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SUMMARY

Spent light-water-reactor (LWR) fuels with burnups of 54.5, 28 and 9 MWd/
kgu were leach-tested in deionized water at 25°C.  Fuel burnup has no appar-
ent effect on the calculated leach rates based upon the behavior of 137Cs and
239+240Pu. A Teach test of 54.5 MWd/kgU spent fuel in synthetic sea brine
showed that the cesium-based leach rate is lower in sea brine than in deionized

water.

A rise in the leach rate was observed after approximately 600 d of cumula-
tive leaching. During the rise, the leach rate for all the measured radionu-
clides become nearly equal. Evidence suggests that exposure of new surfaces to
the leachant may cause the increase. As a result, experimental work to study
leaching mechanisms of spent fuel has been initiated.
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INTRODUCTION

The storage of unreprocessed spent fuel for a short period of time is
designed into the operation of the commercial light-water reactor (LWR). Cur-
rent U.S. nuclear policies have suspended the reprocessing of spent fuel but
include provisions for central away-from-reactor (AFR) storage centers. Retro-
fitting of reactor basins to safely handle a more dense array of spent-fuel
bundles will add storage capacity until an AFR storage center is ready to
accept spent fuel. Spent fuel is also being considered as a final waste form
for placement in a repository. These storage alternatives, with the transpor-
tation and the associated handling of the spent-fuel bundles, create the possi-
bility of a condition in which the fuel cladding may be breached and the fuel
core may interact with water. This fuel-water interaction has been studied at
the Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute
for the Department of Energy (DOE).

Leach tests of spent fuel were started in 1975 as a part of the Waste Fix-
ation Program. In 1978 the work was partially funded by the Spent Fuel Han-
dling and Packaging Program (SFHPP), and in 1979 the work is being funded
through the Waste Isolation Safety Assessment Program (WISAP) from the Office
of Nuclear Waste Isolation (ONWI). Initially, the leach data were collected to
compare the durability of spent LWR fuel to other waste forms and to measure
the durability in Hanford groundwater. Spent LWR fuel was found to be as dura-
ble as was the engineering-scale, first-generation borosilicate glass made dur-
ing the Waste Solidification Engineering Prototype (WSEP) Program at PNL, and
deionized water was shown to yield a higher leach rate than did Hanford ground-
water (Katayama 1976). The continuation of the deionized-water leach tests
beyond the then standard one-year period has allowed the observation of an
extended-term effect. This extended-term effect, the effect of spent-fuel
burnup, and the durability of spent fuel in sea-brine solution are the subjects
of this report.






EXPERIMENTAL PARAMETERS

EQUIPMENT AND PROCEDURES

Details of the experimental procedure were previously reported, along with
the results of the first 140 d of leaching (Katayama 1976). The Paige leach
apparatus is shown in Figure 1. Leach rates are being measured in this appa-
ratus at ambient temperature (approximately 25°C) in a shielded facility with
an airlift-pumped recirculating flow rate of 75 L/d, which corresponds to
150 volume displacements in the leach apparatus per day. The leachant is
changed at the time of sampling. Sampling was done on a daily basis for the
first week, a weekly basis for three weeks, and on a monthly basis thereafter.
Plateout samples for the Paige apparatus have not been taken; however, analyt-
jcal samples are acidified to prevent plateout in the sample bottles.

AIR

AIRLIFT
RECIRCULATOR

200-300 mI/mirN\ 500 m! LEACHANT

6-mm 1D
1-mm-ID ‘b LSS SCREEN BASKET
ORIFICE SAMPLE HOLDER
45°
STOPCOCK

FIGURE 1. Paige Leach-Test Apparatus Used at the Pacific
Northwest Laboratory .






CALCULATIONS

The leach rates reported are all periodic leach rates and are calculated
from the following equation:

=
=
—

a
= New. > _ . 2_ ;
leach rate A s o g solids/cmé-d, (1)

where: a amount of specific radioisotope leached in time tn

"

amount of specific radioisotope initially present in fuel sample
weight of sample, g

geometric surface area of sample, cm2

x>
»w EO =
1]

t

duration of nth leach period, d.

The fraction of radionuclide released to the deionized water for the cumu-
lative leach periods was calculated by the following relationship:

a

fraction released = Kﬂ’ (2)
0

where: a, amount of specific radioisotope leached in time n

=
n

amount of specific radioisotope initially present in fuel
sample.

EXPERIMENTAL UNCERTAINTIES

The experimental uncertainties arise from the following sources:

e temperature fluctuations

e air-flow fluctuations in the air-1lift pumps
e Jleachant losses during leaching period

e leachant quality

e solution sampling



e plateout on apparatus

e surface area of sample

e chemical concentrations in fuel

e chemical separation for radiochemical analyses
e radioactivity counting statistics.

The major uncertainty is in the determination of the surface area of the sam-
ple. We calculate the surface area by geometric approximation from measure-
ments made on photographs as shown in Figure 2. Use of geometric surface area
has been reported to predict leach rates up to 8000 times greater than when
true surface areas are used (Mendel 1973).

Temperature fluctuations from the average 25°C in the 324 Building
shielded facility are approximately i3°C. Temperature dependencies of spent
fuel Teach rates are not known. For glasses containing high-level waste, this
fluctuation would introduce error of 14% (Westsik and Turcotte 1978).

The amount of specific radioisotope initially present in the fuel sample
is calculated from ORIGEN-predicted compositions (Bell 1973) at the average
burnup of the fuel. The fuel supply is in the form of fuel fragments from
several fuel rods mixed together. Burnup analyses of selected fragments may
not be representative of samples selected for leach-testing.

The radiochemical analysis errors range from 2% to 20%, depending upon the
radioisotope and the counting statistics. Acidified samples of leach solution
were radiochemically analyzed as follows:

e gamma spectroscopy

e cesium strip and gamma spectroscopy

e actinide separation and alpha-energy analyses
e uranium analysis by isotopic dilution.

The overall uncertainties for the data presented in this report is one-
half order of magnitude for the cesium leach rates and one order of magnitude
for uranium, plutonium and curium. Leach data presented in the following pages
are minus error bars.



RESULTS/DISCUSSION

EXTENDED-TERM LEACH EFFECT

Leach rate data for the extended-term deionized water test with 54.5 MWd/
kgUu fuel, based on the release of 137Cs, 239+240 d 244
Figure 3 for duplicate samples Z-6 and Z-7. The curves for the period up to

Pu, an Cm are shown in
approximately 550 d appear as continuations of the data reported after 140 d
(Katayama 1976), and are selective with respect to the radionuclides.

At about: 600 d of cumulative leaching there is an increase in the leach
rates for all of the radionuclides, and the leach curves appear to converge.
This increased leaching period--a 200-d duration hump in the leach rate
curves--is referred to as the "accelerated leaching period" in this report.

144Ce and 154

Not shown in Figure 3 are the leach rate trend Tlines for Eu,
which were not continuous leach curves. These radionuclides were analytically
detected during the first 200 d of the leach test and then were not radiochemi-
cally detectable until the start of the accelerated leaching period. Leach
curves for these radionuclides are shown in Figure 4 for the accelerated
leaching period. This figure also shows a leach rate curve based on the
release of total uranium. Uranium analyses of the leach solution were not
started until after 588 d of cumulative leaching. The reappearance of 144Ce
and 154Eu during the accelerated leaching period indicates that new sources

of these radionuclides are available--probably because new fuel surfaces are
exposed.

137 239+240Pu,

Graphical representations of fractional release of Cs,
and 244Cm as a function of days leached are shown in Figureé 5, 6 and 7,
respectively. After 1013 d of leaching, 1.72% of the cesium, 0.35% of the
plutonium, and 0.28% of the curium were released to the deionized water. The
change from selective leaching to accelerated leaching is most pronounced for
the 244Cm release curve (Figure 7), where the fraction released increased by
three orders of magnitude.



-,
\ J
-
< = » ]
.
......... MN
L)
\ « o £
" S S o
H pal ~ ~
] e o
.‘ -

lelele

(i -
/
A
o
I

-
'. o
v d
d’
1

oo
|||||||
-
P

A/A~_
F\
\
A

540 630 720 810
TIME. d

450

270

180
Leach Rate of 54.5-MWd/kgU Spent LWR Fuel in Deionized Water at 250C.

Duplicate samples are designated Z-6 and Z-7.

FIGURE 3.

% St
S T
/ o
s ’ .-.“....‘..um..-. ll
Y = Re...........\n.h-. .
. — _.r o -.-a....W.W_LE L FO, FEL 1

107

?NEUEE 40 5 "vy HOVYT



1SOTOPES USED TO CALCULATE
LEACH RATE (SEEEQ 1)

AVERAGE LEACH RATE, g OF FUELIcmZ-d

. o 137CS ° 125Sb
A 239+ 24OPu * lSAEu
ZMCm o lMCe

Wil v
580 600 620 640 . 660 6380 130 720 740 760 780 800

TIME, d

FIGURE 4. Leach Rate of Radionuclides from 54.5-MWd/kgU Spent
LWR Fuel During Accelerated Leaching Period in
Deionized Water at 250C

107

SAMPLE Z -7

FRACTION 137(25 RELEASED

SAMPLE Z -6

1 10 100 1000
TIME, d

FIGURE 5. Fraction of 137Cs Released from Spent LWR Fuel,
54.5 Mdd/kgU, in Deionized Water at 250C



SAMPLE Z-6

FRACTION 2% * 20p, peieasen

B SAMPLE 2-7
10

TIME, d

FIGURE 6. Fraction of 239+240py Released from Spent LWR Fuel,
54.5 MWd/kgU, in Deionized Water at 250C
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5 SAMPIE Z -T
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TivE, d

FIGURE 7. Fraction of 2%4Cm Released from Spent LWR Fuel,
54.5 MWd/kgU, in Deionized Water at 250C

10



The fractional release curves are re-plotted in Figures 8 and 9 for sam-
ples Z-6 and Z-7, respectively, to show the difference in release rates of the
244

Cm

increase three orders of magnitude during the accelerated leaching period and
239+240

radioisotopes. In both samples the fractional release curves for
become nearly equal to the Pu release curves, indicating nearly equal
chemical distribution in the samples. After 800 d the plutonium and curium
curves start to diverge again.

SAMPLE Z-6

10°
r 137,

10° —
I 239+240P u

107

FRACTION RADIO} SOTOPE RELEASED

lellll

100 500 1000
TIME, d

FIGURE 8. Fractions Released from Spent Fuel
Sample Z-6, 54.5 MWd/kgU, in
Deionized Water at Transition to and
from Accelerated Leaching at 250C
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FIGURE 9. Fractions Released from Spent LWR Fuel
Sample Z-7, 54.5 MWd/kgU, in Deionized
Water at Transition to and from
Accelerated Leaching at 25°C

SEA-BRINE EFFECT

Spent LWR fuel with a burnup of 54.5 MWd/kgU is being leach-tested in a
synthetic sea brine. The Teach rate data for 652 d of cumulative leaching in
brine and deionized water are shown in Figure 10. Both of the curves are based
on the release behavior of 137Cs. The presence of the sea-brine chemicals
listed in Table 1 makes radiochemical analysis of the leachant difficult,

except for 137Cs detection by gamma spectroscopy. Based on the release of

137Cs, the leach rate of spent LWR fuel is approximately five times lower in

sea brine than in deionized water.

12
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Leach_Rate of 54.5-MWd/kguU Spent LWR Fuel Based on Release
of 137Cs in Sea Brine and Deionized Water at 250C




TABLE 1. Chemical Analysis, Instant Ocean®
Synthetic Sea Salt Solution

Element/ Element/

Compound Content, ppm Compound  Content, ppm
C1 18,400 Sr 6.0
Na 10,220 S1'03 3.0
SO4 2,518 Mn 1.3
Mg 1,238 PO4 1.2
K 390 F 1.0
Ca 370 M004 0.6
HCO3 142 3203 0.3
Br 60 Li 0.2
H3BO3 25

®nstant Ocean is a registered name for a
synthetic sea salt manufactured by
Aquarium Systems, Inc.

BURNUP EFFECT

Spent LWR fuels with three different burnups (54.5 MWd/kgU, 28.0 MWd/kgU

and 9.0 MWd/kgU) are being leached in deionized water at 25°¢. Figures 11
137
Cs

Pu, respectively. Burnup appears to have no effect upon the leach
137CS and 239+240Pu

and 12 show leach rate curves for these fuels based on the release of
and 239+240

rate based on release of

These results differ from those reported by Eklund and Forsyth (1978) for
fuels with burnups of 12.9 MWd/kgU and 26.9 MWd/kgu. Although their leach
curves based on alpha activity showed 1ittle increase from burnup, they found
that the 137
of magnitude greater than from the lower-burnup fuel at the start of leaching,

Cs release from the higher-burnup fuel was as much as two orders
and that the release rates converged after 50 d of leaching. If their high

initial cesium leach rate for the 26.9-MWd/kgu fuel is attributable to cesium
enrichment at the fuel-cladding gap, then this high leach rate probably

14
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FIGURE 11. Leach Rate of Spent Fuels Based on Release of 137¢s in Deionized
Water at 259C with Burnups of 9.0, 28.0 and 54.5 MWd/kgU




91

LEACH RATE, g OF FUELIcmz-d

10°E
i— 239 + 240Pu O QUAD CITY 9.0 MWd / kqU
I A HB ROBINSON  28.0 MWd /kqU
i ® 7ORITA 54.5 MWd / kqU
10'45—
10 9 o
\ O ~— A
(o) O N ~—
- \AA¥G/SYO/A/ o\o/o\o/ ° A ._________——.
Yy — A
10 65 Y a ° .\.\O/ \O><A/ ~a
u \ ./ ® ~o \
™ e ~ ~o—o0 A
. IANVAW
107 =
10’85—
107 — 1 L 1 ! ! ! 1
0 - 50 100 150 200 250 400 450 500 550
TIME, d
FIGURE 12. Leach Rate of Spent Fuels Based on Release of 239+240py in Deionized

Water at 259C with Burnups of 9.0, 28.0 and 54.5 MWd/kgu




includes the solubility effect of a cesium compound such as CsI. The conver-
gence of the leach rate curves at about 50 d signalled the end of this
solubility-affected period for the 26.9-MWd/kgU spent fuel--i.e., the CsI is
dissolved away.

The results from cladding hull experiments by Griggs (1975) showed that
fuel-cladding interactions were present in our high-burnup, 54.5-MWd/kgu fuel
and that a considerable amount of this interaction material was left on the
cladding. Our leach data confirms that the interaction material was removed
from our fuel fragments. Chemical distribution studies of the 28.0-MWd/kgU
fuel showed no cesium enrichment (see Appendix).

The fractional release of cesium during the selective leaching periods of
the extended-term leach tests was a logarithmic function of time, with a slope
of about 1/2 (Figures 8 and 9). This behavior indicates that the release is
predominantly diffusion-controlled (Mendel 1973). A diffusion-controlled
release mechanism would account for the nearly equal cesium-based leach rates
for fuels with different burnups.

The leach rate curves based on total uranium release are shown in Fig-
ure 13. For the 54.5-MWd/kgU fuel samples the uranium analyses of the leach
solution were not started until 588 d of cumulative leaching had been done.
The spread in the leach curves shown is slightly greater than the one-order-of-
magnitude experimental uncertainty range. These slight differences may be the
results of an underestimation of the experimental uncertainties, or may be
caused by differences in physical structure of the samples.

Metallographic examination of the fuel fragments shown in Figures 14
through 16 revealed that the Quad City fuel was low in porosity, whereas the
HB Robinson and Zorita fuels contc¢ined pores and cracks. These physical dif-
ferences may be a characteristic of the fabrication and/or irradiation history.

244Cm. The low-burnup

Figure 17 shows the leach rate curves based on
fuel (9.0 MWd/kgU) has a leach rate approximately 50 times greater than does
the intermediate-burnup fuel (28.0 MWd/kgU), and approximately 1000 times

greater than does the high-burnup fuel (54.5 MWd/kgU). These leach rates are

17
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FIGURE 17. Leach Rate of Spent LWR Fuels Based on the Release of 244cm in Deionized

Water at 259C with Burnups of 9.0, 28.0 and 54.5 MWd/kgU




in the reverse order of the curium concentration in the fuel predicted by
ORIGEN (Bell 1973), where 54.5-MWd/kgU fuel contains 1000 times the curium con-
centration of 9.0 MWd/kgUu fuel.

After 350 d of cumulative leaching the curves for the three different-
burnup fuels converge and are within the one-order-of-magnitude experimental
uncertainty range. The large differences in 244Cm leach rate are only short-
term when measured on a waste-isolation time scale (thousands of years).

The shape of the ORIGEN-predicted 244Cm concentration-versus-burnup

curve at the 9.0-MWd/kgU range, as shown in Figure 18, reveals the uncertain-
ties in picking an A0 value--especially with fuel fragments for which in-rod
and in-bundle locations are not known. The burnup uncertainties may have led
to calculated A0 values lower than actual ones for the low-burnup fuel,
resulting in overestimation of leach rates (or perhaps the opposite effect).
Chemical-distribution measurements of curium by microprobe analysis is pre-
vented by the interference of the uranium and plutonium x-ray spectrum.

In summary, the burnup of the fuel does not have a measurable effect upon
the leach rates, based on the behavior of 137Cs, 239+240Pu, and uranium.,
There is a short-term (350-d) effect based on the behavior of 244Cm.

FURTURE WORK

Experimental work is under way in the effort to study the leaching
mechanisms of spent fuel. These experiments are being done in deionized
water, WIPP "B" brine solution, and a bicarbonate groundwater solution.
Temperatures from 25°C to 150°C and dissolved-oxygen concentrations of up
to 200 ppm are included in the study. '

Experimental work is also under way to study what effect chemical
distribution of radionuclides has upon leaching behaviors. These tests will
be done on polished transverse sections of spent fuel rods with chemical
distributions determined with a shielded-electron-beam microprobe x-ray
analyzer,

23
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CONCLUSIONS

137

The leach rate of spent LWR fuel in sea brine based on Cs release is

lower than in deionized water by a factor of five.

Burnup of the fuel does not have a measurable effect upon leach rates,

based on the behavior of 137Cs and 239+240Pu.

The periodic leach rates after 1013 d are as follows:

137¢5 = 3 x 1070 g fuel/cmz-d;
239+280p, - 1 y 1070 g fuel/cm?-d;
2880m = 1 x 1077 g fue]/cmz-d;
Utotal = 2 x 1077 g fue]/cmz—d.

Additional experimental work is needed to understand the mechanisms of
spent-fuel Tleaching.

25






BIBLIOGRAPHY

Bell, M. J. 1973. ORIGEN--The ORNL Isotope Generation and Depletion Code.
ORNL-4628, Oak Ridge National Laboratory, Oak Ridge, TN 37830.

Eklund, U. B., and R. S. Forsyth. 1978. Leaching of Irradiated U0y Fuel.
KBS-70, Studsvik, Aktiebolaget Atominergi, Sweden.

Griggs, B. 1975. “Transuranic Element Distribution in Chop Leach Cladding
Residues." 1In: Nuclear Waste Management and Transportation Quarterly
Progress Report. (JuTy through September) BNWL-1952, Pacific Northwest
Laboratory, Richland, WA 99352.

Katayama, Y. B. 1976. Leaching of Irradiated LWR Fuel Pellets in Deionized
and Typical Ground Water. BNWL-2057, Pacific Northwest Laboratory, Richland,
WA 99352.

Katayama, Y. B., and J. E. Mendel. 1977. Leaching of Irradiated Fuel Pellets
in Deionized Water, Sea Brine, and Typical Ground Water. PNL-SA-6416,
Pacific Northwest Laboratory, Richland, WA 99352.

Mendel, J. E. 1973. A Review of Leaching Test Methods and the Leachability
of Various Solids Media Containing Radioactive Wastes. BNWL-1765, Pacific
Northwest Laboratory, Richland, WA 99352.

Westsik, Jr., J. H., and R. P. Turcotte. 1978. Hydrothermal Reactions of
Nuclear Waste Solids - A Preliminary Study. PNL-2759, Pacific Northwest
Laboratory, RichTand, WA 99352.

27






APPENDIX

SPENT-FUEL CHEMISTRY
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PLUTONIUM

The plutonium is enriched at the outside diameter (0D) of the fuel pellet
by a factor of three, compared to the concentration at the center of the pel-
let. There is a 47% reduction in plutonium concentration 300 um inward from
the 0D, and the concentration drops another 28% over the next 3600 um (Point B).
This heterogeneity in plutonium distribution should be considered when leach
data are used for developing radionuclide release models for spent fuels.

CESIUM

The cesium distribution in the fuel fragment was uniform from the 0D to
the center. A1l evidence of surface enrichment is absent. Any cesium iodide
that may have been present at the 0D zircalloy-clad gap after reactor discharge
could have been removed from the OD surface during decladding.

A.3



RUTHENIUM

The concentration of ruthenjum at the OD is 27% higher than at a point
100 pm inward. Within the next 600 uym the ruthenium concentration drops 13%,
and then remains essentially constant through to the center of the fuel pellet.

TELLURTUM

The tellurium concentration is uniform throughout the fuel pellet.

CERIUM

The cerium concentration is about 30% higher at the OD and at about 200 um
inside the OD. From the 200-um mark to the center the concentration is uniform.

TECHNETIUM

The technetium concentration is about 30% higher at the 0D than in the
remainder of the pellet. This enriched zone is about 100 um wide.

BARTUM

The barium concentration is about 30% higher at the OD than in the remain-
der of the pellet. This enriched zone is about 150 um wide.

ZIRCONTUM

The zirconium concentration is uniform throughout the fuel pellet.

IODINE

The iodine concentration is uniform throughout the fuel pellet.

A.4
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