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ABSTRACT

Kunerical calculations nave been performed to study the MHD

activity in nigh-fl tokamaks such as ISX-B. These initial value

calculations built on earlier low ? techniques, but the ? effects

create several new ninerical issues. Tiiese issues are discussed and

resolved. In addition to tine-stepping -nodules, our system of ccnputer

codes includes equilibrium solvers (used to provide an initial

condition; ana output nodules, such as a magnetic field line follouer

and an '(-ray diagnostic code.

The transition from current driven nodes at low a to predominantly

pressure Iriven modes at high f is described. The nonlinear studies

yiela X-ray enissivity plots which are compared with experiment.



I. INTRODUCTION

In this paper we present theoretical nodels, based on the

resist/.ve MHD equation. .vhich have been developed to studv hi^h r

tokanak plasnas. A system of codes used to implement these -fiodeis is

also discussed along with the .iumericai techniques enployed. The «;oai

of this work is the study of the resistive MHD instabilities prese'.t in

tokanak plasnas below the threshold of laeal instabilities. A*, the

same time, these models have been usea specifics!1;/ to support ar.1

complement the experiments in the ISX-3 toKanak.

The present studies at ORNL. are the logical continuation of tnose

done for low beta tokanak plasmas. This previous work included the

study of internal disruptions [1], Mirnov oscillations '.3!, soft

disruptions associated with hollow current profiles [3' and major

tokanak disruptions [a]. Tne numerical work has always been

accompanied by analytical modeling, which has uncovered some new

dynamical nechanisns [5,6]. Realistic geometrical effects such as

toroidicity [~] and noncircularity r 3 j have also beer, considered.

For the high ? studies we have used a reduced set of resistive ''H7.

equations [9] valid in the limit of large aspect ratio ; •; = a/H << 1,

where a and 8 0 are the plasma ninor and najor radii respectively) and

high 9 (g " r). This system of equations with some minor variations

has also been used by other group? [10,111 for sJnilar studies. 7ne

implementation of these equations as an initial vaije problem

constitutes one of the time stepping modules, RST, of the systen of

codes.



T!..'; system of codes consists of t-hree types of nodules (Table

I): input nodules, time stepping modules and output nodules. The

latter type indues mainly diagnostic codes. They have been used to

improve the understanding of the instaoilities studied. They are

excellent tools for unraveling some of the characteristics of the basic

dynamical raechanisris. Some output modules are used to calculate

quantities, such as X-ray traces, which can be directly compared with

experinental data. These diagnostic modules have been very helpful in

understanding experinental data and allowing detailed comparisons

between theory and experiment [12].

The equations used in the present study are discussed in Section

II; and in Section III are presented the numerical methods usei to

advance these equations in tine. A discussion of the systen of codes

with details on some of the diagnostic modules is given in Section IV.

Finally, sone results are presented in Section V.



II. EQUATIONS

Our ?oproach to resistive HHD in moderate ? tokanaks is through

the use of an initial value tine stepping -nodule RST, which integrates

in time a set of coupled nonlinear partial differential equations fron

an initial state consisting of an MHD equilibrium plus a perturbation.

Theoretical studies in finite 3 tokanaks are generally nost easily

carried out in sone system of flux coordinates. Since the growth of

resistive instabilities frequently destroys magnetic flux surfaces, SST

uses a flux coordinate system based on the MHD equilibrium. Tnis

equilibrium and the associated coordinate system are calculated using

the fixed ooundary code RSTEO [13] as an input nodule. This code

solves the axisymmetric, toroidal Grad-Shafranov equation

eq

either in a flux conserving nanner or for specified pressure and

toroidal current density. All work is carried out using dimensionless

equations. All lengths are normalized to a generalir'ed plasma minor

radius a, '•.ne resistivity to n0 (its value at the magnetic axis), the

time to the resistive diffusion time *y = a2uo/no where uo is the

vacuum magnetic permeability, the magnetic field to B (the toroidal

vacuum field at the plasma major radius R Q), the velocity to a/xr, and

the pressure to pQ (its equilibrium value at the magnetic axis). In

Eq. (1) the poloiaal flux ? is normalized to a2B , fi is the



toroidal B at the magnetic axis, R is the major radius coordinate

divided by Ro, the equilibrium pressure pa is a function of ?c., and

the toroidal flux function Fg is also a function of ?eq which is

normalized to RoBj-o.

Given dimensionless horizontal and vertical minor radii X =

(R-1)/E and Z, respectively, the solution of Eq. (1) can be used to

define a flux coordinate system (o, 0, <;) in which e (0 < 0 < 1) is an

equilibrium flux surface variable which behaves as a generalized minor

radius. 9 (0 < 0 < 2-) is a generalized poloidal angle variable, and c

is the toroidal angle. The particular choice of coordinates used in

RST is determined in the same way as in Ref. [11] by setting the

Jacobian

D - 1 '*! - 1? - 1 — l^]-1 - J_ (?)
W l"3o ̂ 5 30 p 30 Jo ~ ~^l '

where the exponent i determines the coordinate system. The unit of

iength is given by

R

a2 = - 2 _ r R~£ dV . (3)
2 *

wher«j the integration extends over the entire plasma volume. If I r 2

is chosen in Eq. (2) then the equilibriun magnetic field lines are

straight in the resulting coordinate system (Fig. 1).

In order to study resistive MHD stability and nonlinear evolution,

RST employs a reduced set of 3-D resistive I1HD equations derivei in the

limits of large aspect ratio (e << 1) and high B (6 ~ e) C9 3- In terms



of the coordinate system described above, the dinensioniess forn of

this set of equations is

Tt p 3G do 3c 3c ~o "30" 1) "30 To

Tt " 3D ̂  ̂ 0 p 30 3D • 3p o "30 F T T 3c

1 dJceq 3"? ; C 1 3? 1 5 31?

"p 30" 3p 3c 3o p 30 p 30 3D

1 IE _ 1 1 ii If1;

Tt ^ 3 0 3p 3p o TG (j 30 Tp
(6)

where * is the velocity strean function, 'J =V^i is the toroidal

vorticity, the resistivity n(o) is taken to be constant in tine, the

toroidal current Jr = A ?, ~ denotes a perturbation quantity, and

S r Tr'THp *s t n e r a t i o °^ t n e resistive tine to the poloidal Alfven

tine T H O = RQ(uopn)
1/2/B where p^ is the mass density. \ote that

Ue- = *e- = 0 is assumed. The linear operator a in this coordinate

system is

I ± f'g^pH* pg"°i 11)
p 3p '' 3p p 30

1 [:go|£*g:|U
p 30 3p p 30

where



^^^2

D O . ' J _ 3X_3X_ + J _ j 3 Z J__3Z- ( 9 )
' " 'Rp 30 33p So 30 R 3c J

,00 . f

Equations (uj-(6) nake use of the fact that "? and p e q are functions

of D only. Conducting wall boundary conditions and zero pressure at

the plasma edge are assuned. Although the reduced equations keep

dynanical terns only to lowest order in e, the geometric terms are kept

such that the solution of the Grad-Shai'ranov equation (1), exact to all

orders in e, is an equilibrium for the equations C O to (6) in the

limit of zero resistivity.

The RST module advances in tine equations (U) to (6) either

linearly or nonlinearly as desired; it is written to solve the full

nonlinear set, but linear stability calculations are also carried out

oy omitting the terms nonlinear in the perturbed quantities. It is

also possible to switch off the pressure tern in the momentum balance

equation (5), while totally dropping Eq. (5). This allows the separate

study of the current driven modes in a high fi plasma.



III. NUMERICAL TECHNIQUES

The numerical techniques used in solving the high 3 equations CO,

(5) and (6) are basically the same as those wt^ch were described in

Ref. [15] for the cylindrical low p equations. The equations are

solved using a finite difference representation in the generalized

radial coordinate p and Fourier series expansion in the angle variable

0 and t,. In terns of this representation, quantities dependent upon

the equilibrium are written

fec
(0«0) s l

n 'fecni(a) C 0 S m 0 + rlanlo) sin mO ]

while perturbation quantities are written

I I i-^Jp) cos(mO
n=0 m=-<° '

fnn(o) s i n ( m 0 • " ? ) ] •

Although RST allows both sine and cosine terms, these studies have been

restricted to equilibria with up-down symmetry. Then, in cases where

only the cosine terms in ? are nonzero in the initial conditions, the

sine terns in ?, and p and cosine terms in * remain identically zero as

tine evolves. In order to sinplify the presentation, only this latter

situation will be discussed, and the superscripts c and s will be

dropped hereafter.

In practice both series (11) and (12) must be truncated at a

finite nunber of modes. Considerable effort has been devoted to

desionjtrating numerical convergence [15]. Typically, 100 to 300 finite

difference ĝ id points are necessary to span the minor radius. The



number of terms retained in the double sum of Eq. (12) ranges up to

about 30. The most efficient selection is obtained by an ad hoc scheme

[15] in which the selection of m values is dependent on n. It has been

shown that, for the problems we have studied, this representation is

far more efficient than a 3D finite difference grid. This gain in

efficiency has been crucial in obtaining the results shown here.

Most of the numerical details can be carried over from what was

discussed in Ref. [15]. However, several additional considerations

necessary to RST will be discussed here. They refer mainly to the

following three points: 1) the new equation (5) for the pressure which

is absent at low S; 2) the problems related to matrix inversions caused

by the new poloidal couplings; and 3) the choice of a coordinate system

to optimize the efficiency of the calculations.

1. Numerical Treatment of the Pressure Equation

The pressure equation (6) is purely convective. It is known that

centered finite difference expressions in space and time will yield two

solutions, a physical one and a nonphysical one. Consider the

prototype convective equation

9p 3
_r = v — p
at ax

The solution is p(x,t) r p(x+vt, 0 ) , which is a travelling wave moving

in the negative x direction for v "> 0. However, the centered finite

difference form



t _ t+ i t /2 n t+At/2
~ px ,P p

—— r vAt l AX

has two independent solutions [ 16 ] . Tnis arises because there are two

uncoupled gr ids , one at nAt, :nAx, and one at (n +• 1/2) At, (m • 1/?)Ax.

This gives r ise not only to the physical solut ion, but also to a

spurious backward noving one. Taking a one-sided space difference

PX+Ax " Px o r Px - Px-Ax

solves th is problem, but the choice of form is dictated by the local

Sign of v. This procedure i i cal led up-wind dif ferencing and is due to

R. Lelevier [ 1 7 ] . An equivalent representation [18] is obtained by a

centered d iscret izat ion of

3p _ 3 , , Ax 3 ;
It ' Jx * | V | T TJ

where a diffusion term has been added.

When Eqs. (U)_(6) are solved using centered finite differences in

Eq. (6), pressure profiles such as those in Fig. 2a can result. The

non-physical solution can lead to a shock front as can be seen in the

figure (near r = 0.58). The second term in (6) does couple the grids,

but there is no guarantee that it is large enough. !Jp-wind

differencing of the last tern in (6) is impractical since it is

obtained by convoluting the two factors. Instead, a diffusive tern
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poloidal riode nixibers ~t are l inearly coupie-2 ""roucr, e q u i l i b r i a

quantit ies. 'Jsing a three point second order radial nfference sc-"e.*ie,

a biocK tri,;iagonal matrix having vj > ' i j bloccs MJ being tr.e n;jnser

of radial i j r iJ points; with each block of size '",n, > "(n, .where H(r.!

is the ninber of poloidal conpcnents of toroidal icx)e r-.j-icer n in the

calculation? nust be irvertec! Cor each toroidal i c ie -. —--?•• n ;:i eacr.

of the three operations all^.ie-i to above. ~r a-2: ;•.;-•: n to ^ i ' . - . ^

ocnpiexity to the natrix structure for the .". ?r.! "-elateJ oserator.^.

thece ieonetrlc couplings necessitate the ;nc l j : : ; r . ~f •> .:--ater -. ncer

of "ourier components 'n or.ier to represent tr.e r.oies. ~r.:s -.as *.he

effect of shortening the tiTie step size jsed sy -~~ 33 car 5e r.eer. f--;-.

the fornula

3 Max ;n -
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£q^. 4) ar.d '5/ .
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cor>C'-i*:er t ine than any otner part of t re cede. •«':a-;:e - f t ;e 13r - •»

" r iser ; f "curier ccrspcr,-;nts. t re sr.ortr.ess z: the t . -e stes, ir.: •.••=

jcninance j f the natr ix equations :.*; confute*- t ; - e , : •. I J esser:t;3. *.-

jse e f f i c ien t soft-are for tr.eir solut ion. =ST eclve; the -.atrix

equations -sir.f! t re blocK t r i i . sgcna l -.atrix pac<<ô e BT =T"C '.'>'.. '.r.

orler to increase tre speei of tne code we have tested an appr ox i-.atior.

tecr.r.i^ue : i wn:cn each SIOCK ir. the blocic t r i i i a ^ona l -.atrix 13

replaced by i t s diagonal. For :acr. toroidal tode r.usSer r. th is reduces



the blocK tridiagonal natrix to M(n) sinple tridiagonal matrices of

length KJ. These matrices no longer explicitly couple different

components of toroidal node number n, though such couplings remain in

other t e n s in the equations. The effect of f-.he couplings ifi the

approximate natrix terms can be introduced into this scheme by

iterating tr.e approximate matrix with the full inverse operator of the

SIOCK tridiagonal matrix in an appropriate fashion. In cases for which

the approximate matrix scheme converges, the answers agree well with

those obtained using the full block tridiagonal scheme, even without

ir.erati on.

3. Choice of Coordinate System

Variation of the coordinate system was attempted to obtain a more

compact representation, in terms of Fourier components, of the nodes in

the high ? regine. Such an approach, using 1=1 rather than 1=2, which

:s tr.e r.atjral choice for tearing mode studies, has been suggested in

•?ef. '"-;. The effect is to shift the poloidal coordinate grid nore

toward tr.e outside (in major radius) of the plasna, and hence to "put

icre :coMinates" in the region of steep pressure gradients where

"alicr.:r.5 -.odes should occur. For the resistive balooning nodes

j*.;i:e: jith HST, the change from ts2 tc 1=1 was found tc have no

effect. :r improving the poloic'al representation of the modes. This is

shewn :-. F":g, I, -here we plot nagnetic and pressure energy norms, by

i , • - 3*nn 2 -^^nn^i ,.,«
••--in ; 5 . sdo -j- • - ^ - . (17)

and



'0

for an n=1 eigenmode as functions of the poloidal mode number n.

Although this case is for a high 6 equilibrium (eSD = 1.1), the 1-2

straight field line coordinate system is seen to provide at least as

economical a representation of the poloidal structure of the node as

does Zsl. Because of these tests, we generally use i=2 in our

calculations.



IV. SYSTEM OF CODES

The system of resistive UHD codes (Table I) is constructed to

efficiently use the results of the major modules. The present major

nonlinear time-stepping nodules include RSF [15] (low fi cylindrical

geometry) and RST with toroidal geometry. The latter can run both low

g and high 8# circular and noncircular cases. To begin a sequence of

runs with RST for noncircular or high 8 cases, an appropriate

equilibrium must first be generated with RSTEQ [135. At specified

times, both nodules dump save files and also standard diagnostic print

and plot files. These save files can be used not only to initialize

the major nodules for continuation runs, but also as input to any of

the modules in the diagnostic system. Since these files are

permanently stored and the modules maintain the capability to read

previous save files, the diagnostic system is capable of analyzing any

previous run.

The diagnostic system consists of a magnetic field line module, a

stability package of A1 solvers, a statistical package called DINOS

which calculates correlation functions and other statistical

infornation and a package that computes experimental information such

as X-ray signals and Bg/Bg. Here we will describe the experimental

package and the field line module which are the most relevant for the

hign s calculations.

The experimental package simulates X-ray detector signals in ISX-B

using save files from the major modules. The line integral of the

X-ray emissivity is modeled as the line integral of the pressure

squared and either toroidal or poloidal rotation of the node structure

at constant frequency is assumed (rig. u). Realistic geometry for the



three X-ray arrays in ISX-B (Fig. 5) is used to simulate experimental

results. The intersection of each chord in the arrays with the edge of

the plasma must first be found for tne limits of integration. These

Units are found by searching over equal steps in 9 around the plasma

edge and using interpolation between steps. The trapezoidal rule is

used to integrate the X-ray emissivity, I, where

KoO.t) = g[ Z F (ot)cos(n(u t • 0) • n(q • un-t) ) '2

m,n ^ '

g = normalization constant

(i>j = frequency of toroidal rotation

M_ = frequency of poloidal rotation

fmr)(p,t) s interpolation in p and t of P.^f/oiit^ •

Since I is a function of p ana 0 and we take equal steps along the

chords in X and Z coordinates, we must invert:

X = Z x (p) cos ne
n

Z - Z z(p) sin nO .
m

HYBRD1 [ 20 ] , a zero-finder for systems of nonlinear equations, is ui.ed

for this inversion. We use linear interpolation in p and SPLINF and

SEVAL [21] to spline f i t in t to find f m n ( 0 , t ) . The integral of I ana

the maximum of 1 are then computed at given times and plotted for each

chord (Fig. 6 ) . The code also plots the X-ray en i s s iv i ty in three

dimensions (Fig. « ) .



The experimental package also computes the poloidal magnetic field

fluctuations at the plaatna bound'ry, Bg/Sg. Due to the complex

geometry of the Mirnov coils in ISX-B, we do not use realistic geometry

in these calculations. Instead we use detectors that are equally

spaced poloidally. Using ZEROIN [21], a combination of the bisection

and secant methods, we find the corresponding 0 at the edge of the

plasma. Then we use divided differences to compute

*nn
B Q Z • cos(m(u)_t • 0) + n( 5 • ui-.t))
_ 2 nn 3o ' p = 1 P "

3p 'p=1

If ^ n (p , t ) is known for multiple tines we spline fit in t . The phase

of these fluctuations is found by searching for the first peak in the

fluctuation for each detector and plotting the poloidal angles of the

detectors vs u>At of the first peak.

The experimental package runs in approximately five minutes on the

Cray-1. The X-ray emissivity is integrated at 200 times for each X-ray

detector chord for 32 side chords and two arrays of 2« top chords. The

number of steps across each chord is a function of the chord length

with a maximum of one hundred steps. Three dimensional plots of the

X-ray emissivity are drawn at four different times on a 39 by 39 grid.

Poloidal magnetic field fluctuations are calculated for 61 detectors.

The field line module integrates the magnetic field line equations

using iii from the save files of the major codes. DE [22] , a software

integration package is used to integrate the equations:



dp
dc =

dO

1 r

mn

d-fmn^>
sin dp

sin(mo • c>

cos(mO

For given p<C0) and 0(i;o). DE uses a modified divided lifference forn

of the Adams Pece formulas and local extrapolation. It adjusts the

order and stepsize automatically. Mote that in the field line

equations, since a Fourier series expa ision is used for the angle

varibles 0 and ?, only one dimensional interpolation is required.

Puncture plots at different toroidal angles are produced (Fig. 7)

showing the magnetic field line structure at a given time.



V. RESULTS

A large nunber of calculations have been done to assess the

dependence of the high 3 resist ive ins tab i l i t ies on di f ferent

equilibrium parameters. The node of operation has been to generate,

for a fixed q-profi le jarareterized as

q(o) = qo[l • Cp/p o)
2M 1 / X (19)

and pressure profile p( ii) = (iii((i)/MO))^, a flux conserving sequence of

equilibria by increasing BQ. Many such sequence have been studied.

They have been selected by changing either qQ or q(p=i) for a given

plasma cross section shape. In this way we can separate the pressure

effects from shear effects. Sequences with different plasma shape have

also been studied in circular, elliptical, D and square cross sections.

Detailed analysis of these effects on the (m=1; n=1) mode will appear

elsewhere [23]. Sequences of equilibria which closely resemble some sf

ISX-B discharge parameters have also been studied. This has allowed

detailed comparisons with the measured MHD activity in ISX-B [12].

From the point of view of linear stability properties, we shall

describe here the results for a particular flux conserving equilibrium

sequence. These results are typical of such sequences. The equilibria

are characterized by a q-profile with q(0) = 1.31*• X = 2 and oQ = 0.60.

The calculations were performed for a toksmak with aspect ratio 10. At

low 3 and in the cylindrical limit the (m=3; n=2) tearing mode is the

only n=2 linearly unstable mode. Using the linear equations, the nr2

linear growth rate is calculated for several equilibria with increasing

So. The results are shown in Fig. 8 (continuous line). In the same



figure is plotted the growth rate for the n=2 node when the pressure

tern is removed from Eq. (5) (broken line) . For the latter

calculation, 3 affects the instability only through the equilibrium.

This result shows that the current driven component of the instability

is strongly stabilized when 6 increases in a flux conserving nanner.

It is important to underline the last condition. When a flux

conserving sf jence of equilibria is generated, the equilibria are

deformed in such a way that the toroidal peak in the current shifts

further to the outside than does the magnetic ayis. The separation

between the current peak and the magnetic axis increases with ?.. In

this way, the q=1.5 singular surface moves toward smaller current

gradient as g increases. This, of course, stabilizes the current

driven part of the mode. However, when pressure effects are added to

the momentum bal?nce equation, the overall effect is an increase of the

growth rate (Fig. 9, continuous line). Therefore the pressure effects

are destabilizing and the mode is mostly driven by pressure. The n=2

mode changes from a pure tearing mode at low S to a pressure driven

node at high 8. The structure of the eigenfunction (Fig. 9) shows the

increasing ballooning character of this node.

Higher n modes, for instance the n=5 mode, are stable in the low p

cylindrical limit. They are destabilized by finite S effects and their

linear growth rate increases with S. They show features typicai of

ballooning modes, but current driving effects are still important for

juch modes as the n=5. This car be seen in Fig. 10. where the

different Fourier components of the n=5 pressure eigenfunction are

plotted. The higher m components show the typical high n ballooning



structure. However, the low in conponents have a aors canplicated

structure due to the current driving terns.

The change in the character and structure of the linear

eigenfunctions has an important bearing on the nonlinear behaviour of

the instabilities. Furthermore, the increased nunber of couplings

among the Fourier components increases the complexity of the nonlinear

evolution and structure of these rriodes. Tc gain a clear understanding.

it is therefore helpful to consider a simple situation, such as an

eiuilibriun sequence which, in the low r> cylindrical linit, is unstable

tc a single tearing node. We can look at the effects of ?, toroidicity

and noncircularity as a modification of this basic node. This picture

makes 3c.-.;0 if these effects are snail. If they are large the whole

mode structure changes, as discussed above. Because of the abundance

of tti MHD activity in high 3 experiments [12], it is interesting to

focus attention on the Cra=1; n=t) Mode. The change in the nonlinear

behaviour of this node with increasing S has been ainnarized in

Fig. il. This figure shows the rt=t/nr! nagnetic islanc width evolution

versus tine (top) and the evolution of the (a=2; n=1) conponent of the

poloidal nagnetic field at o=1 (bottom) for several equilibria

belonging to the sasne flux conserving sequence. The growth of the

!Tsi/n=? island slows down with increasing ?. going frcn exponential to

linear growth in tine, before reconnection takes place. For the

eguilibriun with the highest S valu° shown in Fig. 11, the n=1/n=;

island saturates without full nagnetic field line reccnnection. This

change of the nonlinear behaviour happens when the n=? r:cde is nainly

driven by pressure. For this particular equiiibriun sequence, the

largest driven node is the (rv2; nr 1) node. This conponem produces a



large poloidal field ilwctuation at o=' (Fig. 11, bottom). This can be

seen as a neasure of the coupling due to 2 effects and used to

correlate with experiment. Many other components are also driven by

the (n="; n=1) node through equilibriun and nonlinear couplings. Of

this broad spectrin of nodes, sone generate magnetic islands which, in

aany cases, overlap and break magnetic surfaces. This is illustrated

in Fig. i, which shows a snapshot of the nagnetic field iine

configuration before reconnection takes place. Four poloidal planes

are shown for the sane instant of tine. The case showr. ir. Fig. ~

corresponds to an ISX-B-like ecuii ibriun, and includes r.oncircular.

toroidal and finite S effects. Figure « shows the X-ray enissivity for

the sane case at the sane tine. These results have teen successfully

used to reproduce the ISX-B "(KD activity for soae discharges I 12].

Trie nonlinear evolution of the resistive instabilities at high fi

is sensitive to the value of S. Moreover, the resulting solution can

be qualitatively different at low S (S < T0a) fron that at high

S(S > 1C';. There are two particular instances for -iSuch this is

abundantly clear. The nonlinear evolution of the ("si; r.=!) rod*? can

change frco saturation to reconnection when ." increases. Tr.'.z effec*.

is illustrated in Fig. '2 which shows the evolution of the -a '/n='

island width for S=f:a and SrlO5 for a particular equil:br:un.

Therefore, for coapariscr. with experiment, it is important \z oe sjre

that the value of S used in the calculations is sufficiently r.igr.. ir.

order to be in the right regine.

It is also very important to use an adequate value of S in

studying the nonlinear behaviour of the high n pressure driven -cdes.

For low values of S tr.ese "stxles do not saturate and they cause a strong



singularity in the pressure. At higher values of S (S - 106) they tend

to saturate at a low lev<?l.
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~ZO')H£ CAPTIOUS

r i g . ' . Coordinate systen. Lines of constant p and 0 are shown fir
the ?ase 1-c.

Fig. 2. Pressure prof i le arross a horizontal l inor dianeter of the
piasia snowing the effect of various pressure equation

n terns.
?3p: no d i f f u s i o n '• t0 ~ 3- : ••fiddle: r e s i s t i v i t y - d e p e n d e n t
1 i f f . s i or.. & j . (*a) with -,0 = 0.3;

--i •

. " . ; . 5 . r a l l o f f of the -i..gne'. ic energy and pressure • . ins with
polcidal node ninber for an - j ? linear ei^erode calculated
jsms coordinat-; syster.s having U ' ar.d f.=?.

r i»-. - . '-••ay ^nssiv i •_>• at four tines :~. a single poloidal plane
»-;tr a toroidal rotation irsposed.

F:»*. " . >:-.etry of the thre« arrays of X-ray detectors on I3X-3.
~-.vy ir-i m a sirjgl* poloiaal plane.

- ig . 6. X-ray 3igr.als proouced iy tr.e i r . i t ia . val-» calculation.

r i is. " . f ie ld .me plot :n four poloidal pla.es.

r i g . •?. Li'.ear growth rate 3f the n=2 sigenf jnctior.. The dashed l ine
sr.jws the effect of the cjrrent driving terns alone, the
press-re tens having oeen removed.

r i g . 9. =3ioi^al view of the r.z2 linear eigenfjncticn. showing the
f.ar.ge ir. character as f/c is increased.

ig . ' ! . -a: ial : . ; t r i fcut ion of the ccnpanents of the n=5 pressure
•?:̂ er function for ?/e = ' .?5.

:g. • ' . ~'a-.z:".::r. frc~. reconnect ion (at low ? ; to saturation 'at
-*.?r.*r ?„. is shown iy the evolution of the -si/i>si island
- l i t - andKtr.e > J ? : n=" poloidal -sagnetic f ie ld fluctuation
s*. tne plasna r.oundary.

: . ; . ' " . '.-. '. .fferentiatinc, recor.nection cases fron saturation cases,
: ;«i values of S dc not necessarly give the sane result as
-ian values of 3.



TABLE I

MAJOR NONLINEAR , OUTPUT
CODES

DIAGNOSTIC
SYSTEii

RSF
Ec j l l i t r r - r . • / Cylindric

U

.Ccntlructicr. ;i LZIVZ
File f I Tcroica:

• i I: ! ->u -

RS

neneirruler

;! Kagnenc fielr: I ines;.

Kj'.TOC0r3V Ent, CD1/ ,'

file

diagnostic
output

Stccllity peckese
:'-solver*

Statistical

IKOS

Experlmentci

X-ray + T /

RSF
or

RS:
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