these cases in more detail.
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When the center of a scattering potential lies in a nodal surface
of the incident wave, the plane wave model, eqn 11, predicts no
scattering. For =1 incident waves, this geometry means 963-90° and
cos aea-o. Thus only the third term of the differential formula is non-
zero and thus this third term represents the entire curved wave
correction for this geometry. It is interesting to note that the usual
experimerital geometries6 for ARPEFS prevent this third term from
producing its maximum effect. To maximize the measured photocurrent,
the electron detector in the direection ﬁ. is usually placed nearly
parallel to e (eeR ~ 0°). 1If an atom has eea - 90° s0 that sin 8ca ~ 1,
then the scattering angle, eaR' must also be ~ 90° for the scattered
wave to enter the detector: for this experimental geometry the condition
(eea - 90°, 8, - 20°) will never be satisfiedf

Just the opposite must be true for the unusual experimental
geometry adopted by Sinkovic et al., in a recent Azimuthal Photonelectron

Diffraction experiment16. They selected eE = T72° and measured

R
electrons emitted 10° from the surface: many of the important forward
scattering atoms would have sin eea > .5, cos ¢eaR = 1, and eaR ~ 20°.
Thu3 their observation that plane-wave calculations gave poor agreement
with experiment may reflect the neglected variation in wave amplitude
across the scattering potential rather than multiple scattering effects.
When the scattering angle is near 0° we can get large curved-wave
corrections strictly from the difference between the first term
containing fgg and the plane wave limit. To demonstate this we expand
dz(ka) according to equation 23, and subtract the asymptotic plane-wave

part:
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1 *nax L(8+1)
- (21+1)T1(k) [-———]Pl(cos eaR) (35)

00 PLANE, .
t ) I 1%

(faR ar

21ka

o8

=0

The maximum difference will occur for forward scattering since Pl(1) = 1
and all the partlal wave corrections add. Conversely the minimum curved
wave corrections should be expected for backscattering since Pz(-1) =
(-1)1 and successive partial waves tend to cancel. This overall
description should be most accurate for higher energies where the
partial wave amplitudes, Tl(k)’ have little structure,

When the full scattering factor approaches zero near a Generalized
Ramsauer Townsend r'esonance17 we can éxpect the third case for large
curved wave corrections. For special values of electron wavevector, k,
and scattering angle, eaR’ the partial wave sum will be zero due to
exact cancellation of all partial wave compcenents. The particular pair
of values (k,BaR) at which the scattering factor becomes zero will
differ between the plane-wave and spherical-wave models as they weight
the individual partial waves differently. Thus analysis of scattering
resonance data with a plane-wave model will give incorrect scattering
angles and the observed resonance energy position will not be correctly
given by plane wave calculations. While the first two circumstances
leading curved wave effects discussed above involve only one or another
of the terms in the formula, the resonance calculation will depend in
detail on all three terms.

Curved wave corrections to the EXAFS formula are directly analogous
to the corrections for photoelectron diffraction. Since the "detector"

for EXAFS is the photoemitting atom, the curved wave effects are
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squared: our detector is not asymptotically far from the scattering

atom. The first term of the spherical wave scattering factor

00326ea lmax % adz(ka) 2
T 5_0 (22+1)T, (k) (=1) [d1(ka)d2(ka)-1_§.(k_ay] (36)

has the same angular dependence as the plane wave model. Thig term
contains both the basic radial correction for 1/ika--the first factor
inside the brackets--and the radial derivative correction. As discussed
above, the radial derivative factor is usually much smaller than the
s-wave origin-shift.

The second term of the EXAFS spherical wave amplitude factor has

the opposite angular dependence ccmpared to a plane wave model:

2 L 2
sin”e max d,(ka)
ca RS ey ) L(+1)
I E-O (22+1)T2(k)( N[ a2 ] > (37)

This term Eorrects for variation in the incident wave amplitude across
the potential, primarily due to the node in the p wave angular
distribution., Thus for atoms along the nodal plane perpendicular to the
electric vector, this term represents the error made by neglecting the
angular structure in the photoelectron wave.

Typically EXAFS analysis i3 not concerned with relative scattering
amplitude of individual atoms. Most of the measurable signal comes from
nearest neighbor atoms, all of which contribute oscillations of the same
frequency. The overall EXAFS amplitude is not simply given by the

magnitude of the scattering amplitude18'19 and hence the spherical wave
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corrections to the magnitude are of little consequence. Rather it is
the phase of the scattering factor that is central to the EXAFS analysis
and high precision should require spherical wave correction; the weight
of the individual partial waves in the scattering factor sum will
otherwise be incorrect. Of course, practical EXAFS'analysis does not
rely on the accuracy of the theoretical scattering factor: empirical
phase shifts are nearly always derived from known model compounds.

An important EXAFS technique which does rely on relative scattering
amplitudes is the polarization dependence employed to determine
structures on surfaces.zo Here the overall amplitude for nearest
neighbors is measured for several orientations of the polarization
vector with respect to the crystalline sample axis. The results are
usually fitted to the angular distribution predicted by a plane wave
model--coszeea—-and ignores spherical wave ef'fects. We would expect the
largest curved wave correction when ka is small, i.e. low Z elements
having short bond lengths and in the lower energy region, and when we
need accurate angular distribution calculations for small coszesa.

Looking back at the EXAFS formula we also find some insight into
the success of the plane wave model. The leading correction to the

plane wave amplitude is

%
E max
SPH _ _ _plane - _ay b L(R+1)
A= [———2 raR (m)] i ) (2!.+1)T1(k)( 1) St (38)
cos esa L=0

This term is just twice the correction for backscattering ARPEFS, and,
as we argued above, the successive terms tend to cancel. Furthermore,

we can make a crude argument that the k dependence--and hence the
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frequency shift--of this correction will be very small. The factor
2(2+1)/1ika strongly favors high angular momentum waves. If we define an

impact parameter b = {/k, we can take a semiclassical approximation for

the phase shift:21

Z(b)

To

Gl(k) ~ (39)

x5

Here, Z(b) is the unscreened nuclear charge within a sphere of radius b
around the scattering atom. For large L we assume small phase shifts to

write

izl(b)

kro

Tl(k) = i&l(k) - (40)

and since £ >> 1 we have

'3
2
A - miax & -———Z&:b) (-nt L (41)
=0 0

To get a series whose limit does not depend on k we invent a sampling

radius

lmax—n
r s ——— (u2)

h = .
which ceoincides with lmax kro for lmax >» 1 Then
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2%ax ng
A= Z(r_)(-1)
n=0 iroa n

-n
g‘max

Since the r, are constants of the potential, this spherical wave
correction is roughly independent of k. Note that this argument
requires the low angular momentum to be insignificant and we may not
conclude that fgg or raR are roughly independent of X by similar stepsf
IV. CURVED WAVE CORRECTIONS TO THE SCATTERING FROM Ni ATOMS

Now we turn to some specific examples of curved wave effects in the
scattering of electrons from Ni atoms. We will begin by examining the
angle dependence of the scattering factors at SA—1 (95 eV) and at 10}1_1
(381 ev), followed by their k and r dependences. For each case we will
compare rg: to the plane-wave limit, faR' As the last example we
calculate the effect of curved wave corrections to the polarization
dependence in surface EXAFS. In all these examples we take |;| = 2.23A.

Figure 1 compares the amplitudes of fgg and faR for scattering
angles from 0-180° at a wavenumber of 5A_1 (see eqn. 28). The general
trend confirms our qualitative discussion in the previous section: the
largest corrections are in the forward scattering directions. Figure 2
gives the amplitude of f;g (eqn. 29); note the dramatic reduction in

magnitude. The angular structure of f is rather similar to fgg.

10
aR
The angular spherical wave correction, eqn. 31, is plotted in
figure 3 as |sin 8. fgél to emphasize the fact that this correction is

zero for forward (eaR = 0°) and exactly backscattering (eaR = 180°).

The overall scale is 20 percent of the scale in figure 7, but recall
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that two additional angle factors, sin eea and cos-¢eaR reduce this
correction unless the scattering geometry is special.

We have constructed figures U4, 5, and 6 to parallel figures 1, 2,
and 3, respectively, except Kk = 10)\_1 for these new figures. All three
comparisons demonstrate that the curved wave corrections are not much
smaller at this higher energy, but the cancellation of successive
angular momenta due to Pl(cose)-(-1)1 is much more effective. Thus all
the large scattering-angle (0>90°) amplitudes are quite accurate (5
percent) in the plane wave model, while the amplitude for scattering
through 32° is too high by more than a factor of 2.

We can also compare the scattering factor phase by plotting the

argument of the complex ratio fgg/f i.e. their phase difference, as

aR’
ir Figure 7. For k = 5A‘1, the phase difference is roughly +0.5
radians; note that the two angles where the phase difference is not near
+0.5 radians correspond to scattering angles with small scattering
amplitudes, see figure 1. The curve for k = 1OA-1 has the same behavior

although the shift is about half as large.

The k dependence of these scattering factors is illustrated for eaR

= 173° in figure 8, ea = 0° in figure 9, and ea = 127° in figure 10,

R R
The backscattering geometry, figure 8, is the most important one for
ARPEFS and, fortunately, the plane wave model is rather accurate. As we
noted above, the angular curved wave correction is eliminated by sin eaR
~ 0 for backscattering, and figure 8 shows that f;g is very much smaller
than fggf Thus fgg by itself characterizes the backscattering of =1
waves. Notice also that the plane wave amplitude error approaches a

constant not equal to zero, for large k. This is explained in the same

manner as the EXAFS discussion in the previous section.
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The greatest curved wave corrections occur in the forward
directions; figure 9 gives the example of eaR = 0°7 The plane wave
amplitude is roughly .2A too small over the entire range in k. Without
the alternating sign of Pz(-1) characteristic of backscattering, we see
no approach to the plane wave limit at large kf Again f;g is very

o0 01

small, at least a factor of 20 below faR; f cannot contribute to

aR
forward scattering as long as GAR < - 10°, The phase difference (not
plotted) between fOO and fgéane is -~ .7 radians.

Finally, we consider scattering through 127°, the position of a
Generalized Ramsauer Townsend resonance in Ni. The resonance is a
crossing of the origin in the complex plane by the complete scattering
factor. The resonance position in energy and angle depends crucially on
the cancellation of many partial waves and hence cannot be correctly
predicted with a plane wave calculation. Figure 10 displays the

plane| are

scattering factors for 8., = 127°. The factors lfggl and |f
reasonabiy c¢lose except in the resonance region near 8A=1. The angular
curved wave correction is now significant, especially since it conspires
with fgg to make the overall scattering amplitude zero at k = 7.5A_1.

lg has not been plotted; it is very small for 8, = 127°). The

(£
difference between exact single-scattering and plane-wave calculations
is more dramatic in the phase of the scattering factor. Calculations
done for values of ka corresponding to recent experimental
measurement.s17 are shown in figure 11, The phase jump at resonance is
not correctly placed in angle or energy in the plane wave limit.

To estimate the distance, |;|. beyond which we can safely use the
plane wave formula, we plot in figure 12 the radius at which lfgg -

1 1

gplane and k = 108 . This

| s 0.06A, for two energies, k = 5&



51

criterion for the allowable error in scattering factor was chosen to be
~ 10 percent of the backscattering (6aR = 180°) amplitude for Ni. We
see from this figure that plane wave calculations are never adequate by
this criterion for forward scattering at any energy or any practical
radius. For angles greater than 45°, most scattering atoms within 108
of the photoemitter would require curved wave corrections in the lower
energy region, while perhaps only the nearest neighbors require these
extra calculations for k = 10A-1.

To discuss an example calculation for the curved wave EXAFS
formula, we adopt the second form for y(k) given in Appendix B, eqn.

fplane

(B13). Figure 13 compares fiso to its asymptotic limit {w) and to

fan_ We see a close analogy between fiso for EXAFS and fgg for ARPEFS,
but the curved wave corrections are larger for EXAFS (compare figure 8)
since the "detector™ is not asymptotically far from the scattering atom.
Once again the large k region approaches a non-zero constant plane-wave
error. Perhaps most interesting, |f°'| is seen to be nearly two orders

iso

of magnitude smaller than lf | in this energy range. Thus, at least

for Ni atoms, the standard EXAFS formula with fiso replacing fplane

(m)
would give 1 percent accurate curved wave results. Furthermore, since
the polarization dependence technique relies only on the assumption that

2
the oscillations are proportional to cos aea' curved wave corrections to

the calculated amplitude ratios are entirely insignificant.

V. DISCUSSION
We have derived ne¢i formulae and given examples for the curved wave
scattering of =1 spherical wavea. What can we expect for more general

spherical waves? We offer some qualitative ideas in this section.
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We envision two important cases: 1) photoabsorption by p, d, and f
core levels giving spherical waves with higher angular momenta and
magnetic sublevel occupations; and ii) multiple scattering preceded
either by photoelectron scattering or plane wave scattering typical for
the LEED experiment. Both of these problems can be approached by the
method we use here for =1 waves. That is, the origin-shift addition
theorem summed over magnetic sublevels can be differentiated to higher
and higher order. The resulting expressions will be formidable so we
will be content with estimates for now.

First we consider higher % waves populated by photoemission. For
core orbital initial states with p, d, or f orbital angular momentum,
two partial waves with +1 will be created. Each partial wave may be

treated by the method of section II. We should always get a first term

00
aR’

scattering factor for =0 waves. This is the only curved wave factor

like dz(ka)¥zm(a)r the amplitude of the  spherical wave times the
which survives the asymptotic¢ limit and hence will always be the most
important. Our discussion for =1 virtually ignores dz(ka) as being
close to 1.0, but for higher angular momenta this factor may be
important. Otherwise, this first term will follow the trends discussed
in the previous section,

We should also always get curved wave corrections due to
differences between the (?/ikr) dependence of ho(kr) and the angular-
momentum~dependent radial wave character through the potential region -
corrections analogous to f;g. For higher angular momenta, the
difference between the radial character of the incident spherical wave
and the radial character of ho(ka) already included in the first term

Wwill increase. We might conclude from our Ni example calculations that
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these radial variations are negligible for =1 waves; for some higher %
we will be forced to include this term.

For all &, the radial variations should be less than the angular
variations simply because spherical waves (except 2=0) have stronger
angle dependencef Thus curved wave corrections analogous to fg; will be
increasingly important for higher angular momenta. These angular
corrections are always greatest near nodes in the incoming wave, where
the wave amplitude is changing most rapidly. The nodal regions has the
least amplitude and the finite extent of the potential is anyway
averaging opposite phase waves across the nodal surface, smoothing out
the nodal structure. Hence, on the average, even these angular
corrections will not be large. The phrase "on the average" is connected

with the additional anguilar vectors like sin eea sin ea cos ¢saR which

R
multiply the curved wave angular correctica.

In addition to more significant curved wave corrections of the same
type as the La1 wave, higher angular momenta waves should also have
corrections corresponding to higher order derivatives. Thus the second
derivatives of the incoming wave across the extent of the potential will
become important for some high f. Actual calculations are necessary to
determine how important these corrections will be.

This leads ua to the second important case, multiple scattering.
While photoabsorption can populate only dipole allowed angular momenta,
an outgoing scattered wave contains all angular momenta up to Emax ~
krof To apply the method of this paper to the exact multiple scattering
of spherical waves would--as a practical matter--require automation of

the derivative calculations, a dubious improvement over the Gaunt

integral summation formula, equation 12. On the other hand, the
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outgoing scattered wave is no more than a spherical wave with an angular
dependence and phase dgtermined by scattering rather than by
photoabsorption. Thus, approximate multiple scattering could be
calculated by starting with fgg times the single scattered wave
amplitude at the second scattering center and adding curved wave
corrections by numerical differentiation of the single-scattered

wavefunction.

VI. CONCLUSION
To summarize our work, we have
i) derived new curved wave formulae for single scattering of
{(18) core level photoelectrons, appropriate for ARPEFS and
EXAFS experiments,
i1) interpreted the individual scattering factors in this
formula as different types of curved-wave corrections,
allowing some guidelines to be devised to predict which
scattering problems require curved-wave formulas,
iii) given some idea of the size of these factors for Ni atom
scattering, and
iv) discussed the possible generalization to higher angular
momenta core levels.
The significance of these results is partly formal and partly
practical. The remarkable accuracy of the plane wave model has been
widely recognized,u'22 but often attributed to the asymptotic limit of

the spherical wave. Qur new formulas more clearly demonstrate the

origin of this convenience: the improved cancellation of partial waves
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at large k. Thus the accuracy of the plane wave model does not improve
for large k in forward scattering directions., This point may also be
made by a semi-classical argument. As figure 14 illustrates, forward
scattering corresponds to large classical impact par'ameter's:z1
backscattering corresponds to low enough impact parameter to sample the
strong attractive center region of the potential. The wavefront
curvature corrections are thus much larger for forward scattering
directions which sample the extreme edges of the potential.

On the practical side, our new curved-wave formulas are scarcely
more complicated than the plane-wave versions. Some advantage may also
be made of the different angle dependences of each scattering factor, to
minimize numerical computations. Hopefully, our qualitative discussion
and numerical example will serve as some guide to estimate when curved
wave effects may be important. Finally, we have demonstrated that
curved wave EXAFS calculations can be quite accurate with only a minor
modification of the plane-wave formula, a result which extends the
recent work of Schaich23 and of Gurman, et al.eu

Unfortunately, it is also clear from our results that curved wave
effects cannot explain the difference between ARPEFS experiments and the
single-scattering plane-wave calculations of Bullock, Fadiey, and
Orders.7 The curved wave corrections are typically - 20 percent and
only that large in the forward directions. Thus while we have reduced
the computational barrier to using curved wave calculation for ARPEFS,
we can also conclude that the major discrepancies between theory and
experiment are not due to curved wave corrections at least for single

backscattering.
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We can characterize the disagreement between model calculations and
ARPEFS measurement by ncting that scatterings from nearest neighbors and
backscatterings from non- nearest neighbors appear to be much more
dominant than predicted theoretically. Wavefront curvature increases
scattering for some angles, decreases it for others and generally has
less effect for backscattering. Therefore, while curved wave formulas
may be important for accurate calculation, there are larger errors
elsewhere in the theory. Multiple scattering must be part of the
answer: as figure 4 illustrates, forward scattering is large in the
ARPEFS energy range and should not be neglected. OQur results here
predict that this forward scattering cannot be calculated within the
plane wave formulation. There may also be errors in the inelastic
scattering and thermal averaging. We must investigate these questions

in further work.
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APPENDIX A: ALTERNATE DERIVATION FOR DIFFERENTIAL FORM OF ORIGIN-SHIFT
ADDITION THEOREM
We may arrive at the results of section II by an entirely different
route. We will use a series of well known formulas conveniently
tabulated in Pendry,? his appendix A.
We begin with the origin-shift addition theorem for (1,m) = (1,0),

equation 12. Using the definition of Y10 and the recursion relation for

Ylm we find
172
L * " 3., 0
Gy, gram = Yy Z'Zm' i hl,(ka)Y_g,m,(a){(u—E) L PT— (A1)
Y,  (KY Ry, + (B a0 Yy K
'm? A"l ,m" O * 5 Ry, oge 2'm'(K)YE"—1,m"(K)dnk}

In other words, since Y10 is proportional to cos(8), the product Y10Y*2"

becomes the recursion relation for Y

The factor

m" an" '

172

AO - [(9.'0’!!1)(1"[!]) ]

im = LT (20=TT (a2)

is related to the ratios of the normalizing coefficients of spherical

harmonics. The remaining integrals in G are the orthonormality

10, 2"m"
conditions for spherical harmonics;

J YZ'm'(K)YE"H,m"(K)dnk - 6R.'.P."Hﬁm'm" (A3)

and the sum on 1',m' simplifies to
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172
3 0 R * .
G10'2“m“ = (E?) uw{Az+1'_mn1 hz"+1(ka)¥1“+1,m“(a) (AW)
0 Rt * -
*hgn el Ppeg (R g ()]

The factor inside the braces 1s the result of a differential operation

] *
on 12 hln(ka)an . Rewriting Nozawa'512 equation 3.8 in terms of
. 9 . .

normalized spherical harmonics shows that

) Ln * " 0 L+1 * -
(-igmz) 1 hzn(ka)¥2"m"(a) = {Rgnyq,ogni g (KM g e (@)
L . »* -~
+ Agn’_m“iz 1h1"_1(ka)Y£“_1'm“(a)} (A5)
Thus
1/2
3 R .o
Giogmar = G Hm(=im==) 1 honka)t ., o(a) (46)
with
sin 6
3 3 ea 3
(&32) =°°8 O, w(3a) ka  30_ (A7)
- cos & 3 (cos 8 g C0S 8_,cos eaR) 3
ea kida) (ka} 3(cos o)

The addition theorem for spherical harmonics then leads to the results

in equation (19). We can avoid the derivative operation altogether by
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applying the recursion formulas for h

o0 and anm". but this approach is

tedious.
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APPENDIX B. APPLICATION TO EXAFS

We apply the approach of section II to the spherical-wave single-
scattering Extended X-ray Absorption Fine Structure. Schaich23 and
Gurman, et al.24 recently derived simplified, exact EXAFS formulas for
cubic or polycrystalline environments. Here we consider only (1s) core-
level excitation and linearly polarized light, but we allow a general
environment., With the ; axis along the polarization vector, the dipole

selection rules reduce Schaich's equation (3) for the x-ray absorption

coefficient to
2
M, = AuIm[M01(1+X1)] (B1)

Our X, corresponds to Schaich's (1 + X11)- He are interested only in
the oscillations, Xq we refer to Schaich for the radial matrix elements
MO1 and constants in Au. Transcribing Schaich's equation (5) into our
noﬁation gives

s, is,

1 -» >
Xq(k) = *Z v Le ()G upng oK) (1T, (KIG oo (Ka) (=1)e 7]
a=0 L"m"

(B2)

i6

L
The factor e 2 is the absorber atom phase shift which cancels in

the photoelectron diffraction experiment and hence was dropped from the

formulas of section II.

To apply the differential form from appendix A, note that
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<> m"
Gyngnyol-k@) = (<127 G

-
102"_m“(-ka) : (B3)
This is a consequence of the conjugation property of spherical harmonics
With the differential forms for the origin-shift addition theorem

coefficients, we have

W = 3 3 T by () T amMnkany,, (an)
X1 ) ~ s 3e L ik 3z’ ik az o i 2“ a' an ntd
a(=0)
(- 1)1:2,,(k)i z"(ka)‘!z" “(;) (BY)

The primes distinguish outgoing and backscattered waves until the
derivatives are complete. The addition theorem for spherical harmonics
simplifies this expression, and we employ our separation of spherical

waves into asymptotic and polynomial parts to write

126
1
X, (k) = - . 2+ e . E (25L+1)(ik az,)h (ka')d,, (ka*)
a(=0)
(7 520 (ka)d, (ka)P,,(cos ©__,) (85)
ik 9z Al aa'

where cos eaa‘ will ultimately be -1. The first derivative becomes

I_a

( (ka)P_  (cos 8__,)

3
sz)ho(ka)dl" L aa'

i

N

= ho(ka){d1(ka)dz"(ka)cos B aPgn(cos 8, .,)
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, cos 8_, Bdln(ka)_

P .(cos & )

1k a(a) Ln ea'
(cos @_,,~cos 8 ,C03 esa') aPz(cos 0 ar)
* 1ka dgulka) alcos ®__,) (B6)

The first term in this expression is a consequence of the
derivative as a lifting operator. After the second derivative we may

L
set a' = a, Pl(cos 8,50) = (-1)7, and [cos 8 417COS 8_, cos 8,1 = O.

aa'

We also need the value of dPE(x)/dx for x = (~-1); it is equal to

(- 1)2+12(2+1)/2. Thus we have

(k) =- Y 3e 1 — 'Eax (22+1)T, (k) (-1) ¥ (BT)
X4 2 ik 2=0 [}

2 2
de(ka)] ) sin eea

2 2 4(a+1)
{COS Bea[dI(ka)dz(ka)—i—a(ﬁ)— (ka)2 —2-—}

[dz(ka)]

This form most clearly displays the origin of the curved wave

corrections, but to compare to the work of Schaich, note that

1 de(ka) %
" 3T " Ygr(ka) - dg(ka) - pe d(ka) (88)

which--together with the recursion relation for dl(ka)- -shows that

1 de(ka) g1 %
[dytka)dy(ka) + ¢ —5ray] = [T Yt * 3057 de-0) (B9)
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The square of this factor may be reduced with the help of the square of

the recursion relation for dz to give

2+ % 2 g+l 2 L2 g(a+1) .2
Capat dper * 3T Yemrd = L5 Qo P 3neT Gt m d;] (B10)

Then we can define

ax

m
IS0 1 L L+l 2 % 2
f (m) = r1 EHO (22+1)T1(k)(' 1) [Tm d1+1 + 31eT d2‘1]

(B11)

and
Q'max
2w e 1 DT 0D “—‘-‘% di(ka) (B12)
1 =0 (ka)
to write
i2k 126‘
a an
x(0 =1m (- J3%5—e ! [(e"rMeos®e_, - L sin®e ]
a(=0) ka

(B13)
In an isotropic or cubic environment, 2 cos2 eea = sin2 esa and the
anisotropic scattering factor cancels out to give the same formula

derived by Schaich23

and by Gurman et alzu. Notice that our result
demonstrates that the simplification achieved by these authors is not a
consequence of symmetry--the general formula is scarcely more

complicated than the high symmetry version--but rather is a result of

summing over the equivalent magnetic sublevels of the scattered wave.
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Scattering factor amplitude in A for Ni atom potential at k
- 587" (95 ev). Solid line is Ifggl, the 2=0 spherical wave
scattering factor; dashed line, plane wave limit 2ka >>
2(2+1). Right hand panel gives cartesian plots of factor
magnitude versus scattering angle, eaR in degrees; left hand
panel is a polar plot with eaR = 0° running up the figure.
Radial derivative scattering factor amplitude, If;gl in &
for Ni atom potential at kK = SA-1 (95 e¥). Format described
in Figure 1. Note the scale of this figure is 1/20th of
Figure 1.

Angular derivative scattering factor amplitude |fg;| times
sine of the scattering angle, eaR’ in & for Ni potential at

k = 58

(95 ev). Format described in Figure 1. This
scattering factor cannot contribute in near forward or near

backscattering directions.

Identical to Figure 1, except k = 10}1-1 (381 ev). Note the

improved accuracy of the plane wave limit for backscattering
angles. The figure has the same scale as figure 1 to
emphasize backscattering angles.

Identical to Figure 2 except for k = 1011-1 (381 ev).
Identical to Figure 3, except for k = 10A-1 (381 ev). Note
that shift of the main peak to lower angles; its amplitude
is similar to the amplitude of the main peak at k = SA—1,

but the correction for backscattering is very much smaller

Nnow.



Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.
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Difference in phase (in radians) between spherical and

plane-wave models versus scattering angle 8 in degrees,

aR
for scattering frum Ni atom potentials at k = 5A-1.
Scattering factor amplitudes in A versus electron wavenumber
(A-1) for near backscattering (eaR a 173°) from Ni atom

potentials. Solid line, basic spherical scattering factor

fgg; circles, plane-~wave limit scattering factor faR‘
triangles, radial derivative scattering factor f;g. The

plane-wave factor is rather close to the spherical wave fgg
and the other spherical wave corrections are very small at
all energies; notice also that plane wave error approaches a
non-zero constant.

Scattering factor amplitude in A versus electron wavenumber

(A_1) for forward scattering (6__=0°). Solid line, basic

aR
spherical scattering factor fgg;

triangles, radial derivative

circles, plane-wave limit

scattering factor faR‘

10
aR”

error; the radial derivative correction becomes alwost 10

scattering factor f Note the nearly constant plane-wave
percent at low energies.

Scattering factor amplitudes in R versus electron wavenumber
(A-I) for scattering through 8.5 = 127°, the position of a
Generalized Ramsauer Townsend resonance. Solid line, basic
spherical wave factor fgg; circles, plane-wave limit fplane;
crosses, angular derivative rg;. The radial derivative is
negligible at this angle for all energies.

Phase shifts for scattering from Ni. The dashed line shows

the phase shift function ¢J calculated with plane-wave



Figure 12.

Figure 13.

Figure 14.
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theory for 8=127°. The dotted line is the phase shift from
the experimental curve. The zero crossing jump in phase
occurs too high in wavenumber in the plane-wave limit.
Solid lines are curved-wave calculations of the phase shift
function for the indicated scattering angles.

Radius for acceptable results from plane wave cal-ulations
versus bond angle for k = SA-‘1 (solid line) and k = 101{1

(line with circles). The radil were selected so that all

OO_rplane

distances greater than the plotted lines have |faR 2R

| <
0.06A.

Scattering factors for (1s) EXAFS. Solid line is £3°, the
curved wave scattering amplitude defined by eqn. B13. Line
with circles is the plane wave limit which has a similar
shape to fiso_ Line with triangles is fan' egqn. (B13)
multiplied by a factor of 50.

Schematic semiciassical orbits for an attractive putential.
If the circle represents the effective radius of a screened
nuclear charge, then particles with large imyact parameters
will sample only the weak outer region of the potential and
scatter through small (forward) angles. Particles with
small impact parameters orbit the strong nuclear attraction
and exit at large (backscattering) angles. The connection
to wave scattering is made through b = L/k where b is the
impact parameter: large & partial waves contribute to
forward scattering and small % waves dominate for

backscattering.
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CHAPTER 3:

APPROXIMATE TRANSLATION QF SCREENED SPHERICAL WAVES

ABSTRACT

We develop and discuss a Taylor series expansion of the addition
theorem for screened spherical waves, ilhz(kr)Ylm(;). The expansion is
designed for orderly progression in the ad&ition of curved-wavefront
corrections to multiple scattering of electrons in solids, but it
applies to any wave scattering prob;em based on the addition theorem for
spherical waves. We relate one of the expansion indices to a magnetic
quantum number in a coordinate system rotated to align the quantization

and translation axes.
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In the course cf constructing an accurate model for photoelectron
scattering from ion cores in a solid surface we have been struck by the
Wwide gap between the simple and "exact" models for spherical wave
scattering. The simple "plane-wave™ model for electron scattering in an
ensemble of localized, non-overlapping potentials treats each scattering
event as if the potentials were infinitely separated. This model seems
to be remarkably successt‘ul1 in the intermediate energy range (100-

600 eV). The exact model incorporates the wavefront curvature effects
important when the potentials are separated by distances comparable to
their diameter. Although these curvature effects are considered to be
important for low energies (<100 eV), very few studies of these effects
in the intermediate energy range have been undertaken because the
calculations are prohibitively expensive. We began to explore the
possibility that a modest improvement on the plane-wave model would
allow curvature corrections to be examined without requiring the
complete, exact calculation. The solution we arrived at is physically
appealing and, although the ﬁathematical development is standard, we
believe the resulting formula and its interpretation should be valuable
for many scattering problems (for examples see ref 2). Thus we present
the development of a finite series approximation to the addition theorem

for screened spherical waves, 11h1(kr)Ylm(r).

I. EXACT ORIGIN-SHIFT ADDITION THEOREM
Calculating the amplitude of waves scattered from a central
potential by the partial wave method requires an expansion of the

incident wave in an angular momentum series about the potential's
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origin. If a plane wave is incident upon the potential, the expansion

in an angular momentum series is well known:

> > @
ike-a zmax u

z“m"

~ * ~
(b)Y (k) (M)

Al
m 1 'J 1" (kb )Y l"rﬂ" lllm“

»> > > >
for a potential at a and r=a+b. Here j2 is the regular spherical Bessel

function, k is the wavenumber, and Y is the spherical harmonic given

Lm

in Appendix A. The limit on the sum, lmax' is governed by the effective

3

range of the potential, r according to

Ol
k . (n . +1)] 72
r'0 = max ~max

(2)
If a spherical wave is incident on the potential, the expansion in
4
spherical harmonics has been derived by Nozawa. If the spherical wave

>
emanates from the origin, we may expand it at a as

L " AL ~

1"h, (kr)Y, (r) = lzm" Gomgnpnt  dgn (KDY (D) (3)
S P e

Glml"m" = z w zv(ka Ylvml(a) Ym(k)xzvmv(k)ylnm"(k)d

L'm’'

where ;=;+B. In the mathematical literature, this type of formula is
called an addition theorem; we will refer to this equation as Nozawa's
origin-shift addition theorem. Nozawa calls the screened spherical
waves "Helmholtz Solid Harmonics", but we will simply call them
spherical waves and further omit the superscript designating the kind of
Y (k) and ny (er)=ng? ter).

The history of the formula deserves some comment. This expansion

spherical Hankel function by using hl(kr)ah

formula is widely used but only rarely is the original literature cited.

We have followed Slater5 and based our work in section II on Nozawa's
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developmentu. We were at first unaware of the independent work by Danos
and Maximon2; these authors give a historical survey of the mathematical
literature on what we call the origin-shift addition theorem thi-ough
1965. 1Interestingly, these authors state that they too were unaware of
some previous work on this formula. It seems that the use of the
formula in solid state physies, our particular concern, may be traced to
Kohn and Rostoker and to Korringa6. We use section IV to connect our
work with the outlook presented by Danos and Maximon.

To understand and use this formula we must confront the integral of
three spherical harmonics, called the Gaunt integr'al.7 This integral
can be related to the 3j vector addition (Clebsch-Gordan} symbols and
Gaunt has derived an analytic formula to calculate its value. The

integral is non-zero only when
m" =m +m', |oU-L| S L' S L o+ g, L' + L" + L = even (4)

Pendry8 gives a computer program t. implement Gaunt's formula.
Typically a table of these Gaunt integrals are consulted in actual
calculations.

The complexity of the formula for spherical wave scattering is
self-evident. In computer calculations we must recognize that the number
of transformation coefficients G is proportional to (2m +1)u and

Lme"m" ax

each coefficient requires the summation of -~ lma complex numbers times

X

the Gaunt integral. Since lmax is roughly proportional to k, scattering
-1

calculations already difficult at k = 38 become prohibitively

-1
expenasive at k = 128 . Even this presumes that the Gaunt integrals are

calculated once and stored; for calculations to 600 eV (lmax = 19) of
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order 106 integrals are required. For these reasons we must approximate

the scattering calculations.

I1. TAYLOR SERIES EXPANSION

Now we turn to a series expansion of the origin-shift addition
theorem for spherical waves. Our approach is to examine the derivation
of the origin-shift addition theorem based on the Fourier transform and,
by interpreting the formula physically, deduce an appropriate
approximate form.

We define the Fourier transform of a spherical wave,

N )
i hz(kr)Ylm(r). as:

* —iﬁ-; ] - i Ylm(K)
[dr‘ e i hﬂ,(kr)Yﬂ.m(r) =TS T (5)
21 K (kK"=K~+ig)

8
as glven by Pendry. The inverse transform:

R - i *
i hlm(kr)Y!‘m(r) = 5 J dK —————— (6)
2 Kk

4 +
leads to the addition theorem when we set ; = ; + B. The vector a may

>
be taken as the new origin and b as the new propagation direction for

->
waves from a. To separate radial K integration from the angular
> & > >
iKer iK-b
integrations, the series expansion for e , eqn. (1) Is used for e

'E +
iK-a
and e :
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R - 21
i hl(kr)Ylm(r) = Y ) ux [E;

g‘"m" R‘lml 2 2

L ]
J° i* jzn(Kb)iz JE,(Ka)KZdK
0 K“=K“+16

*

~ * -~ ~ -~
Ymum"(b)ylvmv(a) J Ylm(K)Ylvmv(K)anmu

(K)dQK (1

The radial integral may be extracted from a contour integr‘al9 to give

oy = 1 ket g (ka)k? - "

J 5 dK = i Jln(kb)l hl,(ka) b <a (8)
0 K=K +i§

and we arrive at the addition theorem, eqn. 3. We now identify the
Gaunt integral as the angular integration remaining from the inverse
Fourier transform. Notice that Ylm(g) is the angular part of the
Fourier transform of the spherical wave.

With this derivation in mind, we return to the inverse
transformation integral, eqn. (6), and claim that this is also a
prescription for constructing a spherical wave by superposition of plane
waves., We can then imagine constructing an approximate spherical wave
by superposing only the most important plane waves. Clearly, if we
select a single plane wave, Wwith wave vector ﬁ in the direction ;, we
will have a version of the plane wave model discussed in the previous
section. To do better we propose a Taylor series expansion of ﬁ near
k;. However, in view of the simple form for the radial integration, it
seems unnecessary to restrict the magnitude of the plane waves selected.

Therefore, we wish to expaud the angular part of the Fourier
transform, Ylm(i). about the direction ; in a Taylor series. It is

~

convenient to rotate our coordinate system to place z parallel to 5, 30
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that the expansion may be done around the polar axis. If we perform the
m sums in equation 3, using the addition theorem for spherical

harmonics, we can get

L - A ‘A (28" +1) (227 +1)
17h (ke)Y, (r) = E" 17 3 n(kb) E' 1% h, (ka) i
* J Yzm(K)Pz,(cos @aK)Pzn(cos @bK)dQK (9)

Thus only the incoming wave Fourier transform knows that a coordinate

system must be rotated; to rotate the spherical harmonic we use

(%) _
RMm (0,+®Ea,1r ¢ ) (10)

- L -
Ylm(k) > 2 YEM(k) g xea

z//7e M=—1% z//a

The spherical harmonics on the right hand side of this equation are

>
quantized on the a axis; the rotation matrix converts the axis of the

spherical harmonics from z along a to z along e. OQur conventions and

definitions for this rotation are discussed in Appendix B.

To expand YEM(k) about the new z (=a) axis, we write

- (M) M
YEM(k) = "znpz () n M20 (1)
4 * M
= NouPyg (w) (n) M<O
where p = cos @, n = sin @ el¢, PéM)(u) is the Mt'h derivative of the

Legendre polynomial, and sz is the normalizing coefficient given in

~

Appendix A. The unsubscripted angle variables will refer to 5 as the z

axis. The Taylor series for M 20 is
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1¢ q ]
- ; [sinB e ] (cos @ -1)P aquYLM |
Y, (k) = —_—_— (12)
™M q=0 ¢ p=0 p! (aw)Pam?
The derivatives are easily managed:
p+q
2 (M+p) M! M-q
—_—Y =N_, P W) m==57 N 8(%-p~-M) (13)
(3)P(amd M7 Mk (H=a)?!

We represent the result that these derivatives are zero for (M + p) > &
by g(l—p-M). When these derivatives are evaluated on the polar axis,
only terms with M-q = 0 will be non-zero; by expanding the derivatives
of the generating f‘unct,ion10 for Legendre polynomials we can show that

(M+p)
)

(L+M+p)!
(u=1) = (L-M-p) ! (2M+2p) ! (1)

The Taylor series for M < 0 is very nearly the same, and we can combine

these férmulae as

. s lalg e 1_&q‘ )
YEM(k)|z||a - 2_ sin'"le e Noq (cos @ -1) CquM_qg(l-p) (15)
q= 1% pno
with
* (L+]q]+p)! 1

pq = Ta=Ta[-p)T pI(Z[a]* 21T (16)

If we now insert our Taylor series expansion into the rotation, equation

(10), the sum on M will contain a single term, M = q:
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() _ la| iqe
Yzm(k)|z||€ qz-l Eqqu (o.esa'n ¢x€a) sin'lg e
e 7
(cos © -1) (17)
p=0 PQ

Thus each term in the expansion is associated with a single rotation

matrix element.

Inserting this expansion into the summed origin-shift addition

theorem, eqn (9), gives

. 1 2-|al
% . (%) _ % )
17h, (ke)Y, (r) = Y N, R (0,0 _ wo¢. ) 2 o

=1 p=0 P4
*® L "
) " g (kb) ) i* hl.(ka)(22'+1)(2ﬁ"+1) (18)
L"=0 L'=0

J si nlqle olae (cos & -1)P Py ,(cos @) Pzn(cos ebk)dn
Inside the integral we apply the addition theorem for spherical

harmonics in reverse to Pln(cos ebk) using a as the quantization axis:

lq¢
J sinlqle e (cos @ —1)pP , (cos @ (B +1)P2"(cos MLl
E" ~ 2" . "
= L Y (ON, EJ a0 44, (19)
m"'=—-2" £"m A ] 0

1
[ sinlqle (cos @k—1)p ,(cos @) Pln(cos Q) d(cos0)
=1
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where we have also broken the spherical harmonic down into its component
parts (see Appendix A). We note that this use of the addition theorem
is equivalent to rotating P&"(cos Gbk) to the ; axis.

The integration of ¢ gives 2+ qu"' and the sum on m" will contain
a single term for m" = q (or zero if q > 4"). Thus each term in the
Taylor series expansion is associated with a single outgoing-wave
spherical harmonic.

The 0 integration is slightly more involved. The product of
Legendre polynomials and powers of 3in @ and cos @ must be reduced to
Legendre polynomials with raised and lowered indices; the integral
becomes a series of constants and delta functions relating %' and L".
The sum on &' then has only a few terms. If we write
gl

b N (b)h (xa)iPd(ka) = ] 1

snqiang L o hy,(ka)(22'+1)

lae 2041

* J sinlqlo e k(cos e-l) P , (cos Q) (=— T )P . {(cos obk)dn (20)

n k

then the origin-shift formula becomes

. ) ql
i*ng k)Y, (r) = i R% (0,0 16 ) % c*

qu-1 L9 qm €a, xea p=0 Pq
bt " ~ ’
, T oumit Jgn(KBIY gy (DI, b (ica)HE (ka) (21)
"=q

We give explicit formulas for Hlu(ka) pP,q, = 0,1,2 in Appendix C.
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This formula is our central result. To compare it with equation 3
note that we can write the Taylor expansion origin shift as
A - z LA -
1°h, (k)Y (r) = 2 Comgngl  Jgn (KDY g, (D) (22)
with the understanding that the quantization axis for q is a. Thus the
Taylor expansion order replaces the magnetic sublevels in the origin
shift addition theorem. We wWill develop this idea more fully in the

next section.

III. MAGNETIC QUANTUM NUMBER EXPANSION

The mathematical manipulation of the previous section gives little
insight into the nature of the Taylor series approximation and hence the
value of our result could only be judged after a practical demonstration
that a few terms of egn (21) will suffice to mimic eqn.{(3). As reported
elsewher'e11 we have calculated multiple-scattering of photoelectrons
based on egn (21) and we have found rapid convergence. Instead of
pursuing that specific application here, we will explore a qualitative
picture for the Taylor series expansion which will also provide the
connection to the work of Danos and Maximonz.

In concluding thé previous section we expressed the Taylor series
result in a manner which seemed to parallel the original formula, egn
(3). The parallel is imperfect: the quantization axis is constant on
both sides of eqn (3) while the spherical harmonics in egn (22) are
expressed on different axea. It is just this difference which leads to

the advantages of the Taylor series method.
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It is generally appreciated that the orbital angular momentum
quantum number, £, does not change in rotation matrix elements (egn
(10)), but it is also true that, as discussed by Danos and Maximon, the
magnetic quantum number does not change in translation matrix elements
when the translation occurs along the polar (;) axis. Thus Danos and
Maximon accomplish the origin-sinift of an arbitrary spherical wave in
three steps. First, they rotate the spherical wave to a coordinate
system whose pole coincides with the translation vector. Second, the
magnetic-quantum-number conserving translation is applied. 1In the third
and final step, they rotate the new spherical waves back to the original
coorcdinate system.

Now we can see the nature of the Taylor series approximation, at
least in the index q. As a matter of convenience we rotated the
coordinate system in section II, eqn (10), prior to the series
expansion. This rotation is precisely the first step of Danos and
Maximon. The expansion variable q is the rotated-frame magnetic-—quantum
number and it survives intact in during the subsequent translation. If
we sketch the spherical harmonics in the rotated frame as in figure 1,
then the Taylor approximation is evident: the higher order magnetic
sublevels do not overlap the finite range potential. The lowest order
approximation, =0, corresponds Lo the scattering of the magnetic
sublevel which overlaps the strong, central portion of the potential.
Higher order sublevels overlap on the weaker regions of the potential
until we finally reach a sublevel which does not interact with the
potential at all.

With the Taylor series viewed as a magnetic quantum number

expansion, we can argue that the number of sublevels required to produce
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adequate results will be related to (ro/a) if a is the distance between
the incident wave source and the center of the potential. Certainly, as
the effective radius of the potential decreases or the potential moves
away from the source fewer lobes will overlap the potential and a lower
order approximation will suffice.

The magnetic quantum number expansion picture only addresses one of
the two dimension approximated in our Taylor series. We speculate on
the nature of the approximation governed by the p index as follows. We
need only consider origin-shifts along the ; axis preceded if necessary
by a rotation of coordinates. Our procedure in section II1 may be
summarized as Fourier transformation, Taylor series expansion, origin-
shift of each term in the expansion, and finally inverse transformation.
Qur clue for the nature of the p expansion is the inverse transform
integral, eqn. (C5). The expansion variable (cos@ - 1) is conjugate in
the Fourier transform to the operator [(1/ik)(3/3a) - 1]. Thus the p
expansion is related to radial correction of the zero-order origin-shift
term. While the q index works out from the center of the new origin in
an arc laterally towards the edge of the potential, the p index works
out along a radius.

As we may show by inserting eqn. (C1) into eqn (21), the zero-order
Taylor series term is the addition theorem for an 2=0 spherical wave,
i.e., exp(ikr)/ikr. The addition theorem for higher order spherical
waves may be produced by lifting operators applied to the addition
theorem for £=0 wavesu. Angular derivatives in these lifting operators
generate rotation matrix elements corresponding to our q index while
radial derivatives generate terms corresponding to our p index‘z. This

relation is further borne out in the eguivalence drawn between the
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lifting operator picture and the Taylor series for the particular

application to photoelectron scattering in ref. 11, Appendix A.

IV. CONCLUSION

We have presented a new formula for the translation of screened
spherical waves, a series adapted for truncation, which allows the
accuracy of curved-wave corrections to be continuously traded for ease
of calculation. Furthermore we have related one of the expansion
variables to magnetic quantum numbers in a frame rotated to place the
pole along the translation axis.

Our form for the origin-shift addition theorem should prove useful
to a number of physical problems. Even restricting our attention to
electron scattering in solids leaves applications to theories of X-ray
absorption fine structure, electron diffraction, electron energy loss
fine structure, and our original interest, photoelectron scattering.
Our application of equation (21) to photoelectron scattering is

discussed in ref 11.
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APPENDIX A. OQUR SPHERICAL HARMONICS

The properties of spherical harmonics are, of course, well known,
but the phase conventions do vary, especially between older works and
between more mathematical and more physical works. We will use the most

common "Condon-Shortley™ definitionio:

AMICR NZmleI(cose) ellmle
!1_|m|(e,¢) a szlel(cose) e—ilml¢,
with

28+1 (a-|m{)t '/, . oy m]
Ny o= [ (1+[h[)!] for m<O and the same times (-1) for mz20

We use

. d®p (coss)
Pz(cose) = 3in® -
(dcos®)

where Pz(cos @) is the Legendre polynomial; this choice for the

associated Legendre polynomial agrees with Nozawau and Pendrya. but and

13

Abramowitz and Stegin - add a factor of (-l)m.
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APPENDIX B. COORDINATE SYSTEMS, EULER ANGLES, AND ROTATIONS

The rotation matrix method is powerful but prone to error from
factors of (-1)m arising from misinterpretation of the axes. To avoid
confusion, we detail our convention on coordinate relations and notation
in this appendix.

Our initial coordinate system has its origin on the photoemitting
atom with its ; axis along the electric vector ;. For our purposes the
remaining degree of freedom is arbitrary. For surface problems it is
most convenient to place the y axis in the surface plane. Our
coor&inate systems are always right handed. We refer to this initial
system as z||e.

We use the Euler angle convention of Messiah.1u Positive angles
mean rotation as a right-handed screw advancing on the axis of rotation
(right-hand rule). The rotation R(a,B,Y) begins with a rotation by «
about the initial z axis. This a rotation repositions the initial y
axis so that it may serve as the B rotation axis. The B rotation
proceeds about the intermediate, repositioned y axis; it carries the
initial z axis into the final z axis. The Y rotation uses the final z
axis for rotation.

A vector, a, in the z||e system has a polar angle (latitude)
measured down from the +z axis of eea; its azimuth (longitude) measured
from the +x axis is ¢‘€a. The three subscripts of the azimuth are the
reference axis, polar axis and vector label, respectively. More
generally, if the reference axis and polar axis are not perpendicular,
the azimuth is measured from the half plane bordered by the pole and

containing the reference axis. We design the rotation which takes the
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~

z||e system into the z||a system to use e as the reference axis in the

new system. To accomplish this we use R(¢ ’ eea, w) where the final

~

rotation by = brings the new +x axis into the same half plane as €. The

xea

~ A

+y axis of the z||a system is parallel to the vector cross product axe.
Spherical harmonics in the z}|e system may be written as a linear
combination cf spherical harmonics in the z||a system with unchanged

orbital angular momentum:
em> = |am'><im |R(aBY)|tm>
or

z ~
“N[a A ~ o~ olR)
Ylm(K) z2//¢ = m'azl Ym' (K) z//a Rmpm(GBY)

The rotation must take us back from z||a to z||e: we must use the

14
inverse of the z||e to z||a rotation. We have.
[R(a8N 1! = R(-a,~8,-Y)

(%) (-m, -0 -4 __J;

and the required rotation matrix elements are Rm'm ca’ xea

L
equivalently we may use Rm'm (o, 840 ¢ )7

Xea

Once we have moved into the z||a system, another scattering

)

potential along bond vector g will have angular coordinates (@

and the necessary rotation matrix elements will be R:,m (0, @

ab’ ¢eab

ab’ ™

~ ~ ~

) ). Note that if the coordinates of the vectors €, a, and b are

eab

known along an arbitrary (e.g. ¢rystalline) axis system, then the angles
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required for the rotation matrix construction may be derived from the

dot product €-a=cos BEa and a relation of spherical trigonometry:

coso
£

- coseE

acoseab+ 31neea31neab°°s¢eab

> >
Wwith the sign of ¢sab equal to the sign of b-(axe).
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APPENDIX C. ON THE TAYLOR-SERIES INTEGRALS

To calculate the origin-shift addition theorem coefficients with

the Taylor series formula we need to evaluate

Pq

fy

(ka) = } dg,(ka) (22'+1)
!"

% f11sinqe (cose-1)P Py, (cose) Pg(cose) dcosé

We have introduced dl(ka) as the non-asymptotic component of the
spherical Hankel functions, i.e. hl(kr)=dl(kr) exp(ikr)/ikr. We group
the sum and integral together to emphasize the restrictions the integral
will place upon the range of the sum. We work out individual cases

through second order; we also give recursive and explicit forms for

higher order.
The basic method is to express the product of coordinates and a

Legendre polynomial as a series of Legendre polynomials with raised and

lowered indices usin310

(22+1) sing P$+1(cose) = (2+m)(1+m+1)P?_1(cose) - (l—m)(z-m+1)Pz+1(cose)
and

(20+1) coso Pi(cose) = (1-m+1)P2+1(cose) + (1+m)Pz_1(cose)

This will leave the orthogonality integral for Legendre polynomials:
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r

1

1 Soqr
5 |-1Pgr

(cose) P (cose) dcos = B

and the sum on &' may be completed.
The specific cases we require are:
1) P =q =0. We immediately get the orthogonality condition

and
00
Hz {(ka) = dz(ka) (c1)
ii) p=1, q=0. The cos O recursion gives

10 1
Hy (ka) = (EIIT] [(1+1)d1+1(ka) + 4d,_,(ka) - (21+1)d2(ka)]

iii) p =0, q =1. The sin § recursion gives

L(%+1)

01
fy (ka) = ey

[d,_,(ka) - d . (ka)]

iv) Pp=2, q=0. The cos 0 recursion must be applied twice to

give

2
. [(1 1) [}

(2+1)(2+2)
Gy * Tyl k)

Hy (ka) = (gpg) | [Sgpm—14,,,

L(%-1)
[(22 1)]

o(ka) = 2(2+1)d, . (ka) - 22d;_, (k&) + (22+1)d (ka)}
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v) p=1, q=1, First the associated Legendre polynomial is
reduced to m = 0 with the sin @ recursion, then the cos o

recursion is applied. Then

(22+1)
(22-1)(22+3)

2(e+1) [(1 1)

1
H!‘ (ka) = m+1) (21 .‘) - 2(ka) - d (ka) +

dl(ka)

+d (ka) - (2+2)

g+1 i) dgantka) ]

vi) p=0, q=2. From the sin & recursion for m = 1 we have

(R+1)(2+2) [(1 1)1][

02
Hy (ka) =~y \oeny

o(ka) - d (ka)] -

(2+1) (2+2) [(2-1)1

“(20+3) (21+1)][d (ka) - d (ka)]

To check these results we employ a method demonstrated by Nozawau

Pq

to obtain recurrence relations for quantities like Hl

We consider

Jpq(ka) = ) (21+1) 1 Jz,(ka) —I 13in 99 (cose-1)P Py (cose)Pg(cosG) dcos@
2!

This is ho(ka)Hiq Wwith the spherical Bessel function jg(ka) replacing
hl(ka). If we avoid complex conjugation, we may use results derived for

qu for Hiq by replacing 11j2(ka) by dz(ka). We do not offer a proof of

this convenience; we find, however, that the results are correct.

Pq

The sum on &' in JE

i1s the Bauer formula, eqn (1), giving

ikacoso

1
qu(ka) = 5[11sinq9 (cose-1)P e Pg(cose) dcose@ (c2)



105

We may immediately deduce a recurrence in p:

A derivation for raising q is more involved. We consider the integral

11 d s Ay _1\P ikacose _q 1 _ p+L_p —-ika
5J-1 Jdeose [sin™8 (cose-1)"e Pl(cose)] dcos@ =§5q0( 1) 2Fe

A suitable definition of associated Legendre functions gives

q _.va (2+q)! -q
P, (cos8) = (-1 =7 P, (cose)

Thus

q )q (2+q)! P(-q)

sin TE:ETT 2

9 P:(cosa) = (-1 {cos8)
; . . th
where we recall that the parenthetical supe:'script q indicates q

derivative; for negative q we use

(-q) 1 d y4-q 2 A
P (x) 2 — | — (x —1)
A 221! (dx)

Qur integral becomes

(-1) Y +q)!
2 (L-q)!

1 d _,P_lkacose _(-q)
J_1 Jcoss [(cose-1)"e Py (cos0) ] dcose
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_1yP*L_p_-ika
= qu( 1) 2e
Applying the derivatives gives, for q not zero:

1
0y L (ararD (=) ka) - paf" ! Yika)

% L (c3)

ika

The cosine recursion for associated Legendre polynomials and the result

of operation on Jiq with (1/k)(3/3a) gives another useful relation:

gP*1.a

Pq Pq - Pq
2 gt . (2+q)J, 7, + (2-q+1)J

L+1

and the sine recursion gives

- p+1,q Pqy | pqa _ .p,q+!
(e-q)[gy +3g] = (aeQ)dy Jg (c4)
To collect these results we give a strategy for constructing a
table of ng. Equation (C1) and the recursion for dl(ka) generates the

first row:
(ka) - (28+1) 00

00 H, (ka)

00
H1+1(ka) = H1_1 a T By

The raising operator for q, eqn. (C3), gives the rows q = 1, t1; Equation
(Cl4) raises p using the current contents of the table and eqn. (C3)

again applies.



107

Finally, an explicit formula will be useful for discussing the
convergence of the Taylor series. The raising operator relation for p
may be repeatedly applied to give

q ika cos @

m
Pq 13 _ .41 ; q
JE = (ik a 1) 5 J sin'® e Pz(cos Q) de (cs)

-7

The remaining integral is proportional to an integral discussed by
it

Nozawa . If we recall that the associated Legendre polynomial with

maximum magnetic quantum number is simply related to sin @:

!
(Eﬂl;_ sian.

PY(cos @) = a
4 29 q1

we will consult Nozawa's equation 6.1:

L

1 i7j,(ka)
1 j iuka_q q (2+q)! L
5 du e Po(wIP (M) = ro=oyt (2a-1)1!
2 -1 q L L=q)t (ika)d
and write
L
j (K
JDQ (ka) = ( 9 - 1)P (L+q)! 1 Jl( a)
- 1 ¢
L ikaa (2-q)! (ika)d
Returning now to spherical Hankel functions we claim that
L
i h
e1ka pa (_l 2 )P (Leq)! i L(Ra)
i - 1
ika "% ik oa (£-q)! (ika)d

Notice that the exponential dependence cancels, taking with it the

constant part of the differential operator:

R
NI N i"h,(ka) tkag, 1 X dz(ka) :
ik oa (1ka)d 1k 33" (41a)a!
Then we have
pq . 1oap %K g
HQ. = jika (l—k a—a') T (E'Q)'
(ika)9d '
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We may substitute the series definition of dz(ka) to get

£
Pq (2+q)! ,_.\9,9*P (a+t)!  (t+p+q)! , i (t+q+p
Hy' (ka) = gg=qyr (712 cgo ET(-tIT ~ (trq)l (3ka’

or we can retain dg(ka) and apply the derivatives to the products

asdz(ka)

P9 (ka) - Lra)! 0P pr % (q+p-s)! (ka)®

L (2-q)! (ika)3'P ¢ 5-0 st(p-s)! 3(ka)®
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FIGURE CAPTION

Figure 1. Schematic illustration of the magnetic quantum number
expansion interpretation of eqn. (21). A polar plot of the
four lowest magnetic sublevels of a %=7 spherical harmonic is
superimposed upon a circle whose radius represents the
effective radius L of a nearest neighbor potential. The line
connecting the incident wave source and the potential origin
is used for the spherical harmonic polar axis and only the
region of angles near the pole is plotted. The angle
functions have been rescaled to place their first maxima on
the same radius. fhe m=0 sublevel (solid line) is seen to
overlap the strong central portion of the potential, while the
m=1 lobes (dotted line) peaks further from the axis. The m=2
'1obes (dot-dash lines) only intercept the far edges of the
potential and the m=3 level (dashed lines) completely missed

the mark.
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CHAPTER A4:

SMALL ATOM APPROXIMATIONS FOR PHOTOELECTRON SCATTERING
IN THE INTERMEDIATE ENERGY RANGE

ABSTRACT

Five approximate models for describing the scattering of spherical
waves by central potentials are explored. The point-scattering model
introduced by Lee and Pendry (Phys. Rev. B, 11,2795,(1975)) allows a
short-range potential to be close to the source; a new homogeneous wave
model lifts the restriction on the potential diameter, but requires
asymptotic incident waves. The popular plane-wave model requires both
an infinitesimal diameter potential and incident waves at their
asymptotic limit. For realistic potentials at near-neighbor
separations, none of these models is adequate: even a hybrid model
combining features of the point-scattering and homcgeneous-wave methods
does not allow for amplitude variation across the potential. The fifth
small atom model i3 based on a Taylor series, magnetic quantum number
expansion of the addition theorem for screened spherical waves. This
Taylor series approximation has the homogeneous-wave model as its zero-
order term and the exact spherical wave scattering process as its limit.
Multiple-scattering equations for Angle-Resolved Photoemission Extended
Fine Structure (ARPEFS) are derived and the effectiveness of these
approximations are compared. We demonstrate that while the plane-wave

model is reasonably accurate for near-180° backscattering, small angle
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scattering requires the curved wavefront corrections available in the

Taylor series expansion method.
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I. INTRODUCTION

The theoretical description of electron scattering in solids for
intermediate energ;es from 100 to 1000 eV faces a peculiar challenge:
simple physical models for the scattering process are surprisingly
accurate, while more sophisticated calculations become intractable. The
striking success of single-scattering, plane-wave models for the
qualitative description of Angle-Resolved Photoemission Extended Fine
Structure (ARPEFS)1 and of Extended X-ray Absorption Fine Structure
(EXAFS)2 has led to satisfactory empirical analysis of these
measurements, but multiple-scattering, spherical wave calculations are
too complex for routine quantitative analysis cases where the simple
model fails.

The two crucial theoretical issues--spherical vs. plane-wave
scattering and multiple versus single scattering--are entwined. First,
we must decide if the curvature of the wave emanating from one ion core
will influence the scattering of that wave by an adjacent potential. If
Wwe may neglect the curvature, then the scattering of electrons in a
solid reduces to a series of plane-wave calculations, connected only
through the wave phase and incident direction.3 If, on the other hand,
the curvature is important, more sophisticated calculations are
required. For single scattering of 1=1 photoelectrons we have
previously derived the required equations? Unfortunately the outgoing
scattered wave from the first scattering event will always contain much

higher angular momentum partial waves, requiring more sophisticated
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equations and leading to larger corrections. Thus if double scattering
is important, we certainly would expect the wave curvature to be
important.

This leads us to the second central issue in electron scattering:
the role of multiple scattering. The various experimental processes
address different aspects of this issue. The results of Low Energy
Electron Diffraction (LEED) calculations5 are clear: multiple scattering
is important. Theoretical work with photoelectron scatter'ing6 and more
recent work on X-ray absorption edges7 have utilized the relative
simplicity of the photoelectron scattering procesa to show that at
intermediate energies only forward scattering leads to multiple
scattering events at a level that cannot be neglected. Finally in EXAFS
the photoelectron returns to the ab-orbing atom: in the process a large
number of high angular-momentum waves are backscattered to the abso. cor.
Thus our previous conclusion that double scattering would require curved

wave calculations is contradicted by evidences'9

that a plane-wave model
contains the essential character of the EXAFS phenomenon; we might be
further tempted to extrapolate the empirical evidence and ignore
wavefront curvature for all scattering at high energy.3 Any correct
theoretical procedure must be compatible with all of these observations.

In a previous paper? we explored the wavefront curvature question
for single scattering of %=1 photoelectrons. Two important conclusions
from that work are i) curved wave corrections are much smaller for

backscattering than they are for forward scattering, and ii) only the

backscattering corrections get smaller at high energy; the forward
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scattering corrections do not fall asymptotically with large k. Because
the studies cited above alﬁeady demonstrate the importance of forward
scattering, and because the once-scattered wave will contain angular
momenta much greater than %=1, we are led to investigate curved
wavefront corrections to multiple scattering in the intermediate energy
range.

This would seem to be a rather straightforward project. We have
after all an impressive foundation in the low energy region from LEED
theory,5 photoelectron diffraction10, and, more recently, near edge x-
ray absor‘ption.11 Indeed, Tong and co-workers have extended their
photoelectron diffraction calculations into the intermediate energy
range,10 and their results have provided indications of the importance
of multiple scattering. These calculations are not, however, simple
extensions of the plane wave model; they are full curved-wave treatments
and consequently--for a reason we now discuss--much more expensive than
low energy multiple scattering calculations.

The origin of the difficulty in applying multiple scattering curved
wave calculations at intermediate energies is that the maximum angular
momentum in a scattered wave leaving a scattering atom increases with

electron wavenumber. The maximum angular momentum, % y Scattering

max

from a potential may be related to its range, Fos by1.2

= + = -
kr /e (% 1) Loa M

0 max max X
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As the energy--and hence the number of important scattered waves--—
increases, the number of numerical operations also increases. For plane-
wave models this increase is manageable because each scattering event
depends only linearly on lmax' On the other hand, the time required for
exact curved wave calculations are proportional to at least (2max)u'
prohibiting even exploratory multiple scattering calculations to be
attempted. (Also note that approximate curved wave calculations based
on a small, fixed maximum angular momentum will be incorrect above some
energy given by eqn. (1))7

Simply from the success of plane-wave models of electron scattering
we may conclude that another physical approximation must exist that
would allow accurate introduction of curved wave corrections with more
modest effort than the exact theory requires. 1In this paper we seek
such an approximation by examining five approximate models for the
scattering of spherical waves from central potentials:

i) point scatbgring,

ii) homogeneous wave scattering,

i{ii) plane-wave,

iv) renormalized homogeneous wave,

v) Taylor series-magnetic quantum number expansion.
The first four models were initially motivated by existing angular-
momentum expansions known as addition theorems. We discuss the
approximations necessary for each model and outline the physical
problems to which they apply. The fifth small atom approximation is

. 13 .
based on a new angular-momentum series expansion ~; it contains
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important curved wave corrections not included in any of the first four
models and it provides for orderly development of higher order
corrections.

In section II we discuss electron scattering of spherical waves by
the partial wave method and exact scattering of spherical waves in the
100-1000 eV range. Physically motivated small atom approximations to
the spherical wave formula are reviewed in section III, and we examine
some of the contributions to the success of the plane-wave model. The
remaining sections concern the fifth, more general small atom model.
Section IV applies the Taylor series expansion for the spherical wave
scattering to (1s) initial state photoelectron scattering. Section V
discusses spherical wave scattering factors which govern the convergence
of the Taylor series and Section VI illustrates the convergence for a
single example and describes an intuiti ¢ picture of the Taylor series
terms. We conclude in section VII with some remarks on further

applications.
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II. SPHERICAL WAVE SCATTERING AND NOZAWA'S GAUNT INTEGRAL SUMMATION

To provide the background for our development of approximate
electron scattering formulae, we will set up the electron scattering
problem, review Nozawa's origin-shift addition theorem1u for spherical
waves, and discuss the difficulty with this approach.

Our scattering system consists of a point source of electrons and a
lattice of non-overlapping central potentials (the muffin-tin models).
This model approximates a number of physical problemg. If the lattice
represents a surface system and the point source is a screened
photoemitter, then we have a photoelectron diffraction or Angle-Resolved
Photoemission Extended Fine Structure model. If the lattice is a bulk
material or surface system, the point source is again a screened
photoemitter, and we calculate an integrated photoabsorption cross
section, then we have an Extended X-ray Absorption Fine Séructure
(EXAFS) model. If the lattice is a surface, but the point source is a
once scattered electron from an incoming plane wave, we have part of a
model for multiple scattering, Low Energy Electron Diffraction (a sum
over all scattering potentials excited by the plane wave is required to
complete the LEED problem). For numerical calculation and physical
discussion, the photoelectron diffraction (ARPEFS) case is the simplest
problem because the scattered wave is directly detected. We shall
concentrate on this problem.

If we consider a model which consists of non-overlapping
potentials, we may calculate the multiple scattering by combining a

general description for a spherical wave scattering from a potential
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Wwith a prescription for enumerating all significant scattering paths.
Because we wish to describe photoelectron diffraction in the
intermediate energy range (ARPEFS), we will concentrate on the
scattering of photoelectrons originating from a (1s) level of an atom in
an ordered and oriented system. We will also choose our examples to
correspond to a recent ARPEFS exper'iment1 on the c(2x2)S/Ni(001) system.
When the angle-resolved cross section for S(1s) photoemission is
measured in such a system, the intensity oscillates with energy
demonstrating interference among channels describing the possible paths
to the detector-.15 Most of the interference occurs between waves
describing direct and single-scattered photoemission, but forward
scattering of the single~scattered electrons must also be included to
predict the interference amplitude cor'r'ectly.10 A more complete
discussion of the physics of photoelectron diffraction can be obtained
elsewher‘e?’w'16 For the purposes of this paper we note that:

1) dipole selection rules predict that a single p type (2=1)

| continuum orbital is populated through photoabsorption by a
(1s) initial orbital,

ii) by selecting the ; axis of our coordinate system parallel to
the electric vector of a polarized photon beam, the
photoelectron angular distribution can be written as
proportional to Y10(;) = (3/Uv)1/zcos 0,

1ii) in most materials, the photocion may be considered fully

screened on the absorbing atom, and
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iv) both the photoabsorbing atom's phase shift of the continuum
wave and the total atomic cross section appear equally in all
terms describing the final amplitude and thus do not affect
the oscillations. Thus the oscillations may be isolated by
normalization to form a function x(k)-I(k)/Io(k)-1 as in
EXAFS, but yx(k) contains no source-atom phase shift, in
contrast to EXAFS.

With these ideas in mind, we may write the important part of the

outgoing wavefunction as an %=1 spherical wave
wo(r) = ih1(kr)Y1o(r) (2)

We refer to this wavefunction as the "direct" wave.

We will use the scattering geometry depicted in Figure 1. We use ;
as a general position vector, and E as the propagation vector of the
electron, with k giving the electron wave number. We define the
scattering potential positions by ;, S, 3... for the first, second,
third and so on, scattering events. These latter vectors connect atoms:
they are "bond" vectors, not position vectors. The vector ﬁ is the
position of the angle resolving detector. Our convention and notation
for spherical harmonics, ¥1m’ are given in Appendix A of ref 13. For

brevity we use the notation Yzm(r). where r = rr/r. The functions jz(kr)

and hz(kr) = h;1)(kr) are spherical Bessel functicns as defined by, for

example, Pendrys, Appendix A.
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Qur discussion of the small atom approximations will consider the
single and double scattering of =1 photoelectron waves. A single
scattering event will have an incident =1 wave (eqn. (2)), but the
second event in double scattering will include all angular momenta
characteristic of the multiple scattering problem. Thus higher order
scattering can be built up by repeating the steps in the second part of
our double scattering equations.

To better understand the small atom models, we will first briefly
review the potential scattering of plane and spherical waves. If a
plane wave is incident upon the potential, the expansion in an angular

momentum series is well known:

AL S -
e = T T k0)Y ()Y, (K) (3)

z"m" ] Q,"m"

+ -> -> > 17 .
where k=ka and r = a + b. The partial wave method instructs us to

expect an outgoing spherical wave, ilhz(kr)Yzm(kr), proportional to each
regular spherical wave incident on the potential; the complex
proportionality factor, Tz, is derived from the partial wave phase
shifts, 61(k). and has both a scattering amplitude and wave phase shift:
161 1 1262(k)

Tl(k) = { sin 61 e -3 (e -1) ()

Thus the scattered wave becomes
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2’“h

¢+(B) a ) 4ni g 1"m"(8)Tz"(k)Y;"m“(;) (plane wave) (5)

a 9‘“ml|

(kb)Y

(We will subscript a scattered wave by its origin; for a wave at the
detector we replace b by E.).

If a spherical wave from a source at the origin is incident on the
potential centered at ;, the expansion in spherical harmonies has been
derived by Nozawa.m If the spherical wave emanates from the origin, we

-
may expand it around a as

R - [ ~

17h (ke)Y, (1) = lgm" Comgrmnt (KDY, () (6)
z u llh % ~ J -~ -~ » ~ ~

Gy manmn = mi 2,(ka)Y2,m,(a) Yzm(k)Yl,m,(k)Yl,lm"(k)dk

llml

where ;-;+3. In the mathematical literature, this type of formula is
called an addition theorem; we will refer to this equation as Nozawa's
origin-shift addition theorem. With this result we can calculate the

scattered wave as

2 A -
w;(b) - Egm" Tyn(KIGy oupnl Dgu(kD)Y o, (D) (7
where szzﬂm" is given above.

To understand and use this formula we must compute the integral of

three spherical harmonics, called the Gaunt 1ntegra1.18 This integral

can be related to the 3j vector addition (Clebsch-Gordan) symbols19 and
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Gaunt has derived an analytic formula to calculate its value. The

integral is non-zero only when
m'am+m, JA-R] S &' S A"+ g L' + 4" + § = even (8)

Pendr‘y5 gave a computer program to implement Gaunt's formula. Typically
a table of these Gaunt integrals is consulted in actual calculations.
The complexity of the formula for spherical wave scattering is
self-evident. In computer calculations we must recognize that the number
of transformation coefficients G is proportional to (zmax+1)u and

Q'mlllm"

each coefficient requires the summation of - lma complex numbers times

X
the Gaunt integral. Since 1max is roughly proportional to k, multiple
scattering calculations already difficult at k = 3)%_1 become
prohibitively expensive at k = 12A_1. Even this presumes that the Gaunt
integrals are calculated once and stored; for calculations to 600 eV
(lmax 2 19), -~ 106 integrals are required. For these reasons we must

approximate the scattering calculations.
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III. PHYSICALLY MOTIVATED SMALL ATOM APPROXIMATIONS

Faced with the intractable spherical wave equations we are led to
consider approximate forms. In this section we will examine four
approximations, which we will refer to as point scattering, homogeneous
wave scattering, plane-wave scattering, and the hybrid, renormalized
homogeneous wave method. 1In the point scattering model, the incident
spherical wave is treated exactly, but the potential is taken to have an
infinitesimal diameter. This model was introduced by Lee and Pendryaas
a small atom approximation for EXAFS. The homogeneous wave model allows
the potential to have a physical diameter but every incident wave is
assumed to have reached its asymptotic limit, exp(ikr)/ikr. The plane-
wave model is the common limit of both the point scattering and
homogeneous wave models; it assumes an infinitesimal potential and
incident waves at their asymptotic limit. The renormalized homogeneous
wave model combines the mechanics of the point scattering and
homogeneous wave methods. Figure 2 compares these approximations
graphically for an =7 spherical wave. We begin by deriving formulae
for the scattered waves in each approximation.

A. Point Scattering Model

The motivation for the point scattering model is a practical one:
the origin-shift addition theorem for plane waves, eqn. 3 is much
simpler than the corresponding formula for spherical waves, eqn. 6. To
repeat the physical approach of Lee and Pendry,8 we imagine the outgoing

spherical wave meeting a potential with a sufficiently small diameter so
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that we may ignore the curvature of wavefronts -cross the potential and
the change in wave amplitude and phase along the propagation direction
in the region of the potential. 1In other words, we represent an
incident spherical wave, izhz(kr)Yzm(;), over the infinitesimal point
potential by a plane wave with the amplitude and phase of the spherical

wave

X Lk ~. ikas(-3)
i hl(kr)YZm(l) i hz(ka)Ylm(a)e (9)

For a potential of finite diameter, the point-scattering approximate
wave will agree with the actual incident wave only at the point ;. As
illustrated in figure 2(b), this alignment and the common asymptotic
frequency of the exact and approximate waves leads to good agreement
between these waves except near the edges of the potential.

We may expand the plane wave with eqn. 3 and use the partial wave

prescription to derive the scattered wave as

~

0, = th a)y, @) [ T G Y (5

(a)i*'h,, (kb)Y
a £'m' L',a E

'm' %'m'
(10)

for an incident %=1 photoelectron wave (eqn. (2)). The same procedure
may be applied to the wave emanating from ; and scattering from a point
potential at E into the direction of 3 to give a double scattered wave:
+ ~ Ao ~
v,,(e) = ith (ka)Y, (a) T 4w T, (k)Y .(a)i" h, (kb)Y ,(b)

ab L'm? $ ,a Lo
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1"m“ 2'" 'b !‘"m"
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2

~ 'Rl
(D)™ hy, (ke)Yy,

(e)

(11)

It is useful to separate the spherical Hankel function into asymptotic

and polynomial parts:

ikr

L e .
i hl(kr) = dl(kr).

ikr

2
where dl(kr) is given by a series 0

% {(R+p)! (_l_)
pe0 p!(2-p)! ‘2kr

p
dl(kr) =

or, for practical calculations, by a recursion formula:

(28+1)

(kr) - “Tip

d1+1(kr) =di

dl(kr); d

Q

=1, d

1

=

1

+

Y
kr

(1

(12)

(13)

In the limit that 2kr >> L(R+1), dz(kr) = 1.0. We further define a

scattering factor

point

f‘ab

%,a

1
- % g (22+1) T (k) d (kb) P (cos O,

b’

which together with the addition theorem for spherical harmonics:

- g -
) Ylm(a)Yzm(b) = (24+1)P (cos 0,

m

b

)

(15)

(16)
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allows us to write

> - eika point eikb
by (P) = dy (k)Y o(a) == fop " Tp am
and
- i ej'ka point eikb point eikr
L
Vaple) =dg(kadY, (@) — £y % foe “ikr (18)

-
For a detector at a position [R| >> & _ /k the last point
scattering factor will converge to the plane wave scattering factor of

atomic physics:

plane _l
£ " g (28+1) Tl ;(k) Pl(cos eab) (19)

and the single-scattered waves calculated at the detector will be

s otk ane Jik|R-a]
lba(R) = d1 (ka)Yw(a) 3 faR IR (20)

and the double-scattered waves are

> > >

. _ika . ikb ik |R-a-b|
2y e point e plane e

Vo (R) d1(ka)Y1O(a) — . 5 ‘bR — T

{21)

B. Homogeneous Wave Model.
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The motivation and formulation of the homogeneous wave scattering
model is similar to the point scattering method. The idea is to
approximate the incident wave over the region of a finite range
potential. If we notice19 that a spherical wave reaches to within 10
percent of its asymptotic amplitude when kr 2 2%, and that the angular
distribution of a spherical wave is nearly constant whenever it has a
large amplitude, or conversely the angular distribution changes most
rapidly near nodes where the amplitude is small, then we are led to
approximate the spherical wave by its asymptotic limit, the isotropic

spherical wave, ho(kr):
L - -
i hz(kr)Ylm(r) = ho(kr)Yzm(a) (22)

Since ho(kr)sexp(ikr)/ikr, the homogeneous wave model explicitly
incorporates the radial decay characteristic of spherical waves but
allows no other variation in wave amplitude over the potential. 1In
particular, the model ignores the amplitude variation of Yzm(;)
laterally across the potential, the origin of our name "homogeneous
wave" model. Thus the radial form of the incident wave is rather
accurately approximated as shown in figure 2(c), but the waves are not
in phase at the center of the potential. Although not shown by the
radial plots in figure 2, the homogeneous wave model also incorporates
the basie curvature characteristic of spherical waves. Thus the phase
match between the homogeneous wave and the exact incident wave will

appear as in figure 2(c) for any radial cut through the wave source, but
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the match between the point scattering wave and the exact wave will be
->
worse than figure 2(b) for any cut which does not pass through a.
The isotropic spherical wave has a simple origin shift addition

theorem similar to that of a plane wave:

hq(kr) = ) (22"+1)11"j1"(kb)12"h

(ka)P, . (cos ©
E" a

g g ) (23)

b

and we may parallel the development of the point scattering equations

with a different scattering factor

00 _ 1 ;
fan = Tk L (22D T, (k) d

(ka) P, (cos @
2" a

'R L ) ’ (2}4)

b

and arrive at the scattered wave amplitude at the detector in the

homogeneous wave approximation

> >

~ _lka ik |R-a]|

> e 00 e
wa(R) = Y10(a) 3 faR T (25)
and
1k {kb ik |R-a-b
o (B) =¥, (a) & ® 00 e 00 gtkli-amb] (26)
ab ‘10 a "ab b bR ikR -

(The superscript 00 is retained to parallel the notation of ref. U4).
McDonnell, et al arrived at similar equations by an entirely different

route in their original paper on Auger electron scatterinng.
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C. Plane Wave Model.

Both the point-scattering and homogeneous wave models approach a
plane-wave model for large scattering distances [;l, but the distance at
which these models reach the plane-wave limit depends on different
parameters. In the point scattering model, the phase and amplitude
differences between the spherical wave and a plane wave at the
scattering point disappear as the dz(ka) approach 1.0. This requires

2ka >> lin(lin+1) where % is the incident wave angular momentum. For

in
homogeneous wave scattering we must move the potential far enough away
to ignore the variation in 1/kr across the potential in the direction of

propagation; this requires 2ka >> zout (2 t+1) where 1out is the

ou
outgoing wave angular momentum. (Note that these limiting criteria only
specify the reduction of small atom approximations to the plane-wave
limit; they are necessary but not sufficient conditions for plane-wave

accuracy compared to the exact curved wave results). In the limit of

either model the scattered waves at the'detector become

+ >
. A Glika plane eikln—al
lba(R) = Y10(a) - faR IR (27)

and

- ika

ikb ik|R-a-b|
i —n—

» e plane e plane e

Vap(R) = Y 0(@) 5— f —

ab 5 for TRR (28)




134

It is this "plane-wave" form of the scattering equations that leads to
the simple single scattering formulas for EXAFS8 and ARPEFS.15

Neither the point scattering nor homogeneous wave models have
persuasive advantages over the plane-wave limit in general scattering
problems. Point scattering models the incident wave well at one point,
without regard for the size of the potential. For point scattering to
apply, Wwe must be able to ignore the variation in 1/kr across the

potential; from the homogeneous wave equations we can see this requires

2ka >> 1 (%

out out+1)' (29)

Whenever this requirement is fulfilled, we have 2ka >> lin(lin+1) for

all L. i L and the plane-wave limit will be reached by the incident

in out
wave. In other words, only if we scatter high angular momentum waves

off a short range potential where Ein > L will point scattering

out
significantly improve on the plane wave model. Roughly the converse is
true for the homogeneous wave formulas. The homogeneous wave method
considers the size of the potential, but approximates the incident wave.
To ignore the difference in phase between the incident spherical wave
and the isotropic homogeneous wave, ho(kr), we must have zin(lin+1) <K
2ka. Whenever this requirement is fulfilled, we may ignore wave-front
curvature for all lout s Ein' Thus the homogeneous wave model will only
improve on the plane-wave model for scattering low angular momentum
waves from potentials with large effective radii, potentials which give
rise to high angular momentum waves.

Despite these restrictions there are important problems to which

these approximations apply. For the EXAFS single-scattering geometry, a
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complete range of angular momentum waves are backscattered to the
central atom, but only low angular momenta can couple through the dipole
matrix element to the initial state; waves striking the central atom

have zin > L For the ARPEFS single-scattering problem, dipole

out”’
excitation gives only low angular momentum waves for scattering and,
since the high angular momentum waves only appear asymptotically, we
have some cases of lout 2 zin. On the whole we might rank the
homogeneous wave model ahead of the point scattering or plane-wave
models more general scattering problems: low angular momentum partial
waves carry much more weight when the scattered wave is constructed. We
will also show in section IV that the homogeneous wave model is the zero
order Taylor series term.

Our distinction between incident and outgoing angular momenta
highlights the distinction - commonly overlooked - between the
asymptotic 1limit of spherical Hankel functions and the plane wave limit
of spherical waves.  The asymptotic limit of ilhl(kr) is
ho(kr)-exp(ikr)/ikr and we may invoke this limit whenever 2kr>>L(L+1).
Even if the asymptotic limit is justified, the plane-wave limit may
still fail to apply: the variation in (1/kr) across the potential may be
significant if the potential has a large diameter. Conversely, the
variation in (1/kr) may be neglected for a small diameter potential,
but, if the incident angular momentum is high, we are not in the
asymptotic limit of the spherical Hankel function. The plane-wave limit
incorporates two approximations: the asymptotic limit and a negligible

diameter potential.
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D. Hybrid Model.

Our contention that the point scattering and hcmogeneous wave
models have nearly opposite ranges of use would suggest a hybrid
"renormalized" homogeneous wave method in which the phase and amplitude
of the incident spherical wave is attached to the isotropic wave before
scattering. Thus over the region of the potential we would represent
the incident wave by

g (ke)Y g (F) = 4, (ka)Y, (2)h (kr).
This approximation would agree with the incident wave in radial form
(1/kr decay) and in phase and amplitude at a as shown in figyre 2(d),
and the phase agreement would extend to all points with |r|=|2|. While
such a small atom approximation would give good results for the EXAFS
and ARPEFS single scattering caseszz, we have no guarantee of success in
multiple scattering problems: the c¢riteria for the application of the
small atom models we have examined thus far are necessary but not
sufficient conditions for accuracy. The most serious limitation shared
by these small atom approximations lies in directions not graphed in
figure 2: none of the models described so far account for variation in
wave amplitude across the potential due to the angular dependence of the
spherical wave.

Rather than explore further the range of validity for these small
atom approximations, we turn instead to the development of a new fifth
approximation which allows steady improvement toward the exact curved-
wave result. The development of this Taylor series, small atom

approximation will comprise the following section; as a prelude we close
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this section with two topics related to the plane~wave model. The first
is simply tne mathematical reduction of the exact origin-shift addition
theorem, eqn. 6, to tne plane wave limit; the required approximation
bears upon our discussion above. Second, we attempt to understand the
formally disconcerting but empirically well-founded success of the plane
wave model, by listing several contributions to its usefulness.

E. Formal and Practical Plane-Wave Limits.

We may arrive at the plane-wave limit by replacing the spherical
Hankel functions in Nozawa's origin-shift addition theorem by their
asymptotic forms. We may then move the intermediate sum in equation 6
inside the Gaunt integral and, using the closure sum for spherical

harmonics, perform the angle integration to conclude that

ika -~ ¥

G (ka) ~ 4n S Yo (@)Y (2) (30)

Lmi"m"
The addition theorem for spherical harmonics (eqn. 16) and the partial
wave method then gives eqn. 27.

We may give the criterion for applying this approximation to
Nozawa's origin-shift addition theorem as 2'('+1} << 2ka wher= L' is
the angular momentum of the intermediate sum in equation 6. The maximum
intermediate angular momentum is restricted. by the non-zero Gaunt

integrals, eqn. 8, to be &' = 4" + g or ' = zin + 2 using our

out
notation from above. This sufficient condition for the plane-wave li.it

is much more restrictive than either conditions for the small atom
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approximations and would indicate that plane-wave formulas would be
adequate only for low angular momenta scattering from very short range

potentials. We turn then to list some contribution to the success of

)2,

the plane wave limit when 2ka is not much greater than (1in + 1out
Let us now try to understand the success of the plane wave method
despite the evident theoretical problem. There are five important
contributions:
i) The phase difference between the scattered wave and the
unscattered wave is dominated by their different origins.
Thus if we measure the phase difference between a
backscattered wave and an unscattered wave, the phase
calculated in the plané wave approximation need only be the
same magnitude as that given by the spherical wave f‘ormula.2
i1) Spherical Hankel functions r'each19 to within 10 percent of
their large kr limit when kr -~ 21max'
1ii) At large k, the large number of contributing partial waves
reduces the fractional error made in approximate treatment of
the highest % waves. In other words, the low % waves have
reached their asymptotic limit and the high % waves become
outnumbered.
iv) It has been discovered empirically from EXAFS analysis that
the phase difference in the plane wave limit for

backscattering may be reliably corrected by slight shifts in

the scattering energy.2 While discomforting from a
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theoretical viewpoint, the scattering energy is not measured
in the x-ray absorption experiment anyway.23

V) Finally, as discussed in reference 4, curved wave corrections

are much smaller for backscattering due to cancellation of
successive partial waves, or equivalently, as illustrated in
figure 3, a smaller region of the potential contributes to
backscattering.

Taken together, these ideas begin to explain the substantial
success of the plane wave model. To make further progress in
understanding the electron scattering or to enable efficient, accurate
numerical calculation, especially for forward scattering directions, we
must seek some approximation between the plane and full spherical wave

formulas.
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IV. TS-MQNE APPROXIMATION

To derive an approximate method beyond those discussed in the
previous section we return to the exact Gaunt integral summation
formula, eqn. 6, and ask how the known characteristics of the scattering
problem might be used to eliminate physically unnecessary aspects of the
mathematically exact origin-shift addition theorem. Any approximation
scheme must recognize that we require an expansion with a particular
form: it must be an angular momentum expansion about the potential
center. Our solution is to expand the Fourier transform of the spherical
wave in a Taylor series about the direction of the origin-shift vector,
;, translate the individual terms of the expansion, and obtain an
angular momentum series when each term is subjected to the inverse
Fourier transform. The result is a finite series capable of performing
_every duty of an origin-shift addition theorem, so we have reported its

development separately13. The formula is

. . 2-]a|
. (%) B} % L
i hk(kr)Ylm(r) q=§1 Neq qu (O.Ogap1T Oxea’ o5 Cpq

) unlznjl"(kr')Y

e Pq
i . (r )Nz"qho(ka)ﬂ (ka)  (31)

1" q 1"

(%)

where qu is a normalizing coefficient for spherical harmonics, qu is

1
a rotation matrix element 9, ng contains factorials from the expansion

of Legendre polynomials, and H:q(ka) may be expressed as an integral or
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various series. The precise definition of the factors is given in ref.
13. This reference also describes an alternative view of the expansion
in which the variable q is a magnetic quantum number in a coordinate
system rotated to align the scattering and quantization axes. We will
explore this magnetic quantum number expansion (MQNE) viewpoint in
section V, but we will use the acronym now to refer to eqn. 31.

To calculate the wavefield due to scattering of the direct wave,
eqn. 2, from a potential at a point ;, we first expand the direct wave
about ; using eqn., 31. For =1, a first order Taylor expansion is
exact:

10

% - 00
ih, (k)Y (r) = N, oRoot 000, a, 0 ca) 2 1% o (KDY o (DIN, UwlH “+H

2

+ Ny Ryg(0,0 ca,” by 2 i J (kb)Y (BN, _ UmH

01
L

L - 01
+ N1_1R_10(0.Gsa'w Oyca) E 17§, (ko)Y,_, (BIN, UmHy (32)

The rotation matrix elements are particularly simple when one of the

subscripts is zero19:

LHT )l/z
28+1

L ( *
Rmo(a,B.Y) = Ylm(ﬂ'“) (33)

-

Note all the magnetic sublevels here refer to the a axis (see =ef 13,

App. B). For g&s=t,
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-5 - 3/,
N1OR00(0’eea,ﬂ ¢xsa) N (Hw) cos eea (34)

and

1 : 1 ) 1 31,
NyqRyg(0:8gy ™y ca) = NyyR4(0:0 , T8, ) = 3 (3) "% sin e, (35)

To calculate the scattered wave emanating from the potential at
center ;, we replace izjz(kb) by Tl(k)ilhz(kb) in the origin-shift
formula. This single-scattered wave can then propagate to our detector
or scatter again. We first consider the single-scattered wave at our
detector,

For a detector at a position lﬁl > l;], the outgoing, scattered
partial waves have all reached their asymptotic limit. As will be more

apparent for the multiple scattering equations, it is convenient to

define a new scattering factor

00, >~ _ 1 pq |al (e-]a|)!
qu(ka.b) * 1% Z-?ql (20+1) Tl(k) H," Py (cos Gab) TE:+5+TT (36)

80 that the single-scattered wave may be written

eikR eika(1-cos eaR)

TkR 3 (37)

> 1
v, (R) = (E%) /2

00, + 00, = = 0o, » =
{cos eea[FOO(ka'R) + F10(ka.R)] + sin 0 _,C08 ¢€aRF01(ka,R)}

Reference Y4 presents this same result in a different notation; Appendix

A provides the connection.
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Let us now return to the single-scattered wavefield near center ;
and tackle the multiple scattering case. The (exact) Taylor series
origin shift, equation 32, and the partial wave phase snifts give the

single-scattered wave in the near field region as

. eika 2 1-]q| :
p_(b) = N (0,6 2 0 ) c
a q=-1 1q qO a, xea p=0 Pq
1 pa R -
= I U4r T (k) Hj(ka) N, i'h (kb)Y k6 (b) (38)

The dependence on S in each term of this expansion is that of a
spherical wave, ilhz(kb)¥gq(g), and as this wave encounters another
potential at position S, we can apply the MQNE formula and partial wave
phase shifts again to calculate the double scattered wave. If we call

>
w:S(R) the wave generated when the (%,q) spherical wave from a scatters

from S and is detected at ﬁ, then we have

: . > > >
PTG 0,0,,,m¢_ ) Ei|q | o 1970505 otk0 GLk[R-a-D]
- , T e
ab ql'—z Q.Q q & ab eab P'-O p qv b ikl'R’_;_Sl
{ 1 2max p'q’ lq" ('=1q'|)!
——— 1 1
® z'gq'(zz *#1) Ty, 300 H, (k) Py (coso,)igrrartyr! (39

We have separated the partial waves which reach the detector into

azimuthal, polar, and radial components so that we may recognize the



144

00
factor in braces as Fp,q, defined above. Summing over all of the (%,q)

partial waves gives the complete double scattered wave at the detector

as
ika ikb _ik|R-a-b| 1 1-|q]
ika -a- -|a
+ e e e 1 1
w_, (R) = I N Root0s0_, 1o ) ]
ab a b 1k|§';‘8| qa-1 1q qO0 a, Xea p=0 Pq

1 1-|q'] iq'¢ -
) { e PR pO0 8.R) (40)
qQ'=~1t p'=0

1 Pq
L 3 -
(% Zzlq y 2'+(k) HY “(ka) U ququ, q' q(0 O ™ beq ) C

We have reordered the sums on 2, p', and q' to isolate the factor in
braces. In that process we introduced the Taylor series order, 1, as
the limit for the sums on q' and p'. The factor in braces gives the
amplitude for waves of order pq to scatter off the potential at ; and
give waves of order p'q' in the direction of 3. Our next step is to
define most of the factor in braces as a Taylor series spherical wave
FD q’

scattering factor, » Where Fgg def'ined above is a special case.

To this end we break up the rotation matrix into polar and

azimuthal parts as given by Messiah19:
L -iaq" (%) -1y
Rgiq(aBY)= e % rorg(®) e q (41)
For our Euler angles we get
1q¢eab (Z)

(e__) (42)

2 - . (=119
Rq'q(o'eab'" 9cab) (-1)" e reratPea
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Edmondszu gives a formula for rz,q(-eea): his rotation is the inverse

of Messiah's. A symmetry in the rotation matrix allows his formula to

be used by switching indices:

(%) (2+q)! (R-q)! ty

rQ'Q(eea) = [TP,'PQ')!(?.‘Q')! ] 2
cosq+q'(eea] sinq_q'[eea] P(q_q"q+q')(cose ) (43)
=z = Pt €8
(a,8) . 19

where Pk (cos ©) is the Jacobi polynomial. If q' > g we use:

(%) _1ya-q" (R)
"q'q(eea) = (=1) rqq'(eea) (uy)

to avoid negative quantum numbers in the Jacobi polynomial; similarly if
q + q' < 0 we use
(%) q-q' (%)
rq'q(eea) = (=1) r-q—q'(eea) (45)
for the same purpose.
Removing the azimuthal dependence from the factor in braces in

equation (40) leads to our scattering factor,

(2-]q| ) L

PP U GE0) = = T (2T (k)EPY(ka) c
pa ! ik E=|q| 6.3 2 (1+|q|<)1 p'q’
) ]
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0 lavar] o, la-a'|
(cos —%E) (sin —%—) P;!Tq?'|'|q+q'|)(cos @ab) (46)
We have inserted the value of Ny N ' and mean for |a|, (laf,) to ve

the greater (lesser) of |q| and |q'|. We may similarly define the
overlap of the direct wave with anghlar momenta eigenfunctions in the
direction of a by

LY 1

Pq 1
P10(a,e) = N1quq‘0

(0.Gea.ﬂ-¢xea)cpq (47)

We also incorporate the signs from N the factor of exp(iqm),

Lq’ qu"

and the symmetry relations for the rotation matrices into:

s§i<-1)q jla-af+lal-fa’] (48)

as shown in Appendix B.

The single-scattered wave at the detector then becomes

. + +>
cika _tk|R-a|
1kR

v, (R) =

iq¢eaR

1 1‘q -~ -~ A
) % Foo(ka,R) e PP(a,e) | (49)

q=-1 p=0

The douhle-scattered wave is:
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. > + > :
) - ika  1kb oik|R-a-b| 1 T £q| (00 220 elq'¢abR
wab a b ikR q'=-1 p'=0 p'q" ’ q'
1 1=lal ., ., -~ ., lao "o
) & ngq (ks,b)sg e @b Pha(a,e) (50)
q-—1 p=0

and the triple-scattered wave may be written by inspection. These
expressions constitute our fifth small atom approximation for the

multiple scattering of photoelectrons.
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V. THE TAYLOR SERIES SCATTERING FACTORS

Convergence of the approximate curved-wave scattering formulae
derived in the previous section requires the scattering factors
Fg;q'(k;.b) to decrease rapidly as the Taylor indices p,q,p',q"'
increase. We devote this section to a discussion of these factors.

The success of plane-wave scattering models does not follow from
simple convergence arguments, leading us to suspect any purely formal
criteria for the Taylor series approach. Rather than pursue a general
account of the convergence we will discuss some of the properties of the
scattering factors using Ni atom scattering as an illustrative example.

The scattering factor depends on the four indices p,q,p', and q',
on the wavenumber-distance product ka, on the scattering angle between ;
and g, eab. and on the potential through the scattering phase shifts
Tz,a(k)' We refer to the superscript indices as outgoing wave indices
and to the subscript indices as incoming wave indices. The single zero-
order scattering faétor. Fgg , has been discussed in reference 4 (see
Appendix A.); its dependence on angle and energy is qualitatively
similar to the plane-wave scattering factor. As we consider larger
values of the indices we find that scattering factors with non-zero
outgoing wave superscripts are large while scattering factors with non-
Zero incoming wave subscripts are correspondingly small. When the
gcattered waves are formed by combining these scattering factors, large
outgoing wave indices are always paired with identical incoming wave
indices as the single prime indices in Fp'q'

pll q"
behavior makes convergence difficult to discuss. Thus we will rescale

(kb,c) Fg?q,(ka.b), but this
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the scattering factors so that they may stand alone. Our development of
this rescaled factor will also serve as our introduction to the nature
of the scattering factors.

Our goal for the rescaled scattering factor is to isolate the

p'q’
Pq
increase and to split this character between the incoming and outgoing

dominate character of F which allows it to converge as p and q
waves. The incoming wave indices p and q appear in the integral
Hiq(ka); the q index also appears in the angle functions, which we
discuss first.

The angle dependent terms in the scattering factor are:

NCIN

o Ja+q'| e_ |a=qa'| (|a-a'|,]|a+*a'])
ab ab
[ cos —5-] [sin —3—] Pl‘IQ|> (cos @,,) - (5?)

For the purpose of rescaling the scattering factor we may ignore these
angle terms: their product always has a magnitude less than, but on the

Same scale as 1.0. 1In passing, we note that the angle dependence

requires that

i) only factors with g=q' contribute to forward (eab=0)
scattering,
ii) only factors with g=-q' contribute to backscattering (Bab=w).

i{i) the angular factors do not change if both q and q' are

simultaneously negated or if q and q' are switched,
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iv) the angular factors alternate sign with increasing & for
a>n/2.
Item iii) is a consequence of the symmetry relations of the
rotation matrix elements and, coupled with the observation that all the

remaining dependence on q and q' in the scattering factor uses only

their magnitudes, we have this important relation:
p'q', > . p'-q', >
F ka,b)= (ka,b). 52
pg '*fp-q ). (52)
With no strong dependence on q in the angular factors, we must turn

to Hi?ka) for our rescaling relation. If we use the explicit formula

from appendix C, ref. 13, we may write:

- p p s
P’ ALz 1 (=1) p! (p+g-s)! s 9 dy(ka)
F, ka,b)a —— —— 2§ — (ka)® § (22+1)T, »(k) %
Pa TK (1ka)P*d 9% 4op STTP-a)! e=[al, S
(2+|q])? (1—|q|>)! (2+]|q'|+p*)! 1

TTaDT TeTal T (-[a =T 577 (2[alvep)tt Paqrifap’ 53

The leading term and the factorial terms containing % in this equation
reiterate an earlier theme from our discussion of the convergence of the
small atom approximations in section III: the size of these scattering
factors is determined by &(L+1)/ka. The product of factorials depending

on & in this form of the scattering factor may be expanded into a
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polynomial in 22 whose highest power is p'+{|q'|+|q|)/2. From these
results we propose a rescaled scattering factor according to

(kr )p+lq| /2

~

F'9a,b) =
Pq

P'at b 4
(kro)p'*IQ'f/Z‘ Fpq (422 ()

Empirically we find that all the rescaled factors for nearest neighbor

scattering are of a similar size. (We must also apply this rescaling to

p'q’
Plo?

cancels when the wavefunctions are constructed.)

the photoemiission factors, to insure that the scaling always
If we estimate the scattering radius by |f(e,k)|/2, our rescaled

scattering factor is roughly propcrtional as

—N'Aat! + =~ - r If(e'k)l L] 1] ]
FPrA0kE,0) & (P (g P LAV (LlTBdO i@t ra)/2
0

The first term in this expreésion contains increasing powers of (ro/a),
the angle subtended by the radius of the potential at a distance |a|
from the wave source. Thus if we compare scattering factors at a bond
length of |a| and 2|;|, we will find that first order terms are half as
large, the second order terms are one-fourth as large and so cn. The
second term may be interpreted as correcting the scattering potential
radius to account for the scattering angle differences: forward
scattering angles will have [lf(e,k)|/2]-ro while backscattering only

uses the central region of the potential, [|f(9,k)|/2]<<r0. Hence the
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convergence in backscattering is much more rapid. Finally, the last
term reminds us that the convergence does not improve with energy; it
may indeed worsen.

Representative examples of second order scattering factors for
nearest neighbor Ni atom scattering are illustrated in figures 4, 5, and
6. The more rapid convergence in backscattering is evident by the small
values of the higher order scattering factora for angles >90°, and a

first order Taylor series appears adequate for backscattering. Forward

angles may require higher than second order.
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VI. DISCUSSION

In the previous section we have shown that Taylor series terms of
order 1 fall off as (1/ka)’ where a is the bond length between
scattering atoms, and we suggested that the size of the Taylor terms is
governed by (ro/a)Tt

In this section we will

i) discuss the zero order term which survives at larger bond
lengths,

ii) give an example of the convergence of the series for a
particular nearest neighbor scattering,

iii) describe the magnetic quantum number é;bansion view of the
physical nature of the Taylor series small atom approximation,
and

iv) describe how this alternative view predicts rapid convergence
of the Taylor expansion for multiple scattering ARPEFS
problems.

We begin with the zero-order Taylor series term. With v = 0, the

scattering equations from section IV contain only one scattering factor
for each event:

00 1
Foo (kasb) = ¢ zzo (2+1)T, (k)d, (ka)P (cos @,

This is exactly equal to the homogeneous wave scattering factor fgg: the

b)* (56)

homogeneous wave model introduced in section III is the zero-order
Taylor series term. This means that the zero-order term represents the

scattering of spherical Hankel functions at their asymptotic limit, but
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it contains the 1/kr variation of ho(kr) radially along the potential.
Note that the zero-order term is not the plane-wave model, but, as
discussed in ref 4, the difference between the plane-wave factor fsiane
and fgg'is small for bhackscattering anglesf Coupled with rapid
convergence of the Taylor series for backscattering angles, we conclude
that the plane-wave approximation may be adequate for many
backscattering problems.

The same may not be said for scattering angles closer to zero. To
give some feel for the size of the corrections for forward scattering,
we have calculated the ARPEFS oscillations for a particularly important
geometry. We have selected our problem from the experimental study of
ref 1: we consider S(13) photoabsorption from c(2x2)S/Ni(100) with both
the emission and polarization vectors along the [110] crystallographic
direction. We concentrate on only two scattering events, single
scattering from the Ni atom directly behind the S photoemitter and
forward scattering of this backscattered wave through the S emitter.
The path-length difference between these scattered waves and the direct
wave are nearly equal at ~ 4. U4A, corresponding to the dominant frequency
in the experimental measurements. The backscattering angle is 173°
while the forward angle is 7°.

The results of these calculations are displayed in Figures 7 and 8

bV, T WY

8°8 0’0
x(k) = 22229 (57)
b

where
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bg = by Y ¥y ¥y, (58)
for ; running from the S emitter to the Ni scattering atom and 3 = —;.
Figure 7 compares plane-wave calculations with the "exact" apherical
wave calculation based on the Gaunt integral summation. The
oscillations in the plane wave case are much larger even though the
plane wave model slightly underestimates the forward scattering
amplitude. This means that the most of the discrepancy is the phase
error made in the plane-wave forward scattering. The forward scattering
phase shift estimated by the plane-wave model is too small. Thus the
single scattered and double scattered waves are nearly in phase and
their sum has an amplitude 170% of the single scuitering amplitude.

With the correct forward-scattering phase-shift, the double-scattered
wave is ~ n/2 out of phase with the single scattered wave and the sum
has a more modest amplitude.

Figure 8 illustrates the Taylor series model results. We are able
to display only the zéro—order result on this scale: the first-order
Taylor series cannot be distinguished from the exaect calculation. Thus
at least for this important scattering geometry, the Taylor series is
converged at first order. Qur alternative view of the Taylor model
which we develop next will help to understand this remarkable
convergence and will lead into our discussion of more general scattering
geometries.

Before leaving figure 8 we note that the phase of the zero order
{homogeneous wave) result is accurate while the amplitude is too large.

This means that important differences between the asymptotic limit of
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the spherical Hankel functions and the plane-wave limit appear in the
phase of the double scattered wave. We have also calculated (but not
plotted) these scattering events with the hybrid renormalized
homogeneous wave model described in section III: we find a curve
roughly half way between the zero and first order results.

The surprising success of the first order Taylor expansion has an
interesting origin which will lead to the third topic of this section,
the MQNE description of the Taylor expansion. The first-order Taylor
expansion is accurate because the origin-shift addition theorem does not
change the magnetic quantum number if the shift is parallel to the =z
axis13. For the scattering geometry we selected, the outgoing
photoemission wave has m = 0 along the electric vector. Since the
scattering atom vector is nearly parallel to Z, the scattered partial
waves will also have m = 0, even if they now have & from 0 to Qmax‘
Encountering the sulfur atom and scattering into the detector will give
double scattered partial waves also with m = O along E. Thus to a fair
approximation we need only m = 0 waves for the entire problem.

What of a more general geometry? Consider, for example, scattering
first from the Ni atom directly behind the sulfur atom followed by
scattering from another nearest neighbor Ni atom. Then the second
scattering vector, E, will no longer lie parallel to 5. To use the
result that m will not change for z axis shifts we must rotate the m = 0
partial waves emanating from the Ni atom at a to the z||b system. This
rotation will include all magnetic sublevels -%sm'&% in the z||b system

in proportion to the overlap integral (rotation matrix element) between
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spherical harmonics in the two systems. These manifold sublevels are
not, however, equally effective in scattering from the second Ni atom.
As illustrated in Fig. 9, the m=0 spherical harmonics overlap the
potential along the scattering bond length, m = 1 waves overlap the
potential farther from the axis and so on until some m = 1 sSublevel
does not overlap the potential at all. Thus only the 1 lowest magnetic
sublevels need be overlapped with the m = 0 waves and--by Nozawa's
result--only the 1 lowest sublevels will appear on center b as scattered
waves. For a triple scattering event, these lowest 1 sublevels will
need to be rotated to 1 sublevels along the new scattering axis. Hence
we identify the rotated-frame magnetic sublevels with the q index in the
Taylor expansion model.

We can push this picture farther by comparing the classical orbits
sketched in Fig. 3 to the incident spherical harmonics in Fig. 9. The
largest magnetic sublevels only overlap the outer regions of the
potential, regions which contribute to forward scattering, not
backscattering. This would suggest, again, that the Taylor series will

converge much more quickly for backscattering.

VII. CONCLUSION
We have explored five small atom approximations. Some specific
points bear summarizing here:

i) the success of plane wave models relies on backscattering

geometries,
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ii) the plane-wave model requires incident waves at their
asymptotic limit and a small diameter potential; it is
inappropriate for multiple scattering calculations in solids,

iii) the point-scattering and homogeneous-wave models are
inadequate for multiple-scattering in the intermediate energy
range, at least for near neighbor scattering,

iv) the homogeneous-wave model is the zero—-order Taylor series
term,

v) the Taylor series model allows methodical improvement in
scattering calculations, and it follows from physically
appealing magnetic quantum number expansion picture of the
scattering partial waves.

We have also developed the multiple scatrtering equations for ARPEFS
with the Taylor series expansion of the origin-:aift addition theorem
and illustrated the results with a two atom modeil.

The most direct extension of this work would be the application of
the Taylor expansion method to simulations of experimentally measured
ARPEFS curves. In addition to the elastic, multiple scattering
equations derived here, we must also include important inelastic
scattering factors and effects such as finite aperture integration
before quantitative agreement with experiment could be expected.

Under the appropriate development, the MQNE origin-shift addition
theorem will also give multiple scattering models for other
spectroscopies based on electron scattering in the intermediate energy

range. EXAFS should yield to a low order expansion since the multiple
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scattered wave must always return to the absorbing atom: forward
scattering will necessarily be coupled with backscattering as in the
example in section VI. Electron diffraction in the 100-600 eV range
should also be amenable to the treatment given here with the direct wave
replaced by the incident plane wave. The first scattered wave will, of
course, then be given exactly by the plane wave scattering factor.

The Taylor series expansion itself deserves further exploration.
Accurate error bounds would eliminate empirical verification of
convergence. Alternate parameterization of the scattering factors might
reduce the computation burden required for the scattering calculations.
The magnetic quantum number expansion picture suggests that a variation
of the equations presented here could be built up from rotation matrices
and Nozawa's origin-shift formulas. Finally, the formulation of the
exact multiple scattering equations (matrix inversion method) with the
Taylor series result should be examined. At least pairwise or colinear
multiple scattering seems feasible but more complex geometries would

require detailed study.
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APPENDIX A. COMPARING NOTATION WITH REF. 4

We have deduced a formula equivalent to eqn. (37) for the exact

curved wave scattering of =1 waves in ref. U4; we demonstrate that

equivalence here. The single-scattered wave from ref. 4 may be written

ik{R-2] _ika

> 3 .,1/2 e e 00
w;(R) = (ﬁ;) TR {d1(ka)cos 0. faR
10 i . 01
i cos eea faR Ra sin esa sin eaRcos ¢EaRfaR
where
n n
o d (ka) 9
] e A L e
L=0 (3ka) aR
From our new definition we have
cos @
00 00 €a 00
cos 0, Foo *+ cos @_F o= —— 120 (21+1)Tl(k)P1(cos o) [H,
and from Appendix C, ref. 13
Q0 10 L+1 ]
Ho o+ Ho o= Logd gy * 37 deere

Using eqn. B9 in Ref. 4, the right side becomes

00 L0 dy 1 3d, (ka)
% 1 L Tkr 3(ka)

10

% 3
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Working back through the definition of fgg and f;g shows that

QQ 00 00 . 10
cos eeaFOO + Ccos eea F10 - d1(ka) cos esa faR i cos eeafaR'

where d1(ka) = 1 + i/ka. Similarly we write out

P _(cos @)
00 ,» > 1 L
Foy (@:R) = 1 g (22217 ) gy [dp-17d541]
where a factor of L(%+1) in Hiq cancels the last factorial in the

00

definition of FOI'

The connection between associated Legendre

polynomials and derivatives of Legendre polynomials:

0 m dml(cos 0)
Pl (cos 0) = sin® EEE—
d{cos 0)
and the recursion for dz gives
sin o cos © ain 8
. 00 > €a eaR aR _01
sin Oeacos ¢eaRF01 (a,R) = T’r raR'

These close connections demonstrate that i) the differential formula of
ref. 4 could be used as a basis for a Taylor expansion, ii) the rotation
matrix approach employed here for approximate origin shift will lead to
compact exact origin shift formulas, and iii) individual scattering

00 : p'q' o
factors qu, and by extension qu » can be interpreted as specific

spherical wave corrections as described in ref 4 and 13. Qur new

formulation is recommended for numerical work.
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APPENDIX B. ON THE SIGN FACTOR Sg'

The sign of the Taylor series scattering factor is a combination of
the signs in the definition of qu:

-9 qz2?

(n q < 0,
the factor of exp(ing) from the rotation matrix, and the symmetry
relations for rotation matrices. Note that the symmetry relations are
applied depending on the sign of q-q' and q+q'; we have four cases:

i) qQ+q'20,q9q-9'20
a'q > T ré'q(s)
i) q+q" 20, q-q' < 0

2 q+q'_%
= (-1 r
rq,q(B) (=-1) qq,(B)
iii) q +q*' <0, q-q' 20
L L
rq,q(B) = r_q_q,(B)
iv) q+q'<0,q=-q"' <0
%

rrg® = <-1)q‘q'rq,_q(s)
In case iii) the factors of (_1)q—q' cancel from successive symmetry
relations; in cases iii) and iv) the criterion for equation (44) to
apply changes since equation (45) negates the indices. Surveying these
cases shows that only when (q-q') < 0 will factors of (-1) be required.

To summarize these factors we note that

lq} +q =0 if qs0

= 2|q] ir qQ>0

while
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la-a'| - (q-q") = 2|q-q'| if (q-q') s 0
= 0 if (gq-q*) > 0.
All of the factors may be written then as

sq = (19 glamari=taman) ylal+a jlarf+ar,

or since 1ulq'| = 1,

sg = (08 plaati+lal-fa],



164

ACKNOWLEDGEMENTS
This work was supported by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Chemical Sciences Division of the U.S.

Department of Ernergy under Contract No. DE-ACQ3-76SF00098.



165

REFERENCES

1. J.J. Barton, C.C. Banr, Z. Hussain, S.W. Robey, J.G. Tobin, L.E.
Klebanoff, and D.A. Shirley, Phys. Rev. Lett. 51, 272 (1983).

2. P.A. Lee, P.H. Citrin, P. Eisenberger, and B.M. Kincaid, Rev. Mod.
Phys. 53, 769 (1981).

3. B.K. Teo, J. Am. Chem. Soc. 103, 3990 (1981); J.J. Boland, S.E.
Crane, and J.D. Baldeschwieler, J. Chem. Phys., 77, 142 (1982).

4, J.J. Barton and D.A. Shirley, "Curved Wavefront Corrections for
Photoelectron Scattering,"” LBL-18692 , and submitted to Phys Rev. B

5. J.B. Pendry, Low Energy Electron Diffraction, Academic Press,

London, (1974).
6. S.Y. Tong, C.H. Li, "Diffraction Effects in Angle-Resolved

Photoemission Spectroscopy" in Chemistry and Physics of Solid

Surfaces V.III, CRC Press, Boca Raton, Florida, 1982.

7. B.A. Bunker and E.A. Stern, Phys. Rev. B 27, 1017 (1983).

8. P.A. Lee and J. B. Pendry, Phys. Rev. B 11, 2795 (1975).

9. V.A. Biebesheimer, E.C. Marques, D.R. Sandstrom, F.W.Lytle, and R.B.
Greegor, J.Chem. Phys., 81, 2599 (1984).

10. C.H. Li and S.Y. Tong, Phys. Rev. Lett. 43, 526 (1979).

11. P.J. Durham, J.B. Pendry, and C.H. Hodges, Comp. Phys. Comm. 25, 153

(1982).

12. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, John Wiley

and Sons, New York, 1977.



13.

14,
15-
16,
17.
18.
19.
20.
21.
22.

23.

2“.

166

J.J. Barton, and D.A. Shirley, "Approximate Translation of Screened
Spherical Waves," LBL-19076, and submitted to Phys Rev. A., and
Chapter 3.

R. Nozawa, J. Math. Phys. 7, 1841 (1966).

P.A. Lee, Phys. Rev. B 13, 5261 (1976).

P.J. Orders and C.S. Fadley, Phys. Rev. B 27, 781 (1983).

L.I. Schiff, Quantum Mechanic¢s, 3rd edition, McGraw-Hill, New York,

1968.

J.A. Gaunt, Phil. Trans. Roy. Soc. (London) A228, 151, (1924).

A. Messiah, Quantum Mechanics, John Wiley and Sons, New York (1958).

M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions,

National Bureau of Standards, Appl. Math. Services 55, (1964).

L. McDonnell, D.P. Woodruff, and B.W. Holland, Surf. Sci. 51, 249
(?975).

H. Daimon, H. Ito, S. Shin, and Y. Murata, J. Phys. Soc. Japan, 53,
3488 (1984).

A.R. Edmonds, Angular Momentum in Quantum Mechanics, 2nd ed.

Princeton University Press, Princeton, NJ (1960).

B.A. Bunker and E.A. Stern, Phys Rev. B, 27, 1017 (1983).



167

Figure Captions

Figure 1,

Figure 2.

Definition of the vectors used in our scattering equations.

The electric vector is represented oy €. We place the origin
-+ +>

at the photo-emitter, tne detector lies along R. Vectors a,

<>
b, and so on run from one scattering atom to the next.

Schematic illustration of four small-atom approximations
described in Section III, plotted along the scattering vector
3. Every panel contains, as the dotted curve, a graph of the
imaginary part of the spherical Hankel function for & =7, k
= BA-1. The abscissa gives the distance from the wave
function origin in A. Each panel also contains an arrow
centered at 2.23A, the S-Ni bond length for c(2x2)S/Ni(100),
to indicate the extent of a Ni atom potential of effective
radius 0.84. (a) Plane-wave model, functional dependence
agrees with spherical wave but has errors in phase and
amplitude. (b) Point-scattering model, phase and amplitude
correct at r = 2,23, errors in both at the edges of the Ni
potential. (c) Homogeneous-wave model, correct in (1/kr)
dependence of amplitude, errors in phase, some small errors
in amplitude at edge of Ni potential. (d) Hybrid,

renormal ized homogeneous-wave method, substantially correct

over the range of the potential, some error at the small r

edge of the Ni atom.



Figure 3.

Figure 4.

Figure 5.
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Schematic semiclassical orbits for an attractive potential.
If the circle represents the effective radius of a screened
nuclear charge, then particles with large impact parameters
will sample only the weak outer region of the potential and
scatter. through small (forward) angles. Particles with small
impact parameters orbit the strong nuclear attraction and
exit at large (backscattering) angles. The connection to
wave scattering is made through b = &/k where b is the impact
parameter: large % partial waves contribute to forward

scattering and small % waves dominate for backscattering.

Taylor series scattering factor amplitude at k = 8

2.23A, as a function of scattering angle, ea The

b
scattering factors generally have similar shapes whenever
they agree in |gq-q'| and |q+q'|; hence we will only plot
representative examples. We adopt the notation (p'q'lpq).
(a) solid line (00|00), an example of factors with |q-q'| =
0, |g+q'| = 0. This is the single zero order factor. (b)
circies (01|10), |q+q'| = 1, |a-q'| = 1. (c) crosses
(02}20), |q+q'| = 2, |q-q'| = 2. Factors are multiplied by 3
after the break at 60°; the right hand scale applies to this

region.

Same as figure 4; note the increased scales. (a) solid line

(00}01), |q-q'| = 1, |q+q'] = 1; (b) circles (01]|01), |q-q'|



Figure 6.

Figure 7.

Figure 8.
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= 0, [g+q'| = 2 (c) crosses (02/01), |gq-q'| = 1 |q+a'| = 3;

(d) plus symbols (02/02), |q-q'| = 0, |g+q'| = 4.

Same as figure 4. (a) solid line (11/20) |q-q'| = 1, |q+q'|
= 1. (b) cirecles (01/1-1), |q=q'| = 2, |q+q'| = 0. (e)
crosses (02/1-1), |q-9'| = 3, |g+q'| = 1. (d) plus symbols

(02/0-2), |a-q'| = 4, |q+q'| = 0.

ARPEFS oscillations calculated by exact Gaunt integral
summation (thick curve) and plane wave approximation (thin
curve). These curves simulate the fractional oscillation of
the S (18) partial cross-section from ¢(2x2)S/Ni(100) along
{110], but consider only a single Ni atom scatterer. The
inset diagram illustrates the three waves which sum to give
the photoemission final state, the direct, single-scattered,
and double-scattered waves. The backscattering angle is
173°%; the forward angle is 7°. Both curves have been
multiplied by exp(-0.02k2—2.23/.173k) (Debye Waller and
inelastic attenuation) to give a more realistic amplitude

comparison.

Same as figure T except comparing the exact Gaunt summation
to the zero order Taylor series result. The first order
Taylor result cannot be distinguished from exact, on this

scale.
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Figure 9. Schematic illustration of the magnetic quantum number
expansion interpretation of egn. (31). A polar plot of the
four lowest magnetic sublevels of a =7 spherical harmonic is
superimposed upon a circle whose radius represents the
effective radius ry of a nearest neighbor potential. The
line connecting the incident wave source and the potential
origin is used for the apherical harmonic polar axis and only
the region of angles near the pole is plotted. The angle
functions have been rescaled to place their first maxima on
the same radius. The m=0 sublevel (solid line) is seen to
overlap the strong central portion of the potential, while
the m=1 lobes (dotted line) peaks further from the axis. The
m=2 lobes (dot-dash lines) only intercept the far edges of
the potential and the m=3 level (dashed lines) completely

missed the mark.
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CHAPTER 5:

Theory of Angle-Resolved Photoemission Extended Fine Structure

WBSTRACT

We outline the form of a theory for photoelectron scattering in the
100-1000 eV energy range to simulate experimental measurements of Angle-
Resolved Photoemission Extended Fine Structure (ARPEFS) from ordered
crystalline solid surfaces. The problem is divided into a zero-order
problem of photoabsorption in the presence of the solid's valence
electron density and a scattering problem which incorporates the
scattering ion-cores in a perturbation series (cluster expansion). The
dynamics of core-hole relaxation are discussed but the dynamic effects
are shown to be small. The Taylor-series magnetic quantum number
expansion is used for the curved-wave, multiple-scattering equations.
Surface barrier refraction is discussed, but we argue that a velocity-
dependent surface barrier gives only an inner potential shift with no
surface electron refraction. Analytic formulas for aperture integration
are derived and discussed; thermal averaging in a correlated Debye model
is extended to multiple scattering and scattering amplitude averaging is
included. Reasonable values for non-structural parameters in the theory
are shown to give good simulations of the expsrimental ARPEFS
measurements from c(2X2)S/Ni(001). We find, in agreement with full
multiple-scattering calculations, that forward focussing is a
fundamental feature of ARPEFS and that curved-wave corrections are

essential for semi-quantitative results. Since the scattering path
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length difference is not altered by forward scattering, the ARPEFS
oscillation frequency is nearly equal to the geometrical path length
difference but the amplitude and constant phase of the oscillations

cannot be predicted by single scattering theory.
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I. INTRODUCTION

Much of the interest in adsorption studies on clean, single-crystal
surface relies on the usefulness of these systems as well characterized
models for more complicated interfaces. Unfortunately, characterization
of even these model systems has proven difficult. We have been

exploring1 a new approach to determine surface structures with core-
level, angle-resolved photoemission. Core-level photoemission provides
an element-specific, surface-sensitive, localized probe for adsorbates.
By employing angle-resolved photoemission with polarized light we may
independently orient the emission and polarization vectors: we can view
the surface structure from many different angles and emphasize different
atoms. These distinctive features of photoemission have lead to a
number of experimental measurements and theoretical analysis3'u of
surface structures, primarily by means of two measurement techniques,
azimuti.al photoelectron diffraction (APD) and normal photoelectron
diffraction (NPD). Recently, we r‘eported1 the first structure
determination using a new photoelectron diffraction technique which we
call angle-resolved photoemission extended fine structure (ARPEFS). 1In
this paper we will describe a theoretical uodel which provides the basis
for analyzing ARPEFS measurements to extract surface structure
information.

Experimental measurements of ARPEFS are very similar to those of
normal photoelectron diffraction. An ordered overlayer, adsorbed onto a
single crystal, is irradiated with soft x-rays from a tunable,

monochromatic photon source. The photon energy is scanned from 50 to

500 eV above some core energy level characteristic of the overlayer. At
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each energy, the photoemission intensity in a carefully selected
emission direction is recorded. The resulting curve of Intensity versus
electron kinetic energy contains oscillations we call ARPEFS. These
measurements differ from NPD measurements only in their higher and wider
energy range and in the unrestricted choice of emission angles.

The more significant differences between NPD and ARPEFS lie in the
interpretation of the measurements, specifically, in the process of
extracting the surface structure information. NPD was viewed as being
closely related to low energy electron diffraction (LEED); the measured
oscillations were ascribed to multiple scattering interferences and
analyzed by trial-and-error comparison to sophisticated calculations.u
ARPEFS is viewed as closely related to extended x-ray absorption fine
structure (EXAFS); the scattering interferences seem to be directly
related %o individual scattering atoms and the scattering geometry may
be extracted by Fourier analysis.1 One important goal in this paper is
to examine the justifications for this simplified view of ARPEFS.

The physical explanation for ARPEFS is based on elastic electron
scattering. Core-level photoabsorption gives a localized, atomic-like
outgoing photoelectron wave. Direct propagation of this wave into the
detector gives the overall atomic-like cross section to the ARPEFS
curve. Propagation of this wave to the core region of nearby atoms
creates a second set of elastically scattered waves which can also reach
the detector. Interference between these two sets of waves give rise to
the ARPEFS. Since the interference extrema occur for slectron
wavenumbers which are integral multiples of = divided by the difference
in path lengths for direct and scattered waves, the path length--and

hence the geometry--can be determined from the oscillation frequency.



184

This is the physical picture presented by Lee although he noted
that the same physics had been described earlier-6 and McDonnell7 et al
had analyzed angular distributions of Auger emission with an equivalent
model. Lee drew strong parallels between EXAFS and angle-resolved
photoemission, further suggesting that Fourier analysis might be used in
the analysis of angle-resolved photoemission. This localized, single-
scattering cluster model was not thought to be adequate for the analysis
of normal photoelectron diffraction data.u'5 Instead, the full multiple
scattering analysis used for LEED was adapted to photoemission, first by
Leibsch8 and later and more extensively by Tong and cowor'lrcer's.)4 The
success of this adaptation is evident in a series of surface structure
analysis based on this approach.3'u

Despite the success of the NPD analysis, the complexity of the
theoretical analysis is discouraging. The first step toward a simpler
technique came when Hussain, et al9 applied Fourier analysis to
theoretically generated, wide energy range NPD curves. Hussain was able
to relate peaks in the Fourier amplitudes to the interplanar spacing of
adsorbate and substrate layers, While this would suggest that some
simple model would predict the NPD curve, it would also seem to rule out
Lee's model of localized scattering. Lee's model would seem to predict
shells of near neighbor distances in the Fourier transform, rather than
the interplanar distances observed. Orders and Fadley10 resolved this
dilemma by investigating in detail a single scattering cluster model
similar to Lee's. They noticed that the strong peaking of the
scattering angular distribution for backscattering in the intermediate

(100-600 eV} energy range would highlight =ubstrate atoms directly below

the adsorbate in the NPD normal emission geometry. Thus, the localized
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EXAFS-like theory could explain the Fourier transform result without
resorting to a multiple scattering model.

With the basic form of the localized cluster theory reconciled with
the NPD theoretical curves, we measur‘ed1 intermediate energy off-normal
photoelectron diffraction data for c(2x2)S/Ni(100) and applied the
techniques of EXAFS analysis in an attempt to derive the surface
structure., To emphasize the differences between these measurements and
their analysis and the NPD measurements and their multiple scattering
analysis, we have called the new technique angle-resolved photoemission
extended fine structure (ARPEFS).

The success of Lee's model as a basis for interpreting the ARPEFS
to extract structure does not follow from the quantitative accuracy of
numerical calculations with the model. In fact, numerical calculations
by Bullock, Fadley, and Or‘der‘s11 demonstrate that the basic single-
scattering theory reproduced only the barest outlines of the
experimental results. From the experimental measurements and their
Fourier transforms, it appears that only backscattering atoms and
nearest neighbor atoms contribute substantially to the ARPEFS curve,
Many other atoms contribute to the theoretical curves, giving the
simulated measurements (x(E)) too much structure and the theoretical
Fourier transform far too many peaks. Although Bullock, et al.
concluded from their calculations that a great many scattering atoms
must be considered when analyzing ARPEFS, we believe their conclusions
are valid only for their single-scattering theory curves and do not
apply to the experimental measurements.

As the development of EXAFS 111ustrates,12 only a semi-quantitative

model is necessary when the measured signal is sinusoidal with a
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frequency dominated by geometrical path length differences. However, an
accurate theory can forestall errors or misunderstandings inherent in a
purely empirical model and confirm--or refute--models for the underlying
physics of electron scattering. Furthermore, a complete theory will
suggest new experimerncal techniques or new information which may be
derived from existing measurements. Thus we take up the theory of
ARPEFS.

Our ultimate goal for the theory is a simulated curve which
approaches the measured data points to within their experimental
precision. 1If a theory fails this test we could seek improvements by
changes in i) the form of the theory, ii) non-structural parameters in
the theory, or iii} structural parameters in the theory. These areas
aré, of course, tightly coupled, but in this paper we will concentrate
solely on the form of the theory. Although we know better, we will
assume that the non-structural parameters and the structure itself are
well understood from independent sources.

Furthermore, our treatment will be more complete in its statement
of problems than {t will be in proposed solutions. We attempt tc survey
the whole theory, giving each part only that consideration essential to
the determination of surface structures with ARPEFS. We believe a more
thorough study of several problems described here would be useful and
interesting, but our specific goal in this paper is to clarify the
issues.

Some of the ingredients of this ARPEFS theory have already been
presented before. Beyond the qualitative analysis of I_.ee6 and
McDonnell et al's early Auger results7. theories which describe

photoelectron scattering in the intermediate energy range have been
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10,11,13,14

developed by Fadley and coworkers. Fujikawa,15

and Tong and
Y
coworkersa.
Building on earlier work in azimuthal photoelectron diffraction,1u
Orders and Fadley10 applied a single scattering cluster model to normal

emission ARPEFS. Their calculation includes:

i) single scattering,

ii) plane waves,

1ii) full partial-wave expansion of the scattering potential,
iv) uncorrelated Debye-Waller vibrational averaging,

v) isotropic, static mean free path,

vi) surface refraction, and

vii) numerical aperture integration.

Individual scattering events are sufficiently simple in this formulation
that important insights could be gained about the nature of the electron
scattering, specifically the connection between scatteﬁing anisotropy
and interlayer distances. Unfortunately, this model is not adequate for
detailed calculations and its application to ARPEFS by Bullock, Fadley,
and Orders11 served primarily to spur further work. Very recently,
Sagurton, Bullock, and Fadley13 redeveloped this model to include
spherical wave scattering and correlated Debye Waller factors, giving
considerable improvements in comparison to experiment.

The theory described by Tong et al. is complementary to the Fadley
group.u Their methods are those developed for NPD studies in the low

electron energy regime and extended, with some approximations, to

intermediate energies. Their calculations include:
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i) multiple scattering,

ii) spherical waves,

1ii) truncated partial-wave expansion of the
potential,

iv) wvibrational correction via temperature dependent scattering
factors (uncorrelated Debye model),

V) isotropic, static mean free path via a complex inner
potential,

vi) refraction, and

vii) no aperture integration.

The sophistication of these calculations has limited their use either
for simulation of experimental curves or for further understanding of
the photoelectron scattering. Nevertheless this model led to two
important results of particular note: i) the aforementioned Fourier
transform results of Hussain, et al9 providing the link with earlier NPD
results and ii) the "quasi-dynamic" multiple scattering method? This
latter result is equivalent to our conclusion that multiple scattering
serves to focus the single-scattered waves without introducing new path-
length differences: the quasi-dynamical calculation includes all single
scattering paths plus all forward multiple scattering paths.

The theory presented by Fujikawa15 is a full spherical-wave,
multiple-scattering, cluster method, but it has not to our knowledge
been applied to any photoelectron scattering such as we are interested
in here, and we will not discuss it further.

Qur work falls somewhat between that of the Fadley and Tong groups.

In related papers we have investigated the nature of curved wave
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corrections to the single scattering of photoelectrons16 and darived17

new approximate formulae for the multiple scattering of spherical waves
by a method which we will refer to here as the Taylor series mzgnetic
quantum number expansion (TS-MQNE). Our most significant contribution
to the theory of ARPEFS will then be application of the TS-MQNE multiple
scattering equations and the qualitative insight from ref 16 to arrive
at a complete but parsimonious account of the elastic scattering of
photoelectrons. Thus we include all the scattering events considered by
Tong's curved wave, quasi-dynamic theory, but we retain the relative
simplicity of the cluster approach. To treat inelastic damping, we
adapt a dynamic but isotropic mean free path damping from EXAFS work.

We include the correlated Debye Waller vibrational correction extended
to multiple scattering and show how to include the vibrational averaging
of the scattering amplltﬁde. We derive an analytic¢ formula for the

angle !ategration effect. For comparison, our model contains:

i) multiple scattering,

ii) spherical waves,

iii) full partial-wave expansion of the potential,
iv) correlated Debye-Waller factors,

v) a crude dynamic correction for mean free path,
vi) no electron refraction, and

vii) analytic aperture integration.
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II. GOALS OF THE THEORY; THE MODEL SYSTEMS

We begin by posing the theoretical problem to be solved. As stated
in the introduction we wish to reproduce the experimental measurements.
Since we are not yet prepared to critically examine the parameters in
the theory we will not adopt formal statistical criteria for success.
We will discuss the calculation of the ARPEFS spectrum, x(E), but note
that Fourier analysis can be used to extract structure information in a
manner less sensitive to the theory.

We will specifically discuss the S(1s) ARPEFS from c(2x2)S/Ni(100)
measured along [110] and [001] directions reported pr‘eviously]’2 and
analyzed in detail in ref. 18. Using a procedure discussed in ref 18,
the experimental angle-resolved photoemission partial intensities are

reduced to the proportional cross-section oscillations:

a - I(E) -IO(E)
x(E,R,g) = —'——I'O(—E)-——

where E is the measured photoelectron kinetic energy. The curve I(E)
has been corrected for such effects as photon flux; IO(E) is taken as
the smooth, slow varying part of I(E). The unit vector § specifies the
position of the photoemission analyzer and ; gives the polarization
vector position. This form for the data is insensitive to the typical
experimental efficiencies; any slowly varying functions are cancelled by
IO(E).

Similarly if the theory is asked only to reproduce y(E), we can
concentrate on only the rapidly varying parts of the partial cross

section. Specifically we may ignore various constants, density of

states, and--at least for S(1s)--any atomic cross-section dependence on



191

energy. To simulate the measurement then we must calculate the
probability that an electron will enter our angle-resolving aperture, @,
given that we are irradiating our sample with photons whose energy is
100~600 eV above the S(13) absorption edge. Thus we need the continuum
orbital, w(;), from a stationary state of the light plus sample system

so that we may calculate

1(E) = J v (B)y(R)da.
Q

To form the estimated x(E) we should fit this E(E) with a function like
that used for IO(E) in the experiment to give EO(E).

The complete calculatioh of ¢ is a complex problem, primarily
because photoabsorption is a dynamic process. Our procedure--implicit
in previous work--is to split the complete problem into two parts. .The
first part of the problem, which we will call the zero-order problem,
contains all of the dynamical (time dependent) physics; the second part,
the scattering problem, includes the scattering from ion cores as a
perturbation on the zero order wave function. Thus w(F) is constructed

in the scattering problem as
) (r) + y, (r) (r)
yir = \po r \|J1 r + ¢2 r + seoe

using wo(;) from the zero-order problem. For the remainder of this
secticn we define these problems and discuss their connection. The
detail of our discussion shonuld not be taken to indicate the

gignificance of these models; we present the detail to explore the basis
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of the theory and in particular to avoid subtle inconsistencies between
quantum and classical ideas.
A. The Zero-Order Problem

The zero-order problem consists of the photoabsorption in the
absence of ion-core scattering. To be useful for structure
determination, the photoelectron continuum orbital must be representable
as a wave about a single center; we are only interested in
photoabsorption from localized core level initial state. Thus the zero-
order problem is nothing more than atomic photoabsorption in the
presence of a surface. We imbed an atom in a tenuous medium
representing the properties of the material surrounding the photoemitter
absent the properties included in the scattering problem. The specific
medium will then depend on what material properties we include in the
scattering problem. At least we shall want the medium to represent the
valence charge density in the metal which is responsible for screening
the photo-ion since screening_is a dynamical process. Typically, we
would also ask the medium to simulate the interstitial regions of the
crystal (between ion cores) smoothly continued over the whole crystal.
The only important requirement for the medium is that it present only a
very smooth potential incapable of scattering or attenuating the
photoelectron wave anisotropically. This same property facilitates the
application of classical physics to the zero-order problem. A jellium
metal has the appropriate properties for the S/Ni problem and to be
specific we adopt such a model here.

One exception to the smooth potential restraint would be the image-
force (surface barrier) potential whose effects can also be treated

semi-classically (see section V).
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B. Connection to the Scattering Problem.

Solution of the zero-order problem and connection to the scattering
problem requires switching between quantum and classical descriptions
for the photoelectron. It does not seem helpful to construct a current

density19

from wo(;) since this would necessarily involve a time
average while the classical currents are time-dependent. More than
elementary considerations would be necessary to form wave packets to
make the connection: at the time of photoabsorption the photcelectron is
prepared in a state of definite angular momentum. Two sensible
prescriptions are to interpret the zero-order wavefunction wo(;) as a
probability amplitude for the classical electron or to construct a
potential which reproduces the classical effects and apply it to the
quantum problem; this is the optical potential or complex inner
potential method?0

For either the probability or optical potential connections, the
dynamics of the zero-order problem enters through the kinematics of the
classical electron: position and time are always related by the constant
velocity. The classical electron and a core hole created very quickly
(10-20 sec) in a small region near the phctoabsorbing atom's nucleus
with the electron's initial direction selected from a probability
distribution given by the dipole selection rule and the initial state.
As the electron moves away from the hole, the medium responds tc the
newly created charges; this is the problem addressed by Noguera et a1.19
From the response we can construct the zero-order probability amplitude
bo(F) .

What of the effect of the medium on the scattered wavefield? Once

we have passed the time required to screen the hole and photoelectron
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and for the photoelectron to separaﬁe from the hole by the sum of their
screening radii, the effects of the medium will be the same whether the
electron has been scattered or not. If we assume that the electron
velocity is slow enough to insure that the radius to which this time
corresponds does not overlap the scattering potential, then we can say
that the full optical potential operates for all of the scattered waves.
Alternatively we can convert the scattered wave probability amplitudes
into electron trajectory probability distributions, but this would be
unnecessarily complex. It is only important to recognize that the
classical electron either scatters or does not scatter; the scattered
classical electron feels no field from an unscattered electron current
density.

C. The Scattering Problem.

The physical model for the scattering problem consists of a lattice
of non-overlapping ion core potentials centered on the instantaneous
atomic coordinates of the sample. As we discuss in more detail in the
following section, the result of the zero-order problem is a screened
spherical wave attenuated by the inelastic scattering properties of the
conduction electrons (imaginary part of the optical potential). This
zero-order wavefunction is input to the scattering problem where the
ion-core potentials are introduced. Ideally these potentials would
describe both the ion-core potential operating on the electron and the
anisotropic contributions to the inelastic scattering. The effective
potential should include neither the constant inner potential (real part
of the optical potential) nor the inelastic scattering from conduction
electrons (imaginary part of the optical potential) already contained in

the zero-order wavefunction. Also ideally, this potential should
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describe the interaction of an electron and an ion-core embedded in the
medium used for the zero-order problem. This differs from the atomic
physics potential21 in two respects. First, the electron wave amplitude
decays across the active region of the potential due to interaction with
the conduction electron density. Second, the atom is partially screened
from the photoelectron by the conduction electron response. Since the
screening length is comparable to the diameter of the potential and
since the fast electron rushes ahead of its screening charge density22
the impact of this difference should be minimal for the real part of the
ion-core potential. This screening should however reduce the large
impact parameter inelastic excitations caused by the long range Coulomb
field of the electron. These excitations affect the real part of the
atomic potential through shadow scattering;23 we should expect no shadow
scattering in the solid state.

To summarize, we must solve two connected problems. The zero-order
problem is atomic photoemission in the presence of a jellium surface;
the scattering problem incorporates the ion-core potentials via a
perturbation series. The zero-order problem contains all of the time
dependence; the scattering problem seeks a stationary statg. The
dynamics of the zero-order problem are transmitted toc the scattering
problem by the kinematic connection between position and time, valid for

the zero-order problem.
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III. THE ZERO-ORDER PROBLEM

Now consider the solution of the zero-order problem. To be
concrete consider a sulfur atom partially embedded in a jellium surface
being irradiated by soft x-rays of energy above the S(1s) threshold.
The electron density of the jellium is chosen to reproduce the
dielectric properties of Ni as far as this is possible. OQur task is to
deduce the probability amplitude wo(;) for a photoelectron ejected from
the S(1s) orbital.

Atomic photoabsorption is well understoodzu and as the jellium
surface has only a very small interaction with the S core, we need only
summarize the assumptions and conclusions of the photoemission theory.

3

For absorption, the radiation field may be treated classically;2 far

from the surface it is characterized by a vector potential
> >
* =iYer

A(F) = Rgee” (1)

This is a plane, monochromatic wave with propagation direction ; and
polarization direction ;. We need only consider polarized light since
the results for partially polarized or unpolarized light may be obtained
by combining two plane polarization calculations without regard to
phase.

In principle, the vector potential in the region of the sulfur atom
must be recalculated to include the effect of the dielectric properties
of the Ni surface on the incident electric field. Since we are solely

interested in photoelectrons with intermediate energies, we may restrict

our attention to photon energies greater than say 50 eV, allowing the
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index of refraction of the medium to be written as its high frequency

limit:
5
n(w) ~ 1 - -5
2E

where Ep is the photon energy corresponding to the medium's plasma
fr‘equency.25 Since Ep - 10 eV and the lowest photon energy of interest
here is 50 eV, the index will be within 2% of 1.0 as a worst case: the
electric field may be considered unaffected by the surface unless we
choose grazing incidence. For this exception we must consider
refraction of the soft x-rays at the surface-vacuum interface with a
consequent slight shift in the direction of polarization.26 We may also
disregard the attenuation of the photon beam which only occurs over
hundreds of atomic distances.27
The intensity of the x-ray beam is small enough to calculate its

effect on the ground state of the zero-order model with perturbation

.28
theory, using

(as noted in the introduction we may ignore all constant factors.)
Among all transitions which this operator may induce, we are only
interested in those whose final state may be written as a product of a
photoion wavefunction with a (1s) core hole, ¢f. and a continuum
photoelectron wave, wo, whose energy is given by the difference between

the photon energy and the (1s) binding energy. Since the perturbation
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is a one electron operator, the transition amplitude to by may be

written
» +> >
¥o(r) = <r|¢0>M1<¢r|¢0><¢0|A-V|¢1s>

where ¢1s is the (1s8) orbital and °O is the ground state wave function

excluding ¢1s' (We have grouped various constants given by standard

23

texts into M they are not relevant to the oscillations we wish to

1}
calculate),
We may use the dipole approximation for this matrix element as we

now demonctrate., The (1s) orbital is reasonably described by a scaled

hydrogenic or‘bital28

-Zr'/a0 3/2
¢ ,-e__(_z)
1s (“)1/2 a0

with a binding energy near

where a0 is the Bohr orbit radius and Z is the atomic charge. For
that our photon energy will lie between 813 + 50eV and 813 + 1000 ev.
Writing these energies in atomic units and converting to wave number we
find that, over the range of the (13) orbital, 2a0/Z, the magnitude of

the vector potential exponent in eqn. (1) will be
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2|v|a,

7 S Za

for Z > 8 at all energies, and

2|v]a
0 70

Z Z

for Z < 8 and E = E:13 + 1000eV, where a = e2/hc = 1/137. Thus, only for
the heaviest and very lightest elements (at high electron kinetic
energy) will the exponent differ substantially from 1.0: for the
calculation of the transition matrix element we may replace the
oscillating dependence of the electric field by a constant. Further the

connection between matrix elements of the momentum operator and those of

the position operator then gives the dipole approximation28

Q
Qa

~ s
- M, e o>y leer|e, >

Q
el

We have neglected both exchange and relativistic corrections, but these
effects are no larger than the errors of the dipole approximation. The
exchange corrections are small for the zero-order problem since the
photoelectron wavenumber is much larger than the conduction electron
wavenumber. Similarly, the electron velocities in the zero-order
problem are always small and hence the relativistic correction may be
ignored.

To evaluate the dipole matrix element, we expand wO(F) in

eigenfunctions of the core-hole potential problem. Without specifying
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their form we may take these eigenfunctions as separated in spherical
coordinates:

\po(r) = ) A (r)Y (e,¢)

nem nim nzm

-

Since e*r = r cos 6, the angular integration of the dipole matrix

element requires { = 1.23 Then

(r) =M <¢ |® >R100(r)¥10(9.¢) [ R, n(r) e

-Zr/a r3
0 100

dr.

We have proceeded to this point as if we were calculating a
stationary state despite our original claim that the zero-order problem
was dynamic. We can now justify and remedy this flaw by invoking the
work of Noguera et a11‘9 on dynamic core-hole screening. They consider
the entirely classical problem of the response of a jellium metal to the
instantaneous creation of a core hole and photoelectron. They
demonstrate that the medium cannot respond instantly to the
photoabsorption event, and therefore the screening of the core hole and
photoelectron may be neglected for a short period of time following the
photoabsorption. If the electron is traveling fast enough, it will
leave the region of the core hole before the medium can modify the ion
core field. Thus, for the sake of the zero-order problem, and over the
region in space which contributes to the dipole matrix element, we may
ignore the medium in calculating the transition matrix element, as we

have done above.
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To this point we have determined the angular dependence of the
zero-order wave function. To proceed it would seem that we must specify
Rloo(r) and solve the dynamic problem of core-hole screeningf
Fortunately, this is not necessary as long as we only ask the theory to
produce tne form of the ARPEFS. Using the connection befween position
and time, we may divide the radial distance from the photoabsorber
nucleus into three regions. We have discussed the first region above,
the inner core region where the screening properties of the surface are
negligible. The second region extends from the inner core region to the
point at which the core-hole potential is fully screened; this point

depends on the photoelectron velocity, v, and the response time of the

material, Tt:

Throughout the third region, beyond r the dynamiecs are again

£
irrelevant--the electron and hole are screened--and we have a free
spherical wave in this region.
. \
If rf is less than the atomic raﬁius, r of the photoabsorber then
the core hole may be said to be screened before the scattering problem,
and we need only the form of the scattered wave in the third region; it

must be a spherical wave traveling in the optical potential of our zero-

order medium. Thus

. -(r-ra)/ZA
Wo(r) = A(rf)e ih1(kr)¥1o(6,¢)

where
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is, (k)
Alr,) = |Ale

and the optical potential gives a mean free path 2\, and an energy
shift, k? = k2 + EO' All the detajls of absorption cross section, core
relaxation, dynamic screening, and so on, serve only to determine the
amplitude |A| and §, phase of the spherical Hankel function.
Furthermore, this amplitude and phase are independent of emission
direction so that the direct wave and all orders of scattered waves
contain the same A(ra)f When the ARPEFS is calculated, both the
amplitude and phase of A(ra) cancel: the details of photoabsorption of
r < ra are irrelevant for the oscillations since rf does not overlap any
scattering atoms. Note that the mean free path of the probability
amplitude is twice the mean free path of the electron current density.

If rr > ra then the zero-order wave will still feel a partial
Coulomb potential from the core hole, and its form must lie between that
of a Coulomb wave and spherical Hankel functiont To estimate rf we
refer then to the work of Noguera, et al.?9 These authors argue that
the screening time is a fraction of the plasmon period, (2w/mp), of the
medium; for the real part of the dynamic potential they use

2% h2k K
re = 0.15 (;—) v = 0,15 nE- - 1.3 B
P P P

where v 13 the electron velocity, k is its wavenumber in A-1 and E_ is
the plasmon energy in electron volts., The photoelectron velocity at

- -1
k=54 f is 58A/femtosec and at k=108 . it is 139A/femtosec. For a

-1
typical metal Ep ~ 13 eV, and for the range of k between 5-12A4 we have
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rr from 0.5 to 1.2A_1. Thus the use of screened waves seems justified
for metals although the validity of this criterion should be verified
experimentally.

For semiconductors or insulators we should expect re > ry and some
correction for dynamic effects may be required. The most important
dynamic corrections would adjust the phases and amplitude of wo(;) in
the center of the region of the surrounding scattering atom to account
for partial screening, neglecting the variation of the phase and
amplitude across the potential volume. Noguera and Spanjaard29 have
developed such a correction for EXAFS; the EXAFS central atom phase
shift is precisely the phase shift of wo(;) we seek. For the amplitude
correction, the results of Noguera and Spanjaard do not seem to apply.
If we make a crude approximation that the imaginary part of the optical

potential rises to its asymptotic value linearly from zero in a time

which is a constant of the material (fraction of a plasmon period):
VI(r) = VI(w)(r/rf) rsr
= VI(w) ro>r

Then the effective optical potential attenuation will be:

V_(=)

exp [hi %] r s rn
V_ (=) r-r

exp [E%——— (_E_E)] R
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where the mean free path A = MV/VI(E)T Thus the delayed response of the
material reduces the apparent distance of attenuation through the
medium. Such a correction would have its major impact on nearest
neighbors where (rr/2) is a larger fraction of the internuclear
distance; we cannot explain the cpposite behavior claimed by Noguera and
Spanjaard. Until this issue is further clarified, we will restrict our
attention to metals.

The development of the theory of EXAFS has lead to the introduction
of a similar type of attenuation correction. 1In a preliminary EXAFS
theory Lee and Pendry used a static mean free path attenuation of
exp(-2rJ/x) where 2rj is the path length traveled by the EXAFS electron
in returning from atom j. Stern, Bunker, and Heald have proposed to

replace this attenuation by

=2(r,-A)/X
Sg(k)e J .

The factor sg(k) is empirically30 and theor‘etlcally31 found to be a
constant; it is given by a weighted sum of overlaps between "passive"
electron wavefunctions in the absorption cross-section calculation. If
these wavefunctions contain the valence electrons, this overlap
correction should account for inelastic losses at the central atom
(photoabsorber); hence an atomic radius, A, must be removed from the
path length in the attenuation factor. Identifying 2A as (rf/2)
connects this attenuation factor and our version of the dynamical
response of a classical medium given above. 1In relating this
attenuation factor to ARPEFS we notice that photoemission measures only

one channel in the absorption c¢ross section so that So(k) consists of a
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single term (in our notation Sy (k) = <d.|¢;>) and canceis when the
oscillations are formed.
We deduce from all of these considerations that our zero-order

wavefunction will be

is(r, ,k) -r. /A
> ds ds
¥y(r) = |ale ih, (kr)Y,(8,0)e (2)
where
rds =pr/2 if r § rf

rys = r -(rr/2) ifr>r

£
In reviewing our procedure to this point notice in particular that
1) the angular distribution of wo is determined by the dipole
selection rules,
11) we assume that the core hole is '"mostly" screened, including
dynamic effects only via a modified optical potential, and
111) all constant or slowly varying factors ultimately cancel.
On this last point we note that the total cross section may contain some
structure at the lower end of the ARPEFS energy range.
We have £hus far ignored the surface in our formulation of the
zero-order wavefunction. It is evident that the semiclassical

methods19

can be applied to understand the required changes in wo(;)
2

when the photoabsorber is near, at, or above the jellium surface.3

Lacking such a study we can anticipate some of the conclusions as

follows. Consider first the static case, long after the photoelectron
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has left the photoion. If the ion lies below the surface by more than
the Debye screening length, AD’ we may ignore the surface. If on the

other hand the ion lies above the surface by more than A., then the

D
screening must be accomplished by a surface charge density: an image

charge is formed by rearranging electron density in the surface region
below the ion. For the dynamics of the core-hole screening of an atom
above the surface the relevant time scale would seem to be a fraction of
the surface plasmon period, (Zw/ms). For the simplest model of
plasmons, wg = mp/(2)!/2 and the period, and hence the screening time
would be 40% longer. If the ion lies within AD of the surface, the
surface and bulk plasmons will share the duty of neutralizing the core
hole, but the division of labor will depend on their relative densities.

For the dynamics of the photoelectron screening, we can distinguish
those electrons entering the material from those emitted into the
vacuum. As long as the photoabsorbing atom is within an atomic radius
of the surface, we would expect the photoelectron entering the material
to react as if the surface did not exist. As the electron travels from
the core hole to the jellium, the medium--be it all jellium or partly
vacuum--has not enough time to respond; by the time the medium has
recovered, the photoelectron has penetrated the metal. For a
photoelectron ejected into the vacuum, however, there is no bulk charge
density to consider. The response of the screening surface charges to
the suddenly created core hole will be similar to its response to a
scattered photoelectron suddenly emerging from the surface: We will
treat this response in section V.

With only these very qualitative ideas to proceed with, it is

difficult to be very certain of the modification of the zero-order
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wavefunction for a photoemitter near the surface. For electrons emitted
into the material, we only have the more slowly screened hole to
confront; we expect the full screening radius to be 1.0-1.4 times larger
than it would have been without the surface. Thus for r below the

surface we retain equation (2) with r_, of selected somewhat larger. For

f
electrons ejected into the vacutm, the attenuation due to electron-
electron scattering stops at ra and the photoelectron travels away from
a potential which for short times.and distances is a bare core hole
while for larger times and distancés. it is a small dipole created by
the core hole and its image charge. (The charge of the dipole is given
by the integral of the surface fraction of the screening charge). At
even larger times, on the order of (2n/AE) where AE is the photopeax
lifetime width, the potential of the core hole decays to zero. Due to
this potential, the wavefunction in the vacuum region will experience a
stronger phase shift than the wave in the region occupied by jellium.
Thus for ; above the surface we select F4s = Ta for attenuation and add
some phase shift due to the dipole in 6(rds.k).

We have constructed an elaborate physical description of the zero-
order problem, and guided by the not very specific model calculations of
Noguera, reduced the dynamics of the zero-order problem to a single
number, rf(k) and an unknown dipole phase shiftf Certainly our
Justification for our result is the lack of alternative treatments; we
can; however, produce a convincing argument that the major dynamics
effects are included and furthermore if we are forced to ignore the
dipole correction for now, the errors will be small. Our argumgnt has
two parts. First, we cite the extensive literature of EXAFS and in

33

particular the recent theoretical study of Pt EXAFS in which dyvnamic
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IV. THE SCATTERING PROBLEM

Having assigned all of the dynamics of photoemission to the zero-
order problem and assuming that we have a satisfactory solution in the
form of a zero-order wavefunction, we face a straightforward electron
scattering problem to introduce the effect of the ion cores. We will
persist in the convenient terminology of describing calculation of an
additional ion core at any scattering order as a scattering of the
electron from the ion-core potential. Because of the kinematic
connection between position and time, this terminology will be a useful
guide to physics within a given order,but it can lead to difficulty if
applied across orders. For example, the third of three colinear atoms
is not shadowed from the first in the single scattering calculation; the
shadow only appears when forward scattering from the central atom
scatters from the third atom during the second order or double
scattering calculation.

Our array of spherically symmetric ion cores is the familiar
muffin-tin model for solids and the scattering problem itself has been
extensively investigated. While Tong and coworkersu have applied the
multiple scattering methods of LEED directly to the scattering problem
we face, the usual techniques become unmanageable in the higher energy
range. We have investigated the difficulty posed by the higher energy
range, and we have proposed a new approximate method for intermediate
energy range.17 This method, which we will call TS-MQNE: Taylor series-
magnetic quantum number expansion, is fully developed in ref. 17
Therefore we will concentrate here on the form of this approximate

method and its application to ARPEFS.
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The MQNE may be qualitatively described as follows. The basic
ingredients in the scattering problem is a wave source, a scattering
potential, and an observation point. The wave source may be the
original photoemitting atom, or a scattering atom. The scattering
potential is taken to be spherically symmetric. The observation pcint
may be a detector or another scattering potential. The first step in
the MQNE is to describe the basic scattering problem in a coordinate
system in which the ; axis lies along the vector between the wave source
and the scattering potential. Thus we decompose the source wave into
partial waves of orbital and magnetic angular momenta quantized along
the internuclear axis between source and scattering atoms. If the
source wave is originally described in terms of partial waves about a
different axis, then this step introduces rotation matrices for the
spherical harmonics.

The second step of the MQNE procedure translate the source partial
waves to the scattering potential. This translation conserves the
magnetic quantum number--the first of two reasons we choose the
internuclear axis for the quantization axis. The third step of the MQNE
procedure generates the outgoing scattered wave by multiplying each
individual incoming partial wave by a complex scattering matrix element.
Our convenient choice of the internuclear separation as the quantization
axis now helps a second time: oniy waves with low magnetic quantum
numbers scatter from the potential. The number of waves is directly
related to the ratio of the potential radius to the internuclear
separation. The restriction of the magnetic quantum number scattered by

the potential constitutes the MQNE.
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We can understand the physical basis of the MQNE, either
pictorally17 or from integral equations for the scattered wave, as a
consequence of the finite range of the potential. The source wave
spherical harmonics, when quantized along the internuclear axis, have
lobes which peak further and further from the axis as the magnetic
quantum number increases. Thus for some magnetic quantum number, the
corresponding source wave component does not overlap the potential at
all, and it may be ignored in calculating the scattered wave. A similar
approximation to the radial character of the source wave based on a
Taylor series approximation is described in ref 17. Together these
approximations give the TS-MQNE method.

The zero-order wavefunction is an f = 1 spherical wave centered on

the photoabsorbing atom: at our detector, ﬁ, the wave is

ikR -L(0)/2x

e
T cos eER e

-
wo(r) =
where the electric vector € acts as the z axis and the photoabsorber is
the origin. The factor L(0) is the distance from the photoemitter to
the surface barrier in the direction of the detector. The first order
wavefunction has spherical waves emanating from every ion core except

the photoabsorbing atom:

iklﬁ-ajl

ika,
e e Y

-a./2x -L(a.)/2x
.ﬁ) e e J .

fin a ik|R-3. ] ¥ 5
JA0 J

The index j runs over all near by atoms. We may expand
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a

- Y ——‘j L3 Y E ] -
|R ajl R(1 - ==cos 6, o+ ) =R a; cos eajR

to write
ik|R-2 ik
|R ajl LKR a;cos 6, o
e e o B
ik|R-3,| LkR

The second and third term in the first order wavefunction accounts

for the phase and amplitude of the zero—-order wave at the center of the
scattering potential at gj' The complex number F(E.Ej,ﬁ) is the
scattering factor and it gives the phase and amplitude of the scattered
wave in the direction of the detector; its precise nature depends on the
secattering approximation chosent In a plane wave model, F(E,gj,ﬁ) would
be the scattering factor of atomic physics timess cos eea' The final
term in the first order wavefunction is the attenuation of the scattered
waves as they propagate from the scattering atom to the surface, a
distance of L(a,).

J
Similarly, the double scattered wave is

eikR —1kaJ cos ea.R e1kaj+aj/2A
bR = 1 1 ge ’ a
b.4A0 a 40 J
J J
. ikajcos eaJR elkbj+bj/2A . -L(2.+8.)/22
F(e,a,,ble F(e,b,R)e I Y .
J b
J

and the higher order waves may be written down by analogy.



213

Interference between the zero-order wave at the detector--which we
will call the direct wave-—-and the single and double scattered waves

occurs when the complete wave probability is calculated:

> + * * * * * *
VIR = Wby *+ (Wgby * aug) + (hghy *+ bobg) * ¥i¥y

* *
F YU, Uol) ke

The interference leads to ARPEFS when the proportional oscillations are
formed.

We detect the photoemission intensity with a small but finite
angular acceptance and the scattering atoms vibrate sc chat every
photoelectron scatters from a slightly different sysiom,., We must
consider this angle integration and thermal averaging before we can hope
to simulate the expefimental ARPEFS. We have also neglected any effect
of surface on the photoelectron. We take up these topics in the next

three sections.
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V. REFRACTION AND THE INNER POTENTIAL

The optical potential introduced to represent the interaction
between the fast photoelectron and the conduction electrons of the solid
consists of both a real and an imaginary part. As we discussed in
section III, the imaginary part of the optical potential serves to
attenuate the photoelectron wave; its physical origin is the excitation
of plasmon oscillations. The real part of the optical potential plays
no role in scattering; it represents the energy difference between a
free electron and that electron screened by the conduction electrons of
the solid. When the photoelectron leaves the solid to be detected, it
is no longer under the influence of the optical potential. The
termination of the imaginary part of the optical potential simply ends
the attenuation, a fact which is recognized in the definition of L(;j)
above. (We assume that the attenuation of the photoelectron due to
surface plasmon excitation cancels, being identical for direct and
scattering waves.) Now we consider the effects of terminating the real
part of the optical potential.

We return to the model zero-order problem in ignoring the ion-core
potentials. A photoelectron with energy E within the jellium medium

will have energy E-E. in the vacuum far from the surface. This loss of

0

kinetic energy E. may be relatad to a potential barrier whose total

0
height is VO' the real part of the optical potential. The height of the
barrier determines the energy loss, but the barrier shape will alter the
photoelectron's path., Sagurton et al.13 adopted a planar step barrier

of height VO just outside the last row of ion cores. This is the usual

first-order model for the surface barrier, introduced for both low

. 20
energy photoemission27 and low-energy electron diffraction.
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The important consequence of this model is a prediction that the
emerging photoelectron will be refracted in a direction away from the
surface normal in the manner of optical refraction with
(£)'/% sin 6, = (E-£) "% sin o
where the angles are measured from the surface normal. Since Eo < E
for ARPEFS energies, the angle correction is small, but it could be
significant for high accuracy at'larger emergence angles. This
correction is, however, not a consequence of the photoemission physics
but only results from the particular choice of the potential barrier.
As we now discuss, every move to improve the description of the physical
barrier serves to reduce this already small correction, to the point
that we may neglect it.

To justify our claim that refraction does not apply to ARPEFS, we
must return to arguments similar to those of section III. The step
barrier is incorrect for three reasons. First, the surface barrier is
not abrupt and planar, i.e. the conduction electron density does not
drop suddenly to zero along a plane. This is true even for a jellium
model whose positive jelly does terminate abr‘uptly.20 More appropriate
here, structure methods which are sensitive to the corrugation of
conduction electron density, for‘example scanning tunneling

34 35

microscopy, or He diffraction, shows a distinetly non-planar
surface. Since the refraction is already small, even a small undulation
of‘the surface will invalidate the optical refraction formula above.
This argument does not necessarily invalidate the use of a planar

barrier for lower energies where the photoelectron wavelength will be



216

much larger than the atomic scale corrugation of the potential and the
photoelectron wave is sensitive only to the average surface potential,
Second, the interaction which gives rise to the surface barrier is
not proportional to the local charge density as the step barrier model
would imply. A slowly moving photoelectron is surrounded by a localized
cloud of low electron density created by Coulomb repulsions between the
photoelectron and the conduction electr'ons.22 Thus the total screening
energy 1s related to the charge density. However, when the slow
photoelectron and its co-moving cloud reach the surface, the Coulomb
interaction which created the cloud does not cease. Instead, the
screening cloud spreads out along the surface, becoming the surface
charge density which screens the Coulomb potential of the photoelectron
from the bulk metal. This net positive surface charge density is
equivalent to an image charge; the photoelectron must wor' against the

36

image charge attraction giving the surface barrier. Thu~ the surface
barrier is not abrupt even for a planar surface but rises smoothly from
a constant to an image potential, V(z) = 1/(z+c), over distances
comparable to the Debye screening length AD (~0.5AR).

Third, and most important, the potential is velocity dependence for
the same reasons that give rise to the dynamic screening effects
described in section III. A fast electron within the bulk of the medium
trails a wake of low electron density corresponding to sluggish
conduction electrons moving away from the photoelectron

charge.37

When photoelectron emerges from the surface, the center of
gravity of its screening charge density is some distance below the
surface and the force it exerts upon the photoelectron is directed along

the velocity vector of the photoelectron, not along the surface normal.
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As the photoelectron moves into the vacuum, the surface charge density
is similarly slow in redistributing, leading to an image charge which
always lags behind the photoelectron as it moves along and away from the
surface. For normal emission, this dynamic effect serves only further

38,31 For

smooth the potential barrier in the region near the surface.
off-normal emission, the lag between the position of the image charge
parallel to the surface and the position of the photoelectron parallel
to the surface increases with the emergence angle to normal; i.e. with
the velocity of the photoelectron along the surface. Thus, rather than
experiencing a force along the surface normal, the photoelectron works
against a force more nearly along its velocity vector. Such a force
does not alter the photoelectrons path,

To summarize, we do not agree with the extension of the optical
refraction model to intermediate energies proposed by Sagurton, et al.
This leaves the inner potential shift as the only effect of the
terminating real part of the optical potential. The forces for off-
normal trajectories certainly merits more careful theoretical treatment
particularly for understanding the transition between the lowest energy
range where optical refraction should apply and the ARPEFS energy range
where the forces are along the velocity. Furthermore, there seems to be
very little experimental evidence on refraction despite its fundamental

nature.39

We should also note that our description does not contradict
y

the classical studies of electron beam refraction: 0 when dynamic

potentials are considered, both the incident aznd refracted electron

beams are modified.u1

In the following sections we will continue to use the wavevector k

corresponding to the electrons energy in the solid even when we are
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discussing the probability amplitude at the detector. The theory
results are much more simply expressed this way so that we use the inner
potential to convert the experimental kinetic energies to a wavenumber
rather than shifting the theory.

We should ncte that the inner potential for ARPEFS is the same as

that used in LEED20 but not the same as the E

0
41

energy relevant for the scattering problem is the electron's kinetic

used in EXAFS. The only

energy when it encounters a scattering potential. In ARPEFS and in LEED
the scattered electron is detected, and the inner potential represents
the physical kinetic energy lost when the electron travels from the
scattering potential edge to the detector. From our previous
considerations, this inner potential should be velocity dependent. The
conduction electrons are slow to respond to the photoelectron so the
positive charge responsible for the inner potential lies in a wake whose
center of gravity lies further away from the photoelectron the higher
the energy. Usually, the energy dependence is neglected. 1In EXAFS, the
scattered electron is not detected, and the "inner potential®, EO' is a
complicated weighted sum of all the photoelectron energies created at a
particular x-ray photon ener'gy,uz and further it is commonly used as an
adjustable par‘ameter.?2 High precision surface structure determination
requires E

0 to be known to within 1 eV, suggesting that further study of

the energy dependence of the inner potential would be profitable.
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VI. FINITE ANGULAR RESOLUTION

The experimental apparatus for measuring the ARPEFS oscillations
has a small but finite angular resolution characterized by half the
angle subtended by the aperture at the source, which we call, a. For
small apertures, a is the radius of the aperture projected on a unit
sphere so that the detected area is naz. The major effect of this
finite resolution is to limit the highest observable path-length
difference, pj 2 a

J(1-cos ej) such that all paths with

Kp, > 1/a

will be averaged away by the opening, while oscillations corresponding

to path-length differences
kp. << 1/a
pJ

Wwill be individually resolved. With experimental angular resolution of
+3°, we have kp = 1/a: kp will fall between 10 and 100 in practical
cases and 1/a ~ 10. Thus we are in the regime of partial angle
averaging, and we must consider the effect in detail. Fadleyu3 has
previously demonstrated by numerical example that angle-averaging has
important effects on the theoretical calculations of azimuthal and
energy-dependent photoelectron diffraction. Here we will show that

1) the primary angle-integration effect is the integration of

scattering angle contributions to the path-length difference,

i1) the angle integration preferentially attenuates scattering

events with angles near 90°, and
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iii) the effective scattering angle can be shifted by the angle
integration, if the aperture is large enough.
If we use EO to denote the position of the aperture center, our
angle~averaged intensity is

a 2 *
I - J Sin 8pp d8pp J Aoy g (Wo*Uq*¥p) (hgruy+u,)
0 ‘0 0
for double scattering.

We distinguish three terms from the expansion of the squared total

wave function i) direct intensity, EOO' i1i) scattered-direct intensity,

iOS' and iil) scattered-scattered intensity, fss

where

%*
Ioo = [ Yo¥o 98-

* *
Iog = [ bolwy + W) + vy + wy) wy dg,

and

I - [ (b, + vy (o, + b, da.

Each term contains the coordinates of R in the amplitudes of the

-~

wavefunction, but the interference terms f and iss also contain R in

Os

the wavefunction phase. As the position of R moves around the aperture,
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the wavefunction amplitude always lies near its value at ﬁof The phase
of the wavefunction is, however, quite sensitive to the position of ﬁ
and even for small apertures this variation should be integrated. 1In
Appendix A we integrate the TS-MQNE wavefunctions by a general method
which considers both amplitude and phase variations and which applies to
apertures approaching a = w/2. This leaves us free to concentrate
solely on the qualitatively features of the angle integration for the
remainder of this section.

Let us assume small apertures and ignore the variation in
wavefunction amplitude. The direct intensity integrates to the aperture
area times the intensity at R0
- * = ~ ]

Ioo ® wO(RO)wO(RO) T

Each term in the direct-scattered intensity will be of the same form:

. .~ ~1ich (R-R )
IOs(a) = 2Rew0(R0)wa(Ro) [ e dQ

e
where a must represent the bond vector for the scattering event which
immediately precedes the trip to the aperture. For small apertures we

show in Appendix A that

2J1(kaa sin eaRo)

a 21 -~iKA(R-R.)
f sin 6 de@ [ 0 2 ] (3)

d¢ e = ma [
0 0 kaa sin eaR

0
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where J1(x) is the first order Bessel function. The factor of 2J1(x)/x
is the ecircular, two-dimensional analog of sin x/x familiar from
diffraction phenomenon;uu its value at x=0 is 1.0, and it falls to zero
at x = 3.8, continuing to higher x with ever smaller oscillations (see
figure 1).

By relating the physical parameters to the argument of the aperture

damping function, i.e. x = aka sin eaR » we draw the following
. 0

conclusions:
i) backscattering and forward-scattering atoms are not
significantly attenuated by angle integration because sin 8 -
0,
i1) side-scattering (8 - 90°) atoms are maximally attenuated (sin
8~ 1).
iii) the attenuation increases with bond length, aperture radius,
and the square root of the energy.
In Fig. 1, we plot the aperture damping function for ¢ = 3° and a = 10°.
We also mark the range of ka expected for side-scattering ARPEFS from
nearest neighbor atoms (a = 2.2A) and more distant atoms (a = 7.54).
Both apertures attenuate the more distance atoms; the wider aperture
even damps the nearest neighbor side-scattering atoems. We may further
conclude that
iv) as long as single scattering dominates, apertures of = 10°
would simplify the ARPEFS spectra by eliminating side-
scattering atoms.
Since the larger aperture would decrease the data collection time by an
order of magnitude this conclusion merits further discussion. A side-

scattered wave which subsequently forward scatters through a small angle
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into the detector will not be attenuated. The larger aperture will alsc
introduce highes terms into the phase integral, eqn. (3), and require
treatment of the amplitude variation. 1In Appendix A we show that the
second order term in the phase integral introduces a phase shift of

azka cos 8. This correction la largest for back- and forward-
scattering, and amounts to 1.5% of the bond length for an aperture of
10°, This larger aperture would also require calculation of the
amplitude integration terms as indicated in Appendix A.

Finally, we note that the scattered-scattered intensity may be
treated in the same fashion as the direct-scattered term by replacing
the last scattering event bond vector, ; above, by the vector
difference in the last scattering bond vectors from the two interfering
scattered paths in the scattered-scattered case. 1In most experimental
geometries |yy| »> |y | so that we may neglect iss altogether. In these
cases, it is convenient for numerical calculations to associate the
angle attenuation with the scattered waves. By this means a single
attenuation factcor is required for each path rather than a factor for

every possible pair of paths.
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VII. THERMAL AVERAGING

AS the final ingredient in our theory we must allow for the
thermally excited vibrational motion of the atoms in the surface. Each
atom in the crystal oscillates about some equilibrium position; each
photoemission event takes a snapshot picture of the instantaneous
positions of these atoms. The complete ARPEFS spectrum averages over
many photoemission events and hence records an average of the atomic
positions according to the probability of each configuration. For
typical materials at typical temperatures, the amplitude of the
oscillations is not large. However, the effect on the ARPEFS spectrum
is significant both in magnitude--thermal averaging is primarily
responsible for limiting the highest measurable energy--and in detail--—
inappropriate thermal averaging can lead to theoretical calculaticns

with far too many scattering events contributing {(compare Bullock11 to

Sagurton13).

Our problem is formally similar to x-ray diffraction where
thermal averaging leads to multiplication of diffracted intensity by a
Debye-Waller factor, exp(-2|§|202 where K is the momentum charge in
scattering and 02 is the mean square displacemeht projected on g.HS
Since the momentum change in ARPEFS may be written

K p = k(R-a)

for single scattering off an atom at ; into a detector at §, Bullock et

al11 introduced a factor

> 2 2 2 2
e-2lx| 0" _ gk (1-cos @)o (1)
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A A

where cos 8 = a+*R to introduce thermal averaging to electron scattering.
However, as has been described for the more analogous problem of
thermally averaged EXAFS,“6 the form of the x-ray diffraction result is
adequate only if the mean square displacements are replaced by the mean
square relative displacements. This difference is crucial for electron
scattering: the motions of near neighbor atoms are correlated so that
the mean square relative displacements of near neighbor is much less
than their mean square displacements.

Incorporating the displacement correlations, Sagurton, et al13
found considerable improvement in the agreement between theory and
experiment for S(1s) ARPEFS from S/Ni(100) over that reported by
Bullock. In fact, these authors demonstrate that no thermal averaging
at all produces a more reliable result than eqn. (4) with mean square
displacements.

The thermal average, like the aperture integration discussed in the
previous section, must be performed on the intensity oscillations; we
will restrict our attention to experimental geometries which emphasize
direct wave interference and ignore the scattered-scattered
interference. Furthermecre, to avoid obscuring the thermal average with
the MQNE notation, we will only consider averaging the zero-order Taylor
series term. This is not a serious restriction: the variation in the
scattering amplitude over the range of typical vibrational motions is
small, and we may safely ignore the variation in the corrections to
scattering amplitude. An advantage of this approach may be appreciated
by examining ref. 17, App. A and ref. 16: the thermal average will lead

to derivatives of the zero-order scattering factors with respect to

internuclear coordinates times displacements of the coordinates, and we
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have already encountered the derivatives in the study of spherical wave
corrections.
Writing angle brackets for the operation of thermal ensemble

averaging, we need for single scattering

cos 8 20 _(a-n(3))/2x -L(2)/2n  ika(1-cos 8_.)
= {2Re €2 —Eﬂ e e e aR >
x1 cos BER a

and for double scattering

cos eea fgg —(a—L(a))/A ika\ {—-cos eab)
Xo = <{2Re {——cos 5 - © e
eR
fOO -(b+L(3+E))/2A ikb{(1-cos 8, _)
bR bR
- e e 1>,

00 00 + - .
where fab - FOO (ka,b), adopting the notation of ref. 16.

We first consider the single scattering average. The instantaneous
position of the scattering atom can be related to the equilibrium

position ;O' the displacement of the origin (emitting atom), 4. and of

0
scattering aton, Ea according to

Defining
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00 > +
°°(a) . cos O__ t‘_a_li e-[(a—L(O))+L(a)]/2A
g cos B a

and noting that the thermal average consists of multiplying by a
probability distribution for displacements and integrating over

y
configurations 5 allows

. +> +> + +>
ik[|a,+Au_| -(a.+au)R]
S 0 "Ta 0
X, = 2Re <g(ao+Aua)e >.

> >
For displacements [au | << |a,| we can erpand

»> > ~ »>
= + . + oo
Ia0 * Aua| 8g * 3gthuy

and
(-> b d (-> ) b d V (-l
g ao + Aua) = g ao - Aua- ag ao) + sas
2,2
where forms of order |au| /a0 have been dropped. Then we have

ik(a -2 «R) -iK__+Ad
a.-a.e -i *Au
Xy = 2Re {g(go)e 00 ce 2 3

ik(a -3 R) K__eau
1 a0 a0 iKaR'Aua

V.g(a )-<Au
+ e 28(3, -<Auae >}

where the momentum change vector, ﬁa = k(R-ao). Knowing relations like

R
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K-Au iK+Au
-1 * AU - .
i 2 a
ﬁ(—x e = (Aua)xe
we write
. ik(ag-agR) N -iK-vu,
X; = 2Re {e [g(ao) +1Vag(ao)-VK]<e >} (5)

The thermal average of the phase term may be derived by following either
i
the x-ray diffraction E theory with proper modification or the

EXAFSu6 treatment:

-iK-Au -<(K-A3a)2>/2 -|i|2<(K-AGa)2>/2
<e > =€ = e

If we identify

2 oo 2
u; = <(K-Auu) >

and

> 2 2
[K|® = k"(2-2 cos @_p)

2
we retrieve the Debye-Waller form (eqn (4)) but o, becomes the mean
a

square projection of relative displacement (MSPRD) upon the momentum
change vector.
To proceed we need to consult some physical model for lattice

vibrations which can predict oi. Accurate values may be derived by
a .
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constructing the normal modes and eigenfrequencies of the solid if the
geometry and bonding force constants are known.u5 While pctentially
useful for theoretical study, this approach requires far too much

information for our poorly understood surface system. The Debye model

has been adapted to calculate the mean square relative

46,4
displacements 6,47 in good agreement with experimental EXAFS
48,
determinations. 8,33 Here we need only extend the treatment to include
49,50

the predicted and observed51 surface layer dependence and
anisotropy of the mean-square displacements that we can expect to
encounter and the mass dependence required for an adsorbate. Qur result
will be a combination of the work of Allen et alug on mean-square
displacements on surfaces, of Housley and He3352 on mean-square
displacements in general, and of Sevillano et alu7 on mean-square
relative displacements, but we will trace the main points of their
derivations as a means for introducing the notation.

We begin by writing the MSPRD in terms of the normal modes of a
crystal with periodic boundary conditions in two directions and free
surfaces in the third. Allen, Alldredge and de wéttes3 give the atomic

displacements as

, 172 . )
(u,), = (=) 1 Q(a,p)E (%4 5ap)e
a NM -
2 q,p

. ’ +> :
-igra-iwt

where N is the number of two dimensional lattice points, M, is the mass
a

-> -

of the atom at a, q is a two dimensional wave vector, p distinguishes
- >

modes with identical q, Q is the amplitude of the mode, Ea is the

Y
displacement of the atoms in the layer &, , containing a, in the mode

3a
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(3,p), in the direction a, and w(q,p) is the mode frequency. ToO use
this expression for the atomic displacements we expand the MSPKD,
02(3,5) into the sum of the mean-square displacements (MSD) of atoms a

and of 3 minus twice their displacement correlation function (DCF):
LA -0 ) K12 = <(B_+K)Z> + <(B.K)%>
a 5 a 0

-2 [<(Ea-fc)(ﬁo-f<)>3

The layer dependence of the displacements gives a layer dependent MSD:

122, :ap) k|2 A
- sGpJ - w
k) - A 3a cothm—ab
a 2NM> - w_ 2kgT
a qp ap
where
Huw

<Q(3,p)Q(qP")> = §__ 6 ,—— coths—2

-, %pp KT

aq' 2wap B

is usedu5 to eliminate one sum over modes and to partition the thermal

energy kK. T among the vibrational modes of energy HKuw_ .

qp

B

Next we approximate

> 7.2 o2 2
<(u_+K)™> = LK <) >
a=X,y,2 a

This relation is exact in the low frequency limit for a medium with

isotropic elastic constantsus or when K points along any axis a. We can
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. 2 R
say that we are calculating <u a> and approximating the projected mean-
square displacement by the indicated weighted average.
2
The sum over modes in <u a> may be replaced by an integral over a

frequency distribution by usings3

“ -
a)dm == 7 IEa(l

f (w,?
a3 N P 3

- 12
a,qPI G(m-map).

This frequency distribution gives the density of modes of frequency w

with a direction displacements on atoms in layer 23a' Then

) " “nax coth M/ 2k ;T
<(u*)a> = o I fa(w;23a)dm
a a“‘0

where O ax is the highest frequency of the systems. For [Mwm x/2kBT] <

a
3 (i.e. moderate temperatures) we may apply a modifiedsu Thirring

45,52

expansion of coth x = 1/x +x/U to write

k. T 2

2 B -2 n 0
<(ua)u> = ﬁ:- <wa (13a)> + TEE:E;? <wa(13a))
a a

where the moments of the frequency distribution,

n “max n
<w (L)> = I f (w,V)w do
a 0 a

have been introduced.55 Since <m2(133)> = 1 the mean-square
displacement in this form requires only one material parameter, the

inverse second moment of the frequency distribution.
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If we repeat these steps for the displacement correlation function,

we will 1’1ndu6

Yw

- ap -
<(u6)“(u§)“> = o )1/2 L m COthEEgT cos q
0a qp qp

> ¥ - > -
” [Ea(ﬂ-Bo:qp)Ea(l3a:qp)]

Y

If we suppose that the moments of the frequency distribution are
insensitive to any differences in the density of the modes with the
direction of a, Wwe may replace cos a.E by its spherical averageu7
sinqa/qa.

To proceed we need a model for the frequency distribution and a

connection between Ial and w_ . Based on the success reported for EXAFS
qp

we adopt the Debye model and set

2
£ (wty) - ——29—————§
[wD(23a)]

1
3a 3 { }

)

and q = m(qD/mD) where MmD = kBO = (6ﬂ2p)1/3. The Debye

p* 9
temperature eD is a material parameter and p is the number of atoms per
unit volume. Directional, layer dependent Debye temperatures are no

more than an expression of the direction and layer dependence of the

moments of the frequency distribution:

25 1> %n

[kBBD(a,E 3a

2 -
3a)] - 3<wu

Under these conditions we have
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3H2 T SD(a,Z )

3a
L + ] (6)

2
<(u )™ =
a o 33

> »
and, if atoms a and 0 are in the same layer,

31 2 1

172 k.8 (a,’
(Ma Mo) B'D

Y (0,a) = <{u.) (u)) > =
a 0'a' a 3a)

T Sl(qDa) OD(a.13a) sin ay@ ~ qpa cos qp3a
ey o=t Ter [ 3 1} (7
D""""3a D (qDa)
where
g.a .
si(q.a) - I D sin x o T cos qDa } sin gja
D 0 X a3 2 °

(qDa)

The sine integral may be calculated with a numerical

form, but the asymptotic form is accurate to 1% for even the smallest
qDa of physical interest, except a = 0 where of course the DCF must
cancel the MSD. For atoms in separate layers we know no better than to
average the Debye temperatures.

We can also get low temperature limit formulas which overlaps the

high temperature forms near T = O.29D:

2 2 2
2 3n 1 T T
<(u ) > = = [+ + ] (8)
a’a MakBQD(a.23a) ] [GD(a,z 2 6
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and
wTq.a
2 m T cothlg—ro=y
Yu(a';) - 3 1732 TR C zD ) 2. - 21 9
(MBM;) kBeD(a.23a) D™D 3a 2(qDa)

The first result is standard, and the second may be proven by expanding
cotangent a power series and integrating terms. Taken together these
two limits are adequate to represent the correlated Debye model as
illustrated by comparison to numerical integrations in Fig. 2.

To summarize our results then we write

2

2 o2 2
g = 1 K [<(u+)u> + <(u+)u

>

> - 2y (3,0)]
a a=X,Y,2 a 0 a

where <(u;)i> is given by eqn. (6) or (8) and 73(5.6) by eqn.(7) or (9).
Each layer is characterized by three directional Debye temperatures,
Bn'a. The studies by Allen and DeWettug and by Clark et al50 may be
used to reduce the number of free parameters. From the first work we
may connect the Debye temperatures in the three crystal directions to
reproduce the ratios of mean-square displacements for the theoretical
crystals of Allen and DeWett. From the second work, we may cause the
difference between surface layer and bulk Debye temperatures, which we
may assume to be known, to decay such that the mean-square displacements
approach the bulk values exponentially in three or four layers.

We have accounted for the changes in the vibrational amplitudes due

to the free surface boundary conditions, but both studies cited above

assume all layers have the same mass. Fortunately, Allen, Alldredge,
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and DeWett53 have considered just the problem of mass change, and they

have demonstrated that, under quite general conditions, the mean-square
displacement at high temperatures must be independent of mass, while at

lower temperatures,

M (172 2
a

where <u§> is the surface MSD for a pure crystal of atomic mass M and
the primes indicate a hypothetical mass change of the surface layer
without change in force constants. Since the mass dependence is smooth
with temperature we may incorporate the adsorbate mass dependence Ly

noting that a Debye temperature written as

where CD is a non-physical Debye spring constant, will reproduce the
high and low temperature limit mass dependence of the mean-square
displacements.

We recognize that the Debye model for the correlated motion of
surface atoms is physically untenable: a true Debye model describes low
frequency modes in an isotropic continuum particularly relevant to low
temperatures. This does not prevent the Debye model from serving as an
interpolating form for the mean-square projected relative displacements.

To complete our thermal average of single scattering we must
consider the gradient terms in egn. (5). For our particular form of the

MSPRD, the gradient on momentum change has a simple form
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2

v, exp[-l?(lzai/z] = expl-|K]|%0%/23-[-%]
K

'Y

where

2

+ 2
K, = Ka[<(ua)u> + <(u¢)a

> > _
> - 2Y (0,a)]
0 a

The direction of this gradient is skewed away from E towards directions
with the largest MSPRD. The gradients of the amplitude with respect to

-
the separation vector a are

-~ A

=
. €-a cos 8 . -V L(a)

> > £a a a a
Le - eellooms T n T e

A A

+ +
cos 8 -{(a-L(0O + a)lsa2ax R-a cos 6_.)
ca [(a-L(0)) L(a)] ( I} aR
 ——— O [kf
a cos 6 aR
eR

10 © 01
ax faR a

]

For the purpose of discussion we may dispense with the anisotropy in the

+ 2 *»
MSPRD and write k¢ = ¢, K with 03 representing the orientational average
a a

of cf. Then using K = k(R-a)

a
ika_ (1-cos8__) —k2(1-cose )02
0 ar aR a
Xy = 2Re( e e
00,» ikcg 00,» 3ing
* (g (ap) - a (g (a,) ea sing_, cos ¢_,o

a cos
esa
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00,+ ' a 00, .2 > o1
-g (ao)(1-coseaR)(1+§x) -g (ao)[K-V;L(a)] ETY

- ka 310(50) (1-coseaR) + 301(50) (sinzea ) 1

R

nm_ > > nm : 00
where we use g (ao) to represent g(ao) with faR replacing raR.
derivative scattering factors f;g and fg; are described in ref. 16. 1In

view of Ae15k = A(1+i6k) we may consider all of the terms containing

The

800(50) as phase corrections and, as they are linear in k, they
represent shifts in the geometrical path-length difference. A
56

correspondingly correction term has been predicted in EXAFS.~ The
shift is very small, § § (oz/a) unless soft materials, high
temperatures, or very short tond lengths are to be investigated. The

. - 10 » 2+2 . . -
correction containing g (ao) is k¢ - 1.0, times the radial spherical
wave correction shown in ref. 16 to be small. The last correction will

be zero for forward or backscattering and will peak for aa ~ 209, where

R
the scattering amplitude changes most rapidly with scattering angle.
However this correction will always be a small fraction of the curved
wavefront corrections. The analogous correction for EXAFS has been
studied within the plane-wave, multiple scattering theory;57 our work
ere suggests that curved wave front corrections are much more

significant.

For the double scattering term we will ignore the gradient terms
entirely so that
au 1K eAU

a

->
iK
xe(a,b) = xz(zo.ﬁo) <e ab ~0a " bR LN
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> > » -+ 2
R e-<[(Kab-Aan)+(KbR-Auab)] >/2
X2'%* 0

Expanding the thermal average

» +» > +> 2
<[(Kab-Au0a)+(KbR-Auab)] > =

>
Au_,.)>

+ » 2 > > 2 + > >
<(Kab Aan) >+ <(KbR-Auab) > + 2<(Kab-Au0a)(KbR- ab

we see that the first two terms are MSPRD as given for single scattering

while the last factor represents higher order correlations:
> » > +> » > > - » -+ 3 -
K "B, ) (Kpp =Bu 3> = (K U ) (Kppeu 0> = <K eug) (Kp eup )>
+> » » > -+ +> » >
- <(Kab-ua)(KbR-ua)> + <(Kab-ua)(K u,_)>

bR "D

As before we write these factors as

2<(K_ -au. (K, AU, )
ab'AUOa bR'Au > =

ab

> > > > 2 > >
), (Kl [YG(O.a)-YG(O,b)-<(u3)a>+Ya(a,b)]
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VIII. APPLICATION TO C(2X2)S/NI(OO1)

Having constructed a theory of ARPEFS we now present a preliminary
assegsment of its predictions. Our study cannot be complete without a
thorough examination of the non-structural parameters the theory
requires, but we should expect physically reasonable estimates of the
parameters to reproduce most of the features of the experimental curves,
allowing our current work to guide both experiment and theory toward a
conclusion on the practical accuracy of ARPEFS for structure
measurements. In this spirit we have applied the theory of the previous
sections to recent S(1s) ARPEFS measurements on c(2X2)S/Ni(001).

The nominal structure of ¢(2X2)S/Ni(001) is illustrated in cross-
section in figure 3. Sulfur occupies a four-fold hollow adsorption site
wi“h two neighbors in the plane of the figure and two equivalent
neighbors above and below the plane of the figure. Two experimental
ARPEFS measurements have been made and reported elsewhere.18 The first,
which we will call [011], aligned both emission and polarization vectors
with a bulk [011] axis, making an angle of Y45° with the surface normal.
The second experiment, called [001] here, used normal emission with the
polarization vector inclined 30° from normal in a [100] direction. The
proportional partial cross-section oscillations, y(E), measured in these
experiments is plotted in figure 4., The measured kinetic energies may
be converted to wavenumbers given a value for the real part of the inner

potential, Eo. Throughout this paper we will use experiment curves y(k)

obtained with E0-10.5 eV, close to the reported values used elsewheresa.

A. Choice of Parameters
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The non-structural parameters fall into five classes: the
scattering potentials, inelastic scattering, aperture integration,
thermal averaging, and numerical convergence.

OQur scattering potential phase shifts are those of Orders and
Fadley,?o generated by them from muffin tin potentials. These
potentials are real, and Wwe do not account for the ionization of the
photoemitting atom.

Qur inelastic mean free path is also the value given by Orders and
Fadley10. A = (0.753k), where k is the electron wavevector in A‘1. This
mean free path lies somewhat below the "universal curve" values. We
represent the surface as a plane for the calculation of the path length
in the solid, and we place this plane through the adsorbed S atoms.
Although some guidelines for this choice are available in surface
barrier studies36, any location above the sulfur atoms is equivalent:
any attenuation of the scattered waves in the region above the surface
plane is cancelled by the attenuation of the direct wave when the

A A A

proportional oscillations are formed. Thus we use L(;J) = ;j-Z/R-Z. A
more sophisticated shape for the surface barrier is hardly justified if
we persist in an isotropic mean free path.

For the aperture half-angle we will use 3° and we will consider
only amplitude damping, ignoring the phase shift and amplitude
derivative terms for this small opening. The energy dependence of the
electron analyzer used in the experimental measurements indicates that
the effective opening may be smaller for high kinetic energy but we will
assume a constant opening.

We use the r'epor-ted59 bulk Debye temperature for Ni of 390°

appropriate for room temperature. We selected the z axis Debye
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temperature for Ni as if the S atoms where a layer of Ni, adjusting the
Debye temperature to give z axis mean square displacement on the surface
twice the bulk value. This gave a Debye temperature of 300°K. Then the
Sulfur Debye temperature was corrected fon the overlayer mass

dependence, giving a d =U405°K. The x and y Debye temperatures for

D,z
both atomic species was selected as 1.1 times the z axis values, to give
mean square displacements about 1.4 times the bulk values.

The size of our scattering cluster is given by comparing the
maximum plane wave scattering amplitude for atoms at the edge of the
cluster to an amplitude cutoff and reducing the cutoff until no
significant changes can be seen in the theoretical curves. Further we
have only calculated path-length differences less thaﬁ 10.58 because
higher frequency oscillations in the experimental curves are not
reliable; the measured curves can easily be filtered to match the
theoretical range via the Fourier transform. We have included up to
quadruple scattering although only in rare instances will four
consecutive scattering events have a path~length difference less than
10.5A. For each scattering event, the Taylor series order, T, was

selected as the lowest integer which satisfied

( mix) <c
2|a|
where f _  is the maximum plane wave amplitude |£(8,k)| over the

complete energy range for the scattering angle 8, the scattering bond

-
length is |a] and C is a constant set to 0.10. By this means, nearest
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neighbors and forward scattering atoms are given a higher Taylor order
than more distant scatterers at more acute angles.

The calculated theoretical curves are compared to the experimental
data in Fig. 5 for the [001] experiment and Fig. 6 for the [011]
experiment. The geometry for both theory curves placed S 2.194 away
from Ni (dl = 1.30R) and spaced the first and second Ni layers by 1.84A;
this geometry was selected by fitting théoretical calculations like
those described here to Fourier filtered data in ref. 18. The
theoretical reproduction of the [001] data, Fig. 5, is good: the
oscillatory structures of medium frequency are all matched with some
discrepancies in smaller structures. The results for [011], Fig. 6, are

not so good with significant differences occurring at SA—1, 7A—1 and

9A-1. The features at 7A_1 and 911_1 are sensitive to the number of
successive forward scattering events included in the calculation, and we
might expect some improvement here if more accuraté}scattering
potentizls are used. Nevertheless, the agreement between theory and
experiment is good enough to suggest that distinguishing further
improvemz=nts in the theory will require a quantitative assessment of the
experimental reproducibility.

Thus enrcouraged, we can reexamine the theory to isolate its most
vsignificant compostents, using the [011] geometry as our example. In
Fig. 7 we compare the single-scattering curved wave results to the
quadruple scattering curve. The single-scattering raesult has the
underlying frequencies correct, of course, because the frequencies are
dominated by the geometrical path-length differences and because we
find, in agreement with Tongu that the multiple scattering is primarily

forward scattering, which focusses the single~scattered waves and shifts
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their phase without disturbing their frequencies. However the
oscilliation phase and amplitude cannot be correctly given in the single-
scattering theory.

This point deserves further emphasis as Bullock, Fadley, and
Order‘s11 have questioned our previous analysis of the [011] experiment,1
claiming on the basis of single-scattering caiculations that a great
many atoms contribute to the ARPEFS curves. Their conclusions are based
on comparing relative single-scattering amplitudes ignoring the focusing
effect of forward scattering (as well as the correlation of vibrational
motion and the aperture integration). Each neglected forward scattering
event is approximately equal in amplitude to the single-scattering
events that they do include. In fact if we compare the expressions for
single and double scattering where the second scattering event has a
scattering angle near zero, we find identical terms except for an
additional factor of the forward scattering amplitude divided by the
bond length. Since the forward scattering amplitude is comparable to
the bond length for nearest neighbors, single and double scattering are
comparable. We can see this graphically in Fig. 8 where the major
backscattering event for the [011] experiment is calculated in both
single and double scattering. 1In the [011] geometry, the Ni atom lying
directly behind the S photoemitter contributes a large oscillation with
a frequency near 4.47A. The curves show that the single-scattering
calculation is too low by nearly a factor of two: the single-scattering
calculations cannot be relied upon for relative scatteri g amplitudes.

Figure 8 also shows thz? the naive analysis we presented in ref 1
is erroneous. The EXAFS-like backtransformation analysis applied in

ref. 1 requires the oscillation phase to be known for the E. adjustment

0
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procedur;e.60 Comparing the oscillations in Fig. 8 shows that the single
backscattering phase is not close to the double scattering wave phase
even though the oscillation frequency is unchanged. The [011]
experiment is re-analyzed including the forward scattering effects in
ref. 18.

The multiple scattering curved-wave calculations are also compared
to multiple scattering plane wave results in Fig. 7. It is evident that
the curved wave corrections are essential to describe the ARPEFS
oscillations. This would seem to contradict the results of Sagurton et
a113, who report insignificant curved wave corrections to single-
scattering calculations. However, the curved wave corrections apparent

17

in Fig. 7 are primarily in the forward scattering direction and hence

only appear in the multiple scattering curves, which are absent in the
treatment of Sagurton et al.

We have also calculated the [011] curve with multiple scattering in
the zero-order Taylor series (homogeneous wave) method17 and compare it
to the higher order Taylor result in Fig. 9. The zero-order curve is
quite close to the higher order one, but this is partly a consequence of
the [011] geometry: no important scattering atoms are near the nodal
plane in the photoemission angular distribution or near a Generalized
Ramsauer Townsend resonance, the types of scattering events that we have
shown require higher order treatment.16

Also in Fig. 9 we have simulated the ARPEFS curve for a 10°
aperture but including only the first order aperture damping. Although
some of the details of the curve will be subject to correction with more
accurate aperture averqging, the size of the oscillations is still large

giving considerable weight to the idea that experimental measurement
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with 10° apertures could be used to determine surface structures.
Assuming that a suitable electron analyzer can be constructed with this
large aperture, the reduction in measurement time by an order of
magnitude would be of value to the experimentalist.
Finally, in Fig. 10 we illustrate some of the effects that

vibrational averaging models have on the ARPEFS. In the upper panel we
-have returned to the uncorrelated Debye model of Bullock et a111, but
adjusting the surface Debye temperature so that the Debye-Waller 02 =
0.01A2 for the nearest neighbor Ni atoms. There are some changes in the
details of the curve, but the differences are not profound. In the
bottom panel we illustrate an important point: the overall magnitude of
the ARPEFS curve connects the physical allowed values of inelastic mean
free path and thermal vibration amplitude (assuming that the elastic
scattering amplitude is reasonably accurate). If the vibrational
amplitude is reduced to that predicted by the surface vibrational

3

r‘r-equency1 in a harmonic oscillator model, .003A2. (corresponding to a
S "Debye" temperature of 725°K) then the oscillation amplitude will be
far too large to agree with experiment and the mean free path must be
reduced by U0% as in Fig. 10. Conversely low mean free path will
require a stiffer surface vibration. This ambiguity can be removed by
fixing the thermal parameters with a temperature dependent ARPEFS study.

Finally, we address the question, do a small number of identifiable
scattering atoms contribute to the ARPEFS signal? We have contended our
experimental ARPEFS curves seem always to be consistent with significant
scattering from nearest neighbors and backscattering atoms

,2 1" 3

only.1 Bulloek et al and Sagurton et al1 have challenged this idea

on the basis of single-scattering calculations. We have shown that
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these calculations are not adequate, but we have not shown that their
conclusions are invalid. We note that every improvement in the model
used by Bullock11 serves to favor backscattering and nearest neighbor
scattering. Thus, the correlated Debye model gives less vibrational
averaging for nearest neighbor, aperture integration damps atoms which
are not nearby or backscattering, and forward scattering always
accompanies backscattering while other angles not always so favored. We
have calculated the ARPEFS curve including only the four nearest
neighbor Ni atoms, the four Ni atoms closest to backscattering in the
(011) plane lying further away from S than nearest neighbors and the
five Ni atoms in the succeeding (011) plane which are also
backscattering. In Fig. 11 we compare the resulting curve to the
experiment. It seems clear that these atoms determine the character of

the ARPEFS signal.
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IX. CONCLUSION

We have presented a theory for quantitative calculation of the
intermediate energy photoelectron diffraction oscillations which we call
ARPEFS. For a complete theory we must reexamine the non-structural
parameters, but we believe the present theory provides an adequate
foundation for surface structure work.

We summarize our approach as follows. We have divided the problem
explicitly into two parts, a time dependent, semi-classical solid state
photoabsorption problem and a stationary, cluster type muffin tin
potential scattering problem. This commonly used division allows us to
update the treatment of the photoemission dynamics to show that dynamic
core hole screening and surface barrier refraction are smaller effects
than we can hope to measure at present. The cluster scattering approach
gives us close zontact to the interpretation of the ARPEFS oscillations
in terms of particular scattering atoms while the application of the
Taylor series MQNE small-atom approximation allows economical curved-
wave multiple scattering calculations with a full partial wave expansion
of the potential even at these higher energies. This solution to the
scattering problem and its connection to lifting operator formulations
of the curved wave problem facilitate analytic aperture integration and
cqrrelated vibrational averaging of the multiple scattering series, both
of which we have derived here. We have also given a method for
incorporating the surface dependent vibrational anisotropy into a
correlated Debye model for mean-square projected relative displacements.

OQur work must be compared to that of Tong and co-wor‘kersu and

10,11,13

Fadley and his co-workers. Tong, et al. have the advantage of

complete summation of the multiple scattering series and of closer
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contact to surface chemistry dependent potential phase shifts via the Xa
multiple scattering initial state wave functions. Both of these
advantages may be crucial in the low energy regime, but for most common
surface systems and in the intermediate energy range, we should achieve
multiple scattering convergence easily, and the potentials should be
insensitive to mild electronic changes. The cluster apprcach allows us
to introduce local physical effects such as photoion core potentials and
dynamic core hole screening which do not have two-dimensional
periodicity and thus are more difficult to introduce into LEED-like
theories.

The single-scattering cluster approach of Fadley et al. has
simplicity to recommend it and up to a point it has pedigogic value.10
However, the focusing effect of forward scattering is a fundamental
feature of photoelectron diffraction, and the scattering amplitudes
predicted by single scattering are not correct.

The apparent success of single-scattering theory to interpret the
ARPEFS1 was part of our original attraction té the measurement of
surface structure by this method, and we must therefore examine the
utility of the technique in light of the complications introduced by
multiple scattering. 1In the intermediate energy range, multiple
scattering is primarily forward scattering so that the qualitative idea
that the ARPEFS oscillations represent individual scattering atoms is
unchanged if we associate each the forward scattering event with the
backscattering event having the same path length. Thus for the example
given in Fig. 8, the single-scattered wave travels from the

photoemitting S to Ni and backscatters into the detector giving a path

length of 4.35A. The double scattered wave travels from S to Ni and
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back to S; scattering into the forward direction giving a path length of
4,37A. These paths are sufficiently close that we may consider the sum
of both scattering events to represent the scattering signal from the Ni
atom for the purpose of estimating the ARPEFS signal. The presence of
the forward scattering does affect our procedure for extracting the
geometrical path-length difference. For the example in Fig. 8, we may
not simply use the Ni backscattering phase shift to derive the geometry
from the oscillation frequency, but instead we must perform the two atom
scattering calculation to calculate the effeét of the potentials on the

waves.
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APPENDIX A. FINITE ANGULAR RESOLUTION
We must calculate the angular average of the total wavefunction

squared:

a 2%

sin @ de J

#* %* *
Lave ™ dolug + vy * w,) (g *+ ¥y + 9,).

0 0

Our technique is to rewrite each wavefunction in a coordinate system

~ >

where the z axis points in to the center of the analyzer aperture, RO.

We do this by expanding the wavefunctions in a Taylor series after the
manner of ref. 17; we may then integrate the expansion variables easily.
The series expansions that we shall use are finite so that our results
are exact in principle. More important, for small apertures, the
integrated expansion converges very quickly.

We will illustrate our method by concentrating on one cross term

from the full calculation,

a 2T

%
I = J sin ¢ do I do Wy
ave 0 0 O"a

From ref 17, we have

ikR ~

IDO(R) * TR P.IO(R,E).

and

ika 1kR -ika cos 8 1 1-|q| R
> e e aR 00, » 0
y (R) = — e ) y F_ (ka,R)S e
; a ikR q=1 p=0 Pq q

iqe A o~
gaR P?g(a.s)
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We refer to ref. 17 for the definitions of the angleé and factors.
Briefly, the indices p and q are Taylor series expansion indicies,
Fgéqzk;,ﬁ) describes the scattering of the pq component of the source
wave from a potential at 5 into a p'q' component of a scattered wave in

the direction R, Sg is a sign factor, and Pfg is the rotation of the

~

direct wave into the direction a.

Qur first step is to write these wave functions as expansions about

ﬁO' The definition of Fgg(k;.ﬂ) contains R as an argument of a

spherical harmonic quantized along the 5 axis, i.e. z parallel to 5

- - -~ -

(z//a). If we rotate this spherical harmonic to the z//RO system and
expand the resulting spherical harmonic in a Taylor series, we arrive at

1
a series expansion 7 in angular factors referenced to § . When this

0"
series replaces the spherical harmonics in Fgg, we may switch the order
of summation to show that
; iq'¢
iqe - L 1-§q'| , aR R .
.EaRSOFgg(kg.R) = ) sinIq leRR e 0" (cos Bep -1)P
q q'=-% p'=0 0 0
p'.ql > ° ql
F ka,R,.)S
Pq (ka.R, q
->
The polar position of R in the z//R0 system is given by eRR ; the
0
difference in the azimuth of ; and of § is given by %R R" Similarly we
0
may show
iqll¢
- - 1 1-|q"| €R R - -
00 & lq"l 0 _ p"_p"q"
PIO(R'E) = ) sin Bar © (cos Bor 1) Plo (Ro,e).

q"=~1 p"=0 0 0




252

Our angular average becomes

ika 1 1-]q"] U T Py
1 e n || - A
lave " 33 3 ) % EPp 1 E)] D) P?g(a.a)
kR q"=1 P"=0 q=1 p=0
-1q"¢ iq'é
L 2-|q'| eR X aR .x -
L ) ngq (ka,R, )sq e 0" o 0% et
q'=~% p'=0 p'q

where

nan a _—
Ig'g' ) J tsin 0119 1#19"1* (oog 0-17P"*P o
0

t et ~
oy 1la'-a )°xROR -1k3-§
0

d¢

If we define

y = ka sin ea

Ry
i¢xROa

y,=ve
Z = ka cos BaRO

then we may reduce the aperture integral to

" '
PUQ" (9. la"l 3, P"+p! la'] g0
P adn ag - 0P adn T 1)
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leaving

a 2n 0
199 . I sin 8 d0 [ dg e tkacR
00 0 0

This integral is closely related to an integral enccuntered in the study

Ly -
of Fraunhofer diffraction through a circular aperture. Expanding ;-R

in a coordinate system where RO ia the z axis gives

. - .’ 3
-ikR+a = -1z cos 8 - iy sin 8 cos(q:xRoR 4R R)

To separate the ¢ and & variables we expand exp(-iy sin 8 cos ¢) in

a series of Bessel functions:

+ ° +o im(q: )
e1ka-R - e-lZ cos 8 Z J (y sin 8 )(_i)m e
famw ROR

~¢
xRoR RROR

The integration of ¢ selects only the m=0 term from this series and

00

a .
109 Lo | 71298 8 5 (y sin ) sin 8 ds.
00 . 0 .

For a not too close to n/2, we introduce the spherical Hankel functions,

hz(z cos @),
00 -iz, [* »
I00 = 27 (v——) J ho(z cos 8)(y sin e)JO(y sin &) d(y sin 8)

0

to facilitate partial integrations based on the recurrence relation
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1 n+1
Jn+1(X)] = X Jn(x)

Each partial integration raises the order of both the Bessel function

and the spherical Hankel function according to

- #*
i ihi(x cos @) [

! 67] h;(x cos 8).

X cos 8 3(x cos

= [

(ix cos e)l

Iterating the partial integrations gives

2 2n J (y sin a)
-1 n , * 1
188 - 2qe T2 009 @ %%g—% ) El_H_E (-iz)" d (z cos a) o —
n=0 cos a (y sin a)

*
where we have written dn(x) for the non-asymptotic, polynomial part of
*
hn(x). This formula is useful unless a approaches w/2.

For small apertures sin a - a, ¢03 a -~ 1, and for z not too large

00 2 -iz 29 (v
I =qTne

Q0 ya

This is the Franhoufer diffraction result discussed in section VI; we
may also arrive at this result by taking the small aperture limit inside
the integral and following the development of diffraction through a

: 44 . 2 2 22
circular aperture. Since z~ + y =k a , we could expect that the
interesting cases of z large and a small will also have y small. This

corresponds to back or forward scattering. Taking (y sin a) small

allows



255

Jn+1(y sin a) 1

(y sin a)b+1 e

and we may sum the series to find

z sin2
sinza 31“(u cos 2 sin a
)1 1(

4 cos a .2 cos
z sin ay o

(u cos a

00
I00 = 1 expl-iz(cos o +

Thus there is an attenuation for increasing ka cos 9 missing from the
small aperture limit which follows sin x/x, x = a2 ka cos ©/4. This
correction is 0.87 for the extreme case of a = 10°, k = 12A_1. and a =
10A; for most reasonable experimental parameters we may ignore the
attenuation of back and forward scattering.

Returning to the small aperture limit we can ask for the next order
correction for nearest neighbor backscattering atoms. Then z = ka cos 9§
will be large enough to set d1(z cos a) = 1.0 yet small enough that
(zaz) << 1. For backscattering y sin a ~ 0 and the diffraction damping

terms are 1.0 so that

2
I00 . “e—iz cos a sin a [ iz sinzu] . 2 e—iz(1+a2)
00 sin a cos a @
By e_16 = 1 - 14, comparing to the small aperture limit we see that the

amplitude correction is negligible in this case and the total second
order phase correction is zu2 giving a 1.5% apparent increase in bond

length for a 10° aperture.
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Finally we may calculate the amplitude variation corrections by

differentiating
P a)Iq"Mqul(1—3-1)""“’"100
p'q' = dy 3z 00"

As the derivatives are straightforward, we only give one here:

2 sinznu n ¥
— = pptioduleiiey i T — -1
ay)I00 2we o g Y sin a) ) (-iz) dn(z cos a)

n=0 cos a

. 2
(i 3,.00 iz cos o sin o (

Jn+2(y sin a)

(y sin u)n+2

The presence of higher order Jn(x)/xn signals a more rapid attenuation
with sine of the scattering angle; this behavior is further enhanced by
_the additional factor of y sinzu. While this predicts maximum
correction for forward and backscattering, we can see in ref. 17 that
the scattering factors with q' or q" = 1 are zero in these directions;
in other words the scattering amplitude does not change rapidly with
angle in the regions (8 ~ 0 and w) where such a change would have its

maximum effect on the angle integration.
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FIGURE CAPTIONS

Figure 1

Figure 2.

Figure 3

Aperture attenuation curves for electron analyzer half-angle
openings of 3° and 10°. The independent variable contains
geometry factors from the emission direction dependent part of
the scattering path length difference. For interferenc~
between direct and scattered waves E is the bond vector for
the scattering event which immediately precedes detection; for
interference between scattered waves, Z. is the vector
difference between the bond vectors for the interfering paths.
The line aa gives an indication of the k range typical for
nearest neighbors (2.28) with sineA=1.0; the line bb
corresponds to similar angles but bond lengths of T7.5A.
Comparison of solutions to Debye model integrals. The mean
square projected relative displacement along the z axis for S
on Ni is plotted versus temperature for two differen:
correlation distances, r=50R (upper curves) and r=_.2R {(lowe.
curves). The z axis Debye temperature for & was 41u°K and for
Ni it was 300°K; and arithmetic average Debye temperature was
used for the DCF. The solid curves give results for numerical
integration of the required integrals, dashed-dot curves are
the results from the modified Thirring expansion of ref 51i4,
anc .he dashed line is the low temperaure limit form.
Cross—-sectional view of a fcc crystal {(001) surface showing
the experimental geometry for the [011] experiment. The
angle-rcaolving detector is along the vector labeled e (fo11]
directi.t); the polarization vector is e. The geometrical

path length difference i3 given by the bond distance from S to
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a scattering Ni atom plus the distance from the Ni atom to the
plane perpendicular to the emission direction and passing

through the S photoemitter.

ARPEFS modulations derived from S(1s) photoemission partial
cross~sections. Both curves were measured from the
c(2X2)S/Ni(001) system. (a) Emission along a [011] direction
(MS° from normal); (b) Emission along the crystal normal.
Numerical simulation (dashed curve) of the [001] experimental
data (solid curve)

Numerical simulation (dashed curve) of the [011] experimental
data (solid curve)

Comparison of numerical simulation curves for S(1sf?ARPEFS
from c¢(2X2)S$/Ni(001) along {[011]. (a) Multiple scattering,
plane wave theory, (b) multiple scattering, curved wave
theory, (c)single scattering, curved wave theory. All three
curves used identical geometries and non-structural
parameters.

Comparison of ARPEFS single and double scattering for [011]
emission, but only including the scattering from the Ni atom
directly behind the S from the detector. Thin curve, single
backscattering from Ni; Thick curve, single backscattering
from Ni plus forward focusing through S. The actual
scattering angles are 173° for backscattering and 7° for

forward scattering.
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Figure 9 As in figure 7 with (a) zero-order Taylor series (homogeneous
wave theory), (b) full theory, (c¢) full theory with aperture
damping corresponding to 10° half angle.

Figure 10 As in figure 7 with (a) vibrational amplitudes calculated
without correlation of vibrational motion (mean square
displacements instead of mean square projected relative
displacements), (b) full theory, (c)same as (b} with mean free

[+]
path of .44k A and a S Debye temperature of 725 K for all

three directions.

Figure 11 Numerical simulation (dashed curve) of the [011] ARPEFS data
(solid curve), but including only a very limited number of

scattering atoms, as described in the text.
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Coherent Single Bunch Effects

Single bunch longitudinal fast blowup due to microwave instability does not czuse
beam loss but simply lengthens the bunch until the bunch peak current falls below the
threshold of the microwave instability. The coupled bunched modes calculated above
have already taken into account this effect by using microwave lengthened bunches
(including any lengthening due to intrabeam scattering) for calculations.[2] Transverse
fast blowup instability (analogous to the longitudinal microwave instability) can cause
beam loss however. Transverse and longitudinal fast instability thresholds coincide
(7

when

ao N b (8)

8v B

where b is the radius of the vacuum chamber and B the average beta-function in the
transverse direction under consideration. If o, < cg, the transverse threshold is
higher than the longitudinal. Since the peam is always slightly below longitudinal
threshold in its equilibrium situation, this inequality would guarantee that the beam is

safe from transverse blowup effects. For Aladdin-3 at 800 MeV with the 515.459 MHz

PETRA cavity and 15 bunches, we have

o -3 -3
o = 1.82x10 and (ds)max = 1.67x10

even when an average current of 200mA is put in a single bunch. Aladdin is not
expected to suffer seriously from transverse fast blowup effects.

There is the possibility of another fast transverse instazbility, different from above
and known as the transverse fast head-tail instability. It arises from transverwe made
coupling even with zero chromaticity (synchrotron modes 0 and -1 confluence and

couple with each other). The threshold for this instability is given by[7]'
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CHAPTER 6:

FOURIER ANALYSIS OF EXTENDED FINE STRUCTURE
WITH AUTOREGRESSIVE PREDICTION

ABSTRACT

Autoregressive prediction is adapted to double the resolution of
Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) Fourier
transforms. Even with the optimal taper (weighting functionj, the
commonly used taper-and-transform Fourier method has limited
resolution: it assumes the signal is zero beyond the limits of the
measurement. By seeking the Fourier spectrum of an infinite extent
oscillation consistent with the measurements but otherwise having
maximum entropy, the errors caused by finite data range can be
reduced. Our procedure developed to implement this concept applies
autoregressive prediction to extrapolate the signal to an extent
controlled by a taper width. Difficulties encountered when processing
actual ARPEFS data are discussed. A key feature of this cpproach is
the ability to convert imroved measurements (signal-

to-noise or point density) into improved Fourier resolution.
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I. INTRODUCTION

Fourier transformation is a basic tool for spectroscopic data
analysis in several contexts. Typically, Fourier transformation is
used for harmonic ana]ysis.]’3 The spectroscopic measurement
records an intensity while scanning energy; the Fourier transformation
converts this energy spectrum into a frequency spectrum, reporting the
amplitude and phase of a series of fixed frequency sinusoids which sum
to the experimental result. If the physically significant part of the
measurement has a distinctive frequency dependence, the signal
frequencies can be isolated from irrelevant background or noise
frequencies., Synthesis of the signal frequencizs then yields a new
energy spectrum whose interpretation may be simpler. For example,
Extended X-ray Absorption Fine Structure (EXAFS) data are usually
analyzed in this manner.4’5

Conceptually, Fourier analysis yields the amplitude and phase of
each individual sine wave in a series which sums to give the
spectroscopic signal. Of course, sine waves continue indefinitely
while spectroscopic signals typically have a limited range. If the
data analysis is restricted to a Fourier transform, this mismatch
inevitably leads to a broadened Fourier spectrum: wide peaks appear
for dominant frequencies, but adjacent peaks may overlap and the
desired separation in frequencies may not be realized. With the
Fourier methods currently used in ~;pectroscop_y4'6 this finite-
data-range broadening cannot be reduced by more careful measurements

within a fixed interval. Thus if the measurement range is physically
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réstricted, then the ability of simple Fourier analysis tc separate
dominant frequencies will be limited.

Because of this broadening, the advantage of the explicit
harmonic content analysis provided by a single Fourier transformation
is offset by its lowering of frequency resolution. This broadening
effect is extrinsic to the data set: it is inflicted on the data by
forcing a clumsy method of analysis, because we force infinite sine
waves functions to reproduce a finite length data sequence.7’8 An
implicit method fer extracting the harmonic content (e.g., least-
squares fitting the data) would provide the required frequency
resolution. It is, moreover, also possible to realize the advantage
of both approaches; viz, high frequency resolution and explicit
analysis, by combining regression methods and Fourier analysis. Such
an approach, for a particular spectroscopic method, is the subject of
this paper.

7o directly analyze Angle-Resolved Photoemission Extended Fine
Structure (ARPEFS), a photoelectron diffraction phenomenon useful for
surface structure determination,9 we have found the {requency
resolving power of the usual spectroscopic Fourier analysis to be
inadequate, because the data range is limited. Fortunately, we have
been able to adapt one of the new approaches to the Fourier analysis
of physical measurements that allows higher Fourier resolution and can
trade measurement precision for Fourier resolution. We shall report
and discuss an adaptation of autoregressive prediction, also known as

maximum entropy spectral analysis, which improves the Fourier
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resolution by a factor of two in practical cases. Autoregressive
prediction is widely used to process geophysical and acoustical
measurements]'3'10 when estimates of power spectra are required, but
only short data sequences are available. We will demonstrate that
autoregressive prediction can be used to extend the effective range of
| sinusoidal ARPEFS signals by an amount which increases with the
signal-to-noise ratio. Although we apply this method to the analysis
of ARPEFS, the method is directly applicable to EXAFS data or to other
spectroscopies requiring high resolution Fourier transformations.
After ARPEFS is described in Sectien II, the taner-and-transform

method of Fourier analysis is discussed in Section III.

Autoregressive prediction is introduced in Section IV. The results

are discussed in Section ¥, and a summary appears in Section VI.

"I. ARPEFS

We shall demonstrate the autoregressive Fourier technigue by
applying it to ARPEFS data. In this section we briefly describe the
essential physics of ARPEFS and discuss why high resolution Fourier
analysis iS required.

Angle-resolved photoemission extended fine structure is the
oscillatory part of the photoemission current as a function of
photoeiectron kinetic energy.9 Photo-excitation of an adsorbate
core level gives an atomic-like (direct) outgoing photoelectron wave.

Direct propagation of this wave to our detector would give an overall
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atomic character to the differential cross section. Elastic scatter-
ing of this wave from substrate atoms leads to a new set of waves
which can reach the detector and which interfere with the direct
wave. For electron kinetic energies from about 50 to 500 eV, two
conditions are met: single elastic scattering from ion cores dominates
and the electron de Broglie wavelength corresponds to atomic dimen-
sions. Thus, the interference modulation with kinetic energy can be
used to derive the scattering path length and hence the position of
the adsorbate atoms relative to the substrate.

The ARPEFS modulations are strongly dependent on the scattering
angle, a., the angle between the photon polarization vector and

scatterer, Bj, and the angle between the detector and the polariza-
tion vector, y. In the simplest theory,11 the modulations, x(k),

expressed as a function of the electron de Broglie wavenumber, k, are

= . A 1= S - :
X (k) g AJcos[er\l co nJ) + éJ].l (1)

where

2,2
o cos Bj If(nj)] e—Lj/Aek-ojk (1-cos uj)
J COS v r

J

for 1s photoabsorption. If we call the polarization vector ?, the
-+
emission vector k, and the vector from the emitter atom to the jth

-
scatterer rj, then the parameters in this formula are:
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-3 -5
Bj : angle between ¢ and r5
- -+
Y : angle between ¢ and k
g -»
@y : angle between k and 5
|f(°j)| : scattering amplitude for ion core j at ;5
ﬁj : scattering phase shift for ion core j at Fj
A : inelastic scattering length coefficient
Lj : total electron path in solid
ag : mean square difference in displacement between

emitter and scatterer j.

The argument of the cosine contains the geometrical information,

r‘j—rj €os aj. If the contribution from a single scatterer can
be isolated, the scattering phase shift, dj, can be removed and the
structure can be determined.

Because the single scattering theory is not valid for low
wavenumber measurements and because the Debye-Waller factor,
exP(-azkz(l-cos cj)), reduces the intensity of the oscillations
for high wavenumbers, the useful ARPEFS data range typically lies
between 3 A~l_rad. and 12 A~'-rad. As we show in the next section

this range may not be sufficient to resolve the nearest neighbor path

Tengths when normal Fourier analysis is applied.

III. THE TAPER-AND-TRANSFORM METHOD

To demonstrate our Fourier method we analyzed a harmonic sum
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(Fig. la) made up of test data consisting of two sine waves with
frequencies of 5 8 and 6 X sampled 128 times in the interval from 4 to
11 A-'-rad. We added pseudo-random numbers to give a signal/ngise
ratio12 of 2.8. Two important differences between this signal and

our ARPEFS data--the k dependences of the amplitude Aj and of the
phase bj-will be examined in Section V.

Direct application of the discrete Fourier transform,
] N1 q, .-i2xpg/N
g(p) = ¢ Eo G(g) e . (2)
Q=

to the test sequence of N points [G] gives, via the Fast Fourier

Trans.‘orm,2

a sparsely digitized Fourier spectrum, [g], shown in
Figure 1b. The density of points in the Fourier spectrum can be
increased by simply appending zeros to the sequence, [G], as Figures
1c and 1d illustrate, but ringing sidelobes—Gibbs oscillations—then
appear, as a consequence of the finite length of the data
sequence.l’2 These oscillations obscure or confuse features in the
experimental Fourier spectrum. They arise from the sharp truncaticn
of the signal at the ends of the range. If y(p) is the sinusoid that
we would get if we could measure an infinite range of data, then our

experiment gives

b(p) = w(p)*y(p) -w< Pt (3)

The box function, w(p), truncates the signal at the extremes of the
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measurement interval:

w(p)=0 p<l
w(p)=1 T<peN (4)
w(p)=0 p>N

for N measurements. The Fourier transform of b is the convolution of
the transform of the sine waves (delta functions) and the transform of
the box (sinzx/xz). The sidelobes oscillations of the box trans-

form are then superimposed upon the delta functions.

The usual approach for reducing these oscillations is termed
“taper-and-transform" spectral ana]ysis.] The sharp-edged box is
replaced by a smooth weighting function whose Fourier transform does
not contain large oscillations. This weighting function will broaden

the Fourier spectrum as it reduces the sidelobe oscillations.
13

Harris '~ and Nutta]l14 surveyed a variety of weighting functions

and compared their performance by several criteria. For our purposes,
the appropriate weighting function should have the highest possible
resolution for a sidelobe-to-mainlobe ratio below the flat Fourier
spectrum of the noise (assuming approximately normal distributed
noise). Sidelobes falling below this level will have no more impact
than the noise from the measurement. For sine waves, the Fourier
signal-to-background will be the square root of half the number of
data channels times the signal-to-noise ratio; this may be used as a
rough quide for the weighting function selection.

As a measure of resolution we select the full width at half

maximum valve and label it ar. The width of the measurement, ak, can
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be related to this resolution as

ar o= 22 £ (5)

where the factor f depends on the weighting function. For a square
window (no weighting) f = 1.21, and the sidelobe is .22 times the
mainlobe. Harris gives f as the "6 dB resolution"” and reports the
sidelobe ratio in dB (20 times the log]0 of the sidelobe ratio).
Several of Harris' r'esults]3 are collected in Table [ and displayed
in Figure 2; since Harris concentrated on weighting functions with
very low sideiobes, we have extended his calculations to include
weighting functions with sidelobes ~ 10 percent of the main lobe.

The weighting functions in Figure 2 tall in three groups. First,
functions (a,b) which are flat in the center and fall smoothly to zero
at the edges have the poorest resolution for a given sidelobe ratio.
The shape of the roll off--Gaussian or cosine--seems to have little
effect. Second, several functions (c,d,e) without variable parameters
can be found which have 1-10 percent sidelobes but better resolution
than the first group. Finally, the third set includes functions
(fsg,h) which are theoretically optimal for mainlobe width versus
sidelobe ratio by different measures.]3']4 For sidelobe ratios in
the .1 to .01 range these weighting functions are equivalent.

From this last set we select the more familiar Gaussian weights
and choose the Gaussian function width equal to 5/8 times the data

range. This gives f = 1.6 and sidelobes equal to 3 percent of the
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mainline. Figures3(a) and 3(b) illustrate the taper-and-transform
results for the sine wave test spectrum using this weighting. The
sidelobes will double while the mainlobe only narrows by 10 percent if
we choose a Gaussian width equal to 3/4 of the data range.

With the resolution relation, equation 5, we can look forward to
difficulties with real measurements. With the longest ARPEFS
measurement range reported to dateg. Ak = 6.5 A']-rad., the path-
length vesolution will be ar = 1.55 A. Nearest neighbor scattering
atoms in that study appeared at path lengths of 1.96 A, 3.2 &, and

4.46 A—these peaks cannot be resolved with taper-and-transform

Fourier analysis.

IV. THE AUTOREGRESSIVE PREDICTION METHOD

The taper-and-transform Fourier method produces a Fourier
spectrum of our signal only after we taper the signal toward zero at
the edges of the observation interval. Beyond the observation
interval this method therefore arbitrarily (albeit implicitly) assigns
zero as the signal value, contrary to any reasonable expectation based
on the sequence measured. In fact, most arbitrary choices for the
signal in this region could be characterized as "unreasonable". This
is another way of saying that we do not want the Fourier transform of
our measured signal; we want the Fourier transform of a signal of
which we have only a short segment. Proper selection of a weignting

function can minimize the problems of a short data range, but this
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does not address the underlying problem.

The autoregressive (AR) prediction approach to Fourier analysis
proceeds with different assumptions about the data analysis
prob]em.]'3'10 In the AR method we assume that the data in the
(1imited) data range represent a few observations of an auto-
regressive process. By least-squares fitting theéé data we determine
the process parameters and solve for the Fourier spectrum of the
process. Because the range of the AR process is not limited to the
observation interval, much better resclution is possible.

In an autoregressive process each data value, xp, can be

expressed as a linear combination of previous values,

m
X = = z
Q=

: aqxp_q. (6)

The number m is called the "order" of the process; the coefficients

aq constitute an autoregressive filter. In modeling a data sequence
with an AR process, a set of coefficients aq and an order m must be

calculated which can “predict® all the members of the data sequence.
With the order less than the number of data points, the forward

predictions in equation (6) and the backward predictions,
Xoam = = E g% pomtq (7)

form an overdetermined set of equations for the AR coefficients. The
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struciure of this set of equations is unusual since the autoregressive
process employs data values to construct other data values.10

For n data values, we define a 2n-2m length vector, E, containing
the values from the left hand side of equations 6 and 7. Similarly, m
AR coefficients form a vector, ;, and a (2n-2m) by m matrix, X, is
constructed from the staggered data values as indicated on the right

hand side. Then the least-squares equation for a is
X3 - -b (8)

(see also ref. 10, page 249). These equations may be solved by fast
recursive methods,15 but, for the signal-to-noise ratios encountered
in the analysis of extended fine structure, we find that the Singular
Value Decomposition (SVD) method16 for solving these equations to be
more useful. As described in Ref. 17, the Singular Value

Decomposition of a matrix X gives

. T
52(n—m)Xm = g2(n-m)x2(n-m)§2(n—m)xm!mxm’ (9)

where U and V are orthogonal matrices and S is a diagonal matrix whose
entries may be ordered by size. The value of this approach to solving

least-squares problems has been discussed in detail by Lawson and

17

Hanson, and the application of spectral estimation is discussed by

Tufts and Kumaresan.l® Essentially, the SVD concentrates the
significant signal content in the equations for the largest singular
values. Then, when the solution for the original least-squares

problem is constructed, only the largest singular values are used and
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the remainder—those associated with noise——are discarded. Thus the

solution for the AR coefficients is written

-

. v
a= -
i

Il t~170

5 (UT6), (10)

1 aj

where V% is the it" row of V and a% is the ith singular
value.

The appropriate number of singular values, p, may be selected by
visual inspection. Since the SVD of random numbers will be random,
the ordered singular values with fall with a constant slope unless
they contain information (see Figure 8, as discussed below). With the
highly overdetermined AR system of equations, we can always see a
section of constant slope for high index singular values: when the
singular values rise above this slope, they contain information.

An AR process of order m has a Fourier power spectrum

proportional to
1

m .
q=] 9

Thus, one route to high resolution Fourier analysis proceeds as

follows:

1. set a, = 1,

2. construct the least-squares equations and apply the SVD,
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3. select the number of singular values and solve for a

g=1, m with equation 10,

4, set aq =0 for q = M+1,q

power of 2, e.g. q

where q is a large

max
=2048,

max

max
5. fast Fourier transform the full sequence [aq], and

6. invert the sauare modulus of the transform.

While this approach has the greatest potential resolution, it is
difficult to apply to real data. The resulting peaks are all very
sharp, making it difficult to distinguish spurious from real hidden
peaks., The peaks are strong functions of the order chosen and of the
signal-to-noise ratio in the data. Furthermore, only the power
spectrum is retrieved; the phase information is not available.

For these reasons we have adopted a more conservative approach,
suggested by reference 1, which sacrifices some resolution in favor of
greatly enhanced reliability and control. This procedure is:

1. set a, = 1,

2. construct the least-squares equations and apply the SVD,

3. select the number of singular values and solve for aq,

g=1, m with equation 10,

4, use equation 6 to extrapolate the data sequence forward,

5. use equation 7 to extrapolate backward,

6. multiply the resulting sequence by a weighting function,

7. add zero value channels until the total number of channels

is a large power of 2, e.g. 2048, and
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8. fast Fourier transform the long sequence.

The Fourier coefficients derived from this procedure can be
further analyzed with the usual Hilbert back transformation.3’4 We
have usually chosen an order equal to one half the number of data
points, and we can typically extrapolate for approximately as many
data points forward and backward as we originally measured.

The inherent control of this procedure comes in the examination
of the extrapolated sequence. At some point in the extrapolation the
new values begin to increase rapidly in amplitude and/or noise content
(Fig. 3c). By placing the edge of our taper window at these points
the unstable part of the extrapolation is eliminated. Furthermore,
the window weights the extrapolated points significantly less than the
real data values, moderating the effect of the new values on the final
spectrum. This last advantage is crucial for practical spectroscopic
signals which are not exact sinusoids.

An example of the extrapolation is shown in Figure 3c, and its
effect on the Fourier spectrum is shown in Figure 3d. The signal in
Figure la was fitted to an AR process of order 64 and 4 singular
values were required (as expected for 2 real sinusoidslﬁ).
Extrapolation gives Figure 3c. Figure 3d dramatically illustrates the
potential of this method for increasing resolution in Fourier analysis.

At this point it is useful to note that the ARP-Fourier transform
method is not a “deconvolution" of the data which can produce spurious

peaks through unreliable resolution enhancement. As we illustrated in
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Figure 4, our net process solves a problem with the
taper-and-transform Fourier method. In Figure 4a it is obvious on
visual inspection that more than one frequency is present, but the
Fourier transform will have Gibb's oscillations. When the taper
(weighting function) is applied as in Fig. 3b, the beat structure is
lost while the Gibb's oscillations in the Fourier transform are
suppressed (Figure 3(b)). From this perspective the unadorned Fourier
transform and the taper-and-transform process are clumsy operations
that obscure the frequency information inherent in the data. When the
ARP is applied, Figure 4(c), data on the ends of the measurement are
no longer lost when the window function is applied, Figure 4(d).

Our overall procedure requires three parameters: the number of
singular values, the number of AR coefficients, and the final taper
width. As discussed above and in reference 17, the number of singular
values may be determined by inspection. For poor signal-to-noise
conditions, the size and variability of the singular values associated
with noise will make this choice more difficult. Autoregressive
orders between N/2 and 3N/4 are are recommended by Tufts and
Kumaresan.16 Qur choice of a taper width at just less than twice
the measured data width reduces the importance of our choice in the
first two parameters.

Up to this point we have assumed that our measurement can be
successfully approximated by an autoregressive process. In
reexamining this point we divide the question in two parts: i) how

closely can a cosinusoidal series be represented by an autoregressive
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process, and ii) how closely does a cosinusoidal model fit ARPEFS
data? For the first part we can note the discussion of Ulrych and
Ooelo. Beginning with a finite difference equation for a sinusoidal
series, they demonstrate that such a series can be represented by a
combination autoregressive, moving average (ARMA) model; they also
show that such an ARMA model can be represented by an infinite order
pure autoregressive model. Numerical work by Tufts and Kumaresanl®
supports the conclusion that AR models can represent sinusoidal
series; their method can give resolution near the theoretical limit
even for low signal-to-noise ratios.

The second question is more difficult to address, but it impacts
every method of harmonic analysis applied to ARPEFS. Specifically, if
the cosine form breaks down, the taper-and-transform approach will
fail as the autoregressive approach does. We will examine some of the

possible problems in the next section..

V. DISCUSSION

Two important features neglected in the sine wave model spectrum
are the amplitude and phase variation with k in real ARPEFS data. The
sine wave model spectrum negiected any variation in frequency due to
nonlinearity in bj and any variation in amplitude due to
If(aj)lexp[-azkz(l-cos aj)—Lj/xk].

To examine a model containing realistic amplitude and phase

functions on a scale similar to our data we have generated a spectrum
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by adding noise to
. . ey7 o-.02k2=5.3/k
x(k) = cos(173°)|f(173°)|cos [4.46k + ¢(173")] e-UeK —2-
. . e\ o-.014k2-5.3/k
+ 2 cos(116 )| f(116 )|cos [3.21k + #(176")] e~ =3k

where f and ¢ are derived from summed partiai-wave phase s.hifts,‘]8
Direct application of the AR prediction gives the result in Figure 5a
and the Fourier trensform in Figure 5b. The increase in amplituce at
low k in the linear prediction is a consequence of the amplitude
structure for scattering through 116°: [f(116")| peaks at

~ 5 R~1_rad as shown in Figure 6. The AR method presumes that this
is a rising signal and continues the trend to lower k. At higher k,
the AR method tries to force this single decaying frequency to be
modeled by infinite sine waves: it must sum two nearby frequencies to
- simulate the amplitude decline. The Fourier spectrum then contains a
split peak for this scattering event.

The rising low k amplitude effect can be recognized in the
predicted spectrum and remedied by analyzing kX(k). The k weighting
helps to cancel the decline of If(ﬂj)l at higher k and has been used
extensively for analysis of EXAFS data.5 This weighting evens out
the linear prediction shown in Figure 5c, and the resulting Fourier
transform amplitudes (Fig. 5d) are more similar to the average
amplitudes of the signals within the i-eal measurement range.

Whatever weighting is employed, the important separation of the

(1z)
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Fourier frequencies is still effected by the autoregressive prediction
followed by Fourier transformation. The amplitude variation places an
upper limit on the resolution obtainable from the AR analysis of real
data. When the amplitude function falls with the same shape as the
beat envelop, then the AR analysis cannot distinguich between them.

Variation of the frequency with k violates the stationary
assumption in the application of the autoregressive model. Thus
ARPEFS peaks with phase functions strongly nonlinear in k will be
modeled incorrectly, probably being represented as more linear than
they really are. If the phase has an average slope at the beginning
of the data range which is different from its average slope at the
end, the extrapolation procedure sometimes yields a slightly doubled
or asymmetric peak which must not be mistaken for two.

The frequency variation may also explain the empirical selection
of a large process order m. In the usual application of the AR
techm‘que10 the order is chosen by some criterion based on the
prediction error; that is, the difference between the linear
prediction and the data values. While this criterion can give a
prediction filter for pure sinusoids in the presence of noise, valid
for infinite range, we seek an adequate representation of a more
complex oscillating signal over a small range. Our signal does not
result from any autoregressive process, and a large order may mecdel
nuances of nonlinear phase and noise.

The impact of modelling this non-stationary signal with an
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autoregressive filter is minimized because we do not rely on the
Fourier spectrum itseif for the final analysis. Following Martens,4
we apply a Hilbert transformation3 to our data. From the complex
exponential form of the cosine
A, i(p.k+p. . —i(p.k+p.
5 1(py bJ) Ay —ilpsk+e;)

A.cos(pjk + bj) =—5e *e

j (13)

we see that the transform of the cosine is real and peaked near p.

and -pj. By using only the positive frequency components, a complex

back transform gives

Aj i(pjk+bj) Aj iAj '
e = —5 Cos (pjk+¢j) * == s1n(pjk+bj) (14)
The amplitude and phase functions of the original cosine wave can be

derived as the amplitude and phase of this complex sequence. For our

signal the actual cosine argument is k(rj-rj) + 6., so we sub-

J
tract the potential phase shift, °j’ and fit the resulting sequence
to a line. The slope of this line gives the averaged geometrical
position we seek. The crucial point is this: we only use the cosine
phase function in the region of k where we made actual measurements.
Thus the entire AR prediction Fourier analysis serves only to isolate
a single frequency., The position and amplitude of the Fourier peaks
need not be accurate for us to obtain accurate geometries.

This complex backtransformation procedure does introduce one

important source of error: we lose the wings of the Fourier peak
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spectrum for the oscillation we isolate. This implies that the
non-linear phase information and strong amplitude dependence of the
ARPEFS oscillation will be missing in the backtransformed peak: we
necessarily derive an averaged frequency and smoothed amplitude
dependence. While not ideal, this result is certainly preferrea to
mixing the arguments of two different cosine oscillations.

Since there are a large number of variable parameters in even
this simple model, we cannot yet give a complete analysis of the
effects of background subtraction and signal/noise ratio. Generally,
the AR prediction produces a “"peakier" spectrum than one might imagine
being correct.]’10 Thus, errors in background subtraction appear as
small peaks at harmiess low rj values. When the beat pattern of two
peaks approaches the width of the actual measurement range, then
errors in background subtraction may interfere with resolution.

Signal/noise ratios greater than two allow approximately double
the resolution of the taper approach, with errors in geometry of
< 0.02 A. Errors increase rapidly for signal/noise ratios failing
below 1. Until more experience is acquired with the AR method,
prudence suggests examination of these effects for model spectra
closely mimicking the actual data before assigning error limits.

As a practical example of the improved analysis of ARPEFS data,
we have ana]yzed9 the modulations (Figure 7a) in the sulfur Is
photoemission intensity emitted along the [110] direction from a
c(2x2)S/Ni(100) adsorbate system. The Fourier transform via the taper

approach shows distinct peaks (Figure 7b), but each peak is an average
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of several path-length differences. The singular values for the
application of an 128 order AR prediction are shown in Figure 8. The
slope of the singular values is roughly constant—as indicated by the
plotted derivative--above singular value 17. Thus 17 principal
vectors were used to construct the AR filter. The AR prediction is
shown in Figure 7c, and the Fourier transform gives Figure 7d. Now
the individual peaks are clearly separated and they can be assigned to

scattering path-length differences.?

VI. SUMMARY

Autoregressive prediction provides a method for greatly
increasing the resolution of Fourier analysis of sinusoidal data.
Using the extrapolate-taper-transform method described here, we can
always do as well or better than the taper-transform approach. If the
signal/noise ratio is so poor that the extrapolation fails immedi-
ately, then the AR procedure reverts to the usual taper method. For
all other cases the resolution is improved. Furthermore, the method
is easy to implement, computationally efficient, and controliable.

The resolution improvement afforded by the autoregressive
prediction method scales with the quality of the experimental measure-
ments. Low precision or widely spaced measurements do not contain
enough information to accurately detemine the autoregressive coeffi-
cients. Our moderate precision measurements yield moderate precision

autoregressive coefficients; our coefficients allow successful extra-
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polation as we have demonstrated, but they are not precise enough for
Vthe analytic power spectrum formula.

Two improvements in the application of autoregressive prediction
to spectroscopic data require further investigation. First, the
statistical accuracy of the data values can vary significantly across
a spectrum; the least-squares fit of the autoregressive coefficients
should be weighted accordingly. Second, the autoregressive method
assumes equal intervals between measurements; for ARPEFS we do not
have equally spaced data. This problem is more difficult: the AR
process given in equation (6) steps by a single fixed amount.
However, there should be some AR process whose Fourier spectrum
closely approximates the Fourier specrum of our data even if our
measurements do not fall on an even mesh. Such questions are being
examined in the signal processing literature, e.g., references 20 and
21, and new methods should be available soon.

OQur final procedure is empirical for the same reasans the
familiar taper-and-transform method is empirical. Ideal frequency
analysis—the separation of our signal into each companent oscil-
lation--cannot be accomplished with noisy, finite-range measurements.
Furthermore, harmonic analysis is only approximately valid for our
spectroscopy: nonlinear phase shifts and energy-dependent scattering
power preclude pure sine-wave signals. The procedure we have ;
described here will, however, give a useful, high-resolution Fourier
transform from real spectroscopic signals.

Formulation of the autoregressive prediction methaod from the
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vantage of information theory has led to its description as maximum
entropy spectral ana]ysis.7’8'10'22 Faced with the problem of
estimating the Fourier transformation of an oscillatory signal given
only a short measurement range, the autoregressive method fits a
general oscillatory model to the measurements. The resulting ovar-
determined set of equations are reduced by maximizing the entropy of
the model. Thus, of all the possible models which give the same least-
squares error, we select the model which adds the least new informa-
tion, i.e. the one with the most signal entropy.

Data analysis methods can generally be compared by examining the
information they add to the measurement. The AR method assumes that
the data represent a process whose Fourier spectrum does not change
outside the data sequence: it attempts to add no new
infonnation.7'8'10 The taper-and-transform approach added the
“information" that the signal was zero where it was not measured; this
is contrary to any reasonable expectation. Directly fitting the data
to a model of the physical process (eqn. (1)) would be the ultimate
addition of information, but small uncertainties in the measurement
and in the model usually prevent this approach5 from being
successful.

Note that extrapolation after direct physical model fitting has a
different meaning than our AR prediction. Extrapolating by evaluating
a physical model estimates a physical signal. The AR extrapolation
does not estimate a physical signal; instead it reflects the frequency

content over the original measured interval. The AR prediction
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estimates an autoregressive model, not a physical one. We are not
attempting to predict a measurable quantity; the extrapolation is
merely one step in a harmonic analysis of our data.

Finally we note that this conservative approach to AR Fourier
analysis can also be applied to a number of spectroscopic problems.
Extended X-ray Absorption Fine Structure (EXAfS) has a nearly
identical form to eq. (1), and the autoregressive prediction would
allow high resolution Fourier analysis of more general utility than
the beat method of Martens.]9 Many problems in spectroscopic
deconvolution via the Fourier transform can also benefit from this AR
approach. Direct AR power spectral analysis has been successfully
applied to this problem,23 but the danger of spurious peaks 1S
particularly acute when we are seeking resolution enhancement. An
extrapolation-taper procedure would allow a more controlled, albeit

more mnderate resolution enhancement.
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Table |I.

Resolution factors and sidelobe ratios for Fourier weighting functions. For a data range

of ak, the full width of the Fourier amp)itude mainlobe for these weighting functions is
AR where arak = 2«f. The vatio of the maximum sidelobe peak value to mainlobe peak is SL.
These results are displayed in Figure 2.

Curve in Weighting Formula
Figure 2 Function h = ak/2 B f SL
None w(x) = 1 1.20 .22
(a) Tukey; 10 .75 1.3 2]
for B=0 for |x-h| < Bh wix) = I .66 1.43 .20 w
Hanning .50 1.57 .18 S
for x-h >B8h  w(x) = .33 1.72 .13 «
.25 1.80 1
5 - 7 cos| (_X:gﬁ-_")] .00 2.00 .03
(b) Gaussian Step, 125 1.37 .21
or L o L 2h_Bh .250 1.47 .18
Error function + ~ erf(X2 ] _ f(en-6h-x .333 1.72 .14
[? 7o 27 2 s T s 202 .04
.750 2.18 .02
(c) Riesz!0 1o - | X 2 - 1.59 .09
i i
(d) Cosinel0 N - 1.65 .07
COS[(—x‘h_h) n/?]
(e) Riemann - 1.74 .05
x-h

[sin (30 w)n2Y




Table 1 continued.

Formula

Curve in Weighting
Figure 2 Function h = ak/2 8 f SL
f Van Der Maas J NI 4 .5 1.14 .26
() 8 1,[BV1-((x-h/n)"] 1.0 117 .20
2.0 1.28 .15
ZMIII-((N-h)/h)2 3.0 1.38 .10
3.5 1.43 .08
1 | 4.0 1.51 .06
* g 6(x-2h) + 5 8(x) 5.0 1.65 .03
(g) Gaussian .80 2.22 .001
1.00 1.82 .01
) 1.24 1.58 .03
1.50 1.45 .07
exp{-lnztgil’;—'h—"l] } 2.0 1.33 12
2.4 1.29 15
3.0 1.26 A7
4.0 1.23 .19
(h) Kaiser-Bessel .5 1.21 21
1.0 1.24 .18
. 1.5 1.29 .15
1,08Y 1-( (x-h)/n)°] 2.0 136 .12
3.0 1.50 .07
2h 3.5 1.58 .04
4.0 1.65 .03
5.0 1.80 .01

yoE
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Figure Captions

Figure 1.

Figure 2.

(a) Sum of two sine waves, periods of 5 and 6 A, plus 10
percent pseudo-Gaussian noise. (b) Fourier amplitude of
the sequence in 1(a). (c) Extension of the sine waves of
(1a) by appending zeros. Set above the signal is a plot of
the weighting window function; it has a baseline of zero
and a height of one. (d) Fourier amplitude of Fig. 1(c).
Resolution factor versus sidelobe-to-mainlobe ratio for
several weighting functions. Abcissia is f in arak = 2xf;
for a data range of 6.3 A-'—rad., f will be the Fourier
resolution in A. Ordinate is the maximum sidelobe peak
value divided by the mainlobe peak. The plotted values are
given in Table I. The point at f = 1.21 and sidelobe = .22
represents an unweighted Fourier transform. The weighting
functions are given in Table I. (a) Tukey weighting, ref.
10, pg. 66. This function is flat in the center and rolls
off as a cosine on the data extremes. (b) Gaussian Step
or Error function. Similar to (a) but using a Gaussian
roll-off. (c) Riesz polynomial, ref. 10, pg. 65.

(d) Riemann weighting, ref. 10, pg. 65. (e) cosine
weighting, ref. 10, pg. 60. (f) Van der Maas weighting,
ref. 11, pg. 90. (g) Gavssian weighting, ref. 10, pg. 69,

(h) Kaiser-Bessel weighting, ref. 11, pg. 89.
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Figure 4,
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(a) Extended sine wave from Fig. 1(c) and, set above, the
weights used for taper-and-transform Fourier analysis. The
base of the weighting function is zero and its peak is
one. (b) Fourier transform of sine wave times weights
from Fig. 3(a). (c) Autoregressive prediction of the
signal in Fig. 1(a), using an order m= 64, half of the 128
points. The new weights is set above. (d) Fourier
amplitude of the product of the prediction results and
weights from Fig. 3(c).

Weighting function interaction with autoregressive
prediction. (a) Test sequence of two sine waves and noise
as in Fig. 1. Note the beat structure. (b) Data from

(a) times Gaussian weights. Gaussian width is 5/8 times
the data range. Note the loss of beat structure. (c) AR
prediction of the data in (a). (d) AR prediction from (c)
times Gaussian weights. Gaussian width is 5/8 times the
extended data range. Note the reduced emphasis of the
extrapolated region.

(a) Autoregressive prediction of a simulated signal from
equation (9). (b) Fourier amplitude of Fig. 3(a) times
Gaussian weights. (c) Autoregressive preaiction of k
times the simulated signal in Fig. 3(a). (d) Fourier

amplitude of Fig. 3(c) times Gaussian weights.
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Figure 7.

Figure 8.
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Magnitude of the scattering amplitude, |f(a,k)|, for Ni
atom at a = 116° and a = 173". The mild amplitude behavior
of the scattering for 173° gives a simple Fourier peak
shape; the steep drop at high k for scattering through 116°
leads to a doubled Fourier peak.

(a) Angle-resolved photoemission extended fine structure
from S(1s) ¢(2x2)S/Ni(100) along [110]. The weighting
function used for the taper is plotted offset above the
data. Its minimum is zero and maximum is one. (b) Taper-
and-transform Fourier amplitude for (a). (c)
Autoregressive prediction of (a). An order M=64 was used
for 128 Joints interpolated from the raw data. The
weighting function is set above as for (a). (d) Fourier
amplitude of the product of the window and extrapolated
data in (c).

Selection of rank for the singular value decomposition for
order 128 autoregressive fit to the data shown in figure

7. The singular value decomposition algorithm (ref. 17)
automatically orders the singular values by size. The
values o%, are plotted versus i as solid circles

connected by a thin line; their magnitude is given by the
left hand axis. The point by point differences are plotted
as the thick line with the right hand axis giving the
scale. The rank is selected as the point where the

singular values depart from constant slope.
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CHAPTER T7:

THE MEASUREMENT AND ANALYSIS OF ARPEFS DATA: APPLICATION
TO C(2X2)S/NI(100)

ABSTRACT

w¢ describe our procedures for deducing adsorbate geometry from
core-level photoemission measurements as they are applied to
c(2x2)S/Ni(100). Extracting the oscillating part of the sulfur (1s)
photoemission partial cross section gives the Angle-Resolved
Photoemission Extended Fine Structure. Fourier transformation yields
peaks at distances characteristic of the local site geometry and in most
cases closely related to geometrical path-length differences. Multiple-
scattering, curved-wave calculations are fitted to Fourier filtered data
to extract the geometry; the Fourier filtering reduces the size of the
scattering cluster and the number of free parameters in the fit.
Sources of error in this first ARPEFS measurement are discussed as a
guide for future work. We find a S-Ni bond length of 2.19 & (dl = 1.31
&), a S-Ni second layer bond length of 3.14 A corresponding to a 4%
expansion of the top Ni layer, and some evidence that Ni atoms in the
second Ni layer beneath open sites in the c(2x2) overlayer have a larger

expansion from the first layer.
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I. INTRODUCTION

Recently, we r‘epor‘ted1 a new approach to determining surface
geometries using high-kinetic-energy, long-energy-range photoelectron
diffraction measurements. Experimentally we measure a series of angle-
resolved core-level photoemission spectra. Thus we begin with the
surface sensitivity and chemical specificity of photoemission; the angle
resolution adds geometrical selectivity. As we increase the
photoelectron kinetic energy, we observe intensity oscillations about an
average atomic-like cross section. For electron energies from
50-500 eV, the origin of these partial cross-section oscillations--
interference between direct and scattered photoelectron waves--directly
relates to the total cross-section oscillations, the extended x-ray
absorption fine structures (EXAFS).Z'3 Like EXAFS, this type of
photoelectron diffraction measurement can be expressed as interference
oscillations whose frequency is dominated by geometrical path-length
differences and these oscillations can be frequency analyzed to display
the structure information directly. To suggest these close connections
and to distinguish our new approach from other techniques which use
photoelectron diffraction, we will refer to the modulations in
photoemission partial cross section above 50 eV as angle-resolved
photoemission extended fine structure (ARPEFS).

In this paper we discuss the analysis of S(1s) ARPEFS measured
along the [011] and [001] crystallographic directions from a c{(2x2)
sulfur overlayer on a Ni(001) crystal surface. The nominal geometrical
structure of this overlayer is well known. - Our purpose in this paper

is to report, in detail, procedures we have developed to extract the

geometry of S on Ni, including the distance between the S and the second
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Ni layer atoms from angle-resolved photoemission intensity measurements.
We hope to demonstrate that these same procedures provide a basis for
determining the structures of more complicated adsorbate systems.
Furthermore, we discuss sources of systematic and random error which
could lead to incorrect or inaccurate structures,

A simple elastic scattering theory for ARPEFS predicts that angle-

resolved photoemission intensity, I, oscillates about the atomic partial

cross section, IO' according to
I =I0(1+x)

x(k) = } Aj(k) cos[k(rj—rjcos ej) + ¢j]

where Aj(k) cocntains the elastic scattering amplitude, inelastic
damping, aperture integration, and thermal averaging, rj is the bond
length, eJ is the scattering angle, ¢j is the scattering phase function,
and the sum is over all atoms jJ with significant amplitude. Our task
then is to measure I, the photoemission intensity, convert it to y(k),
and extract the path-length difference (r’J-r‘j cos ej). These three
steps correspond to the three main sections of this paper. We describe
the photoemission measurements in Section II, the momentum scale
conversion in Section III, and the frequency analysis and geometry

determination in Section IV.
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II. ANGLE-RESOLVED PHOTOEMISSION

The experimental aspects of these ARPEFS studies are discussed

separately in the subsections below.

IT.A. Sample

The c(2x2) overlayer of S on Ni(100) has become one of the
prototype surface structure problems both because of its importance and
because of easy preparation. The bonding of sulfur to Ni crystals is of
tecinological importance primarily btecause sulfur degrades Ni based
catalysts.7 The c(2x2) overlayer is easy to prepare either8 by

segregation of bulk sulfur impurity or by decomposition of H,S or (S2=).

6

2
Y
Thus this surface system has been studied by LEED, surface EXAFS,

Normal Photoelectron Diffraction,5 and Azimuthal Photoelectron
Diff‘raction.9 Qur primary concerns in selecting a system for the first
ARPEFS measurements were a well known structure and a wide accessible
energy range above a (1s) core level. The ¢(2x2)S/Ni(100) is ideally
suited for these reasons.

The Ni crystal was cut on a diamond saw from a 1/U4" diameter boule,
oriented, and polished to < 1° from the perfect (100) face. The final
polish with 5y mesh A1203 powder in ethanol was followed by a 10 second
etch.10 The Ni crystal was strapped to a resistively heated Ta sample
block by .005" Ta strips spot-welded to the sample block; the sample
block was suspended on a 3 axis manipulator. Argon ion sputtering was
effective in removing surface sulfur contamination, but each annealing

cycle segregated more sulfur to the surface. Thus repeated cycles of

annealing to 800°C and sputtering were used. When the sulfur was
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depleted, the crystal was exposed to .5L O2 and annealed to
approximately 750°C. Experience showed that this step removes surface
carbon but leaves no oxide behind. The final clean crystal was not
examined by Auger or LEED prior to the st exposure, to reduce the
electron beam induced deposition of carbon.

The Ni crystal was exposed to ~ 2L st gas from a S5u aperture.
Mass spectra of the chamber background gas during dosing showed an
increase in H

> gas at the beginning of the gas exposure. Heating the Ni

erystal to ~200°C produced a strong c(2x2) overlayer pattern.

I1.B Electron Energy Analyzer

The angle-resolved photoemission analyzer used for these
measurements has been previously descr‘ibed.11 Its important features
for these measurements are: i) complete 2 axis motion allowing an
unhindered selection of angles, ii) multichannel energy analysis for
rapid measurements with synchrotron light, and iii) maximum + 3° angular
resolution. The angle resolution increases for kinetic energies (Ek)
greater than the pass energy (Ep = 160 eV) as the transmission of the
analyzer falls like 1/(Ek-Ep). The analyzer was operated for maximum

transmission giving an energy resolution of -1 eV.

II.C Photon monochromator

These S(1s3) photoemission measurements were made possible by the
Stanford Synchrotron Radiation Laboratory's ultra-high vacuum soft x-ray
double crystal monochr‘omator.12 The Ge(111) monochromator crystal gave
high flux with 1.1 x 103 resolving power for the 2.5 keV - 2.9 keV range

used for these measurements. No. detectable scattered light entered the
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sample chamber. The light is polarized in the plane of the storage

ring.

II.D Photoemission Measurements

Two separate experimental geometries were used. In the first,
which we call [011], the Ni{(100) crystal was rotated about the sample
normal to place a [011] axis in the plane of polarization with the [011]
direction parallel to the polarization vector. The angle-resolved
detector was aligned with the [011] axis; the emission and polarization
vector directions were thus colinear. In the second experiment, on a
different crystal, the polarization vector was pointed 30° from the
crystal normal in a [100] direction, and the analyzer was oriented for
normal emission.

With a photon energy of 2504 eV, the electron emission spectrum was
measured for 40-500 eV. This provides the electron inelastic-scattering
profile and the electron energy analyzer transmission function shown in
Fig. 1. For photon energies between 2535 eV and 2894 eV, sulfur (1s)
core-level photoemission measurements were made every 3 eV by advancing
both the photon energy with the double crystal monochromator and the
electron energy, with the energy analyzer maintaining the relation hv =
Ek -2474 eV, A typical spectrum is shown in Fig. 1. This set of 120
photoemission spectra for each of two directions constitutes our data

for the structure analysis.

II.E Sources of Error

Errors in the experimental measurements of angle-resolved core-

level photoemission limit the ultimate accuracy of our geometry
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determination. The most serious problem is the accurate angular
placement of the polarization and emission direction vectors.

The polar angle of emission with respect to the crystal normal is
the most important angle for geometry determination. This angle is
determined by electron analyzer two axis goniometer and the sample
position. The analyzer goniometer was mechanically ruled and aligned;11
it should be reproducible to <0.2°, but its accuracy is limited if the
sample is not placed at the center of the goniometer rotation. The
sample position is determined by maximizing the photoelectron count
rate; magnetic fields, incorrect alignment of the electron optics c¢n the
goniometer, and misplacement of the photon beam can lead to a sample
position away from the chamber center. The sample polar angle is
calibrated by laser autocollimation on the polished face of the crystal.
The optical surface can be + 1/2° from the ideal (100) face; subsequent
in vacuo cleaning could increase this difference. The laser
autocollimation is referred to the surface of a vacuum chamber window;
the angle between the window and the analyzer goniometer must be
inferred from the construction of the window and the vacuum chamber.
Once calibrated, the sample position is determined by rotation of a
sample manipulator; errors may be introduced if the crystal does not lie
on the axis of rotation or if liquid nitrogen cooling coils or
electrical wires apply torque to the sample while it is reoriented.
Combined, these errors may well be as large as + 2°, although some
geometries, e.g. normal incidence light, normal emission, or sample
normal oriented perpendicular to the autocollimation reference window,

can be double-checked more easily.
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The azimuth of emission and polarization is determined by visual
alignment of Low Energy Electron Diffraction spots with respect to the
vacuum chamber base; although fairly crude, this procedure can be rather
precise. The LEED spots report the surface crystallography directly and
only a strong magnetic field across the LEED apparatus axis would affect
the azimuthal position of these spots; spots separated by ~10 cm can be
aligned to within + 1 mm to give a 1° error.

The polarization vector position is less important for surface
geometry. The synchrotron light is polarized in the horizontal plane.
Since the position of our sample is referred to our vacuum chamber, we
place the vacuum chamber along the photon beam by centering the beam at
the entrance to the chamber and at the electron analyzer on
phosphorescent screens. The rotation of the chamber about the‘beam is
then set with a mechanical level., It is difficult to estimate the final
error in alignment, but the most sensitive angle--the rotation about the
beam--can be reproduced to < 1°9,

Other errors in the photoemission measurements primarily affect the
measured ARPEFS'amplitude and not the oscillation frequency. Steps on
the crystal surface or an improper dose of S atoms will lead to S
photoemission not representative of an ordered overlayer; this will
typically reduce the measured oscillations as they are expressed as a
fraction of the total partial cross section.

Although this catalog of errors is a rather dreary list, it is
roughly the state-of-the-art in angle-resolved photoemission
measurements with synchrotron radiation. 1In reviewing this list one
should recall that the apparatus used for this first ARPEFS measurements

was not designed for high precision structure determination. The more




324

serious problems detailed above can be remedied easily now that their

importance is understood.
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I111. THE EXTENDED FINE STRUCTURE
III.A Method

From the raw photoemission measurements we must derive the
oscillations in the partial cross section. We have developed a three-
step procedure which relies only on photoemission measurements. These
steps are:

i) estimation of the photoemission intensity at each kinetic
energy by non-linear least-squares fits to a simple line shape
function,

ii) normalization of these intensities for photon flux and
electron analyzer transmission variations using background
intensity measurements, and

iii) estimation and removal of the atomic partial cross section,
IO.

In this section we examine each of these steps in detail.

Before proceeding, we pause to discuss the energy scales involved
in the analysis. Our raw data consists of a series of photoemission
spectra for increasing photon energy, hv. Each spectrum ié centered on
the sulfur 1s core-level photopeak but includes ~10 eV of the electron
emission spectrum to higher and to lower kinetic energy. The photopeak
mean kinetic energy, E, is related by the S{(1s) binding energy, EB, to

the photon energy, hv:

E = hy - EB

Our measurements and our analysis depend only on the photopeak kinetic

energy, E; we do not use the monochromator energy scale or the value of
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the binding energy. We label each spectrum by the photopeak mean
energy, E, and electron energy within each spectrum we will call Ea.
To estimate the photoemission intensity, we decompose each
photoemission spectrum into peak, tail, and background contributions.
Fig. 1 demonstrates the decomposition for E = 264 eV. Notice that the
least-squares fit also provides the value of E. We employ simple
functions for our fits. The Gaussian function for the photopeak,

centered at E,

-(Ea—E)z/uuz
G(E.Ea) = G(E) e

has an area G(E) and a width ¢. The tail is a Gaussian broadened step
function:
E. - E

1 a
3 erfl—5—)]

1
T(E.Ea) = T(E}[E -

whose mean is at E and whose width is forced to be the same as the
photopeak. The background is a scaled experimental electron emission

spectrum, M, taken with E = 30 eV:
B(E.Ea) = B(E) * M(E = 30, Ea). (1)
From each least-squares fit we derive three numbers, the Gaussian area,

G(E), the photopeak position, E, and--for reasons we now discuss--the

background scale factor B(E).
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The Gaussian areas derived from our least-squares fits are
proportional to the partial cross section we seek, but they also depend
on the photon flux and electron analyzer transmission function. Calling
the partial crosas section I(E), the photon flux F(E), and the
transmission function A(E), we have the Gaussian areas

G(E) = F(E) * A(E) * I(E)

Note that the photon flux, F(E), is written as a function of
photoelectron energy, E. We mean for this function to represent all the
instrumental intensity variations which influence the strength of the
photoemission spectrum measured at kinetic energy, E. Thus F(E)
contains the photon monochromator transmission, storage ring current,
slit widths, effective sample-photon-analyzer interaction region, and
the spectrum integration time.

To remove the "photon flux" contribution we model the photoemission
background as the product of photon flux, analyzer transmission, and an

intrinsic background function, N(E,Ea):
M(E,E_ ) = F(E) * A(E_) * N(E,E)
a a a

We then assume that the intrinsic background does not depend on photon

energy from 50 to 500 eV above the absorption edge:
= * ®* N(P
M(E.Ea) F(E) A(Ea) N(ua)
Thus a measurement of the electron emission spectruh for Ea =

50-500 eV--when the photopeak is at E = 30 eV--is proportional to the

intrinsic background:
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M(E = 30 eV, Ea) = F(30) * A(E) * N(Ea)

When this spectrum is used as the photoemission background in the least-
squares fits, a scale factor B(E) is introducec (eqn. 1). Since we
assume that the intrinsic¢ background, N(Ea). does not depend on the
position of the photopeak, the scale factor must be the ratio of the
flux and transmission during the ARPEFS measurement to the flux and

transmission during the background scan:

F(E) * A(E.)
F(30) * A(Ea)

B(E) = = F(E)/F(30)

Therefore the ratio of the photopeak area to the scale factor for the
background function is proportional to the product of partial cross
section and analyzer transmission:

G(E)/B(E) = I(E) * A(E)/F(30)

Only the analyzer function remains. Based on the discuséion in
Section JI, we take A(E) = 1/E, to give the partial cross section as:

I(E) = ¢ G(E) * E/B(E) (2)
with ¢ an arbitrary, unknown constant.

Fig. 2 demonstrates the I(E) curve we obtained from applying these
ideas to the S(1s) ARPEFS data. Notice that while our description of
our processing is complicated, the actucl analysis is quite simple. The
least-squares fits have three linear parameters (Gaussian area, tail
area, and background scale) and two non-linear parameters (Gaussian
width and mean). OQur least-squares fit computer program records these

parameters on disk; when all the photoemission data have been analyzed,
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the parameters are read back in and the array algebra of equation (2) is
performed.
Now we extract the oscillating part of the partial cross section

according to
x(E) = (I-IO)/IO. (3)

In principle the atomic partial cross section, IO' could be approximated
by the sulfur cross section calculated from some wavefunction for free
atomic sulfur or a model for the S on Ni problem. From free atom cross-
sectior calculations we can see that the sulfur I0 contains only very
low frequency information: We will make little error at the
structurally important frequencies if we approximate I0 as the smooth
part of I. Furthermore, as we discuss below, systematic errors in the
measurement of I and the estimation of low frequencies in the Fourier
transform invalidate any distinctions between the "correct" I0 and our
simple estimate. |

Fig. 2 shows our fit of I(E) to a quadratic function of energy:

I(E) = aE2 + bE + ¢

for the [011] experiment and a smooth spline for the [001] experiment.
The resulting x(E) from eqn. (3) is shown in Fig. 3.

This curve, y(E), is the Angle-Resolved Photoemission Extended Fine
Structure. It represents the proportional change in partial cross
section due to interference between direct and scattered photoemission.

Our measured oscillations are very large, + 50% of the average value;
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the signal seems to be dominated by a few mid-range frequencies. 1In the

next section we demonstrate that these oscillations can be analyzed to

determine surface structures.

III.B Sources of Error

The procedure we selected to derive the extended fine structure
from the photoemission measurements suffers from several systematic and
random errors. Deriving the partial cross-section curve I(E) from the
photoemission measurements may suffer from five major problems:

i) cross-section variations. As the photon energy is scanned, the

inelastic electron spectrum, N(E), may change as the photoabsorption
cross section for the levels which contribute to it change. Far from
threshold these changes w;ll beg_smooth decreases in electron flux.
Crossing a threshold will cause a sudden jump in flux. For S on Ni
there are no absorption thresholds, and since we measured N(E) at a
photon energy near threshold where the cross-section is large, we expect
that our background will be systematically too high at higher photon
energies.

ii) Auger peak cross-section variation. The inelastic electron

spectrum measured with the photopeak at low kinetic energy should
overestimate the size of the adsorbate Auger features. For example, the
S LMM Auger region near 150 eV was measured with a photon energy of

2504 eV, but was then used to fit photoemission spectra with photon
energies near 2624 eV. The drop in the absorption cross section over
this energy range will lead to a smaller least-squares fit coefficient,

B(E), for the background in the Auger region than we would have obtained
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if we had measured the higher region with a photon energy closer to 2640
eV. Thus we will overestimate I(E) near adsorbate Auger features.

iii) Storage ring current loss. The inelastic scattering curve was

estimated by a single long energy range scan of the background. The
storage ring current will drop by ~5% during this scan, leading to a
slight underestimation of M(E.Ea).

iv) Photon beam movement. One further problem with the background

fit method stems from the use of the double crystal JUMBO monochromator
at the Stanford Synchrotron Radiation Laboratory (SSRL). Heat from the
synchrotron beam on the first crystal expands it, changing the
spectrometer equations of motion. While a static heat load can be
compensated, synchrotron beam decay, beam loss or re-injection changes
the heat load. While the -3 eV energy shifts which accompany a doubling
of beam current on injection do not affect our spectroscopy--we measure
the kinetic energy--the beam movement on the sample can change the shape
of the background.

v) Photopeak lineshape function. The choice of Gaussian photo-peak

plus Gaussian tail to represent the photoemission intensity is certainly
oversimplified. Although the instrumental resolution is ~2.5 eV, our
measured photopeak had a width of ~3.0 eV, indicating additional
broadening. The tail contains electrons scattered inelastically in the
sample and in the analyzer as well as the metallic response tail of
Sunjic and Doniach. The processes would have to be investigated as
functions of photoelectron kinetic energy to accurately characterize the
photoemission lineshape. Qur much simpler function slightly
underestimates the true line shape, giving a low value for the

photoemission intensity.
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The conversion of photoelectron intensities to fine structure leads
to two further systematic errors. First, the electron analyzer
transmission is only approximately proportional to 1/(electron kinetic
energy). Second, our method of determining IO empirically from our
measurements will mix the true atomic partial cross section with very
low frequency-interference oscillations and systematic errors of the
types we have been 4discussing.

None of these systematic errors is expected to contribute to the
mid-range frequencies important for structure analysis. Except for the
Auger intensity problem, these errors should lead to mild trends in the
data which will be removed in the calculation of x(k). The Auger
problem will be cohcentrated at the kinetic energies of the Auger peak:
The Fourier spectrum of this disturbance will be broad and not peak at
structure frequencies.

Our random errors come from the statistical accuracy of our
photoemission measurement. Assuming no errors in the lineshapes of the
least-squares fits and assuming a normal distribution of noise, the
standard error of the partial cross section, Op» divided by the partial
cross section, I, i.e. the inverse of the signal-to-noise ratio, will be

given by

where OJ' j = G,E,B are the standard errors of each parameter in the
formula for I. Each standard error will be proportional to the residual
variance which-given our assumptions--will be proportional to the total

number of counts in the spectrum. Numerical calculations of the
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standard errors show that the random errors will contribute an
approximately flat background to the Fourier spectrum of our signal.
For very low signal-to-noise power ratios, spurious peaks in this
background could be misinterpreted or contribute erroneously to correct
scattering peaks. OQur spectrum has sufficient precision to avoid this

problem.
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IV. EXTRACTING GEOMETRY INFORMATION

In the previous section the extended fine structure, x(E), was
derived from a series of angle-resolved photoemission measurements. In
this section we analyze the fine structure to extrgct the geometry. We
divide the entire procedure in two parts, Fourier analysis and multiple
scattering analysis. We will discuss errors after we have described the

entire procedure.

IV.A Fourier Transformation

There are three steps in the Fourier transform procedure:
conversion from energy to momentum scales, tapering or autoregressive
linear prediction, and Fourier transformation.

Conversion of the fine structure curve from a kinetic energy scale

to a momentum scale uses the de Broglie relation,

to relate the electron's energy to its wave vector magnitude. For the
electron energy we use the peak position, E, derived from the least-
squares fit to eliminate any energy errors in the photon monochromator.
As discussed in ref 13 the measured electron energy can be related to
the energy of the electron during the scattering E:s by E = Eo + E

where Eo the solid's inner potential. Thus the wavenumber, k, for a

sl

kinetic energy Ek is given by

-3 (gs) 2,
n .
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With this conversion we obtain i(k) as a table of numbers (k, y(k))
whose spacing in k depends on the energy spacing of the photoemission
measurements and on Eo. Unfortunately none of the subsequent analysis
can process data with unequal increments in the abscissia. Therefore we
fit y(k) locally to a numerical spline function and evaluate the spline
on an equally spaced mesh of 128 points., Fig. 4 shows the interpolated
x (k) for Ey = 10.5 eV.

The second step in frequency estimation is required to reconcile
the concept of frequency analysis with the finite range of our
experimental measurements. Our goal is the- isolation of the path-~length
difference, rj - rj cos ej, from the experimental y(k) which we believe
is represented by a cosine series, eqn. (3), suggesting a Fourier
analysis procedure. As discussed in ref. 14, direct Fourier series
transformation of y(k) would not be adequate: Fourier analysis assumes
an infinitely long measurement range. Finite range data must be tapered
smoothly to zero by a weighting function before Fourier analysis, or
else some procedure such as the autoregressive linear prediction
described in ref 14 must be applied to estimate the frequencies of
oscillation from a finite measurement range. The Fourier spectrum of
the weighted data will be a smoothed version of the spectrum of
scattering amplitude versus path-length difference while the
autoregressive linear prediction Fourier transform has higher resolution
but is more sensitive to k dependence in the envelope which multiplies
individual cosine oscillations. Therefore we will present results from
both procedures, using the ARLP spectra as a qualitative guide to the
frequency spectrum. Since we will ultimately refine the geometry by

direct comparison to the experimental oscillations, the choice between
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conventional and ARLP methods to solve the finite data range problem in
the Fourier transform is not important.

Following the guidelines in ref 14 we multiply the interpolated
x(k) curve by a Gaussian centered at 7.5 A-1 and having a full width at
half maximum of U4 A-1 for the conventional taper weighting method. For
the ARLP method, 64 autoregressive coefficients were fit to the data
based on 14 singular values for the [001] experiment and 17 singular
values for the [011] experiment; the ARLP was applied to extrapolate 128
points forward and backward, and the resulting oscillations were tapered
with a Gaussian function centered at 7.5 A—1 and having a full width at
half maximum of 12.3 A-1. This prepares the oscillations for Fourier
transformation.

In the third and final step we apply the Fourier transform via the
Fast Fourier Transform algorithm.15 Prior to transformation we add
zeroes to give 2048 points; this increase interpolates the Fourier
spectrum to give smooth peaks.1u

The magnitude of the complex Fourier coefficients is displayed in
Fig. 5 for the [011] experiment, and Fig. 6 for the [001] experiment.
Since our unit for k is rad-A_1, the independent axis of our Fourier
transform gives the path-length difference directly in A. Each of the
peaks in Figs. 5 and 6 represent one or more scattering interferences.
The peak position will be near the geometrical path-length difference,
rj—rj cos ej, plus the linear part of the scattering phase shift ¢j.
When comparing our results to plots of surface EXAFS Fourier transforms,
recall that the EXAFS scale is usually chosen to display the bond

length, rj: the scattering path length is just twice as long.



337

The assignment of the peaks in the [011] transform, Fig. 5, to
particular scattering path lengﬁhs has been the subject of some
controversy.16 We Wwill repeat our previous, simple-minded assignment
based on the empirical observation that nearest neighbors and
backscattering atoms dominate the spectrum;1 there is as yet no
theoretical calculation which reproduces the Fourier peaks with enough
accuracy to contradict this idea. However, as noted below, a peak at 24
due to a side-scattering nearest neighbor atom does not appear reliably
in the Fourier transform spectrum.

Two peaks in the spectrum are primarily due to three Ni nearest
neighbors. The largest peak—-—-at 4.4 A--corresponds to scattering from
the nearest neighbor Ni directly behind the sulfur atom from the
detector. With a bond length of rj = 2.2 A and a scattering angle ej =
171°, the path-length difference is 4.37 A. All of the amplitude
factors favor this scattering atom. It lies along the peak in the
photoemission final state; it lies close to the emissioﬁ center; and it
backscatters into the detector.

The second largest peak--at 3.2 A--corresponds to electron
scattering from two nearest-neighbor Ni atoms. These atoms are
symmetrically located on either side of the plane containing the surface
normal (the [001] direction) and the emission vector (the [011]
direction). The scattering angle is 116°, giving a path-length
difference of 3.12 A. Despite the combined scattering power of two
atoms, this peak is smaller than the 4.4 A peak: both the photoemission
final state angular distribution and the scattering angular distribution

are less favorable for 116° scattering.
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The fourth nearest-neighbor atom should have a scattering angle of
83° and thus would appear at a path-length difference of 1.96 A.

However we expect its amplitude to be small because the atom is near the
photoemission final state node: cos 83° = 0.12. This atom does not
produce a reliable peak in the Fourier transform. For example, it is
small in Fig 5, while it was somewhat larger in earlier analyses1us;ng a
slightly different transform weighting.

The peaks at 7.5 A and 9.5 A seem to correspond to backscattering
atoms further away from S along the [011] axis. If we consider the
4.4 A peak to be a member of a (011) plane perpendicular to the emission
direction, then the 7.5 R peak would correspond to 4 atoms in the next
(011) plane away from S and the 9.5 & peak would correspond to the
single atom in the succeeding plane which lies directly behind the 4.4 &
Ni scatterer.

We should note that the latest single-scattering cluster
calculations16 with improved treatment of thermal averaging agree with
cur assignment of the 4.4, 7.5 and 9.5 R peaks, leaving the 3.2 A peak
as unsettled. The basic picture in terms of path-length differences is
also not affected by multiple scattering since, in the intermediate
snergy range, forward focusing is the dominant effect of multiple

: 1
scattering. T

In summary, we believe that the overwhelming weight of
evidence favors the simple interpretation given earlier1: that the
Fourier transform peaks arise primarily from a few identifiable atoms.
Of course allowance must be made for possible interference due to near-
lying path length differences and Ramsauer-Townsend splitting. However,

this does not negate our basic conclusion, based on strong experimental

evidence, that a small number of path lengths are actually present with
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any appreciable intensity in the data. The failure of oversimplified
theories to reproduce the data only confirms the shortcomings of those
theories.

Two peaks in the normal emission [001] experiment Fourier spectrum
can be assigned in the same fashion as the [011] assignment. The 6.2 &
peak mdst be predominately backscattering from the second layer Ni atom
directly below S since this atom is 180° from the detector in the [001]
emission geometry. The peak near 10 A should have a large contribution
from atoms in the third Ni layer below S for the same reason. Atoms in
the second Ni layer not directly in backscattering contribute the
majority of the signal to the Fourier spectrum between 6.2 and 9 A, but
we cannot give more specific assignments without detailed calculation.

The most interesting features of the [001] Fourier transform are
the two peaks below 5 A& which seem to defy a scattering path-length
explanation. Both of these peaks can be attributed to scattering from
the four nearest-neighbor Ni atoms in the first Ni layer below S even
though the geometrical path-length difference for all four neighbors is
near 3.5 A where no Fourier peak is observed. The physical explanation
for this Fourier peak splitting is a generalized Ramsauer-Townsend
resonance in the Ni scattering amplitude which simulates a beat envelope
as k increases through 7.5 A_1. We have discussed these peaks and their

use in the measurement of the S-Ni bond length elsewhere.18

IV.B Multiple Scattering Analysis
With the raw photoemission spectra reduced to ARPEFS oscillations
and the Fourizr spectra at hand we can proceed to determine the

structure. Previously, we have attempted to analyze the 4.4 A
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backscattering peak in the [011] experiment by applying the Fourier
backtransformation methods of EXAFS.1 This analysis was based on the
apparent success of single-scattering calculations to simulate the

general features of the ARPEFS curve, but we now recognize13

that
forward focusing is a fundamental feature of the photoelectron
scattering. While the forward focusing does not change the oscillation
frequency, it does change the oscillation amplitude and phase. Since
the EXAFS-like analysis requires the phase to be known,3 we will not
pursue that approach here.

OQur alternative is a Fourier-filtering, least-squares fitting
procedure which uses the Fourier spectrum to reduce the multiple
parameter space of geometry variables without relying on the Fourier
transform for the final structure analysis. The key element in this
approach is the filtering of the ARPEFS to remove scattering path-length
differences corresponding to all layers except the S overlayer and the
first Ni layer. This filtered ARPEFS curve then depends upon a single
geometrical parameter, the S-Ni bond length, or equivalently the S-Ni
interlayer spacing (dl). Furthermore, the filtered curve contains only
a restricted set of path-length differences and numerical simulation of
the filtered curve even including multiple-scattering, and curved-wave
corrections is very economical. Once the S-Ni layer spacing is set, the
spacing to the second layer can be optimized by selecting a new filter
width which includes atoms scattering from the second layer.

For the [001] experiment, it is appropriate to filter the Fourier
spectrum at 5 A, isolating the two peaks split by the Ni scattering

resonance. AsS this analysis involves a discussion of the resonance, we
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have reported it separately18 finding a S-Ni bond length of 2.20 + .02 A
(d.|. = 1.32 + .03 A4).

For the [011] experiment, 5 A was also chosen for the filter
cutoff. This location is a minimum in the Fourier amplitude spectrum
just above the 4.4 A main backscattering peak. To obtain the filtered
ARPEFS spectrum we have simply zeroed the Fourier~coefficients for
frequencies above 5 A and applied the Fast Fourier inverse transform.

We recognize that the [011] experimental geometry is more
difficult to align with our present apparatus than the normal emission
[001] case, and we have noticed that our numerical simulations are very
sensitive to the polar angle of emission. Thus we have performed a two
dimensional search in S-Ni interlayer spacing and emission polar angle
to minimize the possibility that misalignment determines our result.
Fig. 7 gives the least-squares error surface for these variables. The
numerical simulations were performed as described in ref. 13 using the
non-structural parameters given there, Moderate changes in the non-
structural parameters wiil change the size of the least-squares error
but not the position of the minimum; conversely, we cannot reliably
estimate the non-structural parameters by least-squares fits of this
kind, A clear minimum is evident in the surface at 43° emission angle
and a S-Ni interlayer spacing (dl) 3lightly above 1.30 R, in good
agreement with the results of the [001] experiment.

With the emission angle for the [011] experiment fixed at 43° and
the S-Ni interlayer spacing fixed at 1.30 A, we can return to the
Fourier spectrum and filter for the second Ni layer. An appropriate
filter location for the [011] experiment is 10.5 A&, but the [001]

spectrum should be cut somewhat lower to avoid path lengths near 10 A
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due to scattering from third layer Ni atoms. However we have used

10.5 A for both experiments for convenience in the numerical simulation.
The interlayer spacing between the second and third Ni layers is anyway
equal to the bulk interlayer apacing (1.76 A) to within our ability to
measure it at this time.

In refining our geometry wWe must recognize that the c(2x2) symmetry
observed in LEED aoes not constrain the Ni atoms in the second layer to
be coplanar. Half the Ni atoms in this layer lie directly below S atoms
(we call these atopped atoms) and half of these atoms lie below open
spaces in the half monolayer coverage (we call these open atoms). The
stability of the c(2x2) overlayer suggests that the local electronic
environment of atopped and open Ni atoms could be different leading to
the possibility that they would seek different equilibrium distances
from the first Ni layer. Therefore we have refined the positions of the
atopped and open atoms separately, giving, for the [001] geometry, the
two dimensional least-squares error surface in Fig. 8. The dashed line
running diagonally indicates the cut through this surface on which
atopped and open atoms are coplanar. Along this line a clear minimum is
found near 1.82 A for the first and second Ni layer spacing. To be more
precise our measurement gives the distance between S and the second Ni
layer of 3.12 & which we combine with the spacing of the S and first Ni
layers to give 1.82 & for the Ni-Ni spacing. Relaxing the coplanar
constraint, we see a broad minimum where the atopped Ni atoms stay near
1.82 A below the first layer while the open Ni atoms move further down
with a minimum near 1.87 A.

The surface for the [011] experiment is similar along the coplanar

constraint line having a minimum near 1.84A, but once the open atoms are
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allowed to vary independently, no minimum is found for spacings less
than 1.94 A. We discount the significance of this result because the
[011] experimental geometry is not sensitive to the frequency change
which acccmpanies the displacement of the open atoms--they move away at
an oblique angle--but it is very sensitive to the amplitude of the
scattering from these atoms. In fact, of all the scattering events
which contribute to the two ARPEFS curves discussed here, calculations
of scattering from open atoms in the [011] experiment nave the poorest
agreement with experiment.

These comparisons of scattering calculations and Fourier filtered
experimental data rely on an accurate value for the inner potential used
to construct the experimental momentum scale. We can estimate the
maximum possible geometry error by calculating the least-squares error
after optimizing the fit between experiment and theory with an
adjustable inner potential. Since most of the ARPEFS signal is already
contained in the 10.0 A simulations, we recalculated the least-square
error surface for the [001] experiment comparing these simulations
directly tc the experimental oscillations on the experimental energy
scale, allowing both the theoretical inner potential and overall scale
factor to vary. The resulting surface is showr in Fig. 10. Since the
minimum in the surface with fixed inner potential does not improve when
the inner potential is varied, the minimum shifts, and, with the added
flexibility of the scaling and shifting optimization, the minimum will
be much broader. We find a broad minimum centered near 1.85A for
atopped Ni atoms and 1.87A for open Ni atoms, a slightly greater

expansion than that found with fixed inner potential.
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The optimal inner potential varies monotonically with the spacing
between the sulfur lLayer and the atopped Ni layer; when this spacing is,
for example 1.86 A, the optimal inner potential is -7.8 eV and larger
expansions give lower_inner potentials. Thus as long as we believe that
the inner potential should be near 10 eV, the error surface with
variable inner potential represents our maximum error: any restraint on
the inner potential to bring it back toward 10 eV will bring the optimal
geometry back toward 1,87 A. We have also varied the inner potential in
the analysis of the ARPEFS curves filtered at 5 A by placing the
filtered experimental data on an energy scale uqing the inverse of the
original conversion of energy to momentum. Both the [001] and [011]
experiments give unchanged optimai S-Ni spacing and optimal inner
potentials between 10 and 11 eV, Thus we believe the variable inner
potential surface result represents an upper bound to the interplanar
spacing of 1.86 A.

Finally, we have selected a fixed spacing of the sulfur and second
Ni layers at 3.135 A with atopped and open atoms coplanar and
reoptimized the S-Ni interlayer spacing calculating all path lengths up
to 10.5 A and using the same two error criteria as discussed above. The
error curves in Fig. 11 all have their minima slightly above 1.30 A (dl)
(2.19 A S-Ni bond length) with the [011] curve to the spacing being more
sensitive.

We have based our quantitative analysis on the least-squares error
criterion, but visual comparison of the curves confirms the conclusions
of the numerical analysis. We can verify that dl = 1.30 A fits the

filtered ARPEFS better than dl = 1,35 A as in Fig. 12; by comparing
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Figs. 13 and 14 we can certainly exclude a S to second layer spacing of

3.06&A in favor of one closer to 3.14 A.

IV.B Sources of Error

The paramount sources of error in our structure analysis are the
value of the inner potential and the scattering phase shifts used in the
multiple-scattering calculations. Substantially less important are the
values chosen for the non-structural parameters in the theory, which
control the oscillation amplitude but not its phase or frequency.

We strongly emphasize that the precision of ARPEFS analysis relies
on the energy width of the measurement. Over the course of a single
oscillation, a constant phase error, due to inner potential or
scattering phase shifts, will lead to significant apparent geometry
changes. Only by comparing the oscillations over several cycles can
this source of error be reduced. Furthermore, estimation of the atomic-
like background, IO, severely distorts oscillations with a single cycle
over the energy range, and the Fourier processing requires a maximum
energy range for resolution of the Fourier peaks. Whenever several
ARPEFS oscillations are covered in the measured range, the precision of
the structure analysis should exceed 0.02 A in interplanar spacings.

We cannot be so sure about the accuracy. As we have discussed in
the previous section, the inner potential is directly connected to the
structure determination, and we find that a 2 eV error leads to a 0.02 &
error in geometry. The errors caused by the scattering phase shifts are
more difficult to assess particularly since there does not seem to be
published phase shifts in this energy range to which we may compare. As

we are primarily sensitive to backscattering and forward scattering, we
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can conclude that the frequency shift caused by errors in the scattering
phase shifts are likely to be negligible: we can see from published19
EXAFS backscattering phase functions that change from Ni to Cu
potentials would introduce a linear phase shift less than 0.02 A, and
since the linear part of the forward scattering phase function is less
than 0.05 A even a 50% error may be ignored. Exactly the opposite must
be concluded about errors due to the constant part of these phase
functions: The published backscattering phase functions have large
changes in phase with atomic number, and the forward scattering constant
phase shift is large.

There is moreover there is a close connection between inner
potential errors and errors in the constant part of the scattering phase
function. This connection is exploited in the analysis of EXAFS data20
by allowing the inner potential to vary. The procedure we followed in
the previous section to vary the inner potential is analogous to the
EXAFS analysis in that we might hope to cancel some errors in the
constant phase with a variable inner potential, but we note several
differences. First, the EXAFS inner potential is a complex weighted sum
of absorption edge energies even when the scattering potential is
exactly known: for all practical purposes the EXAFS inner potential is
not calculable or measurable. The ARPEFS inner potential may be more
accessible if only because it is not connected to the photoabsorption
process. Second, the EXAFS inner potential usually must also account
for errors in phase shift functions caused by curved wave corrections,
while our simulation curves include curved wave effects. And third, the

EXAFS analysis usually concentrates on a single backscattering

oscillation so that the floating inner potential need not work to
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correct amplitude errors while our floating inner potential may
compromise between correcting phase errors and errors due to incorrect
relative scattering amplitudes. Thus the simpler analysis of the 5 A
filtered data lead to consistent, physically reasonable inner potentials
near 10.5 eV while the more complex comparison in Fig. 10 leads to more
unusual values.

Until a thorough investigation of the scattering potentials in the
intermediate energy range is complete, the errors caused by thermal
averaging, aperture integration, and inelastic mean free path may be
ignored. It is obvious from the comparison of the numerical simulation
in Fig. 13 that these values are not too far wrong: the overall
magnitude of the oscillations is correct at high and low energy.
Furthermore, the non-structural parameters may be more properly
investigated by studying them directly, i.e. through temperature and

aperture variations.
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V. DISCUSSION AND CONCLUSION

Although we are not yet in a position to quantify our accuracy, our
results should be of comparable quality to other surface structure
methods. The c¢(2x2)S/Ni(001) system has been studied by LEED, Normal
Photoelectron Diffraction (NPD), and Surface EXAFS. The c{2x2)S/Ni(001)
system served as one of the prototype surface systems for LEED so that
it is inappropriate to quote much of the earlier work. The most recent

result521’22'u agree on a S-Ni interlayer spacing of dl 1.3 £ 0.1 4,

+

corresponding to a S-Ni bond length of 2.19 + 0.06 A. The NPD

exper'iment5 using the S(2p) core level gave a S-Ni interlayer spacing of

+

dl =1.30 = .04 & (S-Ni bond 1ength of 2.19 + 0.03 A). The Surface
EXAFS analysis6 gave a S—-Ni bond length of 2.23 A + 0.02 A equivalent to
a dl = 1,37 + .03 A. None of these measurements addressed the Ni-Ni
interlayer spacing.

We conclude from our analysis of the two ARPEFS curves that dl =
1.31 + .03 A (S-Ni bond 2.19 + 0.02 A). This is in excellent agreement
with the LEED and NPD results, but--if we may trust the error bars--in
only fair agreement with the EXAFS analysis. Given the uncertainty we
have about the scattering potential, we cannot propose to select our
result over the EXAFS one, but our agreement with the NPD results is
gratifying because the measurements are similar to our [001] experiment
while the theoretical analysis was based on multiple-scattering
calculation using a quite different approach than we have applied here,
including different scattering phase shifts.

We have no comparison for the Ni-Ni interlayer spacing of 1.83 &+
.03 A, or a 4% expansion compared to bulk Ni. This is equal to the

expansion of the first two Ni layers on clean Ni reported by Demuth and
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3

Rhc:clin2 but larger than the spacing, 1.78 t+ .02 A, reported by Demuth,

y
Marcus and Jepsen? We also have some indication that Ni atoms in the

second layer without S atoms over head sink into the bulk somewhat.
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FIGURE CAPTIONS

Figure 1. Inelastic scattered electron background spectrum for hy=2504eV

Figure 2

Figure 3

Figure U4

and, inset, a sample least squares fit to a $(1s)
photoemission peak. The small features near 174eV in the
hackground spectrum are S Auger peaks. In the inset, the
solid circles are the measure photoemission counts, the upper
solid curve gives the fitted function values, while the lower
solid curve is the sum of the smoothed background spectrum and
the error functlion step. The photopeak area is the area

between the solid curves.

Normalized angle-resolved photoemission intensities as a
funciion of photopeak energy and atomic-like I0 curves from
least squares fits for c{2X2)S/Ni(001). Solid curve is the
photoemission intensities, and the dotted curve is the I

0
estimate. (a) Emission along, [011], (b) Emission along [001]

ARPEFS oscillation for ¢(2X2)S/Ni(001) versus electron kinetic

energy. (a) [011] emission (b) [001] emission.

ARPEFS oscillations after conversion to a momentum scale using
an inner potential of 10.5eV, and after interpolation to an
even mesh of 128 points. (a) Emission along, [011], (b)

Emission along [001]



Figure 5

Figure 6

Figure T

Figure 8
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Fourier transform magnitudes versus scattering path length
difference for k times the data in figure 3a. In the lower
panel, the conventional Fourier transform was applied, while
the upper panel was obtained with the auto-regressive linear

prediction method described in ref. 14,

Fourier transform maénitudes versus scattering path length
difference for k times the data in figure 3b. In the lower
panel, the conventional Fourier transform was applied, while
the upper r£znel was obtained with the auto-regressive linear

prediction method described in ref. 14,

Contour map of the least square error for fits of numerical
simulations to data Fourier filtered at 5.1R, from the [011]
emission experiment.. The horizontal axis gives the spacing
along the crystal normal between the sulfur photoemitter and
the first layer of Ni atoms (dl). The vertical axis gives the
variation of the polar angle of emission measured from the

surface normal. Inner potential fixed at 10.5eV

Contour map of the least square error for fits of numerical
simulations to Fourier filtered data from the [001] emission
experiment. The horizontal axis gives the spacing between the
first layer of Ni atoms and those 2nd layer Ni atoms having S
overlayer atoms on top of them (Atopped atoms). The vertical
axis gives the same quantity for 2nd layer Ni atoms having no

S overhead (open atoms). The dot-dashed line follows the



Figure 9

Figure 10

Figure 11
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constrained coplanar geometry. Inner potential fixed at

10.5eV

Contour map of the least square error for fits of numerical
simulations to Fourier filtered data from the [011] emission
experiment. The horizontal axis gives the spacing between the
first layer of Ni atoms and those 2nd layer Ni atoms having S
overlayer atoms on top of them (Atopped atoms). The vertical
axis gives the same quantity for 2nd layer Ni atoms haviﬁg no
S overhead (open atoms). The dot-dashed line follows the
constrained coplanar geometry. Inner potential fixed at

10.5eV

Contour map of the least square error for fits of numerical
simulations to data for the [001] emission experiment. The
horizontal axis gives the spacing between the first layer of
Ni atoms and those 2nd layer N1 atoms having S overlayer atoms
on top of them (Atopped atoms). The vertical axis gives the
same quantity for 2nd layer Ni atoms having no S overhead
(open atoms). The dot-dashed line follows the constrained
coplanar geometry. The inner potential and overall scale of

the theory was fitted to the data.

Refinement of the S Ni interlayer spacing with unfiltered data
curves and a fixed S to 2nd layer spacing of 3.135A. The upper
curves are from the [011] experiment and the bottom pair are

from the [001] experiment. The solid curves have a fixed



Figure 12

Figure 13

Figure 14
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inner potential for theory of 10.5eV, while the dashed curves
correspond to varying the scale and inner potential of the

theory to best fit the data.

Comparision of Fourier filtered (5.1R) ARPEFS oscillations
from the [011] experiment (solid circles), the numerical
simulation for dl=1.3OA (solid line), and the numerical

simulation for dl=1.35A (dashed curve)

Comparision of Fourier filtered (10.5A) ARPEFS oscillations
from the [011] experiment (solid curve) to the numerical
Simulation for dl=1.30A and a S to first Ni layer spacing of
1.848 (dashed curve). The atopped and open Ni atoms are

coplanar in the theory curve.

Comparision of Fourier filtered (10.5A) ARPEFS oscillations
from the [011] experiment (solid curve) to the numerical

simulation for d;=1.308 and a S to first Ni layer spacing of
1.76A (dashed curve) (the bulk interlayer spacing is 1.76A4).

The atopped and open Ni atoms are coplanar in the theory

curve.
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CHAPTER 8:

A GENERALIZED RAMSAUER-TOWNSEND RESONANCE IN ARPEFS OSCILLATIONS

ABSTRACT

We observe a resonance in the scattering amplitude for S(1s)
phctoelectrons from Ni atoms and interpret this resonance as a dip in
the Ni atom partial cross section for electron scattering related to the
Ramsauer-Townsend effect. This generalized Ramsauer-Townsend effect
occurs at a particular energy and angle rather than in the total elastic
cross section. We show that the resonance energy is sensitive to
curved-wave corrections and, after including multiple-scattering
effects, we derive the S-Ni bond length in c¢(2x2)S/Ni(100) from the
ARPEFS oscillations from nearest neighbor Ni atoms in the presence of
the generalized Ramsauer-Townsend resonance. We find this bond length

to be 2.20 A + .03 A corresponding to a S-Ni interplanar distance (dl)

of 1.32 + .04 A.
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I. INTRODUCTION

The nature of the core-level photoemission inten.ity oscillations
known as photoelectron diffraction has been substantially clarified by
new theor‘etical1'2 and experimental work which shows that these
oscillations--caused by interference between direct and scattered
photoemission probability amplitude3'u—-are qualitatively predicted by
scattering path-length differences. A complete understanding of the
physics of these oscillations has important consequences for the use of
photoelectron diffraction as a technique for determining surface
structure: the total scattering path-length difference is the sum of a
geometrical path length and an ion-core potential phase shift function,
allowing the geometry to be deduced if the potential can be adequately
modeled. While most of the energy dependent photoelectron diffraction

6
measurementss’

have been made in the kinetic energy range from 20-150
eV, we have recently7'8 been concentrating on photoelection energies
between 100-600 eV. These intermediate energies and the wider energy
range are advantageous if we wish to concentrate on structure
determination because the potential phase shift functions are less
sensitive to chemical effects, the photoabsorption cros: .=.tion has
less struc.. e, and the pho.. "lectron scattering partial ciuss section
is more anisotropic giving a simpler and more structure sensitive
spectrum. For very similar reasons the x-ray absorption fine structure
spectroscopies have been divided into x-ray absorption near edge
structure (XANES or NEXAFS) at low energies and extended x-ray

absorption fine structure (EXAFS) in the intermediate 100-1000 eV range.

We refer to the core-level angle-resolved photoemission measurements in
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the 100-1000 eV, intermediate energy range as angle-resolved
photoemission extended fine structure (ARPEFS).

Tc concentrate on the oscillating, non-atomic signal we remove the
slowly varying parnt, IO' of the intensity, I, to form y = (I-IO)/IO.
Every model for ARPEFS predicts that the oscillations, expressed as a

fur.ctien of electron wave number, k, are cosinusoidal:

x(K) = E Aj(k) cos [er(1 - cos ej) + ¢J.(k)]

where Aj(k) is an amplitude function, ¢j is a scattering potential phase
function, and (rj—rj. cos ej) is the geometrical path-length difference
for bond length rj and scattering angle ej. The sum on j extends over
all atoms near the photoemitter which have significant amplitude. 1In
the simplest case, the amplitude function is large for only a few atoms
and has little structure as a function of k, and the phase similarly
benign. Then the ARPEFS curve may be Fourier analyzed and--provided
Fourier resolution is adequate-~the Fourier amplitude spectrum should
have peaks corresponding scattering path-length dif‘f‘erences.7 If, on
the other hand, the amplitude fdnction is not a smooth snvelope, the
Fourier spectrum for the corresponding scattering event will not peak at
the scattering path-length difference. In this paper we investigate
structure determination with ARPEFS in the case that the scattering
potential for nearest neighbor scattering atom has a strong amplitude
dependence caused by an interesting resonance related to the Ramsauer-
Townsend effect.

We have selected c(2x2)S/Ni(100) for our study primarily because

the S adsorption site and the S/Ni bond length have been reported
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previously and the overlayer can be reproduced easily. Elsewhere we
r-epor-t9 a study of the S(1s) ARPEFS from c¢(2x2)S/Ni(100), concentrating
on the scattering events which have Fourier peaks near the scattering
path-length difference. Here we will discuss normal emission ARPEFS
from the nearest neighbor Ni atoms in the four-fold hollow site. The
amplitude for the scattering of S photoelectrons from Ni potentials into

the normal direction dips sharply as the energy is scanned leading to a

split Fourier peak.



374

II. EXPERIMENTAL

We have given a thorough discussion of our measurement procedure in
ref 9 so we will be brief here. Our sample was prepared in a standard
fashion: a mirror-finish, oriented Ni(001) single crystal was cleaned
in vacuum, exposed to HZS(g). and heated briefly to 200°C to give the
c(2x2)S/Ni(100) LEED pattern. This sample was illuminated by soft x-
rays from the Stanford Synchrotron Radiation Laboratory Jumbo
monochromator10 and S(1s) angle-resolved photoemission intensity spectra
were measured every 3 eV for photon energies between 2532 and 2950 eV.
Assuming that the x-rays are completely polarized in the plane cof the
synchrotron storage ring, we oriented the Ni crystal to place the
electric vector of the light, ;, 30° from the surface normal toward a
[110] direction and rotated the angle-resolved electron energy analyzer
to collect spectra along the surface normal. The individual
photoemission measurements were reduced to partial cross-section
measurements ir the fashion described in ref. 9.

The resulting ARPEFS curve y(k) is given in Fig. 1. The energy
scale has been converted tu a wavenumber scale using an inner potential
of 10.5 eV. The curve is seen to be dominated by an oscillation with -
6 cycles in 2% A-1, corresponding to an interference path length of 6 A.
Since we know the nearest neighbor bond length in this system is - 2.2 &
corresponding to a maximum path-length difference of 4.4 A, we can
conclude that the nearest neighbor scattering does not dominate this
curve.

Fourier transforms of this curve are shown in Fig. 2. For the
upper panel, Fig. 2a, we have multiplied kyik) by a Gaussian of full

width half maximum of 4 A—1 centered on the data range, added zeroes to
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fill 2048 cells and applied the fast Fourier transform; the Fourier
transform magnitude is plotted versus path-length difference. In the
lower panel the Autoregressive Fourier method described in ref 11 has
been applied to ky(k) and the resulting extrapolated sequence has been
multiplied by a Gaussian of 12 A-1 full width half maximum,

The peaks in the Fourier spectrum above 5 R path-length difference
have been discussed in ref. 9. The path-length difference derived from
the positions of these Fourier peaks is approximately equal to the
scattering path-length difference for backscattering Ni atoms in the
second and third Ni layers. The positions of the two peaks below 5 A do
not correspond to any path-length difference, and no feature in the
Fourier spectrum appears near 3.5 A where we would expect a scattering
path-length due to Ni nearest neighbors (assuming a four-fold hollow
adsorption and reasonable S-Ni bond distances). The physical origin of

these peaks is the subject of this paper.
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III. GENERALIZED RAMSAUER TOWNSEND RESONANCE

The lack of correspondence between the scattering path-length
difference for nearest neighbor Ni atoms and Fourier spectrum peaks is
caused by a strong dip in the scattering power for Ni as a function of
energy which occurs for scattering angles near those appropriate for
normal emission from c(2x2)S/Ni(001). This dip is related to the well-
known Ramsauer-Townsend electron scattering resonance, and hence we call
this amplitude effect a generalized Ramsauer-Townsend (GRT) reson-.nce.

Ramsauer and Townsend observed that argon becomes transparent to
electrons at 0.7 eV. The origin of this surprising lack of scattering,
suggested by N. thr and verified by Faxen and Holtsmar'k,12 follows from
the partial-wave formula for the (complex) scattering amplitude for
electrons:

2161

£(8,k) ’2—115 I (2u+1)P (cos 0)(e  *-1)
=0

where ag(k) are the ion-core partial-wave phase shifts. At very low

kinetic energies only § the isotropic s wave, contributes to the

ol
scattered wave. If, as is the case for Ar at 0.7 eV, the value of the S

phase shift were exactly 180°, then even this term goes to zero and the

amplitude, f(8,k) becomes very small for all angles.

13

Our generalized Ramsauer-Townsend effect is more complicated. At
higher energies many partial waves contribute to the scattering
amplitude. Then only with the proper linear combination of angular

2i8
factors, (2%+1) Pm(cos 8), and energy factors, (e -1), will the
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scattering amplitude be zero. Thus while the classical Ramsauer-
Townsend effect gives zero amplitude at all angles and very low energy
based on special behavior by one phase shift, our generalized Ramsauer-
Townsend effect occurs at special angles and energies with many phase
shifts involved.

Some ideas about the consequences of this effect can be derived
from Fig. 3. Scattering amplitudes for four different angles are
plotted in the complex plane. For each angle a line represents f(k,ej)

for k = 4 A" (60 eV) to k = 12 A~

(550 eV). The distance from the
origin to a point on the line represents the scattering power for that
angle and energy; the angle from the positive real axis to that point
gives the wave phase shift caused by the potential.

For aj = 180° we see the scattering power peaks broadly around k =

1 to k = 12 A‘1 the phase angle sweeps gently

6 A_1. From k = 4 A
through ~ 60°. For ej = 130°, however, the behavior is radically
different. Now the scattering amplitude approaches the origin for k =

8 A—1. The amplitude falls nearly to zero here, and the phase angle
sweeps rapidly through 180°. The behavior for ej = 125° is similar, but
the phase angle is rotating in the opposite direction.

Clear evidence that the generalized Ramsauer-Townsend effect is
responsible for splitting the Fourier peak expected near 3.5A into the
two peaks actually observed in the Fourier spectrum is obtained by
backtransforming just those Fourier coefficients whose frequencies are
less than 5 A. As shown in Fig. 4, the resulting filtered ARPEFS curve
shows a beat pattern consistent with a 3.58 oscillation with a

1

superimposed amplitude envelope which dips at k = 7.5 A . If the phase

shift function is 2xtracted from the filtered data,1u it exhibits the
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phase jump of w characteristic of the GRT iero crossing as shown in Fig.
5.

In our initial attempts to use the Ni GRT resonance,15 we sought to
compare the observed phase jump to calculated Ni atom phase shift
functions. As is evident from a comparison of the experimental phase
function to the theoretical phase function calculated in the plane-wave
approximation (see Fig. 5, long dashed curve), the resonance position in
energy and angle is not correctly placed in this simple model. We
therefore introduced curved wavefront cor‘r‘ections16 which, as the
remaining curves in Fig. 5 demonstrate, places the'calculated resonaice
of the experimentally observed energy. That the resonance is sensitive
to the wavefunction calculation is not surprising given that several
large partial-wave amplitudes must sum to zero at resonance: any slight
error in the weighting of these waves will shift the resonance position.

It would appear from Fig. 5 that we may assign the S-Ni bond length
by comparing the observed phase shift function shape to calculated
functions which include the curved-wave corrections. The strong
dependence of the GRT resonance on scattering angle would set a firm
limit on the bond distance, and we would have an elegant method to
estimate the surface bond angle.8 However, this does not allow for the
possibility of multiple scattering, and in view of the sensitivity of
the resonance we must include this effect.

Fortunately, the calculation we require is very modest: we need
only 20 scattering paths. The first four are the single scattering
paths from the four Ni nearest the photoemitting S, with path lengths
near 3.5 A. The single-scattering wave from the neareat neighbors can

double scatter from either of two atoms in the S layer, giving a total



379

of eight more paths near 4.4 R. We also include scattering from four §
atoms at 3.52 A and four more at 4.98 A even though the signal from
these atoms is very small. Indeed, without curved-wave correction316
these S atoms would cancel in pairs: the phase of the direct wave
incident upon one member of the pair is opposite the phase for the
other. Of the 20 possible paths pcssible, only ten are unique, and by
employing the method of ref 2, the calculation requires no more effort
than other steps in the data analysis process.

The resulting multiple-scattering phase functions are shown in Fig.
6. The multiple-scattering effect is small, but it is adding to a near
zero signal. We find that the GRT resonance has been pushed up in angle
from 127.5° in single scattering to 131° in multiple scattering. Fig. 6
shows that the phase jump for 131.4° is on the opposite side of the
origin from the experimental jump, sSetting an upper bound on the S-Ni
interlayer spacing, dl of 1.50R corresponding to 130.4°. Although this
bound is not very useful, we can limit the value of dl much more closely
by compariing the experimental phase functions to the multiple-scattering
phase functions in Fig. 6. In each comparison, the same geometrical
path-length difference has been subtracted from both theory and
experiment. The closest match is clearly dl = 1.30A. Because the
angles 125.U4° and 127.5° correspond respectively to dl = 1.25 A and dl =
1.35 A, this comparison alone has the precision to set small error
limits on dl (perhaps + 0.02 - 0,03 A).

We can also arrive at this conclusion by comparing the ARPEFS
oscillations directly. Fig. 7 compares the filtered experimental data
to theory curves for S/Ni bond lengths of 2.16 A (dl = 1,25 A), 2.19 A

(dl = 1.30 A) and 2.22 A (dl = 1.35 R). Visual comparison is
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sufficient to exclude the two extreme geometries. Using the residual,
an unweighted sum of the squared differences between experiment and
theory, as a measure of the errors, we find a curve of error versus bond
length whose minimum lies at 2.20 A (dl = 1.32 A) as shown in Fig. 8.
The theoretical curves were first scaled to the experiment to minimize
their residual before constructing the curve of errors to reduce the
influence of amplitude factors.

This preference for 2.20 & bond length is not dependent on the
inner potential: the same geometry is found even if both theory and
experiment are placed on the experimental energy scale and the inner
potential of the theory is allowed to vary. The curve of errors is less
sensitive to the structure in this case as can be seen in Fig. 8 because
the shift in EO partly compensates for an incorrect geometry. At the
minimum residual, we find an inner potential of -11 eV, in good

agreement with our original selection of -10.,5 eV.
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IV. DISCUSSION

Our measurement gives 2.2C A for the S-Ni bond length in
c(2x2)8/Ni(001), in good agreement with previous studies.9 In
estimating the precision of our determination we note that the structure
information is carried in medium fregquency oscillations superimposed
upon a smoothly varying signal, and that we have sampled this signal at
a much higher frequency than is relevant for the structure analysis.
Furthermore we have measured the oscillations over a wide enough energy
range to insure that errors in our reduction of the photoemission
measurements to oscillations are minimal. The normal emission geometry
is technically simpler to align and any small angular errors in the
emission direction are self cancelling in the sense that among the four
nearest neighbor Ni atoms every scattering path which lengthens with
angle has a mate which shortens. We have varied the shape of the IO
estiwite by altering the stiffness of the numerical spline used to
derived IO from the data without altering the backtransformed
oscillations; the autoregressive Fourier transform is not essential for
our analysis and the same results may be derived with conventicnal
Fourier methods. A more complete discussion of possible errors may be
found in ref 9. We believe our experimental precision is less than &
0.02 4.

The accuracy of our bond length is unfortunately not entirely
determined by experiment. Even though the Fourier filtering approach we
have used here sufficiently restricts the theory problem so that we need
not be concerned about convergence in multiple scattering order or
curved wave corrections, our result still relies on accurate theoretical

curves. By concentrating primarily on the frequency of the
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oscillations, our bond length is not sensitive to amplitude factors like
inelastic mean free path, thermal averaging, or aperture integration.
Furthermore, since the contribution of the path-length difference to the
frequency is 20 times larger than the Ni potential phase shift and
multiple scattering corrections, even moderate errors in the theoretical
contributions to the frequency will not disturb the bond length
analysis. More serious sources of error in our procedure are the
constant part of the multiple scattering phase shift function and the
inner potential, Eo. Either of these parameters will lead to geometry
errors as the phase offset of theory and experiment is partial
compensated by an erroneous shift in the theory path-length difference.
Both the comparison of the curves in Fig. 8 and our residual analysis
with variable EO in Fig. 9 argue that we have made no large error due to
constant phase shift or inner potential here. Altogether we estimate
our accuracy as * 0.02 & in bond length or + 0.03 & in the S-Ni
interplanar spacing.

The theory errors are likely to be systematic, but we nevertheless
quote our structure as S-Ni bond length of 2.20 A& + .03 A&
(d = 1.32 + .04 R). With additional study of the scattering potential
for Ni and S, including the photoion core potential, and additional
measurements to insure experimental reproducibility, the accuracy of
this type of structﬁre measurement should improve by about a factor of
two. We strongly emphasize that accurate structure work with extended
fine structure requires a wide energy range. A short energy range is
subject to error from construction of the yx(k) curve to Fourier analysis

to theory comparison: the additional data points in an extended range
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set the trends of the low frequencies and hence they provide more than a
simple statistical improvement in our experiment.

Sagurton, Bullock, and Fadley have recently17 studied the GRT
resonance using single-scattering theory, and they have concluded thrat
the split Fourier peaks characteriatic of the GRT resonance cannot be
used for quantitative structural analyses. We believe that our work
here demonstrates that this is not true, and rather than a serious
liability, the GRT resonance has some interes-ing properties of its own '
A more difficult problem is the contribution of double scattering to the
frequency range occupied by the resonance, scattering which was omitted
in the study of Sagurton et al. We have shown here that this problem
can be overcome by applying the method of ref 2.

Our goal in this study has been to study the surface geometry and
the generalized Ramsauer Townsend resonance ultimately plays only a
small role in our work. Understanding the GRT resonance is of course
essential, but the presence of the resonance is a hindrance in the sense
that the phase jump on resonance is sensitive to non-structural
parameters. A minor benefit of the resonance is the relatively flat (k
independent ) nature of the Ni phase function above and below the
resonance with a consequent negligible contribution to the oscillation
frequency. We might imagine that the resonance itself could contribute
to either the structure study in other surface systems or the study of
surfaces in other ways. For example, first row adsorbates would scatter
30 little that direct comparison of the experimental phase function with
the theory phase functions for various scattering angle might Gte
sufficient to extract the structure. More intriguing, it may be

possible to probe the electronic structure of the first layer of metal
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atoms in an adsorbate system by using the strong spin polar'ization18
which accompanies the GRT. This polarization has its origin in the
sensitivity of the resonance: 1if the scattering potential has any
dependence -on spin, then the resonance energy will be spin dependent.

At a photoelectron energy and scattering angle which corresponds to the
GRT resonance, the photoemission intensity will be sensitive to the spin

state of the scattering atom.
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V. CONCLUSION

We have observed a resonance in the scattering amplitude for S(1s)
photoelectrons from Ni atoms and interpreted this resonance as a dip in
the Ni atom partial cross section for electron scattering related to the
Ramsauer-Townsend effect. This generalized Ramsauer—-Townsend effect
occurs at a particular energy and angle rather than in the total elastic
cross section. We have shown that the resonance energy is sensitive to
curved wave corrections and, after including some multiple scattering
effects, we have derived the S-Ni bond length of.c(2x2)S/Ni(100) from
the ARPEFS oscillations from nearest nejighbor Ni atoms in the presence
of the generalized Ramsauer-Townsend resonance. We find this bond
length to be 2.20 A + .03 A corresponding to a S-Ni interplanar distance

(d|) of 1.32 + .04 A.
1
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.
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S(1s) ARPEFS oscillations from c(2x2)S/Ni(001) in normal
emission ([001]). The experimental kinetic energy scale
has been converted to a wavenumber scale using an inner
potential of 10.5 eV, and the resulting curve has been
interpolated with a numerical spline to an even mesh of

128 points.

Fourier transform magnitudes versus scattering path-
length difference for k times the data in Fig. 1. 1In the
lower panel, the conventional Fourier transform was
applied, while the upper panel was obtained with the
autoregressive linear prediction method described in ref,

1.

Ni scattering amplitudes calculated in the plane wave
limit. Each solid line represents the scattering
amplitude for the scattering angle indicated. For each
scattering angle the amplitude was calculated for
wavenumbers from 5-12A-1; the labeled tick marks give
some indication of the wavenumber scale. The amplitudes
are plotted in the complex plane to illustrate the
connection between scattering intensity and phase shift.
Note that the scattering intensity is nearly zero for

[+] -
9j=130 and k=84 1.



Figure 4.

Figure 5.

Figure 6.
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Fourier filtered ARPEFS data. The Fourier spectrum from
Fig. 2 was zeroed above 5.1A and backtransformed, the
amplitude envelop is also plotted as obtained from the
complex backtransformation.

Phase shifts for scattering from Ni. The dashed line
shows the phase shift calculated with plane wave theory
ej = 127°. The dotted line is the phase shift from the
experimental curve Fig. 2, where the first two Fourier
peaks are backtransformed together. A factor of = for
the sign difference between direc¢t and scattered waves
caused by the p wave angular distribution has been added
to the experimental phase and a nominal 3.56A path-length
difference has been removed. The zero crossing jump in
phase occurs too high in wavenumber for the plane wave
calculation. Solid lines are curved-wave calculations of

the phase shift for the indicated scattering angles.

Multiple-scattering GRT phase jumps. Each panel is
labeled by the scattering angle for the Ni nearest
neighbors. The dashed lines are phase jumps from the
scattering calculation described in the text. The solid
lines with circles are experimental phase jumps with
geometrical path lengths removed. A phase equal to 3.E57k
radians was subtracted from both theory and experiment
phase functions for comparing the 127.5° (dl = 1.35R)
phases, 3.49k radians from 126.4° (dl = 1.304), and 3.4k

radians from 125.Uu4° (dl = 1.258). As in Fig. 5, a factor



Figure 7.

Figure 8.
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of m for (-1) was added to all phase functions; an
additional factor of = was added to the 131.5° phase for

the purpose of display.

Numerical simulation of the normal emission, S(1s) ARPEFS
from ¢(2x2)S/Ni(001) compared to Fourier filtered
experimental data. The theory curves were calculated for
all scattering paths less than 5.1 R; the experimental AR
Fourier transform in Fig. 2 was zeroed for frequencies
above 5.1 A and backtransformed to give the solid
2ircles. Over the entire energy range, the frequency of
the oscillations clearly matches the theory curve for a
S-Ni bond length of 2.19 A better than the curves for

shorter or longer bond lengths.

Geometry search for S-Ni interlayer spacing. Plotted
symbols are residuals from the least-squares fit of the
numerical simulation curves to the Fourier filtered data.
The residual is the unweighted sum of the squared
differences between theory and experiment between 100 and
414 ev. The solid triangles give the residual for a
fixed theory inner potential of 10.5 eV; the crosses
correspond to fits in which the theory inner potential
was varied. The solid curve is a parabolic fit to the
four triangle points between 1,275 and 1.35 A; the dashed
curve is a parabolic fit to the four crosses in the same

region.
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CONCLUSION

The preceding chapters have drawn specifie¢ conclusions on the
particular topicas they discuss, and they each contain their own summary.
Thus we will use this conclusion to suggest what new directions may be
taken based on the work presented here. We begin with a broad view and
follow with suggestions relating to the individual chapters.

We might first ask if, based on our current progress, the method
determining surface structures from photoelectron partial cross-section
measurements merits further work. The key features of ARPEFS which
recommend it for structure work are:

1) Chemical Specificity: The structural signal is contained in

core-level partial cross-section oscillations. By'selecting
the core level observed, we select the element or even
oxidation state of an element to study.

1i) Surface Sensitivity: Using photoelectrons in the 100-500 eV

energy range gives good surface sensitivity.

iii) Large Oscillation Amplitude: The detected interference is

between direct and scattered waves, giving typical
oscillations of 20-50%.

iv) High Angular Sensitivity: Each different emission direction

yields a different view of the structure; each different
combination of polarization direction and crystal orientation

gives different emphasis to the scattering atoms.



4oo

v) Simple Theoretical Model: The above four experimental

considerations combine to greatly simplify curved-wave,
multiple~scattering calculations.

vi) Direct Fourier Analysis: The Fourier transform amplitude maps

out scattering power versus geometrical path-length
difference. The Fourier transform provides a means of
displaying the structure information directly from a
measurement.

vii) High Precision: The experimental curves can be measured and

reduced to infer a structure in a fashion which would not
limit the accuracy of the structure.

We must balance these advantages against the drawbacks of structure
determination with ARPEFS and against alternative techniques of equal
ability but greater ease. The two greatest barriers to the use of
ARPEFS as a structure technique are the use of synchrotron radiation and
the reliance on theoretical values for the inner potential and
scattering phase functions. Synchrotron radiation beam time is
currently very limited, but the future looks very bright. New electron
storage rings dedicated to producing synchrotron radiation are opening
throughout the world, and these new facilities provide more x-rays over
a wider energy range than we have available today. Equally important,
new designs for the experimental apparatus used on these storage rings
will allow much more effective use of the available beam time.

The problem of theoretical parameters is a difficult one but one
which should not be unsurmountable, On the scale of modern methods for
electronic structure calculations, our scattering phase functions are

not very sophisticated. On the other hand, ARPEFS measurements can
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produce such a large amount of information about the scattering of
elecérons that we may be able to devise a purely empirical set of
scattering phase functions and eliminate any concern for the quality of
the theory. The determination of the inner potential is tractable by
some experimental method, but a deeper understanding of intermediate
velocity eléctron propagation in solids is certainly required. The
inner potential problem, electron refraction, inelastic electron
scattering, and dynamic screening of the photoelectron and core hole are
interesting interconnected problems which should be attacked both
theoretically and experimentally.

With these considerations, we briefly recall the advantage of the
two most used structure methods: Low Energy Electron Diffraction (LEED)
and Surface Extended X-Ray Absorption Fine Structure (SEXAFS).

When comparing ARPEFS to other structure techniques we must recall
that ARPEFS measures a differential cross section: for its advantages
to be manifest the sample must be orientationally ordered. That is, the
vectors from the photoemitter to each scattering atom must be the same
for all emitting atoms. (We could, of course, have a few distinct
emitting atom locations, but not hundreds.) Often this is equivalent to
the periodic ordering required for LEED, but there may be cases in which
this distinction is important. One example is the conversion between
LEED patterns where we might expect orientationél ordering, but the two-
dimensional periodicity is not complete. For a randomly oriented
system, an ARPEFS measurement should be equivalent to a surface EXAFS
measurement, but one may also be interested in the ARPEFS measurement of

a disordered system: presumably with some effort a theory of
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orientational disorder could be verified with experimental ARPEFS
measurements.

LEED continues to make steady progress. The advent of high gain
detectors reduces the electron beam damage effects that previously
limited this technique. Theoretical refinements have improved the
prospects for solving more complicated structures. The major strength
of LEED--experimental simplicity--must be balanced against the
complexity of its analysis. Clearly the large number of simple
structures solved by LEED suggests that for these systems the complexity
is tractable.

Surface EXAFS has made giant strides since its introduction. In
return for venturing to a synchrotron storage ring, SEXAFS provides
direct structure analysis including highly accurate bond lengths without
requiring an ordered overlayer structure. The key advantage of SEXAFS--
direct measurement of an average bond length to nearest neighbors--is
also its key weakness for complicated structures. A well characterized
but complex adsorbate could have many similar bond lengths which SEXAFS
cannot resolve, For disordered systems, however, the average bond
length may be the only useful parameter to describe the structure, and
SEXAFS would be uniquely suitable.

Rather than emphasize the competition of these structure techniques
we should recognize their complementary nature. ARPEFS exhibits some of
the features of both LEED and SEXAFS and in combination with these
techniques perhaps we can build a collection of reliable structurec
essential for an understanding of chemical bonding on surface.

We have demonstrated that ARPEFS can solve simple surface

structures such as the c(2x2)S/Ni(001) structure discussed in this
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include:

i)

i)

ii1)
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Atomic systems which will benefit from the advantages of ARPEFS

face-centered cubic (111) surfaces where two different three-
fold hollow sites have similar nearest neighbor distances but
are distinguished by second layer substrate atoms. Normal
emission ARPEFS would be ideal for scatteriné from the second
layer atom.

Multiple site adsorption. More than one occupied site will
likely have similar bond lengths but very different path-
length differences in some directions.

Atoms on stepped surfaces. Here the high angle selectivity
would be valuable to concentrate on only the atoms on the

edges.

Beyond atomic systems, the more complicated the adsorbate molecule,

the more advantages of ARPEFS will be evident. ARPEFS can dissect a

molecular adsorbate structure problem by examining each element from

each of several different view points. With direct analysis and

adequate development of the electron scattering theory, ARPEFS is

capable of determining these structures.

Each of the chapters in this thesis covered topics which suggest

important directions for future work. Some of these ideas are covered

here so that we may finish with a look forward.

The lifting operator or derivative expansion approach to electron

scattering in Chapter 2 has a great many applications toward practical

improvement of the theory of electron scattering. Because the higher

order curved-wave corrections appear as derivatives of the basic

homogeneous wave scattering, other types of corrections can be written
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in terms of the same elements already available in the treatment of
Chapter 2. The expressions for thermal averaging of the scattering
amplitude derived in Chapter 5 is one example. Another interesting
direction is automatic, gradient-driven, geometry searches. The error
surfaces plotted in Chapter 6 are superfluous to the final result: we
are only interested in the minimum point and possibly the curvature of
the error surface. The geometry terms enter the expression for the
least-squares error in a straightforward fashion, and formulas for the
gradients and curvatures of the error surface could be derived in terms
of the =szattering factors from Chapter 2 with only moderate effort,
leading to a quadratically convergent geometry optimization method. One
of the prime motivations for the work of Chapters 3 and 4 was the
difficulty in obtaining second order curved-wave corrections with the
lifting operator method. Having completed example calculations with the
Taylor Series Magnetic Quantum Number Expansion method, we now know that
second order corrections are small, and the first order derivatives from
Chapter 2 could be used successfully for most problems. Finally, it
might be useful to elaborate the connection between the lifting operator
and TS-MQNE formulae to facilitate conversion between them as a
practical problem might require.

The approximate origin-shift addition theorem derived in Chapter 3
is merely a tool for the development of the electron scattering
formulae, but the magnetic quantum number expansion gives us a tangible
physical picture for the nature of the approximation. Unfortunately,
this addresses only one of the two expansion variables, and a more
thorough understanding of the Fourier transform or rotation matrix

concepts may allow us to "see" the other direction as well. Beyond
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pleasing our curiosity, we notice that the radial correction terms from
Chapter 2 to which this other expansion variable corresponds are usually
small: 1if we understood this variable, we may be able to truncate the
expansion to which it corresponds or even eliminate it in many cases.
Another direction to explore with the origin-shift equations is the
expansion of Coulomb waves as would be appropriate for non-metal
substrates and exponentially damped spherical Hankel waves which more
accurately characterized the nature of spherical waves in a metal,

The small a2tom approximation ideas and in particular the Taylor
Series Magnetic Quantum Number Expansion formulae from Chapter 3 should
be directly applicable to other electron scattering prob’e~s, such as
EXAFS, LEED, and inelastic electron spectroscopies. Whe he this
application would represent a practical improvement could only be judged
by trial. As the rotation of the coordinate system makes symmetry very
difficult to incorporate, the TS-MQNE approach may be more valuable for
problems with low symmetry where special. methods do not apply. The
properties of the scattering factors deserve another look since their
number determines the cost of the calculation. 1In particular it may be
possible to generate some of these factors from simple operations on the
others, a great savings when the number of partial waves 1s large. Of
more immediate use would be formulae for p, d, and f initial core-level
ARPEFS, but this should be primarily a matter of computer implementation
since the electron scattering equations do not change. This is in
contrast to the lifting operator formulae of Chapter 2 where derivatives
of the higher order waves are required.

The theory of ARPEFS presented in Chapter 5 is barely adequate to

allow surface structure determination, and the discussion of many points
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brought out more problems than solutions. Foremost among the
theoretical challenges is the possibility as systematic error in the
scattering partial wave phase shifts. By no means should our efforts at
simulating the experiment be considered as good as can be done. The
scattering partial wave phase shifts we used, while comparable to others
used in this energy range, are based on old ideas about electronic
structure which héve not benefited from two decades of research in this
field. All the available evidence suggests that tiie scattering
potentials in the intermediate energy range should not be very sensitive
to chemical bonding so that once a potential was demonstrated to be
adequate for, say, Ni metal, it would be useful for all subsequent
studies on Ni. We have also neglected the photoion core in Chapter 5,
and any study of potentials should include the core-hole effect. A more
satisfactory treatment of electron-electron interaction is also required
to understand the inner potential and refraction problems; equally
important, the adequacy of an isotropic mean free path should be re-
investigated. Our development was primarily aimed at metallic systems
like S/Ni, s0 a thorough re-examination of many points is required
before studying semiconductors and ionic solids. Another rough spot is
the Debye model for thermal averaging. From the experimental viewpoint
the Debye model is adequate as it provides a convenient parameterization
which is correct at high and low temperatures and smooth between. This
suggests that a more fundamentally satisfactory formulation with the
same properties may be available, perhaps based on the frequency
distribution moment expansion. Finally, a careful comparison of our
results and method to full multiple scattering, LEED-like theories is in

order to understand the range of applicability of our approach.
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Fourier transformation of the energy depéndent photoelectron
diffraction and the subsequent interpretation of the Fourier spectra
were dramatic developments in the use of photoelectron diffraction for
surface structure analysis. Chapter 6 grapples with the technological
aspects of the Fourier transform and while the results are not perfect,
insight gained from relatively simple manipulation of the data cannot be
denied. Whenever some aspect of a frequency spectrum does not agree
with a preconceived idea, it is a signal that one's entire knowledge
about a problem has not been transmitted to the data analysis. Thus
conventional Fourier analysiz has low resolution because the information
that we have a finite length esstimate of a hypothetically infinitely
long signal was not included. Similarly autoregressive Fourier analysis
gives split peaks because the information that our signal has amplitude
structure was not included. Another approach to Fourier analysis may
develop which can account for at least part of the amplitude dependence
in ARPEFS; before the advent of the autoregressive algorithms, one might
have concluded only conventional Fourier methods and least-squares
fitting were possible. For example, one may be able to exploit the
connection between the constant phase shift largely determined by the
scattering phase and the scattering amplitude to deduce the scattering
envelope. Along these lines one must imagine a three-dimensional
transformation in which ARPEFS spectra from many different emission
directions are processed directly into a three-dimensional image of the
surface structure in a manner somewhat analogous to x-ray tomography
reconstructions.

The experimental work in Chapter 7 amounts to a feasibility study

for measuring surface structures with ARPEFS and despite some probiems
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the results are very favorable. Thus foremost among new experimental
directions is the measurement of ARPEFS from other surface systems.
Concurrent with this thesis more than a dozen measurements have been
made by other members of our research group, and they are currently
being analyzed for structure., 1In addition to studies of surface
structure, a temperature dependent ARPEFS measurement would test the
thermal averaging theory as well as contributing to the understanding of
vibrations on surfaces. New experimental apparatus would dramatically
improve the measurements of ARPEFS. Two designs in particular currently
under construction in our laboratory will increase the precision and the
number of measured curves. The first improvement is a new type of
crystal goniometer in which the vacuum rotation is accomplished with
sliding seals rather than rotating bellows. This difference is very
significant because the sliding seal arrangement allows thre : .mple to be
mounted on the end of a stiff sealed tube: the position of the sample
can be maintained to < 0.01°. The second improvement is a new type of
electron energy analyzer incorporating a focusing paraboloidal
electrostatic mirror, a time-of-flight analyzer, and a position encoding
detector. The paraboloidal electron mirror has -100 times larger
angular acceptance than the apparatus used for the experiments in this
thesis, and the time-of-flight technique should be several times more
efficient in measuring photoemission spectra. The position encoding-
detector means that several tens of simultaneous ARPEFS spectra can be
accumulated, leading to a high probability of a definitive structure
analysis after a single sweep of the photon energy. Other experimental
directions should explore alternative sources for creating ARPEFS-like

signals. Electron energy loss with or without coincidence is the first
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candidate, but two other possibilities can be suggested. First, the
-Einstein relation, Ek = hy - EB' connects every photon energy with only
one electron Kinetic energy. Thus, in principle one does not require a
photon monochromator for ARPEFS measurements., It should suffice to
nlace the sample in a broadband x-ray source and scan the electron
energy as long as the background signal is not too large. Second, a
similar broadband source is in principle available in B decay of nuclei.
Thus the e ejected from tritium should show ARPEFS oscillations, giving
one of the few ways to study the structure of such a light element on
surfaces.

Finally we come to Chapter 9. A catalog of the positions in energy
and angle of the Generalized Ramsauer—-Townsend resonances for the period
chart is a necessary adjunct to surface structure work, and the trends
in the resonance positions with atomic number should lead to a deeper
understanding of the physical origins of these resonances. We have
noted in Chapter 9 that one may be able to exploit the spin dependence
of the resonance position, but the resonance is also related to the time
dependence of the scattering event. Near resonance, the electron is
delayed in the region of the scattering atom, and one might devise some
way to exploit this delay to study the dynamics of'photoébsorption.

Hopefully this thesis demonstrates that surface structure
determination with photoelectron diffraction and, in particular, the
angle-resolved photoemission extended fine structure is on the verge of
fulfilling its early promise as a general purpose method for measuring
surface structures. With additional development, ARPEFS analysis should
contribute to our knowledge of the structure of surfaces and ultimately

to our understanding of surface chemistry.
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