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Abstract 

Measurements of the Angle-Resolved Photoemission Extended Fine 

Structure (ARPEFS) from the S(1s) core level of c(2X2)S/Ni(001) are 

analyzed to determine the spacing between the S overlayer and the 

first and second Ni layers. ARPEFS is a type of photoelectron 

diffraction measurement in which the photoelectron kinetic energy is 

swept typically from 100 to 600 eV. By using this wide range of 

intermediate energies we add high precision and theoretical 

simplification to the advantages of the photoelectron diffraction 

technique for determining surface structures. We report developments 

in the theory of photoelectron scattering in the intermediate energy 

range, measurement of the experimental photoemission spectra, their 

reduction to ARPFES, and the surface structure determination from the 

ARPFES by combined Fourier and multiple-scattering analyses. 

Curved-wavefront corrections to the single scattering of t=1 

spherical waves are derived by applying lifting operators to the 

addition theorem for £-0 waves; the resulting formulation facilitates 

approximate calculation and physical interpretation because it 

contains a dominant term plus curved-wave corrections appearing as 

derivatives of the dominant term. A new addition theorem for 

translating spherical waves, i h.(kr)Y (r), follows from a Taylor 

series expansion of the Fourier transform of these waves; the formula 

may also be interpreted as approximation of a rotation-translation-
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rotation sequence in which the magnetic quantum number expansion 

(MQNE) is truncated. This Taylor series - MQNE theorem is applied to 

the multiple scattering of photoelectrons in the context of a general 

discussion of small-atom approximations to electron scattering from 

non-overlapping potentials. We demonstrate that curved-wave 

corrections are large for forward scattering angles in the 

intermediate energy range even when the corrections for backscattering 

may be neglected; the Taylor series - MQNE allows stepwise addition of 

these corrections. Incorporating the new multiple-scattering method, 

we re-examine the theory of photoelectron scattering in the 

intermediate energy range arriving at a model which includes selected 

multiple scattering events, curved-wave corrections, analytic aperture 

integration, anisotropic thermal averaging within a correlated Debye 

model, and an isotropic mean free path inelasic damping; we 

demonstrate that electron refraction and dynamic screening do not 

affect ARPEFS for metallic systems. We show by example that curved-

wave forward focusing is a fundamental physical effect in 

photoelectron diffraction: neither single-scattering nor plane-wave 

treatments are adequate for ARPEFS. 

Techniques for Fourier analysis of experimental ARPEFS spectra 

are explored with general guidelines for taper weighting function 

selection and adaptation of autoregressive linear prediction methods 

for Fourier analysis being reported. These Fourier techniques are 
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CHAPTER 1: 

INTRODUCTION 

This thesis describes the development of a rew approach to 

determining the atomic geometry of surfaces. The method is based on the 

analysis of electron kinetic energy dependent oscillations in the 

partial cross section for core-level photoemission. The partial cross-

section oscillations re observed with an angle-resolving photoelectron 

spectrometer; the oscillations are superimposed upon an atomic-like 

background and extend over the energy range from 50-1000 eV. Hence the 

title of this work: Angle-Resolved Photoemission Extended Fine Structure 

(ARPEFS). The acronym ARPEFS describes both the measured oscillations 

themselves and their use to determine surface structures. This thesis 

will discuss a theory which quantitatively predicts the ARPEFS, and 

experimental measurements of S(1s) ARPEFS from c(2x2)S/Ni(100). The 

result is a structure determination for the well-known c(2x2)S/Ni(100) 

system by a new technique, a technique which has some unique 

qualifications as a tool for more sophisticated surface systems. 

The remainder of this introduction is divided into three parts. In 

the first part—for the non-specialist—I will try to place this work 

within the whole body of chemistry and physics. The work of graduate 

students is necessarily obscure in detail and, to someone unfamiliar 

with the fields of surface structure determination or photoemission 

spectroscopy, this thesis solves an unfamiliar and thus uninteresting 

problem. The goal of the first part of this introduction is to outline 

the scientific interest in research like that reported here. In the 

second part—for the specialist—I will review previous work on partial 
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cross-section oscillations similar to what is called ARPEFS here. The 

third part of the introduction contains an informal tour through the 

remaining chapters as a guide to those interested in only a particular 

aspect of this work. 

I. INTRODUCTION FOR THE NON-SPECIALIST 

The research reported here is a small contribution toward the 

eventual understanding of chemistry on surfaces. Chemistry can occur 

when gases, liquid, or solid chemicals are mixed. When both 

constituents in a chemical reaction are in the same state—say H„(g) and 

0_(g)—and freely mix, then the reaction is called homogeneous. Almost 

all of classical chemistry is concerned with homogeneous chemistry, 

partly because-every molecule in such a reaction is equivalent: the 

mechanism of the chemical reaction can, in principle, be deduced by 

studying the individual reactants without regard to their position in 

space. The mechanism itself may require two molecules to meet along a 

particular axis, but any arrangement of two molecules will occur 

frequently when a large number of free molecules are mixed. 

When the constituents in a reaction are in different phases—say 

the reduction of H_0 at an electrode—the reaction is called 

heterogeneous. Surface chemistry is concerned with understanding 

heterogeneous chemistry, in large part, because the chemistry which can 

occur at the interface between two phases is so much different than that 

characteristic of a homogeneous reaction. Two of the most interesting 

differences are the constraints placed on the chemical reaction by the 

geometry of the interface, and the new dimension afforded by the 

"passive" participation of the bulk in a reaction occurring at an 
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interface. When a molecule adsorbs to a solid surface, it is no longer 

free to reorient, and simultaneously its internal bond strengths are 

changed. Such a molecule can be much closer to the transition state for 

a reaction which would not occur without the surface. Or one part of 

the molecule may preferentially attach to a surface, placing adjacent 

parts in close proximity to the surface; the reactivity of the parts 

near the surface could be increased or decreased leading to selective 

reactions. These are differences in chemistry which have direct 

analogues in homogeneous chemistry, but when the passive role of the 

interface is considered, very different chemistry can occur- The 

surface of a metal can (perhaps) serve as a reservoir for electrons or 

bonding orbitals, mediating a chemical reaction at a surface 

electronically in a manner similar to the thermal mediation provided by 

solvents in solution chemistry. A semiconductor, on the other hand, may 

mediate a photochemical reaction, absorbing the light energy and 

presenting it to a reactant molecule on the surface at a new, high 

energy electronic state. 

Surfaces are difficult to study for the same reasons that they are 

interesting. Foremost among the problems is uhe small ratio of surface 

atoms to bulk atoms: any physical measurement which is not 

preferentially sensitive to surfaces will have great difficulty 

examining only surface properties as distinct from bulk properties. 

Similarly it is sometimes difficult to distinguish if chemical reactions 

run for the purpose of studying a surface are characteristic of that 

surface or incidental surfaces or different, uninteresting sites on the 

same surface. Two approaches to this problem may be distinguished. In 

the first, chemical systems are devised which have a high ratio of 
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surface area to volume, and techniques for studying bulk materials are 

then applied. This approach has been especially fruitful for some 

special materials (e.g. exfoliated graphite) and for studying catalytic 

reactions which anyway occur on highly dispersed small particles. In 

the second approach, idealized, tightly controlled chemical systems are 

studied by techniques specifically chosen for their sensitivity to the 

surface region. This second approach provides a closer contact to 

idealized models of surface properties and allows a more detailed and 

elementary view of the surface chemical reaction. Furthermore, most of 

the idealized systems are solid single crystals providing an important 

and fruitful overlap with the results of solid state physics. 

The work reported in this thesis falls in the second group and 

concerns new physical techniques for studying the surfaces of solid 

single crystals. It addresses perhaps the most fundamental question 

about an ideal surface: what is the arrangement of the atoms in the 

surface region of the crystal?. It achieves sensitivity to the surface 

by measuring electrons ejected into vacuum outside the crystal. This 

brings ua to the ARPEFS measurement itself. 

Briefly, our experiment consists of the following. To be specific 

we will describe the ARPEFS measurements of c(2x2)S/Ni(100) analyzed 

here, but the same methods should apply to a variety of surface systems. 

We begin with a single crystal of Ni which is cut and polished into a 

disk -1/U" in diameter and 1/16" thick with its surface parallel to the 

(001) crystal plane of Ni. This crystal is mounted on a goniometer 

capable of rotating the crystal about two perpendicular axes through the 

polished surface and capable of heating the crystal to 1100°C. The 

goniometer is mounted inside a stainless steel vacuum chamber equipped 
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with an electron energy analyzer. The chamber is evacuated, and the 

crystal surface is cleaned until only Ni atoms can be detected. The 

crystal is then heated to heal any damage in the polished surface 

yielding a surface which has—on the atomic scale—large regions of 

ordered, crystalline, flat Ni(001) planes. This prepared crystal is 

then exposed to H-S gas which decomposes to give an ordered, crystalline 

overlayer of sulfur atoms on top of tne Ni planes. This is the surface 

whose structure we wish to determine. 

The crystal is lowered into a soft x-ray beam, and the electron 

analyzer is adjusted to collect only those electrons emitted from the 

crystal in a particular direction and coming from photoexcitation of the 

sulfur (1s) orbital. The number of those electrons is recorded, and the 

energy of the soft x-rays—and of the electron analyser—is increased. 

As the experiment proceeds, the number of electrons counted oscillates 

as the electron kinetic energy is increased: this is the angle-resolved 

photoemission extended fine structure (ARPEFS). 

The physical explanation for the oscillations in photoemission 

intensity is similar to the more familiar description of x-ray 

diffraction. Both the ARPEFS oscillations and the x-ray diffraction 

spots are caused by interference between two (or more) waves which were 

at one point in phase but which have traveled different distances before 

arriving at the detector. If the difference in distance is an integral 

number of wavelengths—x-ray wavelength for diffraction or de Broglie 

wavelengths for electrons—then the waves will again be in phase at the 

detector, and an x-ray spot or ARPEFS peak will be observed. If the 

difference in distance is not an integral number of wavelengths, the 

interference will not be purely constructive, and a lower intensity will 
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be observed. The reason that both methods are useful for structure 

determination is that both x-rays and electrons are directed into the 

detector by scattering from atomic cores. Thus the difference between 

two waves in distance traveled is directly related to the difference in 

distance between the atoms. 

There are equally important dissimilarities between x-ray 

diffraction and ARPEFS. Foremost is the strength of the interaction 

between an electron and the atoms of a crystal compared to the 

interaction between x-rays and those atoms. Electrons scatter very 

strongly and are absorbed by the crystal very readily so that only a few 

atomic layers are required to give a signal, and only a few atomic 

layers are close enough to the surface to contribute to the signal. 

X-rays scatter very weakly and are rarely absorbed so that many atomic 

layers contribute to the x-ray diffraction. Thus while x-rays 

characterize the bulk, electrons characterize the surface region. 

The ARPEFS physics and x-ray physics also differ in the reference 

point for the wave before it scatters into the detector. In x-ray 

diffraction, a collimated beam of x-rays is directed at the crystal 

sample: a plane perpendicular to the beam direction is the reference for 

scattering phase in x-ray diffraction. In ARPEFS, the reference point 

is the photoemitting S atom, and the interference occurs primarily 

between the wave which travels directly from this S atom to the detector 

and waves which scatter off nearby atom cores. Thus while x-ray 

diffraction provides a signal characteristic of th entire crystalline 

array illuminated by the beam, ARPEFS only contains information about 

the local geometry about the S atom. 
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The distinction between local and extended information is quite 

important since the strong interaction that electrons have with the 

crystal must be understood in order to extract geometry information from 

the measurements. There is a more direct analogy to x-ray diffraction 

which is based on electrons—Low Energy Electron Diffraction—where a 

beam of electrons is sent into the crystal in place of x-rays. However 

Low Energy Electron Diffraction must attempt to extract the extended 

crystal information in the face of the electrons' strong interaction, a 

very difficult task. By concentrating on the information concerning the 

single emitting atom, ARPEFS has an easier job of extracting the 

geometry. 

Armed with the experimental measurements and the physical basis we 

can proceed to develop a theory which connects the atomic geometries to 

the oscillations and use it to devise some scheme for using experimental 

oscillations to discover the atomic geometry. That is the content of 

the following chapters. 

II. FOR THE SPECIALIST 

This second introduction reviews the work which inspired the 

investigation reported in the body of this thesis. The chapters 

themselves review material for their specific topics, and we will 

therefore cover only the larger picture here. 

The basic physical phenomenon being exploited here for structure 

determination is the interference between the probability amplitude for 

a photoemitted electron to travel directly from the ionized atom to the 

detector and the probability amplitude for that electron to first 
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scatter off a nearby atom. This phenomenon has been called a "final-
1 2 3 

state interference effect" ' or photoelectron diffraction in previous 

work. While the first term is accurate, it is not very specific; the 

second term has come into wide spread use, and we must persist in its 

use as a generic label for the phenomenon despite its implied, 

misleading parallel to x-ray and low energy electron diffraction. We 

have coined a new term, Angle-Resolved Photoemission Extended Fine 

Structure (ARPEFS) to highlight several distinctive features of our new 

photoelectron diffraction technique. The name is entirely 

phenomenological in that it refers only to the observed oscillations 

rather t!vin their physical interpretation. We do, however, intend for 

the ARPEFS to denote only those oscillations which have the same 

character as the oscillations in the extended energy range. In other 

words, there may be other final state interference effects particularly 

at low energy which cannot be described in the same fashion as ARPEFS 

and are not considered here. 
The ARPEFS acronym does parallel Extended X-Ray Absorption Fine 

Structure (EXAFS) which is also a photoelectron final-state interference 

effect. The EXAFS oscillations occur in the total x-ray absorption 

cross section, and hence they are an integral of the ARPEFS oscillations 
2 over all emission angles and overall final states excited at a 
5 particular x-ray energy. 

The possibility of observing the diffraction of photoelectrons 

originating from adsorbate atoms, and of deriving structural information 

from this phenomenon, was suggested by A. Liebsch in 1974. The effect 
3 £\ 1 was reported independently by three groups in 1978. ' Normal 

photoelectron diffraction, (NPD), in which the photoelectron intensity 
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was measured in the d i r e c t i o n of the surface normal as a function of 

e l ec t ron wave number k, has been used to determine a number of adsorbate 

8 9 geometr ies . ' In NPD the interference-modulated i n t e n s i t y , I ( k ) , was 

compared to curves predic ted by a LEED-like "quasikinematic" theory 

developed by S.Y. Tong and co-workers. The perpendicular dis tance di 

between the adsorbate overlayer and the subs t r a t e i s the parameter to 

which I (k ) i s most s e n s i t i v e , and NPD r e s u l t s were usua l ly expressed in 

terms of d i . 

The NPD approach to surface structure determination yielded 

accurate structural parameters, but it suffered from two drawbacks. 

First, it depended upon an implicit theoretical analysis, much like 

LEED, albeit simpler. Second, it appeared to emphasize the single 

parameter di, rather than showing approximately equal sensitivity to 

several structural parameters. 

An apparently successful attempt was made to remedy the first 

deficiency, by using Fourier-transformation analysis. Several peaks 

appeared in the Fourier transform of theoretical curves at distances 

near those predicted from interplanar spacings (in reality they actually 

corresponded to path-length differences, as discussed later). 

The second problem was addressed by studying off-normal l(k) curves 

collected in directions normal to low Miller index planes that were not 

parallel to the crystal surface. The goal in these experiments was to 

perform a complete structure determination by Fourier transforming l(k) 

data taken in several directions, thereby obtaining di values relative 

to several planes. Initial attempts along these lines failed to yield 
12 4 

any new structural information, but more recent experiments using 
sulfur-1s photoelectrons have succeeded beyond all expectations, leading 
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to a new method for adsorbate structure determinations: angle-resolved 

photoemission extended fine structure (ARPEFS). 

There are three major differences between NPD and ARPEFS. First, 

NPD concentrates on low kinetic energy photoelectrons, 30-150 eV, while 

ARPEFS works in the range 100-500 eV. In the lower range, NPD gains 

from the high photoemission cross section near threshold, but it suffers 

because the electron scattering is more isotropic and more sensitive to 

non-atomic details in the scattering potential. Although ARPEFS is more 

difficult to measure, it can be analyzed with simpler theory. The 

second difference between these diffraction methods is the energy range. 

For NPD, a large energy range is only modestly valuable in improving the 

confidence of structure assignment. For ARPEFS, the range must be as 

large as possible to give high-resolution Fourier transforms. The third 

difference is obvious: the emission angle in ARPEFS is not necessarily 

selected to be normal. Normal emission can be a valuable choice for 

many surface geometries, but typically it should be only one of several 

directions measured. 

In the course of this research, we have learned a great deal about 

the nature of the electron scattering physics which leads to the ARPEFS 

oscillations. To be confident of surface structure analysis with ARPEFS 

we must have a thorough understanding of the electron scattering. There 

is no large body of accurately known structures for adsorbate systems 

which we might use to calibrate an empirical model for ARPEFS; there is 

no analog to ARPEFS in the bulk of a material where known x-ray 

diffraction structures to be used for this calibration. Thus it seems 

that ue must understand the electron scattering problem fundamentally. 

Thus a large fraction of this thesis is directed toward a deeper 
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understanding of electron scattering in solids in the intermediate 

energy range. The detail of these chapters on theory must not obscure 

the underlying simplicity of the ARPEFS oscillations themselves. Our 

goal for ARPEFS is a surface technique capable of unambiguous, high 

accuracy (± 0.02A) structure determination, and this will require both 

high precision experimental measurements and practical, high accuracy 

theoretical models. The final steps toward a highly accurate theory are 

the most painful ones, and this level of refinement is unnecessary for 

the design of experiments to measure ARPEFS. Thus we will review the 

single-scattering theory of ARPEFS of the basic phenomenon can be most 

simply grasped in this way. 

Photoelectron diffraction is caused by the interference between 

direct photoelectron waves and waves which have scattered from ion cores 

surrounding the photoemitter. A simple treatment for the direct and 

scattered waves predicts the important physical effects. Fig. 1 

illustrates the scattering geometry. We set our origin at the 

photoemitter and label each scattering center by an index " j " . The bond 
•* i -* i 

vector r. runs from the emitter to the scatterer: its length, r. = r. , 

is the bond length. The photon polarization unit vector, e, makes an 

angle 8. with the bond vector: 

* • * 

B. = cos — - i (1 ) 

The scattering angle, 9., is defined as the angle between the bond 

vector and the direction to the detector R, 
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r. -R 
0. = cos" — ^ — r - • (2) 

J |?jl|R| 

Figure 2 gives a schematic view of the scattering. 
* 

In our analyzer we measure a continuum wavefunction intensity ij>fiji<, 

This wave function contains contributions from a direct photoelectron 

wave, \\> , and a photoelectron wave scattered into the detector, ty.-. 

*f = *0
 + I *! (3) 

J 

The direct wave for a Is core level is a spherical p (£=1) wave: 

ikr 
<|i = M(k) cos Y S. (4) 
o Kr 

Here the matrix element for photoemission, M(k), serves as an 

uninteresting scale factor, while Y measures the angle between the 

observation direction and the photon polarization direction. 

This same wave also propagates into the substrate. Electrons with 

kinetic energies in the range 50-1000 eV scatter primarily from the 

highly localized ion core region. Thus a scattered wave appears to 
-> 

emanate from the position of the substrate atom at r.: 

iklr-r-jl 
* - £ . (5) 
y i i •* •* i J k|r-Pj| 
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The scattered wave must be proportional to the amplitude of the original 
phctoelectron wave in the region of the ion core. This amplitude is 

ikr. 
e J 

* (r.) = M(k) cos B. - j - — (6) o j j Kr. 

where B. is the angle between direction r, and the polarization vector 
J J 

and r . =» Ir . I . 
J ' J ' 
The outgoing scattered wave is also proportional to the scattering 

power k|f(d.,k)| of the ion core for the scattering angle, 9., between 
the original propagation direction and the detector direction. The 
scattered wave is shifted in phase by a small amount <t>. by the potential 
of the ion core, giving finally 

i(kr +<(. ) ik|r-r | 
* - M(k) cos B ^ — r - k|f(e )| e (7) 

J J j J k|r-r | 

Near our detector the difference between a spherical wave at the 
-* origin and a spherical wave at r. appears only as a phase shift equal to 

- r cos 0.. (We can derive this by expanding the shifted spherical 
wave or by examining Fig. 2). Therefore we write the scattered wave at 
the detector (position R) as 

|f(e.)| ik(r -r cos 9.) + <j>. e
i k R 

* - M(k) cos Bj p
 J e J J J J S__ (8) 



n 

Now we calculate, to first order, the ratio of the interference 

term to the direct term: 

I-I *o*o * ? *o*j * I *J*° " *o*o 
X--T 2 * *-* <9) 

O lb lb 
vo^o 

* * 
ib i b . + lb. ib 

x . J V i V ° . (10) 
j *o*o 

The d i r ec t term is simply: 

2 
* o 1i o - M*(k)M(k) £22_ | , ( U ) 

k R 

and the cross term3 are 

ik(r.-r. cos e.) +*. j , 
2Re{M(k)M*(k)cos Y cos 6, — r-^—} (12) 

r j k 2R 2 

? The cros3 section and 1/R dependence are lost when the ratio is found: 

cos B, |re )| 
x ( k ) = 2 E c o g y r

 J c o s [ k ( r j - r j cos Bj) + cfrj]. (13) 
J J 

This is the single-scattering ARPEFS formula for 1s photoemission. We 

will refer to the frequency of the entire argument of the cosine as the 

scattering path-length difference and to (r,-r. cos e.) as the 
J J J 

geometrical path-length difference. 
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The general features of ARPEFS follows from this formula if we add 

that 

i) |f(e.)| is peaked in the forward (9, - 0) and backward 

(9. - 180°) directions, 3 (see figure 2), 

ii) the phase $ is usually nearly constant as a function of k 

with its linear component typically less than 10$ of the 

geometrical path-length difference (r.-r. cos 9.), 

iii) multiple scatterings are mostly forward focusing, giving 

changes in amplitude and phase of the cosine but not in the 
14 geometrically important frequency, and 

iv) exceptions to the usual behavior are due to properties of the 

scattering ion cores predictable in advance by studying the 

atomic ion core scattering amplitudes. 

The important consequences of the basic model are that 

i) atoms in the photoemission final state nodal plane will not 

produce ARPEFS oscillations, (see figure 2), 

ii) backscattering atoms give large oscillations, 

iii) the oscillation amplitude decays with the inverse of the bond 

length, 

iv) the oscillation frequency varies with scattering angle from a 

maximum of twice the bond length to, in principle, a zero 

frequency "oscillation" equivalent to forward focusing, and 

v) the scattering phase must be known with moderate accuracy to 

connect the cosine frequency to the geometrical path-length 

difference. 

The most straightforward way to take maximum advantage of this 

model would be to arrange the experimental geometry to maximize 
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backscattering by positioning the angle-resolving electron analyzer 

opening and photon polarization vector in parallel and rotate the 

crystal to place substrate atoms behind the photoemitting adsorbate from 

the analyzer. To maximize the simplicity of the curves and the size of 

the ARPEFS, it is also advantageous to select a high symmetry emission 

direction if possible. These guidelines were followed for the 

experimental study of c(2x2)S/Ni(001) described in this thesis with one 

experimental geometry (normal emission) highlighting a second layer Ni 

backscattering atom and having four-fold symmetry while the other 

experimental geometry ([110] emission) selects a first layer Ni near 

neighbor and has two-fold symmetry. A truly unknown system would 

require a preliminary ARPEFS measurement before the most appropriate 

geometry can be selected, and a low symmetry adsorption site may not 

favor particular emission direction choices, but the challenge of 

selecting the emission and polarization vector positions expresses the 

rich variety of experimental conditions available in the ARPEFS 

techni que. 

III. OUTLINE 

This thesis is organized into nine chapters counting this 

introduction (Chapter 1) and the conclusion (Chapter 9). Each of the 

main chapters is self-contained in having its own specific introduction, 

central topic, and conclusion. When appropriate each chapter refers to 

the others, but the remainder of this overall introduction will be 

devoted to a more explicit description of their connections. 

Chapters 2, 3, and 4 discuss aspects of the theory of wave 

scattering from potentials. Chapter 5 uses the results of the preceding 

chapters and some simple physical models of solids to construct a 
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quantitative theory of ARPEFS. Chapter 6 explores the application of 

modern methods for frequency analysis for the purpose of directly 

displaying the scattering path-length differences by processing the data 

without intervening theory. The measurement of the angle-resolved 

photoemission spectra, the reduction of these spectra to ARPEFS curves, 

and the analysis of the oscillations with the methods of the preceding 

chapters are covered in Chapter 7. Chapter 8 is devoted to a discussion 

by an unusual and interesting electron-scattering partial cross-section 

resonance observed in the normal emission ARPEFS from c(2x2)S/Ni(001). 

Finally in Chapter 9, general conclusions are drawn primarily concerning 

the direction of future work. 

Chapter 2 and Chapters 3 and 4 provide two separate but related 

solutions to a paradoxical problem encountered at the outset of this 

research. The problem is the physical description and numerical 

calculation of electron scattering in solids; the paradox is that the 

accuracy of very simple models of electron scattering improves as the 

energy increases in the intermediate energy range, but the calculation 

of electron scattering with more sophisticated models becomes increasing 

difficult. It would 3eem that some model must exist which lies between 

these extremes, providing accurate results over the whole range but 

becoming less expensive at the higher energy. Pursuing such a model led 

in two directions. Briefly, the simplest model for electron scattering 

in a solid treats the electron probability amplitude as a plane-wave in 

the region of each ion core, but in the 3ase of photoemission and 

multiple scattering, the actual waves come from a point source and thus 

are curved in the region of the ion core. Methods for incorporating the 

curved-wavefront effect exist, but they are too complex for use in the 
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intermediate energy range. Chapter 2 develops a step-wise method for 

incorporating curved-wave corrections by starting with the basic 

isotropic curved wave and applying derivative lifting operators. The 

three dimensional derivatives required by these lifting operations are 

cumbersome, so in Chapter 3 a series expansion employing rotation 

matrices is derived. Insight from Chapters 2 and 3 are reformulated in 

Chapter 4 to give a reasonably general discussion of wavefront curvature 

models and to apply the expansion from Chapter 3 to multiple scattering 

of photoelectrons. 

Chapter 5 incorporates the multiple-scattering equations from 

Chapter 4 into a framework for numerical simulation of the ARPEFS 

measurements including a discussion of the photoabsorption, transport of 

the photoelectron through the surface, thermal averaging, and aperture 

integration. The results are compared to the experimental curves as a 

progress check. This chapter would be a natural starting point for the 

experimentalist; the theorist may also wish to refer to Chapters 2 

through 4 only after the significance of the curved-wave multiple 

scattering is evident. Furthermore the content of Chapter 5 is somewhat 

more provocative in that several interesting theoretical and 

experimental questions are posed by our re-examination of electron 

scattering in the intermediate energy range. 

Chapter 6 is a slight detour in preparation for the data analysis 

in Chapter 7. The cosine form for the ARPEFS oscillations suggests that 

one might Fourier analyze the experimental curves and observe peaks in 

the transform at the scattering path-length differences. Since the 

scattering path-length difference is dominated by the geometrical path 

length, such a Fourier analysis would provide a direct image of the 
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surface structure information content of the ARPEFS measurement. 

Unfortunately, the practical energy range of the ARPEFS measurement 

limits the resolution of the Fourier spectrum so that individual Fourier 

peaks may correspond to more than one scattering atom. This is a well-

known problem of truncated Fourier series, and currently much active 

research in the digital signal processing field is devoted to improving, 

the resolution of Fourier spectra for well behaved signals. Chapter 6 

applies some of the most recently developed methods of frequency 

analysis to the problem of extracting path-length differences from 

ARPEFS, but the results are only partially satisfying because in fact 

the ARPEFS signal is not always well behaved. The difficulty may be 

traced to the functional dependence of the factors in front of the 

cosine in the ARPEFS formula: if these factors combine to give an 

envelope whose Fourier transform is not sharply peaked and symmetric, 

then the Fourier transform of the ARPEFS curve will not peak at the 

path-length difference. Nevertheless, frequency analysis is an 

important qualitative tool for ARPEFS analysis, and Chapter 6 provides a 

connection to a rapidly evolving field which might ultimately allow a 

direct analysis procedure to be developed. 

Experimental measurements of the S(1s) ARPEFS from c(2x2)S/Ni(00l) 

and their reduction to a surface structure determination are described 

in Chapter 7. Both the Fourier analysis methods of Chapter 6 and least-

squares fits of the numerical simulation method proposed in Chapter 5 

are applied to deduce the (known) S-Ni bond length and to suggest that 

the interlayer spacing between the first and second Ni layers is 

expanded from its bulk value by -3?. Sources of error for the complete 

procedure are discussed. 
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Chapter 7 concentrates on features of the Fourier spectrum which do 

peak near scattering path-length differences. Chapter 8 reports the 

observation of an electron scattering partial cross-section resonance. 

The strong amplitude dependences which accompany this resonance 

modulate the ARPEFS oscillations and split the corresponding Fourier 

peak. The structure information can be extracted nevertheless, and the 

resulting S-Ni bond length is in agreement with that derived in Chapter 

7. 

Finally, Chapter 9 concludes with a look to the future. For every 

question resolved in this thesis, two or more are posed by the solution. 

While the power and experimentally feasible precision of ARPEFS as a 

technique for surface structure determination are evident from previous 

studies of photoelectron diffraction combined with our new understanding 

of the advantages of the intermediate energy range, practical 

measurements with high accuracy require further work. The conclusion in 

Chapter 9 speculates on the directions that this future work might take. 
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FIGURE CAPTIONS 

Figure 1 Cross-sectional view of a fee crystal (001) surface showing 

the experimental geometry and illustrating the parameters of 

the scattering formula. The angle-resolving detector lies 

along the vector labeled e ([Oil] direction in this example), 

the photon polarization vector is E. The angle between these 

two vectors is f. The vector from the emitter to a scattering 

atom j makes an angle &, with the polarization vector and an 

angle e. with the emission direction. 

Figure 2. Illustration of the scattering process, 'ir.a direct wave has 

an angular distribution dependent upon the 'nitial state (1s) 

and the photon polarization vector, e. The scattering from 

each atomic center depends upon its scattering angle 9.. The 

scattering amplitude calculated for 300 eV is shown 

superimposed on the scattering atom. This amplitude is 

strongly peaked in the forward and backward directions. The 

geometrical path-length difference Is also illustrated. 
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CHAPTER 2: 

CURVED WAVEFRONT CORRECTIONS FOR PHOTOELECTRON SCATTERING 

ABSTRACT 

We derive new, simplified formulas for the scattering of £=1 

spherical waves from central potentials, as a basis for discussing 

curved wavefront corrections to single-scattering plane-wave models for 

Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) and 

Extended X-ray Absorption Fine Structure (EXAFS). A differential form 

for the expansion of the screened spherical wave replaces the usual 

Gaunt integral form to facilitate the summation over equivalent magnetic 

sublevels in the scattered wave. Spherical wave scattering factors are 

defined and interpreted as corrections to the plane--?ve scattering 

factor. We argue and demonstrate by example that the remarkable success 

of plane-wave models does not result from reaching the spherical wave 

asymptotic limit; instead successive partial wave corrections cancel for 

backseattering at high energy. The new scattering formulas allow 

curved-wavefront numerical calculations to be performed with little more 

effort than plane-wave formulas. 
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I. INTRODUCTION 

Understanding the motion of unbound electrons in solids is an 

interesting problem with important implications for surface structure 

determination methods based on electron scattering. The energy range 

from 20-200 eV has been studied extensively as a basis for the analysis 
1-3 of Low Energy Electron Diffraction (LEED) data; more recent work in 

the energy range 20-1000 eV has been inspired by the explosive growth in 

the number of Extended X-ray Absorption Fine Structure (EXAFS) 

measurements. In the case of LEED, the incident electron plane wave is 

simply described, but it excites every atom in the surface region, 

leading to a complex scattering problem; in the case of EXAFS only a 

single chemical element is excited by the x-ray beam, but the entire x-

ray absorption process must be understood and the observed modulations 

correspond to a special multiple scattering event. Thus we suggest 

that an even more recent technique, Angle-Resolved Photoemission 

Extended Fine Structure (ARPEFS) may be a more straightforward 

measurement for further understanding of electron scattering in the 50-

1000 eV range. ARPEFS measures partial cross-section oscillations of 

photollectrons; only electrons from a single chemical element are 

measured and a Mir angular integration is not necessary. This paper 

investigates one aspect of the theory of electron scattering in solids, 

the role of curved wave corrections to the plane-wave single-scattering 

of (1s) photoelectrons. 

A more practical motivation for this work is the interesting 

discrepancy between ARPEFS measurements and simple scattering theory 

results for the c(2x2)S/Ni(100) system. Experimentally, a relatively 

simple Fourier transform spectrum led to the conclusion that only 
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nearest neighbor and backscattering non-neighboring atoms contributed 
6 substantially to the observed spectrum. In other words, the number of 

important scattering atoms was small, permitting a simple interpretation 

of the Fourier spectrum. Thi3 conclusion has been recently challenged 
7 by Bullock, Fadley, and Orders on the basis of single-scattering, 

plane-wave theoretical calculations. They demonstrated that a great 

many ion-core3 should contribute to the theoretical curve under these 

and certain other approximations and hence no simple assignment of the 

Fourier peaks should be possible. Unfortunately, the reproduction of 

the experimental oscillations by these theoretical calculations is very 

poor, and we are lead to question the conclusions drawn from them. 

To settle this issue, an improved theoretical calculation capable 

of matching the measured curves within experimental accuracy seems in 

order; if we know that the sum of the calculated scattering events is 

correct, then we can compare the relative intensity of these events with 

more confidence. The plane-wave single-scattering calculations may be 

improved by: 

i) a more accurate atomic-like photoemission wavefunction 

(unscattered, direct wave), 

ii) curved wave corrections, 

iii) multiple scattering, 

iv) improved elastic scattering phase shifts, and 

v) more accurate inelastic damping. 

These improvements are somewhat entwined, but in this paper we will 

concentratt on a single issue: when are curved wave (al30 called 

spherical wave) corrections important? 
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We will examine only the simplest case of spherical wave 

scattering; single scattering of photoelectrons excited from a (1s) core 

level. We derive new formulas for this scattering in section II, 

applicable to both ARPEFS and EXAFS experiments. These formulas 

facilitate a qualitative discussion of curved wave corrections which 

occupies section III. In section IV we evaluate individual terms in 

these formulae for the example of a Ni atom potential. Our discussion 

in section V centers on possible generalizations to higher angular 

momenta. Finally, we address the impact our results might have on 

calculation of extended fine structure. 

II. CURVED WAVE SCATTERING OF J.-1 PHOTOELECTRONS 

Our scattering system consists of a photoemitting atom and an array 

of non-overlapping ion-core potentials. Zero-order calculation of the 

photoemission partial cross-section would ignore the ion-core array and 

only consider the atomic-like photoabsorption. Corrections caused by 

scattering from the ion core potentials gives the ARPEFS oscillations. 

Since we are only concerned with the oscillations, the details of zero-

order calculation are not relevant: we need only know the zero-order 

wave function. With dipole selection rules, polarized light, a (13) 

core-level initial state, and complete metallic screening the zero-order 

wave function is proportional to: 

* 0(r) - ih 1(kr)Y 1 0(r) (1) 

Q 

Here h (kr) is the spherical Hankel function of the first kind (we will 

omit the usual superscript (1) as in h. (kr) and we will not use 
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spherical Hankel functions of the second kind), Y. (r) i3 the spherical 

harmonic evaluated at the angles given by the unit vector, r, in the 

direction of r, and k is the electron's wavenumber far from the 

photoemitter. Notice that we have selected the polarization vector of 

the light for our z axis to simplify the zero-order wave function 

description. The first-order corrections to this wave function are 

generated by including scattered waves emanating from each nearby ion 
9 core. The partial wave method for calculating these scattered waves 

has three steps: 

i) expand the incident wave as an angular momentum series 

about the ion-core position, 

ii) multiply each "partial wave" in this series by a (complex) 

scattering amplitude (which also shifts the wave phase), 

iii) sum the non-zero partial waves to give the full scattered 

wave. 

It is the first step which distinguishes plane wave from spherical wave 

scattering. 

A. PLANE WAVES 

As a basis for our discussion of the curved wave effects we repeat 

the derivation of the plane wave ARPEFS model first presented by Lee, 

but following more closely the method used by Lee and Pendry in their 

derivation of the EXAFS formula. 
5 In a plane wave approximation, the photoelectron wave is 

represented near the scattering center by the value of the wave at the 

center, times a plane wave: 



31 

1/2 + + 
* 0 ( r ) > i h ^ k r ) ( ^ ) cos e e a e i l < a ' ( r " a ) (2) 

where e i s the angle between the e l e c t r i c vector e and the bond vector ea 

a. Since we hav<» already ignored wavefront curvature with t h i s 

approximation, we replace the Hankel function by i t s asymptotic l i m i t , 

ika 
1 V a ) - TIS ( 3 ) 

and apply the well-known Bauer formula, 

e— • = I ( 2 l + 1 ) i 1 L J 0 ( k r ) P 0 ( c o s 9 . ) CO 
£-0 i * KT 

to expand the photoelectron wave around the s c a t t e r i n g cen te r : 

1/2 ika • 
„ o ( ? ) . ( 3 . ) cos 8 £ a S j ^ I (21*1)1 j £ ( k r . ) P j l ( c o s e ^ , ) (5) 

»"0 

Here j-(kr) is the incoming spherical Bessel function, P (cos 9) is the 

Legendre polynomial, and r' - r - a. The scattering angle, 9__, , is 

defined as the angle between the propagation vector for the incident 

plane wave, ka, and the outgoing wave direction r'. 

To construct the scattered wave, we multiply each incoming partial 

wave by 

1 2 i 6 t i 6 a 
V k ) * i" ( e 1 ) * i s l n V ( 6 ) 
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where 60(k) is the partial wave phase shift. Summing the new outgoing 

wave gives 

_ 1/2 ika ̂ max 
•+(r«> - (TJJ) cos e £ a n ^ I (21+DT (k)i h^Ckr- )P (cos e^.XT) 
a S.-0 

The sum of I may be stopped at £ when all higher partial waves have 
nicix 

negl ig ib le amplitude, | T , ( k ) | - 0, I > £__„• At the angle resolved 

de tec to r , loca ted along R, we may replace the outgoing sphe r i ca l waves 

by the i r asymptotic l i m i t . Then a s c a t t e r i n g fac tor i s defined by 

max 
faR ( k ) " l H n < 2 * + 1 > V k ) I V C 0 3 W ( 8 ) 

Jt-0 

to give the scattered wave at the detector as 

1/2 elk|R-a| ika 
n ( R , - ( l J!) cos e £ a ^ - _ • — f ( 9 ) 

a 

The factor exp(ik|R-a|) corrects for the different origin of the 

scattered wave and for |R| >> |a| we have JR—a| - |R| - |aj cos e . 

The direct wave at the detector is 

1/2 ikR 
•„(">.- <Tii> oos 9 £ R ^ (10) 

and we calculate the ARPEFS oscillations due to a single atom as 



33 

(V*a) (VV 21 faR 1 C 0 S 9ea 
•(k) - - V i-2 15- 3 ; ^ cos [kad-cos eaR)+*aR3 (n) Vo e R 

where f D(k) - If _| exp(i $ ). This formula has been used to analyze aR an an 
experimental ARPEFS data in ref. 6. 

B. SPHERICAL WAVES 
For spherical waves, the angular momentum expansion in its usual 

form is much more complex: 

lVlcr>Y10(P> - I W m - ^ V t ^ W ^ ' * ( 1 2 ) 

x, m 

where r' + a - r. This formula is the basis for Lee and Pendry's curved 
10 wave EXAFS formula. To make physical arguments about the nature of 

curved wave corrections to the plane wave formula, we need a simpler 
form for this expansion, which we will refer to as an origin-shift 
addition theorem. 

An alternative expansion for spherical waves may be derived most 
12 readily from Nozawa's original paper which describes expansions of 

"Helmholtz's Solid Harmonics", his term for the product of spherical 
Bessel functions and spherical harmonics, which we will call "spherical 
waves". Nozawa demonstrated that the origin-shift addition theorem 
results when the raising operator for Helmholtz's Solid Harmonics, 

1\C«-)PJ(«. ele1"* . ,£>" ( 1| • »,' P<">Ci $-»„,*., (-3) 
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i3 applied to the origin-shif t addition theorem for h (kr): 

h Q(kr) - I ( 2 & + 1 ) i £ J a ( k r ' ) i \ ( k a ) P a ( c o s e ^ , ) (14) 

Here P. (-13/k3z) is the operator obtained by using (-i3/k3z) as the 

argument of the mth derivative of the Legendre polynomial of order I. As 

we shall see, this differential form for the expansion eliminates the 

need for magnetic quantum numbers for the outgoing scattered wave and 

leaves explicit the angle dependence hidden within G. .„ „ above. 
Si,miL"m" 

For our particular case the raising operator formula i s 

i h ^ k r j p ^ c o s 9) - (™ ^ | ) h 0 ( k r ) (15) 

14 and the origin-shift addition theorem becomes 
OS 

ih.(kr)P (cos 6) « I (2l+1)il"j01l(kr')hn(ka) 
1 1 1-0 * u 

«{d1(ka)P1(eoa 9£a)dJltl(ka)PJl„(cos e^.,) 

3d l n(ka) 
_ i c o a 9ea 3(ka) V C O a 6ar') 

(COS 9 -COS 9 003 9 ,) 3P„„(C03 9 .) 
erj_^ ea arj_ j- ar' 

ka £" 3(cos 9 ,) 
ar' 

We have introduced d ,(ka) to represent the polynomial part of the 
i. 

spherical Hankel function: 
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on i k S 

1 V ( k a ) " ̂  V ( k a ) " V k a ) d 8 . " ( k a ) ( 1 7 ) 

Note that for large ka » 8,"U» + 1), da„(ka) - 1.0, and that d^(ka) may 
be calculated by recursion: d.+. = d - d (2JL+1 )/ika. 

As before, the scattered wave may be calculated by multiplying each 
incoming partial wave amplitude by T.(k) to generate an outgoing partial 
wave; each outgoing wave may be replaced by its asymptotic limit when 
the amplitude is calculated at the detector, position R. 

We invent a generalized scattering factor based on our origin-shift 
formula as 

1 V x 3 d*"(ka) 3 P £ « ( c o s eaH ) 

C * IS I (2a"+1)T (k) — 4 i f- (18) 
a R i k l"-0 l 3(ka) n 3(cos e D ) m 

an 

and the scattered wave is then 

1/2 ik|R-a| ika 
••< 5 ) - ^ — T U T H " t d 1 ( k a ) C O S 9safaR a 

-1 c o s e
£ a faR - IS faR [ c o s 9

e R - G O S 9
e a c o s 9aR ] } ( 1 9 ) 

If we label the factor within the braces F„_„ =• |F]exp(i<j) ) we 
SPH SPH 

parallel the plane wave construction of x(k) t o f i n d 

I FSPH' * ( k ) - 2 a cos 9 „ «»Cka(1-eoa 8 a R) * * s p H ] (20) 
£n 
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Clearly, F h determines both the amplitude and phase of the 
oscillations we will measure. As ka becomes large, the factors f _ and 

aR 
f (ka) fall to zero, d^Cka) becomes 1.0, f tends to f _, and we have 
F + f cos 9 (21) 
SPH aR ea v * u 

Thus by studying F„ . compared to f cose „ we can learn when curved s pn an ea 
wave corrections will influence the single scattering of photoelectrons. 

An alternative derivation for this formula is outlined in Appendix 
A. 

The same method may also be applied to calculation of oscillations 
in the total absorption cross section, the Extended X-ray Absorption 
Fine Structure (EXAFS). Here the scattered wave must be projected back 
onto the direct wave at the absorbing atom: the oscillations are an 
interference at the photoemitter. The derivation for (1s) core levels 
and polarized light is given in Appendix B. If we call 

1 V X l« 
ESPH-Tk lmQ W 1 > V » 0 M ) 1 C22) 

2 3d.„(ka) 2 d (ka) 2 . . 
M c o s 2 9 e a C d l ( k a ) d a „ ( k a ) - i-^fi^-] - s i n 2 9 £ a [ - L _ ] MA-il} 

2 then we compare E . to cos 9 f _(ir) to examine curved wave K sph ea aR 
corrections for EXAFS. 

We might proceed directly to numerical applications of these 
formulae, but the qualitative success of the plane wave approximation 
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suggests that some insight into electron scattering may be gained by 

examining the individual terms in these spherical wave formulas compared 

to results from a plane-wave model. We take up this topic in the next 

section. 

III. NATURE OF THE CURVED WAVE CORRECTIONS 

In this section we examine the formulas derived in the previous 

section for the exact single scattering of 11 - 1 spherical waves. We 

know that the plane wave scattering model is substantially correct so we 

concentrate on differences caused by allowing for wavefront curvature. 

We begin this section with a brief examination of the mathematical 

reduction of the spherical wave formulas to their plane wave limit. 

This provides one method for studying curved wave effects, but to be 

more specific we might inquire about the importance of the fundamental 

spherical nature of the waves which is independent of angular momentum -

embodied in exp(ikr)/ikr - compared to additional curved wave 

corrections due to the particular incident angular momentum. We will 

demonstrate that each term in the differential form, eqn 19, corresponds 

to specific curved wave corrections. The first term gives the basic 

correction common to all angular momenta, the second term corrects for 

additional radial structure specific to the incident angular momentum, 

while the third term corresponds to additional angular character 

specific to angular momentum. 

Our curved wave formulas approach the plane wave results whenever 

the spherical Hankel functions can be replaced by their asymptotic 

limits (eqn. 3). In our notation this is equivalent to replacing the 
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polynomial part of the spherical Hankel function, d.(ka) by 1.0 in our 

formulas: 

V k a ) " [ 1 - - ^ a 2 * *"] ~ 1'° ( 23) 

Thus we must first discuss the size of i(l+T)/(2ika). Notice that the 

angular momentum in this formula is the scattered wave angular momentum, 

not the dipole selection rule momentum from the photoabsorption. 

The contribution of each partial wave to the final scattered wave 

is dictated by the partial wave amplitude (eqn. 6). For every 

wavenumber, k, there will be some angular momentum % beyond which all 
luaX 

p a r t i a l wave amplitudes may be neglected. With some c r i t e r i o n for t h i s 

cutoff we can define an equivalent range, r , for the s c a t t e r i n g 

p o t e n t i a l : 

fl U m a v + 1) - ( k r . ) 2 . (2U) 
max max 0 

In other words, the l a r g e s t s i g n i f i c a n t p a r t i a l wave climbs in 

proportion to k. The asymptotic c r i t e r i o n then reads 

kr r 
~ (-2) « 1 (25) 

2 a 

for the last significant partial wave. By this analysis we conclude 

that the spherical Hankel function can be replaced by its limit only for 

large a >> r ; higher energy actually leads us away from the limit. Of 

course, as the number of partial waves increases, the impact of the 
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largest angular momentum on the value of the scattering factor 

decreases. To properly assess this effect we should consider in detail 

the weight of each partial wave, but for a crude estimate assume equal 

weights. Then the contribution of the largest angular momentum 

decreases roughly like (1/J, ), giving an asymptotic criterion for the 
UlaX 

sum as 

\ ( ^ ) « 1 (26) 

We expect r to be « 1A and for | a | equal to the neares t neighbor 

d i s t ance , r /2a =• 0 .2 . Under these assumptions the curved wave e f fec t s 

are not too smal l ; we turn to s tudy the curved wave formulas for ARPEFS 

and EXAFS. 

For photoelectron s c a t t e r i n g we have 

00 10 
£".,„„ - d, (ka) cos 8 f _ - i cos e f _ 
SPH 1 ea aR ea aR 

cos 6 -cos 6 cos 9 „ 
- i £ t — * — - H * — ^ < 2 T > 

The first term, 

d,(ka)cos 9 f°? 1 ea aR 

I cos 9 max 
" C 1 + kT ] ik E (2l*1)T!l(k)djl(ka)Pl(cos 9 a R) (28) 
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is the only one which survives in the asymptotic limit, ka » a(8,+l). 
By examining the origin-shift addition theorem fop h (kr) (eqn 14) we 
can show that this first term corresponds to the single scattering of an 

,00 
aR 
00 J.-0 wave - the f _ factor - multiplied by the 2,-1 wave components—the 

d 0(ka) cos 9 part. The scattering factor, f _, differs from the plane 
jti Ea an 

wave counterpart, f _, only by including a weighting on part ial waves, 
an 

d.(ka), dependent on ka. Since h Q(ka) = exp(ika)/ika, we can see that 
this weighting corrects the plane-wave scattering factor for the 
variation in the spherical wave over the finite size of the ion core 
potential due to (1/ika). 

The second term, 

o 
1 0 -i cos 9 max 3d (ka) 

- 1 c o a 9ea faR vT^ X ^DT^k) - ^ £ ) V C O S W ( 2 9 ) 

contains the derivative of the polynomial part of the spherical Hankel 
function. The expansion of d. in equation (23) gives the leading term 
in the derivative as 

!V^__!_AUil> ( 3 0 ) 

3(ka) ika 2ika ° ' 

Since ka - 10 in the ARPEFS energy range we can anticipate this 
spherical wave correction being much smaller than the difference between 
f and f _: the factor iU+1 )/2ika represents the leading correction to 
the plane wave form and f is smaller by 1/ka. This term is literally 

an 
the radial variation of f : it corrects the S wave origin shift, given 

an 
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by f._. for the variation in h.(ka) over the potential not already 
SR 1 

contained in f _. 

The thi rd term, 

^ ( c o s eeR--cos eE acos e a R ) f ° R - (3D 

(cos 6 0 - cos 9 cos 9 ) max 3P (cos 9 _) 

contains both an unusual angular factor and a derivative with respect to 

cos 9 „. This term accounts for the variation in the spherical wave an . 
amplitude l a t e ra l ly across the width of the potent ia l . We can use 

spherical trigonometry to rewrite this term in an instructive fashion. 

If we place three unit vectors in the directions of e, the polarization 

vector, R, the emission vector, and a, the bond vector, at a common 

origin, then the vector t ips will define a spherical tr iangle on a unit 

sphere with sides 9 _, 9 , and 9„_. Observing this t r iangle along the 
£n £a aK. 

-» vector a we see that 

cos 9 £ R - cos 9 e a cos 9 a R - sin 9 £ a sin 9^ cos * £ a R (32) 

where * is the dihedral angle between e and R through a. Since the can 
associated Legendre polynomials are defined 

d P (cos 9) 
P. (cos 9) - sin 9 0 S m S I (33) 
* d(cos 9 ) m 
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we can write 

(cos 8eR-cos 8 e acos 9 a R) ^ 
_ 1 ka aR ^ ; 

4 1 
sin 6 cos <|> max P.(cos 6 ) 

£2 £* j (a.HT.Wd.ta) * 1 | a 

Thus this correction to the plane wave form reaches its maximum when the 

scattering potential is located in the nodal plane (cos 9 = 0 ; sin 9 
ea ea 

- 1) of the outgoing spherical wave. The maximum 3ize of P. (cos 9,D) 
x. an 

is (8.+D/2 but all of the partial waves do not reach this maximum for 

the same angle. Nevertheless we can roughly say that this third term 

will peak near 8 - 20°, giving a curved wave correction approximately an 
8.(a+1)/2ka smaller than the first term. 

To recap our assignment of the terms in the differential spherical 

wave formula to specific curved wave corrections, we associate the first 
00 terra - containing f - with the fundamental, angular-momentum-an 

independent na ture of the inc ident wave, the second term - containing 

f - with r a d i a l correc t ions dependent on angular momentum, and the an 

t h i r d term - containing f _ - with angular co r rec t ions dependent on 
an 

angular momentum. From this assignment, we can expect significant 

curved wave corrections to the single-scattering ARPEFS formula when 

i) the scattering potential is near a node in the incident 

wave angular distribution, 

ii) the scattering angle is near 0° (forward scattering), or 

iii) the scattering factor is near resonance. 

We now consider these cases in more detail. 
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When the center of a scattering potential lies in a nodal surface 

of the incident wave, the plane wave model, eqn 11, predicts no 

scattering. For fc-1 incident waves, this geometry means 6 -90° and 

cos 8 -0. Thus only the third term of the differential formula is non-

zero and thus this third term represents the entire curved wave 

correction for this geometry. It is Interesting to note that the usual 

experimental geometries for ARPEFS prevent this third term from 

producing its maximum effect. To maximize the measured photocurrent, 

the electron detector in the direction R, is usually placed nearly 

parallel to e (8 D - 0°). If an atom has 8 - 90° so that sin 8 - 1, EH ca ca 
then the scattering angle, 9„ n, must also be - 90° for the scattered 

an 
wave to enter the detector: for this experimental geometry the condition 

(9 - 90°, 9 „ - 20°) will never be satisfied, ea aR 
Just the opposite must be true for the unusual experimental 

geometry adopted by Sinkovic et al., in a recent Azimuthal Photoelectron 

Diffraction experiment . They selected 8 _ - 72° and measured 
£n 

electrons emitted 10° from the surface: many of the important forward 
scattering atoms would have sin 6 > .5, cos <j> - 1, and 9 D - 20°. 

ca &an aR 

Thu3 their observation that plane-wave calculations gave poor agreement 

with experiment may reflect the neglected variation in wave amplitude 

across the scattering potential rather than multiple scattering effects. 

When the scattering angle is near 0° we can get large curved-wave 

corrections strictly from the difference between the first term 

containing f^, and the plane wave limit. To demonstate this we expand 

d (ka) according to equation 23, and subtract the asymptotic plane-wave 

part: 
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,.00 .PLANE. _ 1 r 3 X
 / O 0 ,._ ,.. rlU*ll-in , „ N , ^ s 

( faR ' faR ) - Ik ^_0 < 2 * + 1 > V k ) C-2ika- ] PiI. ( c 0 3 V ( 3 5 ) 

The maximum difference will occur for forward scattering since P.(1) = 1 
and all the partial wave corrections add. Conversely the minimum curved 
wave corrections should be expected for back3cattering since P-C-l) = 
(-1) and successive partial waves tend to cancel. This overall 
description should be most accurate for higher energies where the 
partial wave amplitudes, T,(k), have little structure. 

When the full scattering factor approaches zero near a Generalized 
17 Ramsauer Townsend resonance we can expect the third case for large 

curved wave corrections. For special values of electron wavevector, k, 
and scattering angle, e„ 0, the partial wave sum will be zero due to 

an 
exact cancellation of all partial wave components. The particular pair 
of values (k.e,,,) at which the scattering factor becomes zero will an 
differ between the plane-wave and spherical-wave models as they weight 
the individual partial waves differently. Thus analysis of scattering 
resonance data with a plane-wave model will give incorrect scattering 
angles and the observed resonance energy position will not be correctly 
given by plane wave calculations. While the first two circumstances 
leading curved wave effects discussed above involve only one or another 
of the terms in the formula, the resonance calculation will depend in 
detail on all three terms. 

Curved wave corrections to the EXAFS formula are directly analogous 
to the corrections for photoelectron diffraction. Since the "detector" 
for EXAFS is the photoemitting atom, the curved wave effects are 



M5 

squared: our detector is not asymptotically far from the scattering 

atom. The first term of the spherical wave scattering factor 

2 j, 2 
cos 9 max . 3d0(ka) 

l k
 S I (21M )T&(k)(-1 )a[d1 (ka)d&(ka)-i * ( k a ^ ] (36) 

has the same angular dependence as the plane wave model. This term 

contains both the basic radial correction for 1/ika—the first factor 

inside the brackets—and the radial derivative correction. As discussed 

above, the radial derivative factor is usually much smaller than the 

s-wave origin-shift. 

The second term of the EXAFS spherical wave amplitude factor has 

the opposite angular dependence compared to a plane wave model: 

sin 6 „ max . d.(ka) 
^ l (2l+1)T,(k)(-1)1 [-i- ] i£|lli (37) 

i k i.o l k a 

This term corrects for variation in the incident wave amplitude across 

the potential, primarily due to the node in the p wave angular 

distribution. Thus for atoms along the nodal plane perpendicular to the 

electric vector, this term represents the error made by neglecting the 

angular structure in the photoelectron wave. 

Typically EXAFS analysis ia not concerned with relative scattering 

amplitude of individual atoms. Most of the measurable signal comes from 

nearest neighbor atoms, all of which contribute oscillations of the same 

frequency. The overall EXAFS amplitude is not simply given by the 

magnitude of the scattering amplitude ' and hence the spherical wave 
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corrections to the magnitude are of little consequence. Rather it is 
the phase of the scattering factor that is central to the EXAFS analysis 
and high precision should require spherical wave correction; the weight 
of the individual partial waves in the scattering factor sum will 
otherwise be incorrect. Of course, practical EXAFS analysis does not 
rely on the accuracy of the theoretical scattering factor: empirical 
phase shifts are nearly always derived from known model compounds. 

An important EXAFS technique which does rely on relative scattering 
amplitudes is the polarization dependence employed to determine 

20 structures on surfaces. Here the overall amplitude for nearest 
neighbors is measured for several orientations of the polarization 
vector with respect to the crystalline sample axis. The results are 
usually fitted to the angular distribution predicted by a plane wave 

2 model—cos 8 —and ignores spherical wave effects. We would expect the 
largest curved wave correction when ka is small, i.e. low z elements 
having short bond lengths and in the lower energy region, and when we 

2 need accurate angular distribution calculations for small cos 9 
ea 

Looking back at the EXAFS formula we also find some insight into 
the success of the plane wave model. The leading correction to the 
plane wave amplitude is 

[ i s P H _ . f P l a n e U ) ] . 1_ f* ( 2 j M ) T ( k ) M ) l iifili ( 3 8 ) 

cos e a-o 
ea 

This term is just twice the correction for backscattering ARPEFS, and, 
as we argued above, the successive terms tend to cancel. Furthermore, 
we can make a crude argument that the k dependence—and hence the 
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frequency shift—of this correction will be very small. The factor 

S.(2,+1)/ika strongly favors high angular momentum waves. If we define an 

impact parameter b - l/k, we can take a semi classical approximation for 
21 the phase shift: 

V" - if <»> 
Here, Z(b) i s the unscreened nuclear charge wi th in a sphere of r ad ius b 

around the s c a t t e r i n g atom. For l a rge I we assume small phase s h i f t s to 

wr i t e 

iZ (b) 
T^Ck) - i f i £ (k) j ^ — (40) 

and since i >> 1 we have 

? a X 21 V b ) I I2 

To get a s e r i e s whose l imi t does not depend on k we invent a sampling 

rad ius 

r„ . % 3 («, 

which coincides with I - kr for I » 1. Then 
max o max 



48 

^max 2rl JL a w-n 
4 • L ^v 2 < r ° ) M ) 

Since the r are constants of the potential, this spherical wave 
correction is roughly independent of k. Note that this argument 
requires the low angular momentum to be insignificant and we may not 

00 conclude that f _ or f are roughly independent of k by similar steps, aw as 

IV. CURVED WAVE CORRECTIONS TO THE SCATTERING FROM Ni ATOMS 
Now we turn to some specific examples of curved wave effects in the 

scattering of electrons from Ni atoms. We will begin by examining the 
angle dependence of the scattering factors at 5A (95 eV) and at 10A 
(381 eV), followed by their k and r dependences. For each case we will 

00 compare f _ to the plane-wave limit, f _. As the last example we an an 
calculate the effect of curved wave corrections to the polarization 
dependence in surface EXAFS. In all these examples we take |a| =• 2.23A. 

00 Figure 1 compares the amplitudes of f _ and f_ for scattering an an 
angles from 0-180° at a wavenumber of 5A (see eqn. 28). The general 

trend confirms our qualitative discussion in the previous section: the 

largest corrections are in the forward scattering direct ions. Figure 2 

gives the amplitude of f (eqn. 29); note the dramatic reduction in 
an 

magnitude. The angular structure of f _ is rather similar to f . 
a n clri 

The angular spherical wave correction, eqn, 31 % is plotted in 
figure 3 as lain 0 D f D| to emphasize the fact that this correction is an an 
zero for forward (9 - 0°) and exactly backscattering (9 R = 180°). 
The overall scale is 20 percent of the scale in figure 7, but recall 
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that two additional angle factors, sin 6 and cos<|> _ reduce this 
ca €an 

correction unless the scattering geometry is special. 

We have constructed figures 4, 5, and 6 to parallel figures 1, 2, 

and 3i respectively, except k - 10A for these new figures. All three 

comparisons demonstrate that the curved wave corrections are not much 

smaller at this higher energy, but the cancellation of successive 

angular momenta due to P.(cos9)-(-1) is much more effective. Thus all 

the large scattering-angle (0>9O°) amplitudes are quite accurate (5 

percent) in the plane wave model, while the amplitude for scattering 

through 32° is too high by more than a factor of 2. 

We can also compare the scattering factor phase by plotting the 

argument of the complex ratio f 0 / f o D , i.e. their phase difference, as 
an an 

in Figure 7. For k - 5A , the phase difference is roughly +0.5 

radians; note that the two angles where the phase difference is not near 

+0.5 radians correspond to scattering angles with small scattering 

amplitudes, see figure 1. The curve for k - 10A has the same behavior 

although the shift is about half as large. 

The k dependence of these scattering factors is illustrated for e„D 

an 

- 173° in figure 8, 9 a R - 0° in figure 9, and 6 R - 127° in figure 10. 

The backscattering geometry, figure 8, i3 the most important one for 

ARPEFS and, fortunately, the plane wave model is rather accurate. As we 

noted above, the angular curved wave correction is eliminated by sin 9 _ 
an 

- 0 for backscattering, and figure 8 shows that f„ D is very much smaller 
an 

than f . Thus f _ by itself characterizes the backscattering of Sl=1 

waves. Notice also that the plane wave amplitude error approaches a 

constant not equal to zero, for large k. This is explained in the same 

manner as the EXAFS discussion in the previous section. 
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The greatest curved wave corrections occur in the forward 

directions; figure 9 gives the example of e R - 0°. The plane wave 

amplitude is roughly ,2A too small over the entire range in k. Without 

the alternating sign of P-(—1) characteristic of backscattering, we see 

no approach to the plane wave limit at large k. Again f is very 
aR 

small, at least a factor of 20 below f ; f cannot contribute to 
an aR 

forward scattering as long as 8.R < - 10°. The phase difference (not 

plotted) between f and fj~_ is - .7 radians. 

Finally, we consider scattering through 127°, the position of a 

Generalized Ramsauer Townsend resonance in Ni. The resonance is a 

crossing of the origin in the complex plane by the complete scattering 

factor. The resonance position in energy and angle depends crucially on 

the cancellation of many partial waves and hence cannot be correctly 

predicted with a plane wave calculation. Figure 10 displays the 
• 00 I i planei scattering factors for 9^. - 127°. The factors |f_ R| and |f | are 

reasonably close except in the resonance region near 8A . The angular 

curved wave correction is now significant, especially since it conspires 
00 -1 

with f „ to make the overall scattering amplitude zero at k = 7.5A 
(f _ has not been plotted; it is very small for s D - 127°). The aR an 
difference between exact single-scattering and plane-wave calculations 

is more dramatic in the phase of the scattering factor. Calculations 

done for values of ka corresponding to recent experimental 
17 measurements are shown in figure 11. The phase jump at resonance is 

not correctly placed in angle or energy in the plane wave limit. 

To estimate the distance, |a|, beyond which we can safely use the 
, 00 plane wave formula, we plot in figure 12 the radius at which |f R -

f p a n e | s 0.06A, for two energies, k - 5A and k - 10A . This 
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criterion for the allowable error in scattering factor was chosen to be 

- 10 percent of the backscattering (8^, - 180°) amplitude for Ni. We 

3ee from this figure that plane wave calculations are never adequate by 

this criterion for forward scattering at any energy or any practical 

radius. For angles greater than 45°, most scattering atoms within 10A 

of the photoemitter would require curved wave corrections in the lower 

energy region, while perhaps only the nearest neighbors require these 

extra calculations for k * 10A 

To discuss an example calculation for the curved wave EXAFS 

formula, we adopt the second form for x(k) given in Appendix B, eqn. 

(B13). Figure 13 compares f 3 to its asymptotic limit f (TT) and to 
an iso 00 f . We see a close analogy between f for EXAFS and f _ for ARPEFS, an 

but the curved wave cor rec t ions a re larger for EXAFS (compare f i g u r e 8) 

s ince the "de t ec to r " i s not asymptot ical ly fa r from the s c a t t e r i n g atom. 

Once again the l a rge k region approaches a non-zero constant plane-wave 

e r r o r . Perhaps most i n t e r e s t i n g , |f | i s seen t o be near ly two orders 

of magnitude smal ler than jf | in t h i s energy r ange . Thus, a t l e a s t 

for Ni atoms, the standard EXAFS formula with f replacing f (IT) 

would give 1 percent accurate curved wave r e s u l t s . Furthermore, s ince 

the po la r i za t ion dependence technique r e l i e s only on the assumption that 
2 

the o s c i l l a t i o n s a re propor t ional to cos a , curved wave cor rec t ions to 

the ca lcu la ted amplitude r a t i o s a re en t i r e ly i n s i g n i f i c a n t . 

V. DISCUSSION 

We have derived new formulae and given examples for the curved wave 

s c a t t e r i n g of i-1 spher ica l waves. What can we expect for more general 

spher ica l waves? We offer some q u a l i t a t i v e ideas in t h i s s e c t i o n . 
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We envision two important cases: i) photoabsorption by p, d, and f 

core levels giving spherical waves with higher angular momenta and 

magnetic sublevel occupations; and ii) multiple scattering preceded 

either by photoelectron scattering or plane wave scattering typical for 

the LEED experiment. Both of these problems can be approached by the 

method we use here for H«1 waves. That is, the origin-shift addition 

theorem summed over magnetic sublevels can be differentiated to higher 

and higher order. The resulting expressions will be formidable so we 

will be content with estimates for now. 

First we consider higher I waves populated by photoemission. For 

core orbital initial states with p, d, or f orbital angular momentum, 

two partial waves with l±1 will be created. Each partial wave may be 

treated by the method of section II. We should always get a first term 

like d (ka)Y- (a)f R , the amplitude of the I spherical wave times the 

scattering factor for fc-0 waves. This is the only curved wave factor 

which survives the asymptotic limit and hence will always be the most 

important. Our discussion for £-1 virtually ignores d.(ka) as being 

close to 1.0, but for higher angular momenta this factor may be 

important. Otherwise, this first term will follow the trends discussed 

in the previous section. 

We should also always get curved wave corrections due to 

differences between the (1/ikr) dependence of h Q(kr) and the angular-

momentum-dependent radial wave character through the potential region -
10 corrections analogous to f_. For higher angular momenta, the an 

difference between the radial character of the incident spherical wave 

and the radial character of h (ka) already included in the first term 

will increase. We might conclude from our Ni example calculations that 
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these radial variations are negligible for J,»1 waves; for some higher 8, 

we will be forced to include this term. 

For all I, the radial variations should be less than the angular 

variations simply because spherical waves (except i»0) have stronger 
01 angle dependence. Thu3 curved wave corrections analogous to f _ will be 
an 

increas ingly important for higher angular momenta. These angular 

cor rec t ions a re always grea tes t near nodes in the incoming wave, where 

the wave amplitude i s changing most r ap id ly . The nodal regions has the 

l e a s t amplitude and the f i n i t e ex ten t of the p o t e n t i a l i s anyway 

averaging opposi te phase waves ac ross the nodal s u r f a c e , smoothing out 

the nodal s t r u c t u r e . Hence, on the average, even these angular 

cor rec t ions w i l l not be l a r g e . The phrase "on t h e average" i s connected 

with the add i t iona l angular vec tors l i k e s in 0 s i n e D cos <t> „ n which 
£a aK Eati 

multiply the curved wave angular correction. 

In addition to more significant curved wave corrections of the same 

type as the £-1 wave, higher angular momenta waves should also have 

corrections corresponding to higher order derivatives. Thus the second 

derivatives of the incoming wave across the extent of the potential will 

become important for some high I. Actual calculations are necessary to 

determine how important these corrections will be. 

This leads us to the second important case, multiple scattering. 

While photoabsorption can populate only dipole allowed angular momenta, 

an outgoing scattered wave contains all angular momenta up to J, -

kr . To apply the method of this paper to the exact multiple scattering 

of spherical waves would—as a practical matter—require automation of 

the derivative calculations, a dubious improvement over the Gaunt 

integral summation formula, equation 12. On the other hand, the 
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outgoing s c a t t e r e d wave i s no more than a s p h e r i c a l wave with an angular 

dependence and phase determined by s c a t t e r i n g r a t h e r than by 

photoabsorption. Thus, approximate mul t ip le s c a t t e r i n g could be 
00 ca lcula ted by s t a r t i n g with f _ times the s i n g l e sca t t e red wave 

amplitude at the second s c a t t e r i n g center and adding curved wave 

correc t ions by numerical d i f f e r e n t i a t i o n of t h e s ing l e -3ca t t e r ed 

wavefunction. 

VI. CONCLUSION 

To summarize our work, we have 

i ) derived new curved wave formulae for s ing le s c a t t e r i n g of 

(1s) core l eve l photoelec t rons , appropr ia te for ARPEFS and 

EXAFS experiments, 

i i ) i n t e rp re ted the individual s c a t t e r i n g fac tors in t h i s 

formula as d i f f e r en t types of curved-wave c o r r e c t i o n s , 

allowing some guidel ines to be devised to predic t which 

s c a t t e r i n g problems require curved-wave formulas, 

i i i ) given some idea of the s i ze of these fac tors for Ni atom 

s c a t t e r i n g , and 

iv) discussed the poss ib le genera l i za t ion to higher angular 

momenta core l e v e l s . 

The s ign i f i cance of these r e s u l t s i s p a r t l y formal arid p a r t l y 

p r a c t i c a l . The remarkable accuracy of the plane wave model has been 
H 22 widely recognized, ' but often a t t r i bu t ed to the asymptotic l i m i t of 

the spher ica l wave. Our new formulas more c l e a r l y demonstrate the 

or ig in of t h i s convenience: the improved cance l l a t i on of p a r t i a l waves 
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at large k. Thus the accuracy of the plane wave model does not improve 

for l a rge k i n forward s c a t t e r i n g d i r e c t i o n s . This point may a l so be 

made by a s emi -c l a s s i ca l argument. As f igu re 14 i l l u s t r a t e s , forward 
21 s c a t t e r i n g corresponds to l a r g e c l a s s i c a l impact parameters; 

backsca t te r ing corresponds t o low enough impact parameter t o sample the 

strong a t t r a c t i v e center region of the p o t e n t i a l . The wavefront 

curvature co r rec t ions are thus much l a rge r for forward s c a t t e r i n g 

d i rec t ions which sample the extreme edges of the p o t e n t i a l . 

On the p r a c t i c a l s i d e , our new curved-wave formulas a re sca rce ly 

more complicated than the plane-wave ve r s ions . Some advantage may also 

be made of the d i f ferent angle dependences of each s c a t t e r i n g f a c t o r , to 

minimize numerical computations. Hopefully, our q u a l i t a t i v e discuss ion 

and numerical example w i l l se rve as some guide to est imate when curved 

wave e f fec t s may be important . F ina l ly , we have demonstrated t h a t 

curved wave EXAFS ca lcu la t ions can be qui te accura te with only a minor 

modification of the plane-wave formula, a r e s u l t which extends the 
23 24 

recent work of Schaich and of Gurman, e t a l . 

Unfortunately, i t i s a l so c lear from our r e s u l t s tha t curved wave 

effects cannot explain the di f ference between ARPEFS experiments and the 

s i n g l e - s c a t t e r i n g plane-wave ca lcu la t ions of Bullock, Fadley, and 
7 

Orders. The curved wave cor rec t ions are t y p i c a l l y - 20 percent and 

only tha t l a r g e in the forward d i r e c t i o n s . Thus while we have reduced 

the computational ba r r ie r t o using curved wave ca lcu la t ion for ARPEFS, 

we can a lso conclude tha t the major d iscrepancies between theory and 

experiment a re not due to curved wave co r rec t ions at l e a s t for s i n g l e 

backsca t te r ing . 
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We can characterize the disagreement between model calculations and 

ARPEFS measurement by noting that scatterings from nearest neighbors and 

backscatterings from non- nearest neighbors appear to be much more 

dominant than predicted theoretically. Wavefront curvature increases 

scattering for some angles, decreases it for others and generally has 

less effect for backscattering. Therefore, while curved wave formulas 

may be important for accurate calculation, there are larger errors 

elsewhere in the theory. Multiple scattering must be part of the 

answer: as figure H illustrates, forward scattering is large in the 

ARPEFS energy range and should not be neglected. Our results here 

predict that this forward scattering cannot be calculated within the 

plane wave formulation. There may also be errors in the inelastic 

scattering and thermal averaging. We must investigate these questions 

in further work. 
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APPENDIX A: ALTERNATE DERIVATION FOR DIFFERENTIAL FORM OF ORIGIN-SHIFT 

ADDITION THEOREM 

We may arrive at the results of section II by an entirely different 

route. We will use a series of well known formulas conveniently 

tabulated in Pendry,. his appendix A. 

We begin with the origin-shift addition theorem for (l,m) - (1,0), 

equation 12. Using the definition of Y 1 Q and the recursion relation for 

Y„ we f ind 
&m 

G10,l"m« " " \ \ , i l \ . « « > V B . <•>"! ;>• A ° n + 1 , . m n (AD 

1/2 
| Y l . B . « > V + l f . .CK>dQ k • ifo A° a i , f . m I I { ^ , m , ( K ) Y ; n _ 1 > m l I ( K ) d n i < } 

In other words, since Y 1 Q is proportional to cos(e) , the product Y1QY* 

„ becomes the recursion re la t ion for Y„„ „. The factor m" it"m". 

1/2 
hm " L(2a+1)(2«.-I) : i U 2 ) 

is related to the ratios of the normalizing coefficients of spherical 

harmonics. The remaining integrals in G 1 Q .„ „ are the orthonormality 

conditions for spherical harmonics; 

j W^V+l.m-^k- V.i«+lW ( A 3 ) 

and the sum on l ' ,m' simplifies to 
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1/2 
G 1 0 , W - { b n i r t A ° i + 1 , - m » l l l " + 1 V + 1 ( k a ) Y I « + 1 , m . . ^ ) <*«> 

+ AJ»,-m« i , l , ," 1\"-1 ( k a ) YIl«-1,m» ( : ) } 

The fac tor ins ide the braces i s the r e s u l t of a d i f f e r e n t i a l operat ion 
2." * 12 

on i h .„(ka)Y.„ „ . Rewriting Nozawa's equation 3.8 in terms of 
normalized spher ica l harmonics shows tha t 

^ k l l ) i £ n V ( k a ) Y i « m » ( a ) * ^ l . - m " 1 ^ . * ! ^ ! . . * ! , * " ^ 

* A?« f -„ , /"~VV k a >C-1,m» ( a ) } ( A 5 ) 

U6) 

Thus 

1/2 

with 

( kk } - C 0 3 9

e a lcrSiy ~ n r 2 air ( A 7 ) 

ea 

3 (cos 8 e R - cos 8 e a c o s 9 a R ) 3 

c ° 3 9 e a kT5i7 Tkal 9(cos 8 a R ) 

The addi t ion theorem for spher ica l harmonics then leads to the r e s u l t s 

in equation ( 1 9 ) . We can avoid the de r iva t ive operation a l toge the r by 
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applying the recursion formulas for h^„ and *o»mit» b u t t n i s approach is 

tedious. 
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APPENDIX B. APPLICATION TO EXAFS 

We apply the approach of s e c t i o n I I to the spherical-wave s i n g l e -
23 s c a t t e r i n g Extended X-ray Absorption Fine S t r u c t u r e . Schaich and 

24 Gurman, e t a l . r ecen t ly derived s impl i f i ed , exact EXAFS formulas for 

cubic or po lyc ry s t a l l i ne environments. Here we consider only (1s) core-

l e v e l exc i t a t i on and l i n e a r l y polar ized l i g h t , but we allow a general 

environment. With the z axis along the po l a r i za t i on vector , the d ipole 

s e l ec t i on ru l e s reduce Schaich 's equation (3) for the x-ray absorpt ion 

coef f ic ien t to 

u c - AuImCM^d+x,)] (BD 

Our x-i corresponds to Schaich 's ( i + X i J - W e a r e i n t e r e s t ed only in 

the o s c i l l a t i o n s , x,» w e peter to Schaich for the r a d i a l matrix elements 

MQ and constants in Aj,. Transcr ibing Schaich's equation (5) i n t o our 

no ta t ion gives 

i 6 i - * i 6 l 
X,M - J. I [e l ( i ) G r m l t 1 0 ( - k a ) ( - i ) T r , ( k ) G 1 0 r i m „ ( k a ) ( - i ) e ] 

a*0 i"m" 

(B2) 

16' The factor e £ is the absorber atom phase shift which cancels in 

the photoelectron diffraction experiment and hence was dropped from the 

formulas of section II. 

To apply the differential form from appendix A, note that 



61 

+ m " •* 
G l « m - M O ( - k a ) " M ) G 1 0 l « - m » ( - k a ) ( B 3 ) 

This i s a consequence of the conjugation property of spher ica l harmonics 

With the d i f f e r e n t i a l forms for the o r i g i n - s h i f t addi t ion theorem 

c o e f f i c i e n t s , we have 

126^ 

fc" " "" i " "" m" a(*0) 

( - i ) T i n ( k ) i l \ „ ( k a ) Y j B m B ( a ) (B4) 

The primes d i s t i n g u i s h outgoing and backscattered waves u n t i l the 

de r iva t ives are complete. The add i t ion theorem for spher ica l harmonics 

s impl i f i e s t h i s express ion, and we employ our sepa ra t ion of spher i ca l 

waves in to asymptotic and polynomial par t s to wr i t e 

i 2 6 l i a 
X l ( k ) - - I 3e I U i M U ^ — O h ^ k a M d ^ C k a M 

a(*6) l" 

( i * 3 f ) h o ( k a ) < V k a ) P r ( c ° 3 8 a a » ) ( B 5 ) 

where cos 6 w i l l u l t imate ly be - 1 . The f i r s t de r iva t ive becomes 
act 

( I i ^ V k a ) d * " ( k a ) 1 V C 0 3 ^ 

- h o ( k a ) t d 1 ( k a ) d j l i f ( k a ) c o 3 6 ^ , , (cos Q&a,) 
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cos 9 3d (ka). 
+ "Tk aTaT" V G O S ^ 

(cos 9 £ a , - cos 9 e a cos 9 ) 3P (cos 9 ) 
+ i k l " V k a ) 3(cos 9 ,) } ( B 6 ) 

aa' 

The f i r s t terra in this expression is a consequence of the 

derivative as a l i f t i ng operator. After the second derivative we may 

set a' - a, P (cos 9 ) - (-1) , and [cos e -cos 9 cos 9 , , , ] = 0. 
X> QB £cl £3. a.3. 

We also need the value of dp (x)/dx for x - (-1); i t is equal to 

(- I)**12.U+1 ) /2 . Thus we have 

i26' i2ka "max 
X,(k) - ~ I 3e - 311- I ( 2 l*1 )T , (k ) ( - i r (B7) 

a(*5) k a *-° 

3d (ka) 2 3 in 2 9 , , 
{ooa^^Cd^kaXl^kaM- j fu jy . ] - — f Cd^ka) ] 2 « | i i } 

(ka) 

This form most clearly displays the origin of the curved wave 

corrections, but to compare to the work of Schaich, note that 

1 3 V k a ) 1 
I* - f e r - < W k a ) " V k a ) " ife V k a ) ( B 8 ) 

which—together with the recursion relation for d (ka)—shows that 

3d (ka) 
Cd1(ka)dl(ka) • JL - f ^ ] - [ f ^ d l + 1 • -L- d ^ ] (B9) 
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The square of th i s factor may be reduced with the help of the square of 

the recursion re la t ion for d. to give 
r J i l l A . t .4 i 2 r 1*1 A „ l _ H 2 ,. M A U I H2T m i n f 
C H v T d*+1 + 2FT V l 3 " [2JM d * + 1 + 2JM V l + " ^ 2 V ( B 1 0 ) 

Then we can define 

f i s o ( ¥ ) . ^ f* ( z ^ D ^ d c x - D 1 [ ^ d^ + 1 • ^ d ^ j ( B I D 

and 

max 
f a n(Tr) - ji I {2M)TM{-1)1 i U + } )

 d

2 ( k a ) (B12) 
1 K 1 1-0 * (kaT * 

to write 

i2ka i26, T c r i ._ - r a n 
X ( k ) - Im {- I 3 ^ — 5 - e T C ( f I S 0 + f a n ) o o a Z 8 M - V s i n \ j 

a(*0) ka Z e a 2 e a 

(B13) 

2 2 In an isotropic or cubic environment, 2 cos 9 » sin 9 and the ea ea 
anisotropic scattering factor cancels out to give the same formula 

23 24 

derived by Schaich and by Gurman et al . Notice that our result 

demonstrates that the simplification achieved by these authors is not a 

consequence of symmetry—the general formula is scarcely more 

complicated than the high symmetry version—but rather is a result of 

summing over the equivalent magnetic sublevels of the scattered wave. 



64 

ACKNOWLEDGEMENTS 

This work was supported by the Direc tor , Office of Energy Research, 

Office of Basic Energy Sciences , Chemical Sciences Division of the U.S. 

Department of Energy under Contract No. DE-AC03-76SF00098. 



65 

REFERENCES 
1. J.B. Pendry, Low Energy Electron Diffraction. Academic Press, 

London, (197*0. 
2. M.A. Van Hove and S.Y. Tong, Surface Crystallography by LEED, 

Springer-Verlag (1979). 
3- C.B. Duke, Adv. Chem. Phya., 27, 1, (1974). 
4. P.A. Lee, P.H. Citrin, P. Eisenberger, and B.M. Kincaid, Rev. Mod. 

Phys. 53, 769 (1981). 
5. P.A. Lee, Phys. Rev. B 1_3, 5261 (1976). 
6. J.J. Barton, C.C. Bahr, Z. HuS3aint S.W. Robey, J.G. Tobin, L.E. 

Klebanoff, and D.A. Shirley, Phy3. Rev. Lett. 51_, 272 (1983). 
7. E.L. Bullock, C.S. Fadley, P.J. Orders, Phys. Rev. B 28, 4867 

(1983). 
8. M.. Abramowitz, I. A. Stegin, Handbook of Mathematical Functions, 

National Bureau of Standards, Appl. Math. Serv. 55, 1964. 
9. L.I. Schiff, Quantum Mechanics, 3rd edition, McGraw- Hill, New York, 

1968. 
10. P.A. Lee and J.B. Pendry, Phy3. Rev. B jj_» 2 7 9 5 0 975). 
11. This is the same formula as given in Pendry, ref. 1, his Appendix A. 

Note that his factor i is equal to i whenever the 
Gaunt integral is nonzero. 

12. R. Nozawa, J. Math. Phys. ]_, 1841 (1966). 
13. B. Van der Pol, Physica 3_, 393 (1936). 
14. When the differential operator is applied to generate the addition 

theorem, derivatives may be taken with either a or r' constant, 
• + + - » • •+ 

where a+r'-r. Nozawa uses the physically more appealing choice of a 
constant; our results follow most readily if r 1 is constant for the 



66 

purpose of the l i f t i n g ope ra t i on . The equivalence of these two 

avenues may be proven by, for example, consider ing the Fourier 

transform de r iva t ion of the addi t ion theorem as given by Nozawa. 

15. C. Cohen-Tannoudji, B. Diu, F. Laloe, Quantum Mechanics, John Wiley 

and Sons, New York, 1977. 

16. B. Sinkovic, P . J . Orders, C.S. Fadley, R. Trehan, Z. Hussain, and J . 

Lecante, submitted to Phys. Rev. B. 

17. J . J . Barton, C.C. Bahr, Z. Hussain, S.W. Robey, L.E. Klebanoff, and 

D.A. Sh i r l ey , Soc. Photo-Optical I n s t r . Eng. 447, 82 (1984); J . J . 

Barton and D.A. Sh i r l ey , "A Generalized Ramsauer-Townsend Resonance 

in ARPEFS O s c i l l a t i o n s , " LBL-19325, to be publ ished, and Chapter 8. 

18. J . J . Rehr, E.A. Stern , R.L. Mart in, and E.R. Davidson, Phys. Rev. B 

V7, 560 (1978) . 

19. P. Eisenberger and B. Lengeler, Phys. Rev. B 22_, 3551 (1980). 

20. P .H.Ci t r in , P. Eisenberger, and R.C.Hewitt, Phys. Rev. L e t t . 45_, 

1948, (1980). 

2 1 . H.A. Bethe and R. Jackiw, Intermediate Quantum Mechanics, 2nd 

ed i t i on , W.A. Benjamin, Reading, MA., 1968. 

22. B.K. Teo, Proc . I n t l . Conf. EXAFS and Near Edge S t ruc tu re , ed . A. 

Bianconi, L. Incoccia , and S. S t ipc ich , Springer-Verlag 1983, p . 11. 

23 . W.L. Schaich, Phys. Rev. B 29, 6513 (1984); J . E . Muller and W.L. 

Schaich, Phys. Rev. B 27, 6489 (1983). 

24. s . J . Gurman, N. Binsted, and I . Ross, J . Phys. C 17, 143 (1984). 



67 

FIGURE CAPTIONS 

Figure 1. Scattering factor amplitude in A for Ni atom potential at k 

- 5A~ (95 eV). Solid line is |f^|, the l~0 spherical wave 

scattering factor; dashed line, plane wave limit 2ka >> 

£(fc+1). Right hand panel gives cartesian plots of factor 

magnitude versus scattering angle, e ^ in degrees; left hand 

panel is a polar plot with 6 - 0 ° running up the figure. 
an 

i 1 0 • 

Figure 2. Radial derivative scat ter ing factor amplitude, |f R | in A 

for Ni atom potential at k - 5A (95 eV). Format described 

in Figure 1. Note the scale of th is figure is 1/20th of 

Figure 1. 
i 01 , Figure 3. Angular derivative scat ter ing factor amplitude jf | times 

cirv 

sine of the scattering angle, 9 „, in A for Ni potential at 
an 

k =• 5A (95 eV). Format described in Figure 1. This 

scattering factor cannot contribute in near forward or near 

backscattering directions. 

Figure M. Identical to Figure 1, except k - 10A (381 eV). Note the 

improved accuracy of the plane wave limit for backscattering 

angles. The figure has the same scale as figure 1 to 

emphasize backscattering angles. 
-1 Figure 5. Identical to Figure 2 except for k =» 10A (381 eV). 

Figure 6. Identical to Figure 3, except for k - 10A (381 eV). Note 

that shift of the main peak to lower angles; its amplitude 

is similar to the amplitude of the main peak at k = 5A , 

but the correction for backscattering is very much smaller 

now. 
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Figure 7. Difference in phase ( in radians) between spher ica l and 

plane-wave models versus s c a t t e r i n g angle 6 „ in degrees , 
an 

for s c a t t e r i n g from Ni atom p o t e n t i a l s at k = 5A -1 

Figure 8. Scattering factor amplitudes in A versus electron wavenumber 

(A ) for near backscattering (6 
aR 173°) from Ni atom 

p o t e n t i a l s . Solid l i n e , basic sphe r i ca l s c a t t e r i n g fac to r 

f _; c i r c l e s , plane-wave l imi t s c a t t e r i n g factor f D ; an an 
t r i a n g l e s , r a d i a l d e r i v a t i v e s c a t t e r i n g fac tor f a . The 

an 
plane-wave fac tor i s r a t h e r c lose t o the spher ica l wave f 00 

aR 

and the other sphe r i ca l wave cor rec t ions are very small at 

a l l energ ies ; no t ice a l so that plane wave er ror approaches a 

non-zero cons tant . 

Figure 9. Sca t t e r ing fac tor amplitude in A versus e lec t ron wavenumber 

(A ) for forward s c a t t e r i n g (0-0*0°) • Solid l i n e , ba s i c 

sphe r i ca l s c a t t e r i n g fac tor f ; c i r c l e s , plane-wave l i m i t 
an 

scattering factor f ; triangles, radial derivative 
an 

s c a t t e r i n g fac tor f . Note the near ly constant plane-wave 
an . 

e r r o r ; the r a d i a l de r iva t ive cor rec t ion becomes almost 10 

percent a t low e n e r g i e s . 

Figure 10. Sca t t e r ing fac tor amplitudes in A versus e lec t ron wavenumber 
(A ) for s c a t t e r i n g through 9 

aR 127°, the posi t ion of a 

Figure 11 

Generalized Ramsauer Townsend resonance. Solid l i n e , bas ic 
00 ^plane s p h e r i c a l wave fac to r f _; c i r c l e s , plane-wave l i m i t f r ; an 

01 c r o s s e s , angular de r iva t ive f _ . The r a d i a l de r iva t ive i s an 

n e g l i g i b l e at t h i s angle for a l l e n e r g i e s . 

Phase s h i f t s for s c a t t e r i n g from Ni. The dashed l i n e shows 

the phase sh i f t funct ion $, ca lcu la ted with plane-wave 
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theory for 9-127°. The dotted l ine i s the phase shi f t from 

the experimental curve. The zero crossing jump in phase 

occurs too high in wavenumber in the plane-wave l im i t . 

Solid l ines are curved-wave calculations of the phase shif t 

function for the indicated scattering angles. 

Figure 12. Radius for acceptable resul ts from plane wave calculations 

versus bond angle for k - 5A (solid l ine) and k = 10A 

(l ine with c i r c l e s ) . The radii were selected so that a l l 
• 00 p lane i distances greater than the plotted l ines have | f

a R ~ f

a R I < 

0.06A. 
iso Figure 13. Scattering factors for (1s) EXAFS. Solid line is f , the 

curved wave scattering amplitude defined by eqn. B13. Line 

with circles is the plane wave limit which has a similar 

shape to f . Line with triangles is f , eqn. (B13) 

multiplied by a factor of 50. 

Figure 14. Schematic semiclassical orbits for an attractive potential. 

If the circle represents the effective radius of a screened 

nuclear charge, then particles with large impact parameters 

will sample only the weak outer region of the potential and 

scatter through small (forward) angles. Particles with 

small impact parameters orbit the strong nuclear attraction 

and exit at large (backscattering) angles. The connection 

to wave scattering is made through b • l/k where b is the 

impact parameter: large I partial waves contribute to 

forward scattering and small I waves dominate for 

backscattering. 
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CHAPTER 3: 

APPROXIMATE TRANSLATION OF SCREENED SPHERICAL WAVES 

ABSTRACT 

We develop and discuss a Taylor s e r i e s expansion of the addit ion 
9. theorem for screened spher ica l waves, i h.(kr)Y ( r ) . The expansion i s 

designed for order ly progression in the addi t ion of curved-wavefront 

co r rec t ions to mul t ip le sca t t e r ing of e lec t rons in s o l i d s , but i t 

app l i e s to any wave s c a t t e r i n g problem based on the add i t ion theorem for 

sphe r i ca l waves. We r e l a t e one of the expansion indices to a magnetic 

quantum number in a coordinate system ro ta t ed to a l ign the quantizat ion 

and t r a n s l a t i o n axes . 
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In the course of constructing an accurate model for photoelectron 

scattering from ion cores in a solid surface we have been struck by the 

wide gap between the simple and "exact" models for spherical wave 

scattering. The simple "plane-wave" model for electron scattering in an 

ensemble of localized, non-overlapping potentials treats each scattering 

event as if the potentials were infinitely separated. This model seems 

to be remarkably successful in the intermediate energy range (100-

600 eV). The exact model incorporates the wavefront curvature effects 

important when the potentials are separated by distances comparable to 

their diameter. Although these curvature effects are considered to be 

important for low energies (<100 eV), very few studies of these effects 

in the intermediate energy range have been undertaken because the 

calculations are prohibitively expensive. We began to explore the 

possibility that a modest improvement on the plane-wave model would 

allow curvature corrections to be examined without requiring the 

complete, exact calculation. The solution we arrived at is physically 

appealing and, although the mathematical development is standard, we 

believe the resulting formula and its interpretation should be valuable 

for many scattering problems (for examples see ref 2). Thus we present 

the development of a finite series approximation to the addition theorem 

for screened spherical waves, iTi-^krjY, (r). 

I. EXACT ORIGIN-SHIFT ADDITION THEOREM 

Calculating the amplitude of waves scattered from a central 

potential by the partial wave method requires an expansion of the 

incident wave in an angular momentum series about the potential's 
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origin. If a plane wave is incident upon the potential, the expansion 
in an angular momentum series is well known: 

ik«r ik«a rmax . I". ,,,KW fh\v* ,, \ ,.*> 
J „ V ( k b ) W ( b ) W ( k ) ( 1 ) 

Xi m 

for a p o t e n t i a l at a and r=a+b. Here j i s the regular spher i ca l Bessel 

function, k i s the wavenumber, and Y. i s the spher ical harmonic given 

in Appendix A. The l i m i t on the sum, 8, , i s governed by the effect ive 
3 range of the p o t e n t i a l , r - , according to 

kr0 = ^ W W 1 " ' ' " ( 2 ) 

If a spherical wave is incident on the potential, the expansion in 
4 spherical harmonics has been derived by Nozawa. if the spherical wave 

emanates from the origin, we may expand it at a as 

i\(kr)YZm(r) - l^ W ^ V k b ) W ( b ) ( 3 ) 

I'm' 
Y t a ^ > Y l . m . ( k ) Y l - » - ( k ) d k 

where r=a+b. In the mathematical literature, this type of formula is 
called an addition theorem; we will refer to this equation as Nozawa's 
origin-shift addition theorem. Nozawa calls the screened spherical 
waves "Helmholtz Solid Harmonics", but we will simply call them 
spherical waves and further omit the superscript designating the kind of 

(1) * (2) spherical Hankel function by using h,(kr)-h. (kr) and h,(kr)=h (kr). 
The history of the formula deserves some comment. This expansion 

formula is widely used but only rarely is the original literature cited. 
We have followed Slater and based our work in section II on Nozawa's 
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4 development . We were at first unaware of the independent work by Danos 
2 and Maximon ; these authors give a historical survey of the mathematical 

literature on what we call the origin-shift addition theorem through 

1965. Interestingly, these authors state that they too were unaware of 

some previous work on this formula. It seems that the use of the 

formula in solid state physics, our particular concern, may be traced to 

Kohn and Rostoker and to Korringa . We use section IV to connect our 

work with the outlook presented by Danos and Maximon. 

To understand and use this formula we must confront the integral of 
7 three spherical harmonics, called the Gaunt integral. This integral 

can be related to the 3j vector addition (Clebsch-Gordan) symbols and 

Gaunt has derived an analytic formula to calculate its value. The 

integral is non-zero only when 

+ m', \l"-l\ H ' £ I" + 1, V + I" + I - even (4) 

a 
Pendry gives a computer program to implement Gaunt's formula. 

Typically a table of these Gaunt integrals are consulted in actual 

calculations. 

The complexity of the formula for spherical wave scattering is 

self-evident. In computer calculations we must recognize that the number 
H 

of transformation coefficients G„ „,, „ is proportional to (£ +1) and 
!mJ!,"m" max 

each coefficient requires the summation of - I complex numbers times 
max 

the Gaunt integral. Since i. is roughly proportional to k, scattering 

calculations already difficult at k = 3A become prohibitively 

expensive at k • 12A . Even this presumes that the Gaunt integrals are 

calculated once and stored; for calculations to 600 eV (8. _„ = 19) of 
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6 order 10 integrals are required. For these reasons we must approximate 
the scattering calculations. 

II. TAYLOR SERIES EXPANSION 

Now we turn to a series expansion of the origin-shift addition 

theorem for spherical waves. Our approach is to examine the derivation 

of the origin-shift addition theorem based on the Fourier transform and, 

by interpreting the formula physically, deduce an appropriate 

approximate form. 

We define the Fourier transform of a spherical wave, 

l \ ( k r ) Y t a ( p ) « a S : 

dr e i h 0(kr)Y 0 m(r) = — — = (5) 
2ir k (k -K +16) 

8 as given by Pendry. The inverse transform: 

i V (kr)Y„ (r) Urn im _ 2. 
2TT k 

e l K' rY. (K) 
d£ *• ( 6 ) 

k -K+i6 

leads to the addition theorem when we set r =» a + b. The vector a may 
• » be taken as the new origin and b as the new propagation direction for 

• * waves from a. To separate radial K integration from the angular 
•* •+ •+ -> 

.̂- . iK«r ,,. , , _ iK'b 
integrations, the series expansion for e , eqn. (1) is used for e 

•+ -+ ,, iK«a and e : 
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r 
. - P* r * J B M C K b ) i j „ , (Ka)K"dK 

1 \ ( k r ) Y t a ( r ) - J X «w C§ 
* ™ fc"m" 4 'm' K 1 T 2 2 0 k -K +16 

W^Va'^ Y l m ( K ) Y l ' » . ( K ) Y l " m » ( K ) d Q K ( 7 ) 

g 
The r a d i a l i n t e g r a l may be e x t r a c t e d from a contour i n t e g r a l to g ive 

«."• , „ ^ . « . ' • , „ , „ 2 
2i_ 
kiv 

r - 1" j (Kb) !" j . , ( K a ) K 
- dK = I j ( k b ) i h (ka) b < a (8) 

0 k - K + i 5 

and we arrive at the addition theorem, eqn. 3. We now identify the 

Gaunt integral as the angular integration remaining from the inverse 

Fourier transform. Notice that Y. (K) is the angular part of the 

Fourier transform of the spherical wave. 

With this derivation in mind, we return to the inverse 

transformation integral, eqn. (6), and claim that this is also a 

prescription for constructing a spherical wave by superposition of plane 

waves. We can then imagine constructing an approximate spherical wave 

by superposing only the most important plane waves. Clearly, if we 

select a single plane wave, with wave vector K in the direction a, we 

will have a version of the plane wave model discussed in the previous 

section. To do better we propose a Taylor series expansion of K near 

ka. However, in view of the simple form for the radial integration, it 

seems unnecessary to restrict the magnitude of the plane waves selected. 

Therefore, we wish to expand the angular part of the Fourier 

transform, Y, (K), about the direction a in a Taylor series. It is 

convenient to rotate our coordinate system to place z parallel to a, so 
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that the expansion may be done around the polar- axis. If we perform the 

m sums in equation 3. using the addition theorem for spherical 

harmonics, we can get 

Y t o(K)P 1,(=03 6 a I ()P r,(oose t ; K)M K (9) 

Thus only the incoming wave Fourier transform knows that a coordinate 

system must be rotated; to rotate the spherical harmonic we use 

V k ) 

Z//E M—£ * * R^0'*^-1'-* eJ ( 1 0 ) 

•*. ,-*• Mm ca xea 
z//a 

The spherical harmonics on the right hand side of this equation are 

quantized on the a axis; the rotation matrix converts the axis of the 
A A A A 

3pherical harmonics from z along a to z along e. Our conventions and 

definitions for this rotation are discussed in Appendix B. 

To expand Y } M(k) about the new z (=a) axis, we write 

V k ) * NIM PS. M ) ( M ) n" M 2 ° ( n ) 

- N W P [ I M I } ( U ) (n*)M 

where u • cos 0, n - sin 0 e , P. (y) is the M derivative of the 

Legendre polynomial, and N„ is the normalizing coefficient given in 
•+ Appendix A. The unsubscripted angle variables will refer to a as the z 

axis. The Taylor series for M 20 is 
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[sin e e ] (cos 6 - 1 ) P 3 P + qY,, M 

W k ) = * a?— I —pi t — H ^ l ( 1 2 ) 

1 M q=0 q- p>0 P ! O y ) P O n ) q 

The derivatives are easily managed: 

We represent the result that these derivatives are zero for (M + p) > I 

by 0(J,-p-M). When these derivatives are evaluated on the polar axis, 
only terms with M-q = 0 will be non-zero; by expanding the derivatives 
of the generating function for Legendre polynomials we can show that 

PSl U = 1 ) = (t-H-p)l(2M+2p)H ( U ) 

The Taylor series for M < 0 is very nearly the same, and we can combine 
these formulae as 

I I | iq<t> SL-|q| . 
V k )| 2||a - J.,31"1'10 6 h q J Q

 (GOS 0 ~1) SqVq 0^-^ (15) 

with 

pq " U -
»P)' 1 M M 

- p ) ! p!(2|q|+2p)!< U D ; 

If we now insert our Taylor aeries expansion into the rotation, equation 
(10), the sum on M will contain a single term, M = q: 
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.(1), <JL iq* Y„ ( k ) | , - = I N„ Rv ' ( 0 , 0 ir-<i> ) s i n | q | 0 e Urn z e „ „ lq qm ea, ^xea 1 ' ' q*~Xi 

-I" 
p=0 

C p q ( c o s V 1 ) P (17) 

Thus each terra in the expansion is associated with a single rotation 
matrix element. 

Inserting this expansion into the summed origin-shift addition 
theorem, eqn (9), gives 

l I (8.) l~lq\ 1 
iV(kr)Y 0 (r) = I N. R V ) U(0,9 ir-<fr ) I C* 

1 l m

 q=_£ l1 1 m e a> x e a p= 0 PQ 

I ll"j (kb> I i rh (ka)(2r + l)(^lLi) 

l"=0 8,'=0 HIT (18) 

sin'q'Q e q* (cos 9 - 1 ) P P.,(cos 9) P „(cos Q b | <)dn 

Inside the integral we apply the addition theorem for spherical 
harmonics in reverse to P (cos 0 ) using a as the quantization axis: 

iq<t lal M 9 D 28."+ 1 
s i n | 4 | 9 e (cos 0 - i r P (cos 9 )( \ )P (cos Q )dn 4u " 8," 'bk' 

m„LE„ v > " w c 
2n i(q-m")d) . _ 

(19) 

-1 
s i n ' q ' o (cos Q k - D P P^^cos 0) PT"(COS 0) d(cos0) 
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where we have also broken the spherical harmonic down into its component 

parts (see Appendix A). We note that this use of the addition theorem 

is equivalent to rotating P.„(cos 9.. ) to the a axis. 

The integration of $ gives 2ir 6 „, and the sum on m" will contain 
qm" 

a single term for m" = q (or zero if q > I"). Thus each term in the 

Taylor series expansion is associated with a single outgoing-wave 

spherical harmonic. 

The 9 integration is slightly more involved. The product of 

Legendre polynomials and powers of sin 0 and cos 0 must be reduced to 

Legendre polynomials with raised and lowered indices; the integral 

becomes a series of constants and delta functions relating V and I". 

The sum on S.1 then has only a few terms. If we write 

pq,„„-> v ,i h* N l « q Y S l » q ( b ) n 0 ( k a ) V ( k a ) = V h£,Ua)(2l'+1) 

IoI k n 29" + 1 
sin | M |0 e (cos 0-1)HP (cos 0)(-=£ )P.„(cos ehl_)da. (20) M IT V bk k 

then the o r i g i n - s h i f t formula becomes 

l * (I) l~lq\ I 
i V ( k r ) Y 0 ( r ) - £ N. R (0,0 ir-+ ) \ <T 

J. ^ r J ^ C k b J Y ^ q C b j N ^ ^ C k a m p k a ) (21) 
% =q 

pq, 
We give e x p l i c i t formulas for HC„(ka), p , q , =» 0,1,2 in Appendix C. 
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This formula is our central result. To compare it with equation 3 

note that we can write the Taylor expansion origin shift as 

i\(XrnimCr) . I W q i % C k b ) Y £ I ) q ( o ) (22) 
x, q 

with the understanding that the quantization axis for q is a. Thus the 
Taylor expansion order replaces the magnetic sublevels in the origin 
shift addition theorem. We will develop this idea more fully in the 
next section. 

III. MAGNETIC QUANTUM NUMBER EXPANSION 
The mathematical manipulation of the previous section gives little 

insight into the nature of the Taylor series approximation and hence the 
value of our result could only be judged after a practical demonstration 
that a few terms of eqn (21) will suffice to mimic eqn.(3). As reported 
elsewhere we have calculated multiple-scattering of photoelectrons 
based on eqn (21) and we have found rapid convergence. Instead of 
pursuing that specific application here, we will explore a qualitative 

picture for the Taylor series expansion which will also provide the 
2 connection to the work of Danos and Maximon . 

In concluding the previous section we expressed the Taylor series 

result in a manner which seemed to parallel the original formula, eqn 

(3). The parallel is imperfect: the quantization axis is constant on 

both sides of eqn (3) while the spherical harmonics in eqn (22) are 
expressed on different axes. It is just this difference which leads to 

the advantages of the Taylor series method. 
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It is generally appreciated that the orbital angular momentum 

quantum number, 1, does not change in rotation matrix elements (eqn 

(10)), but it is also true that, as discussed by Danos and Maximon, the 

magnetic quantum number does not change in translation matrix elements 

when the translation occurs along the polar (z) axis. Thus Danos and 

Maximon accomplish the origin-shift of an arbitrary spherical wave in 

three steps. First, they rotate the spherical wave to a coordinate 

system whose pole coincides with the translation vector. Second, the 

magnetic-quantum-number conserving translation is applied. In the third 

and final step, they rotate the new spherical waves back to the original 

coordinate system. 

Now we can see the nature of the Taylor series approximation, at 

least in the index q. As a matter of convenience we rotated the 

coordinate system in section II, eqn fi0), prior to the series 

expansion. This rotation is precisely the first step of Danos and 

Maximon. The expansion variable q is the rotated-frame magnetic-quantum 

number and it survives intact in during the subsequent translation. If 

we sketch the spherical harmonics in the rotated frame as in figure 1, 

then the Taylor approximation is evident: the higher order magnetic 

sublevels do not overlap the finite range potential. The lowest order 

approximation,q«0, corresponds to the scattering of the magnetic 

sublevel which overlaps the strong, central portion of the potential. 

Higher order sublevels overlap on the weaker regions of the potential 

until we finally reach a sublevel which does not interact with the 

potential at all. 

With the Taylor series viewed as a magnetic quantum number 

expansion, we can argue that the number of sublevels required to produce 
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adequate results will be related to (rQ/a) if a is the distance between 

the incident wave source and the center of the potential. Certainly, as 

the effective radius of the potential decreases or the potential moves 

away from the source fewer lobes will overlap the potential and a lower 

order approximation will suffice. 

The magnetic quantum number expansion picture only addresses one of 

the two dimension approximated in our Taylor series. We speculate on 

the nature of the approximation governed by the p index as follows. We 

need only consider origin-shifts along the z axis preceded if necessary 

by a rotation of coordinates. Our procedure in section III may be 

summarized as Fourier transformation, Taylor series expansion, origin-

shift of each term in the expansion, and finally inverse transformation. 

Our clue for the nature of the p expansion is the inverse transform 

integral, eqn. (C5). The expansion variable (cosQ - 1) is conjugate in 

the Fourier transform to the operator [(1/ik)(3/8a) - 1]. Thus the p 

expansion is related to radial correction of the zero-order origin-shift 

term. While the q index works out from the center of the new origin in 

an arc laterally towards the edge of the potential, the p index works 

out along a radius. 

As we may show by inserting eqn. (C1) into eqn (21), the zero-order 

Taylor series term is the addition theorem for an £=0 spherical wave, 

i.e. exp(ikr)/ikr. The addition theorem for higher order spherical 

waves may be produced by lifting operators applied to the addition 

theorem for Z-0 waves . Angular derivatives in these lifting operators 

generate rotation matrix elements corresponding to our q index while 
12 radial derivatives generate terms corresponding to our p index . This 

relation is further borne out in the equivalence drawn between the 
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lifting operator picture and the Taylor series for the particular 

application to photoelectron scattering in ref. 11, Appendix A. 

IV. CONCLUSION 

We have presented a new formula for the translation of screened 

spherical waves, a series adapted for truncation, which allows the 

accuracy of curved-wave corrections to be continuously traded for ease 

of calculation. Furthermore we have related one of the expansion 

variables to magnetic quantum numbers in a frame rotated to place the 

pole along the translation axis. 

Our form for the origin-shift addition theorem should prove useful 

to a number of physical problems. Even restricting our attention to 

electron scattering in solids leaves applications to theories of X-ray 

absorption fine structure, electron diffraction, electron energy loss 

fine structure, and our original interest, photoelectron scattering. 

Our application of equation (21) to photoelectron scattering is 

discussed in ref 11. 
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APPENDIX A. OUR SPHERICAL HARMONICS 

The properties of spherical harmonics are, of course, well known, 

but the phase conventions do vary, especially between older works and 

between more mathematical and more physical works. We will use the most 

common "Condon-Shortley" definition : 

with 

N = [£JH TT 1 ' J 4vr] / a f° r m < 0 a n d the same times ( - l ) ' m ' for m>0 tm L 4ir (2,+ m ) ! J 

We use 

d P.(cose) 
P.(cose) = sine 

1 (dcose)"1 

where P (cos Q) is the Legendre polynomial; this choice for the 
*4 8 associated Legendre polynomial agrees with Nozawa and Pendry , but and 

Abramowitz and Stegin add a factor of (-1) . 



99 

APPENDIX B. COORDINATE SYSTEMS, EULER ANGLES, AND ROTATIONS 

The rotation matrix method is powerful but prone to error from 

factors of (-1) arising from misinterpretation of the axes. To avoid 

confusion, we detail our convention on coordinate relations and notation 

in this appendix. 

Our initial coordinate system has its origin on the photoemitting 

atom with its z axis along the electric vector E. For our purposes the 

remaining degree of freedom is arbitrary. For surface problems it is 

most convenient to place the y axis in the surface plane. Our 

coordinate systems are always right handed. We refer to this initial 

system as z| |e. 
14 We use the Euler angle convention of Messiah. Positive angles 

mean rotation as a right-handed screw advancing on the axis of rotation 

(right-hand rule). The rotation R(a,B,Y) begins with a rotation by a 

about the initial z axis. This a rotation repositions the initial y 

axis so that it may serve as the 8 rotation axis. The B rotation 

proceeds about the intermediatet repositioned y axis; it carries the 

initial z axis into the final z axis. The Y rotation uses the final z 

axis for rotation. 

A vector, a, in the z||e system ha3 a polar angle (latitude) 

measured down from the +z axis of 9 ; its azimuth (longitude) measured 
£a 

from the +x axis is <b . The three subscripts of the azimuth are the 

reference axis, polar axis and vector label, respectively. More 

generally, if the reference axis and polar axis are not perpendicular, 

the azimuth is measured from the half plane bordered by the pole and 

containing the reference axis. We design the rotation which takes the 
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z||e system into the z||a system to use e as the reference axis in the 

new system. To accomplish this we use R(q> , 0 , ir) where the final 
* Eel £3. 

rotation by ir brings the new +x axis into the same half plane as e. The 

+y axis of the z||a system is parallel to the vector cross product axe. 

Spherical harmonics in the zj|e system may be written as a linear 

combination of spherical harmonics in the z||a system with unchanged 

orbital angular momentum: 

|lm> = llm'Xam'|R(a6T)|j,m> 

or 

• m * ™ — v. • m'=— I 

The rotation must take us back from z||a to z||e: we must use the 
11 inverse of the z||e to z||a rotation. We have. 

CR(aBT)]"1 =• R(-o.-B.-Y) 

and the required rotation matrix elements are R_,_ (-ir. -Q i -<1> ); 
I equivalently we may use R , (0, 0 , IT-* ). 1 m'm ' ea rxea 

Once we have moved into the z|[a system, another scattering 

potential along bond vector b will have angular coordinates (Q a bt <{> h ) 

and the necessary rotation matrix elements will be R , (0, 0 . , ir-
m m ao 

$ . ) . Note that if the coordinates of the vectors e, a, and b are 

known along an arbitrary (e.g. crystalline) axis system, then the angles 
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required for the rotation matrix construction may be derived from the 

dot product e-a=>cos 9 and a relation of spherical trigonometry: 

cose e b- c o s e e a c o s e a b + 3ine e asine a bcos<(, e a b 

with the 3ign of $ . equal to the sign of b»(axe) 
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APPENDIX C- ON THE TAYLOR-SERIES INTEGRALS 

To c a l c u l a t e the o r i g i n - s h i f t addi t ion theorem coef f i c ien t s with 

the Taylor s e r i e s formula we need to evaluate 

.PQ/ Hp(ka) = I d (ka) (2X.« + 1) 

•s / sinqe (COSQ-1) P P., (cose) P^(cose) dcose 

We have introduced d (ka) as the non-asymptotic component of the 

spherical Hankel functions, i.e. h (kr)=d (kr) exp(ikr)/ikr. We group 

the sum and integral together to emphasize the restrictions the integral 

will place upon the range of the sum. We work out individual cases 

through second order; we also give recursive and explicit forms for 

higher order. 

The basic method is to express the product of coordinates and a 

Legendre polynomial as a series of Legendre polynomials with raised and 

lowered indices using 

(21+1) sine P™+1(cos6) = U+m)U+m+1 )pj (cose) - (J,-m)U-m+1 )pj + 1 (cose) 

and 

(2)1+1) cose P (cose) = U-m+1)P (cose) + U+m)P™ , (cose) 

This will leave the orthogonality integral for Legendre polynomials: 
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1 _ , „v „ , „v , „ 6 W 
1Pl,(oose) p^cose) dcose - ̂ sT+i) 

and the sum on X,' may be completed. 

The specific cases we require are: 

i) p • q » 0. We immediately get the orthogonality condition 

and 

Hj°(ka) =. d^Cka) (CD 

i i ) p = 1, q = 0. The cos 9 recurs ion gives 

H^°(ka) = OgiTf) [ ( l * 1 ) d l + l ( l « a ) • W ^ ^ k a ) - ( 2 1 + O d ^ k a ) ] 

i i i ) p = 0, q =» 1. The s in Q recurs ion gives 

..01,, . JKJ.+ 1) r . ,, . . ,, .-i 
rii ( k a ) =* T^TiT [ d * - i ( k a ) " d u i ( k a ) ] 

iv) p - 2, q « 0. The cos 0 recursion must be applied twice to 

give 

u 2 0 , . , t 1 ) I rU+lHt+2)!., / ^ + r i l l lL * l 1-. iva\ * 
H* ( k a ) " [2TMJ t L-2T73 K + 2 ( k a ) + [T2TT3T + T21=T7K ( k a ) + 

[ ( 2 t " ! ) K - 2 ( k a ) " 2 ^ + 1 ) d

! l + 1 ( k a ) - 2 W l _ 1 ( k a ) + (2X.+1)d ) l(ka)} 
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v) p =• 1, q • 1. First the associated Legendre polynomial is 

reduced to m = 0 with the sin 9 recursion, then the cos Q 

recursion is applied. Then 

H 4 V a ) • T2T+7J t T § P T T W k a ) " < W k a ) + izi-mlU) V k a ) 

+ W k a ) " i f i + ^ W ^ 

vi ) p = 0, q - 2 . From the s in 0 recurs ion for m = 1 we have 

u 0 2 , , , (4+1X1+2) r ( l - l H i r . ,, , . ,, . i 
H i ( k a ) - (24+i) [ T 2 F T T ^ V 2

( k a ) " d 4 ( k a ) ] -

(4+1)(4+2) r U - l U i r H r „ ^ * tu ^l 
(24+3) [ T24+T3 -K ( k a ) ' d 4 + 2 ( k a ) ^ 

1} 
To check these r e s u l t s we employ a method demonstrated by Nozawa 

to obta in recurrence r e l a t i o n s for q u a n t i t i e s l i k e H? . We consider 

J^QCka) = I (24+1) i * ' j r ( k a ) \ _ 1 s i n 9 (cose-1) P P (cos6)P q(cosQ) dcose 

pq This i s h (ka)H. with the spherical Bessel function j - ( k a ) replacing 

h (ka) . If we avoid complex conjugation, we may use r e s u l t s derived for 

J P q for H p q by replacing i j / k a ) by d ( k a ) . We do not offer a proof of 

t h i s convenience; we f i nd , however, t ha t the r e s u l t s are c o r r e c t . 

The sum on 4' in J p q i s the Bauer formula, eqn (1) , giving 

J P q ( k a ) - ^ f l 1 s i n q 6 ( cose -1 ) P e i k a C 0 3 9 P q (cos0) dcose (C2) 
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We may immediately deduce a recurrence in p: 

^ • " " " ' - ^ E - ' j ' r " " ' 

A derivation for raising q is more involved. We consider the integral 

1 d r • Q n / „ ,\P ikacos8 _q, „,n . „ 1 . ̂ p+t^p -ika [sinM8 (cos9-ire P„(cos0)J dcosG =o6_n(-1) 2*e 
-1 dcose L " I J 2 uq0 

A su i t ab l e de f in i t i on of associa ted Legendre functions gives 

Pj(cose) - M ) <»| | ia) |p-<»(coae) 

Thus 

s i n q e Pj(cose) = ( - 1 ) q j £ a } l p j - ^ t c o a e ) 

th 
where we r e c a l l tha t the pa ren the t i ca l supe-.script q ind ica te s q 

d e r i v a t i v e ; f o r negative q we use 

'["q,<" " ^ 7 W <*2->' 

Our i n t e g r a l becomes 

( - 1 ) q U + q ) ! 
~2 U - q ) ! . 

I d r /• , \P ikacose _ ( - q ) , „>n . 
[ ( cos9 -1 ) K e P M (cos©)J dcosG •1 dcosS 
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6 n 0(-1) P + l2 Pe- l k a 

qO 

Applying the derivatives gives, for q not zero: 

J p , q + 1 ( k a ) = U+q+1)U-q)J P q(ka) - pJ P + 1 , q(ka) ( C 3 ) 

I Ika " 

The cosine recursion for associated Legendre polynomials and the result 

of operation on j£ with (1/k)(9/3a) gives another useful relation: 

jS-'-'.jf.d^jW, •(l-q.Ojj;, 

and the sine recursion gives 

( l - q ) [ j j + 1 ' q W ^ l - d ^ j J ^ - j j ' « + 1 (CO 

To collect these results we give a strategy for constructing a 

r- P Q 

first row 

table of Hjj . Equation (C1) and the recursion for d_(ka) generates the 

„£>, . „°_>a, - <!£> „>a, 
The raising operator for q, eqn. (C3)i gives the rows q = 1, T; Equation 

(CM) raises p using the current contents of the table and eqn. (C3) 

again applies. 
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Finally, an explicit formula will be useful for discussing the 
convergence of the Taylor series. The raising operator relation for p 
may be repeatedly applied to give 
j N . (_L |_ . 1 ) P i T 3 . n q 0 eika cos G p q ( Q O S Q ) d Q ( c g ) 

The remaining integral is proportional to an integral discussed by 
it Nozawa . If we recall that the associated Legendre polynomial with 

maximum magnetic quantum number is simply related to sin 0: 
P q ( c 0 3 9 ) - (2£lL_ 3 i n i 0 , 

q 2 Q q! 
we wi l l consult Nozawa's equation 6 . 1 : 

! • , . . , „ ^ . i * j 0 ( k a ) 

2 
' 1 . iuka_q, ._q, . (2.+q)! ( 0 n .,,, J I 
^ du e PqdOPjd.) - Tjr^yr C2q-Dn ( i k a ) Q 

and write 

P* (ka) . ( 8 . n P U»q)i * h i k a ) 

I ik3a U-q)! (iio)*5 

Returning now to spherical Hankel functions we claim that 
ika , „ ,„ ,, i h.(ka) e Hpq ,_± 3_ _ n P U»q)l i. 
ika nl vik 3a U-q)! ( i k a)q 

Notice that the exponential dependence cancels, taking with it the 
constant part of the differential operator: 

i\(ka) 1 dt(ka) 
(TT-T 1) - e [ ( — TT-) —-r] 
' l k 9 a (ika) q i k 3 a (ika) q + 1 

Then we have 

H P q . ika (-1 - V ^ ^ U + q ) ! 
Hi l k a 4k 3a;

 ( l k a )q*1 U-q)! 
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We may subst i tute the series definition of d (ka) to get 

i ^ ' i , . ! = U>q)l , n q ? q + p r U+t ) ! ( t+p+q)! . i .t+q+p 
h ^ k a ) TFqlT ( 1 ) 2

 t f Q tTTFtTT ( t + q ) « ( 2ki ) 

or we can retain d.(ka) and apply the derivatives to the products 

*P -. P ,_„_„x,r,_xS 33d„(ka) 
\ ( k a ) " T^qTT - ^ ^ qT 3fQ sTTFFTi . 3 ( k a ) s 
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FIGURE CAPTION 

Figure 1. Schematic illustration of the magnetic quantum number 

expansion interpretation of eqn. (21). A polar plot of the 

four lowest magnetic sublevels of a X,=7 spherical harmonic is 

superimposed upon a circle whose radius represents the 

effective radius r_ of a nearest neighbor potential. The line 

connecting the incident wave source and the potential origin 

is used for the spherical harmonic polar axis and only the 

region of angles near the pole is plotted. The angle 

functions have been rescaled to place their first maxima on 

the same radius. The m=0 sublevel (solid line) is seen to 

overlap the strong central portion of the potential, while the 

m=1 lobes (dotted line) peaks further from the axis. The m=2 

lobes (dot-dash lines) only intercept the far edges of the 

potential and the m-3 level (dashed lines) completely missed 

the mark. 
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CHAPTER 4; 

SMALL ATOM APPROXIMATIONS FOR PHOTOELECTRON SCATTERING 
IN THE INTERMEDIATE ENERGY RANGE 

ABSTRACT 

Five approximate models for describing the scattering of spherical 

waves by central potentials are explored. The point-scattering model 

introduced by Lee and Pendry (Phys. Rev. B, _1J_, 2795, (1975)) allows a 

short-range potential to be close to the source; a new homogeneous wave 

model lifts the restriction on the potential diameter, but requires 

asymptotic incident waves. The popular plane-wave model requires both 

an infinitesimal diameter potential and incident waves at their 

asymptotic limit. For realistic potentials at near-neighbor 

separations, none of these models is adequate: even a hybrid model 

combining features of the point-scattering and homogeneous-wave methods 

does not allow for amplitude variation across the potential. The fifth 

small atom model is based on a Taylor series, magnetic quantum number 

expansion of the addition theorem for screened spherical waves. This 

Taylor series approximation has the homogeneous-wave model as its zero-

order term and the exact spherical wave scattering process as its limit. 

Multiple-scattering equations for Angle-Resolved photoemission Extended 

Fine Structure (ARPEFS) are derived and the effectiveness of these 

approximations are compared. We demonstrate that while the plane-wave 

model is reasonably accurate for near-1800 backscattering, small angle 
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scattering requires the curved wavefront corrections available in the 

Taylor series expansion method. 
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I . INTRODUCTION 

The t h e o r e t i c a l desc r ip t ion of e l ec t ron s c a t t e r i n g in s o l i d s for 

intermediate energies from 100 to 1000 eV faces a pecul iar chal lenge: 

simple physical models for the s ca t t e r i ng process are s u r p r i s i n g l y 

accura te , while more soph i s t i ca t ed ca l cu l a t ions become i n t r a c t a b l e . The 

s t r i k ing success of s i n g l e - s c a t t e r i n g , plane-wave models for the 

q u a l i t a t i v e descr ip t ion of Angle-Resolved Photoemission Extended Fine 

Structure (ARPEFS) and of Extended X-ray Absorption Fine St ruc ture 
2 

(EXAFS) has led to satisfactory empirical analysis of these 

measurements, but multiple-scattering, spherical wave calculations are 

too complex for routine quantitative analysis cases where the simple 

model fails. 

The two crucial theoretical issues—spherical vs. plane-wave 

scattering and multiple versus single scattering—are entwined. First, 

we must decide if the curvature of the wave emanating from one ion core 

will influence the scattering of that wave by an adjacent potential. If 

we may neglect the curvature, then the scattering of electrons in a 

solid reduces to a series of plane-wave calculations, connected only 
3 through the wave phase and incident direction. If, on the other hand, 

the curvature is important, more sophisticated calculations are 

required. For single scattering of !.=1 photoelectrons we have 
U previously derived the required equations. Unfortunately the outgoing 

scattered wave from the first scattering event will always contain much 

higher angular momentum partial waves, requiring more sophisticated 
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equations and leading to larger corrections. Thus if double scattering 

is important, we certainly would expect the wave curvature to be 

important. 

This leads us to the second central issue in electron scattering: 

the role of multiple scattering. The various experimental processes 

address different aspects of this issue. The results of Low Energy 
5 Electron Diffraction (LEED) calculations are clear: multiple scattering 

6 is important. Theoretical work with photoelectron scattering and more 
7 recent work on x-ray absorption edges have utilized the relative 

simplicity of the photoelectron scattering process to show that at 

intermediate energies only forward scattering leads to multiple 

scattering events at a level that cannot be neglected. Finally in EXAFS 

the photoelectron returns to the absorbing atom: in the process a large 

number of high angular-momentum waves are backscattered to the abso. cor. 

Thus our previous conclusion that double scattering would require curved 
8 9 wave calculations is contradicted by evidence ' that a plane-wave model 

contains the essential character of the EXAFS phenomenon; we might be 

further tempted to extrapolate the empirical evidence and ignore 
3 wavefront curvature for all scattering at high energy. Any correct 

theoretical procedure must be compatible with all of these observations. 
U In a previous paper, we explored the wavefront curvature question 

for single scattering of S,= 1 photoelectrons. Two important conclusions 

from that work are i) curved wave corrections are much smaller for 

backscattering than they are for forward scattering, and ii) only the 

backscattering corrections get smaller at high energy; the forward 
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scattering corrections do not fall asymptotically with large k. Because 

the studies cited above already demonstrate the importance of forward 

scattering, and because the once-scattered wave will contain angular 

momenta much greater than &=1, we are led to investigate curved 

wavefront corrections to multiple scattering in the intermediate energy 

range. 

This would seem to be a rather straightforward project. We have 

after all an impressive foundation in the low energy region from LEED 
5 10 

theory, photoelectron diffraction , and, more recently, near edge x-

ray absorption. Indeed, Tong and co-workers have extended their 

photoelectron diffraction calculations into the intermediate energy 

range, and their results have provided indications of the importance 

of multiple scattering. These calculations are not, however, simple 

extensions of the plane wave model; they are full curved-wave treatments 

and consequently—for a reason we now discuss—much more expensive than 

low energy multiple scattering calculations. 

The origin of the difficulty in applying multiple scattering curved 

wave calculations at intermediate energies is that the maximum angular 

momentum in a scattered wave leaving a scattering atom increases with 

electron wavenumber. The maximum angular momentum, I „ . scattering 
max 12 from a potential may be related to its range, r n, by. 
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As the energy—and hence the number of important scattered waves— 

increases, the number of numerical operations also increases. For plane-

wave models this increase is manageable because each scattering event 

depends only linearly on l m a v . On the other hand, the time required for 
14 exact curved wave calculations are proportional to at least (8, ) , 

uHclX 

prohibiting even exploratory multiple scattering calculations to be 

attempted. (Also note that approximate curved wave calculations based 

on a small, fixed maximum angular momentum will be incorrect above some 

energy given by eqn. (1)). 

Simply from the success of plane-wave models of electron scattering 

we may conclude that another physical approximation must exist that 

would allow accurate introduction of curved wave corrections with more 

modest effort than the exact theory requires. In this paper we seek 

such an approximation by examining five approximate models for the 

scattering of spherical waves from central potentials: 

i) point scattering, 

ii) homogeneous wave scattering, 

iii) plane-wave, 

iv) renormalized homogeneous wave, 

v) Taylor series-magnetic quantum number expansion. 

The first four models were initially motivated by existing angular-

momentum expansions known as addition theorems. We discuss the 

approximations necessary for each model and outline the physical 

problems to which they apply. The fifth small atom approximation is 

based on a new angular-momentum series expansion ; it contains 
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important curved wave corrections not included in any of the first four 

models and it provides for orderly development of higher order 

corrections. 

In section II we discuss electron scattering of spherical waves by 

the partial wave method and exact scattering of spherical waves in the 

100-1000 eV range. Physically motivated small atom approximations to 

the spherical wave formula are reviewed in section III, and we examine 

some of the contributions to the success of the plane-wave model. The 

remaining sections concern the fifth, more general small atom model. 

Section IV applies the Taylor series expansion for the spherical wave 

scattering to (1s) initial state photoelectron scattering. Section V 

discusses spherical wave scattering factors which govern the convergence 

of the Taylor series and Section VI illustrates the convergence for a 

single example and describes an intuiti e picture of the Taylor series 

terms. We conclude in section VII with some remarks on further 

applications. 
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II. SPHERICAL WAVE SCATTERING AND NOZAWA'S GAUNT INTEGRAL SUMMATION 

To provide the background for our development of approximate 

electron scattering formulae, we will set up the electron scattering 
14 problem, review Nozawa's origin-shift addition theorem for spherical 

waves, and discuss the difficulty with this approach. 

Our scattering system con3i3ts of a point source of electrons and a 
5 lattice of non-overlapping central potentials (the muffin-tin model ). 

This model approximates a number of physical problems. If the lattice 

represents a surface system and the point source is a screened 

photoemitter, then we have a photoelectron diffraction or Angle-Resolved 

Photoemission Extended Fine Structure model. If the lattice is a bulk 

material or surface system, the point source is again a screened 

photoemitter, and we calculate an integrated photoabsorption cross 

section, then we have an Extended X-ray Absorption Fine Structure 

(EXAFS) model. If the lattice is a surface, but the point source is a 

once scattered electron from an incoming plane wave, we have part of a 

model for multiple scattering, Low Energy Electron Diffraction (a sum 

over all scattering potentials excited by the plane wave is required to 

complete the LEED problem). For numerical calculation and physical 

discussion, the photoelectron diffraction (ARPEFS) case is the simplest 

problem because the scattered wave is directly detected. We shall 

concentrate on this problem. 

If we consider a model which consists of non-overlapping 

potentials, we may calculate the multiple scattering by combining a 

general description for a spherical wave scattering from a potential 
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with a prescription for enumerating all significant scattering paths. 

Because we wish to describe photoelectron diffraction in the 

intermediate energy range (ARPEFS), we will concentrate on the 

scattering of photoelectrons originating from a (Is) level of an atom in 

an ordered and oriented system. We will also choose our examples to 

correspond to a recent ARPEFS experiment on the c(2x2)S/Ni(001) system. 

When the angle-resolved cross section for S(1s) photoemission is 

measured in such a system, the intensity oscillates with energy 

demonstrating interference among channels describing the possible paths 
15 to the detector. Most of the interference occurs between waves 

describing direct and single-scattered photoemission, but forward 

scattering of the single-scattered electrons must also be included to 
10 predict the interference amplitude correctly. A more complete 

discussion of the physics of photoelectron diffraction can be obtained 

elsewhere.' ' For the purposes of this paper we note that: 

i) dipole selection rules predict that a single p type (H=1) 

continuum orbital is populated through photoabsorption by a 

(1s) initial orbital, 

ii) by selecting the z axis of our coordinate system parallel to 

the electric vector of a polarized photon beam, the 

photoelectron angular distribution can be written as 

proportional to Y 1 Q(r) - (3/4iO zcos 0, 

iii) in most materials, the photoion may be considered fully 

screened on the absorbing atom, and 
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iv) both the photoabsorbing atom's phase shift of the continuum 

wave and the total atomic cross section appear equally in all 

terms describing the final amplitude and thus do not affect 

the oscillations. Thus the oscillations may be isolated by 

normalization to form a function x( k)"I( k)/Io( k)" 1 as in 

EXAFS, but x(k) contains no source-atom phase shift, in 

contrast to EXAFS. 

With these ideas in mind, we may write the important part of the 

outgoing wavefunction as an 8,=1 spherical wave 

* 0(r) - ih1(kr)Y1(J(r) (2) 

We refer to t h i s wavefunction as the "d i r ec t " wave. 

We wi l l use the s c a t t e r i n g geometry depicted in Figure 1. We use r 

as a general pos i t ion vec tor , and k as the propagation vector of the 

e lec t ron , with k giving the e l ec t ron wave number. We define the 
•+ •+ •+ 

sca t t e r i ng p o t e n t i a l pos i t ions by a, b , c . . . for the f i r s t , second, 

th i rd and so on, s c a t t e r i n g even t s . These l a t t e r vectors connect atoms: 

they are "bond" vec tors , not pos i t ion vec to r s . The vector R i s the 

posi t ion of the angle reso lv ing de tec to r . Our convention and no ta t ion 

for spher ica l harmonics, Y. , a re given in Appendix A of ref 13. For 

brevi ty we use the notat ion Y, ( r ) , where r =- r / r . The functions jjCo*) 

and h (kr) - h (kr) are spher i ca l Bessel functions as defined by, for 

example, Pendry , Appendix A. 
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Our discussion of the small atom approximations will consider the 
single and double scattering of £=1 photoelectron waves. A single 
scattering event will have an incident 1=1 wave (eqn. (2)), but the 
second event in double scattering will include all angular momenta 
characteristic of the multiple scattering problem. Thus higher order 
scattering can be built up by repeating the steps in the second part of 
our double scattering equations. 

To better understand the small atom models, we will first briefly 
review the potential scattering of plane and spherical waves. If a 
plane wave is incident upon the potential, the expansion in an angular 
momentum series is well known: 

e i k ' r - I HIT i £ \ B ( k b ) Y (b)Y* (k) (3) 
&"m" * *• m * m 

where k-ka and r =« a + b. The partial wave method instructs us to 
expect an outgoing spherical wave, i h.(kr)Y. (kr), proportional to each 
regular spherical wave incident on the potential; the complex 
proportionality factor, T., is derived from the partial wave phase 
shifts, 6.(k), and has both a scattering amplitude and wave phase shift: 

i« i26 (k) 
TjU) - i sin 6 4 e - 2 (e * -1) (4) 

Thus the scattered wave becomes 
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^(b) - I M* i a"ho,. ( k b ) Yi«m»^ ) Tt» ( k ) Ya"m« (^ ( P l a n e w a v e ) ( 5 ) 

a l«m" * * m l l m 

(We will subscript a scattered wave by its origin; for a wave at the 
* ' • * . detector we replace b by R.). 

If a spherical wave from a source at the origin is incident on the 

potential centered at a, the expansion in spherical harmonics has been 
14 derived by Nozawa. If the spherical wave emanates from the origin, we 

may expand it around a as 

i\(kr)Y a m(r) - l^ C W B i 1 l i l , J l i ( k b ) Y 1 , l B ( S ) (6) 

Glml«»" - J f f l I "* l l \ . ( t e > V . . < * > | V k ) Y r m . ( k X » m ' « ( k ) d k 

•+ •+ •+ where r-a+b. In the mathematical l i t e r a tu re , th is type of formula is 

called an addition theorem; we will refer to th i s equation as Nozawa's 

origin-shift addition theorem. With this resu l t we can calculate the 

scattered wave as 

V S )" J . v k ) a t a w i l \ - ( k b ) w : ) ( 7 ) 

where G is given above. 

To understand and use this formula we must compute the integral of 
1 R three spherical harmonics, called the Gaunt integral. This integral 

19 can be related to the 3j vector addition (Clebsch-Gordan) symbols and 
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Gaunt has derived an a n a l y t i c formula to c a l c u l a t e i t s va lue . The 

in teg ra l i s non-zero only when 

m" = m + m* , |2,"-iL| S l ' S I" • t V + I" + I = even (8) 

5 Pendry gave a computer program to implement Gaunt1s formula. Typically 

a table of these Gaunt integrals is consulted in actual calculations. 

The complexity of the formula for spherical wave scattering is 

self-evident. In computer calculations we must recognize that the number 
4 of transformation coefficients G. „„ „ is proportional to (2, +1) and 

£mS,"m" max 
each coe f f i c i en t requi res the summation of - S, complex numbers times 

max * 
the Gaunt integral. Since I is roughly proportional to k, multiple 

niuX 
scattering calculations already difficult at k = 3A become 

prohibitively expensive at k =• 12A . Even this presumes that the Gaunt 

integrals are calculated once and stored; for calculations to 600 ev 

(I - 19), - 10 integrals are required. For these reasons we must max 
approximate the scattering calculations. 
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III. PHYSICALLY MOTIVATED SMALL ATOM APPROXIMATIONS 

Faced with the intractable spherical wave equations we are led to 

consider approximate forms. In this section we will examine four 

approximations, which we will refer to as point scattering, homogeneous 

wave scattering, plane-wave scattering, and the hybrid, renormalized 

homogeneous wave method. In the point scattering model, the incident 

spherical wave is treated exactly, but the potential is taken to have an 
Q 

infinitesimal diameter. This model was introduced by Lee and Pendry as 

a small atom approximation for EXAFS. The homogeneous wave model allows 

the potential to have a physical diameter but every incident wave is 

assumed to have reached its asymptotic limit, exp(ikr)/ikr. The plane-

wave model is the common limit of both the point scattering and 

homogeneous wave models; it assumes an infinitesimal potential and 

incident waves at their asymptotic limit. The renormalized homogeneous 

wave model combines the mechanics of the point scattering and 

homogeneous wave methods. Figure 2 compares these approximations 

graphically for an £-7 spherical wave. We begin by deriving formulae 

for the scattered waves in each approximation. 

A. Point Scattering Model 

The motivation for the point scattering model is a practical one: 

the origin-shift addition theorem for plane waves, eqn. 3 is much 

simpler than the corresponding formula for spherical waves, eqn. 6. To 
g 

repeat the physical approach of Lee and Pendry, we imagine the outgoing 
spherical wave meeting a potential with a sufficiently small diameter so 
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that we may ignore the curvature of wavefronts rcross the potential and 
the change in wave amplitude and phase along the propagation direction 
in the region of the potential. In other words, we represent an 

% incident spherical wave, i h.(kr)Yn (r), over the infinitesimal point x, Jun 

po ten t i a l by a plane wave with the asnplitude and phase of the sphe r i ca l 

wave 

i V ( k r ) Y 0 ( r ) - i \ ( k a ) Y . ( a ) e i k a * ( r " " a ) (9) 
x, S.m it Sun 

For a potential of finite diameter, the point-scattering approximate 
wave will agree with the actual incident wave only at the point a. As 
illustrated in figure 2(b), this alignment and the common asymptotic 
frequency of the exact and approximate waves leads to good agreement 
between these waves except near the edges of the potential. 

We may expand the plane wave with eqn. 3 and use the partial wave 
prescription to derive the scattered wave as 

^(b) - ih 1(ka)Y 1 0(a) I U* T + (k) Y ^ , (aH 1'^, (MOY^, (b 

do) 
for an incident Z-1 photoelectron wave (eqn. (2)). The same procedure 

+ may be applied to the wave emanating from a and scattering from a point 
• * • * 

potential at b into the direction of c to give a double scattered wave: 

KXC) - lh 1(ka)Y 1 Q(a) j Hi T , ̂ k > V m ' ( a ) i * ' V ( k t ) ) V m ' ( b ) 

3 D x» in IC | Q 
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I Uir T _> (k)Y ( b ) i l " h (kc)Y ( c ) ( 11 ) 
4"m" l " , b * m * •* m 

I t is useful to separate the spherical Hankel function into asymptotic 

and polynomial par ts : 

ikr 
i \ ( k r ) = S__. d f c (kr); (12) 

20 where d (kr) is given by a series : 

V k r ) - plQ pTTFplT (2kF ) ( 1 3 ) 

or, for practical calculations, by a recursion formula: 

« W k p ) • V l ( k r ) - i i r i l V k r ) : d 0 • ^ d 1 - 1 + kF • 0 4 ) 

In the limit that 2kr >> 4,(1+1), d.(kr) - 1.0. We further define a 
scattering factor 

C " ' " li I (2*+1) \ *(k) V k b ) V 0 0 3 eab> (15) 

% Z,a 

which together with the addition theorem for spherical harmonics: 

U l T I h S a ) h / b ) ' ^ D P j C o o s ° a b > (16) 
m 
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allows us to wr i t e 

ika ikb 
• a (S) - d 1(ka)Y 1 0(2) *— f * J l n t 2 _ (17) 

and 

ika ikb . . ik r 
/ \ _> /, w i \ e -po in t e _pomt e , Q . 

* a b ( c ) * d l ( k a ) Y a m ( a ) ~ r f a b ~ f bc I k r ( 1 8 ) 

For a de tec tor at a pos i t i on | R | >> *-_ax/l< the l a s t point 

s ca t t e r i ng f ac to r wi l l converge to the plane wave s ca t t e r i ng f ac to r of 

atomic physics: 

f ab a n e =ii; J < 2 1 + 1 ) W k ) V 0 0 3 ^ ( 1 9 ) 

W At | a 

and the single-scattered waves calculated at the detector will be 

ika ik|R-a| 
*a(R) - d1(k.)Y10(a) *— f ^ e ^ n s — . (20) 

and the double-scattered waves are 

ika . . ikb , ik R-a-b in\ M /i w / ^ e .point e _plane e ' ' ,_,, <P u(R) * d , (ka)Y,„(a) fK. —— f|\, -. . (21) 
T ab 1 10 a ab b bR lkr 

B. Homogeneous Wave Model. 
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The motivation and formulation of the homogeneous wave scattering 

model is similar to the point scattering method. The idea is to 

approximate the incident wave over the region of a finite range 
19 potential. If we notice that a spherical wave reaches to within 10 

percent of its asymptotic amplitude when kr i 21, and that the angular 

distribution of a spherical wave is nearly constant whenever it has a 

large amplitude, or conversely the angular distribution changes most 

rapidly near nodes where the amplitude is small, then we are led to 

approximate the spherical wave by its asymptotic limit, the isotropic 

spherical wave, h (kr): 

i\^r)Yim(r) . h 0(kr)Y t m(a) (22) 

Since h (kr)=»exp(ikr)/ikr, the homogeneous wave model explicitly 

incorporates the radial decay characteristic of spherical waves but 

allows no other variation in wave amplitude over the potential. In 

particular, the model ignores the amplitude variation of Y. (r) 

laterally across the potential, the origin of our name "homogeneous 

wave" model. Thus the radial form of the incident wave is rather 

accurately approximated as shown in figure 2(c), but the waves are not 

in phase at the center of the potential. Although not shown by the 

radial plots in figure 2, the homogeneous wave model also incorporates 

the basic curvature characteristic of spherical waves. Thus the phase 

match between the homogeneous wave and the exact incident wave will 

appear as in figure 2(c) for any radial cut through the wave source, but 
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the match between the point scattering wave and the exact wave will be 

worse than figure 2(b) for any cut which does not pass through a. 

The isotropic spherical wave has a simple origin shift addition 

theorem similar to that of a plane wave: 

hQ(kr) = I (2a" + 1)i,!'"jJlII(kb)i2'"hr(ka)PiL(,(cos 0 a b) (23) 

and we may parallel the development of the point scattering equations 

with a different scattering factor 

fab - I* I (2*" + 1 ) T*",a ( k ) V ( k a ) V 0 0 3 eab>« ( 2 4 ) 

and arrive at the scattered wave amplitude at the detector in the 
homogeneous wave approximation 

- e i k a 00 e l kl R" al 
* a ( R ) a Y

1 0
( a ) - a - f a R - T k R * ( 2 5 ) 

and 

* (h v (Si ^ ^ f 0 0 e i k l > f00 e l kl R- a^l 
*ab ( R ) " Y 1 0 ( a ) T fab - b " fbR ikR— • ( 2 6 ' 

(The superscript 00 is retained to parallel the notation of ref. 4). 

McDonnell, et al arrived at similar equations by an entirely different 
21 route in their original paper on Auger electron scattering 
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C. Plane Wave Model. 

Both the point-scattering and homogeneous wave models approach a 

plane-wave model for large scattering distances |a|, but the distance at 

which these models reach the plane-wave limit depends on different 

parameters. In the point scattering model, the phase and amplitude 

differences between the spherical wave and a plane wave at the 

scattering point disappear as the d (ka) approach 1.0. This requires 

2ka >> I. (i. +1) where I. is the incident wave angular momentum. For in in in 
homogeneous wave scattering we must move the potential far enough away 

to ignore the variation in 1/kr across the potential in the direction of 

propagation; this requires 2ka >> l (£ +1) where £ . is the 

outgoing wave angular momentum. (Note that these limiting criteria only 

specify the reduction of small atom approximations to the plane-wave 

limit; they are necessary but not sufficient conditions for plane-wave 

accuracy compared to the exact curved wave results). In the limit of 

either model the scattered waves at the detector become 

ika . ik|R-a| 

and 

ika . ikb , ik|R-a-b| , ,ix v /,., e -Plane e ..plane e ' ' , H. 
* a b ( R ) * Y 1 0 ( a ) " T " fab - b " fbR — T k R ( 2 8 ) 
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It is this "plane-wave" form of the scattering equations that leads to 
8 15 

the simple single scattering formulas for EXAFS and ARPEFS. 
Neither the point scattering nor homogeneous wave models have 

persuasive advantages over the plane-wave limit in general scattering 
problems. Point scattering models the incident wave well at one point, 
without regard for the size of the potential. For point scattering to 
apply, we must be able to ignore the variation in 1/kr across the 
potential; from the homogeneous wave equations we can see this requires 

2 k a > > *out(iW + 1)- ( 2 9 ) 

Whenever this requirement is fulfilled, we have 2ka >> £. («.. +1) for 
all I. _ I t and the plane-wave limit will be reached by the incident in out J 

wave. In other words, only if we scatter high angular momentum waves 
off a short range potential where I. >> a will point scattering 
significantly improve on the plane wave model. Roughly the converse is 
true for the homogeneous wave formulas. The homogeneous wave method 
considers the size of the potential, but approximates the incident wave. 
To ignore the difference in phase between the incident spherical wave 
and the isotropic homogeneous wave, h (kr), we must have I. (I. +1) << 
2ka. Whenever this requirement is fulfilled, we may ignore wave-front 
curvature for all I . S L . Thus the homogeneous wave model will only 

out in 
improve on the plane-wave model for scattering low angular momentum 
waves from potentials with large effective radii, potentials which give 
rise to high angular momentum waves. 

Despite these restrictions there are important problems to which 
these approximations apply. For the EXAFS single-scattering geometry, a 
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complete range of angular momentum waves are baekscattered to the 

central atom, but only low angular momenta can couple through the dipole 

matrix element to the initial state; waves striking the central atom 

have I. » £_„(.• For the ARPEFS single-scattering problem, dipole 

excitation gives only low angular momentum waves for scattering and, 

since the high angular momentum waves only appear asymptotically, we 

have some cases of I fc i I, . On the whole we might rank the 

homogeneous wave model ahead of the point scattering or plane-wave 

models more general scattering problems: low angular momentum partial 

waves carry much more weight when the scattered wave is constructed. We 

will also show in section IV that the homogeneous wave model is the zero 

order Taylor series term. 

Our distinction between incident and outgoing angular momenta 

highlights the distinction - commonly overlooked - between the 

asymptotic limit of spherical Hankel functions and the plane wave limit 

of spherical waves. The asymptotic limit of i h (kr) is 

hQ(kr)-exp(ikr)/ikr and we may invoke this limit whenever 2kr>nU+l). 

Even if the asymptotic limit is justified, the plane-wave limit may 

still fail to apply: the variation in (1/kr) across the potential may be 

significant if the potential has a large diameter. Conversely, the 

variation in (1/kr) may be neglected for a small diameter potential, 

but, if the incident angular momentum is high, we are not in the 

asymptotic limit of the spherical Hankel function. The plane-wave limit 

incorporates two approximations: the asymptotic limit and a negligible 

diameter potential. 
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D. Hybrid Model. 

Our contention that the point scattering and homogeneous wave 

models have nearly opposite ranges of use would suggest a hybrid 

"renormalized" homogeneous wave method in which the phase and amplitude 

of the incident spherical wave is attached to the isotropic wave before 

scattering. Thus over the region of the potential we would represent 

the incident wave by 

i V ^ W ^ -V k a ) Ylm (^ ) ho ( k r )-
This approximation would agree with the incident wave in radial form 

•+ (1/kr decay) and in phase and amplitude at a as shown in fig-jjre 2(d), 

and the phase agreement would extend to all points with |r|=|a|. While 

such a small atom approximation would give good results for the EXAFS 
22 and ARPEFS single scattering cases , we have no guarantee of success in 

multiple scattering problems: the criteria for the application of the 

small atom models we have examined thus far are necessary but not 

sufficient conditions for accuracy. The most serious limitation shared 

by these small atom approximations lies in directions not graphed in 

figure 2: none of the models described so far account for variation in 

wave amplitude across the potential due to the angular dependence of the 

spherical wave. 

Rather than explore further the range of validity for these small 

atom approximations, we turn instead to the development of a new fifth 

approximation which allows steady improvement toward the exact curved-

wave result. The development of this Taylor series, small atom 

approximation will comprise the following section; as a prelude we close 
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t h i s sect ion with two topics r e l a t e d to the plane-wave model. The f i r s t 

i s simply tne mathematical reduct ion of the exact o r i g i n - s h i f t add i t ion 

theorem, eqn. 6, t o the plane wave l i m i t ; the r equ i red approximation 

bears upon our discussion above. Second, we at tempt to understand the 

formally d i sconcer t ing but empir ica l ly well-founded success of the plane 

wave model, by l i s t i n g severa l cont r ibu t ions to i t s usefulness . 

E. Formal and P rac t i ca l Plane-Wave Limits . 

We may a r r i v e at the plane-wave l imi t by r ep lac ing the sphe r i ca l 

Hankel functions in Nozawa's o r i g i n - s h i f t add i t ion theorem by t h e i r 

asymptotic forms. We may then move the in termedia te sum in equat ion 6 

ins ide the Gaunt i n t eg ra l and, using the c losure sum for sphe r i ca l 

harmonics, perform the angle i n t eg ra t i on to conclude tha t 

ika „ # 

G l « W

( k 2 ) ~ 4 l T Tica W a ) V m » ( a ) ( 3 0 ) 

The addit ion theorem for sphe r i ca l harmonics (eqn. 16) and the p a r t i a l 

wave method then gives eqn. 27. 

We may give the c r i t e r i o n for applying t h i s approximation to 

Nozawa's o r i g i n - s h i f t addi t ion theorem as I ' C t ' + D << 2ka when l' i s 

the angular momentum of the intermediate sum in equation 6. The maximum 

intermediate angular momentum i s r e s t r i c t ed - by the non-aero Gaunt 

i n t e g r a l s , eqn. 8, to be V - I" + I or £' = I. +3. using our 

notat ion from above. This s u f f i c i e n t condit ion for the plane-wave l iu i i t 

i s much more r e s t r i c t i v e than e i t h e r condit ions for the small atom 
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approximations and would indicate that plane-wave formulas would be 

adequate only for low angular momenta scattering from very short range 

potentials. We turn then to list some contribution to the success of 
2 the plane wave limit when 2ka is not much greater than (H. + I . ) . 

in out 

Let us now try to understand the success of the plane wave method 

despite the evident theoretical problem. There are five important 

contributions: 

i) The phase difference between the scattered wave and the 

unscattered wave is dominated by their different origins. 

Thus if we measure the phase difference between a 

backscattered wave and an unscattered wave, the phase 

calculated in the plane wave approximation need only be the 
2 same magnitude as that given by the spherical wave formula. 

19 ii) Spherical Hankel functions reach to within 10 percent of 

their large kr limit when kr - 21 
max 

iii) At large k, the large number of contributing partial waves 

reduces the fractional error made in approximate treatment of 

the highest % waves. In other words, the low H waves have 

reached their asymptotic limit and the high I waves become 

outnumbered. 

iv) It has been discovered empirically from EXAFS analysis that 

the phase difference in the plane wave limit for 
backscattering may be reliably corrected by slight shifts in 

2 the scattering energy. While discomforting from a 
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theoretical viewpoint, the scattering energy is not measured 
23 in the x-ray absorption experiment anyway. 

v) Finally, as discussed in reference 4, curved wave corrections 

are much smaller for backscattering due to cancellation of 

successive partial waves, or equivalently, as illustrated in 

figure 3, a smaller region of the potential contributes to 

backscattering. 

Taken together, these ideas begin to explain the substantial 

success of the plane wave model. To make further progress in 

understanding the electron scattering or to enable efficient, accurate 

numerical calculation, especially for forward scattering directions, we 

must seek some approximation between the plane and full spherical wave 

formulas. 
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IV. TS-MQNE APPROXIMATION 

To der ive an approximate method beyond those discussed in the 

previous s ec t i on we re tu rn to the exact Gaunt i n t e g r a l summation 

formula, eqn. 6, and ask how the known c h a r a c t e r i s t i c s of the s c a t t e r i n g 

problem might be used to e l imina te physical ly unnecessary aspects of the 

mathematically exact o r i g i n - s h i f t addi t ion theorem. Any approximation 

scheme must recognize tha t we requ i re an expansion with a p a r t i c u l a r 

form: i t must be an angular momentum expansion about the p o t e n t i a l 

cen ter . Our so lu t i on i s to expand the Fourier transform of the spher ica l 

wave in a Taylor s e r i e s about the d i rec t ion of the o r i g i n - s h i f t vector , 

a, t r a n s l a t e the individual terms of the expansion, and obta in an 

angular momentum s e r i e s when each term i s subjected to the inverse 

Fourier t ransform. The r e s u l t i s a f i n i t e s e r i e s capable of performing 

every duty of an o r i g i n - s h i f t addi t ion theorem, so we have repor ted i t s 

13 development separa te ly . The formula i s 

I r 19) l ' i q \ 9. i V ( k r ) Y . ( r ) . [ N, r T y ' ; ( 0 , 0 IT-* ) £ C* I JLm 20 iq qm ea c

 yXEa L pq 

U) where N. i s a normalizing coef f ic ien t for spher i ca l harmonics, R is iq qm 
19 % a ro t a t i on matr ix element , C contains f a c t o r i a l s from the expansion 

pq 
of Legendre polynomials, and H, (ka) may be expressed as an i n t e g r a l or 
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various s e r i e s . The precise d e f i n i t i o n of the f a c t o r s i s given in r e f . 

13 . This re ference also descr ibes an a l t e r n a t i v e view of the expansion 

in which the va r i ab l e q i s a magnetic quantum number in a coordinate 

system ro ta ted t o a l ign the s c a t t e r i n g and quant iza t ion axes . We wi l l 

explore t h i s magnetic quantum number expansion (MQNE) viewpoint in 

sec t ion V, but we wi l l use the acronym now to r e f e r to eqn. 31. 

To ca l cu l a t e the wavefield due to s c a t t e r i n g of the d i r ec t wave, 

eqn. 2, from a p o t e n t i a l at a point a, we f i r s t expand the d i r e c t wave 

about a using eqn. 31 . For X.-1 , a f i r s t order Taylor expansion i s 

exact : 

i h l ( k r ) Y 1 0 ( r ) - N 1 0 R S 0 ( 0 , 9 £ a / - , x e a ) I i i J , ( k b ) Y w ^ ) N w M H ° 0

+ H ; ^ 

+ I , 1 l R f o ( 0 ' e W " * x e a ) I i V k b ) V * ) N * - l S ! 1 

0 0 * m 
+ N 1 - 1 R - 1 0 ( 0 ' 9

e a / - * x e a

) I i 1 J l ( W ) Y l . 1 ( b ) M l l l U , H l l (32) 

The ro t a t i on matr ix elements are p a r t i c u l a r l y simple when one of the 

19 subsc r ip t s i s zero 

R J o ( a ' B ' T ) - ( 2FT^2 V B ' a ) ( 3 3 ) 

Note a l l the magnetic sublevels here re fer to the a ax i s (see "ef 13. 

App. B). For Z-1 , 
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NlO^'WW " ^ V * C 0 S 9 e a ^ 
and 

H 1 1 R ! o ( 0 " e

e a f * - * x e a ) " N 1 - 1 R - 1 O ( O ' 0

£ a / - W = \ d ^ ' * s i n Q

e a ( 35) 

To ca l cu l a t e the sca t t e red wave emanating from the po ten t ia l at 
* i, 2, 

center a, we rep lace i j j ( k b ) by T-dOi h (kb) in the o r i g i n - s h i f t 
formula. This s i n g l e - s c a t t e r e d wave can then propagate to our de tec to r 

or s c a t t e r aga in . We f i r s t consider the s i n g l e - s c a t t e r e d wave a t our 

d e t e c t o r . 

For a de tec tor at a pos i t ion | R | >> | a | , the outgoing, s c a t t e r e d 

p a r t i a l waves have a l l reached t h e i r asymptotic l i m i t . As wil l be more 

apparent for the mul t ip le s c a t t e r i n g equat ions , i t i s convenient to 

define a new s c a t t e r i n g factor 

F°°(ka.b> - r l I (2 i* i ) T . O O H? q p ! q l ( c o s e „ J ^ )! (36) 
p q v — . - / - u L ^- <> Xjvw "^ r £ v » . » a b , X l ^ q J ) ! 

so tha t the s i n g l e - s c a t t e r e d wave may be wr i t ten 

_, i , ikR ika(1-cos 0 „) 
„, (i?) - ( 3 ) ' / : £ e aR_ 
* V n ; t W J ikR a ^ 3 ' ; 

{cos 9 e a [ F 0 0 ( k a , R ) + F 1 Q ( k a , R ) ] + sin B £ a eoa <i> e a RF 0 1 (ka.R)} 

Reference 1 presents t h i s same r e s u l t in a d i f fe ren t no ta t ion ; Appendix 

A provides the connect ion. 
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Let us now return to the single-scattered wavefield near center a 

and tackle the multiple scattering case. The (exact) Taylor series 

origin shift, equation 32, and the partial wave phase shifts give the 

single-scattered wave in the near field region as 

ika 1 l-|q| 
i|> (b) = - I N, R ,,(0,0 ir-ij) ) I C va a L . 1q qO ea, vxea L . pq q»-1 ^ p=0 

JL l 4, T (k) H f (k.) N l qi\(lcb)Y l q(S) (38) 
fc" | q | Y.,a 

The dependence on b in each term of this expansion is that of a 
% spherical wave, i h.(kb)Y. (b), and as this wave encounters another 

• * potential at position b, we can apply the MQNE formula and partial wave 

phase shifts again to calculate the double scattered wave. If we call 

I|J w(R) the wave generated when the (£,q) spherical wave from a scatters 

from b and is detected at R, then we have 

• + • * • * , 

* 9 ^ _ V „ „* , „ Q - _ . x v' '„«• . a b « e e S-rU'l , iq '<f a h R Q

i k b

 0 i k | R - a - b 

•s«> - i v ; - ^ " - w „L c;-- e TJ •* •* •+1 
q . . _ 4 *M 4 W - u « u p l _ Q p 4 u i k | S _ S _ 5 | 

T i a v r ^ » n » i /-» T i 
1 r a X P ' q ' l q ' l r o » - | a -

{T*- . A / 2 1 ' * " T i ' . 8 ( k ) H ^ ' ( k b ) P r ( c o s 9 b R ) T T ^ ) ! } (39) 

We have separated the p a r t i a l waves which reach the de tec tor in to 

azimuthal , polar , and r a d i a l components so that we may recognize the 
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00 factor in braces as F , , defined above. Summing over all of the U,q) 

partial waves gives the complete double scattered wave at the detector 

as 

ika ikb ik|R-a-b| 1 1-|q| 
« AR) - V~ I N, R' 0,0 -IT-* ) I C 1 

a b a b ik|R-a-b| q=-1 1 q q 0 e a « x e a pio P q 

T T-|q-| eiq'* a b R ^ 
F"rQ,(kb,R) (40) 

q'=-T p»=o H 4 

*{li J | q.| TH.a ( k ) H r ( k a ) 4* »lq»lq. ̂ " • ' W W Cp"'q'} 

We have reordered the sums on I, p', and q' to isolate the factor in 

braces. In that process we introduced the Taylor series order, T, as 

the limit for the sums on q» and p'. The factor in braces gives the 

amplitude for waves of order pq to scatter off the potential at a and 
•* give waves of order p'q' in the direction of b. Our next step is to 

define most of the factor in braces as a Taylor series spherical wave 
p' q' 00 scattering factor, F ^ , where F defined above is a special case. 

To this end we break up the rotation matrix into polar and 
19 azimuthal parts as given by Messiah : 

R n \ n U B Y ) - e " 1 ^ ' r<*>(B) e " 1 ^ (41) 
q'q q'q 

For our Euler angles we get 

"i.n^'^h^-^hJ • ( _ 1 ) Q e e a b r i !" i ( 8 J ( n 2 ) 

q'q ab eab q'q ea 
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2H I 
Edmonds gives a formula for r , _(-B ): his rotation is the inverse 

q q ea 

of Messiah 's . A symmetry in the r o t a t i o n matrix allows h is formula to 

be used by switching ind ices : 

r U ) ( e ) = r ( ^ q ) ! U-q)» i 1 / , 
r q ' Q " J L U + q ' ) ! U - q ' } ! J 

5

q + q ' ( ^ a ) s i n q - q ' ( ^ a ) P ^ ' ' ^ ' > (cose > ( 4 3 ) - § - ' v — ' 4-q ea 

(a B) 19 where P. ' (cos 0) is the Jacobi polynomial. If q* > q we use: 
Xr 

-&<•„> " <- 1 ) ," q' '>**> <«> 

to avoid negative quantum numbers in the Jacobi polynomial; similarly if 

q + q' < 0 we use 

r^(6 ) - (-1)™' r (^ a,(e ) (45) 
q'q ea ~q~q ea 

for the same purpose. 

Removing the azimuthal dependence from the fac to r in braces in 

equation (40) leads to our s c a t t e r i n g f ac to r , 

C ' ^ ' • If H J , (̂ "T̂ jCKWW,,., £ g £ cj.,. 
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, e a b J q + q , , r • V , q" q , |
D(|<l-q f|.|q*q*|)r (cos -=-) (sin -5-) P« 1 1 ' ' ' ( 1-lql ^ C 0 S e a b ) ( M 6 ) 

We have inserted the value of N. N • and mean for |q| (|q|.) to be 

the greater (lesser) of |q| and |q'|. We may similarly define the 

overlap of the direct wave with angular momenta eigenfunctions in the 

direction of a by 

?™C*>1) - N
l q

R | q | 0 ( 0 ' e
e a / - * x e a ) C p q ( 4 7 ) 

We also incorporate the signs from N. , N. ,, the factor of exp(iq-rr), 

and the symmetry relations for the rotation matrices into: 

s q : M ) q Jq-q 'Mql -M m ) 

q 

as shown in Appendix B. 

The single-scattered wave at the detector then becomes 

ika Ik|R-a| * ( R ) , £-_ e 

a a ikR 

i ' 1 q | »»<*;> . l w - Pfju.;, • „ „ . — • , M - , W (49) 
q-1 p-0 P q 1 0 

The double-sca t tered wave i s : 
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*ab ( R ) ~ B TkB , ' ,'„ V l 1 ' ' ' Q' 

1 1 _ i q l D'a' + - a« i q < t , p a h no " " 
I J F^ q

q (ka,b)sj e e a b P^U.e) (50) 

and the triple-scattered wave may be written by inspection. These 
expressions constitute our fifth small atom approximation for the 
multiple scattering of photoelectrons. 
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V. THE TAYLOR SERIES SCATTERING FACTORS 

Convergence of the approximate curved-wave scattering formulae 

derived in the previous section requires the scattering factors 
p ' a ' , •* F (ka,b) to decrease rapidly as the Taylor indices p.q.p'.q' 

increase. We devote this section to a discussion of these factors. 

The success of plane-wave scattering models does not follow from 

simple convergence arguments, leading us to suspect any purely formal 

criteria for the Taylor series approach. Rather than pursue a general 

account of the convergence we will discuss some of the properties of the 

scattering factors using Ni atom scattering as an illustrative example. 

The scattering factor depends on the four indices p,q,p', and q', 

on the wavenumber-distance product ka, on the scattering angle between a 

and b, 0 ., and on the potential through the scattering phase shifts 

T. (k). We refer to the superscript indices as outgoing wave indices 
JC|3 

and to the subscript indices as incoming wave indices. The single zero-
00 order scattering factor, F Q Q , has been discussed in reference 4 (see 

Appendix A.); its dependence on angle and energy is qualitatively 

similar to the plane-wave scattering factor. As we consider larger 

values of the indices we find that scattering factors with non-zero 

outgoing wave superscripts are large while scattering factors with non­

zero incoming wave subscripts are correspondingly small. When the 

scattered waves are formed by combining these scattering factors, large 

outgoing wave indices are always paired with identical incoming wave 
D* Q' " PQ. * 

ind ices a3 the s ing l e prime indices in F „ „(kb,c) F , , ( k a , b ) , but t h i s 

behavior makes convergence d i f f i c u l t t o d iscuss . Thus we wil l r e s c a l e 
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the scattering factors so that they may stand alone. Our development of 

this rescaled factor will also serve as our introduction to the nature 

of the scattering factors. 

Our goal for the rescaled scattering factor i3 to isolate the 
p'q* dominate character of FI" which allows it to converge as p and q 

increase and to split this character between the incoming and outgoing 

waves. The incoming wave indices p and q appear in the integral 
pq H£ (ka); the q index also appears in the angle functions, which we 

discuss first. 

The angle dependent terms in the scattering factor are: 

qq' ab 

r e a b J q + q ' l r 0 abJ q " q ' l ( I q _ q ' I • l q + q ' I } 

[cos _ ] [sin - » ] P H q | > (cos 0 a b) . (51) 

For the purpose of rescaling the scat tering factor we may ignore these 

angle terms: their product always has a magnitude less than, but on the 

same scale as 1.0. In passing, we note that the angle dependence 

requires that 

i ) only factors with q»q' contribute to forward (6 .=0) 

scat ter ing, 

i i ) only factors with q»-q' contribute to backscattering (9 K=ir) , 
3D 

iii) the angular factors do not change if both q and q* are 

simultaneously negated or if q and q* are switched, 
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iv) the angular factors alternate sign with increasing I for 

e>ir/2. 

Item iii) is a consequence of the symmetry relations of the 

rotation matrix elements and, coupled with the observation that all the 

remaining dependence on q and q» in the scattering factor uses only 

their magnitudes, we have this important relation: 

F^ q ,(Ka.;;^;- q ,(ka,b). (52) 

With no s t rong dependence on q in the angular f a c t o r s , we must turn 

to HjCka) for our r e sca l ing r e l a t i o n . If we use the e x p l i c i t formula 

from appendix C, r e f . 13, we may wr i t e 

p q i k ( ika) p + q q- s=o 3 ! ( p 3 ) ! Hql> ' 9 ( k a ) s 

U+|q | ) ! C«.- j q 1 > ) ! U+ |q ' |+p«)! 1 
U - | q | ) ! U+|q|<>* (£.-|q* | - p « ) ! P* ! (2 |q |+2p) ! ! A q q ' ( 9 a b ) ( 5 3 ) 

The leading term and the f a c t o r i a l terms containing X. in t h i s equation 

r e i t e r a t e an e a r l i e r theme from our discussion of the convergence of the 

small atom approximations in sec t ion I I I : the s i ze of these s c a t t e r i n g 

f ac to r s i s determined by a(2.+ 1 ) / ka . The product of f a c t o r i a l s depending 

on I in t h i s form of the s c a t t e r i n g factor may be expanded into a 
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polynomial in I whose highest power is p'+(|q*|+|q[)/2. From these 

results we propose a rescaled scattering factor according to 

(kr ) p +l ql / 2 

pP^.S) - -—° , • F^CkS.S) (54) 
pq ( k r jP' + h ' K 2 PQ 

Empirically we find that all the rescaled factors for nearest neighbor 

scattering are of a similar size. (We must also apply this rescaling to 
p«q» the photoemission factors, P7 Q7 to insure that the scaling always 

cancels when the wavefunctions are constructed.) 

If we estimate the scattering radius by |f(9,k)j/2, our rescaled 

scattering factor is roughly proportional as 

F P' q(ka,b) = (^)P+« ( | f 2 ' k ) | ) P ' * ( q ' * q ) / 2 (•clf(Btk)|)p'*(q^q)/2 ( 5 g ) 

pq a 2r n 2 

The first term in this expression contains increasing powers of (r /a), 

the angle subtended by the radius of the potential at a distance |a| 

from the wave source. Thus if we compare scattering factors at a bond 

length of |a| and 2|a|, we will find that first order terms are half as 

large, the second order terms are one-fourth as large and so on. The 

second term may be interpreted as correcting the scattering potential 

radius to account for the scattering angle differences: forward 

scattering angles will have [|f (9,k) |/2>r Q while backseattering only 

U3es the central region of the potential, [|f(8,k)|/2]<<rQ. Hence the 



152 

convergence in backscattering is much more rapid. Finally, the last 

term reminds us that the convergence does not improve with energy; it 

may indeed worsen. 

Representative examples of second order scattering factors for 

nearest neighbor Ni atom scattering are illustrated in figures 4, 5, and 

6. The more rapid convergence in backscattering is evident by the small 
o 

values of the higher order scattering factors for angles >90 , and a 

first order Taylor series appears adequate for backscattering. Forward 

angles may require higher than second order. 
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VI. DISCUSSION 

In the previous section we have shown that Taylor series terms of 

order T fall off as (1/ka) where a is the bond length between 

scattering atoms, and we suggested that the size of the Taylor terms is 
T 

governed by (r /a) . 

In t h i s s ec t i on we wi l l 

i ) d iscuss the zero order term which survives at la rger bond 

l eng th s , 

i i ) give an example of the convergence of the s e r i e s for a 

p a r t i c u l a r nearest neighbor s c a t t e r i n g , 

i i i ) descr ibe the magnetic quantum number expansion view of the 

physical nature of the Taylor s e r i e s small atom approximation, 

and 

iv) descr ibe how t h i s a l t e r n a t i v e view p r e d i c t s rapid convergence 

of the Taylor expansion for mul t ip le s c a t t e r i n g ARPEFS 

problems. 

We begin with the zero-order Taylor s e r i e s term. With T - 0, the 

s c a t t e r i n g equat ions from sec t ion IV contain only one s c a t t e r i n g fac to r 

for each event: 
no * * 1 

FQQ (ka,b) - j£ I (2Jl+l)T i L (k)d a (ka)P l (cos Q a b ) . (56) 

This i s exact ly equal to the homogeneous wave s c a t t e r i n g factor f . : the 

homogeneous wave model introduced in sect ion I I I i s the zero-order 

Taylor s e r i e s term. This means t h a t the zero-order term represen t s the 

s c a t t e r i n g of spher ica l Hankel functions at t h e i r asymptotic l i m i t , but 
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i t contains the 1/kr var ia t ion of h-Ckr) r a d i a l l y along the p o t e n t i a l . 

Note tha t the zero-order term i s not the plane-wave model, bu t , as 

discussed in ref 1, the difference between the plane-wave fac tor f̂  

and f ' i s small for backsca t te r ing angles . Coupled with rapid 

convergence of the Taylor s e r i e s for backsca t te r ing angles , we conclude 

t h a t the plane-wave approximation may be adequate for many 

backscat ter ing problems. 

The same may not be said for s c a t t e r i n g angles closer to ze ro . To 

give some feel for the s i ze of the correc t ions for forward s c a t t e r i n g , 

we have ca lcu la ted the ARPEFS o s c i l l a t i o n s for a p a r t i c u l a r l y important 

geometry. We have se lec ted our problem from the experimental study of 

ref 1: we consider S(1s) photoabsorption from c(2x2)S/Ni(100) with both 

the emission and po la r iza t ion vectors along the [110] c rys ta l lograph ic 

d i r e c t i o n . We concentra te on only two s c a t t e r i n g even t s , s ing le 

s c a t t e r i n g from the Ni atom d i r e c t l y behind the S photoemitter and 

forward s c a t t e r i n g of t h i s backscat tered wave through the S emi t t e r . 

The path-length dif ference between these s c a t t e r e d waves and the d i r e c t 

wave are near ly equal at - M.UA, corresponding to the dominant frequency 

in the experimental measurements. The backsca t te r ing angle i s 173° 

while the forward angle i s 7° . 

The r e s u l t s of these ca lcu la t ions are displayed in Figures 7 and 8 

as 
* * 

M s " M o 
X ( k ) , _ 3 _£- 2_° (57) 

¥ o y o 

where 
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* 8 • *o + *a + *ab ( 5 8 ) 

- » • •+ •+ 

for a running from the S emitter to the Ni scattering atom and b = - a . 

Figure 7 compares plane-wave calculations with the "exact" spherical 

wave calculation based on the Gaunt integral summation. The 

osci l lat ions in the plane wave case are much larger even though the 

plane wave model s l ight ly underestimates the forward scattering 

amplitude. This means that the most of the discrepancy is the phase 

error made in the plane-wave forward scattering. The forward scat ter ing 

phase shift estimated by the plane-wave model is too small. Thus the 

single scattered and double scattered waves are nearly in phase and 

their sum has an amplitude 170? of the single scat ter ing amplitude. 

With the correct forward-scattering phase-shift, the double-scattered 

wave is - ir/2 out of phase with the single scattered wave and the sum 

has a more modest amplitude. 

Figure 8 i l l u s t r a t e s the Taylor series model r e s u l t s . We are able 

to display only the zero-order resu l t on this scale: the f i rs t-order 

Taylor series cannot be distinguished from the exact calculation. Thus 

at least for th is important scattering geometry, the Taylor series is 

converged at f i r s t order. Our alternative view of the Taylor model 

which we develop next will help to understand this remarkable 

convergence and will lead into our discussion of more general scattering 

geometries. 

Before leaving figure 8 we note that the phase of the zero order 

(homogeneous wave) resul t is accurate while the amplitude is too la rge . 

This means that important differences between the asymptotic limit of 
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the spherical Hankel functions and the plane-wave limit appear in the 

phase of the double scattered wave. We have also calculated (but not 

plotted) these scattering events with the hybrid renormalized 

homogeneous wave model described in section III: we find a curve 

roughly half way between the zero and first order results. 

The surprising success of the first order Taylor expansion has an 

interesting origin which will lead to the third topic of this section, 

the MQNE description of the Taylor expansion. The first-order Taylor 

expansion is accurate because the origin-shift addition theorem does not 

change the magnetic quantum number if the shift is parallel to the z 

axis . For the scattering geometry we selected, the outgoing 

photoemission wave has m = 0 along the electric vector. Since the 

scattering atom vector is nearly parallel to e, the scattered partial 

waves will also have m - 0, even if they now have 1 from 0 to I 
IDaX 

Encountering the sulfur atom and scattering into the detector will give 

double scattered partial waves also with m • 0 along e. Thus to a fair 

approximation we need only m - 0 waves for the entire problem. 

What of a more general geometry? Consider, for example, scattering 

first from the Ni atom directly behind the sulfur atom followed by 

scattering from another nearest neighbor Ni atom. Then the second 

scattering vector, b, will no longer lie parallel to a. To use the 

result that m will not change for z axis shifts we must rotate the m = 0 

partial waves emanating from the Ni atom at a to the z||b system. This 

rotation will include all magnetic sublevels -iSm'SS, in the z| |b system 

in proportion to the overlap integral (rotation matrix element) between 
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spherical harmonics in the two systems. These manifold sublevels are 

not, however, equally effective in scattering from the second Ni atom. 

As illustrated in Fig. 9, the m-0 spherical harmonics overlap the 

potential along the scattering bond length, m - 1 waves overlap the 

potential farther from the axis and so on until some m = T sublevel 

does not overlap the potential at all. Thus only the T lowest magnetic 

sublevels need be overlapped with the m - 0 waves and—by Nozawa's 

result—only the T lowest sublevels will appear on center b as scattered 

waves. For a triple scattering event, these lowest T sublevels will 

need to be rotated to T sublevels along the new scattering axis. Hence 

we identify the rotated-frame magnetic sublevels with the q index in the 

Taylor expansion model. 

We can push this picture farther by comparing the classical orbits 

sketched in Fig. 3 to the incident spherical harmonics in Fig. 9. The 

largest magnetic sublevels only overlap the outer regions of the 

potential, regions which contribute to forward scattering, not 

backscattering. This would suggest, again, that the Taylor series will 

converge much more quickly for backscattering. 

VII. CONCLUSION 

We have explored five small atom approximations. Some specific 

points bear summarizing here: 

i) the success of plane wave models relies on backscattering 

geometries, 
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i i ) the plane-wave model requires incident waves at their 

asymptotic limit and a small diameter potential ; i t is 

inappropriate for multiple scattering calculations in so l ids , 

i i i ) the point-scattering and homogeneous-wave models are 

inadequate for multiple scattering in the intermediate energy 

range, at least for near neighbor scat ter ing, 

iv) the homogeneous-wave model is the zero-order Taylor series 

term, 

v) the Taylor series model allows methodical improvement in 

scattering calculations, and i t follows from physically 

appealing magnetic quantum number expansion picture of the 

scattering part ial waves. 

We have also developed the multiple scattering equations for ARPEFS 

with the Taylor ser ies expansion of the origin-snift addition theorem 

and i l lus t ra ted the resul ts with a two atom model. 

The most direct extension of th is work would be the application of 

the Taylor expansion method to simulations of experimentally measured 

ARPEFS curves. In addition to the e l a s t i c , multiple scattering 

equations derived here, we must also include important inelast ic 

scattering factors and effects such as f ini te aperture integration 

before quantitative agreement with experiment could be expected. 

Under the appropriate development, the MQNE origin-shif t addition 

theorem will also give multiple scattering models for other 

spectroscopies based on electron scattering in the intermediate energy 

range. EXAFS should yield to a low order expansion since the multiple 
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scattered wave must always return to the absorbing atom: forward 

scat ter ing will necessarily be coupled with backscattering as in the 

example in section VI. Electron diffraction in the 100-600 eV range 

should also be amenable to the treatment given here with the direct wave 

replaced by the incident plane wave. The f i r s t scat tered wave wi l l , of 

course, then be given exactly by the plane wave scat ter ing factor. 

The Taylor ser ies expansion i t s e l f deserves further exploration. 

Accurate error bounds would eliminate empirical verif icat ion of 

convergence. Alternate parameterization of the scat ter ing factors might 

reduce the computation burden required for the scat ter ing calculations. 

The magnetic quantum number expansion picture suggests that a variation 

of the equations presented here could be built up from rotation matrices 

and Nozawa's origin-shif t formulas. Finally, the formulation of the 

exact multiple sca t te r 1 ng equations (matrix inversion method) with the 

Taylor series resul t should be examined. At least pairwise or colinear 

multiple scattering seems feasible but more complex geometries would 

require detailed study. 
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APPENDIX A. COMPARING NOTATION WITH REF. 4 

We have deduced a formula equivalent to eqn. (37) for the exact 

curved wave s c a t t e r i n g of £»1 waves in r e f . 4; we demonstrate tha t 

equivalence here . The s i n g l e - s c a t t e r e d wave from r e f . 4 may be w r i t t e n 

1 + •* 1 ik jR-a | ika 
** (S) - fa 2 - n 5 T - V « V k a ) c o a e e a f°R° 

* 1 0 ! • • „ , „ ,01 - i cos 0 f _ - •:— s in 0 s in 0 _cos $ _f _ ea aR ka ea aR TcaR aR 
where 

9 n d„(ka) 3 n P„(cos 0 _ 
f 1™ , _L y ( 2 . + i ) T ( k ) * I • 25. 
faR i* ^ V V ( 3 k a ) n "«>• °a R> 

From our new d e f i n i t i o n we have 

cos 0 
0 0 3 9ea C + C 0 3 QsaFTo m " T i T ^ * ( Z l ^ d O P ^ e o s 0 ) [ H J O

+ H J O ] 

and from Appendix C, re f . 13 

„00 10 r M . . I . 
H i + H i • C 2Ki" ] V i + 2I7T V i 

Using eqn. B9 in Ref. 4, the right side becomes 

h Hl ' d t " ikf " L 3(ka) 
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Working back through the de f in i t ion of f and f shows tha t 
at\ an 

00 00 00 10 
C ° 3 9

e a F 0 0 + C 0 3 Q e a F 1 0 " V k a ) C O S 9 e a faR " l C O S G e a f a R ' 

where d. (ka) - 1 + i / k a . Similar ly we w r i t e out 

00 - + 1 P l ( c o s 0 ) 

F 0 1 (a.R) - ^ I (2 l*1)T £ (k) ( 2 & + 1 ) C d a _ r d u l ] 

where a factor of 2,(X,+1) in Hj cancels the l a s t f a c t o r i a l in the 

d e f i n i t i o n of F Q . . The connection between associa ted Legendre 

polynomials and de r iva t ives of Legendre polynomials: 

d . ( cos 0) 
P m (cos 8) - s in m 0 * 

1 " d(cos 0 ) m 

and the recurs ion for d gives 

* P 0 0 it ^ s in 8 cos 9 s in 8 
s in 0 e a c o s ^ a R F Q 1 (a,R) ^ f a R, 

These c lose connections demonstrate t h a t i ) the d i f f e r e n t i a l formula of 

re f . H could be used as a bas is for a Taylor expansion, i i ) the r o t a t i o n 

matrix approach employed here for approximate o r ig in s h i f t wi l l lead to 

compact exact o r ig in s h i f t formulas, and i i i ) individual s c a t t e r i n g 
00 p ' q ' f ac to r s F , and by extension F , can be in te rp re ted as spec i f i c pq pq 

spher i ca l wave cor rec t ions as described in ref 4 and 13» Our new 

formulation i s recommended for numerical work. 
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q' APPENDIX B. ON THE SIGN FACTOR S M 

Q 

The sign of the Taylor s e r i e s s c a t t e r i n g factor i s a combination of 

the s igns in the d e f i n i t i o n of N : 
nq 

( - 1 ) q q 2 0 

(1) q < 0, 

the fac tor of exp(iirq) from the r o t a t i o n matr ix , and the symmetry 

r e l a t i o n s for r o t a t i o n mat r ices . Note tha t the symmetry r e l a t i o n s are 

appl ied depending on the sign of q-q' and q+q'; we have four cases: 

i ) q + q' S 0, q - q' £ 0 

q'q q'q 

i i ) q + q' i 0, q-q' < 0 

q'q qq' 
i i i ) q + q' < 0, q - q 1 2 0 

q 'q - q - q ' 
iv ) q + q' < 0, q - q' < 0 

q'q q'-q 

In case iii) the factors of (-1)^ ^ cancel from successive symmetry 

relations; in cases iii) and iv) the criterion for equation (4*0 to 

apply changes since equation (45) negates the indices. Surveying these 

cases shows that only when (q-q') < 0 will factors of (-1) be required. 

To summarize these factors we note that 

|q| + q = 0 if q 2 0 

- 2|q| if q > 0 

while 
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Iq-q'I - (q-q*) - 2|q-q'| if (q-q') S 0 

- 0 if (q-q') > 0. 

All of the factors may be written then as 

sq' = (-Dq il^'Hq-q') ± ia I +q ± |q' 1+q' 
or si uncei^'l - 1, 

Sq 
q T = (-nq il^'l+M-lq'l. 
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Figure Captions 

Figure 1. Def in i t ion of the vec tors used in our s c a t t e r i n g equa t ions . 

The e l e c t r i c vector i s represented jy e . We place the o r i g i n 
• + -»• 

at the photo-emi t te r , tne detector l i e s along R. Vectors a, 
• * 

b, and so on run from one s c a t t e r i n g atom to the nex t . 

Figure 2. Schematic i l l u s t r a t i o n of four small-atom approximations 

descr ibed in Section I I I , p lo t t ed along the s c a t t e r i n g vector 

a. Every panel con ta ins , as the dot ted curve , a graph of the 

imaginary part of the spher ica l Hankel function for I = 7 , k 

• 8A . The abscissa gives the d i s t ance from the wave 

function o r ig in in A. Each panel a l so contains an arrow 

centered a t 2.23A, the S-Ni bond length for c(2x2)S/Ni(100), 

t o i n d i c a t e the extent of a Ni atom p o t e n t i a l of e f f ec t ive 

radius 0.8A. (a) Plane-wave model, funct ional dependence 

agrees with spher ica l wave but has e r r o r s in phase and 

ampli tude, (b) Po in t - sca t t e r ing model, phase and amplitude 

correc t at r - 2.23A, e r r o r s in both a t the edges of the Ni 

p o t e n t i a l , (c) Homogeneous-wave model, cor rec t in (1 /k r ) 

dependence of amplitude, e r ro r s in phase, some small e r r o r s 

in amplitude at edge of Ni p o t e n t i a l , (d) Hybrid, 

renormalized homogeneous-wave method, s u b s t a n t i a l l y co r rec t 

over the range of the p o t e n t i a l , some e r r o r at the small r 

edge of the Ni atom. 
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Figure 3. Schematic semlc lass ica l o r b i t s for an a t t r a c t i v e p o t e n t i a l . 

If the c i r c l e r ep resen t s the e f fec t ive r a d i u s of a screened 

nuclear charge, then p a r t i c l e s with l a rge impact parameters 

wi l l sample only the weak outer region of the po ten t ia l and 

sca t t e r , through small (forward) ang les . Pa r t i c l e s with small 

impact parameters o r b i t the s t rong nuclear a t t r a c t i o n and 

ex i t a t l a rge (backsca t te r ing) ang les . The connection to 

wave s c a t t e r i n g i s made through b =» 2,/k where b i s the impact 

parameter: large I p a r t i a l waves con t r ibu te to forward 

s c a t t e r i n g and small I waves dominate for backsca t t e r ing . 

- 1 . •+. 
Figure 4. Taylor s e r i e s s c a t t e r i n g fac tor amplitude at k = 8A , | a | = 

2.23A, as a function of s c a t t e r i n g ang le , 0 . . The 

s c a t t e r i n g fac tors genera l ly have s imi l a r shapes whenever 

they agree in | q - q ' | and | q+q ' | ; hence we wi l l only p lo t 

r ep re sen ta t i ve examples. We adopt the nota t ion ( p ' q ' | p q ) . 

(a) s o l i d l i ne (00 |00) , an example of f ac to r s with | q - q ' | = 

0. | q + q ' | - 0" This i s the s ing le zero order f a c t o r , (b) 

circ les (01 |10) , |q+q' | - 1 , | q - q ' | • 1 . (c) crosses 

(02 |20 ) , |q+q ' | - 2, | q - q ' | - 2. Factors are mul t ip l ied by 3 

a f t e r the break a t 60°; the r igh t hand s c a l e applies to t h i s 

r eg ion . 

Figure 5. Same as f igure 4; note the increased s c a l e s , (a) s o l i d l i ne 

(00 |01 ) , | q - q ' | - 1, | q+q ' | - 1; (b) c i r c l e s (01 |01) , | q - q ' | 



169 

- 0, | q + q ' | - 2 (c) c rosses (02/01), | q -q» | - 1 |q+q ' | - 3; 

(d) plus symbols (02/02) , | q - q ' | - 0, | q+q ' | - 4. 

Figure 6. Same as f i gu re 1. (a) s o l i d l i ne (11/20) | q - q ' | - 1, | q+q ' | 

- 1. (b) c i r c l e s (01 /1 -1 ) , | q - q ' | - 2 , | q + q ' | - 0. (c) 

crosses (02 /1 -1 ) , | q - q ' | » 3i | q + q ' | = 1. (d) plus symbols 

(02 /0 -2) , | q - q ' | - H, | q+q ' | - 0. 

Figure 7. ARPEFS o s c i l l a t i o n s ca l cu la t ed by exact Gaunt i n t eg ra l 

summation ( th ick curve) and plane wave approximation ( th in 

curve) . These curves s imula te the f r a c t i o n a l o s c i l l a t i o n of 

the S (1s) p a r t i a l c ross - sec t ion from c(2x2)S/Ni(100) along 

[110], but consider only a s ing le Ni atom s c a t t e r e r . The 

inse t diagram i l l u s t r a t e s the th ree waves whinh sum to give 

the photoemission f ina l s t a t e , the d i r e c t , s i n g l e - s c a t t e r e d , 

and double-sca t te red waves. The backsca t te r ing angle i s 

173°; the forward angle i s 7 ° . Both curves have been 
2 mul t ip l ied by exp(-0.02k -2.23/ .173k) (Debye Waller and 

i n e l a s t i c a t t enua t ion) to give a more r e a l i s t i c amplitude 

comparison. 

Figure 8. Same as f igu re 7 except comparing the exact Gaunt summation 

to the zero order Taylor s e r i e s r e s u l t . The f i r s t order 

Taylor r e s u l t cannot be d is t inguished from exac t , on t h i s 

s c a l e . 
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Figure 9. Schematic i l l u s t r a t i o n of the magnetic quantum number 

expansion i n t e r p r e t a t i o n of eqn. ( 3 D . A polar plot of the 

four lowest magnetic sub leve ls of a fc-7 sphe r i ca l harmonic i s 

superimposed upon a c i r c l e whose radius r ep resen t s the 

e f fec t ive rad ius r of a nea res t neighbor p o t e n t i a l . The 

l i ne connecting the inc ident wave source and the po ten t i a l 

o r ig in i s used for the spher i ca l harmonic polar axis and only 

the region of angles near the pole i s p l o t t e d . The angle 

functions have been resca led to place t h e i r f i r s t maxima on 

the same r a d i u s . The m-0 sublevel ( so l id l i n e ) i s seen to 

overlap the 3trong cen t ra l port ion of the p o t e n t i a l , while 

the m-1 lobes (dotted l i n e ) peaks fur ther from the a x i s . The 

m-2 lobes (dot-dash l i n e s ) only in te rcep t the far edges of 

the p o t e n t i a l and the m-3 l eve l (dashed l i n e s ) completely 

missed the mark. 
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CHAPTER 5: 

Theory of Angle-Resolved Photoemission Extended Fine Structure 

ABSTRACT 

We outline the form of a theory for photoelectron scattering in the 

100-1000 eV energy range to simulate experimental measurements of Angle-

Resolved Photoemission Extended Fine Structure (ARPEFS) from ordered 

crystalline solid surfaces. The problem is divided into a zero-order 

problem of photoabsorption in the presence of the solid's valence 

electron density and a scattering problem which incorporates the 

scattering ion-cores in a perturbation series (cluster expansion). The 

dynamics of core-hole relaxation are discussed but the dynamic effects 

are shown to be small. The Taylor-series magnetic quantum number 

expansion is used for the curved-wave, multiple-scattering equations. 

Surface barrier refraction is discussed, but we argue that a velocity-

dependent surface barrier gives only an inner potential shift with no 

surface electron refraction. Analytic formulas for aperture integration 

are derived and discussed; thermal averaging in a correlated Debye model 

is extended to multiple scattering and scattering amplitude averaging is 

included. Reasonable values for non-structural parameters in the theory 

are shown to give good simulations of the experimental ARPEFS 

measurements from c(2X2)S/Ni(001). We find, in agreement with full 

multiple-scattering calculations, that forward focussing is a 

fundamental feature of ARPEFS and that curved-wave corrections are 

essential for semi-quantitative results. Since the scattering path 
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length difference is not altered by forward scattering, the ARPEFS 

oscillation frequency is nearly equal to the geometrical path length 

difference but the amplitude and constant phase of the oscillations 

cannot be predicted by single scattering theory. 
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I. INTRODUCTION 

Much of the interest in adsorption studies on clean, single-crystal 

surface relies on the usefulness of these systems as well characterized 

models for more complicated interfaces. Unfortunately, characterization 

of even these model systems has proven difficult. We have been 
1 2 

exploring ' a new approach to determine surface structures with core-
level, angle-resolved photoemission. Core-level photoemission provides 
an element-specific, surface-sensitive, localized probe for adsorbates. 
By employing angle-resolved photoemission with polarized light we may 
independently orient the emission and polarization vectors: we can view 
the surface structure from many different angles and emphasize different 
atoms. These distinctive features of photoemission have lead to a 

3 'l number of experimental measurements and theoretical analysis ' of 

surface structures, primarily by means of two measurement techniques, 

azimutlial photoelectron diffraction (APD) and normal photoelectron 

diffraction (NPD). Recently, we reported the first structure 

determination using a new photoelectron diffraction technique which we 

call angle-resolved photoemission extended fine structure (ARPEFS). In 

this paper we will describe a theoretical model which provides the basis 

for analyzing ARPEFS measurements to extract surface structure 

information. 

Experimental measurements of ARPEFS are very similar to those of 

normal photoelectron diffraction. An ordered overlayer, adsorbed onto a 

single crystal, is irradiated with soft x-rays from a tunable, 

monochromatic photon source. The photon energy is scanned from 50 to 

500 eV above some core energy level characteristic of the overlayer. At 
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each energy, the photoemission intensity in a carefully selected 

emission direction is recorded. The resulting curve of intensity versus 

electron kinetic energy contains oscillations we call ARPEFS. These 

measurements differ from NPD measurements only in their higher and wider 

energy range and in the unrestricted choice of emission angles. 

The more significant differences between NPD and ARPEFS lie in the 

interpretation of the measurements, specifically, in the process of 

extracting the surface structure information. NPD was viewed as being 

closely related to low energy electron diffraction (LEED); the measured 

oscillations were ascribed to multiple scattering interferences and 

analyzed by trial-and-error comparison to sophisticated calculations. 

ARPEFS is viewed as closely related to extended x-ray absorption fine 

structure (EXAFS); the scattering interferences seem to be directly 

related to individual scattering atoms and the scattering geometry may 

be extracted by Fourier analysis. One important goal in chis paper is 

to examine the justifications for this simplified view of ARPEFS. 

The physical explanation for ARPEFS is based on elastic electron 

scattering. Core-level photoabsorption gives a localized, atomic-like 

outgoing photoelectron wave. Direct propagation of this wave into the 

detector gives the overall atomic-like cross section to the ARPEFS 

curve. Propagation of this wave to the core region of nearby atoms 

creates a second set of elastically scattered waves which can also reach 

the detector. Interference between these two sets of waves give rise to 

the ARPEFS. Since the interference extrema occur for electron 

wavenumbers which are integral multiples of ir divided by the difference 

in path lengths for direct and scattered waves, the path length—and 

hence the geometry—can be determined from the oscillation frequency. 
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This is the physical picture presented by Lee although he noted 
6 7 

that the same physics had been described earlier and McDonnell et al 

had analyzed angular distributions of Auger emission with an equivalent 

model. Lee drew strong parallels between EXAFS and angle-resolved 

photoemission, further suggesting that Fourier analysis might be used in 

the analysis of angle-resolved photoemission. This localized, single-

scattering cluster model was not thought to be adequate for the analysis 
H 5 of normal photoelectron diffraction data. ' Instead, the full multiple 

scattering analysis used for LEED was adapted to photoemission, first by 
8 4 

Leibsch and later and more extensively by Tong and coworkers. The 
success of this adaptation is evident in a series of surface structure 

3 M analysis based on this approach. 

Despite the success of the NPD analysis, the complexity of the 

theoretical analysis is discouraging. The first step toward a simpler 
9 technique came when Hussain, et al applied Fourier analysis to 

theoretically generated, wide energy range NPD curves. Hussain was able 

to relate peaks in the Fourier amplitudes to the interplanar spacing of 

adsorbate and substrate layers. While this would suggest that some 

simple model would predict the NPD curve, it would also seem to rule out 

Lee's model of localized scattering. Lee's model would seem to predict 

shells of near neighbor distances in the Fourier transform, rather than 

the interplanar distances observed. Orders and Fadley resolved this 

dilemma by investigating in detail a single scattering cluster model 

similar to Lee's. They noticed that the strong peaking of the 

scattering angular distribution for backscattering in the intermediate 

(100-600 eV} energy range would highlight °ubstrate atoms directly below 

the adsorbate in the NPD normal emission geometry. Thus, the localized 
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EXAFS-like theory could explain the Fourier transform result without 

resorting to a multiple scattering model. 

With the basic form of the localized cluster theory reconciled with 

the NPD theoretical curves, we measured intermediate energy off-normal 

photoelectron diffraction data for c(2x2)S/Ni(100) and applied the 

techniques of EXAFS analysis in an attempt to derive the surface 

structure. To emphasize the differences between these measurements and 

their analysis and the NPD measurements and their multiple scattering 

analysis, we have called the new technique angle-resolved photoemission 

extended fine structure (ARPEFS). 

The success of Lee's model as a basis for interpreting the ARPEFS 

to extract structure does not follow from the quantitative accuracy of 

numerical calculations with the model. In fact, numerical calculations 

by Bullock, Fadley, and Orders demonstrate that the basic single-

scattering theory reproduced only the barest outlines of the 

experimental results. From the experimental measurements and their 

Fourier transforms, it appears that only backscattering atoms and 

nearest neighbor atoms contribute substantially to the ARPEFS curve. 

Many other atoms contribute to the theoretical curves, giving the 

simulated measurements (x(E)) too much structure and the theoretical 

Fourier transform far too many peaks. Although Bullock, et al. 

concluded from their calculations that a great many scattering atoms 

must be considered when analyzing ARPEFS, we believe their conclusions 

are valid only for their single-scattering theory curves and do not 

apply to the experimental measurements. 
12 As the development of EXAFS illustrates, only a semi-quantitative 

model is necessary when the measured signal is sinusoidal with a 
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frequency dominated by geometrical path length differences. However, an 

accurate theory can forestall errors or misunderstandings inherent in a 

purely empirical model and confirm—or refute—models for the underlying 

physics of electron scattering. Furthermore, a complete theory will 

suggest new experimental techniques or new information which may be 

derived from existing measurements. Thus we take up the theory of 

ARPEFS. 

Our ultimate goal for the theory is a simulated curve which 

approaches the measured data points to within their experimental 

precision. If a theory fails this test we could seek improvements by 

changes in i) the form of the theory, ii) non-structural parameters in 

the theory, or iii) structural parameters in the theory. These areas 

are, of course, tightly coupled, but in this paper we will concentrate 

solely on the form of the theory. Although we know better, we will 

assume that the non-structural parameters and the structure itself are 

well understood from independent sources. 

Furthermore, our treatment will be more complete in its statement 

of problems than it will be in proposed solutions. We attempt tc survey 

the whole theory, giving each part only that consideration essential to 

the determination of surface structures with ARPEFS. We believe a more 

thorough study of several problems described here would be useful and 

interesting, but our specific goal in this paper is to clarify the 

issues. 

Some of the ingredients of this ARPEFS theory have already been 
6 presented before. Beyond the qualitative analysis of Lee and 

7 McDonnell et al's early Auger results , theories which describe 

photoelectron scattering in the intermediate energy range have been 



187 

developed by Fadley and coworkers. ' ' Fujikawa, and Tong and 
U coworkers. 

1M Building on earlier work in azimuthal photoelectron diffraction, 

Orders and Fadley applied a single scattering cluster model to normal 

emission ARPEFS. Their calculation includes: 

i) single scattering, 

ii) plane waves, 

iii) full partial-wave expansion of the scattering potential, 

iv) uncorrelated Debye-Waller vibrational averaging, 

v) isotropic, static mean free path, 

vi) surface refraction, and 

vii) numerical aperture Integration. 

Individual scattering events are sufficiently simple in this formulation 

that important insights could be gained about the nature of the electron 

scattering, specifically the connection between scattering anisotropy 

and interlayer distances. Unfortunately, this model is not adequate for 

detailed calculations and its application to ARPEFS by Bullock, Fadley, 

and Orders served primarily to spur further work. Very recently, 

Sagurton, Bullock, and Fadley redeveloped this model to include 

spherical wave scattering and correlated Debye Waller factors, giving 

considerable improvements in comparison to experiment. 

The theory described by Tong et al. is complementary to the Fadley 
14 group. Their methods are those developed for NPD studies in the low 

electron energy regime and extended, with some approximations, to 

intermediate energies. Their calculations include: 
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i) multiple scattering, 

ii) spherical waves, 

iii) truncated partial-wave expansion of the 

potential, 

iv) vibrational correction via temperature dependent scattering 

factors (uncorrelated Debye model), 

v) isotropic, static mean free path via a complex inner 

potential, 

vi) refraction, and 

vii) no aperture integration. 

The sophistication of these calculations has limited their use either 

for simulation of experimental curves or for further understanding of 

the photoelectron scattering. Nevertheless this model led to two 

important results of particular note: i) the aforementioned Fourier 
9 transform results of Hussain, et al providing the link with earlier NPD 

results and ii) the "quasi-dynamic" multiple scattering method. This 

latter result is equivalent to our conclusion that multiple scattering 

serves to focus the single-scattered waves without introducing new path-

length differences: the quasi-dynamical calculation includes all single 

scattering paths plus all forward multiple scattering paths. 
15 The theory presented by Fujikawa is a full spherical-wave, 

multiple-scattering, cluster method, but it has not to our knowledge 

been applied to any photoelectron scattering such as we are interested 

in here, and we will not discuss it further. 

Our work falls somewhat between that of the Fadley and Tong groups. 

In related papers we have investigated the nature of curved wave 
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1 fi 1 7 

corrections to the single scattering of photoelectrons and derived 

new approximate formulae for the multiple scattering of spherical waves 

by a method which we will refer to here as the Taylor series magnetic 

quantum number expansion (TS-MQNE). Our most significant contribution 

to the theory of ARPEFS will then be application of the TS-MQNE multiple 

scattering equations and the qualitative insight from ref 16 to arrive 

at a complete but parsimonious account of the elastic scattering of 

photoelectrons. Thus we include all the scattering events considered by 

Tong's curved wave, quasi-dynamic theory, but we retain the relative 

simplicity of the cluster approach. To treat inelastic damping, we 

adapt a dynamic but isotropic mean free path damping from EXAFS work. 

We include the correlated Debye Waller vibrational correction extended 

to multiple scattering and show how to include the vibrational averaging 

of the scattering amplitude. We derive an analytic formula for the 

angle integration effect. For comparison, our model contains: 

i) multiple scattering, 

ii) spherical waves, 

iii) full partial-wave expansion of the potential, 

iv) correlated Debye-Waller factors, 

v) a crude dynamic correction for mean free path, 

vi) no electron refraction, and 

vii) analytic aperture integration. 
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II. GOALS OF THE THEORY; THE MODEL SYSTEMS 

We begin by posing the theoretical problem to be solved. As stated 

in the introduction we wish to reproduce the experimental measurements. 

Since we are not yet prepared to critically examine the parameters in 

the theory we will not adopt formal statistical criteria for success. 

We will discuss the calculation of the ARPEFS spectrum, x(E)i b u t n o t e 

that Fourier analysis can be used to e::tract structure information in a 

manner less sensitive to the theory. 

We will specifically discuss the S(1s) ARPEFS from c(2x2)S/Ni(100) 
1 2 measured along [110] and [001] directions reported previously ' and 

analyzed in detail in ref. 18. Using a procedure discussed in ref 18, 

the experimental angle-resolved photoemission partial intensities are 

reduced to the proportional cross-section oscillations: 

1(E) -I0(E) x(E.R.e) jjjy— 

where E is the measured photoelectron kinetic energy. The curve 1(E) 

has been corrected for such effects as photon flux; IQ(E) is taken as 

the smooth, slow varying part of 1(E). The unit vector R specifies the 

position of the photoemission analyzer and e gives the polarization 

vector position. This form for the data is insensitive to the typical 

experimental efficiencies; any slowly varying functions are cancelled by 

I 0(E). 

Similarly if the theory is asked only to reproduce x(E), we can 

concentrate on only the rapidly varying parts of the partial cross 

section. Specifically we may ignore various constants, density of 

states, and—at least for S(1s)—any atomic cross-section dependence on 
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energy. To simulate the measurement then we must calculate the 

probability that an electron will enter our angle-resolving aperture, fi, 

given that we are irradiating our sample with photons whose energy is 

100-600 eV above the S(1s) absorption edge. Thus we need the continuum 
•+ 

orbital, i|>(r), from a stationary state of the light plus sample system 

so that we may calculate 

1(E) a i|i*(R)iji(R)dQ. 
Jn 

To form the estimated x(E) we should fit this 1(E) with a function like 

that used for I n(E) in the experiment to give I_(E). 

The complete calculation of ty is a complex problem, primarily 

because photoabsorption is a dynamic process. Our procedure—implicit 

in previous work—is to split the complete problem into two parts. The 

first part of the problem, which we will call the zero-order problem, 

contains all of the dynamical (time dependent) physics; the second part, 

the scattering problem, includes the scattering from ion cores as a 

perturbation on the zero order wave function. Thus iji(r) is constructed 

in the scattering problem as 

i|)(r) - * 0 ( r ) + 4'1 (r*) + iJipCr) + ••• 

using <l>n(p) from the zero-order problem. For the remainder of this 

section we dpfine these problems and discuss their connection. The 

detail of our discussion should not be taken to indicate the 

significance of these models; we present the detail to explore the basis 
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of the theory and in particular to avoid subtle inconsistencies between 

quantum and classical ideas. 

A. The Zero-Order Problem 

The zero-order problem consists of the photoabsorption in the 

absence of ion-core scattering. To be useful for structure 

determination, the photoelectron continuum orbital must be representable 

as a wave about a single center; we are only interested in 

photoabsorption from localized core level initial state. Thus the zero-

order problem is nothing more than atomic photoabsorption in the 

presence of a surface. We imbed an atom in a tenuous medium 

representing the properties of the material surrounding the photoemitter 

absent the properties included in the scattering problem. The specific 

medium will then depend on what material properties we include in the 

scattering problem. At least we shall want the medium to represent the 

valence charge density in the metal which is responsible for screening 

the photo-ion since screening is a dynamical process. Typically, we 

would also ask the medium to simulate the interstitial regions of the 

crystal (between ion cores) smoothly continued over the whole crystal. 

The only important requirement for the medium is that it present only a 

very smooth potential incapable of scattering or attenuating the 

photoelectron wave anisotropically. This same property facilitates the 

application of classical physics to the zero-order problem. A jellium 

metal has the appropriate properties for the S/Ni problem and to be 

specific we adopt 3uch a model here. 

One exception to the smooth potential restraint would be the image-

force (surface barrier) potential whose effects can also be treated 

semi-classically (see section V). 
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B. Connection to the Scattering Problem. 

Solution of the zero-order problem and connection to the scattering 

problem requires switching between quantum and classical descriptions 

for the photoelectron. It does not seem helpful to construct a current 
19 + density from il»_(r) since this would necessarily involve a time 

average while the classical currents are time-dependent. More than 

elementary considerations would be necessary to form wave packets to 

make the connection: at the time of photoabsorption the photoelectron is 

prepared in a state of definite angular momentum. Two sensible 
• * 

prescriptions are to interpret the zero-order wavefunction t|»0(r) as a 

probability amplitude for the classical electron or to construct a 

potential which reproduces the classical effects and apply it to the 

quantum problem; this is the optical potential or complex inner 
20 potential method. 

For either the probability or optical potential connections, the 

dynamics of the zero-order problem enters through the kinematics of the 

classical electron: position and time are always related by the constant 

velocity. The classical electron and a core hole created very quickly 
, -20 
(10 sec) in a small region near the photoabsorbing atom's nucleus 

with the electron's initial direction selected from a probability 

distribution given by the dipole selection rule and the initial state. 

As the electron moves away from the hole, the medium responds to the 
19 newly created charges; this is the problem addressed by Noguera et al. 

From the response we can construct the zero-order probability amplitude 

* 0<?>. 
What of the effect of the medium on the scattered wavefield? Once 

we have passed the time required to screen the hole and photoelectron 
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and for the photoelectron to separate from the hole by the 3um of their 

screening radii, the effects of the medium will be the same whether the 

electron has been scattered or not. If we assume that the electron 

velocity is slow enough to insure that the radius to which this time 

corresponds does not overlap the scattering potential, then we can say 

that the full optical potential operates for all of the scattered waves. 

Alternatively we can convert the scattered wave probability amplitudes 

into electron trajectory probability distributions, but this would be 

unnecessarily complex. It is only important to recognize that the 

classical electron either scatters or does not scatter; the scattered 

classical electron feels no field from an unscattered electron current 

density. 

C. The Scattering Problem. 

The physical model for the scattering problem consists of a lattice 

of non-overlapping ion core potentials centered on the instantaneous 

atomic coordinates of the sample. As we discuss in more detail in the 

following section, the result of the zero-order problem is a screened 

spherical wave attenuated by the inelastic scattering properties of the 

conduction electrons (imaginary part of the optical potential). This 

zero-order wavefunction is input to the scattering problem where the 

ion-core potentials are introduced. Ideally these potentials would 

describe both the ion-core potential operating on the electron and the 

anisotropic contributions to the inelastic scattering. The effective 

potential should include neither the constant inner potential (real part 

of the optical potential) nor the inelastic scattering from conduction 

electrons (imaginary part of the optical potential) already contained in 

the zero-order wavefunction. Also ideally, this potential should 
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describe the interaction of an electron and an ion-core embedded in the 

medium used for the zero-order problem. This differs from the atomic 
21 physics potential in two respects. First, the electron wave amplitude 

decays across the active region of the potential due to interaction with 

the conduction electron density. Second, the atom is partially screened 

from the photoelectron by the conduction electron response. Since the 

screening length is comparable to the diameter of the potential and 
22 since the fast electron rushes ahead of its screening charge density 

the impact of this difference should be minimal for the real part of the 

ion-core potential. This screening should however reduce the large 

impact parameter inelastic excitations caused by the long range Coulomb 

field of the electron. These excitations affect the real part of the 
23 atomic potential through shadow scattering; we should expect no shadow 

scattering in the solid state. 

To summarize, we must solve two connected problems. The zero-order 

problem is atomic photoemission in the presence of a jellium surface; 

the scattering problem incorporates the ion-core potentials via a 

perturbation series. The zero-order problem contains all of the time 

dependence; the scattering problem seeks a stationary state. The 

dynamics of the zero-order problem are transmitted to the scattering 

problem by the kinematic connection between position and time, valid for 

the zero-order problem. 
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III. THE ZERO-ORDER PROBLEM 

Now consider the solution of the zero-order problem. To be 

concrete consider a sulfur atom partially embedded in a jellium surface 

being irradiated by soft x-rays of energy above the S(1s) threshold. 

The electron density of the jellium is chosen to reproduce the 

dielectric properties of Ni as far as this is possible. Our task is to 

deduce the probability amplitude ip_Cr*) for a photoelectron ejected from 

the S(1s) orbital. 
24 Atomic photoabsorption is well understood and as the jellium 

surface ha3 only a very small interaction with the S core, we need only 

summarize the assumptions and conclusions of the photoemission theory. 
23 For absorption, the radiation field may be treated classically; far 

from the surface it is characterized by a vector potential 

A(r) - A 0ee (1) 

This is a plane, monochromatic wave with propagation direction Y and 

polarization direction e. We need only consider polarized light since 

the results for partially polarized or unpolarized light may be obtained 

by combining two plane polarization calculations without regard to 

phase. 

In principle, the vector potential in the region of the sulfur atom 

must be recalculated to include the effect of the dielectric properties 

of the Ni surface on the incident electric field. Since we are solely 

interested in photoelectrons with intermediate energies, we may restrict 

our attention to photon energies greater than say 50 eV, allowing the 
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index of refraction of the medium to be written as its high frequency 

limit: 

n(w) - 1 - -£ 
2E 

where E is the photon energy corresponding to the medium's plasma 
25 frequency. Since E - 10 eV and the lowest photon energy of interest 

here is 50 eV, the index will be within 2% of 1.0 as a worst case: the 

electric field may be considered unaffected by the surface unless we 

choose grazing incidence. For this exception we must consider 

refraction of the soft x-rays at the 3urface-vacuum interface with a 

consequent slight shift in the direction of polarization. We may also 

disregard the attenuation of the photon beam which only occurs over 
27 hundreds of atomic distances. 

The intensity of the x-ray beam is small enough to calculate its 

effect on the ground state of the zero-order model with perturbation 
. 28 theory, using 

Hj - A«7 

(as noted in the introduction we may ignore all constant factors.) 

Among all transitions which this operator may induce, we are only 

interested in those whose final state may be written as a product of a 

photoion wavefunction with a (Is) core hole, •_, and a continuum 

photoelectron wave, \pn, whose energy is given by the difference between 

the photon energy and the (1s) binding energy. Since the perturbation 
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is a one electron operator, the transition amplitude to i|in may be 

written 

* 0(?) - <r|*0>M1<*f|«0><4»0|A.V|$la> 

where $. is the (1s) orbital and * Q is the ground state wave function 

excluding <j> . (We have grouped various constants given by standard 
23 texts into M.; they are not relevant to the oscillations we wish to 

calculate). 

We may use the dipole approximation for this matrix element as we 

now demonstrate. The (1s) orbital is reasonably described by a scaled 
28 hydrogenic orbital 

e " Z r / a ° z 3 / 2 

with a binding energy near 

^2 2 
E - + 2_S_ 
1s 2a„ 

where a is the Bohr orbit radius and Z is the atomic charge. For 

ARPEFS we use electrons with kinetic energies from 50-1000 eV meaning 

that our photon energy will lie between E. + 50eV and E. + 1000 eV. 

Writing these energies in atomic units and converting to wave number we 

find that, over the range of the (1s) orbital, 2aQ/Z, the magnitude of 

the vector potential exponent in eqn. (1) will be 
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2 M a 0 

for Z > 8 a t a l l ene rg ies , and 

2 |Y|a r 0 70 
Z Z 

2 

for Z < 8 and E - E, + 1000eV, where a = e /he » 1/137. Thus, only for 

the heaviest and very lightest elements (at high electron kinetic 

energy) will the exponent differ substantially from 1.0: for the 

calculation of the transition matrix element we may replace the 

oscillating dependence of the electric field by a constant. Further the 

connection between matrix elements of the momentum operator and those of 
28 the position operator then gives the dipole approximation 

| § - M 2 <« f|* 0><* 0|e-?U 1 s> 

We have neglected both exchange and relativistic corrections, but these 

effects are no larger than the errors of the dipole approximation. The 

exchange corrections are small for the zero-order problem since the 

photoelectron wavenumber is much larger than the conduction electron 

wavenumber. Similarly, the electron velocities in the zero-order 

problem are always small and hence the relativistic correction may be 

ignored. 

To evaluate the dipole matrix element, we expand I(J (r) in 

eigenfunctions of the core-hole potential problem. Without specifying 
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their form we may take these eigenfunctions as separated in spherical 

coordinates: 

V ? ) - I Vim W>W«'»> n&m 

* -* Since e-r = r cos 6, the angular integration of the dipole matrix 
23 element requires I = 1. Then 

Q
R 1 0 0 ( r ) e " Z r / a r 3 a > -

We have proceeded to this point as if we were calculating a 

stationary state despite our original claim that the zero-order problem 

was dynamic. We can now justify and remedy this flaw by invoking the 
19 work of Noguera et al. on dynamic core-hole screening. They consider 

the entirely classical problem of the response of a jellium metal to the 

instantaneous creation of a core hole and photoelectron. They 

demonstrate that the medium cannot respond instantly to the 

photoabsorption event, and therefore the screening of the core hole and 

photoelectron may be neglected for a short period of time following the 

photoabsorption. If the electron is traveling fast enough, it will 

leave the region of the core hole before the medium can modify the ion 

core field. Thus, for the sake of the zero-order problem, and over the 

region in space which contributes to the dipole matrix element, we may 

ignore the medium in calculating the transition matrix element, as we 

have done above. 
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To this point we have determined the angular dependence of the 

zero-order wave function. To proceed it would seem that we must specify 

R (r) and solve the dynamic problem of core-hole screening. 

Fortunately, this is not necessary as long as we only ask the theory to 

produce the form of the ARPEFS. Using the connection between position 

and time, we may divide the radial distance from the photoabsorber 

nucleus into three regions. We have discussed the first region above, 

the inner core region where the screening properties of the surface are 

negligible. The second region extends from the inner core region to the 

point at which the core-hole potential is fully screened; this point 

depends on the photoelectron velocity, v, and the response time of the 

material, t: 

r f - VT 

Throughout the third region, beyond r_, the dynamics are again 

irrelevant—the electron and hole are screened—and we have a free 

spherical wave in this region. 

If r is less than the atomic radius, r , of the photoabsorber then 

the core hole may be said to be screened before the scattering problem, 

and we need only the form of the scattered wave in the third region; it 

must be a spherical wave traveling in the optical potential of our zero-

order medium. Thus 

+ -(r-r )/2X 
¥Q(r) - A(rf)e il^ (kr)Y1(J(e,*)' 

where 
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16 (k) 
A(rf) - |A|e 

and the optical potential gives a mean free path 2A, and an energy 
2 2 shift, kf = k + E_. All the details of absorption cross section, core 

relaxation, dynamic screening, and so on, serve only to determine the 

amplitude |A| and 6- phase of the spherical Hankel function. 

Furthermore, this amplitude and phase are independent of emission 

direction so that the direct wave and all orders of scattered waves 

contain the same A(r ). When the ARPEFS is calculated, both the 

amplitude and phase of A(r ) cancel: the details of photoabsorption of 
cl 

r < r are irrelevant for the oscillations since r_ does not overlap any a i 

scattering atoms. Note that the mean free path of the probability 

amplitude is twice the mean free path of the electron current density. 

If r_ > r then the zero-order wave will still feel a partial 
i a 

Coulomb potential from the core hole, and its form must lie between that 

of a Coulomb wave and spherical Hankel function. To estimate r we 
19 refer then to the work of Noguera, et al.. These authors argue that 

the screening time is a fraction of the plasmon period, (2IT/<D ), of the 

medium; for the real part of the dynamic potential they use 

2 
r. > 0.15 {-•) v - 0.15 -JF 1 - 1.3 jr-

f u
p
 raE

p
 Ep 

where v is the electron velocity, k is its wavenumber in A and E is 

the plasmon energy in electron volts, The photoelectron velocity at 

k-5A is 58A/femtosec and at k-10A . it is 139A/femtosec. For a 

typical metal E - 13 eV, and for the range of k between 5-12A we have 
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r f from 0.5 to 1.2A . Thus the use of screened waves seems justified 

for metals although the validity of this criterion should be verified 

experimentally. 

For semiconductors or insulators we should expect r_ > r and some 

correction for dynamic effects may be required. The most important 

dynamic corrections would adjust the phases and amplitude of ^ 0(r) in 

the center of the region of the surrounding scattering atom to account 

for partial screening, neglecting the variation of the phase and 
29 amplitude across the potential volume. Noguera and Spanjaard have 

developed such a correction for EXAFS; the EXAFS central atom phase 

shift is precisely the phase shift of ii»Q(r) we seek. For the amplitude 

correction, the results of Noguera and Spanjaard do not seem to apply. 

If we make a crude approximation that the imaginary part of the optical 

potential rises to its asymptotic value linearly from zero in a time 

which is a constant of the material (fraction of a plasmon period): 

V (r) - VI(«)(r/rf) r S r f 

V (») r > r f 

Then the effective optical potential attenuation will be: 

V (-) 
e x p [ * v — 2 3 r * rr 

V (-) r-r 
exp [jji— C-^-)] r > r f 
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where the mean free path X - ttv/V (»). Thus the delayed response of the 

material reduces the apparent distance of attenuation through the 

medium. Such a correction would have its major impact on nearest 

neighbors where (rf/2) is a larger fraction of the internuclear 

distance; we cannot explain the opposite behavior claimed by Noguera and 

Spanjaard. Until this issue is further clarified, we will restrict our 

attention to metals. 

The development of the theory of EXAFS has lead to the introduction 

of a similar type of attenuation correction. In a preliminary EXAFS 

theory Lee and Pendry used a static mean free path attenuation of 

exp(-2r /A) where 2r. is the path length traveled by the EXAFS electron 

in returning from atom j. Stern, Bunker, and Heald have proposed to 

replace this attenuation by 

_ -2(r -A)/A 
Sj(k)e J 

The factor S Q(k) is empirically3 and theoretically3 found to be a 

constant; it is given by a weighted sum of overlaps between "passive" 

electron wavefunctions in the absorption cross-section calculation. If 

these wavefunctions contain the valence electrons, this overlap 

correction should account for inelastic losses at the central atom 

(photoabsorber); hence an atomic radius, A, must be removed from the 

path length in the attenuation factor. Identifying 2A as (rf/2) 

connects this attenuation factor and our version of the dynamical 

response of a classical medium given above. In relating this 

attenuation factor to ARPEFS we notice that photoemission measures only 

one channel in the absorption cross section so that S (k) consists of a 
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single term (in our notation S Q(k) - <<t |*0>) and cancels when the 
oscillations are formed. 

We deduce from all of these considerations that our zero-order 
wavefunction will be 

i 6 ( r d 9 ' k ) " r d s / A 

¥ 0(r) - |A|e Q S ih1(kr)Y10<6,*)e Q S (2) 

where 

r . = r/2 if r £ r_ ds f 

rds = r " ( r f / 2 ) i f r > rf 

In reviewing our procedure to this point notice in particular that 
i) the angular distribution of i|)Q is determined by the dipole 

selection rules, 
ii) we assume that the core hole is "mostly" screened, including 

dynamic effects only via a modified optical potential, and 
iii) all constant or slowly varying factors ultimately cancel. 

On this last point we note that the total cross section may contain some 
structure at the lower end of the ARPEFS energy range. 

We have thus far ignored the surface in our formulation of the 
zero-order wavefunction. It is evident that the semiclassical 

19 •* 
methods can be applied to understand the required changes in t|»Q(r) 32 when the photoabsorber is near, at, or above the jellium surface. 
Lacking such a study we can anticipate some of the conclusions as 
follows. Consider first the static case, long after the photoelectron 
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has left the photoion. If the ion lies below the surface by more than 

the Debye screening length, A_, we may ignore the surface. If on the 

other hand the ion lies above the surface by more than A_, then the 

screening must be accomplished by a surface charge density: an image 

charge i3 formed by rearranging electron density in the surface region 

below the ion. For the dynamics of the core-hole screening of an atom 

above the surface the relevant time scale would seem to be a fraction of 

the surface plasmon period, (2ir/u) ). For the simplest model of 
s 1/2 plasmons, w =• u /(2). and the period, and hence the screening time s p 

would be 1*0$ longer. If the ion lies within X Q of the surface, the 

surface and bulk plasmons will share the duty of neutralizing the core 

hole, but the division of labor will depend on their relative densities. 

For the dynamics of the photoelectron screening, we can distinguish 

those electrons entering the material from those emitted into the 

vacuum. As long as the photoabsorbing atom is within an atomic radius 

of the surface, we would expect the photoelectron entering the material 

to react as if the surface did not exist. As the electron travels from 

the core hole to the jellium, the medium—be it all jellium or partly 

vacuum—has not enough time to respond; by the time the medium has 

recovered, the photoelectron has penetrated the metal. For a 

photoelectron ejected into the vacuum, however, there is no bulk charge 

density to consider. The response of the screening surface charges to 

the suddenly created core hole will be similar to its response to a 

scattered photoelectron suddenly emerging from the surface: we will 

treat this response in section V. 

With only these very qualitative ideas to proceed with, it is 

difficult to be very certain of the modification of the zero-order 
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wavefunction for a photoemitter near the surface. For electrons emitted 

into the material, we only have the more slowly screened hole to 

confront; we expect the full screening radius to be 1.0-1.4 times larger 

than it would have been without the surface. Thus for r below the 

surface we retain equation (2) with r_ of selected somewhat larger. For 

electrons ejected into the vacuum, the attenuation due to electron-

electron scattering stops at r and the photoelectron travels away from 

a potential which for short times and distances is a bare core hole 

while for larger times and distances, it is a small dipole created by 

the core hole and its image charge. (The charge of the dipole is given 

by the integral of the surface fraction of the screening charge). At 

even larger times, on the order of (2-ir/AE) where AE is the photopeaK-

lifetime width, the potential of the core hole decays to zero. Due to 

this potential, the wavefunction in the vacuum region will experience a 

stronger phase shift than the wave in the region occupied by jellium. 

Thus for r above the surface we select r . - r for attenuation and add 
ds a 

some phase shift due to the dipole in 5('*da.'<). 

We have constructed an elaborate physical description of the zero-

order problem, and guided by the not very specific model calculations of 

Noguera, reduced the dynamics of the zero-order problem to a single 

number, r_(k) and an unknown dipole phase shift. Certainly our 

justification for our result is the lack of alternative treatments; we 

can, however, produce a convincing argument that the major dynamics 

effects are included and furthermore if we are forced to ignore the 

dipole correction for now, the errors will be small. Our argument has 

two parts. First, we cite the extensive literature of EXAFS and in 
33 particular the recent theoretical studyJ of Pt EXAFS in which dynamic 
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IV. THE SCATTERING PROBLEM 

Having assigned all of the dynamics of photoemission to the zero-

order problem and assuming that we have a satisfactory solution in the 

form of a zero-order wavefunction, we face a straightforward electron 

scattering problem to introduce the effect of the ion cores. We will 

persist in the convenient terminology of describing calculation of an 

additional ion core at any scattering order as a scattering of the 

electron from the ion-core potential. Because of the kinematic 

connection between position and time, this terminology will be a useful 

guide to physics within a given order,but it can lead to difficulty if 

applied across orders. For example, the third of three colinear atoms 

is not shadowed from the first in the single scattering calculation; the 

shadow only appears when forward scattering from the central atom 

scatters from the third atom during the second order or double 

scattering calculation. 

Our array of spherically symmetric ion cores is the familiar 

muffin-tin model for solids and the scattering problem itself has been 
n 

extensively investigated. While Tong and coworkers have applied the 

multiple scattering methods of LEED directly to the scattering problem 

we face, the usual techniques become unmanageable in the higher energy 

range. We have investigated the difficulty posed by the higher energy 

range, and we have proposed a new approximate method for intermediate 
17 

energy range. This method, which we will call TS-MQNE: Taylor series-
magnetic quantum number expansion, is fully developed in ref. 17 
Therefore we will concentrate here on the form of this approximate 
method and its application to ARPEFS. 
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The MQNE may be qualitatively described as follows. The basic 

ingredients in the scattering problem is a wave source, a scattering 

potential, and an observation point. The wave source may be the 

original photoemitting atom, or a scattering atom. The scattering 

potential is taken to be spherically symmetric. The observation point 

may be a detector or another scattering potential. The first step in 

the MQNE is to describe the basic scattering problem in a coordinate 

system in which the z axis lies along the vector between the wave source 

and the scattering potential. Thus we decompose the source wave into 

partial waves of orbital and magnetic angular momenta quantized along 

the internuclear axis between source and scattering atoms. If the 

source wave is originally described in terms of partial waves about a 

different axis, then this step introduces rotation matrices for the 

spherical harmonics. 

The second step of the MQNE procedure translate the source partial 

waves to the scattering potential. This translation conserves the 

magnetic quantum number—the first of two reasons we choose the 

internuclear axis for the quantization axis. The third step of the MQNE 

procedure generates the outgoing scattered wave by multiplying each 

individual incoming partial wave by a complex scattering matrix element. 

Our convenient choice of the internuclear separation as the quantization 

axis now helps a second time: only waves with low magnetic quantum 

numbers scatter from the potential. The number of waves is directly 

related to the ratio of the potential radius to the internuclear 

separation. The restriction of the magnetic quantum number scattered by 

the potential constitutes the MQNE. 
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We can understand the physical basis of the MQNE, either 
17 pictorally or from integral equations for the scattered wave, as a 

consequence of the finite range of the potential. The source wave 

spherical harmonics, when quantized along the internuclear axis, have 

lobes which peak further and further from the axis as the magnetic 

quantum number increases. Thus for some magnetic quantum number, the 

corresponding source wave component does not overlap the potential at 

all, and it may be ignored in calculating the scattered wave. A similar 

approximation to the radial character of the source wave based on a 

Taylor series approximation is described in ref 17. Together these 

approximations give the TS-MQNE method. 

The zero-order wavefunction is an I - 1 spherical wave centered on 

the photoabsorbing atom: at our detector, R, the wave is 

ikR -L(0)/2X 
V r ) - hr c o s 9

E R e 

where the electric vector e acts as the z axis and the photoabsorber is 

the origin. The factor L(0) is the distance from the photoemitter to 

the surface barrier in the direction of the detector. The first order 

wavefunction has spherical waves emanating from every ion core except 

the photoabsorbing atom: 

ik|R-a | ika -LUJ/2X 
V ? ) ' I ++ V " *<«.M> e J e J 

1 V o ik'R-ajl j ' 

The index j runs over all near by atoms. We may expand 
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a . 
|R-a | - R(1 - g i cos 8 a R + • • • ) - R - a cos 9 a R 

•J J 

to wr i te 

i k l « 4 j l ikR - i k a j c ° 3 9a.R 

ik|R-a ' 
S e J 

ikR e 

The second and third term in the first order wavefunction accounts 

for the phase and amplitude of the zero-order wave at the center of the 

scattering potential at a.. The complex number F(e,a.,R) is the 

scattering factor and it gives the phase and amplitude of the scattered 

wave in the direction of the detector; its precise nature depends on the 

scattering approximation chosen. In a plane wave model, F(e,a.,R) would 

be the scattering factor of atomic physics timss cos 9 . The final 

term in the first order wavefunction is the attenuation of the scattered 

waves as they propagate from the scattering atom to the surface, a 

distance of L(a.). 

Similarly, the double scattered wave is 

ikR ~ i l < aj C O S 9a.R i k V a j / 2 X 

* z ( R ) • h L I ^ e J ^ — 
t.AO a AO j 

i k a . c o s 6 _ ikb ,+b , /2A , ,-* + w „ . 
j a.R j j - L ( a . + b . ; / 2 A 

F ( e , a . , b ) e J = F ( e , b , R ) e J J j 
bJ 

and the higher order waves may be written down by analogy. 
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Interference between the zero-order wave at the detector—which we 

will call the direct wave—and the single and double scattered waves 

occurs when the complete wave probability i s calculated: 

* ( R ) * ( R ) - U>0H»0 + ( * ( J * 1 + ip 1 ip Q ) + ( * 0 H) 2 + * 2 * 0 ) + 4»i*-! 
* * 

+ iP 1 4> 2

 + tg*,) + • • • 

The interference leads to ARPEFS when the proportional oscillations are 

formed. 

We detect the photoemission intensity with a small but finite 

angular acceptance and the scattering atoms vibrate se uhat every 

photoelectron scatters from a slightly different system. We must 

consider this angle integration and thermal averaging before we can hope 

to simulate the experimental ARPEFS. We have also neglected any effect 

of surface on the photoelectron. We take up these topics in the next 

three sections. 
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V. REFRACTION AND THE INNER POTENTIAL 

The optical potential introduced to represent the interaction 

between the fast photoelectron and the conduction electrons of the solid 

consists of both a real and an imaginary part. As we discussed in 

section III, the imaginary part of the optical potential serves to 

attenuate the photoelectron wave; its physical origin is the excitation 

of plasmon oscillations. The real part of the optical potential plays 

no role in scattering; it represents the energy difference between a 

free electron and that electron screened by the conduction electrons of 

the solid. When the photoelectron leaves the solid to be detected, it 

is no longer under the influence of the optical potential. The 

termination of the imaginary part of the optical potential simply ends 
• * 

the attenuation, a fact which is recognized in the definition of L(a.) 

above. (We assume that the attenuation of the photoelectron due to 

surface plasmon excitation cancels, being identical for direct and 

scattering waves.) Now we consider the effects of terminating the real 

part of the optical potential. 

We return to the model zero-order problem in ignoring the ion-core 

potentials. A photoelectron with energy E within the jellium medium 

will have energy E-EQ in the vacuum far from the surface. This loss of 

kinetic energy E n may be related to a potential barrier whose total 

height is V., the real part of the optical potential. The height of the 

barrier determines the energy loss, but the barrier shape will alter the 
13 photoelectron's path. Sagurton et al. adopted a planar step barrier 

of height V_ just outside the last row of ion cores. This is the usual 

first-order model for the surface barrier, introduced for both low 
27 20 

energy photoemission and low-energy electron diffraction. 
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The important consequence of this model is a prediction that the 

emerging photoelectron will be refracted in a direction away from the 

surface normal in the manner of optical refraction with 

( E ) 1 / 2 sin 9 l n - ( E - E Q ) 1 / 2 sin e Q u t 

where the angles are measured from the surface normal. Since E Q << E 

for ARPEFS energies, the angle correction is small, but it could be 

significant for high accuracy at larger emergence angles. Thi3 

correction is, however, not a consequence of the photoemission physics 

but only results from the particular choice of the potential barrier. 

As we now discuss, every move to improve the description of the physical 

barrier serves to reduce this already small correction, to the point 

that we may neglect it. 

To justify our claim that refraction does not apply to ARPEFS, we 

must return to arguments similar to those of section III. The step 

barrier is incorrect for three reasons. First, the surface barrier is 

not abrupt and planar, i.e. the conduction electron density does not 

drop suddenly to zero along a plane. This is true even for a jellium 
20 model whose positive jelly does terminate abruptly. More appropriate 

here, structure methods which are sensitive to the corrugation of 

conduction electron density, for example scanning tunneling 
34 35 

microscopy, or He diffraction, shows a distinctly non-planar 

surface. Since the refraction is already small, even a small undulation 

of the surface will invalidate the optical refraction formula above. 

This argument does not necessarily invalidate the use of a planar 

barrier for lower energies where the photoelectron wavelength will be 
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much larger than the atomic scale corrugation of the potential and the 

photoelectron wave is sensitive only to the average surface potential. 

Second, the interaction which gives rise to the surface barrier is 

not proportional to the local charge density as the step barrier model 

would imply. A slowly moving photoelectron is surrounded by a localized 

cloud of low electron density created by Coulomb repulsions between the 
22 photoelectron and the conduction electrons. Thus the total screening 

energy is related to the charge density. However, when the slow 

photoelectron and its co-moving cloud reach the surface, the Coulomb 

interaction which created the cloud does not cease. Instead, the 

screening cloud spreads out along the surface, becoming the surface 

charge density which screens the Coulomb potential of the photoelectron 

from the bulk metal. This net positive surface charge density is 

equivalent to an image charge-, the photoelectron must wor•>. against the 

image charge attraction giving the surface barrier. Thin the surface 

barrier is not abrupt even for a planar surface but rises smoothly from 

a constant to an image potential, V(z) - 1/(z+c), over distances 

comparable to the Debye screening length X (-0.5A). 

Third, and most important, the potential is velocity dependence for 

the same reasons that give rise to the dynamic screening effects 

described in section III. A fast electron within the bulk of the medium 

trails a wake of low electron density corresponding to sluggish 

conduction electrons moving away from the photoelectron 
37 charge. When photoelectron emerges from the surface, the center of 

gravity of its screening charge density is some distance below the 

surface and the force it exerts upon the photoelectron is directed along 

the velocity vector of the photoelectron, not along the surface normal. 
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As the photoelectron moves into the vacuum, the surface charge density 

is similarly slow in redistributing, leading to an image charge which 

always lags behind the photoelectron as it moves along and away from the 

surface. For normal emission, this dynamic effect serves only further 

smooth the potential barrier in the region near the surface. For 

off-normal emission, the lag between the position of the image charge 

parallel to the surface and the position of the photoelectron parallel 

to the surface increases with the emergence angle to normal; i.e. with 

the velocity of the photoelectron along the surface. Thus, rather than 

experiencing a force along the surface normal, the photoelectron works 

against a force more nearly along its velocity vector. Such a force 

does not alter the photoelectrons path. 

To summarize, we do not agree with the extension of the optical 

refraction model to intermediate energies proposed by Sagurton, et al. 

Thi3 leaves the inner potential shift as the only effect of the 

terminating real part of the optical potential. The forces for off-

normal trajectories certainly merits more careful theoretical treatment 

particularly for understanding the transition between the lowest energy 

range where optical refraction should apply and the ARPEFS energy range 

where the forces are along the velocity. Furthermore, there seems to be 

very little experimental evidence on refraction despite its fundamental 
39 nature. We should also note that our description does not contradict 

40 the classical studies of electron beam refraction: when dynamic 

potentials are considered, both the incident and refracted electron 
41 beams are modified. 

In the following sections we will continue to use the wavevector k 

corresponding to the electrons energy in the solid even when we are 
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discussing the probability amplitude at the detector. The theory 

results are much more simply expressed this way so that we use the inner 

potential to convert the experimental kinetic energies to a wavenumber 

rather than shifting the theory. 

We should note that the inner potential for ARPEFS is the same as 
20 that used in LEED but not the same as the E_ used in EXAFS. The only 

energy relevant for the scattering problem is the electron's kinetic 

energy when it encounters a scattering potential. In ARPEFS and in LEED 

the scattered electron is detected, and the inner potential represents 

the physical kinetic energy lost when the electron travels from the 

scattering potential edge to the detector. From our previous 

considerations, this inner potential should be velocity dependent. The 

conduction electrons are slow to respond to the photoelectron so the 

positive charge responsible for the inner potential lies in a wake whose 

center of gravity lies further away from the photoelectron the higher 

the energy. Usually, the energy dependence i3 neglected. In EXAFS, the 

scattered electron is not detected, and the "inner potential", E Q, is a 

complicated weighted sum of all the photoelectron energies created at a 
42 particular x-ray photon energy, and further it is commonly used as an 

12 adjustable parameter.. High precision surface structure determination 

requires E Q to be known to within 1 eV, suggesting that further study of 

the energy dependence of the inner potential would be profitable. 



219 

VI. FINITE ANGULAR RESOLUTION 

The experimental apparatus for measuring the ARPEFS o s c i l l a t i o n s 

has a small but f i n i t e angular r e so lu t ion charac te r ized by ha l f the 

angle subtended by the aper tu re at the source , which we c a l l , a . For 

small a p e r t u r e s , ot i s the r ad ius of the aper tu re projected on a unit 
2 sphere so t h a t the detected a rea i s ira . The major effect of t h i s 

f i n i t e r e s o l u t i o n i s to l i m i t the highest observable pa th- length 

d i f ference , p . =» a , (1-cos 9.) such tha t a l l paths with 

kp » 1/a 

will be averaged away by the opening, while o s c i l l a t i o n s corresponding 

to path- length differences 

kp. « 1/a J 

wil l be ind iv idua l ly reso lved . With experimental angular r e so lu t i on of 

±3°, we have kp * 1/a: kp w i l l f a l l between 10 and 100 in p r a c t i c a l 

cases and 1/a - 10. Thus we are in the regime of p a r t i a l angle 
13 averaging, and we must consider the effect in d e t a i l . Fadley has 

previously demonstrated by numerical example t h a t angle-averaging has 

important e f f ec t s on the t h e o r e t i c a l ca l cu la t ions of azimuthal and 

energy-dependent photoelectron d i f f r ac t ion . Here we wi l l show tha t 

i ) the primary ang le - in tegra t ion e f fec t i s the i n t eg ra t i on of 

s c a t t e r i n g angle cont r ibut ions to the path-length d i f fe rence , 

i i ) the angle in t eg ra t ion p r e f e r e n t i a l l y a t tenua tes s c a t t e r i n g 

events with angles near 90°, and 
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i i i ) the e f f ec t ive s c a t t e r i n g angle can be sh i f t ed by thg angle 

i n t e g r a t i o n , if the aper tu re i s l a r g e enough. 

If we use RQ to denote the pos i t ion of the aper ture cen te r , our 

angle-averaged i n t e n s i t y i s 

s in 
J n R R Q RR Q 

2ir 

Q

 d*xRQR « V * 1 + * 2 } ( V * 1 + * 2 } 

for double s c a t t e r i n g . 

We d i s t i ngu i sh three terms from the expansion of the squared t o t a l 

wave function i ) d i r ec t i n t e n s i t y , I Q 0 , i i ) s c a t t e r e d - d i r e c t i n t e n s i t y , 

I „ , and i i i ) s c a t t e r e d - s c a t t e r e d i n t e n s i t y , I 0s ss 

1 ' ^ 0 + T0B + ^s 

where 

L00 f V o d n' 

L0s J ^ ( ^ + i|»2) + (i|)1 + * 2 ) % 0 da, 

and 

ss N + i |» 2) (ij» + y ) d n . 

Each term contains the coordinates of R in the amplitudes of the 

wavefunction, but the in te r fe rence terms I„ and I also contain R in 
0s ss 

the wavefunction phase. As the position of R moves around the aperture, 
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A 
the wavefunction amplitude always lies near its value at R Q. The phase 

A 

of the wavefunction i s , however, qui te s e n s i t i v e to the p o s i t i o n of R 

and even for small aper tu res t h i s v a r i a t i o n should be i n t e g r a t e d . In 

Appendix A we i n t e g r a t e the TS-MQNE wavefunctions by a general method 

which considers both amplitude and phase v a r i a t i o n s and which appl ies to 

aper tures approaching a - ir /2. This leaves us free to concentra te 

so le ly on the q u a l i t a t i v e l y fea tures of the angle i n t e g r a t i o n for the 

remainder of t h i s s e c t i o n . 

Let us assume small aper tures and ignore the va r i a t ion in 

wavefunction amplitude. The d i rec t i n t e n s i t y i n t eg ra t e s to the aperture 

area times the i n t e n s i t y at R n 

*oo " V V W ™Z 

Each term in the direct-scattered intensity will be of the same form: 

I Q 3(a) = 2Re^(R 0)* a(R 0) 
-ika(R-R ) 

e dn 

where a must represent the bond vector for the scattering event which 

immediately precedes the trip to the aperture. For small apertures we 

show in Appendix A that 

o • ,* /» Z ^ 2J . (kao s in 6 _ ) 
a r2ir -ika(R-R ) „ 1 aR 

s in 9 d9 d$ e - ira [- k a n , fl —] (3) 
0 J 0 k a a 3 l n e a R Q 
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where J.Cx) is the first order Bessel function. The factor of 2J1(x)/x 

is the circular, two-dimensional analog of sin x/x familiar from 

diffraction phenomenon; its value at x=0 is 1.0, and it falls to zero 

at x « 3.8, continuing to higher x with ever smaller oscillations (see 

figure 1). 

By r e l a t i n g the physical parameters to the argument of the aperture 

damping func t ion , i . e . x = aka s in 6 o D , we draw the following 
^ 0 

conclusions: 

i ) backscat ter ing and forward-sca t te r ing atoms are not 

s i g n i f i c a n t l y a t t enua ted by angle in t eg ra t ion because s in e -

0, 

i i ) s i d e - s c a t t e r i n g (e - 90°) atoms a re maximally a t tenua ted (sin 

8 - 1 ) . 

i i i ) the a t tenua t ion increases with bond length , aper tu re rad ius , 

and the square roo t of the energy. 

In Fig . 1, we plot the ape r tu re damping function for a = 3° and a = 10°. 

We a lso mark the range of ka expected for s i d e - s c a t t e r i n g ARPEFS from 

nearest neighbor atoms (a - 2.2A) and more d i s t a n t atoms (a = 7.5A). 

Both ape r tu res a t t enua te the more dis tance atoms; the wider aperture 

even damps the nearest neighbor s i d e - s c a t t e r i n g atoms. We may further 

conclude t h a t 

iv) as long as s i n g l e s c a t t e r i n g dominates, aper tures of = 10° 

would simplify the ARPEFS spec t ra by el iminat ing s i d e -

s c a t t e r i n g atoms. 

Since the l a rge r aper ture would decrease the data co l l ec t ion time by an 

order of magnitude t h i s conclusion meri ts fur ther d i scuss ion . A s ide-

sca t t e r ed wave which subsequently forward s c a t t e r s through a small angle 
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into the detector will not be attenuated. The larger aperture will also 

introduce highe." terms into the phase in tegra l , eqn. (3), and require 

treatment of the amplitude variat ion. In Appendix A we show that the 

second order term in the phase integral introduces a phase shif t of 
2 

a ka cos 9. This correction is largest for back- and forward-
scattering, and amounts to 1.556 of the bond length for an aperture of 
10°. This larger aperture would also require calculation of the 
amplitude integration terms as indicated in Appendix A. 

Finally, we note that the scattered-scattered intensity may be 

treated in the same fashion as the direct-scattered term by replacing 

the las t scat ter ing event bond vector, a above, by the vector 

difference in the last scat ter ing bond vectors from the two interfering 

scattered paths in the scattered-scattered case. In most experimental 

geometries |\j>n| >> \ty | so that we may neglect I altogether. In these 
U 3 33 

cases, it is convenient for numerical calculations to associate the 

angle attenuation with the scattered waves. By this means a single 

attenuation factor is required for each path rather than a factor for 

every possible pair of paths. 
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VII. THERMAL AVERAGING 

As the final ingredient in our theory we must allow for the 

thermally excited vibrational motion of the atoms in the surface. Each 

atom in the crystal oscillates about some equilibrium position; each 

photoemission event takes a snapshot picture of the instantaneous 

positions of these atoms. The complete ARPEFS spectrum averages over 

many photoemission events and hence records an average of the atomic 

positions according to the probability of each configuration. For 

typical materials at typical temperatures, the amplitude of the 

oscillations is not large. However, the effect on the ARPEFS spectrum 

is significant both in magnitude—thermal averaging is primarily 

responsible for limiting the highest measurable energy—and in detail— 

inappropriate thermal averaging can lead to theoretical calculations 

with far too many scattering events contributing (compare Bullock to 
13 Sagurton ). Our problem is formally similar to x-ray diffraction where 

thermal averaging leads to multiplication of diffracted intensity by a 

Debye-Waller factor, exp(-2|K| o where K is the momentum charge in 
2 • * 45 

scattering and o is the mean square displacement projected on K. 
Since the momentum change in ARPEFS may be written 

K a R - k(R-a) 

• + -»• 

for single scattering off an atom at a into a detector at R, Bullock et 

al introduced a factor 

-2|K| 2a 2 -k2(1-cos e)o 2 ,„. 
e • ' » e (4) 
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where cos 6 - a«R to introduce thermal averaging to electron scattering. 

However, as has been described for the more analogous problem of 

thermally averaged EXAFS, the form of the x-ray diffraction result is 

adequate only if the mean square displacements are replaced by the mean 

square relative displacements. This difference is crucial for electron 

scattering: the motions of near neighbor atoms are correlated so that 

the mean square relative displacements of near neighbor is much less 

than their mean square displacements. 
13 Incorporating the displacement correlations, Sagurton, et al 

found considerable improvement in the agreement between theory and 

experiment for S(1s) ARPEFS from S/Ni(100) over that reported by 

Bullock. In fact, these authors demonstrate that no thermal averaging 

at all produces a more reliable result than eqn. (4) with mean square 

displacements. 

The thermal average, like the aperture integration discussed in the 

previous section, must be performed on the intensity oscillations; we 

will restrict our attention to experimental geometries which emphasize 

direct wave interference and ignore the scattered-scattered 

interference. Furthermore, to avoid obscuring the thermal average with 

the MQNE notation, we will only consider averaging the zero-order Taylor 

series term. This is not a serious restriction: the variation in the 

scattering amplitude over the range of typical vibrational motions is 

small, and we may safely ignore the variation in the corrections to 

scattering amplitude. An advantage of this approach may be appreciated 

by examining ref. 17, App. A and ref. 16: the thermal average will lead 

to derivatives of the zero-order scattering factors with respect to 

internuclear coordinates times displacements of the coordinates, and we 
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have already encountered the derivatives in the study of spherical wave 

corrections. 

Writing angle brackets for the operation of thermal ensemble 

averaging, we need for single scattering 

cos 6 f°° -(a-L(0))/2X -L(a)/2X ika(1-cos 9 D ) ... ca an an . X, = <2Re r— -—-• e e e > A1 cos 9 _ a GH 

and for double scattering 

cos 9 f . -(a-L(0))/X ik&vl-cos 6 .) 
-.,„ r ES ab ab 

*2 3 < 2 R e looaTZ — e 

£n 

f°? -(b+L(a+b))/2X ikb(1-cos 9 K O) 
^ e e b R }>, 

where f . =• F Q Q (ka.b), adopting the notation of ref. 16. 

We first consider the single scattering average. The instantaneous 

position of the scattering atom can be related to the equilibrium 
•* •* 

position a., the displacement of the origin (emitting atom), u and of 
-* scattering atom, u according to 
3 

* = *o + K ~ "o " *o + *u-
Defining 
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00, , C O S Qea faR 't^-L(O) )+L(a)]/2A 
g ( a ) " c^TeT — e 

eR 

and noting that the thermal average consists of multiplying by a 

probability distribution for displacements and integrating over 
45 configurations allows 

+ .> ik[|a +Au | -(a +Au)-R] 
X l = 2Re <g(aQ+Aua)e : 

For displacements |Au | << |a Q| we can expand 

la0 + A ual " a 0 + V A u a + •*• 

and 

g(aQ • Au a) - g(a Q) * Au a.V ag(a Q) + 

2 2 where forms of order |AU| /a- have been dropped. Then we have 

+ ik(a -a -R) -iK -Au 
X, - 2Re {g(a0)e U U <e a r a> 

-ik(a -a -R) _ i K a R - ^ a 

• e ° ° Vag(a.).<Au e a R a>} 

where the momentum change vector, K =» k(R-a n). Knowing relations like 
aR o 
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i 3 - i K ' A u a ,* , - i K * A u a 
W e • ( A U a } x e 

x 

we write 

ik(a -a -R) + + -iK-Vu 
X l - 2Re {e u [g(aQ) +iV ag(a Q)-V K]<e a>} (5) 

The thermal average of the phase term may be derived by following either 
45 the x-ray diffraction theory with proper modification or the 

46 EXAFS treatment: 

-iK«Au -<(K-AU )2>/2 -|K| 2<(K«AU )2>/2 a„ a ' ' a <e > = e = e 

If we identify 

2 + 2 o_ - <(K'Auu) > a 

and 

IK! 2 - k 2(2-2 cos 9 _) aK 

2 we retrieve the Debye-Waller form (eqn (4)) but o + becomes the mean 
a 

square projection of relative displacement (MSPRD) upon the momentum 
change vector. 

To proceed we need to consult some physical model for lattice 
2 vibrations which can predict o^. Accurate values may be derived by 
a 
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constructing the normal modes and eigenfrequencies of the solid if the 
45 geometry and bonding force constants are known. While potentially 

useful for theoretical study, this approach requires far too much 

information for our poorly understood surface system. The Debye model 

has been adapted to calculate the mean square relative 
46 47 displacements ' in good agreement with experimental EXAFS 

48,33 determinations. Here we need only extend the treatment to include 
49 50 51 

the predicted ' and observed surface layer dependence and 

anisotropy of the mean-square displacements that we can expect to 

encounter and the mass dependence required for an adsorbate. Our result 
49 will be a combination of the work of Allen et al on mean-square 

52 displacements on surfaces, of Housley and Hess on mean-square 
47 displacements in general, and of Sevillano et al on mean-square 

relative displacements, but we will trace the main points of their 

derivations as a means for introducing the notation. 

We begin by writing the MSPRD in terms of the normal modes of a 

crystal with periodic boundary conditions in two directions and free 
53 surfaces in the third. Allen, Alldredge and de Wette give the atomic 

displacements as 

1/2 + + 
<UJ„ " (z—) I Q(q,p)E U_ ;qp)e 
a a NM - a 3 a 

where N is the number of two dimensional lattice points, M + is the mass 
a 

•+ -of the atom at a, q is a two dimensional wave vector, p distinguishes 
— -* 

modes with identical q, Q is the amplitude of the mode, E, is the 
a 

-* 
displacement of the atoms in the layer i , containing a : in the mode 



230 

(q,p), in the direction o, and cu(q,p) is the mode frequency. To use 

this expression for the atomic displacements we expand the MSPKD, 

o (o,a) into the sum of the mean-square displacements (MSD) of atoms a 

and of o minus twice their displacement correlation function (DCF): 

<[(u -u )-K]> = <(u -K) > + <(u »K) > 
a 0 a ° 

-2 [<(u 'KMu «K)>] a 0 

The layer dependence of the displacements gives a layer dependent MSD: 

<(u -K) > = ^— I ^ c o t n2iTT 
3 2NM+ - u- ^ V 

a qp qp 

where 

<Q(q,p)Q(qp')> =• 5 6 n n , — — coth^r^ 
qq. PP 2co-p

 2 V 

15 is used to eliminate one sum over modes and to partition the thermal 

energy k T among the vibrational modes of energy Mm 
D — 

qp 
Next we approximate 

<(u a-K) 2> - I K a

2 < ( u J 2

a > . 
a=»x,y,z a 

This relation is exact in the low frequency limit for a medium with 
45 

isotropic elastic constants or when K points along any axis a. We can 
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2 
say that we are calculating <u > and approximating the projected mean-
square displacement by the indicated weighted average. 

2 The sum over modes in <u > may be replaced by an integral over a 
53 frequency distribution by using 

f U.l )du> = z _l |I U - ,qP|25(u-u- ). a 3a N q p a la qp 

This frequency distribution gives the density of modes of frequency OJ 
with a direction displacements on atoms in layer 8,_ . Then 

/•"max coth Hoj/2k T 
<(^a> = 2r L ^ V ^ V ^ 

SI 3 U 

where m is the highest frequency of the systems. For [Mu /2k_T] < max max B 
3 (i.e. moderate temperatures) we may apply a modified Thirring 

45 52 expansion ' of coth x =» 1/x +x/U to write 

k T 2 
<(u )2> = r~- <w~ 2U_ )> + . CS , , <u°(l- )> 

a o M ct 3a 16M k_T a 3a 
a a 

where the moments of the frequency d i s t r i b u t i o n , 

0) 

j- max 

a J 0 ° 
55 0 have been int roduced. Since <iu (£, )> = 1 the mean-square 

Qt j3 

displacement in this form requires only one material parameter, the 
inverse second moment of the frequency distribution. 
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If we repeat these steps for the displacement correlation function, 
46 we will find 

[f*U„;qp)! (I, :qp)] M u 

0 a qp qp 

If we suppose that the moments of the frequency distribution are 

insensitive to any differences in the density of the modes with the 
- + 47 

direction of q, we may replace cos q«a by its spherical average 

sinqa/qa. 

To proceed we need a model for the frequency distribution and a 

connection between |q| and <D_ . Based on the success reported for EXAFS 
qp 

we adopt the Debye model and s e t 

2 
f U , l _ J - \ {—— 5} 

a 3 a 3 [ u u U , ) ] 3 

T) 3a a 

2 1/3 and q - w(q /10 ) where Mu> - k 0 , q = (6ir p) . The Debye 

temperature 6_ is a material parameter and p is the number of atoms per 

unit volume. Directional, layer dependent Debye temperatures are no 

more than an expression of the direction and layer dependence of the 

moments of the frequency distribution: 

[ k B 9 D ( a ' V ] 2 ' 3 < u a 2 U 3 a ) > _ 2 w " 2 

Under these conditions we have 
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<,„ A 3M2
 r T ,. + Va'ha\ {6) 

and, if atoms a and 6 are in the same layer, 

y (0,a) = <(U.) (U ) > = — ^ -r-pr r-l-r „ N 
0 a a a (M M n ) 1 / 2 W a ' V 

3 U 

., T S 1 1 V 9D("-t3.)
 r
3'n V ' V °°3 V,, 

where 

, - r A f U sin Si( V) = ] — D . cos q_a sin q_a 

The sine integral may be calculated with a numerical 

form, but the asymptotic form is accurate to 1% for even the smallest 

q a of physical interest, except a » 0 where of course the DCF must 

cancel the MSD. For atoms in separate layers we know no better than to 

average the Debye temperatures. 

We can also get low temperature limit formulas which overlaps the 

high temperature forms near T » 0.29_: 
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and 

TTTq a 

™ 2 * T c o t h [ v ^ a > ] 

V ° ' a ) - 1/2 [2q a 9 , , D

 )

 3 a - - 1 - 2 ] (9) <W W - V D D 3 a 2%a) 

The first result is standard, and the second may be proven by expanding 

cotangent a power series and integrating terms. Taken together these 

two limits are adequate to represent the correlated Debye model as 

illustrated by comparison to numerical integrations in Fig. 2. 

To summarize our results then we write 

°: = i i#<(u^> + < ( u + ) 2 > _ 2 Y ( - i 5 ) ] 

a a=x,y,z a 0 

2 + •* where <(u ) > is given by eqn. (6) or (8) and Y (a,0) by eqn.(7) or (9). •* a a 
a 

Each layer is characterized by three directional Debye temperatures, 
49 50 6 . The studies by Allen and DeWett and by Clark et al may be n ,a 

used to reduce the number of free parameters. From the first work we 

may connect the Debye temperatures in the three crystal directions to 

reproduce the ratios of mean-square displacements for the theoretical 

crystals of Allen and DeWett. From the second work, we may cause the 

difference between surface layer and bulk Debye temperatures, which we 

may assume to be known, to decay such that the mean-square displacements 

approach the bulk values exponentially in three or four layers. 

We have accounted for the changes in the vibrational amplitudes due 

to the free surface boundary conditions, but both studies cited above 

assume all layers have the same mass. Fortunately, Allen, Alldredge, 
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53 and DeWett have considered just the problem of mass change, and they 

have demonstrated that, under quite general conditions, the mean-square 

displacement at high temperatures must be independent of mass, while at 

lower temperatures, 

<u > = (-,) <u > 

2 where <u > is the surface MSD for a pure crystal of atomic mass M and a 
the primes indicate a hypothetical mass change of the surface layer 

without change in force constants. Since the mass dependence is smooth 

with temperature we may incorporate the adsorbate mass dependence by 

noting that a Debye temperature written as 

c 1 / 2 

9 D - I T <FT> 

where C Q is a non-physical Debye spring constant, will reproduce the 

high and low temperature limit mass dependence of the mean-square 

displacements. 

We recognize that the Debye model for the correlated motion of 

surface atoms is physically untenable: a true Debye model describes low 

frequency modes in an isotropic continuum particularly relevant to low 

temperatures. This does not prevent the Debye model from serving as an 

interpolating form for the mean-square projected relative displacements. 

To complete our thermal average of single scattering we must 

consider the gradient terms in eqn. (5). For our particular form of the 

MSPRD, the gradient on momentum change has a simple form 
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V + exp[-|K|2o?/2] = exp[-|K|2o^/2]-[-K] 
K a a 

where 

K = K [<(u )2> + <(u )2> - 2Y (0,a)] a a a a i a a 

The direction of this gradient is skewed away from K towards directions 

with the largest MSPRD. The gradients of the amplitude with respect to 

the separation vector a are 

o ^ •*•» ^ r 8 ' " C ° 3 9 e a , a a 7 a L ( a ) 

V +g(a) - g ( a 0 ) { [ a e o a 9 ] - - - 2T " - 2 J — 
a ea 

cos 9 -[(a-L(O)) + L(a)]/2A i r i „ n. (R-a cos 9 _) 
+ — e [k f „ a + f _ ] a cos 9 „ aR aR a eR 

For the purpose of discussion we may dispense with the anisotropy in the 
+ 2 •*• 2 

MSPRD and write K - o + K with o + representing the orientational average 
a a 2 •* * " 

of o . Then using K = k(R-a) 

2 2 ikan(1-cos9 ) -k (1-cos9 _ )o ,._ r 0 ar aR a X. =» 2Re[ e e 

2 „ r 00,+ . ika+ f 00.+ . sine . n * 18 < V - _ a {g (a ) ea sin9aR cos 4, 
a cose 

ea 
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-g°°(a 0)(1-cose a R)(1^) - g°0(a0)CK.V^L(a)] ^ 

- ka g 1 0(a Q) (1-cos0aR) + g 0 1(a Q) (sin 20 a R) } 

where we use g (an) to represent g(a.) with f replacing f _. The U U an an 
derivative scattering factors f „ and f _ are described in ref. 16. In 

view of Ae = A(1+i6k) we may consider all of the terms containing 
00 -*• g (an) as phase corrections and, as they are linear in k, they 

represent shifts in the geometrical path-length difference. A 
•56 correspondingly correction term has been predicted in EXAFS. The 

2 shift is very small, 6 £ (o /a) unless soft materials, high 

temperatures, or very short bond lengths are to be investigated. The 
10 •* 2+2 correction containing g (a Q) is k o - 1.0, times the radial spherical 

wave correction shown in ref. 16 to be small. The last correction will 

be zero for forward or backscattering and will peak for 9 _ - 20°, where 
an 

the scattering amplitude changes most rapidly with scattering angle. 

However this correction will always be a small fraction of the curved 

wavefront corrections. The analogous correction for EXAFS has been 
57 studied within the plane-wave, multiple scattering theory; our work 

ere suggests that curved wave front corrections are much more 

significant. 

For the double scattering term we will ignore the gradient terms 

entirely so that 

i K a b " % a 1 KbR'* uab X2(a,b) - x 2(a 0,b Q) <e e > 
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,* + , - < [ ( i ^ a b - A V ) + ( S R - A " a b

) ] 2 > / 2 

X 2 ( a 0 , b 0 ) e 

Expanding the thermal average 

< [ ( * a b - A V ) + ( K b R - A [ I a b ) : i 2 > -

< ( ^ b * % a ) 2 > + < ( { ^ b R ' ^ a b ) 2 > + ^ab^Oa^bR^ab^ 

we see that the first two terms are MSPRD as given for single scattering 

while the last factor represents higher order correlations: 

<(K 'kun )(K •Au . )> - <(K -iL)(K -U )> - <(K «u )(K. -u )> ab Oa bR ab ab 0 bR a ab 0 bR b 

<(^ K«u )(K -u )> + <(K -u )(K ."K)> ab a bR a ab a bR b 

As before we write these factors as 

2<(K . -AU. )(K.0«Au K)> = ab Oa bR ab 

2 I ( Kab>a ( KbR>a CV8.S)-Ya(5.S)-<(uj)2>+Y (S.S)] a=oc,y,z 
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VIII. APPLICATION TO C(2X2)S/NI(001) 

Having constructed a theory of ARPEFS we now present a preliminary 

assessment of its predictions. Our study cannot be complete without a 

thorough examination of the non-structural parameters the theory 

requires, but we should expect physically reasonable estimates of the 

parameters to reproduce most of the features of the experimental curves, 

allowing our current work to guide both experiment and theory toward a 

conclusion on the practical accuracy of ARPEFS for structure 

measurements. In this spirit we have applied the theory of the previous 

sections to recent S(1s) ARPEFS measurements on c(2X2)S/Ni(001). 

The nominal structure of c(2X2)S/Ni(001) is illustrated in cross-

section in figure 3« Sulfur occupies a four-fold hollow adsorption site 

wi" h two neighbors in the plane of the figure and two equivalent 

neighbors above and below the plane of the figure. Two experimental 
18 ARPEFS measurements have been made and reported elsewhere. The first, 

which we will call [Oil], aligned both emission and polarization vectors 

with a bulk [011] axis, making an angle of 45° with the surface normal. 

The second experiment, called [001] here, used normal emission with the 

polarization vector inclined 30° from normal in a [100] direction. The 

proportional partial cross-section oscillations, x ^ > measured in these 

experiments is plotted in figure 4. The measured kinetic energies may 

be converted to wavenumbers given a value for the real part of the inner 

potential, E Q. Throughout this paper we will use experiment curves x(k) 
C O 

obtained with E.-10.5 eV, close to the reported values used elsewhere . 

A. Choice of Parameters 
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The non-structural parameters fall into five classes: the 

scattering potentials, inelastic scattering, aperture integration, 

thermal averaging, and numerical convergence. 

Our scattering potential phase shifts are those of Orders and 

Fadley,. generated by them from muffin tin potentials. These 

potentials are real, and we do not account for the ionization of the 

photoemitting atom. 

Our inelastic mean free path is also the value given by Orders and 

Fadley , X » (0.753k), where k is the electron wavevector in A . This 

mean free path lies somewhat below the "universal curve" values. We 

represent the surface as a plane for the calculation of the path length 

in the solid, and we place this plane through the adsorbed S atoms. 

Although some guidelines for this choice are available in surface 

barrier studies , any location above the sulfur atoms is equivalent: 

any attenuation of the scattered waves in the region above the surface 

plane is cancelled by the attenuation of the direct wave when the 

proportional oscillations are formed. Thus we use L(a.) = a.'Z/R-Z. A 

more sophisticated shape for the surface barrier is hardly justified if 

we persist in an isotropic mean free path. 

For the aperture half-angle we will use 3° and we will consider 

only amplitude damping, ignoring the phase shift and amplitude 

derivative terms for this small opening. The energy dependence of the 

electron analyzer used in the experimental measurements indicates that 

the effective opening may be smaller for high kinetic energy but we will 

assume a constant opening. 
59 We use the reported bulk Debye temperature for Ni of 390° 

appropriate for room temperature. We selected the z axis Debye 
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temperature for Ni as if the S atoms where a layer of Ni, adjusting the 

Debye temperature to give z axis mean square displacement on the surface 

twice the bulk value. This gave a Debye temperature of 300°K. Then the 

Sulfur Debye temperature was corrected for the overlayer mass 

dependence, giving a 9 n -405°K. The x and y Debye temperatures for 

both atomic species was selected as 1.1 times the z axis values, to give 

mean square displacements about 1.4 times the bulk values. 

The size of our scattering cluster is given by comparing the 

maximum plane wave scattering amplitude for atoms at the edge of the 

cluster to an amplitude cutoff and reducing the cutoff until no 

significant changes can be seen in the theoretical curves. Further we 

have only calculated path-length differences less than 10.5A because 

higher frequency oscillations in the experimental curves are not 

reliable; the measured curves can easily be filtered to match the 

theoretical range via the Fourier transform. We have included up to 

quadruple scattering although only in rare instances will four 

consecutive scattering events have a path-length difference less than 

10.5A. For each scattering event, the Taylor series order, T, was 

selected as the lowest integer which satisfied 

f T 

<-E£> < c 
2|a| 

where f is the maximum plane wave amplitude lf(6,k)| over the 

complete energy range for the scattering angle 9, the scattering bond 

length is |a| and C is a constant set to 0.10. By this means, nearest 
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neighbors and forward scattering atoms are given a higher Taylor order 

than more distant scatterers at more acute angles. 

The calculated theoretical curves are compared to the experimental 

data in Fig. 5 for the [001] experiment and Fig. 6 for the [011] 

experiment. The geometry for both theory curves placed S 2.19A away 

from Ni (d. = 1.30A) and spaced the first and second Ni layers by 1.84A; 

this geometry was selected by fitting theoretical calculations like 

those described here to Fourier filtered data in ref. 18. The 

theoretical reproduction of the [001] data, Fig. 5, is good: the 

oscillatory structures of medium frequency are all matched with some 

discrepancies in smaller structures. The results for [011], Fig. 6, are 

not so good with significant differences occurring at 5A , 7A and 

9A . The features at 7A and 9A are sensitive to the number of 

successive forward scattering events included in the calculation, and we 

might expect some improvement here if more accurate,scattering 

potentials are used. Nevertheless, the agreement between theory and 

experiment is good enough to suggest that distinguishing further 

improvements in the theory will require a quantitative assessment of the 

experimental reproducibility. 

Thus encouraged, we can reexamine the theory to isolate its most 

significant components, using the [011] geometry as our example. In 

Fig. 7 we compare the single-scattering curved wave results to the 

quadruple scattering curve. The single-scattering result has the 

underlying frequencies correct, of course, because the frequencies are 

dominated by the geometrical path-length differences and because we 
4 find, in agreement with Tong that the multiple scattering is primarily 

forward scattering, which focusses the single-scattered waves and shifts 
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their phase without disturbing their frequencies. However the 

oscillation phase and amplitude cannot be correctly given in the single-

scattering theory. 

This point deserves further emphasis as Bullock, Fadley, and 

Orders have questioned our previous analysis of the [Oil] experiment, 

claiming on the basis of single-scattering calculations that a great 

many atoms contribute to the ARPEFS curves. Their conclusions are based 

on comparing relative single-scattering amplitudes ignoring the focusing 

effect of forward scattering (as well as the correlation of vibrational 

motion and the aperture integration). Each neglected forward scattering 

event is approximately equal in amplitude to the single-scattering 

events that they do include. In fact if we compare the expressions for 

single and double scattering where the second scattering event has a 

scattering angle near aero, we find identical terms except for an 

additional factor of the forward scattering amplitude divided by the 

bond length. Since the forward scattering amplitude is comparable to 

the bond length for nearest neighbors, single and double scattering are 

comparable. We can see this graphically in Fig. 8 where the major 

backscattering event for the [Oil] experiment is calculated in both 

single and double scattering. In the [011] geometry, the Ni atom lying 

directly behind the S photoemitter contributes a large oscillation with 

a frequency near 4.UA. The curves show that the single-scattering 

calculation is too low by nearly a factor of two: the single-scattering 

calculations cannot be relied upon for relative scatter'rig amplitudes. 

Figure 8 also shows that the naive analysis we presented in ref 1 

is erroneous. The EXAFS-like backtransformation analysis applied in 

ref. 1 requires the oscillation phase to be known for the E n adjustment 
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procedure. Comparing the oscillations in Fig. 8 shows that the single 

backscattering phase is not close to the double scattering wave phase 

even though the oscillation frequency is unchanged. The [011] 

experiment is re-analyzed including the forward scattering effects in 

ref. 18. 

The multiple scattering curved-wave calculations are also compared 

to multiple scattering plane wave results in Fig. 7. It is evident that 

the curved wave corrections are essential to describe the ARPEFS 

oscillations. This would seem to contradict the results of Sagurton et 

al , who report insignificant cucved wave corrections to single-

scattering calculations. However, the curved wave corrections apparent 
17 in Fig. 7 are primarily in the forward scattering direction and hence 

only appear in the multiple scattering curves, which are absent in the 

treatment of Sagurton et al. 

We have also calculated the [011] curve with multiple scattering in 
17 the zero-order Taylor series (homogeneous wave) method and compare it 

to the higher order Taylor result in Fig. 9. The zero-order curve is 

quite close to the higher order one, but this is partly a consequence of 

the [011] geometry: no important scattering atoms are near the nodal 

plane in the photoemission angular distribution or near a Generalized 

Ramsauer Townsend resonance, the types of scattering events that we have 

shown require higher order treatment. 

Also in Fig. 9 we have simulated the ARPEFS curve for a 10° 

aperture but including only the first order aperture damping. Although 

some of the details of the curve will be subject to correction with more 

accurate aperture averaging, the size of the oscillations is still large 

giving considerable weight to the idea that experimental measurement 
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with 10° apertures could be used to determine surface structures. 

Assuming that a suitable electron analyzer can be constructed with this 

large aperture, the reduction in measurement time by an order of 

magnitude would be of value to the experimentalist. 

Finally, in Fig. 10 we illustrate some of the effects that 

vibrational averaging models have on the ARPEFS. In the upper panel we 

have returned to the uncorrelated Debye model of Bullock et al , but 
2 adjusting the surface Debye temperature so that the Debye-Waller o = 

2 0.01 A for the nearest neighbor Ni atoms. There are some changes in the 

details of the curve, but the differences are not profound. In the 

bottom panel we illustrate an important point: the overall magnitude of 

the ARPEFS curve connects the physical allowed values of inelastic mean 

free path and thermal vibration amplitude (assuming that the elastic 

scattering amplitude is reasonably accurate). If the vibrational 

amplitude is reduced to that predicted by the surface vibrational 
13 2 

frequency in a harmonic oscillator model, .003A , (corresponding to a 

S "Debye" temperature of 725°K) then the oscillation amplitude will be 

far too large to agree with experiment and the mean free path must be 

reduced by 40$ as in Fig. 10. Conversely low mean free path will 

require a stiffer surface vibration. This ambiguity can be removed by 

fixing the thermal parameters with a temperature dependent ARPEFS study. 

Finally, we address the question, do a small number of identifiable 

scattering atoms contribute to the ARPEFS signal? We have contended our 

experimental ARPEFS curves seem always to be consistent with significant 

scattering from nearest neighbors and backscattering atoms 

only. ' Bullock et al and Sagurton et al have challenged this idea 

on the basis of single-scattering calculations. We have shown that 
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these calculations are not adequate, but we have not shown that their 

conclusions are invalid. We note that every improvement in the model 

used by Bullock serves to favor backscactering and nearest neighbor 

scattering. Thus, the correlated Debye model gives less vibrational 

averaging for nearest neighbor, aperture integration damps atoms which 

are not nearby or backscattering, and forward scattering always 

accompanies backscattering while other angles not always so favored. We 

have calculated the ARPEFS curve including only the four nearest 

neighbor Ni atoms, the four Ni atoms closest to backscattering in the 

(011) plane lying further away from S than nearest neighbors and the 

five Ni atoms in the succeeding (011) plane which are also 

backscattering. In Fig. 11 we compare the resulting curve to the 

experiment. It seems clear that these atoms determine the character of 

the ARPEFS 3ignal. 
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IX. CONCLUSION 

We have presented a theory for quantitative calculation of the 

intermediate energy photoelectron diffraction oscillations which we call 

ARPEFS. For a complete theory we must reexamine the non-structural 

parameters, but we believe the present theory provides an adequate 

foundation for surface structure work. 

We summarize our approach as follows. We have divided the problem 

explicitly into two parts, a time dependent, semi-classical solid state 

photoabsorption problem and a stationary, cluster type muffin tin 

potential scattering problem. This commonly used division allows us to 

update the treatment of the photoemission dynamics to show that dynamic 

core hole screening and surface barrier refraction are smaller effects 

than we can hope to measure at present. The cluster scattering approach 

gives us close contact to the interpretation of the ARPEFS oscillations 

in term3 of particular scattering atoms while the application of the 

Taylor series MQNE small-atom approximation allows economical curved-

wave multiple scattering calculations with a full partial wave expansion 

of the potential even at these higher energies. This solution to the 

scattering problem and its connection to lifting operator formulations 

of the curved wave problem facilitate analytic aperture integration and 

correlated vibrational averaging of the multiple scattering series, both 

of which we have derived here. We have also given a method for 

incorporating the surface dependent vibrational anisotropy into a 

correlated Debye model for mean-square projected relative displacements. 

Our work must be compared to that of Tong and co-workers and 

Fadley and his co-workers. ' ' Tong, et al. have the advantage of 

complete summation of the multiple scattering series and of closer 
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contact to surface chemistry dependent potential phase shifts via the Xa 

multiple scattering initial state wave functions. Both of these 

advantages may be crucial in the low energy regime, but for most common 

surface systems and in the intermediate energy range, we should achieve 

multiple scattering convergence easily, and the potentials should be 

insensitive to mild electronic changes. The cluster approach allows us 

to introduce local physical effects such as photoion core potentials and 

dynamic core hole screening which do not have two-dimensional 

periodicity and thus are more difficult to introduce into LEED-like 

theories. 

The single-scattering cluster approach of Fadley et al. has 
10 simplicity to recommend it and up to a point it has pedigogic value. 

However, the focusing effect of forward scattering is a fundamental 

feature of photoelectron diffraction, and the scattering amplitudes 

predicted by single scattering are not correct. 

The apparent success of single-scattering theory to interpret the 

ARPEFS was part of our original attraction to the measurement of 

surface structure by th's method, and we must therefore examine the 

utility of the technique in light of the complications introduced by 

multiple scattering. In the intermediate energy range, multiple 

scattering is primarily forward scattering so that the qualitative idea 

that the ARPEFS oscillations represent individual scattering atoms is 

unchanged if we associate each the forward scattering event with the 

backscattering event having the same path length. Thus for the example 

given in Fig. 8, the single-scattered wave travels from the 

photoemitting S to Ni and backscatters into the detector giving a path 

length of 4.35A. The double scattered wave travels from S to Ni and 
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back to S, scattering into the forward direction giving a path length of 

4.37A. These paths are sufficiently close that we may consider the sum 

of both scattering events to represent the scattering signal from the Ni 

atom for the purpose of estimating the ARPEFS signal. The presence of 

the forward scattering does affect our procedure for extracting the 

geometrical path-length difference. For the example in Fig. 8, we may 

not simply use the Ni back3cattering phase shift to derive the geometry 

from the oscillation frequency, but instead we must perform the two atom 

scattering calculation to calculate the effect of the potentials on the 

waves. 
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APPENDIX A. FINITE ANGULAR RESOLUTION 

We must calculate the angular average of the total wavefunction 

squared: 

f a f2"" * * * 
Iave "J 3 l n 9 d 9 J d < t , (*0 + *1 + *2* (*0 + *1 + V' 

Our technique is to rewrite each wavefunction in a coordinate system 
" •+ 

where the z axis points in to the center of the analyzer aperture, R . 

We do this by expanding the wavefunctions in a Taylor series after the 

manner of ref. 17; we may then integrate the expansion variables easily. 

The series expansions that we shall use are finite so that our results 

are exact in principle. More important, for small apertures, the 

integrated expansion converges very quickly. 

We will illustrate our method by concentrating on one cross term 

from the full calculation, 

[ sin a ,2n 
I a v e - J o sin 9 de 0 

From ref 17, we have 

ikR 
•o(8) - T I C R O " ^ ' 

and 

ika ikR - i k a cos 9 „ 1 1- q „ . « _ iq<j> „ „ „ 

a q-1 p-0 ^ M 
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We refer to ref. 17 for the definitions of the angles and factors. 

Briefly, the indices p and q are Taylor series expansion indicies, 
p1 a' •* * F M(ka,R) describes the scattering of the pq component of the source 

-> wave from a potential at a into a p'q* component of a scattered wave in 

the direction R, S is a sign factor, and P!?!? is the rotation of the 

direct wave into the direction a. 

Our first step is to write these wave functions as expansions about 
•* 0 0 , •* " . Rn. The definition of F„ (ka,R) contains R as an argument of a 0 pq 

- * - • * 

spherical harmonic quantized along the a axis, i.e. z parallel to a 
(z//a). If we rotate this spherical harmonic to the z//R- system and 
expand the resulting spherical harmonic in a Taylor series, we arrive at 
a series expansion in angular factors referenced to R . When this 
series replaces the spherical harmonics in F , we may switch the order 

pq 
of summation to show that 

q P Q q'-l p«-0 R R 0 R R 0 

F ^ ' C k a * , ^ ' pq 0 q 

The polar position of R in the z//R_. system is given by e D D ; the 
0 RRQ 

• * •* 

difference in the azimuth of a and of R is given by <j> D D. Similarly we 
aRQR 

may show 

00 " * I 1 " l q I |q"| c R 0 R D" D»q» " " P ? 0 ( R ' e ) ' I I 3 i n 9RR e ( C 0 3 9 R R "1} P?0 ( R 0 ' E ) | 
1 0 q" —1 p»-0 R R 0 R R 0 1° ° 
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Our angular average becomes 

i e
i k a I H<T\ o"a» " - * I ^ v e ' - h V I i C P?0 ( R 0 E ) ] I a v e kV a q"-1 p"-0 1 U U q-1 

f ^ ' S ^ P'q\ , q' 
q«—J, p'=0 ^ H 

-iq"* 
E R 0 x 

where 

p«q« 
P'q' 

[sin e]l q"l +l" ,l + 1[ D"+D cos 9-1 Y d9 

2, 1 ('- ,' , , )*xH 0H -ika-.jj 
e e d<() 

If we define 
y » ka sin 9 aR, 

±i*. 
y + - y e 

xR Qa 

z - ka cos 9 aR, 

then we may reduce the aperture integral to 

q" q' 
P»q» , ( i J _ ) , M ' ( 1_a _ 1 ) p " * p ,

{ l _ L )
, n V 0 

ip'q' U3y- u 3 z " v 43y+' 100 
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00 
L00 sin 9 d9 I 

2 i r •, * 2 „ J n i ^ -ika»R 8 de d̂> e 

This integral is closely related to an integral encountered in the study 

of Fraunhofer diffraction through a circular aperture. Expanding a-R 

in a coordinate system where R is the z axis gives 

-ikR«a =• -iz cos 9 - iy sin 9 cos(<j> a -$ D D ) 

To separate the <j> and 8 variables we expand exp(-iy sin 6 cos 41) in 
a series of Bessel functions: 

ika-R -iz cos 9 e = e 
m»-"> 0 

The integration of <J> selects only the m*0 term from this series and 

00 
^ 0 " 2* e JQ(y sin 8) sin 9 de. 

For a not too close to tr/2, we introduce the spherical Hankel functions, 
h (z cos 9), 

T00 , ,-iz. 
^ 0 ' 2 l T ( — > h (z cos 9)(y sin 9)JQ(y sin 6) d(y sin 9) 

to facilitate partial integrations based on the recurrence relation 
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— [ X J ...U)] = X J (X) 
dx n+1 n 

Each partial integration raises the order of both the Bessel function 

and the spherical Hankel function according to 

i h (x cos 9) 1 I * 

(ix cos 9) I ' ^xSSTS 9(x cos e) ] h o ( x c o s e )' 

Iterating the partial integrations gives 

. 2 2n „ J ,(y sin a) _00 _ - I Z cos a sin a v sin a - . ,n *, > n+1 I » 2ire > (-iz) d (z cos a) r— 00 cos a L

n n n , . ,n+1 n=0 cos a (y sin a) 

* where we have written d (x) for the non-asymptotic, polynomial part of 
* h (x). This formula is useful unless a approaches TT/2. 

For small apertures sin a - a, cos a - 1, and for z not too large 

T00 2 -iz 2 J 1 ( y a ) 

I„rt " a IT e 00 yo 

This is the Franhoufer diffraction result discussed in section VI; we 
may also arrive at this result by taking the small aperture limit inside 

the integral and following the development of diffraction through a 
HH 2 2 2 2 circular aperture. Since z + y =• k a , we could expect that the 

interesting cases of z large and a small will also have y small. This 
corresponds to back or forward scattering. Taking (y sin a) small 

allows 
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J n + 1 ( y s i n a ) , 

(y sin a ) b + 1 2 n + 1 ( n + D ! 

and we may sum the series to find 

. 2 _ . ,z sin a „ • 2 sin(-r . 2 
T00 r , , sin a . n r 4 cos a,,,sin a x I n n - TT expC-iz(cos a + „ nna—)][ = ] ( r ^ — ) 00 *) cos a . 2 cos a ,z sin a, 

ln cos a 

Thus there is an attenuation for increasing ka cos 8 missing from the 
2 small aperture limit which follows sin x/x, x =* a ka cos 6/4. This 

correction is 0.87 for the extreme case of a = 10°, k = 12A , and a = 

10A; for most reasonable experimental parameters we may ignore the 

attenuation of back and forward scattering. 

Returning to the small aperture limit we can ask for the next order 

correction for nearest neighbor backscattering atoms. Then z = ka cos 9 

will be large enough to set d.(z cos a) - 1.0 yet small enough that 
2 

(za ) << 1. For backscattering y sin a - 0 and the diffraction damping 
terms are 1.0 so that 

2 2 2 00 -iz cos a sin a r. Iz sin a, 2 -iz(1+a ) I-.- * ire —; L 1 - — — — — J > ira e 00 sin a cos a 

By e =» 1 — 15, comparing to the small aperture limit we see that the 

amplitude correction is negligible in this case and the total second 
2 order phase correction is za giving a ^.5% apparent increase in bond 

length for a 10° aperture. 
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Finally we may calculate the amplitude variation corrections by 

differentiating 

p»q» , 3 '* ' | 4 ' _3_ np'+p» 00 
P'q' U 9 y 3z 00" 

As the derivatives are straightforward, we only give one here: 

,. 3 W 0 0 _ -iz cos ct 3in ct , . 2 ,. v sin a , . ,n * . 
t 1 ^ 1 ™ * 2 i r e 7^— ( v 3 i n a ) i. ~— ( - l z ) d„ z c o s a ) 
3y 00 cos a „ „ n n 

n=0 cos a 
J n + 2(y sin a) (y 3in a) 

The presence of higher order J (x)/x signals a more rapid attenuation 

with sine of the scattering angle; this behavior is further enhanced by 
2 the additional factor of y sin a. While this predicts maximum 

correction for forward and backscattering, we can see in ref. 17 that 

the scattering factors with q' or q" » 1 are zero in these directions; 

in other words the scattering amplitude does not change rapidly with 

angle in the regions ( 9 - 0 and IT) where such a change would have its 

maximum effect on the angle integration. 
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FIGURE CAPTIONS 

Figure 1 Aperture attenuation curves for electron analyzer half-angle 

openings of 3° ar.d 10°. The independent variable contains 

geometry factors from the emission direction dependent part of 

the scattering path length difference. For interference 

between direct and scattered waves A is the bond vector for 

the scattering event which immediately precedes detection; for 

interference between scattered waves, A, is the vector 

difference between the bond vectors for the interfering paths. 

The line aa gives an indication of the k range typical for 

nearest neighbors (2.2A) with sine -1.0; the line bb 
A 

corresponds to similar angles but bond lengths of 7.5A. 

Figure 2. Comparison of solutions to Debye model integrals. The mean 

square projected relative displacement along the z axis for S 

on Ni is plotted versus temperature for two different 

correlation distances, r-50A (upper curves) and r=1.2A (lowei 

curves). The z axis Debye temperature for S was 41u°K and for 

Ni it was 300°K; and arithmetic average Debye temperature was 

used for the DCF. The solid curves give results for numerical 

integration of the required integrals, dashed-dot curves are 

the results from the modified Thirring expansion of ref 54, 

anc* ;he dashed line is the low temperaure limit form. 

Figure 3 Cross-sectional view of a fee crystal (001) surface showing 

the experimental geometry for the [011] experiment. The 

angle-revolving detector is along the vector labeled e ([011] 

directI jii); the polarization vector is e. The geometrical 

path length difference is given by the bond distance from S to 
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a scattering Ni atom plus the distance from the Ni atom to the 

plane perpendicular to the emission direction and passing 

through the S photoemitter. 

Figure 4 ARPEFS modulations derived from S(1s) photoemission partial 

cross-sections. Both curves were measured from the 

c(2X2)S/Ni(001) system, (a) Emission along a [011] direction 
o 

(45 from normal); (b) Emission along the crystal normal. 

Figure 5 Numerical simulation (dashed curve) of the [001] experimental 

data (solid curve) 

Figure 6 Numerical simulation (dashed curve) of the [011] experimental 

data (solid curve) 

Figure 7 Comparison of numerical simulation curves for S(1s) ARPEFS 

from c(2X2)S/Ni(001) along [011]. (a) Multiple scattering, 

plane wave theory, (b) multiple scattering, curved wave 

theory, (c)single scattering, curved wave theory. All three 

curves used identical geometries and non-structural 

parameters. 

Figure 8 Comparison of ARPEFS single and double scattering for [011] 

emission, but only including the scattering from the Ni atom 

directly behind the S from the detector. Thin curve, single 

backscattering from Ni; Thick curve, single backscattering 

from Ni plus forward focusing through 5. The actual 

scattering angles are 173° for backscattering and 7° for 

forward scattering. 
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Figure 9 A3 in f igure 7 with (a) zero-order Taylor s e r i e s (homogeneous 

wave theory ) , (b) f u l l theory, (c) f u l l theory with aper ture 
o 

damping corresponding to 10 half angle. 

Figure 10 As in figure 7 with (a) vibrational amplitudes calculated 

without correlation of vibrational motion (mean square 

displacements instead of mean square projected relative 

displacements), (b) full theory, (c)same as (b) with mean free 
0 

path of .44k A and a S Debye temperature of 725 K for a l l 

t h r ee d i r e c t i o n s . 

Figure 11 Numerical s imulat ion (dashed curve) of the [011] ARPEFS data 

( s o l i d curve) , but including only a very l imited number of 

s c a t t e r i n g atoms, as described in the t e x t . 
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Coherent Single Bunch Effects 

Single bunch longitudinal fast blowup due to microwave instability does not csuse 

beam loss but simply lengthens the bunch unti l the bunch peak current fal ls below the 

threshold of the microwave instabil i ty. The coupled bunched modes calculated above 

have already taken into account this ef fect by using microwave lengthened bunches 

T21 (including any lengthening due to intrabeam scattering) for calculations. Transverse 

fast blowup instabil i ty (analogous to the longitudinal microwave instability) can cause 

beam loss however. Transverse and longitudinal fast instability thresholds coincide 

when 

0 b 
c V8« 0 

where b is the radius of the vacuum chamber and B the average beta-function in the 

transverse direction under consideration. If a < a , the transverse threshold is 

higher than the longitudinal. Since the oeam is always slightly below longitudinal 

threshold in its equilibrium situation, this inequality would guarantee that the beam is 

safe from transverse blowup effects. For Aladdin-3 at 800 MeV with the 515.459 MHz 

PETRA cavity and 15 bunches, we have 

a° = 1.82x10~ 3 and (o > s 1.67xl0~ 3 

e e max 

even when an average current of 200 mA is put in a single bunch. Aladdin is not 

expected to suffer seriously f rom transverse fast blowup effects. 

There is the possibility of another fast transverse instability, dif ferent from above 

and known as the transverse fast head-tai l instability. I t arises from transverse mode 

coupling even wi th zero chromaticity (synchrotron modes 0 and -1 confluence and 

T71 couple with each other). The threshold for this instabil ity is given by : 

9 
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Figure 5 
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Figure 6 
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CHAPTER 6: 

FOURIER ANALYSIS OF EXTENDED FINE STRUCTURE 
WITH AUTOREGRESSIVE PREDICTION 

ABSTRACT 

Autoregressive prediction is adapted to double the resolution of 

Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) Fourier 

transforms. Even with the optimal taper (weighting function), the 

commonly used taper-and-transform Fourier method has limited 

resolution: it assumes the signal is zero beyond the limits of the 

measurement. By seeking the Fourier spectrum of an infinite extent 

oscillation consistent with the measurements but otherwise having 

maximum entropy, the errors caused by finite data range can be 

reduced. Our procedure developed to implement this concept applies 

autoregressive prediction to extrapolate the signal to an extent 

controlled by a taper width. Difficulties encountered when processing 

actual ARPEFS data are discussed. A key feature of this approach is 

the ability to convert Wroved measurements (signal-

to-noise or point density) into improved Fourier resolution. 
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I . INTRODUCTION 

Fourier transformation is a basic tool for spectroscopic data 

analysis in several contexts. Typica l ly , Fourier transformation is 
l ? used for harmonic analysis. J The spectroscopic measurement 

records an intensity while scanning energy; the Fourier transformation 

converts th is energy spectrum into a frequency spectrum, reporting the 

amplitude and phase of a series of f ixed frequency sinusoids which sum 

to the experimental resu l t . I f the physically s ign i f icant part of the 

measurement has a d is t inc t i ve frequency dependence, the signal 

frequencies can be isolated from irre levant background or noise 

frequencies. Synthesis of the signal frequencies then yields a new 

energy spectrum whose interpretat ion may be simpler. For example, 

Extended X-ray Absorption Fine Structure (EXAFS) data are usually 
4 5 analyzed in th is manner. * 

Conceptually, Fourier analysis y ie lds the amplitude and phase of 

each individual sine wave in a series which sums to give the 

spectroscopic s ignal . Of course, sine waves continue indef in i te ly 

while spectroscopic signals typ ica l ly have a l imited range. I f the 

data analysis is res t r ic ted to a Fourier transform, th is mismatch 

inevi tably leads to a broadened Fourier spectrum: wide peaks appear 

for dominant frequencies, but adjacent peaks may overlap and the 

desired separation in frequencies may not be real ized. With the 

Fourier methods current ly used in spectroscopy th is f i n i t e -

data-range broadening cannot be reduced by more careful measurements 

wi th in a fixed in te rva l . Thus i f the measurement range is physically 
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res t r i c ted , then the a b i l i t y of simple Fourier analysis to separate 

dominant frequencies w i l l be l im i ted. 

Because of th is broadening, the advantage of the exp l i c i t 

harmonic content analysis provided by a single Fourier transformation 

is of fset by i t s lowering of frequency resolut ion. This broadening 

ef fect is extr insic to the data set: i t is i n f l i c t ed on the data by 

forc ing a clumsy method of analysis, because we force i n f i n i t e sine 
7 fi 

waves functions to reproduce a finite length data sequence. ' An 

implicit method for extracting the harmonic content (e.g., least-

squares fitting the data) would provide the required frequency 

resolution. It is, moreover, also possible to realize the advantage 

of both approaches; viz, high frequency resolution and explicit 

analysis, by combining regression methods and Fourier analysis. Such 

an approach, for a particular spectroscopic method, is the subject of 

this paper. 

To directly analyze Angle-Resolved Photoemission Extended Fine 

Structure (ARPEFS), a photoelectron diffraction phenomenon useful for 
Q 

surface structure determination, we have found the frequency 

resolving power of the usual spectroscopic Fourier analysis to be 

inadequate, because the data range is l imi ted. Fortunately, we have 

been able to adapt one of the new approaches to the Fourier analysis 

of physical measurements that allows higher Fourier resolution and can 

trade measurement precision for Fourier resolut ion. We shall report 

and discuss an adaptation of autoregressive predict ion, also known as 

maximum entropy spectral analysis, which improves the Fourier 
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resolution by a factor of two in practical cases. Autoregressive 

prediction is widely used to process geophysical and acoustical 

measurements » J , 1 ° when estimates of power spectra are required, but 

only short data sequences are available. We will demonstrate that 

autoregressive prediction can be used to extend the effective range of 

sinusoidal ARPEFS signals by an amount which increases with the 

signal-to-noise ratio. Although we apply this method to the analysis 

of ARPEFS, the method is directly applicable to EXAFS data or to other 

spectroscopies requiring high resolution Fourier transformations. 

After ARPEFS is described in Section II, the taper-and-transform 

method of Fourier analysis is discussed in Section III. 

Autoregressive prediction is introduced in Section IV. The results 

are discussed in Section V, and a summary appears in Section VI. 

U . ARPEFS 

We shall demonstrate the autoregressive Fourier technique by 
applying it to ARPEFS data. In this section we briefly describe the 
essential physics of ARPEFS and discuss why high resolution Fourier 
analysis is required. 

Angle-resolved photoemission extended fine structure is the 
oscillatory part of the photoemission current as a function of 

q photoelectron kinetic energy. Photo-excitation of an adsorbate 

core level gives an atonric-likG (direct) outgoing photoelectron wave. 

Direct propagation of this wave to our detector would give an overall 
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atomic character to the differential cross section. Elastic scatter­

ing of this wave from substrate atoms leads to a new set of waves 

which can reach the detector and which interfere with the direct 

wave. For electron kinetic energies from about 50 to 500 eV, two 

conditions are met: single elastic scattering from ion cores dominates 

and the electron de Broglie wavelength corresponds to atomic dimen­

sions. Thus, the interference modulation with kinetic energy can be 

used to derive the scattering path length and hence the position of 

the adsorbate atoms relative to the substrate. 

The ARPEFS modulations are strongly dependent on the scattering 

angle, a., the angle betwnen the photon polarization vector and 

scatterer, s-, and the angle between the detector and the polariza-

tion vector, y. In the simplest theory, the modulations, x(k), 

expressed as a function of the electron de Broglie wavenumber, k, are 

X(k) - I AjCOsCki-jO-cos 0 j ) + ^ ] t l (1) 

where 

COSBj I f U j ) ! - L j /X e k-q; jk 2 ( l -CO S «.) 
H j " COS y r\j 

for Is photoabsorption. If we call the polarization vector t, the 

emission vector k, and the vector from the emitter atom to the j 

scatterer r.t then the parameters in this formula are: 
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- > . • * • 8j : angle between e and r-
. -+• T : angle between ? and k 

-»• -v 

« i : angle between k and r. 
|f(<>i)| : scattering amplitude for ion core j at r s 

6* : scattering phase shift for ion core j at r.= 
J J 
x : inelastic scattering length coefficient 
Lj : total electron path in solid 2 o, : mean square difference in displacement between J 

emitter and scatterer j. 

The argument of the cosine contains the geometrical information, 
r,-ri cos a.. If the contribution from a single scatterer can 
be isolated, the scattering phase shift, *., can be removed and the 
structure can be determined. 

Because the single scattering theory is not valid for low 
wavenumber measurements and because the Debye-Waller factor, 

2 2 exp(-o k (1-cos o j ) , reduces the intensity of the oscillations 
for high wavenumbers, the useful ARPEFS data range typically lies 
between 3 A -rad. and 12 A -rad. As we show in the next section 
this range may not be sufficient to resolve the nearest neighbor path 
lengths when normal Fourier analysis is applied. 

III. THE TAPER-AND-TRANSFORM METHOD 
To demonstrate our Fourier method we analyzed a harmonic sum 
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(F ig . la) made up of test data consisting of two sine waves with 

frequencies of 5 A and 6 A sampled 128 times in the interval from 4 to 

11 A - rad . We added pseudo-random numbers to give a signal/noise 

r a t i o * of 2.8. Two important differences between th i s signal and 

our ARPEFS data—the k dependences of the amplitude A. and of the 
J 

phase t>;—will be examined in Section V. 

Direct application of the discrete Fourier transform, 

9(P) - J V G(fl) e - i 2 * ^ N , (2) 
n q=0 N 

to the test sequence of N points [G] gives, via the Fast Fourier 

Transform, a sparsely digitized Fourier spectrum, [g], shown in 

Figure lb. The density of points in the Fourier spectrum can be 

increased by simply appending zeros to the sequence, [G], as Figures 

lc and Id illustrate, but ringing sidelobes—Gibbs oscillations—then 

appear, as a consequence of the finite length of the data 
1 2 sequence. ' These oscillations obscure or confuse features in the 

experimental Fourier spectrum. They arise from the sharp truncation 

of the signal at the ends of the range. If y(p) is the sinusoid that 

we would get if we could measure an infinite range of data, then our 

experiment gives 

b(p) » w(p)*y(p) - oo < p < + oo (3) 

The box function, w(p), truncates the signal at the extremes of the 
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measurement interval: 

w(p)=0 p < 1 
w(p)=l 1 < p < N (4) 
w(p)»0 p > N 

for N measurements. The Fourier transform of b is the convolution of 

the transform of the sine waves (delta functions) and the transform of 

the box (sin 2x/x 2). The sidelobes oscillations of the box trans­

form are then superimposed upon the delta functions. 

The usual approach for reducing these oscillations is termed 

"taper-and-transform" spectral analysis. The sharp-edged box is 

replaced by a smooth weighting function whose Fourier transform does 

not contain large oscillations. This weighting function will broaden 

the Fourier spectrum as it reduces the sidelobe oscillations. 

Harris and Nuttall surveyed a variety of weighting functions 

and compared their performance by several criteria. For our purposes, 

the appropriate weighting function should have the highest possible 

resolution for a sidelobe-to-mainlobe ratio below the flat Fourier 

spectrum of the noise (assuming approximately normal distributed 

noise). Sidelobes falling below this level will have no more impact 

than the noise from the measurement. For sine waves, the Fourier 

signal-to-background will be the square root of half the number of 

data channels times the signal-to-noise ratio; this may be used as a 

rough guide for the weighting function selection. 

As a measure of resolution we select the full width at half 

maximum valve and label it Ar. The width of the measurement, &k, can 
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be related to this resolution as 

*r - £ f (5) 

where the factor f depends on the weighting function. For a square 

window (no weighting) f « 1.21, and the sidelobe is .22 times the 

mainlobe. Harris gives f as the "6 dB resolution" and reports the 

sidelobe ratio in dB (20 times the log-.,, of the sidelobe ratio). 
1 o 

Several of Harris' results J are collected in Table I and displayed 

in Figure 2; since Harris concentrated on weighting functions with 

very low sideiobes, we have extended his calculations to include 

weighting functions with sideiobes - 10 percent of the main lobe. 

The weighting functions in Figure 2 fall in three groups. First, 

functions (a,b) which are flat in the center and fall smoothly to zero 

at the edges have the poorest resolution for a given sidelobe ratio. 

The shape of the roll off—Gaussian or cosine—seems to have little 

effect. Second, several functions (c,d,e) without variable parameters 

can be found which have 1-10 percent sideiobes but better resolution 

than the first group. Finally, the third set includes functions 

(f,g,h) which are theoretically optimal for mainlobe width versus 

sidelobe ratio by different measures. * For sidelobe ratios in 

the .1 to .01 range these weighting functions are equivalent. 

From this last set we select the more familiar Gaussian weights 

and choose the Gaussian function width equal to 5/8 times the data 

range. This gives f • 1.6 and sideiobes equal to 3 percent of the 
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mainline. Figures3(a) and 3(b) illustrate the taper-and-transform 
results for the sine wave test spectrum using this weighting. The 
sideiobes will double while the mainlobe only narrows by 10 percent if 
we choose a Gaussian width equal to 3/4 of the data range. 

With the resolution relation, equation 5, we can look forward to 

difficulties with real measurements. With the longest ARPEFS 
q , I 

measurement range reported to date , Ak = 6.5 A -rad., the path-
length resolution will be Ar - 1.55 A. Nearest neighbor scattering 
atoms in that study appeared at path lengths of 1.96 A, 3.2 A, and 
4.46 A—these peaks cannot be resolved with taper-and-transform 
Fourier analysis. 

IV. THE AUTOREGRESSIVE PREDICTION METHOD 

The taper-and-transform Fourier method produces a Fourier 

spectrum of our signal only after we taper the signal toward zero at 

the edges of the observation interval. Beyond the observation 

interval this method therefore arbitrarily (albeit implicitly) assigns 

zero as the signal value, contrary to any reasonable expectation based 

on the sequence measured. In fact, most arbitrary choices for the 

signal in thi» region could be characterized as "unreasonable". This 

is another way of saying that we do not want the Fourier transform of 

our measured signal; we want the Fourier transform of a signal of 

which we have only a short segment. Proper selection of a weignting 

function can minimize the problems of a short data range, but this 
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does not address the underlying problem. 

The autoregressive (AR) prediction approach to Fourier analysis 

proceeds with different assumptions about the data analysis 

problem.'» 3 , 1 0 In the AR method we assume that the data in the 

(limited) data range represent a few observations of an auto­

regressive process. By least-squares fitting these data we determine 

the process parameters and solve for the Fourier spectrum of the 

process. Because the range of the AR process is not limited to the 

observation interval, much better resolution is possible. 

In an autoregressive process each data value, x can be 

expressed as a linear combination of previous values, 

m 
X P = " A Vp-q' ( 6 ) 

q=l 

The number m is called the "order" of the process; the coefficients 

a Q constitute an autoregressive filter. In modeling a data sequence 

with an AR process, a set of coefficients a and an order m must be 

calculated which can "predict" all the members of the data sequence. 

With the order less than the number of data points, the forward 

predictions in equation (6) and the backward predictions, 

'P-* ' " qll Vp-m+q ( 7 ) 

form an overdetermined set of equations for the AR coef f ic ients . The 
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structure of this set of equations is unusual since the autoregressive 

process employs data values to construct other data values. 

For n data values, we define a 2n-2m length vector, b, containing 

the values from the left hand side of equations 6 and 7. Similarly, m 

AR coefficients form a vector, a, and a (2n-2m) by m matrix, X, is 

constructed from the staggered data values as indicated on the right 

hand side. Then the least-squares equation for a is 

Xa - -b (8) 

(see also ref. 10, page 249). These equations may be solved by fast 
15 recursive methods, but, for the signal-to-noise ratios encountered 

in the analysis of extended fine structure, we find that the Singular 

Value Decomposition (SVD) method1" for solving these equations to be 

more useful. As described in Ref. 17, the Singular Value 
Decomposition of a matrix X gives 

*2(n-m)Xm = y2(n-m)x2(n-m)~2(n-m)xmymxm" ( 9' 

where U and V are orthogonal matrices and S is a diagonal matrix whose 

entries may be ordered by size. The value of this approach to solving 

least-squares problems has been discussed in detail by Lawson and 

Hanson, and the application of spectral estimation is discussed by 

Tufts and Kumaresan. Essentially, the SVD concentrates the 

significant signal content in the equations for the largest singular 

values. Then, when the solution for the original least-squares 

problem is constructed, only the largest singular values are used and 
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the remainder—those associated with noise—are discarded. Thus the 

solution for the AR coefficients is written 

P V 
a = - I -\ (UTb). (10) 

i=l a. 

where V i is the i t h row of V and o^ is the i singular 
value. 

The appropriate number of singular values, p, may be selected by 
visual inspection. Since the SVD of random numbers will be random, 
the ordered singular values with fall with a constant slope unless 
they contain information (see Figure 8, as discussed below). With the 
highly overdetermined AR system of equations, we can always see a 
section of constant slope for high index singular values: when the 
singular values rise above this slope, they contain information. 

An AR process of order m has a Fourier power spectrum 
proportional to 

1 
m -2»iqp/N,2 M • I a q e - " ' ^ ' T (11) 

Thus, one route to high resolution Fourier analysis proceeds as 

fo l lows: 

1. set a Q = 1, 

2. construct the least-squares equations and apply the SVD, 
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3. select the number of singular values and solve for a . 
q» 

q=l, m with equation 10, 

4. set a * 0 for q - M + l » % , a x where q is a large 
power of 2, e.g. q m a x=2048, 

5. fast Fourier transform the full sequence [a ], and 
6. invert the square modulus of the transform. 

While this approach has the greatest potential resolution, it is 

difficult to apply to real data. The resulting peaks are all very 

sharp, making it difficult to distinguish spurious from real hidden 

peaks. The peaks are strong functions of the order chosen and of the 

signal-to-noise ratio in the data. Furthermore, only the power 

spectrum is retrieved; the phase information is not available. 

For these reasons we have adopted a more conservative approach, 

suggested by reference 1, which sacrifices some resolution in favor of 

greatly enhanced reliability and control. This procedure is: 

1. set a Q = 1, 

2. construct the least-squares equations and apply the SVD, 

3. select the number of singular values and solve for a , 

q-1, m with equation 10, 

4. use equation 6 to extrapolate the data sequence forward, 

5. use equation 7 to extrapolate backward, 

6. multiply the resulting sequence by a weighting function, 

7. add zero value channels until the total number of channels 

is a large power of 2, e.g. 2048, and 



289 

8. fast Fourier transform the long sequence. 

The Fourier coefficients derived from this procedure can be 
3 4 further analyzed with the usual Hilbert back transformation. * We 

have usually chosen an order equal to one half the number of data 

points, and we can typically extrapolate for approximately as many 

data points forward and backward as we originally measured. 

The inherent control of this procedure comes in the examination 

of the extrapolated sequence. At some point in the extrapolation the 

new values begin to increase rapidly in amplitude and/or noise content 

(Fig. 3c). By placing the edge of our taper window at these points 

the unstable part of the extrapolation is eliminated. Furthermore, 

the window weights the extrapolated points significantly less than the 

real data values, moderating the effect of the new values on the final 

spectrum. This last advantage is crucial for practical spectroscopic 

signals which are not exact sinusoids. 

An example of the extrapolation is shown in Figure 3c, and its 

effect on the Fourier spectrum is shown in Figure 3d. The signal in 

Figure la was fitted to an AR process of order 64 and 4 singular 

values were required (as expected for 2 real sinusoids ). 

Extrapolation gives Figure 3c. Figure 3d dramatically illustrates the 

potential of this method for increasing resolution in Fourier analysis. 

At this point it is useful to note that the ARP-Fourier transform 

method is not a "deconvolution" of the data which can produce spurious 

peaks through unreliable resolution enhancement. As we illustrated in 
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Figure 4, our net process solves a problem with the 

taper-and-transform Fourier method. In Figure 4a i t i s obvious on 

visual inspection that more than one frequency is present, but the 

Fourier transform will have Gibb's osc i l la t ions . When the taper 

(weighting function) i s applied as in Fig. 3b, the beat structure is 

lost while the Gibb's osci l lat ions in the Fourier transform are 

suppressed (Figure 3 (b) ) . From this perspective the unadorned Fourier 

transform and the taper-and-transform process are clumsy operations 

that obscure the frequency information inherent in the data. When the 

ARP is applied, Figure 4(c) , data on the ends of the measurement are 

no longer lost when the window function is applied, Figure 4(d). 

Our overall procedure requires three parameters: the number of 

singular values, the number of AR coefficients, and the final taper 

width. As discussed above and in reference 17, the number of singular 

values may be determined by inspection. For poor signal-to-noise 

conditions, the size and variabil i ty of the singular values associated 

with noise will make th is choice more d i f f icul t . Autoregressive 

orders between N/2 and 3N/4 are are recommended by Tufts and 

Kumaresan. Our choice of a taper width at just less than twice 

the measured data wioth reduces the importance of our choice in the 

f i r s t two parameters. 

Up to this point we have assumed that our measurement can be 

successfully approximated by an autoregressive process. In 

reexamining this point we divide the question in two parts : i) how 

closely can a cosinusoidal series be represented by an autoregressive 
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process, and ii) how closely does a cosinusoidal model fit ARPEFS 

data? For the first part we can note the discussion of Ulrych and 

Ooe . Beginning with a finite difference equation for a sinusoidal 

series, they demonstrate that such a series can be represented by a 

combination autoregressive, moving average (ARMA) model; they also 

show that such an ARMA model can be represented by an infinite order 

pure autoregressive model. Numerical work by Tufts and Kumaresan 

supports the conclusion that AR models can represent sinusoidal 

series; their method can give resolution near the theoretical limit 

even for low signal-to-noise ratios. 

The second question is more difficult to address, but it impacts 

every method of harmonic analysis applied to ARPEFS. Specifically, if 

the cosine form breaks down, the taper-and-transform approach will 

fail as the autoregressive approach does. We will examine some of the 

possible problems in the next section. 

V. DISCUSSION 

Two important features neglected in the sine wave model spectrum 

are the amplitude and phase variation with k in real ARPEFS data. The 

sine wave model spectrum neglected any variation in frequency due to 

nonlinearity in 0. and any variation in amplitude due to 
J 

| f ( o i ) | e x p [ - o 2 k 2 ( l - c o s O - L . / x k ] . 
J J J 

To examine a model containing rea l i s t i c amplitude and phase 

functions on a scale s imi lar to our data we have generated a spectrum 
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by adding noise to 

2 
X(k) - cos(173*)|f(173*)|cos [4.46k + «(173*)] e - ' 0 2 k _ 5 - 3 / k 

2 
• 2 cos(116")|f(116*)|cos [3.21k + *(176')] e " ' 0 1 4 * ~ 5- 3 / k, 

where f and t are derived from summed partial-wave phase shifts. 

Direct application of the AR prediction gives the result in Figure 5a 

and the Fourier transform in Figure 5b. The increase in amplituue at 

low k in the linear prediction is a consequence of the amplitude 

structure for scattering through 116": jf(116")| peaks at 

~ 5 A" -rad as shown in Figure 6. The AR method presumes that this 

is a rising signal and continues the trend to lower k. At higher k, 

the AR method tries to force this single decaying frequency to be 

modeled by infinite sine waves: it must sum two nearby frequencies to 

simulate the amplitude decline. The Fourier spectrum then contains a 

split peak for this scattering event. 

The rising low k amplitude effect can be recognized in the 

predicted spectrum and remedied by analyzing kx(k). The k weighting 

helps to cancel the decline of |f(a,)| at higher k and has been used 

extensively for analysis of EXAFS data. This weighting evens out 

the linear prediction shown in Figure 5c, and the resulting Fourier 

transform amplitudes (Fig. 5d) are more similar to the average 

amplitudes of the signals within the leal measurement range. 

Whatever weighting is employed, the important separation of the 
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Fourier frequencies is still effected by the autoregressive prediction 

followed by Fourier transformation. The amplitude variation places an 

upper limit on the resolution obtainable from the AR analysis of real 

data. When the amplitude function falls with the same shape as the 

beat envelop, then the AR analysis cannot distinguish between them. 

Variation of the frequency with k violates the stationary 

assumption in the application of the autoregressive model. Thus 

ARPEFS peaks with phase functions strongly nonlinear in k will be 

modeled incorrectly, probably being represented as more linear than 

they really are. If the phase has an average slope at the beginning 

of the data range which is different from its average slope at the 

end, the extrapolation procedure sometimes yields a sligntly doubled 

or asymmetric peak which must not be mistaken for two. 

The frequency variation may also explain the empirical selection 

of a large process order m. In the usual application of the AR 

technique 1 0 the order is chosen by some criterion based on the 

prediction error; that is, the difference between the linear 

prediction and the data values. While this criterion can give a 

prediction filter for pure sinusoids in the presence of noise, valid 

for infinite range, we seek an adequate representation of a more 

complex oscillating signal over a small range. Our signal does not 

result from any autoregressive process, and a large order may model 

nuances of nonlinear phase and noise. 

The impact of modelling this non-stationary signal with an 
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autoregressive filter is minimized because we do not rely on the 
Fourier spectrum itself for the final analysis. Following Martens,4 

we apply a Hilbert transformation3 to our data. From the complex 
exponential form of the cosine 

A, Up.k+a.) A. -1(p.k+*,) 
AjCostPjk + *j) = - £ e J J + - J e J J (13) 

we see that the transform of the cosine is real and peaked near p. 
w 

and -p.. By using only the positive frequency components, a complex 
back transform gives 

A, itP.k+M A. iA. 
-Je J J - » J c o s (p jk+* j) +- 2isin(p J.k+* j) (14) 

The amplitude and phase functions of the original cosine wave can be 
derived as the amplitude and phase of this complex sequence. For our 
signal the actual cosine argument is kfr-^rj + i>-, so we sub-
tract the potential phase shift, £., and fit the resulting sequence 

w 

to a line. The slope of this line gives the averaged geometrical 
position we seek. The crucial point is this: we only use the cosine 
phase function in the region of k where we made actual measurements. 
Thus the entire AR prediction Fourier analysis serves only to isolate 
a single frequency. The position and amplitude of the Fourier peaks 
need not be accurate for us to obtain accurate geometries. 

This complex backtransformation procedure does introduce one 
important source of error: we lose the wings of the Fourier peak 
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spectrum for the oscillation we isolate. This implies that the 

non-linear phase information and strong amplitude dependence of the 

ARPEFS oscillation will be missing in the backtransformed peak: we 

necessarily derive an averaged frequency and smoothed amplitude 

dependence. While not ideal, this result is certainly preferred to 

mixing the arguments of two different cosine oscillations. 

Since there are a large number of variable parameters in even 

this simple model, we cannot yet give a complete analysis of the 

effects of background subtraction and signal/noise ratio. Generally, 

the AR prediction produces a "peakier" spectrum than one might imagine 

being correct. ' Thus, errors in background subtraction appear as 

small peaks at harmless low r. values. When the beat pattern of two 

peaks approaches the width of the actual measurement range, then 

errors in background subtraction may interfere with resolution. 

Signal/noise ratios greater than two allow approximately double 

the resolution of the taper approach, with errors in geometry of 

< 0.02 A. Errors increase rapidly for signal/noise ratios falling 

below 1. Until more experience is acquired with the AR method, 

prudence suggests examination of these effects for model spectra 

closely mimicking the actual data before assigning error limits. 

As a practical example of the improved analysis of ARPEFS data, 
Q 

we have analyzed the modulations (Figure 7a) in the sulfur Is 

photoemission intensity emitted along the [110] direction from a 

c(2x2)S/Ni(100) adsorbate system. The Fourier transform via the taper 

approach shows distinct peaks (Figure 7b), but each peak is an average 
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of several path-length differences. The singular values for the 

application of an 128 order AR prediction are shown in Figure 8. The 

slope of the singular values is roughly constant—as indicated by the 

plotted derivative—above singular value 17. Thus 17 principal 

vectors were used to construct the AR filter. The AR prediction is 

shown in Figure 7c, and the Fourier transform gives Figure 7d. Now 

the individual peaks are clearly separated and they can be assigned to 
Q 

scattering path-length differences. 

VI. SUMMARY 

Autoregressive prediction provides a method for greatly 

increasing the resolution of Fourier analysis of sinusoidal data. 

Using the extrapolate-taper-transform method described here, we can 

always do as well or better than the taper-transform approach. If the 

signal/noise ratio is so poor that the extrapolation fails immedi­

ately, then the AR procedure reverts to the usual taper method. For 

all other cases the resolution is improved. Furthermore, the method 

is easy to implement, computationally efficient, and controllable. 

The resolution improvement afforded by the autoregressive 

prediction method scales with the quality of the experimental measure­

ments. Low precision or widely spaced measurements do not contain 

enough information to accurately detemine the autoregressive coeffi­

cients. Our moderate precision measurements yield moderate precision 

autoregressive coefficients; our coefficients allow successful extra-
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polation as we have demonstrated, but they are not precise enough for 

the analytic power spectrum formula. 

Two improvements in the application of autoregressive prediction 

to spectroscopic data require further invest igat ion. F i r s t , the 

s ta t i s t i ca l accuracy of the data values can vary s ign i f i can t ly across 

a spectrum; the least-squares f i t of the autoregressive coeff ic ients 

should be weighted accordingly. Second, the autoregressive method 

assumes equal intervals between measurements; for ARPEFS we do not 

have equally spaced data. This problem is more d i f f i c u l t : the AR 

process given in equation (6) steps by a single f ixed amount. 

However, there should be some AR process whose Fourier spectrum 

closely approximates the Fourier specrum of our data even i f our 

measurements do not f a l l on an even mesh. Such questions are being 

examined in the signal processing l i t e ra tu re , e .g . , references 20 and 

21 , and new methods should be available soon. 

Our f ina l procedure is empirical for the same reasons the 

fami l iar taper-and-transform method is empir ical. Ideal frequency 

analysis—the separation of our signal into each component osc i l ­

lation—cannot be accomplished with noisy, f in i te-range measurements. 

Furthermore, harmonic analysis is only approximately val id for our 

spectroscopy: nonlinear phase sh i f ts and energy-dependent scattering 

power preclude pure sine-wave signals. The procedure we have > 

described here w i l l , however, give a useful , high-resolution Fourier 

transform from real spectroscopic signals. 

Formulation of the autoregressive prediction method from the 
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vantage of information theory has led to its description as maximum 
7 A in 2? entropy spectral analysis. , 0 * u * Faced with the problem of 

estimating the Fourier transformation of an oscillatory signal given 

only a short measurement range, the autoregressive method fits a 

general oscillatory model to the measurements. The resulting over-

determined set of equations are reduced by maximizing the entropy of 

the model. Thus, of all the possible models which give the same least-

squares error, we select the model which adds the least new informa­

tion, i.e. the one with the most signal entropy. 

Data analysis methods can generally be compared by examining the 

information they add to the measurement. The AR method assumes that 

the data represent a process whose Fourier spectrum does not change 

outside the data sequence: it attempts to add no new 

information. , 8 , 1 0 The taper-and-transform approach added the 

"information" that the signal was zero where it was not measured; this 

is contrary to any reasonable expectation. Directly fitting the data 

to a model of the physical process (eqn. (1)) would be the ultimate 

addition of information, but small uncertainties in the measurement 
c and in the model usually prevent this approach"' from being 

successful. 
Note that extrapolation after direct physical model fitting has a 

different meaning than our AR prediction. Extrapolating by evaluating 

a physical model estimates a physical signal. The AR extrapolation 
does not estimate a physical signal; instead it reflects the frequency 

content over the original measured interval. The AR prediction 
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estimates an autoregressive model, not a physical one. We are not 

attempting to predict a measurable quant i ty; the extrapolation is 

merely one step in a harmonic analysis of our data. 

F ina l ly we note that th i s conservative approach to AR Fourier 

analysis can also be applied to a number of spectroscopic problems. 

Extended X-ray Absorption Fine Structure (EXAFS) has a nearly 

identical form to eq. (1 ) , and the autoregressive prediction would 

allow high resolution Fourier analysis of more general u t i l i t y than 
1Q the beat method of Martens. Many problems in spectroscopic 

deconvolution via the Fourier transform can also benefit from this AR 

approach. Direct AR power spectral analysis has been successfully 

applied to th is problem, ° but the danger of spurious peaks is 

par t icu lar ly acute when we are seeking resolution enhancement. An 

extrapolation-taper procedure would allow a more contro l led, albei t 

more moderate resolution enhancement. 
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Table I. 
Resolution factors and sideiobe ratios for Fourier weighting functions. For a data range 
of Ak, the full width of the Fourier amplitude mainlobe for these weighting functions is 

AR where arik « 2«f. The ratio of the maximum sideiobe peak value to mainlobe peak is SL. 
These results are displayed in Figure 2. 

Curve in Weighting Formula 
Figure 2 Function h • &k/2 B f SL_ 

None w(x) = 1 1.20 .22 
(a) Tukey;W .75 j . 3 8 .21 

for B=0 for |x-h| < Bh w(x) = I; .66 1.43 .20 
for x-h >Bh w(x) = 33 1 > 7 2 u 

, , r . . _ .25 1.80 .11 
j - j -cos[ . ( x ~ j j h )1 -00 2.00 .03 

(b) Gaussian Step, .125 1.37 .21 
Of .250 1.47 .18 
Error function P + ' Q . . f ,*-Bh J f ' ' »^/2h-Bh-x v| 1333 K72 !l4 

.500 2.02 .04 

.750 2.18 .02 
1 / c Si Bh J | / c -7Bh J 

(O RieszlO 1.0 - 1 ^ 1 2 - K 5 9 '° 9 

(d) Cosine™ r X-h -, - 1.65 .07 :°s[(^) »/2J 
(e) Riemann . - 1.74 .05 

[sin(^) , ] / { ^ ) . 

to H a n n 1 n 9 f n r , h . PH „#.v -50 1.57 .18 ° CO 



Table I continued. 

Curve in Weighting 
Figure 2 Function 

Formula 
h •= ak/2 SL 

(f) Van Oer Maas B I ) [ B V I - ( (x-h/h)2] 

2hVl-((x-h)/h)z 

(9) Gaussian 

(h) Kaiser-Bessel 

• \ a(x-2h) + 7 «(x) 

exp{-ln2[^^-] 1 

I0LBVl-((x-h)/h)2j 
2h 

.5 1.14 .26 
1.0 1.17 .20 
2.0 1.28 .15 
3.0 1.38 .10 
3.5 1.43 .08 
4.0 1.51 .06 
5.0 1.65 .03 

.80 2.22 .001 
1.00 1.82 .01 
1.24 1.58 .03 
1.50 1.45 .07 
2.0 1.33 .12 
2.4 1.29 .15 
3.0 1.26 .17 
4.0 1.23 .19 

.5 1.21 .21 
1.0 1.24 .18 
1.5 1.29 .15 
2.0 1.36 .12 
3.0 1.50 .07 
3.5 1.58 .04 
4.0 1.65 .03 
5.0 1.80 .01 

00 o 4* 
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Figure Captions 

Figure 1. (a) Sum of two sine waves, periods of 5 and 6 A, plus 10 

percent pseudo-Gaussian noise, (b) Fourier amplitude of 

the sequence in 1(a). (c) Extension of the sine waves of 

(la) by appending zeros. Set above the signal is a plot of 

the weighting window function; it has a baseline of zero 

and a height of one. (d) Fourier amplitude of Fig. 1(c). 

Figure 2. Resolution factor versus sidelobe-to-mainlobe ratio for 

several weighting functions. Abcissia is f in arak = 2*f; 

for a data range of 6.3 A -rad., f will be the Fourier 

resolution in A. Ordinate is the maximum sidelobe peak 

value divided by the mainlobe peak. The plotted values are 

given in Table I. The point at f = 1.21 and sidelobe = .22 

represents an unweighted Fourier transform. The weighting 

functions are given in Table I. (a) Tukey weighting, ref. 

10, pg. 66. This function is flat in the center and rolls 

off as a cosine on the data extremes, (b) Gaussian Step 

or Error function. Similar to (a) but using a Gaussian 

roll-off. (c) Riesz polynomial, ref. 10, pg. 65. 

(d) Riemann weighting, ref. 10, pg. 65. (e) cosine 

weighting, ref. 10, pg. 60. (f) Van der Maas weighting, 

ref. 11, pg. 90. (g) Gai/ssian weighting, ref. 10, pg. 69, 

(h) Kaiser-Bessel weighting, ref. 11, pg. 89. 
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Figure 3. (a) Extended sine wave from Fig. 1(c) and, set above, the 

weights used for taper-and-transform Fourier analysis. The 

base of the weighting function is zero and its peak is 

one. (b) Fourier transform of sine wave times weights 

from Fig. 3(a). (c) Autoregressive prediction of the 

signal in Fig. 1(a), using an order m= 64, half of the 128 

points. The new weights is set above, (d) Fourier 

amplitude of the product of the prediction results and 

weights from Fig. 3(c). 

Figure 4. Weighting function interaction with autoregressive 

prediction, (a) Test sequence of two sine waves and noise 

as in Fig. 1. Note the beat structure, (b) Data from 

(a) times Gaussian weights. Gaussian width is 5/8 times 

the data range. Note the loss of beat structure, (c) AR 

prediction of the data in (a), (d) AR prediction from (c) 

times Gaussian weights. Gaussian width is 5/8 times the 

extended data range. Note the reduced emphasis of the 

extrapolated region. 

Figure 5. (a) Autoregressive prediction of a simulated signal from 

equation (9). (b) Fourier amplitude of Fig. 3(a) times 

Gaussian weights, (c) Autoregressive prediction of k 

times the simulated signal in Fig. 3(a). (d) Fourier 

amplitude of Fig. 3(c) times Gaussian weights. 
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Figure 6. Magnitude of the scattering amplitude, |f(o,k)|, for Ni 

atom at a » 116* and a = 173". The mild amplitude behavior 

of the scattering for 173* gives a simple Fourier peak 

shape; the steep drop at high k for scattering through 116* 

leads to a doubled Fourier peak. 

Figure 7. (a) Angle-resolved photoemission extended fine structure 

from S(ls) c(2x2)S/Ni(100) along [110]. The weighting 

function used for the taper is plotted offset above the 

data. Its minimum is zero and maximum is one. (b) Taper-

and-transform Fourier amplitude for (a), (c) 

Autoregressive prediction of (a). An order M=64 was used 

for 128 .joints interpolated from the raw data. The 

weighting function is set above as for (a), (d) Fourier 

amplitude of the product of the window and extrapolated 

data in (c). 

Figure 8. Selection of rank for the singular value decomposition for 

order 128 autoregressive fit to the data shown in figure 

7. The singular value decomposition algorithm (ref. 17) 

automatically orders the singular values by size. The 
p values o-, are plotted versus i as solid circles 

connected by a thin line; their magnitude is given by the 

left hand axis. The point by point differences are plotted 

as the thick line with the right hand axis giving the 

scale. The rank is selected as the point where the 

singular values depart from constant slope. 
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CHAPTER 7: 

THE MEASUREMENT AND ANALYSIS OF ARPEFS DATA; APPLICATION 

TO C ( 2 X 2 ) S / N I ( 1 0 0 ) 

ABSTRACT 

We describe our procedures for deducing adsorbate geometry from 

core-level photoemission measurements as they are applied to 

c(2x2)S/Ni(100). Extracting the oscillating part of the sulfur (1s) 

photoemission partial cross section gives the Angle-Resolved 

Photoemission Extended Fine Structure. Fourier transformation yields 

peaks at distances characteristic of the local site geometry and in most 

cases closely related to geometrical path-length differences. Multiple-

scattering, curved-wave calculations are fitted to Fourier filtered data 

to extract the geometry; the Fourier filtering reduces the size of the 

scattering cluster and the number of free parameters in the fit. 

Sources of error in this first ARPEFS measurement are discussed as a 

guide for future work. We find a S-Ni bond length of 2.19 A (d, = 1-31 

A), a S-Ni second layer bond length of 3.14 A corresponding to a k% 

expansion of the top Ni layer, and some evidence that Ni atoms in the 

second Ni layer beneath open sites in the c(2x2) overlayer have a larger 

expansion from the first layer. 
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I. INTRODUCTION 

Recently, we reported a new approach to determining surface 

geometries using high-kinetic-energy, long-energy-range photoelectron 

diffraction measurements. Experimentally we measure a series of angle-

resolved core-level photoemission spectra. Thus we begin with the 

surface sensitivity and chemical specificity of photoemission; the angle 

resolution adds geometrical selectivity. As we increase the 

photoelectron kinetic energy, we observe intensity oscillations about an 

average atomic-like cross section. For electron energies from 

50-500 eV, the origin of these partial cross-section oscillations— 

interference between direct and scattered photoelectron waves—directly 

relates to the total cross-section oscillations, the extended x-ray 
2 3 absorption fine structures (EXAFS). ' Like EXAFS, this type of 

photoelectron diffraction measurement can be expressed as interference 

oscillations whose frequency is dominated by geometrical path-length 

differences and these oscillations can be frequency analyzed to display 

the structure information directly. To suggest these close connections 

and to distinguish our new approach from other techniques which use 

photoelectron diffraction, we will refer to the modulations in 

photoemission partial cross section above 50 eV as angle-resolved 

photoemission extended fine structure (ARPEFS). 

In this paper we discuss the analysis of S(1s) ARPEFS measured 

along the [011] and [001] crystallographic directions from a c(2x2) 

sulfur overlayer on a Ni(001) crystal surface. The nominal geometrical 
1-6 structure of this overlayer is well known. Our purpose in this paper 

is Co report, in detail, procedures we have developed to extract the 

geometry of S on Ni, including the distance between the S and the second 
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Ni layer atoms from angle-resolved photoemission intensity measurements. 

We hope to demonstrate that these same procedures provide a basis for 

determining the structures of more complicated adsorbate systems. 

Furthermore, we discuss sources of systematic and random error which 

could lead to incorrect or inaccurate structures. 

A simple elastic scattering theory for ARPEFS predicts that angle-

resolved photoemission intensity, I, oscillates about the atomic partial 

cross section, I , according to 

I = I 0 O + x ) 

x(k) = £ A.(k) cos [k( r . - r . cos 9.) + <J>.] 
£ J J J J sJ 

where A.(k) contains the elastic scattering amplitude, inelastic 

damping, aperture integration, and thermal averaging, r. is the bond 

length, 9 is the scattering angle, <j>. is the scattering phase function, 

and the sum is over all atoms j with significant amplitude. Our task 

then is to measure I, the photoemission intensity, convert it to x(k)» 

and extract the path-length difference (r.-r. cos 9.). These three 

steps correspond to the three main sections of this paper. We describe 

the photoemission measurements in Section II, the momentum scale 

conversion in Section III, and the frequency analysis and geometry 

determination in Section IV. 
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II. ANGLE-RESOLVED PHOTOEMISSION 

The experimental aspects of these ARPEFS studies are discussed 

separately in the subsections below. 

II.A. Sample 

The c(2x2) overlayer of S on Ni(100) has become one of the 

prototype surface structure problems both because of its importance and 

because of easy preparation. The bonding of sulfur to Ni crystals is of 

technological importance primarily because sulfur degrades Ni based 
7 8 

catalysts. The c(2x2) overlayer is easy to prepare either by 
segregation of bulk sulfur impurity or by decomposition of H_S or (S ?~). 

4 6 
Thus this surface system has been studied by LEED, surface EXAFS, 

5 Normal Photoelectron Diffraction, and Azimuthal Photoelectron 
9 Diffraction. Our primary concerns in selecting a system for the first 

ARPEFS measurements were a well known structure and a wide accessible 

energy range above a (1s) core level. The c(2x2)S/Ni(100) is ideally 

suited for these reasons. 

The Ni crystal was cut on a diamond saw from a 1/4" diameter boule, 

oriented, and polished to < 1° from the perfect (100) face. The final 

polish with 5u mesh A1_0, powder in ethanol was followed by a 10 second 
10 etch. The Ni crystal was strapped to a resistively heated Ta sample 

block by .005" Ta strips spot-welded to the sample block; the sample 

block was suspended on a 3 axis manipulator. Argon ion sputtering was 

effective in removing surface sulfur contamination, but each annealing 

cycle segregated more sulfur to the surface. Thus repeated cycles of 

annealing to 800°C and sputtering were used. When the sulfur was 
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depleted, the crystal was exposed to .5L 0„ and annealed to 

approximately 750°C. Experience showed that this step removes surface 

carbon but leaves no oxide behind. The final clean crystal was not 

examined by Auger or LEED prior to the H^S exposure, to reduce the 

electron beam induced deposition of carbon. 

The Ni crystal was exposed to - 2L H 2S gas from a 5y aperture. 

Mass spectra of the chamber background gas during dosing showed an 

increase in H ? gas at the beginning of the gas exposure. Heating the Ni 

crystal to -200°C produced a strong c(2x2) overlayer pattern. 

II.B Electron Energy Analyzer 

The angle-resolved photoemission analyzer used for these 

measurements has been previously described. Its important features 

for these measurements are: i) complete 2 axis motion allowing an 

unhindered selection of angles, ii) multichannel energy analysis for 

rapid measurements with synchrotron light, and iii) maximum ± 3° angular 

resolution. The angle resolution increases for kinetic energies (E ) 

greater than the pass energy (E =160 eV) as the transmission of the 

analyzer falls like 1/(E.-E ). The analyzer was operated for maximum 
K p 

transmission giving an energy resolution of -1 eV. 

II.C Photon monochromator 

These S(1s) photoemission measurements were made possible by the 

Stanford Synchrotron Radiation Laboratory's ultra-high vacuum soft x-ray 
12 double crystal monochromator. The Ge(111) monochromator crystal gave 

high flux with 1.1 x 10 resolving power for the 2.5 keV - 2.9 keV range 

U3ed for these measurements. No.detectable scattered light entered the 
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sample chamber. The light is polarized in the plane of the storage 

ring. 

II.D Photoemission Measurements 

Two separa te experimental geometries were used. In the f i r s t , 

which we c a l l [011], the NiOOO) c rys ta l was r o t a t e d about the sample 

normal to place a [011] axis in the plane of po la r i za t ion with the [011] 

d i rec t ion p a r a l l e l to the po l a r i za t i on vec to r . The angle-resolved 

detector was aligned with the [011] ax i s ; the emission and po la r i za t i on 

vector d i r e c t i o n s were thus c o l i n e a r . In the second experiment, on a 

d i f ferent c r y s t a l , the po l a r i za t i on vector was pointed 30° from the 

c rys ta l normal in a [100] d i r e c t i o n , and the analyzer was o r i en ted for 

normal emission. 

With a photon energy of 2504 eV, the e l ec t ron emission spectrum was 

measured for 40-500 eV. This provides the e l ec t ron i n e l a s t i c - s c a t t e r i n g 

prof i le and the e lect ron energy analyzer t ransmission function shown in 

Fig. 1. For photon energies between 2535 eV and 2894 eV, su l fur (1s) 

core- leve l photoemission measurements were made every 3 eV by advancing 

both the photon energy with the double c r y s t a l monochromator and the 

e lect ron energy, with the energy analyzer maintaining the r e l a t i o n hv = 

E. -2474 eV. A typica l spectrum i s shown in F ig . 1. This s e t of 120 

photoemission spectra for each of two d i r e c t i o n s cons t i t u t e s our data 

for the s t r u c t u r e ana lys i s . 

I I .E Sources of Error 

Errors in the experimental measurements of angle-resolved core-

level photoemission l imi t the u l t imate accuracy of our geometry 
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determination. The most serious problem is the accurate angular 

placement of the polarization and emission direction vectors. 

The polar angle of emission with respect to the crystal normal is 

the most important angle for geometry determination. This angle is 

determined by electron analyzer two axis goniometer and the sample 

position. The analyzer goniometer was mechanically ruled and aligned; 

it should be reproducible to <0.2°, but its accuracy is limited if the 

sample is not placed at the center of the goniometer rotation. The 

sample position is determined by maximizing the photoelectron count 

rate; magnetic fields, incorrect alignment of the electron optics on the 

goniometer, and misplacement of the photon beam can lead to a sample 

position away from the chamber center. The sample polar angle is 

calibrated by laser autocollimation on the polished face of the crystal. 

The optical surface can be + 1/2° from the ideal (100) face; subsequent 

in vacuo cleaning could increase this difference. The laser 

autocollimation is referred to the surface of a vacuum chamber window; 

the angle between the window and the analyzer goniometer must be 

inferred from the construction of the window and the vacuum chamber. 

Once calibrated, the sample position is determined by rotation of a 

sample manipulator; errors may be introduced if the crystal does not lie 

on the axis of rotation or if liquid nitrogen cooling coils or 

electrical wires apply torque to the sample while it is reoriented. 

Combined, these errors may well be as large as ±2°, although some 

geometries, e.g. normal incidence light, normal emission, or sample 

normal oriented perpendicular to the autocollimation reference window, 

can be double-checked more easily. 
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The azimuth of emission and polarization is determined by visual 

alignment of Low Energy Electron Diffraction spots with respect to the 

vacuum chamber base; although fairly crude, this procedure can be rather 

precise. The LEED spots report the surface crystallography directly and 

only a strong magnetic field across the LEED apparatus axis would affect 

the azimuthal position of these spots; spots separated by -10 cm can be 

aligned to within ± 1 mm to give a 1° error. 

The polarization vector position is less important for surface 

geometry. The synchrotron light is polarized in the horizontal plane. 

Since the position of our sample is referred to our vacuum chamber, we 

place the vacuum chamber along the photon beam by centering the beam at 

the entrance to the chamber and at the electron analyzer on 

phosphorescent screens. The rotation of the chamber about the beam is 

then set with a mechanical level. It is difficult to estimate the final 

error in alignment, but the most sensitive angle—the rotation about the 

beam—can be reproduced to < 1°. 

Other errors in the photoemission measurements primarily affect the 

measured ARPEFS amplitude and not the oscillation frequency. Steps on 

the crystal surface or an improper dose of S atoms will lead to S 

photoemission not representative of an ordered overlayer; this will 

typically reduce the measured oscillations as they are expressed as a 

fraction of the total partial cross section. 

Although this catalog of errors is a rather dreary list, it is 

roughly the state-of-the-art in angle-resolved photoemission 

measurements with synchrotron radiation. In reviewing this list one 

should recall that the apparatus used for this first ARPEFS measurements 

was not designed for high precision structure determination. The more 
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serious problems detailed above can be remedied easily now that their 

importance is understood. 
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III. THE EXTENDED FINE STRUCTURE 

III.A Method 

From the raw photoemission measurements we must derive the 

oscillations in the partial cross section. We have developed a three-

step procedure which relies only on photoemission measurements. These 

steps are: 

i) estimation of the photoemission intensity at each kinetic 

energy by non-linear least-squares fits to a simple line shape 

function, 

ii) normalization of these intensities for photon flux and 

electron analyzer transmission variations using background 

intensity measurements, and 

iii) estimation and removal of the atomic partial cross section, 

V 
In this section we examine each of these steps in detail. 

Before proceeding, we pause to discuss the energy scales involved 

in the analysis. Our raw data consists of a series of photoemission 

spectra for increasing photon energy, hv. Each spectrum is centered on 

the sulfur 1s core-level photopeak but includes -10 eV of the electron 

emission spectrum to higher and to lower kinetic energy. The photopeak 

mean kinetic energy, E, is related by the S(1s) binding energy, E n, to 
D 

the photon energy, hv: 

Our measurements and our analysis depend only on the photopeak kinetic 

energy, E; we do not use the monochromator energy scale or the value of 
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the binding energy. We label each spectrum by the photopeak mean 

energy, E, and electron energy within each spectrum we will call E . 

To estimate the photoemission intensity, we decompose each 

photoemission spectrum into peak, tail, and background contributions. 

Fig. 1 demonstrates the decomposition for E = 264 eV. Notice that the 

least-squares fit also provides the value of E. We employ simple 

functions for our fits. The Gaussian function for the photopeak, 

centered at E, 

-(E - E ) 2 A o 2 

G(E,E ) = G(E) e 

has an area G(E) and a width o. The t a i l i s a Gaussian broadened step 

funct ion: 

E — E 
T(E,E a ) = T(E)[ i - i e r f ( a

2 q )] 

whose mean is at E and whose width is forced to be the same as the 

photopeak. The background is a scaled experimental electron emission 

spectrum, M, taken with E = 30 eV: 

B(E,EJ = B(E) * M(E => 30, E ). (1) 
CI cl 

From each least-squares fit we derive three numbers, the Gaussian area, 

G(E), the photopeak position, E, and—for reasons we now discuss—the 

background scale factor B(E). 
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The Gaussian areas derived from our least-squares fits are 

proportional to the partial cross section we seek, but they also depend 

on the photon flux and electron analyzer transmission function. Calling 

the partial cross section 1(E), the photon flux F(E), and the 

transmission function A(E), we have the Gaussian areas 

G(E) = F(E) * ACE) * 1(E) 

Note that the photon flux, F(E), is written as a function of 

photoelec+'.ron energy, E. We mean for this function to represent all the 

instrumental intensity variations which influence the strength of the 

photoemission spectrum measured at kinetic energy, E. Thus F(E) 

contains the photon monochromator transmission, storage ring current, 

slit widths, effective sample-photon-analyzer interaction region, and 

the spectrum integration time. 

To remove the "photon flux" contribution we model the photoemission 

background as the product of photon flux, analyzer transmission, and an 

intrinsic background function, N(E,E ): 

M(E,E ) = F(E) * A(E ) * N(E,E ) a a a 

We then assume that the intrinsic background does not depend on photon 

energy from 50 to 500 eV above the absorption edge: 

M(E,E ) = F(E) * A(E ) * N(E ) 
cL 3 3. 

Thus a measurement of the electron emission spectrum for E = 
a. 

50-500 eV—when the photopeak is at E = 30 eV—is proportional to the 

intrinsic background: 
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M(E =» 30 eV, EJ = F(30) * A(E) * N(EJ 

When this spectrum is used as the photoemission background in the least-

squares fits, a scale factor B(E) is introduced (eqn. 1). Since we 

assume that the intrinsic background, N(E ), does not depend on the 
3. 

position of the photopeak, the scale factor must be the ratio of the 

flux and transmission during the ARPEFS measurement to the flux and 

transmission during the background scan: 

F(E) * A(E ) 
B ( E ) " F(30) » A(E ) " F(E)/F(30) 

Therefore the ratio of the photopeak area to the scale factor for the 

background function is proportional to the product of partial cross 

section and analyzer transmission: 

G(E)/B(E) = 1(E) * A(E)/F(30) 

Only the analyzer function remains. Based on the discussion in 

Section II, we take A(E) =» 1/E, to give the partial cross section as: 

1(E) = C G(E) * E/B(E) (2) 

with c an arbitrary, unknown constant. 

Fig. 2 demonstrates the 1(E) curve we obtained from applying these 

ideas to the S(1s) ARPEFS data. Notice that while our description of 

our processing is complicated, the actual analysis is quite simple. The 

least-squares fits have three linear parameters (Gaussian area, tail 

area, and background scale) and two non-linear parameters (Gaussian 

width and mean). Our least-squares fit computer program records these 

parameters on disk; when all the photoemission data have been analyzed, 
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the parameters are read back in and the array algebra of equation (2) is 

performed. 

Now we extract the oscillating part of the partial cross section 

according to 

X(E) = (I-I0)/I0. (3) 

In principle the atomic partial cross section, I Q, could be approximated 

by the sulfur cross section calculated from some wavefunction for free 

atomic sulfur or a model for the S on Ni problem. From free atom cross-

sectior. calculations we can see that the sulfur I„ contains only very 

low frequency information: We will make little error at the 

structurally important frequencies if we approximate I- as the smooth 

part of I. Furthermore, as we discuss below, systematic errors in the 

measurement of I and the estimation of low frequencies in the Fourier 

transform invalidate any distinctions between the "correct" I n and our 

simple estimate. 

Fig. 2 shows our fit of 1(E) to a quadratic function of energy: 

1(E) - aE 2 + bE + c 

for the [011] experiment and a smooth spline for the [001] experiment. 

The resulting x(E) from eqn. (3) is shown in Fig. 3. 

This curve, x( EK is the Angle-Resolved Photoemission Extended Fine 

Structure. It represents the proportional change in partial cross 

section due to interference between direct and scattered photoemission. 

Our measured oscillations are very large, ± 50$ of the average value; 
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the signal seems to be dominated by a few mid-range frequencies. In the 

next section we demonstrate that these oscillations can be analyzed to 

determine surface structures. 

III.B Sources of Error 

The procedure we selected to derive the extended fine structure 

from the photoemission measurements suffers from several systematic and 

random errors. Deriving the partial cross-section curve 1(E) from the 

photoemission measurements may suffer from five major problems: 

i) cross-section variations. As the photon energy is scanned, the 

inelastic electron spectrum, N(E), may change as the photoabsorption 

cross section for the levels which contribute to it change. Far from 

threshold these changes will b,ê  smooth decreases in electron flux. 

Crossing a threshold will cause a sudden jump in flux. For S on Ni 

there are no absorption thresholds, and since we measured N(E) at a 

photon energy near threshold where the cross-section is large, we expect 

that our background will be systematically too high at higher photon 

energies. 

ii) Auger peak cross-section variation. The inelastic electron 

spectrum measured with the photopeak at low kinetic energy should 

overestimate the size of the adsorbate Auger features. For example, the 

S LMM Auger region near 150 eV was measured with a photon energy of 

2504 eV, but was then used to fit photoemission spectra with photon 

energies near 2624 eV. The drop in the absorption cross section over 

this energy range will lead to a smaller least-squares fit coefficient, 

B(E), for the background in the Auger region than we would have obtained 
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if we had measured the higher region with a photon energy closer to 2640 

eV. Thus we will overestimate 1(E) near adsorbate Auger features. 

iii) Storage ring current loss. The inelastic scattering curve was 

estimated by a single long energy range scan of the background. The 

storage ring current will drop by —556 during this scan, leading to a 

slight underestimation of M(E,E ). 
3. 

iv) Photon beam movement. One further problem with the background 

fit method stems from the use of the double crystal JUMBO monochromator 

at the Stanford Synchrotron Radiation Laboratory (SSRL). Heat from the 

synchrotron beam on the first crystal expands it, changing the 

spectrometer equations of motion. While a static heat load can be 

compensated, synchrotron beam decay, beam loss or re-injection changes 

the heat load. While the -3 eV energy shifts which accompany a doubling 

of beam current on injection do not affect our spectroscopy—we measure 

the kinetic energy—the beam movement on the sample can change the shape 

of the background. 

v) Photopeak lineshape function. The choice of Gaussian photo-peak 

plus Gaussian tail to represent the photoemission intensity is certainly 

oversimplified. Although the instrumental resolution is -2.5 eV, our 

measured photopeak had a width of -3.0 eV, indicating additional 

broadening. The tail contains electrons scattered inelastically in the 

sample and in the analyzer as well as the metallic response tail of 

Sunjic and Doniach. The processes would have to be investigated as 

functions of photoelectron kinetic energy to accurately characterize the 

photoemission lineshape. Our much simpler function slightly 

underestimates the true line shape, giving a low value for the 

photoemission intensity. 
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The conversion of photoelectron intensities to fine structure leads 

to two further systematic errors. First, the electron analyzer 

transmission is only approximately proportional to l/(electron kinetic 

energy). Second, our method of determining I Q empirically from our 

measurements will mix the true atomic partial cross section with very 

low frequency-interference oscillations and systematic errors of the 

types we have been discussing. 

None of these systematic errors is expected to contribute to the 

mid-range frequencies important for structure analysis. Except for the 

Auger intensity problem, these errors should lead to mild trends in the 

data which will be removed in the calculation of x(k). The Auger 

problem will be concentrated at the kinetic energies of the Auger peak: 

The Fourier spectrum of this disturbance will be broad and not peak at 

structure frequencies. 

Our random errors come from the statistical accuracy of our 

photoemission measurement. Assuming no errors in the lineshapes of the 

least-squares fits and assuming a normal distribution of noise, the 

standard error of the partial cross section, a_, divided by the partial 

cross section, I, i.e. the inverse of the signal-to-noise ratio, will be 

given by 

o T 2 <j 2 o p 2 o n 2 
VI ; VG E B 

where o., j - G.E.B are the standard errors of each parameter in the 

formula for I. Each standard error will be proportional to the residual 

variance which-given our assumptions—will be proportional to the total 

number of counts in the spectrum. Numerical calculations of the 
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standard errors show that the random errors will contribute an 

approximately flat background to the Fourier spectrum of our signal. 

For very low signal-to-noise power ratios, spurious peaks in this 

background could be misinterpreted or contribute erroneously to correct 

scattering peaks. Our spectrum has sufficient precision to avoid this 

problem. 
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IV. EXTRACTING GEOMETRY INFORMATION 

In the previous section the extended fine structure, x(E)i w a s 

derived from a series of angle-resolved photoemission measurements. In 

this section we analyze the fine structure to extract the geometry. We 

divide the entire procedure in two parts, Fourier analysis and multiple 

scattering analysis. We will discuss errors after we have described the 

entire procedure. 

IV.A Fourier Transformation 

There are three steps in the Fourier transform procedure: 

conversion from energy to momentum scales, tapering or autoregressive 

linear prediction, and Fourier transformation. 

Conversion of the fine structure curve from a kinetic energy scale 

to a momentum scale uses the de Broglie relation, 

2 2 
_ K k 
E - -ar« 

to relate the electron's energy to its wave vector magnitude. For the 

electron energy we use the peak position, E, derived from the least-

squares fit to eliminate any energy errors in the photon monochromator. 

As discussed in ref 13 the measured electron energy can be related to 

the energy of the electron during the scattering E by E = E„ + E , 

where E n the solid's inner potential. Thus the wavenumber, k, for a 

kinetic energy E. is given by 

k - Q (E-E.) 1 / 2. 
n 
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With this conversion we obtain x(k) as a table of numbers (k, \(k)) 

whose spacing in k depends on the energy spacing of the photoemission 

measurements and on E Q. Unfortunately none of the subsequent analysis 

can process data with unequal increments in the abscissia. Therefore we 

fit x(k) locally to a numerical spline function and evaluate the spline 

on an equally spaced mesh of 128 points. Fig. M shows the interpolated 

x(k) for E Q = 10.5 eV. 

The second step in frequency estimation is required to reconcile 

the concept of frequency analysis with the finite range of our 

experimental measurements. Our goal is the- isolation of the path-length 

difference, r. - r. cos e., from the experimental x(k) which we believe 

is represented by a cosine series, eqn. (3), suggesting a Fourier 

analysis procedure. As discussed in ref. 14, direct Fourier series 

transformation of x(k) would not be adequate: Fourier analysis assumes 

an infinitely long measurement range. Finite range data must be tapered 

smoothly to zero by a weighting function before Fourier analysis, or 

else some procedure such as the autoregressive linear prediction 

described in ref 14 must be applied to estimate the frequencies of 

oscillation from a finite measurement range. The Fourier spectrum of 

the weighted data will be a smoothed version of the spectrum of 

scattering amplitude versus path-length difference while the 

autoregressive linear prediction Fourier transform has higher resolution 

but is more sensitive to k dependence in the envelope which multiplies 

individual cosine oscillations. Therefore we will present results from 

both procedures, using the ARLP spectra as a qualitative guide to the 

frequency spectrum. Since we will ultimately refine the geometry by 

direct comparison to the experimental oscillations, the choice between 
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conventional and ARLP methods to solve the finite data range problem in 

the Fourier transform is not important. 

Following the guidelines in ref 14 we multiply the interpolated 

x(k) curve by a Gaussian centered at 7.5 A and having a full width at 

half maximum of 4 A for the conventional taper weighting method. For 

the ARLP method, 64 autoregressive coefficients were fit to the data 

based on 14 singular values for the [001] experiment and 17 singular 

values for the [011] experiment; the ARLP was applied to extrapolate 128 

points forward and backward, and the resulting oscillations were tapered 

with a Gaussian function centered at 7.5 A and having a full width at 

half maximum of 12.3 A . This prepares the oscillations for Fourier 

transformation. 

In the third and final step we apply the Fourier transform via the 

Fast Fourier Transform algorithm. Prior to transformation we add 

zeroes to give 2048 points; this increase interpolates the Fourier 
14 spectrum to give smooth peak3. 

The magnitude of the complex Fourier coefficients is displayed in 

Fig. 5 for the [011] experiment, and Fig. 6 for the [001] experiment. 

Since our unit for k is rad-A , the independent axis of our Fourier 

transform gives the path-length difference directly in A. Each of the 

peaks in Figs. 5 and 6 represent one or more scattering interferences. 

The peak position will be near the geometrical path-length difference, 

r.-r. cos 9., plus the linear part of the scattering phase shift <)>.. 

When comparing our results to plots of surface EXAFS Fourier transforms, 

recall that the EXAFS scale is usually chosen to display the bond 

length, r.: the scattering path length is just twice as long. 
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The assignment of the peaks in the [011] transform, Fig. 5, to 

particular scattering path lengths has been the subject of some 

controversy. We will repeat our previous, simple-minded assignment 

based on the empirical observation that nearest neighbors and 

backseattering atoms dominate the spectrum; there is as yet no 

theoretical calculation which reproduces the Fourier peaks with enough 

accuracy to contradict this idea. However, as noted below, a peak at 2A 

due to a side-scattering nearest neighbor atom does not appear reliably 

in the Fourier transform spectrum. 

Two peaks in the spectrum are primarily due to three Ni nearest 

neighbors. The largest peak—at 4.4 A—corresponds to scattering from 

the nearest neighbor Ni directly behind the sulfur atom from the 

detector. With a bond length of r. = 2.2 A and a scattering angle 9. = 

171°, the path-length difference is 4.37 A. All of the amplitude 

factors favor thi3 scattering atom. It lies along the peak in the 

photoemission final state; it lies close to the emission center; and it 

backscatters into the detector. 

The second largest peak—at 3.2 A—corresponds to electron 

scattering from two nearest-neighbor Ni atoms. These atoms are 

symmetrically located on either side of the plane containing the surface 

normal (the [001] direction) and the emission vector (the [011] 

direction). The scattering angle is 116°, giving a path-length 

difference of 3.12 A. Despite the combined scattering power of two 

atoms, this peak is smaller than the 4.4 A peak: both the photoemission 

final state angular distribution and the scattering angular distribution 

are less favorable for 116° scattering. 
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The fourth nearest-neighbor atom should have a scattering angle of 

83° and thus would appear at a path-length difference of 1.96 A. 

However we expect its amplitude to be small because the atom is near the 

photoemission final state node: cos 83° = 0.12. This atom does not 

produce a reliable peak in the Fourier transform. For example, it is 

small in Fig 5, while it was somewhat larger in earlier analyses us.ng a 

slightly different transform weighting. 

The peaks at 7.5 A and 9.5 A seem to correspond to backscattering 

atoms further away from S along the [011] axis. If we consider the 

4.4 A peak to be a member of a (011) plane perpendicular to the emission 

direction, then the 7.5 A peak would correspond to 4 atoms in the next 

(011) plane away from S and the 9.5 A peak would correspond to the 

single atom in the succeeding plane which lies directly behind the 4.4 A 

Ni scatterer. 

We should note that the latest single-3cattering cluster 

calculations with improved treatment of thermal averaging agree with 

cur assignment of the 4.4, 7.5 and 9.5 A peaks, leaving the 3.2 A peak 

as unsettled. The basic picture in terms of path-length differences is 

also not affected by multiple scattering since, in the intermediate 

mergy range, forward focusing is the dominant effect of multiple 
17 scattering. In summary, we believe that the overwhelming weight of 

evidence favors the simple interpretation given earlier : that the 

Fourier transform peaks arise primarily from a few identifiable atoms. 

Of course allowance must be made for possible interference due to near-

lying path length differences and Ramsauer-Townsend splitting. However, 

this does not negate our basic conclusion, based on strong experimental 

evidence, that a small number of path lengths are actually present with 
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any appreciable intensity in the data. The failure of oversimplified 

theories to reproduce the data only confirms the shortcomings of those 

theories. 

Two peaks in the normal emission [001] experiment Fourier spectrum 

can be assigned in the same fashion as the [011] assignment. The 6.2 A 

peak must be predominately backscattering from the second layer Ni atom 

directly below S since this atom is 180° from the detector in the [001] 

emission geometry. The peak near 10 A should have a large contribution 

from atoms in the third Ni layer below S for the same reason. Atoms in 

the second Ni layer not directly in backscattering contribute the 

majority of the signal to the Fourier spectrum between 6.2 and 9 A, but 

we cannot give more specific assignments without detailed calculation. 

The most interesting features of the [001] Fourier transform are 

the two peaks below 5 A which seem to defy a scattering path-length 

explanation. Both of these peaks can be attributed to scattering from 

the four nearest-neighbor Ni atoms in the first Ni layer below S even 

though the geometrical path-length difference for all four neighbors is 

near 3-5 A where no Fourier peak is observed. The physical explanation 

for this Fourier peak splitting is a generalized Ramsauer-Townsend 

resonance in the Ni scattering amplitude which simulates a beat envelope 

as k increases through 7.5 A . We have discussed these peaks and their 
18 use in the measurement of the S-Ni bond length elsewhere. 

IV.B Multiple Scattering Analysis 

With the ^ w pliotoemission spectra reduced to ARPEFS oscillations 

and the Fouri.ar spectra at hand we can proceed to determine the 

structure. Previously, we have attempted to analyze the 4.4 A 
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backscattering peak in the [011] experiment by applying the Fourier 

backtransformation methods of EXAFS. This analysis was based on the 

apparent success of single-scattering calculations to simulate the 
13 general features of the ARPEFS curve, but we now recognize that 

forward focusing is a fundamental feature of the photoelectron 

scattering. While the forward focusing does not change the oscillation 

frequency, it does change the oscillation amplitude and phase. Since 
3 the EXAFS-like analysis requires the phase to be known, we will not 

pursue that approach here. 

Our alternative is a Fourier-filtering, least-squares fitting 

procedure which uses the Fourier spectrum to reduce the multiple 

parameter space of geometry variables without relying on the Fourier 

transform for the final structure analysis. The key element in this 

approach is the filtering of the ARPEFS to remove scattering path-length 

differences corresponding to all layers except the S overlayer and the 

first Ni layer. This filtered ARPEFS curve then depends upon a single 

geometrical parameter, the S-Ni bond length, or equivalently the S-Ni 

interlayer spacing (di). Furthermore, the filtered curve contains only 

a restricted set of path-length differences and numerical simulation of 

the filtered curve even including multiple-scattering, and curved-wave 

corrections is very economical. Once the S-Ni layer spacing is set, the 

spacing to the second layer can be optimized by selecting a new filter 

width which includes atoms scattering from the second layer. 

For the [001] experiment, it is appropriate to filter the Fourier 

spectrum at 5 A, isolating the two peaks split by the Ni scattering 

resonance. As this analysis involves a discussion of the resonance, we 
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18 have reported it separately finding a S-Ni bond length of 2.20 ± .02 A 

(d, = 1.32 ± .03 A). 

For the [011] experiment, 5 A was also chosen for the filter 

cutoff. This location is a minimum in the Fourier amplitude spectrum 

just above the 4.4 A main backscattering peak. To obtain the filtered 

ARPEFS spectrum we have simply zeroed the Fourier coefficients for 

frequencies above 5 A and applied the Fast Fourier inverse transform. 

We recognize that the [011] experimental geometry is more 

difficult to align with our present apparatus than the normal emission 

[001] case, and we have noticed that our numerical simulations are very 

sensitive to the polar angle of emission. Thus we have performed a two 

dimensional search in S-Ni interlayer spacing and emission polar angle 

to minimize the possibility that misalignment determines our result. 

Fig. 7 gives the least-squares error surface for these variables. The 

numerical simulations were performed as described in ref. 13 using the 

non-structural parameters given there. Moderate changes in the non­

structural parameters will change the size of the least-squares error 

but not the position of the minimum; conversely, we cannot reliably 

estimate the non-structural parameters by least-squares fits of this 

kind. A clear minimum is evident in the surface at 43° emission angle 

and a S-Ni interlayer spacing (di) slightly above 1.30 A, in good 

agreement with the results of the [001] experiment. 

With the emission angle for the [011] experiment fixed at 43° and 

the S-Ni interlayer spacing fixed at 1.30 A, we can return to the 

Fourier spectrum and filter for the second Ni layer. An appropriate 

filter location for the [011] experiment is 10.5 A, but the [001] 

spectrum should be cut somewhat lower to avoid path lengths near 10 A 
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due to scattering from third layer Ni atoms. However we have used 

10.5 A for both experiments for convenience in the numerical simulation. 

The interlayer spacing between the second and third Ni layers is anyway 

equal to the bulk interlayer spacing (1.76 A) to within our ability to 

measure it at this time. 

In refining our geometry we must recognize that the c(2x2) symmetry 

observed in LEED does not constrain the Ni atoms in the second layer to 

be coplanar. Half the Ni atoms in this layer lie directly below S atoms 

(we call these atopped atoms) and half of these atoms lie below open 

spaces in the half monolayer coverage (we call these open atoms). The 

stability of the c(2x2) overlayer suggests that the local electronic 

environment of atopped and open Ni atoms could be different leading to 

the possibility that they would seek different equilibrium distances 

from the first Ni layer. Therefore we have refined the positions of the 

atopped and open atoms separately, giving, for the [001] geometry, the 

two dimensional least-squares error surface in Fig. 8. The dashed line 

running diagonally indicates the cut through this surface on which 

atopped and open atoms are coplanar. Along this line a clear minimum is 

found near 1.82 A for the first and second Ni layer spacing. To be more 

precise our measurement gives the distance between S and the second Ni 

layer of 3.12 A which we combine with the spacing of the S and first Ni 

layers to give 1.82 A for the Ni-Ni spacing. Relaxing the coplanar 

constraint, we see a broad minimum where the atopped Ni atoms stay near 

1.82 A below the first layer while the open Ni atoms move further down 

with a minimum near 1.87 A. 

The surface for the [011] experiment is similar along the coplanar 

constraint line having a minimum near 1.8MA, but once the open atoms are 
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allowed to vary independently, no minimum is found for spacings less 

than 1.94 A. We discount the significance of this result because the 

[011] experimental geometry is not sensitive to the frequency change 

which accompanies the displacement of the open atoms—they move away at 

an oblique angle—but it is very sensitive to the amplitude of the 

scattering from these atoms. In fact, of all the scattering events 

which contribute to the two ARPEFS curves discussed here, calculations 

of scattering from open atoms in the [011] experiment have the poorest 

agreement with experiment. 

These comparisons of scattering calculations and Fourier filtered 

experimental data rely on an accurate value for the inner potential used 

to construct the experimental momentum scale. We can estimate the 

maximum possible geometry error by calculating the least-squares error 

after optimizing the fit between experiment and theory with an 

adjustable inner potential. Since most of the ARPEFS signal is already 

contained in the 10.0 A simulations, we recalculated the least-square 

error surface for the [001] experiment comparing these simulations 

directly to the experimental oscillations on the experimental energy 

scale, allowing both the theoretical inner potential and overall scale 

factor to vary. The resulting surface is showp in Fig. 10. Since the 

minimum in the surface with fixed inner potential does not improve when 

the inner potential is varied, the minimum shifts, and, with the added 

flexibility of the scaling and shifting optimization, the minimum will 

be much broader. We find a broad minimum centered near 1.85A for 

atopped Ni atoms and 1.87A for open Ni atoms, a slightly greater 

expansion than that found with fixed inner potential. 
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The optimal inner potential varies monotonically with the spacing 

between the sulfur layer and the atopped Ni layer; when this spacing is, 

for example 1.86 A, the optimal inner potential is -7.8 eV and larger 

expansions give lower inner potentials. Thus as long as we believe that 

the inner potential should be near 10 eV, the error surface with 

variable inner potential represents our maximum error: any restraint on 

the inner potential to bring it back toward 10 eV will bring the optimal 

geometry back toward 1.87 A. We have also varied the inner potential in 

the analysis of the ARPEFS curves filtered at 5 A by placing the 

filtered experimental data on an energy scale using the inverse of the 

original conversion of energy to momentum. Both the [001] and [011] 

experiments give unchanged optimal S-Ni spacing and optimal inner 

potentials between 10 and 11 eV. Thus we believe the variable inner 

potential surface result represents an upper bound to the interplanar 

spacing of 1.86 A. 

Finally, we have selected a fixed spacing of the sulfur and second 

Ni layers at 3.135 A with atopped and open atoms coplanar and 

reoptimized the S-Ni interlayer spacing calculating all path lengths up 

to 10.5 A and using the same two error criteria as discussed above. The 

error curves in Fig. 11 all have their minima slightly above 1.30 A (di) 

(2.19 A S-Ni bond length) with the [011] curve to the spacing being more 

sensitive. 

We have based our quantitative analysis on the least-squares error 

criterion, but visual comparison of the curves confirms the conclusions 

of the numerical analysis. We can verify that di =» 1.30 A fits the 

filtered ARPEFS better than d. = 1.35 A as in Fig. 12; by comparing 
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Figs. 13 and 14 we can certainly exclude a S to second layer spacing of 

3.06A in favor of one closer to 3.14 A. 

IV.B Sources of Error 

The paramount sources of error in our structure analysis are the 

value of the inner potential and the scattering phase shifts used in the 

multiple-scattering calculations. Substantially less important are the 

values chosen for the non-structural parameters in the theory, which 

control the oscillation amplitude but not its phase or frequency. 

We strongly emphasize that the precision of ARPEFS analysis relies 

on the energy width of the measurement. Over the course of a single 

oscillation, a constant phase error, due to inner potential or 

scattering phase shifts, will lead to significant apparent geometry 

changes. Only by comparing the oscillations over several cycles can 

this source of error be reduced. Furthermore, estimation of the atomic-

like background, I n, severely distorts oscillations with a single cycle 

over the energy range, and the Fourier processing requires a maximum 

energy range for resolution of the Fourier peaks. Whenever several 

ARPEFS oscillations are covered in the measured range, the precision of 

the structure analysis should exceed 0.02 A in interplanar spacings. 

We cannot be so sure about the accuracy. As we have discussed in 

the previous section, the inner potential is directly connected to the 

structure determination, and we find that a 2 eV error leads to a 0.02 A 

error in geometry. The errors caused by the scattering phase shifts are 

more difficult to assess particularly since there does not seem to be 

published phase shifts in this energy range to which we may compare. As 

we are primarily sensitive to backscattering and forward scattering, we 
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can conclude that the frequency shift caused by errors in the scattering 
19 phase shifts are likely to be negligible: we can see from published 

EXAFS backscattering phase functions that change from Ni to Cu 

potentials would introduce a linear phase shift less than 0.02 A, and 

since the linear part of the forward scattering phase function is less 

than 0.05 A even a 50$ error may be ignored. Exactly the opposite must 

be concluded about errors due to the constant part of these phase 

functions: The published backscattering phase functions have large 

changes in phase with atomic number, and the forward scattering constant 

phase shift is large. 

There is moreover there is a close connection between inner 

potential errors and errors in the constant part of the scattering phase 
20 function. This connection is exploited in the analysis of EXAFS data 

by allowing the inner potential to vary. The procedure we followed in 

the previous section to vary the inner potential is analogous to the 

EXAFS analysis in that we might hope to cancel some errors in the 

constant phase with a variable inner potential, but we note several 

differences. First, the EXAFS inner potential is a complex weighted sum 

of absorption edge energies even when the scattering potential is 

exactly known: for all practical purposes the EXAFS inner potential is 

not calculable or measurable. The ARPEFS inner potential may be more 

accessible if only because it is not connected to the photoabsorption 

process. Second, the EXAFS inner potential usually must also account 

for errors in phase shift functions caused by curved wave corrections, 

while our simulation curves include curved wave effects. And third, the 

EXAFS analysis usually concentrates on a single backscattering 

oscillation so that the floating inner potential need not work to 
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correct amplitude errors while our floating inner potential may 

compromise between correcting phase errors and errors due to incorrect 

relative scattering amplitudes. Thus the simpler analysis of the 5 A 

filtered data lead to consistent, physically reasonable inner potentials 

near 10.5 eV while the more complex comparison in Fig. 10 leads to more 

unusual values. 

Until a thorough investigation of the scattering potentials in the 

intermediate energy range is complete, the errors caused by thermal 

averaging, aperture integration, and inelastic mean free path may be 

ignored. It is obvious from the comparison of the numerical simulation 

in Fig. 13 that these values are not too far wrong: the overall 

magnitude of the oscillations is correct at high and low energy. 

Furthermore, the non-structural parameters may be more properly 

investigated by studying them directly, i.e. through temperature and 

aperture variations. 
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V. DISCUSSION AND CONCLUSION 

Although we are not yet in a position to quantify our accuracy, our 

results should be of comparable quality to other surface structure 

methods. The c(2x2)S/Ni(001) system has been studied by LEED, Normal 

Photoelectron Diffraction (NPD), and Surface EXAFS. The c(2x2)S/Ni(001) 

system served as one of the prototype surface systems for LEED so that 

it is inappropriate to quote much of the earlier work. The most recent 
21 22 4 results ' ' agree on a S-Ni interlayer spacing of di 1.3 ± 0.1 A, 

corresponding to a S-Ni bond length of 2.19 ± 0.06 A. The NPD 
5 experiment using the S(2p) core level gave a S-Ni interlayer spacing of 

di = 1.30 ± .04 A (S-Ni bond length of 2.19 ± 0.03 A). The Surface 

EXAFS analysis gave a S-Ni bond length of 2.23 A ± 0.02 A equivalent to 

a di = 1.37 + .03 A. None of these measurements addressed the Ni-Ni 

interlayer spacing. 

We conclude from our analysis of the two ARPEFS curves that di = 

1.31 ± .03 A (S-Ni bond 2.19 + 0.02 A). This is in excellent agreement 

with the LEED and NPD results, but—if we may trust the error bars—in 

only fair agreement with the EXAFS analysis. Given the uncertainty we 

have about the scattering potential, we cannot propose to select our 

result over the EXAFS one, but our agreement with the NPD results is 

gratifying because the measurements are similar to our [001] experiment 

while the theoretical analysis was based on multiple-scattering 

calculation using a quite different approach than we have applied here, 

including different scattering phase shifts. 

We have no comparison for the Ni-Ni interlayer spacing of 1.83 ± 

.03 A, or a 4% expansion compared to bulk Ni. This is equal to the 

expansion of the first two Ni layers on clean Ni reported by Demuth and 
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Rhodin but larger than the spacing, 1.78 ± .02 A, reported by Demuth, 
24 Marcus and Jepsen. We also have some indication that Ni atoms in the 

second layer without S atoms over head sink into the bulk somewhat. 
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FIGURE CAPTIONS 

Figure 1. Inelastic scattered electron background spectrum for hv=2504eV 

and, inset, a sample least squares fit to a S(ls) 

photoemission peak. The small features near 174eV in the 

background spectrum are S Auger peaks. In the inset, the 

solid circles are the measure photoemission counts, the upper 

solid curve gives the fitted function values, while the lower 

solid curve is the sum of the smoothed background spectrum and 

the error function step. The photopeak area is the area 

between the solid curves. 

Figure 2 Normalized angle-resolved photoemission intensities as a 

function of photopeak energy and atomic-like I curves from 

least squares fits for c(2X2)S/Ni(001). Solid curve is the 

photoemission intensities, and the dotted curve is the I 

estimate, (a) Emission along, [011], (b) Emission along [001] 

Figure 3 ARPEFS oscillation for c(2X2)S/Ni(001) versus electron kinetic 

energy, (a) [011] emission (b) [001] emission. 

Figure 4 ARPEFS oscillations after conversion to a momentum scale using 

an inner potential of 10.5eV, and after interpolation to an 

even mesh of 128 points, (a) Emission along, [011], (b) 

Emission along [001] 
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Figure 5 Fourier transform magnitudes versus scattering path length 

difference for k times the data in figure 3a. In the lower 

panel, the conventional Fourier transform was applied, while 

the upper panel was obtained with the auto-regressive linear 

prediction method described in ref. 1M. 

Figure 6 Fourier transform magnitudes versus scattering path length 

difference for k times the data in figure 3b. In the lower 

panel, the conventional Fourier transform was applied, while 

the upper panel was obtained with the auto-regressive linear 

prediction method described in ref. 1U. 

Figure 7 Contour map of the least square error for fits of numerical 

simulations to data Fourier filtered at 5.1 A, from the [011] 

emission experiment.. The horizontal axis gives the spacing 

along the crystal normal between the sulfur photoemitter and 

the first layer of Ni atoms (di). The vertical axis gives the 

variation of the polar angle of emission measured from the 

surface normal. Inner potential fixed at 10.5eV 

Figure 8 Contour map of the least square error for fits of numerical 

simulations to Fourier filtered data from the [001] emission 

experiment. The horizontal axis gives the spacing between the 

first layer of Ni atoms and those 2nd layer Ni atoms having S 

overlayer atoms on top of them (Atopped atoms). The vertical 

axis gives the same quantity for 2nd layer Ni atoms having no 

S overhead (open atoms). The dot-dashed line follows the 
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constrained coplanar geometry. Inner potential fixed at 

10.5eV 

Figure 9 Contour map of the least square error for fits of numerical 

simulations to Fourier filtered data from the [011] emission 

experiment. The horizontal axis gives the spacing between the 

first layer of Ni atoms and those 2nd layer Ni atoms having S 

overlayer atoms on top of them (Atopped atoms). The vertical 

axis gives the same quantity for 2nd layer Ni atoms having no 

S overhead (open atoms). The dot-dashed line follows the 

constrained coplanar geometry. Inner potential fixed at 

10.5eV 

Figure 10 Contour map of the least square error for fits of numerical 

simulations to data for the [001] emission experiment. The 

horizontal axis gives the spacing between the first layer of 

Ni atoms and those 2nd layer Ni atoms having S overlayer atoms 

on top of them (Atopped atoms). The vertical axis gives the 

same quantity for 2nd layer Ni atoms having no S overhead 

(open atoms). The dot-dashed line follows the constrained 

coplanar geometry. The inner potential and overall scale of 

the theory was fitted to the data. 

Figure 11 Refinement of the S Ni interlayer spacing with unfiltered data 

curves and a fixed S to 2nd layer spacing of 3-135A. The upper 

curves are from the [011] experiment and the bottom pair are 

from the [001] experiment. The solid curves have a fixed 
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inner potential for theory of 10.5eV, while the dashed curves 

correspond to varying the scale and inner potential of the 

theory to best fit the data. 

Figure 12 Comparision of Fourier filtered (5.1A) ARPEFS oscillations 

from the [011] experiment (solid circles), the numerical 

simulation for di=1.30A (solid line), and the numerical 

simulation for di=1-35A (dashed curve) 

Figure 13 Comparision of Fourier filtered (10.5A) ARPEFS oscillations 

from the [011] experiment (solid curve) to the numerical 

simulation for di=1.30A and a S to first Ni layer spacing of 

1.84A (dashed curve). The atopped and open Ni atoms are 

coplanar in the theory curve. 

Figure 14 Comparision of Fourier filtered (10.5A) ARPEFS oscillations 

from the [011] experiment (solid curve) to the numerical 

simulation for d.=1.30A and a S to first Ni layer spacing of 

1.76A (dashed curve) (the bulk interlayer spacing is 1.76A). 

The atopped and open Ni atoms are coplanar in the theory 

curve. 
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CHAPTER 8: 

A GENERALIZED RAMSAUER-TOWNSEND RESONANCE IN ARPEFS OSCILLATIONS 

ABSTRACT 

We observe a resonance in the scattering amplitude for S(1s) 

phetoelectrons from Ni atoms and interpret this resonance as a dip in 

the Ni atom partial cross section for electron scattering related to the 

Ramsauer-Townsend effect. This generalized Ramsauer-Townsend effect 

occurs at a particular energy and angle rather than in the total elastic 

cross section. We show that the resonance energy is sensitive to 

curved-wave corrections and, after including multiple-scattering 

effects, we derive the S-Ni bond length in c(2x2)S/Ni(100) from the 

ARPEFS oscillations from nearest neighbor Ni atoms in the presence of 

the generalized Ramsauer-Townsend resonance. We find this bond length 

to be 2.20 A ± .03 A corresponding to a S-Ni interplanar distance (d.) 

of 1.32 + .OU A. 
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I. INTRODUCTION 

The nature of the core-level photoemission intensity oscillations 

known as photoelectron diffraction has been substantially clarified by 
1 2 new theoretical ' and experimental work which shows that these 

oscillations—caused by interference between direct and scattered 
3 4 photoemission probability amplitude ' —are qualitatively predicted by 

scattering path-length differences. A complete understanding of the 

physics of these oscillations has important consequences for the use of 

photoelectron diffraction as a technique for determining surface 

structure: the total scattering path-length difference is the sum of a 

geometrical path length and an ion-core potential phase shift function, 

allowing the geometry to be deduced if the potential can be adequately 

modeled. While most of the energy dependent photoelectron diffraction 

measurements ' have been made in the kinetic energy range from 20-150 
7 8 eV, we have recently * been concentrating on photoelectron energies 

between 100-600 eV. These intermediate energies and the wider energy 

range are advantageous if we wish to concentrate on structure 

determination because the potential phase shift functions are less 

sensitive to chemical effects, the photoabsorption cros' '."'-Lion has 

less strucu'^e, and the pho». electron scattering partial ci oss section 

is more anisotropic giving a simpler and more structure sensitive 

spectrum. For very similar reasons the x-ray absorption fine structure 

spectroscopies have been divided into x-ray absorption near edge 

structure (XANES or NEXAFS) at low energies and extended x-ray 

absorption fine structure (EXAFS) in the intermediate 100-1000 eV range. 

We refer to the core-level angle-resolved photoemission measurements in 
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the 100-1000 eV, intermediate energy range as angle-resolved 

photoemission extended fine structure (ARPEFS). 

To concentrate on the oscillating, non-atomic signal we remove the 

slowly varying pant', I Q, of the intensity, I, to form x = (I-I Q)/I 0. 

Every model for ARPEFS predicts that the oscillations, expressed as a 

fui.ctinr of electron wave number, k, are cosinusoidal: 

X(k) = I A.(k) cos [kr (1 - cos 9.) + <j>,(k)] 
£ J J J J 

where A.(k) i s an amplitude func t ion , <j>. i s a s c a t t e r i n g po ten t i a l phase 

funct ion, and ( r . - r . , cos 9.) i s the geometrical path- length di f ference 

for bond length r . and s c a t t e r i n g angle 6 . . The sum on j extends over 
J J 

all atoms near the photoemitter which have significant amplitude. In 

the simplest case, the amplitude function is large for only a few atoms 

and has little structure as a function of k, and the phase similarly 

benign. Then the ARPEFS curve may be Fourier analyzed and—provided 

Fourier resolution is adequate—the Fourier amplitude spectrum should 
7 have peaks corresponding scattering path-length differences. If, on 

the other hand, the amplitude function is not a smooth envelope, the 

Fourier spectrum for the corresponding scattering event will not peak at 

the scattering path-length difference. In this paper we investigate 

structure determination with ARPEFS in the case that the scattering 

potential for nearest neighbor scattering atom has a strong amplitude 

dependence caused by an interesting resonance related to the Ramsauer-

Townsend effect. 

We have selected c(2x2)S/Ni(10Q) for our study primarily because 

the S adsorption site and the S/Ni bond length have been reported 
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previously and the overlayer can be reproduced easily. Elsewhere we 
q report a study of the S(1s) ARPEFS from c(2x2)S/Ni(100), concentrating 

on the scattering events which have Fourier peaks near the scattering 

path-length difference. Here we will discuss normal emission ARPEFS 

from the nearest neighbor Ni atoms in the four-fold hollow site. The 

amplitude for the scattering of S photoelectrons from Ni potentials into 

the normal direction dips sharply as the energy is scanned leading to a 

split Fourier peak. 
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II. EXPERIMENTAL 

We have given a thorough discussion of our measurement procedure in 

ref 9 so we will be brief here. Our sample was prepared in a standard 

fashion: a mirror-finish, oriented Ni(001) single crystal was cleaned 

in vacuum, exposed to H_S(g), and heated briefly to 200°C to give the 

c(2x2)S/Ni(100) LEED pattern. This sample was illuminated by soft x-

rays from the Stanford Synchrotron Radiation Laboratory Jumbo 

monochromator and S(1s) angle-resolved photoemission intensity spectra 

were measured every 3 eV for photon energies between 2532 and 2950 eV. 

Assuming that the x-rays are completely polarized in the plane of the 

synchrotron storage ring, we oriented the Ni crystal to place the 

electric vector of the light, e, 30° from the surface normal toward a 

[110] direction and rotated the angle-resolved electron energy analyzer 

to collect spectra along the surface normal. The individual 

photoemission measurements were reduced to partial cross-section 

measurements ir the fashion described in ref. 9-

The resulting ARPEFS curve x(k) is given in Fig. 1. The energy 

scale has been converted to a wavenumber scale using an inner potential 

of 10.5 eV. The curve is seen to be dominated by an oscillation with -

6 cycles in 2ir A , corresponding to an interference path length of 6 A. 

Since we know the nearest neighbor bond length in this system is - 2.2 A 

corresponding to a maximum path-length difference of 4.4 A, we can 

conclude that the nearest neighbor scattering does not dominate this 

curve. 

Fourier transforms of this curve are shown in Fig. 2. For the 

upper panel, Fig. 2a, we have multiplied kx(k) by a Gaussian of full 

width half maximum of 1 A centered on the data range, added zeroes to 
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fill 2048 cells and applied the fast Fourier transform; the Fourier 

transform magnitude is plotted versus path-length difference. In the 

lower panel the Autoregressive Fourier method described in ref 11 has 

been applied to kx(k) and the resulting extrapolated sequence has been 

multiplied by a Gaussian of 12 A full width half maximum. 

The peaks in the Fourier spectrum above 5 A path-length difference 

have been discussed in ref. 9. The path-length difference derived from 

the positions of these Fourier peaks is approximately equal to the 

scattering path-length difference for backscattering Ni atoms in the 

second and third Ni layers. The positions of the two peaks below 5 A do 

not correspond to any path-length difference, and no feature in the 

Fourier spectrum appears near 3-5 A where we would expect a scattering 

path-length due to Ni nearest neighbors (assuming a four-fold hollow 

adsorption and reasonable S-Ni bond distances). The physical origin of 

these peaks is the subject of this paper. 
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III. GENERALIZED RAMSAUER TOWNSEND RESONANCE 

The lack of correspondence between the scattering path-length 

difference for nearest neighbor Ni atoms and Fourier spectrum peaks is 

caused by a strong dip in the scattering power for Ni as a function of 

energy which occurs for scattering angles near those appropriate for 

normal emission from c(2x2)S/Ni(001). This dip is related to the well-

known Ramsauer-Townsend electron scattering resonance, and hence we call 

this amplitude effect a generalized Ramsauer-Townsend (GRT) resonance. 

Ramsauer and Townsend observed that argon becomes transparent to 

electrons at 0.7 eV. The origin of this surprising lack of scattering, 
11 12 

suggested by N. Bohr and verified by Faxen and Holtsmark, follows from 

the partial-wave formula for the (complex) scattering amplitude for 

electrons: 

1 2 i 6 S 
f(e,k) = — I (28.+ 1)P.(cos 9)(e -1) 

d X K JUO *• 

where 6 (k) are the ion-core partial-wave phase shifts. At very low 

kinetic energies only 6 n, the isotropic s wave, contributes to the 

scattered wave. If, as is the case for Ar at 0.7 eV, the value of the S 

phase shift were exactly 180°, then even this term goes to zero and the 

amplitude, f(9,k) becomes very small for all angles. 
13 Our generalized Ramsauer-Townsend effect is more complicated. At 

higher energies many partial waves contribute to the scattering 

amplitude. Then only with the proper linear combination of angular 

factors, (21+1) P (cos 9), and energy factors, (e -1), will the 
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scattering amplitude be zero. Thus while the classical Ramsauer-

Townsend effect gives zero amplitude at all angles and very low energy 

based on special behavior by one phase shift, our generalized Ramsauer-

Townsend effect occurs at special angles and energies with many phase 

shifts involved. 

Some ideas about the consequences of this effect can be derived 

from Fig. 3. Scattering amplitudes for four different angles are 

plotted in the complex plane. For each angle a line represents f(k,e.) 

for k = >\ A _ 1 (60 ev) to k = 12 A~1 (550 eV). The distance from the 

origin to a point on the line represents the scattering power for that 

angle and energy; the angle from the positive real axis to that point 

gives the wave phase shift caused by the potential. 

For a. = 180° we see the scattering power peaks broadly around k = 

6 A . From k = M A to k = 12 A the phase angle sweeps gently 

through - 60°. For 9. = 130°, however, the behavior is radically 

different. Now the scattering amplitude approaches the origin for k = 

8 A . The amplitude falls nearly to zero here, and the phase angle 

sweeps rapidly through 180°. The behavior for 9. = 125° is similar, but 

the phase angle is rotating in the opposite direction. 

Clear evidence that the generalized Ramsauer-Townsend effect is 

responsible for splitting the Fourier peak expected near 3.5A into the 

two peaks actually observed in the Fourier spectrum is obtained by 

backtransforming just those Fourier coefficients whose frequencies are 

less than 5 A. As shown in Fig. H, the resulting filtered ARPEFS curve 

shows a beat pattern consistent with a 3-5A oscillation with a 

superimposed amplitude envelope which dips at k = 7.5 A . If the phase 
14 shift function is extracted from the filtered data, it exhibits the 
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phase jump of ir c h a r a c t e r i s t i c of the GRT zero crossing as shown in Fig. 

5. 
15 In our initial attempts to use the Ni GRT resonance, we sought to 

compare the observed phase jump to calculated Ni atom phase shift 

functions. As is evident from a comparison of the experimental phase 

function to the theoretical phase function calculated in the plane-wave 

approximation (see Fig. 5, long dashed curve), the resonance position in 

energy and angle is not correctly placed in this simple model. We 

therefore introduced curved wavefront corrections which, as the 

remaining curves in Fig. 5 demonstrate, places the calculated resonance 

of the experimentally observed energy. That the resonance is sensitive 

to the wavefunction calculation is not surprising given that several 

large partial-wave amplitudes must sum to zero at resonance: any slight 

error in the weighting of these waves will shift the resonance position. 

It would appear from Fig. 5 that we may assign the S-Ni bond length 

by comparing the observed phase shift function shape to calculated 

functions which include the curved-wave corrections. The strong 

dependence of the GRT resonance on scattering angle would set a firm 

limit on the bond distance, and we would have an elegant method to 
Q 

estimate the surface bond angle. However, this does not allow for the 

possibility of multiple scattering, and in view of the sensitivity of 

the resonance we must include this effect. 

Fortunately, the calculation we require is very modest: we need 

only 20 scattering paths. The first four are the single scattering 

paths from the four Ni nearest the photoemitting S, with path lengths 

near 3-5 A. The single-scattering wave from the nearest neighbors can 

double scatter from either of two atoms in the S layer, giving a total 
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of eight more paths near 4.4 A. We also include scattering from four S 

atoms at 3-52 A and four more at 4.98 A even though the signal from 

these atoms is very small. Indeed, without curved-wave corrections 

these S atoms would cancel in pairs: the phase of the direct wave 

incident upon one member of the pair is opposite the phase for the 

other. Of the 20 possible paths possible, only ten are unique, and by 

employing the method of ref 2, the calculation requires no more effort 

than other steps in the data analysis process. 

The resulting multiple-scattering phase functions are shown in Fig. 

6. The multiple-scattering effect is small, but it is adding to a near 

zero signal. We find that the GRT resonance has been pushed up in angle 

from 127.5° in single scattering to 131° in multiple scattering. Fig. 6 

shows that the phase jump for 131.4° is on the opposite side of the 

origin from the experimental jump, setting an upper bound on the S-Ni 

interlayer spacing, di of 1.50A corresponding to 130.4°. Although this 

bound is not very useful, we can limit the value of di much more closely 

by comparing the experimental phase functions to the multiple-scattering 

phase functions in Fig. 6. In each comparison, the same geometrical 

path-length difference has been subtracted from both theory and 

experiment. The closest match is clearly di = 1.30A. Because the 

angles 125.4° and 127-5° correspond respectively to d. = 1.25 A and di = 

1.35 A., this comparison alone has the precision to set small error 

limits on d, (perhaps ± 0.02 - 0.03 A). 

We can also arrive at this conclusion by comparing the ARPEFS 

oscillations directly. Fig. 7 compares the filtered experimental data 

to theory curves for S/Ni bond lengths of 2.16 A (d, = 1.25 A), 2.19 A 

(d, = 1.30 A) and 2.22 A (d, = 1.35 A). Visual comparison is 
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sufficient to exclude the two extreme geometries. Using the residual, 

an unweighted sum of the squared differences between experiment and 

theory, as a measure of the errors, we find a curve of error versus bond 

length whose minimum lies at 2.20 A (di = 1.32 A) as shown in Fig. 8. 

The theoretical curves were first scaled to the experiment to minimize 

their residual before constructing the curve of errors to reduce the 

influence of amplitude factors. 

This preference for 2.20 A bond length is not dependent on the 

inner potential: the same geometry is found even if both theory and 

experiment are placed on the experimental energy scale and the inner 

potential of the theory is allowed to vary. The curve of errors is less 

sensitive to the structure in this case as can be seen in Fig. 8 because 

the shift in E_ partly compensates for an incorrect geometry. At the 

minimum residual, we find an inner potential of -11 eV, in good 

agreement with our original selection of -10.5 eV. 

k 
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IV. DISCUSSION 

Our measurement gives 2.2C A for the S-Ni bond length in 
q c(2x2)S/Ni(001), in good agreement with previous studies. In 

estimating the precision of our determination we note that the structure 

information is carried in medium frequency oscillations superimposed 

upon a smoothly varying signal, and that we have sampled this signal at 

a much higher frequency than is relevant for the structure analysis. 

Furthermore we have measured the oscillations over a wide enough energy 

range to insure that errors in our reduction of the photoemission 

measurements to oscillations are minimal. The normal emission geometry 

is technically simpler to align and any small angular errors in the 

emission direction are self cancelling in the sense that among the four 

nearest neighbor Ni atoms every scattering path which lengthens with 

angle has a mate which shortens. We have varied the shape of the I 

estimate by altering the stiffness of the numerical spline used to 

derived Ifl from the data without altering the backtransformed 

oscillations; the autoregressive Fourier transform is not essential for 

our analysis and the same results may be derived with conventional 

Fourier methods. A more complete discussion of possible errors may be 

found in ref 9. We believe our experimental precision is less than ± 

0.02 A. 

The accuracy of our bond length is unfortunately not ent i re ly 

determined by experiment. Even though the Fourier f i l t e r ing approach we 

have used here sufficiently r e s t r i c t s the theory problem so that we need 

not be concerned about convergence in multiple scattering order or 

curved wave corrections, our resul t s t i l l r e l i e s on accurate theoretical 

curves. By concentrating primarily on the frequency of the 
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oscillations, our bond length is not sensitive to amplitude factors like 

inelastic mean free path, thermal averaging, or aperture integration. 

Furthermore, 3ince the contribution of the path-length difference to the 

frequency is 20 times larger than the Ni potential phase shift and 

multiple scattering corrections, even moderate errors in the theoretical 

contributions to the frequency will not disturb the bond length 

analysis. More serious sources of error in our procedure are the 

constant part of the multiple scattering phase shift function and the 

inner potential, E_. Either of these parameters will lead to geometry 

errors as the phase offset of theory and experiment is partial 

compensated by an erroneous shift in the theory path-length difference. 

Both the comparison of the curves in Fig. 8 and our residual analysis 

with variable E n in Fig. 9 argue that we have made no large error due to 

constant phase shift or inner potential here. Altogether we estimate 

our accuracy as + 0.02 A in bond length or ± 0.03 A in the S-Ni 

interplanar spacing. 

The theory errors are likely to be systematic, but we nevertheless 

quote our structure as S-Ni bond length of 2.20 A ± .03 A 

(d - 1.32 ± .04 A). With additional study of the scattering potential 

for Ni and S, including the photoion core potential, and additional 

measurements to insure experimental reproducibility, the accuracy of 

this type of structure measurement should improve by about a factor of 

two. We strongly emphasize that accurate structure work with extended 

fine structure requires a wide energy range. A short energy range is 

subject to error from construction of the x( k) curve to Fourier analysis 

to theory comparison: the additional data points in an extended range 
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set the trends of the low frequencies and hence they provide more than a 

simple statistical improvement in our experiment. 
17 Sagurton, Bullock, and Fadley have recently studied the GRT 

resonance using single-scattering theory, and they have concluded that 

the split Fourier peaks characteristic of the GRT resonance cannot be 

used for quantitative structural analyses. We believe that our work 

here demonstrates that this is not true, and rather than a serious 

liability, the GRT resonance has some interesting properties of its own 

A more difficult problem is the contribution of double scattering to the 

frequency range occupied by the resonance, scattering which was omitted 

in the study of Sagurton et al. We have shown here that this problem 

can be overcome by applying the method of ref 2. 

Our goal in this study has been to study the surface geometry and 

the generalized Ramsauer Townsend resonance ultimately plays only a 

small role in our work. Understanding the GRT resonance is of course 

essential, but the presence of the resonance is a hindrance in the sense 

that the phase jump on resonance is sensitive to non-structural 

parameters. A minor benefit of the resonance is the relatively flat (k 

independent) nature of the Ni phase function above and below the 

resonance with a consequent negligible contribution to the oscillation 

frequency. We might imagine that the resonance itself could contribute 

to either the structure study in other surface systems or the study of 

surfaces in other ways. For example, first row adsorbates would scatter 

so little that direct comparison of the experimental phase function with 

the theory phase functions for various scattering angle might be 

sufficient to extract the structure. More intriguing, it may be 

possible to probe the electronic structure of the first layer of metal 
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18 atoms in an adsorbate system by using the strong spin polarization 

which accompanies the GRT. This polarization has its origin in the 

sensitivity of the resonance: if the scattering potential has any 

dependence on spin, then the resonance energy will be spin dependent. 

At a photoelectron energy and scattering angle which corresponds to the 

GRT resonance, the photoemission intensity will be sensitive to the spin 

state of the scattering atom. 
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V. CONCLUSION 

We have observed a resonance in the scattering amplitude for S(1s) 

photoelectrons from Ni atoms and interpreted this resonance as a dip in 

the Ni atom partial cross section for electron scattering related to the 

Ramsauer-Townsend effect. This generalized Ramsauer-Townsend effect 

occurs at a particular energy and angle rather than in the total elastic 

cross section. We have 3hown that the resonance energy is sensitive to 

curved wave corrections and, after including some multiple scattering 

effects, we have derived the S-Ni bond length of c(2x2)S/Ni(100) from 

the ARPEFS oscillations from nearest neighbor Ni atoms in the presence 

of the generalized Ramsauer-Townsend resonance. We find this bond 

length to be 2.20 A ± .03 A corresponding to a S-Ni interplanar distance 

(d,) of 1.32 + .04 A. 
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FIGURE CAPTIONS 

Figure 1. S(1s) ARPEFS oscillations from c(2x2)S/Ni(001) in normal 

emission ([001]). The experimental kinetic energy scale 

has been converted to a wavenumber scale using an inner 

potential of 10.5 eV, and the resulting curve has been 

interpolated with a numerical spline to an even mesh of 

128 points. 

Figure 2. Fourier transform magnitudes versus scattering path-

length difference for k times the data in Fig. 1. In the 

lower panel, the conventional Fourier transform was 

applied, while the upper panel was obtained with the 

autoregressive linear prediction method described in ref. 

11. 

Figure 3. Ni scattering amplitudes calculated in the plane wave 

limit. Each solid line represents the scattering 

amplitude for the scattering angle indicated. For each 

scattering angle the amplitude was calculated for 

wavenumbers from 5-12A ; the labeled tick marks give 

some indication of the wavenumber scale. The amplitudes 

are plotted in the complex plane to illustrate the 

connection between scattering intensity and phase shift. 

Note that the scattering intensity is nearly zero for 

8.=130 and k»8A~1. 
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Figure 4. Fourier filtered ARPEFS data. The Fourier spectrum from 

Fig. 2 was zeroed above 5.1A and backtransformed, the 

amplitude envelop is also plotted as obtained from the 

complex backtransformation. 

Figure 5. Phase shifts for scattering from Ni. The dashed line 

shows the phase shift calculated with plane wave theory 

9. = 127°. The dotted line is the phase shift from the 

experimental curve Fig. 2, where the first two Fourier 

peaks are backtransformed together. A factor of ir for 

the sign difference between direct and scattered waves 

caused by the p wave angular distribution has been added 

to the experimental phase and a nominal 3.56A path-length 

difference has been removed. The zero crossing jump in 

phase occurs too high in wavenumber for the plane wave 

calculation. Solid lines are curved-wave calculations of 

the phase shift for the indicated scattering angles. 

Figure 6. Multiple-scattering GRT phase jumps. Each panel is 

labeled by the scattering angle for the Ni nearest 

neighbors. The dashed lines are phase jumps from the 

scattering calculation described in the text. The solid 

lines with circles are experimental phase jumps with 

geometrical path lengths removed. A phase equal to 3.57k 

radians was subtracted from both theory and experiment 

phase functions for comparing the 127.5° (di = 1.35A) 

phases, 3.49k radians from 126.4° (d, = 1.30A), and 3.41k 

radians from 125.4° (d, = 1.25A). As in Fig. 5, a factor 
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of n for (-1) was added to all phase functions; an 

additional factor of ir was added to the 131.5° phase for 

the purpose of display. 

Figure 7. Numerical simulation of the normal emission, S(1s) ARPEFS 

from c(2x2)S/Ni(001) compared to Fourier filtered 

experimental data. The theory curves were calculated for 

all scattering paths less than 5.1 A; the experimental AR 

Fourier transform in Fig. 2 was zeroed for frequencies 

above 5.1 A and backtransformed to give the solid 

jircles. Over the entire energy range, the frequency of 

the oscillations clearly matches the theory curve for a 

S-Ni bond length of 2.19 A better than the curves for 

shorter or longer bond lengths. 

Figure 8. Geometry search for S-Ni interlayer spacing. Plotted 

symbols are residuals from the least-squares fit of the 

numerical simulation curves to the Fourier filtered data. 

The residual is the unweighted sum of the squared 

differences between theory and experiment between 100 and 

414 eV. The solid triangles give the residual for a 

fixed theory inner potential of 10.5 eV; the crosses 

correspond to fits in which the theory inner potential 

was varied. The solid curve is a parabolic fit to the 

four triangle points between 1.275 and 1.35 A; the dashed 

curve is a parabolic fit to the four crosses in the same 

region. 
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CHAPTER 9: 

CONCLUSION 

The preceding chapters have drawn specific conclusions on the 

particular topics they discuss, and they each contain their own summary. 

Thus we will use this conclusion to suggest what new directions may be 

taken based on the work presented here. We begin with a broad view and 

follow with suggestions relating to the individual chapters. 

We might first ask if, based on our current progress, the method 

determining surface structures from photoelectron partial cross-section 

measurements merits further work. The key features of ARPEFS which 

recommend it for structure work are: 

i) Chemical Specificity; The structural signal is contained in 

core-level partial cross-section oscillations. By selecting 

the core level observed, we select the element or even 

oxidation state of an element to study, 

ii) Surface Sensitivity: Using photoelectrons in the 100-500 eV 

energy range gives good surface sensitivity, 

ill) Large Oscillation Amplitude: The detected interference is 

between direct and scattered waves, giving typical 

oscillations of 20-50*. 

iv) High Angular Sensitivity: Each different emission direction 

yields a different view of the structure; each different 

combination of polarization direction and crystal orientation 

gives different emphasis to the scattering atoms. 
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v) Simple Theoretical Model: The above four experimental 

considerations combine to greatly simplify curved-wave, 

multiple-scattering calculations. 

vi) Direct Fourier Analysis: The Fourier transform amplitude maps 

out scattering power versus geometrical path-length 

difference. The Fourier transform provides a means of 

displaying the structure information directly from a 

measurement. 

vii) High Precision: The experimental curves can be measured and 

reduced to infer a structure in a fashion which would not 

limit the accuracy of the structure. 

We must balance these advantages against the drawbacks of structure 

determination with ARPEFS and against alternative techniques of equal 

ability but greater ease. The two greatest barriers to the use of 

ARPEFS as a structure technique are the use of synchrotron radiation and 

the reliance on theoretical values for the inner potential and 

scattering phase functions. Synchrotron radiation beam time is 

currently very limited, but the future looks very bright. New electron 

storage rings dedicated to producing synchrotron radiation are opening 

throughout the world, and these new facilities provide more x-rays over 

a wider energy range than we have available today. Equally important, 

new designs for the experimental apparatus used on these storage rings 

will allow much more effective use of the available beam time. 

The problem of theoretical parameters is a difficult one but one 

which should not be unsurmountable. On the scale of modern methods for 

electronic structure calculations, our scattering phase functions are 

not very sophisticated. On the other hand, ARPEFS measurements can 
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produce such a large amount of information about the scattering of 

electrons that we may be able to devise a purely empirical set of 

scattering phase functions and eliminate any concern for the quality of 

the theory. The determination of the inner potential is tractable by 

some experimental method, but a deeper understanding of intermediate 

velocity electron propagation in solids is certainly required. The 

inner potential problem, electron refraction, inelastic electron 

scattering, and dynamic screening of the photoelectron and core hole are 

interesting interconnected problems which should be attacked both 

theoretically and experimentally. 

With these considerations, we briefly recall the advantage of the 

two most used structure methods: Low Energy Electron Diffraction (LEED) 

and Surface Extended X-Ray Absorption Fine Structure (SEXAFS). 

When comparing ARPEFS to other structure techniques we must recall 

that ARPEFS measures a differential cross section: for its advantages 

to be manifest the sample must be orientationally ordered. That is, the 

vectors from the photoemitter to each scattering atom must be the same 

for all emitting atoms. (We could, of course, have a few distinct 

emitting atom locations, but not hundreds.) Often this is equivalent to 

the periodic ordering required for LEED, but there may be cases in which 

this distinction i3 important. One example is the conversion between 

LEED patterns where we might expect orientational ordering, but the two-

dimensional periodicity is not complete. For a randomly oriented 

system, an ARPEFS measurement should be equivalent to a surface EXAFS 

measurement, but one may also be interested in the ARPEFS measurement of 

a disordered system: presumably with some effort a theory of 
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orientational disorder could be verified with experimental ARPEFS 

measurements. 

LEED continues to make steady progress. The advent of high gain 

detectors reduces the electron beam damage effects that previously 

limited this technique. Theoretical refinements have improved the 

prospects for solving more complicated structures. The major strength 

of LEED—experimental simplicity—must be balanced against the 

complexity of its analysis. Clearly the large number of simple 

structures solved by LEED suggests that for these systems the complexity 

is tractable. 

Surface EXAFS has made giant strides since its introduction. In 

return for venturing to a synchrotron storage ring, SEXAFS provides 

direct structure analysis including highly accurate bond lengths without 

requiring an ordered overlayer structure. The key advantage of SEXAFS— 

direct measurement of an average bond length to nearest neighbors—is 

also its key weakness for complicated structures. A well characterized 

but complex adsorbate could have many similar bond lengths which SEXAFS 

cannot resolve. For disordered systems, however, the average bond 

length may be the only useful parameter to describe the structure, and 

SEXAFS would be uniquely suitable. 

Rather than emphasize the competition of these structure techniques 

we should recognize their complementary nature. ARPEFS exhibits some of 

the features of both LEED and SEXAFS and in combination with these 

techniques perhaps we can build a collection of reliable structures 

essential for an understanding of chemical bonding on surface. 

We have demonstrated that ARPEFS can solve 3imple surface 

structures such as the c(2x2)S/Ni(001) structure discussed in this 
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thesis. Atomic systems which will benefit from the advantages of ARPEFS 

include: 

i) face-centered cubic (111) surfaces where two different three­

fold hollow sites have similar nearest neighbor distances but 

are distinguished by second layer substrate atoms. Normal 

emission ARPEFS would be ideal for scattering from the second 

layer atom, 

ii) Multiple site adsorption. More than one occupied site will 

likely have similar bond lengths but very different path-

length differences in some directions, 

iii) Atoms on stepped surfaces. Here the high angle selectivity 

would be valuable to concentrate on only the atoms on the 

edges. 

Beyond atomic systems, the more complicated the adsorbate molecule, 

the more advantages of ARPEFS will be evident. ARPEFS can dissect a 

molecular adsorbate structure problem by examining each element from 

each of several different view points. With direct analysis and 

adequate development of the electron scattering theory, ARPEFS is 

capable of determining these structures. 

Each of the chapters in this thesis covered topics which suggest 

important directions for future work. Some of these ideas are covered 

here so that we may finish with a look forward. 

The lifting operator or derivative expansion approach to electron 

scattering in Chapter 2 has a great many applications toward practical 

improvement of the theory of electron scattering. Because the higher 

order curved-wave corrections appear as derivatives of the basic 

homogeneous wave scattering, other types of corrections can be written 
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in terms of the same elements already available in the treatment of 

Chapter 2. The expressions for thermal averaging of the scattering 

amplitude derived in Chapter 5 is one example. Another interesting 

direction is automatic, gradient-driven, geometry searches. The error 

surfaces plotted in Chapter 6 are superfluous to the final result: we 

are only interested in the minimum point and possibly the curvature of 

the error surface. The geometry terms enter the expression for the 

least-squares error in a straightforward fashion, and formulas for the 

gradients and curvatures of the error surface could be derived in terms 

of the scattering factors from Chapter 2 with only moderate effort, 

leading to a quadratically convergent geometry optimization method. One 

of the prime motivations for the work of Chapters 3 and U was the 

difficulty in obtaining second order curved-wave corrections with the 

lifting operator method. Having completed example calculations with the 

Taylor Series Magnetic Quantum Number Expansion method, we now know that 

second order corrections are small, and the first order derivatives from 

Chapter 2 could be used successfully for most problems. Finally, it 

might be useful to elaborate the connection between the lifting operator 

and TS-MQNE formulae to facilitate conversion between them as a 

practical problem might require. 

The approximate origin-shift addition theorem derived in Chapter 3 

is merely a tool for the development of the electron scattering 

formulae, but the magnetic quantum number expansion gives us a tangible 

physical picture for the nature of the approximation. Unfortunately, 

this addresses only one of the two expansion variables, and a more 

thorough understanding of the Fourier transform or rotation matrix 

concepts may allow us to "see" the other direction as well. Beyond 
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pleasing our curiosity, we notice that the radial correction terms from 

Chapter 2 to which this other expansion variable corresponds are usually 

small: if we understood this variable, we may be able to truncate the 

expansion to which it corresponds or even eliminate it in many cases. 

Another direction to explore with the origin-shift equations is the 

expansion of Coulomb waves as would be appropriate for non-metal 

substrates and exponentially damped spherical Hankel waves which more 

accurately characterized the nature of spherical waves in a metal. 

The small atom approximation ideas and in particular the Taylor 

Series Magnetic Quantum Number Expansion formulae from Chapter 3 should 

be directly applicable to other electron scattering prob.'ers, such as 

EXAFS, LEED, and inelastic electron spectroscopies. Whe he•• this 

application would represent a practical improvement could only be judged 

by trial. As the rotation of the coordinate system makes symmetry very 

difficult to incorporate, the TS-MQNE approach may be more valuable for 

problems with low symmetry where special methods do not apply. The 

properties of the scattering factors deserve another look since their 

number determines the cost of the calculation. In particular it may be 

possible to generate some of these factors from simple operations on the 

others, a great savings when the number of partial waves is large. Of 

more immediate use would be formulae for p, d, and f initial core-level 

ARPEFS, but this should be primarily a matter of computer implementation 

since the electron scattering equations do not change. This is in 

contrast to the lifting operator formulae of Chapter 2 where derivatives 

of the higher order waves are required. 

The theory of ARPEFS presented in Chapter 5 is barely adequate to 

allow surface structure determination, and the discussion of many points 
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brought out more problems than solutions. Foremost among the 

theoretical challenges is the possibility as systematic error in the 

scattering partial wave phase shifts. By no means should our efforts at 

simulating the experiment be considered as good as can be done. The 

scattering partial wave phase shifts we used, while comparable to others 

used in this energy range, are based on old ideas about electronic 

structure which have not benefited from two decades of research in this 

field. All the available evidence suggests that the scattering 

potentials in the intermediate energy range should not be very sensitive 

to chemical bonding so that once a potential was demonstrated to be 

adequate for, say, Ni metal, it would be useful for all subsequent 

studies on Ni. We have also neglected the photoion core in Chapter 5, 

and any study of potentials should include the core-hole effect. A more 

satisfactory treatment of electron-electron interaction is also required 

to understand the inner potential and refraction problems; equally 

important, the adequacy of an isotropic mean free path should be re­

investigated. Our development was primarily aimed at metallic systems 

like S/Ni, so a thorough re-examination of many points is required 

before studying semiconductors and ionic solid3. Another rough spot is 

the Debye model for thermal averaging. From the experimental viewpoint 

the Debye model is adequate as it provides a convenient parameterization 

which is correct at high and low temperatures and smooth between. This 

suggests that a more fundamentally satisfactory formulation with the 

same properties may be available, perhaps based on the frequency 

distribution moment expansion. Finally, a careful comparison of our 

results and method to full multiple scattering, LEED-like theories is in 

order to understand the range of applicability of our approach. 
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Fourier transformation of the energy dependent photoelectron 

diffraction and the subsequent interpretation of the Fourier spectra 

were dramatic developments in the use of photoelectron diffraction for 

surface structure analysis. Chapter 6 grapples with the technological 

aspects of the Fourier transform and while the results are not perfect, 

insight gained from relatively simple manipulation of the data cannot be 

denied. Whenever some aspect of a frequency spectrum does not agree 

with a preconceived idea, it is a signal that one's entire knowledge 

about a problem has not been transmitted to the data analysis. Thus 

conventional Fourier analysis has low resolution because the information 

that we have a finite length estimate of a hypothetically infinitely 

long signal was not included. Similarly autoregressive Fourier analysis 

gives split peaks because the information that our signal has amplitude 

structure was not included. Another approach to Fourier analysis may 

develop which can account for at least part of the amplitude dependence 

in ARPEFS; before the advent of the autoregressive algorithms, one might 

have concluded only conventional Fourier methods and least-squares 

fitting were p033ible. For example, one may be able to exploit the 

connection between the constant phase shift largely determined by the 

scattering phase and the scattering amplitude to deduce the scattering 

envelope. Along these lines one must imagine a three-dimensional 

transformation in which ARPEFS spectra from many different emission 

directions are processed directly into a three-dimensional image of the 

surface structure in a manner somewhat analogous to x-ray tomography 

reconstructions. 

The experimental work in Chapter 7 amounts to a feasibility study 

for measuring surface structures with ARPEFS and despite some problems 
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the results are very favorable. Thus foremost among new experimental 

directions is the measurement of ARPEFS from other surface systems. 

Concurrent with thi3 thesis more than a dozen measurements have been 

made by other members of our research group, and they are currently 

being analyzed for structure. In addition to studies of surface 

structure, a temperature dependent ARPEFS measurement would test the 

thermal averaging theory as well as contributing to the understanding of 

vibrations on surfaces. New experimental apparatus would dramatically 

improve the measurements of ARPEFS. Two designs in particular currently 

under construction in our laboratory will increase the precision and the 

number of measured curves. The first improvement is a new type of 

crystal goniometer in which the vacuum rotation is accomplished with 

eliding seals rather than rotating bellows. This difference is very 

significant because the sliding seal arrangement allows the ; jinple to be 

mounted on the end of a stiff sealed tube; the position of the sample 

can be maintained to < 0.01°. The second improvement is a new type of 

electron energy analyzer Incorporating a focusing paraboloidal 

electrostatic mirror, a time-of-flight analyzer, and a position encoding 

detector. The paraboloidal electron mirror has -100 times larger 

angular acceptance than the apparatus used for the experiments in this 

thesis, and the time-of-flight technique should be several times more 

efficient in measuring photoemission spectra. The position encoding-

detector means that several tens of simultaneous ARPEFS spectra can be 

accumulated, leading to a high probability of a definitive structure 

analysis after a single sweep of the photon energy. Other experimental 

directions should explore alternative sources for creating ARPEFS-like 

signals. Electron energy loss with or without coincidence is the first 
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candidate, but two other possibilities can be suggested. First, the 

Einstein relation, E. - hv - E_, connects every photon energy with only 

one electron kinetic energy. Thus, in principle one does not require a 

photon monochromator for ARPEFS measurements. It should suffice to 

place the sample in a broadband x-ray source and scan the electron 

energy as long as the background signal is not too large. Second, a 

similar broadband source is in principle available in & decay of nuclei. 

Thus the e ejected from tritium should show ARPEFS oscillations, giving 

one of the few ways to study the structure of such a light element on 

surfaces. 

Finally we come to Chapter 9. A catalog of the positions in energy 

and angle of the Generalized Ramsauer-Townsend resonances for the period 

chart is a necessary adjunct to surface structure work, and the trends 

in the resonance positions with atomic number should lead to a deeper 

understanding of the physical origins of these resonances. We have 

noted in Chapter 9 that one may be able to exploit the spin dependence 

of the resonance position, but the resonance is also related to the time 

dependence of the scattering event. Near resonance, the electron is 

delayed in the region of the scattering atom, and one might devise some 

way to exploit this delay to study the dynamics of photoabsorption. 

Hopefully this thesis demonstrates that surface structure 

determination with photoelectron diffraction and, in particular, the 

angle-resolved photoemission extended fine structure is on the verge of 

fulfilling its early promise as a general purpose method for measuring 

surface structures. With additional development, ARPEFS analysis should 

contribute to our knowledge of the structure of surfaces and ultimately 

to our understanding of surface chemistry. 
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