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ABSTRACT

¥umericsl calculations nave Ceen performed to study the IMHD
activity :in hnigh-2 tokamaks such as ISX-B. These initial value
salculaticns built on eariier low 2 techniques, but the ¢ effects
create several new numerical issues, These issues are discussed and
resolved. In addition to time-stepping modules, our system of ccmputer
coges includes equilibriun soivers (used to provide an initial
zondition) anc output nodules, such as a nmagnetic field line follower
and ar {(-ray diagnostic ccde.

The transition from current driven modes at low 2 to precominantly

pressure 2driven mocdes at high ¢ is described. The nonlinear studies

7ield Y-ray emissivity plots which are compared with experinment,



I. INTRCRYCTION
In this paper we present theoretical mnodeis, based on the
resist.ive MHD equation. <hich have been Jdeveloped to studv hrigh
tokamak plasmas. A system of codes used to implement these modeis Is
also discussed along with the uaumerical techniques emploved. The <zoal
of this work is the study of the resistive MHD instab:ilities prece~t in

[
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ies. AL the
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e

tokamak plasmas below the threshcld of 1geal insta
same time, these mocdels have been used spec.fica.’y tc support ant
ccmplement the experiments in the IS5X-B tokamax.

The present studies at ORNL are the lcgical continuaticon of tnose
done for low beta tokamak plasmas. This previcus «“ork included the
studvy of internal disruptions {1}, Mirnov <cscillations 2], soft
disruptions associated with hollow current profiles 3] and major
tokamak disruptions [4], Tne numerical work has aiways been
accompanied by analytical modeling, which has uncovered some new
dvnamical mechanisms (5,6]. Realistic geometrical effec-s such as
toroidicity [7] and noncircularity 78] have also beern cons:iere+,

For tne high 2 studies we have used a reduced se%t of res.stive 'tH.
equations [9] valid in the limit of large aspect ratio ![: : a/f, << 1,
where a and Ro are the plasma minor and major radi: respectively) and
high 84 (8 ™ ¢). This system of equaticns wWith some minor variat:ons
has also been used by other groups [10,71] for sinilar studies. The
implementatiion of these equations as an initial valiue problen

constitutes one of the time stepping modules, RST, of the system of

codes,



Tn. 5 system of codes consists of three types of modules (Table
I): 1input modules, time stepping modules and output modules., The
latter type incluile¢s mainly diagnostic codes, They have been used to
improve the understandinz of the 1instacilities studied. They are
excellent tools for unraveling some of the characteristics of the basic
dynamnical mechaniams. Some cutput modules are used to calculate
quantities, such as ¥-ray traces, which can be directly compared with
experimental data. These diagnostic modules have been very helpful in
understanding experimental data and allowing detailed comparisons
setween theory and experiment {12].

The equations wused in the present study zre discussed in Section
IT; an2 in Section II] are presente! the numeric:l methods used? <o
advance these equations in time. A discussion of the system of ccdes

with details on some of the diagnostic modules is given in Section IV,

Finally, some results are presented in Section V.



IT, EQUATIOHNS

Sur gsaproach to resistive MHD in moderate 2 tokamaks is through
the use of an initial value time stepping module RST, which integrates
in time a set of coupled nonlinear partial differential equations from
an initial state consisting of an MHD equilibrium plus a perturbation.
Theoretical studies in finite R tokamaks are generally most easily
carried out in some system of flux coordinates. Since the growth of
resistive instabilities frequently destroys magnetic flux surfaces, /ST
uses a flux coordinate system based on the “4D equilibrium. Tnis
equilibrium and the associated coordinate system are calculated usiag
the fixed opoundary code RSTEQ [13] as an input module. This code

solves the axisymmetric, toroidal Grad-Shafranov equation

=
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either in a flux conserving manner or for specified pressure and
toroidal current density. All work is carried out using dimensionless
equations. All lengths are normalized to 2 generali~ed plasma minor
radius a, tne resistivity to n, (its value at the magnetic axis), the
time to the resistive diffusion time <. = a2u0/n° where y, is the
vacuwn magnetic permeability, the magnetic field to Bco (the toroidal
vacuun field at the plasma major radius Ro). the velocity to a’t,., and
the pressure to p, (its equilihrium value at the magnetic axis). In
°g

1si ¥ i " i
Eq. (1) the polsigal flux eq is normalized to a co B, is the



toroidal g at the magiretic axis, A 1s the major radius coordinate
divided by Ro. the e¢quilibrium pressure pnq is a function of ?eq' and
the toroidal flux function Feq is also a function of ?eq which is

normalized to RoB;o'

Given dimensionless horizontal and vertical wminor radii X =
(R=-1)/¢ and Z, respectively, the solution of Eq. (1) can be used to
define a flux coordinate system (p, O, ) in which ¢ (0 < p < 1) is an
equilibriust flux surface variable which behaves as a seneiralized minor
radius, 2 (0 € 2 < 2%) is a generalized polcidal angle variable, and ¢
is the toroidal angle. The particular choice of ccordinates used in

RST is determined in the same way as in Ref. [14] by setting the

Jacobian

p 2131 3T _13ay 1 2

where the exponent ¢ determines the coordinate system, The unit of

iength is given by

i
a¢ = 2 1 ptay, (3)
2172

where the integraticn eitends over the entire plasma volume. If £ = 2
is chosen in Eq. (2) then the equilibrium magnetic field 1lines are
straight in the resulting coordinate system (Fig. 1).

In order to study resistive MHD stability and nonlinear evolution,
RST empioys a reduced set of 3-D resistive !™D equations derived in the

limits of large aspect ratio (g << 1) and high g8 (g ~ ¢) [9]. In terms



of the coordinate system described above, the dimensionless form of

this set of equations is
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where % s the velocity stream function, !/ =vfc is the toroidal

vorticity, the resistivity n(p} is taken to be constant in tine, the

. L - . .
toroidal <current J_ = A 7, denotes a perturbation quantity, and

r
£

S = Tr/THp is the ratio of the resistive time to the poloidal Alfvén

time THp = Ro(“opm)1/2/aco where on is the mass density. ‘iote that
: : L . )

Ueq z oeq = 0 is assumed. The linear operator A in this coordinate

system is
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fquations (u)=~(6) make use of the fact that ?eq and Peq 2r€ functions
of p only. Conducting wall boundary conditions and 2zero Dnressure at
the plasma edge are assuued. Although the reduced equations keep
dynamical terms only to lowest order in g, the geometric terms are kept
such that the soluticn of the Grad-Shairanov eguation (1)}, exact to all
orders in g, is an eguilibrium for the equations (4) to (5) in the
limit of zero resistivity.

The 3’ST module advances :n time equations (d4) to (6) either
linearly or nonlinearly as desired; it is written to solve the full
nonlinear set, but linear stability calculations are also carried out
oy omitting the terms nonlinear in the perturbed quantities. It is
3.so possiblie to swilch off the pressure term in the momentum balance
eguatinn {(5), while totally dropping Zq. (4). This allows the separate

study of the current driven moades in a high g8 plasma.



TII. NUMERICAL TECHNIQUES
The numerical techniques used in solving the high 3 equations (4},
(5) and () are basically the same as those which were described in
Ref. [15] for the cylindrical 1low R eqguations. The equations are
soived using a finite difference representation in the generalized
radial coordinate p and Fourier series expansion in the angle variable

0 and . In terms of this representation, gquantities “ependert upon

the equilibriun are written

< ¢ (¢S s P P
feq(o.O) =z mEO _feqm(o) cos mo + feqm(o) sin mo {11)

while perturbation quantities are written

f(p,0,8) = L b rfﬁn(;) cos(m0 + ng)
Nzl Mmz=w =~ °

+ £3.(p) sin(mo + nz)! . (12)

Althougn RST allecws both sine and cosine terms, these studies have been
restricted to equilibria with up-down symmetry. Then, in cases where
only the cosine terms in VY are nonzero in the initial conditions, the
sine terms in ¥, and p and cosin2e terms in % remain identically zero as
time evolves. 1In order to simplify the presentation, only this latter
situation will be discussed, and the superscripts ¢ and s wi.l be
dropped hereafter,

In practice both series (11) and (12) must be truncated at a
finite number of modes. Considerable effort has been devoted %o
demonstrating numerical convergence [15]. Typically, 100 to 300 finite

difference grid points are necessary to span the minor radius. The



nunber of terms retained in the double sum of Eg. (12) ranges up to
about 80, The most efficient selection is obtained by an ad hoe scheme
[15) in which the selection of m values is dependent on n., It has been
shown that, for the problems we have studied, this representation is
far more efficient than a 3D finite difference grid. This gain in
efficiency has been crucial in obtaining the results shown here.

Most of the numerical details can be carried over frcm what was
discussed in Ref. [15]. However, several additional considerations
necessary to RST will be discussed here. They refer mainly to the
following three points: 1) the new equation (§) for the pressure which
is absent at low 2; 2) the problems related to matrix inversions caused
by the new poloidal couplings; and 3) the choice of a coordinate system

to optimize the efficiency of the calculations.

1. MNumerical Treatment of the Pressure Equation

The pressure equation (6) is purely convective, It is known that
centered finite difference expressions in space and time will yield two
solutions, a physical one and a nonphysical one. Consider the

prototype convective equation

The solution is o(x,t) = p{(x+vt, 0), which is a travelling wave moving
in the negative x direction for v > 0, However, the centered finite

difference fornm



t+AL t t+AL/2 t+AL/2
Py = Px - v,px’ax/2 = Px-px/2,
At B AX ’

has two independent solutions [16]. This arises because there are two
uncoupled grids, one at nat, mAx, and one at (n + 1,/2)At, (m+ 1/2)4x.
This gives rise not only to the t¢hysical solution, but also to a

spurious backward moving one. Taking a one~sided space difference

Pyseax = Px OF Py = Py_ax

solves this problem, but the chcice of form is dictated by the local
s:gn of v, This procedure i3 called up-wind differencing and is due to
R. Lelevier {17]. A&n equivalient representation [ 18] is obtained by a
centered discretization of
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where a diffusion term has been added.

When Eqs. (4)-(6) are solved using centered finite differences in

Eq. (6), pressure profiles such as those in Fig. 2a can resul:. The

non-physical solution c¢an lead to a shock front as can be seen in tne
figure (near r = 0.58). The second term in (6) does couple the gzrids,
but there is no guarantee that it 1is large enough. Up-wind
differencing of the last term 1in (6) 1is impractical since it s

obtained by convoluting the two factors. Instead, a diffusive term

xa p
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s0lo1dal mogde numbers = are Linearly couple:l Lnrough  equiliirium

guant:ities, Using a three point second order rac.ai 31fference sc-anme,

a blucx triuiagonal matrix having *J = "IJ blocks ‘4 being tne ~umter
of radial 4rid points, with each block of s5ize *n, « ¥(n, . Jhere M(n:
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the block <*ridiagonal matrix to "(n) sinple tridiagonal matrices of
length MJ. These matrices no longer explicitly couple different
components of toroidal mode numper n, though such couplings remain in
other terms in the equations. The effect of the couplings in the
approximate natrix terms can be introduced into this scheme by
1terating the approximate matrix wit: the full inverse operator of the
bloek trid:iagonal matrix in an appropriate fashion. In cases for which
the approximate matrix scheme converges, the answers agree wWJell with

those obtained wusing the full block tridiagonal scheme, even without

iteration.

2 Choice of Cocrdinate System

o

Variation of the coordinate system was attempted to obtain a more
compact regresentation, in terms of Fourier components, of the modes in
the high ? regime. Such an approach, using =1 rzgther than =2, which
.5 the ~natural choice for tearing mode studies, has been suzgested in
e, Ttul. Tne effect is to shift the poloidal coordinate grid more
~owar? wne outside {in major radius) of the plasna, and hence to "put
mcre ccorzinates” in the region of steep pressure gradients where
zalzening ~odes should oceur, fcr  the resistive balooning modes
3T ilie: &i%n 2ST, the change from i=2 ¢ =1 was found tc have no
efface .n improving the poloidal representation of the modes, This is

stewn 17 i3, I, where we plot magnetic and pressure energy norms, by

-
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(Ep)mn = [ 040 Pnn (13)

for an n=1 eigenmode as functions of the poloidal mode number n.
Although this case 1is for a high 2 equilibrium (seD = 1.1), the 2=2
straight field line coordinate system is seen to provide at least as
economical a representation of the poloidal structure of the mode as
does =1, Because of these tests, we generally use 22 1in our

calculations,



IV. SYSTEM OF CODES

The system of resistive MHD codes (Table 1) is constructed to
efTiciently use the results of the major modules. The present najor
nonlinear time-stepping modules include RSF [15]) (low g cylindrical
geometry) and RST with toroidal geometry. The latter can run both low
8 and high g8, circular and noncircular cases, To begin a sequence of
runs with RST for noncircular or higa 8 cases, an appropriate
equilibriun must first bs generated with RSTEQ [13). At specified
times, both modules dump save files and also standard diagnostic print
and plot files. These save files can be used not only to initialize
the major nodules for continuation runs, but also as input to any of
the modul es in the diagnostic system, Since these files are
permanently stored and the modules maintain the capability to read
previous save files, the diagnostic system is capable of analyzing any
previous run.

The diagnostic system corsists of a magnetic field line module, a
stability package of A' solvers, a statistical package called DINOS
which calculates correlation functions and other statisticai
information and a package that computes experimental information such
as X-ray signals and ;e/Be. Here we will describe the experimental
package and the field line module which are the most relevant for the
hign R calculations.

The experimental package simulates X-ray detector signals in ISX-B
using save files from the major mcdules. The line integral of the
X-ray emissivity is modeled as the 1line integral of the pressure
squared and either toroidal or poloidal rotation of the mode structure

at constant frequency is assumed (Fig. 4). Realistic geometry for the



three X-ray arrays in ISX-B (Fig. 5) is used to simulate experimental
results. The intersection of each chord in the arrays with the edge of
the plasma must first be found for tne limits of integration. These
limits are found by searching over equal steps in 4 around the plasma
edge and vusing interpolation between steps. The trapezoidal rule is
used to integrate the X-ray emissivity, I, where

1(p0,t) = gl T Fp (pt)costmluwyt + 0} + n(g + wrt)) 2
‘m,n P L

normalization constant

g =
wp = frequency of toroidal rotation
up = frequency of poloidal rotation

ﬂnn(o.t) = interpolation in p and t of pmn(oi.ti) .
Since I is a function of p ard O and we take equal steps along the

chords in X and Z coordinates, we nust invert:

X = I xp(p) cos mG
ok

2(p) sin m0 .

3

HYBRD1 [20], a zero-finder for systems of nonlinear equations, is uved
for this inversion. We use linear interpolation in o and SPLINF and
SEVYAL f21] to spline fit in t to find fanl(o.t) . The integral of I anc
the maximum of 1 are then computed at ziven times and plotted for each
chord (Fig. 6). The code 2also plots the X-ray emissivity in three

dimensions (Fig. 4).



The experimental package also computes the poloidal nagnetic field
fluctuations at the plasma bound-ry, ;5/56. Due to the compler
geometry of the Mirnov coils in IS¥-B, we do not use realistic geometry
in these calculations, Instead we wuse detectors that are equally
spaced poloidally. Using ZEROIN {21], a combination of the bisection

and secant methods, we find the corresponding O at the edge of the

plasma. Then we use divided differences to compute

; i ( )
B z — cos(m(w_t 0) n t)
___9, _&n 3o =t wg - + Z + o
Bq Yoo

3p ‘pz1

If umn(o.t) is known for multiple times we spline fit in t. The phase
of these fluctuations is found by searching for the first peak in the
fluctuation for each detector and plotting the poloidal angles of the
detectors vs wAt of the first peak.

The experimental package runs in approximately five minutes on the
Cray-1. The X-ray emissivity is integrated at 200 times for each X-ray
detector chord for 32 side chords and two arrays of 24 top chords. The
nunber of steps across each chord 15 a function of the chord 1length
with a maximum of one hundred steps. Three dimensional plots of the
X-ray emissivity are drawn at {our different times on a 39 by 39 grid.
Poloidal magnetic field fluctuations are calculated for 64 detectors.

The field line module irntegrates the magnetic field line equations
using v from the save files of the major codes. DE [22], a software

integration package is used to integrate the equations:



1 . .
- — T my. (p) sin(s )
ac oF oin SmntP m0 « L

dy, (o)
do _ 1 by __mn__cos(m0+ nz) .
[

—_ = 3

¢ pF an

For given p(g,) and 9(g,). DE uses a modified divided 1ifference form
of the Adams Pece formulas and lncal extrapolation, It adjusts the
order and stepsize automatically. Note that in the field line
equations, since a Fourier series expaision 1is used for tne angle
varibles 0 and g, only one dimensional interpolation 1is required.

Puncture plots at different toroidal angles are producecd (Fig. 7)

showing the magnetic field line structure at a given time.



V. RESULTS
A large number of calculations have been done to assess the
dependence of the high 2 resistive instabilities on different

equil.briun parameters. The mode of operation has been to generate,

for a fixed gq-profile jarameterized as

alo) = ayl1 + (p/py) 221172 (19)

and pressure profile p() = (w(a)/w(o))z. a flux conserving sequence of
equilibria by increasing 8, Many such sequence have been studied.
They have been selected by changing either q, or q(p=1) for a given
plasma cross section shape. In this way we can separate the pressure
effects frcm shear effects. Sequences with different plasma shape have
also been studied in circular, elliptical, D and square cross sections.
Detailed znalysis of these effects on the (m=1; n=1) mode will appear
elsewhere (23]. Sequences of equilibria which closely resemble some cof
ISX-B discharge parameters have also been studied. This has allowed
detailed comparisons with the measured MHD activity in ISX-B {12].

From the point of view of linear stability properties, we shall
describe here the results for a particilar flux cornserving equilibrium
segquence. These results are typlcal of such sequences. The equilibria
are characterized by a q-profile with q(0) = 1,34, ) = 2 and 0o = 0.60.
The calculations were performed for a tokamak with aspect ratio 10. At
iow 8 and in the cylindrical limit the (m=3; n=2) tearing mode is the
only n=2 linearly unstable mode. Using the linear equations, the n=2
linear growth rate is cairulated for several equilibria with increasing

8 The results are shown in Fig. 8 (continucus line). In the same

o



figure is plotted the growth rate for the nz2 mode when the pressure
term is removed from £q. (5) (broken line}. For the latter
calculation, 8 affects the instability only through the equilibrium,
This result shows that the current driven component of the instability
is strongly stabilized when g increases in a flux conservinag manner.
It is important to wunderline the last condition. dhen a flux
conserving se¢ Jence of equilibria 1is generated, the eqguilibria are
deformed in such a way that the toroidal peak in the current shifts
further to the outside than does the magnetic aris. Tne separation
between the current peak and the magnetic axis increases with 2. In
this way, the q=1.5 singular surface moves toward smaller current
gradient as 8 increases. This, of course, siabilizes the current
driven part of the mode. However, wher. pressure effects are added to
the momentum balance equation, the overall effect is an increase of the
growth rate (Fig. 8, continuous line)}. Therefore the pressure effects
are destabilizing and the mode is mostly driven by pressure. The n=2
mode changes from a pure tearing mode at low 2 to a pressure driven
mode at high 8. The structure of the eigenfunction (Fig. §) shows <he
increasing ballooning character of this mode.

Higher n modes, for instance the n=5 mode, are stable in the low ?
cylindrical limit, They are destabilized by finite 2 effects and their
linear growth rate increases with 8. They show features typical of
ballooning modes, but current driving effects are still important for
3uch modes as the n=5. This car be 3seen 1in Fig. 10, where the
different Fourier components of the n=5 pressure eigenfunction are

plotted. The higher m components show the typical high n ballooning



structure. However, the low m components have a more complicatea
structure due to the current driving terms.

The change in the character and structure of he linear
eigenfunctions nas an important bearing on the nonlinear behaviour of
the instabilities. Furthermcre, the increased number of couplings
among the Fourier components increases the complexity of the nonlinear
evolution and structure of these modes. 7Tc¢ gain a clear understanding,
it is therefcre helpful to consider a simple situation, such as an
equilibrium sequence which, in the low ? cylindrical limit, is unstable
tc a single tearing mode. ‘'ie can lcok at the effects of ¢, toroidicity
and noncircularity as a modification of this basic mode. Tnhis picture
makes sense if these effects are small. If they are large the whole
mode structure changes, as discussed above., Because of the abundance
of m=1 MHD activity in high 8 experiments [12], it 1is interesting to
focus cttention on the {(m=1; nz1) wode. The change in the nonlinear
behaviour of this mode with increasing 28 has been summarized in
Fig. 11. This figure shows the m=1/n=1 nagnetic islane width evolution
versus time (top) and the evolution of the (m=2; nz1) conponent of <the
poloidal rnagnetic field at p=1 (bottom) for several -equilibria
belonging to the same flux conserving sequence, The growth of the
m=i/n=1 island slows down with increasing 2, going frcn exponential to
linear growth in time, before reconnection takes giace. For the
eyuilibrium with the highest 2 value shown !n Fig. 11, the m=1/nz;
island saturates withcut full magnetic field line reccnnection, This
change of the nonlinear behaviour happens when <he n=?! =cde is malnly
driven by pressure. For this particular equilidbriun scgquence, the

largest driven mcde is the (m2; n=i) mode. This component produces a



large poloicdal field iiurtuation at p=' (Fig. 17, bottem). 7This can be
seen as a neasure of the coupling due to 2 effects and used to
correlate with experiment. Many other compornents are also driven by
the (m=3; n=z=1) mode through equilibriun and ronlinear ccuplings. 9f
this broad spectrum of ncdes, some generate nagnetic isiands which, in
nany cases, overlap and breagk magnetic surfaces, This is illustrated

in Fig. 7, which shows a snapshot of the mnmagnetic flels line

configuration bSefore reconnection takes place, Four poloidal planes

,.
3
mn
Py

o
.

are shown for the same instant ¢f time. T™e <c¢ase shown
corresponds to an [SX-B-like equilidbriun, and includes noncircular.
toroical an¢ finite 3 effects. Figure & shows the X-ray emissivity for
the sane case at the sane time. These results have teen successfully
used Lo reprcduce the ISX-8 'HD activitly for scme discharges [ 12;.

Tne nonlinear evolutior of the resistive instabilities at high &8

is sensitive to the value of S, Moreover, the resulling solution can

be qualitativei:y cifferent at iocw S (S < ¢ froon that at high

5(5 » 167} There are two particular instances for iiich tnis is

abundanily clear. The nonlinear evciuticn of the (==!; nz?1) mode 2an

change frcm saturation to reconnection when X increases Tnis elfect

is {llustrated in Fiz. 12 which shows the ewvolutior of tne =='/nz°
tslard width for S$z17° and 5:105 for a particuiar egu.l:ibriun.
Therefsre, for comparison witn experinent, it is impcrtant
that the <value of S used in the calculations is sufficiently nign, :n
order to be (n tne right regime.

It {s also very fimportant o wuse an  a3dequate vaiue 2f 3 &

tudying tne nonlinear dehaviour of Lhe high n gressyre 2riven =cdes.

“

)

cr .owW values 57 S tnese modes 4o not saturate and they cause a sirong



singularity in the pressure, At higher values of § (S = 106) they tend

to saturate at a low level,
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TIGUAE CAPTICNS

Zocriinate system. Lines of constant p and ) are shown for

tne zase i=c¢.

Srassuyre gprofiie arross a horizontal minor diameter cf the
piasna srcwing the effect of varigus pressure eguation
3:fss10n ter=ms,

Top: no 2:ffusion {‘o z J); Migdle: resistivity-cdependent
2iffisicn, £g. (%) 4ith v, = 0.3;
3ctism:  velcc:ity-leperdent 1:%usion, £3. ' 1=8) witt
P

Fallaff 2 trne nagnelic energy and pressure - aras  with
py.c123l mode number for an nz? Linear e;geroZe calculated
4i5:n8 zoorZinate systems Raving iz 3nd 2:2.

-ray a=15Sl¥1l.y 3t four %imes .

<.t a3 ®oroidal ratation imposed.

jeimesry of the three arrays of Y-ray detectors on I3X-38,
Trhey 3re 10 3 Iing.e pOI2.C3i gslane,

near srowth rate of the n=2 eigenfunctiin. The Jashed line
Snow ~ne effect of the current dri:ving %erms alcne, the
sressure %er=s having teen removed.

Ssic123. v.ew of the n:2 linear eligenfuncticn, sShowing the
Tnarnke .n character as /¢ 13 increased.

Transiticn frem reconnection (at low 2.0 o saturation (at
“ifher 2_0  1s shown Ly “he esvoiution of the ==zi/psz' isian<
si1%n ant7eme ‘=z2; nz' poloidal magnetic fleid  fluctuation
3 tne £lasma tourndary

cases from saturation cases,
¢ not necessarly Five the sane result as
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