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ABSTRACT

FORTRAN applications progiams can be executed on multiprocessor computers in either a unitasking
(traditional) or multitasking form. The latter allows a single job to use more than one processor simultaneously.
with a consequent reduction in wall-clock time and. perhaps, the cost of the caiculation. An introduction to
programming in this environment is presented The concepts of synchronization and data sharing using EVENTS
and LOCKS are illustrated with examples. The strategy of strong synchronization and the use of synchroxization
templates are proposed. We emphasize that incorrect multitasking programs can produce irreproducible results.

which makes debugging more difficuit

vii



1. INTRODUCTION

Computers with multiple processors are increasingly available for large-scale scientific computation. This
paper is intended to introduce FORTRAN programmers to this new environment. Since existing programs will
continue to run on many multiprocessor computers {perhaps with some changes). we will first discuss the
conditions under which it is desirable to modify *nem (or construct new ones) to take advantage of the multiple
processors. For readers who decide to procezd, we discuss the two fundamental concepts of synchronization and
data sharing We believe that this intre suction will provide sufficient background for most users. but those who
want a definitive treatment will ne<d to consult the bibliography.

This presentation wiil refer to the Cray X-MP or Cray-2 computers running under the Cray Timesharing
System (CTSS). However many of the concepts are more widely applicable. We believe that the reader will find
it easy to determine the applicability of any remark to his own situation. In particular. our analysis is appropriate
for the class of computers with shared memory. This is in contrast to computers in which each processor has its
own memory and data are transmitted from processor to processor as needed. Our discussion is also influenced
by the fact that CTSS is a multiuser environment. Not only do users share memory. but different users may
simultaneously use the processors. The strategies we suggest are not intended for strict adherence, but are
designed tc provide conceptual guidelines (from which it may be necessary to depart to an extent that depends
on the applications problem as well as the computing environment).

A considerable volume of literature already exists on the subject of multiple-processor computers; however,
we feel that there is a need to address the programming issues in terms familiar to applications programmers
rather than to computer scientists. We have found that some presentations are overly complex. Moreover, some
excellent articles are not generally available or cannot be referenced. Although synchronization and data sharing
can be difficult to employ. they are not difficult concepts. The material presented here comes from our own
experience, as well as constitutes a review of what we have learned from others. We treat the subject by way of
a few simple examples. We hope the reader will be able to infer from these most of what is necessary to produce
multitasking programs

We will regard each processor as an essentially complete computer. This means that the N-processor
computer can execute N independent jobs as long as they all can fit into the common memory. We assume that
siich a mode of speration requires no effort on the part of the user and that the operating system will tend to
the details. Traditional jobs which are executed with a single stream of instructions are called UNitasking jobs.
The only way a program will use more than one processor at a time is if the programmer takes the necessary
steps to organize his program into sections (called “tasks”) that can be performed simultaneously. These tasks
need not be totally independent, butl the more independent they are, the easier the programming and the more
efficient the results.

Just as high-level languages such as FORTRAN allow the user to ignore hardware details, multitasking in

such languages can be accomplished at the same high level. In fact, even the number of processors available



2  Introduction

need not be known Thus, we can approach multitasking at the FORTRAN level. The user, in general, will not
control which processor executes each task, nor will the precise order of execution of instructions which are in
separate tasks be predictable Because of this. multitasking programs have a profound new property. A program
that happens Lo be incorrect may produce diflerent results on subsequent executions with the same input data.
Thus. a correct result will no longer guarantee a correct code. even for the particular logic path tested. We shall
recommend ways to minimize the probability of producing an incorrect code. Prevention is the key here because,
in general. one does not know when an irreproducible code exists. and even if one does know, debugging runs
are more difficult be-ause they themseives are not necessarily reproducible.

A good strategy s to first structure the code so that it ic zuitable for muititasking. This part requires
the greatest effort and care. It implies identifying the sections of the code which can be executed in parallel.
Next. if necessary. the code should be sped up by conventional programming techniques, such as vectorization.
Finally. when this has been tested, the multitasking capability should be added. Tasks can be used at any level
of code logic where parallelism exists or can be exploited. However, since there is some cost to creating tasks.
one should try to multitask at relatively high levels.

There is another matter which, strictly speaking. has nothing to do with multitasking. but which will affect
many users converting from single-processor computers to multiprocessor computers: data initialization and
retention. FORTRAN rules do not specify the contents of an uninitialized variable or the contents of a local
varic hle on a subsequent execution of a subroutine. How&ver. because many traditional loaders provide zero initial
values and many compilers retain the values of local variables for use when the same subroutinz is executed
subsequentlv, many existing programs rely on these conditions. Multiprocessor computers generally assign space
for local variables at the time a subroutine is called. It is likely that this space was previously used for another
purpose. Thus, on multiprocessors, even unitasking jobs must generally adhere to the practice of assigning
initial values to each local variable on each entry into a routine. When the value ot a local variable must be
retained from the previous subroutine call. this can be accomplished by specifying the variable in a FORTRAN

SAVE statement or by putting it in a COMNON block.



2. POSSIBLE ADVANTAGES OF MULTITASKING

For the user. there are two primary advantages to multitasking reducing wall-clock time for execution
and/or reducing the cost of the job. Multitasking will almost always reduce the wall-clock time. Of course, this
is only important for long-running jobs that take greater than the desired turnaround time or too large a fraction
of the mean time between failures of the machine. In a timesharing environment, multitasking could improve the
response time as well.

Whether multitasking reduces cost depends on the charging aigorithm. With an operating system that gives
the machine to a single user, one would suppose that the charge is proportional to the total residency time.
In this case. multitasking would generally reduce the charge However. with operating systems such as CTSS
in which users can share both memory and processors, the advantage is substantially reduced. Even in this
environment. however, if there is a substantial memory residency charge. multitasking may pay ofl.

The user needs to weigh these two potential gains against the effort of creating and maintaining a multi-
tasking code Moreover, the structure necessary for an optimal multitasking code will compete with other design
considerations. such as mimmizing the number of operations or the memory size. In an environment such as
a Cray X-MP or Cray 2 running under CTSS, we expect that multitasking will be worthwhile for only a small

fraction of johs. namely. those characterized by very large memory and/or very long run times.
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3. TASK SYNCHRONIZATION

In this section, we illustrate how the user starts tasks and, once started, how the order of execution is
controlled to reflect dependencies among the tasks. The burden falls entirely on the user to decide which
calculations can be performed in parallel. The tasks should be organized to reflect the logic of the program and
should generally not attempt to conform exactly to the number of processors. In multiuser environments, it is
generally not advantageous to try to maintain a constant number of tasks.

Generally, a SUBROUTINE is the smallest FORTRAN unit tha: can be a task. In fact, crealing a task is
analogous to CALLing a SUBROUTINE, except that the CALLing routine continues to execute beyond the CALL and
the CALLed routine never returns to the CALLer, but instead terminates.

When execution commences, only one task exists. We shall refer to this as the “original" task, even though.
once additional tasks are created. they are in some sense equal. For many applications, it is conceptually easier
to make the original task a controlling task and to allow the other tasks to perform specific bits of work. We
recommend this conceptual approach as being safer, at least for inexperienced users. Therefore. we shall assume
that the original task will do the job of starting all other tasks. if the work of the other tasks is similar, the
top-level routine in each might be the same, but this is not necessary.

Consider a unitasking program containing

c EXANPLE 1A
CALL RED(R1,R2, ...)
CALL GREEN(G1,G62, ...)
CALL BLUE(B1,B2, ...)

If the three calculations are independent. then instead of the three calls, three tasks could be started:

c EXANPLE 1B (INCONPLEZE)
EXTERNAL RED,GREEN,BLUE
CALL TSKSTART(TCA(1,1) ,RED,R1,R2, ...)
CALL TSKSTART(TCA(1,2),GREEN,G1,G2, ...)
CALL TSKSTART{TCA(1,3) BLUE,B1,B2, ...)

One should think of this as creating a situation in which as many as four tasks (including the original task) are
executing after these statements are executed. In actuality, some tasks may be completed before others have
started. As long as the unitasking version is correct and the tasks RED, GREEN, BLUE, and the original task
are independent. the multitasking version is correct. Some additional declarations are anecessary to make this
example complete; they are described later. along with the TCA array. We use the CTSS syntax here. but some

other implementations have similar capabilities. For example, on the Denelcor HEP a task is started with

CREATE RED(R1,R2, ...)



Task Synchronization 5

Suppose now that the original task should proceed only after the completions of RED. GREEN, and BLUE

This is ensured by writing

c EXANPLE 1C
INTEGER TCAR, TCAG,TCAB
CONNON/TNANE/TCAR(2) , TCAG(2) , TCAB(2)
EXTERNAL RED,GREEN,BLUE
TCAR(1)=2
TCAG(1)=2
TCAB(1)=2
CALL TSKSTART(TCAR,RED,R!,R2, )
CALL TSKSTART(TCAG,GREEN,G1,G2, )
CALL TSKSTART(TCAB,BLUE,B:,B2, ...}
CALL TSKWAIT(TCAB)
CALL TSKWAIT(TCAG)
CALL TSKWAIT(TCAR)

c RED, GREEN, AND BLUE HAVE CONPLETED

In the CTSS implementation of multitasking. the integer task control arravs (here TCAR, TCAG, and TCAB) are
objects, consisting of two or more elements, that are associated with each task. In this casr they associate
each TSKWAIT with an appropriate TSKSTART. and each TCA is two elements. The user must store the number
of elements in the first element: hence TCAR(1)=2. A TCA with more elements allows the user to pass more
information irto the task, but wve shall not illustrate that here. In example 1C, the original task will wait for each
of the other tasks to be compieted in turn before proceeding. The order of the TSKWAIT's is immaterial in this
example. The TSKSTART and TSKWAIT for BLUE could be replaceo with a CALL BLUE so that the original task.
which would otherwise be waiting anyway. would do this work. However. one should not be overly concerned
about tasks left waiting. Choices such as this should be resolved on the basis of creating the most understandable
code, rather than on “optimization.”

Generally, the gain of multitasking is greatest if the execution times of RED, GREEN. and BLUE are equal.
However. it is usually not worthwhile to worry about this unless one suspects that the execution times are greatly
disparate, in which case the code approaches the efficiency of a unitasking code plus the multitasking overhead.
Even if the execution times are disparate. if the number of tasks is greater than the number of processors,
multitasking may be rewarded since short tasks may execute serially on one processor while long ones execute
on other processors. In this sense, the operating system may provide a form of dynamic load leveling.

Another common situation in which multitasking may apply is
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c

10

10

EXANPLE 2A
DD 10 N=1,NNAX
CALL WORK(N, Wi w2, . ))

END

SUBRDUTINE WORK (NN, ¥1,¥2, ...)
COMNDN A(100,100) ,B(100),C(100)
DO 10 J=1,100
A(NN,J)=NN+B(J)+C(J)

RETURN

END

Usually one would prefer that the subroutine to be multitasked contain more work, but the example is intended

to illustrate the case in which the NNAX executions of WORK can be performed in parallel:

10

20

EXANPLE 2B

INTEGER TCA
CONNDN/TNANE/TCA(2,100)
DINENSION NARRAY(100)
EXTERNAL WORK

DO 10 N=1,NNAX
TCA(1,N)=2

NARRAY (N) =N

CALL TSKSTART{TCA(1,N), WORK,NARRAY(N) ¥1,¥2,...)
DO 20 N=1,NNAY

CALL TSKWAIT(TCA(1,N))

Thus, the original task will start the NNAX copies of WORK and wait for them all to be completed. Subroutine

WORK is not altered. Note that it would have been incorrect to pass N as the argument, since the value of variable

N continues to change after each task is started. This crucial point will be addressed further in the next section.

Any task can start new tasks at any time as long as the necessary synchronization is provided for all of the

tasks that <an be running at any time.

Now consider a more complicated unitasking code:

10

EXANPLE 3A
DO 10 N=1,NNAX
CALL WORK1(N W11 ,Wi2,.. )
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c COULD DO WORK HERE IN ORIGINAL TASK
DO 20 N:=1,NMNAX
20  CALL WORK2(N.W21, w22, )

END

The comment line "COULD DO WORK HERE..." indicaies the placement of work which must follow the completion
of all executions of WORK1 and precede all executions of WORK2. Suppose that WORK1 and WORK2 can each be
multitasked, but all of the WORK1's must be completed before any of the WORK2's stzrt. The safest approach is

to create additional tasks

c EXANPLE 3B
INTEGER TCA
CONNON/TNANE/TCA(2,200)
DINENSION NARRAY (100)
EXTERNAL WORK1,WORK2
DO 10 N=1,NNAX
TCA(1,N)=2
NARRAY (N)-N
10  CALL TSKSTART(TCA(1,N) WORK1,NARRAY(N) .Wi1 412, ...)
DO 156 N=1, NNAX
16 CALL TSKWAIT(TCA(1,N))
c COULD DO WORK HERE IN CRIGINAL TASK
DO 20 N=1,NNAX
TC: (1, NNAX+N)=2
20  CALL TSKSTART(TCA{1 ,NNAX+N), WORK2, NARRAY(N),kw21,w22, .. .)
DO 25 N=1,NNAX
26 CALL TSKWAIT(TCA(1, NNAX+N))

END

In principle, this techmque of totally independent tasks is sufficient. However, consider the addition of an
overall DO loop around example 3B. This could result in a very large number of TSKSTART's being executed.
There is an overhead cost associated with starting new tasks. so execution efficiency may suffer. To reduce the
necessary number of TSKSTART s and increase the amount of calculation in each tack, some tools have been
developed which allow tasks to cooperate during their execution. In this example we could combine YORK1 and

WORK2 into a single task for each N. One could use EVENTS to synchronize the NNAX tasks as each one finishes
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WORK1. An event is like a bit (with two states, POSTED and CLEARED) that all tasks can see. The user can
create as many events as he desires. There are three operations that a task can perform with respect to each
event: post, wait, and clear. Generally. one task will alternately post and clear a given event and certain other
tasks will wait for the event to be posted. In example 2B, the TEKWAIT in the original task could have been

replaced with =vent waits,

DO 20 N=1, NNAX
20 CALL EVWAIT(ET(N))

and at the end of subroutine WORK, one would have
CALL EVPOST(ET(NN))

As each YORK task is completed, it posts the ET event that corresponds to that task. When all HNAX events have
been posted. the original task breaks out of the EVWAIT loop.

Clearly, this example can be generalized to establish a number of synchronization points within tasks.
Svnchronization points can involve a* or just some tasks. For synchronization above the simplest level, ext-eme
care should be exercised because an incorrect event structure may not be apparent in the results of the calculation.
We recommend two ways to minimize this danger: STRONG SYNCHRONIZATION and use of synchronization
templates.

Strong synchronization refers to the practice of making the event structure robust by using more than the
minimum number of events. This will also reduce the chance that subsequent program changes will introduce
an error into 3 correct event siructure, The following example has this property. as well as providing a tested
synchronization template. We will use 2« (NNAX+ 1) events.

Consider a unitasking code that gensralizes example 3A with the addition of an overall loop:

c EXANPLE 4A

DO 100 J=1,JHAX

c COULD DO WORK HERE IN ORIGINAL TASK
DO 10 N=1,NNAX

10 CALL WORK1(N,¥ii,¥Wi2, ...)

c COULD DO WORK HERE IN ORIGINAL TASBK
L0 20 N=1,6KNAX

20 CALL WORK2(N,¥w21,¥22, ...)

100 CONTINUE

END
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This could correspond. for example, to a time-stepping or iteration loop in which each step or iteration calls for
twr blocks of work, each of which can be multitasked

One way to visualize the implementation of example 4 with events is lo show the time sequence within the
criginal and other tasks and the points (indicated by arrows) at which crntrol is passed between the original

task and the other tasks:

ORIGINAL TASK WORK (N)
start WORK (N)
DD 100
wait for all ET(1,N) — 30 post ET(1,N)

do work
clear EN(2)
post EN(1) — wait for EN(1)
do work
clear ET(1,N)
wait for all ET(2,N) - post ET(2,N)
do work
clear EN(1)
post EN(2) — wait for EN(2)
100 CONTINUE do work
clear ET(2,N)
wait for all ET(1,N) G0 TO 30

The original task starts NNAX copies of WORK and then waits until all NNAX events ET(1;K) have been posted;
then before posting event EN(1) it can perform some work while the other tasks are idle. The posting of EN(1)
by the original task is the signal that all the other tasks can commence their first block of work. Note that events
are not cleared just after being posted. because that provides no guarantee that the tasks looking for the event
will see it while it is posted. In this template, events are always cleared after waiting for a different event which
confirms that the original event was seen. The sequence post-wait-work-clear can be repeated any number of
times. In each such block, post and clear refer to the same event and wait refers to an event posted by another
task or tasks. The work-clear order can be reversed as long as work and clear are sandwiched in between the

was! and the following post. The expression of this event structure in CTSS FORTRAN is

c EXANPLE 4B
INTEGER TCA,ET.EN
CONNON/TNANE/TCA (2, 100)
CONNON/EVCON/ET(2,100) ,EN(2)
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10

11

12

100

20

30

DINENSION NARRAY(100)
EXTERNAL WORK

CALL EVASGN(EN(1) ,ASTAT)

CALL EVASGN(EN(2) , ASTAT)

DD 10 N=1,NNAX

TCA(1,N)=2

NARRAY (N)=N

CALL EVASGN(ET(1.N),ASTAT)

CALL. EVASGN(ET(2,N), ASTAT)

C/LL TSKSTART(TCA(1,N),WORK ,NARRAY(N) wii, w21, 6w12,6¥22,
LO 100 J=1, JNAX

DD 11 N=1,NNAX

CALL EVWAIT(ET(1,N))

COULD DO WORK HERE (OTHER TASKS IDLE)
CALL EVCLEAR(EN(2))

CALL EVPOST(EN(1))

DO 12 N=1,NNAX

CALL EVWAIT(ET(2,N))

COULD DO WORK HERE (OTHER TASKS IDLE)
CALL EVCLEAR(EN(1))

CALL EVPOST(EN(2))

CONTINUE

DO 20 N=1,NNAX

CALL EVWAIT(ET(1,N))

END
SUBROUTINE WORK (NN, w131, 6921, W12 w22, ...)
INTEGER ET,EN
CONNON/EVCON/ET(2,100) ,EN(2)

CALL EVPOST(ET(1,NN))

CALL EVWAIT(EN(1))

ORIGINAL TASK IDLE

CALL WORK1(NN,¥Wi1,wi2, ...)

CALL EVCLEAR(ET(1,KN))

CALL EVPOST(ET(2,NN))
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CALL EVVAIT(EN(2))
c ORIGINAL TASK IDLE
CALL WORK2(NN,¥W21 W22, . .)
CALL EVCLEAR(ET(2,NN))
GO TO 30

END

Note that after the first trip through statement 10, more than one task is active. The comments indicate the
points 1n each task at which synchronization allows work to be done.

In SUBROUTINE WORK we have chosen to CALL WORK1 and WORKZ2 to isolate the event structure from the rest
of the code. If large sections of in-line FORTRAN appeared here, it is possible that an (erroneous) GO TO could
go from WORK1 to WORK2. skipping a clear-post-wait sequence. Howsever, the event structure has sufficiently
strong synchronization to detect this "break”™ in the event structure. The code will run to a deadlock. It is
alwavs preferable to deadlock than to have the code proceed with the tasks potentially out of step.

Another way to visualize this event structure is to show the time sequence organized by event. For each
event, we show the posting. the clearing. and the waiting. |When the origina! task initiates the action, upper

case (P,C,¥) is used: when it refers to the WORK tasks, lower case (p,c,w) is used.]

ET(1.N) EN(1) ET(2,N) EN(2)

V.p

Work can be done in the main task just before or after C, and work can be done in the other tasks just before or
after c. Note that in the FORTRAN for example 4B, there is a final wait for ET(1,N) to ensure that the WORK
tasks are all idle before proceeding. To generalize this example to perform more blocks of work within each task,
simply extend the pattern. Each additional block adds two columns and two rows to the pattern.

Although events are powerful, they are not convenient for some situations. Consider the case of a variable
that must be modified by each task in any order. It is not necessary to synchronize the tasks all at once: one
must merely prevent the simultapeous modification of the variabie by more than one task. This can easily be

accomplished with a “lock” which. like an event. is an object with two possible states. The statement
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CALL LOCKON (LOCKNANE)

causes the Jock 1o be set if 11 is not and causes the task to wait for the lock to be turned off if it is already set.

This contrasts with evenls. Posting an vvent that is already posted has no effect. The statement
CALL LOCKOFF (LOCKNANE)

clears a lock and continues. As with events. locks must be assigned
CALL LOCKASGN(LDCKNANE)

before they arc nsed. Before each task modifies the shared variable(s). it locks the lock; afterward it turns the

lock off:

CALL LOCKASGN(LOCKA)

CALL LOCKON(LDCKA)
A=A+1
CALL LOCKOFF {(LOCKA)

The effect of this. assuming that cach task contains similar coding, is that the statement in which shared variables
are modified (here A=A+1} is not executed simultaneously by different tasks. In contrast to our examples for
events, this does not cause all the tasks to wait for a common signal (an event); it merely prohibits the
simultaneous execution of the critical section of code — but the order in which the tasks execute the critical

section is unpredictable.



4. DATA SHARING

Depending on how they are declared. variables are visible to one or more tasks. Variables that are visible to
more than one task must be treated carefully to ensure that they are used and assigned in the proper sequence
by different tasks. The seriousness of this issue is emphasized by considering an apparently isolated section
of code. {f that section of code can be executing simultaneously with another task. events and/or locks must
generally be used when referring to shared data.

In traditional FORTRAN. variables can be classed as local, CONNON. or dummy argument. The scope of a

variable becomes more complex in a multitasking code. as shown in the table

Unitasking Nultitasking
Shared Not Shared
LOCAL SAVEd LOCAL
CONNON CONNON TASK CONNON
DUMMY ARGUMENT depends

The CTSS generalization of CONMON is not defined at the time of this writing. so we use the nomenclature
established by Cray Research, Inc. Local variables that are not SAVEd are only defined during the execution of
the routine in which they appear. Their value is not retained after RETURN from the routine. For SUBROUTINES in
more than one task, local variables are not shared between tasks. Separate copies of each local variable exist for
each task. When local variables are SAVEd. two things happen. both being a consequence of the fact that SAVEd
variables are assigned. to a single static location. The same variable value is available to all tasks. The value is
retained for subsequent executions of the subroutine in the same or another task. During a period of time in
which a SAVEd variable is not modified by any task, it can be used by all tasks as a constant. Any modification
of EAVEd variables should be controlled by the use of events and locks. Clearly, 2ach task could be allowed to
modify independent elements of a SAVEd array without synchronization.

All four possibilities of sharing or not sharing between routines and tasks are available:

Shared Between

Routines Tasks
local no no
SAVEd no yes
- TASK CONNON yes no
CONNON yes yes

Variables in CONNON are global with respect to both tasks and routines. A new declaration syntax,

13
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TASK COMNON/CNANE/V1,V2,

creates a CONNON having a separate copy for each task. Thus a variable in a TASK COMNON (as with a local

variable) can simultaneously have different values in each task.

Itis a deeply ingrained notion in traditional programming that within a segment of in-line code all modifica-
tions of the values of variables are apparent. The occurrence of SUBROUTINE or FUNCTION invocations can result
in modification of arguments and variables in CONNON. In a multitasking code, shared variables can be changing
unpredictably during the course of execution, so it is essential 1o have a clear mental picture of which variables

are shared among tasks.

The scope of dummy SUBROUTINE arguments depends first on the declaration of th: actual (original)
argument. A variable that is originally local with respect to tasks will be shared among tasks if it is passed in a
TSKSTART invocation. However. we recommend caution when passing arguments into tasks, because this creates
numerous potential failure modes. If the CALLing routine terminates before the task that it started terminates,
not only do variables local in ithe CALLing routine become undefined, but, in some implementations, the addresses
of all arguments passed to a task may also become unreliable. It is for this reason, in example 4B above. that
we use CONNON to communicate the events to the tasks. In examples 3B and 4B. the task index N is passed int~
the tasks as an element of the array NARRAY(N)=N, To pass N itself from the original task would resuft in all

tasks referencing the same location N, rather than obtaining the value of N present at the time of the TSKSTART.

It is also necessary to> modify the notion of arguments preserved on exit from a SUBROUTIRE. Consider
CALL LIN(B,A.C)

and assume that the arguments A and C are input arguments; that is, they are unchanged on exit from LIN.

Sappose that the multitasked subroutine WORK in example 2B consists of

c EXANPLE BA
SUBROUTINE WORK (NN)
CONNON A,B(100),C(100)
CALL LIN(B,A,C,NN)
RETURN
END
SUBROUTINE LIN(B,A,C,NNN)
DINENSION B(100),C(100)
B(NNN)=B(NNN) +C{NNN)»4
RETURN

END
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Variables A, B, and C are shared. but the simultaneous calls to LIN are correct because within the tasks, A and

C are unchanged. so all tasks can use them Variable B i« modified. but each task can only modify one element.

However. a modification to LIN that retains the property that A and C are unchanged on exit from LIN results

in an incorrect task:

This was intended to produce the same results as example 5A. The problem is that one copy of variable A is

EXANPLE BB (INCORRECT)
SUBROUTINE WORK (NN)
CONNON A,B(100).C(100)
CALL LIN(B.A,C,NN)
RETURN

END

SUBROUTINE LIN(B,A,C,NNN)
DINENSION B(100),C(100)
A=A*C(NNN3
B(NNNY=B{NNN)+A
A=A/C(NNN}

RETURN

END

shared among all the tasks. Within each task. A is temporarily multiplied by the element of C associated with

that task. It is quite possible that another task will pick up A before it is restored to its original value. Thus,

the results of example 5B will be irreproducible unless locks or events are employed. Unfortunately. such an

incorrect code may execute numerous test runs correctly, failing to reveal its lack of correctness.



r

5 SUMMARY

Multitasking FORTRAN programs are mote susceptible to error and considerably more difficult to debug
than unitasking codes. The results of an incorrect multitasking code may be irreproducible, and thus may be
correct in any given run. The following guidelines provide a starting point optimized for CTSS. They will not be
equally true in other environments.

To multitask or not? Multiprocessor compuiers may run unitasking {traditional) programs. Multitasking
can reduce wall-clock time, computer (harge, and response time. Multitasking adds a system overhead cost in
addition to being in competition with other code designh objectives such as readability. minimum memory, etc.
<Jne should not multitask a code without the clear prospect of a net gain.

Strategy: (1) organize the program so that it will be suitable for multitasking: (2) employ conventional
optimization (such as vectorization} from the bottom up: and (3} multitask from the top down. Tasks should
contain enough work to overcome the overhead of starting them. Multitask at a level (or levels) at which the
program has natural parallelism. Do not try to match the number of tasks to the number of processors—match
the number of tasks to the problem. in a multiuser environment, it is not worthwhile to try to maintain a
constant number of tasks.

Task synchronization and data sharing should be planned carefully to obtain a correct. efficient code. it
is safest to use an existing. tested synchronization template (event and/or lock structure]. Use STRONG
SYNCHRONIZATION—an overdesigned synchronization scheme with more than the minimum number of events
and/or locks. This will help prevent tasks from getting out of step. Strong synchronization is designed to
increase the probability that an incorrect program will go to an error condition or deadlock.

SAVEd and CONNON variables and some dummy arguments are visible to, and can be modified by. different
tasks. Use documentation and programming conventions (e.g.. naming conventions) to make such shared
variables apparent. Minimize passing arguments into tasks. Access to shared variables must be controlied with

events and/or locks.
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