
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily .constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agsncy thereof.

O R N L / T M 9 4 9 3

D i s t . C a t e g o r y U C 20

C o m p u t i n g ant1 Te lecommunica t ions Div is ion

AN INTRODUCTION TO
PROGRAMMING MULTIPLE-PROCESSOR COMPUTERS

H. R. Hicks and V. E. Lynch O R N L / T M — 9 4 9 3

D E 8 5 0 1 0 2 7 4

D A T E P U B L I S H E D - Apri l 1985

NOTICE: This document contains information of a preliminary nature. It is
subject to revision or correction and therefore does not represent a final report.

Prepared by the (V^
O A K R I D G E N A T I O N A L L A B O R A T O R Y ^ &

Oak Ridge, Tennessee 37831 l \ V
operated by

Mart in Mariet ta Energy Sys tems , Inc. .
for the

U .S . D E P A R T M E N T O F E N E R G Y
under Contract No. D E - A C 0 5 - 8 4 0 R 2 1 4 0 0

G fe

CSTX;:-';:;^ CF rzi O L S H T IS U
r \

m m

CONTENTS

A C K N O W L E D G M E N T S v

A B S T R A C T v i i

1. I N T R O D U C T I O N 1

2. P O S S I B L E A D V A N T A G E S O F M U L T I T A S K I N G 3

S T A S K S Y N C H R O N I Z A T I O N 4

4. D A T A S H A R I N G 1 3

ft S U M M A R Y 1 6

B I B L I O G R A P H Y * 7

iii

ACKNOWLEDGMENTS

We are indebted to many people fcr our unders tanding of t h i s subject . In par t icular , we thank Dieter Fuss,

T i m Axelrod. Kirby Fong, Gary Long. Larry Diegel, Dave S to rch . Bruce Cur t i s . Clark Streeter , Larry Berdahl .

a n d their col leagues al the National Magne t i c Fusion Energy Compute r Cente r . We have benef i ted f rom the

encou ragemen t of Ben Carreras and our o the r colleagues at O a k Ridge, and especially f rom Lowell Char l ton ,

w h o s e M H D program provided us with a realistic environment in which t o exper iment . We are g ra te fu l t o Jeff

Holmes , Kirby Fong. and Mike Heath for critical readings of t he manuscr ip t Finally, we thank Mike Hea th .

Eugene Miya, and T - C . Liu for a s s i s t ance in locating related mater ia l

v

ABSTRACT

F O R T R A N applicat ions p r o g i a m s can be executed on mul t iprocessor compu te r s in either a uni tasking

(t radi t ional) or mul t i tasking f o r m . The la t ter al lows a single job to use more than one processor s imul taneously ,

wi th a consequen t reduction in wall-clock t ime and. perhaps , the cost of t he calculat ion. An in t roduct ion t o

p r o g r a m m i n g in th i s environment is presented The concep t s of synchronizat ion and da t a shar ing us ing E V E N T S

and L O C K S are i l lustrated with examples . T h e s t ra tegy of s t rong synchronizat ion and the use of synchronizat ion

t e m p l a t e s are proposed . We emphas ize tha t incorrect mul t i task ing p r o g r a m s can produce irreproducible results ,

which m a k e s debugging more difficult

v i i

1. INTRODUCTION

C o m p u t e r s with mult iple p rocesso r s are increasingly available tor large scale scientific compu ta t i on . This

paper is in tended to in t roduce F O R T R A N p rog rammers t o th i s new envi ronment . Since exist ing p rog rams will

con t inue t o run on many mul t ip rocessor c o m p u t e r s (pe rhaps wi th some changes) , we will first d i scuss the

condi t ions under which it is desirable t o modi fy '.hem (or cons t ruc t new ones) to lake a d v a n t a g e of the mult iple

p roces so r s . For readers who decide t o procesd . we discuss t he t w o f u n d a m e n t a l concep ts of synchroniza t ion and

da t a shar ing We believe that th is intro auct ion will provide sufficient background for mos t users , but t h o s e w h o

want a definitive t r ea tmen t will nerd to consult the bibliography.

Th i s presenta t ion will ref^r to the Cray X - M P or Cray-2 c o m p u t e r s running under the Cray T imesha r ing

S y s t e m (C T S S) . However many of the concep t s are more widely applicable We believe that the reader will find

it easy to determine the applicabili ty of any remark to his own s i tua t ion . In par t icular , our analys is is appropr i a t e

for the c lass of c o m p u t e r s with shared memory . Th i s is in con t ras t to c o m p u t e r s in which each processor h a s its

own m e m o r y and da t a are t r a n s m i t t e d f rom processor to processor as needed. Our discuss ion is a lso influenced

by the fact that C T S S is a mul t iuser env i ronment . Not only do users share memory , but different users may

s imul taneous ly use the p roces so r s . The s t r a t eg i e s we sugges t are no t in tended for strict adherence , bu t are

des igned to provide conceptua l guidelines (f rom which it may be necessary t o depa r t to an ex ten t t h a t depends

on the appl icat ions problem a s well a s t he comput ing env i ronment) .

A considerable vo lume of l i terature already ex is t s on the subjec t of mul t ip le -processor c o m p u t e r s : however ,

w e feel t h a t there is a need t o a d d r e s s the p rogramming issues in t e r m s famil iar t o appl ica t ions p r o g r a m m e r s

ra ther t h a n t o compute r sc ien t i s t s . We have found that s o m e p re sen t a t i ons are overly complex . Moreover , some

excellent art icles are not generally available or c a n n o t be referenced. Al though synchroniza t ion and d a t a shar ing

can be difficult t o employ, they are not difficult concepts . T h e mater ia l p resen ted here c o m e s f rom our own

experience, a s well as c o n s t i t u t e s a review of w h a t we have learned f r o m o the r s . We t rea t the subject by way of

a few simple examples . We hope the reader will be able t o infer f r o m these m o s t of w h a t is necessary t o p roduce

mul t i t a sk ing programs

We will regard each processor a s an essent ia l ly comple te c o m p u t e r . T h i s m e a n s t h a t t he N-processo r

compu te r can execute N independent jobs a s long a s they all can fit in to t he c o m m o n memory . We a s s u m e t h a t

such a m o d e of operat ion requires no effor t on t he part of the user and t h ^ t t h e ope ra t ing s y s t e m will t end t o

the detai ls . Tradi t ional jobs which are executed wi th a single s t r e a m of ins t ruc t ions are called UNItask ing jobs .

T h e only way a p rogram will use more t h a n one processor a t a t ime is if t he p r o g r a m m e r t a k e s t he necessa ry

s t e p s to organize his p rogram in to sec t ions (called " t a s k s ") t ha t can be pe r fo rmed s imul taneous ly . T h e s e t a s k s

need not be totally independent , bu t t he m o r e independent they are . the easier the p r o g r a m m i n g a n d the more

efficient the resul ts

J u s t as high-level l anguages such a s F O R T R A N allow t h e user t o ignore h a r d w a r e deta i ls , mul t i t a sk ing in

such l anguages can be accompl i shed a t t he s a m e high level. In fac t , even the n u m b e r of p roces so r s available

1

2 Introduction

need not be known Thus , we can approach mult i tasking a t the FORTRAN level. The user, in general, will not

control whirh processor executes each task, nor will the precise order of execution of instruct ions which are in

separa te t a s k s be predictable Because of this, mult i tasking programs have a profound new property. A program

that happens to be incorrect may produce different results on subsequent execut ions with the same input da ta .

Thus , a correct result will no longer guarantee a correct code, even for the particular logic pa th tes ted . We shall

recommend w a y s to minimize the probability of producing an incorrect code. Prevention is t he key here because,

in general, one does not know when an irreproducible code exists , and even if one does know, debugging runs

are more difficult because they themselves are not necessarily reproducible

A good s t ra tegy is to first s t ruc ture the code so tt .at it r suitable for mult i tasking. This part requires

the grea tes t effort and care. It implies identifying the sect ions of the code which can be executed in parallel.

Next, if necessary, the code should be sped up by conventional programming techniques, such as vectorization.

Finally, when this has been tes ted , the mult i tasking capability should be added. Tasks can be used a t any level

of code logic where parallelism exists or can be exploited. However, since there is some cost to creating tasks ,

one should try to mul t i task at relatively high levels.

There is ano ther mat te r which, strictly speaking, has nothing to do with mult i tasking, but which will affect

many users convert ing f rom single-processor compute r s to mult iprocessor computers : da ta initialization and

retent ion. F O R T R A N rules do not specify the con ten t s of an uninitialized variable or the con ten t s of a local

varu Me on a subsequent execution of a subroutine. However, because many tradit ional loaders provide zero initial

values and many compilers retain the values of local variables for use when the same subrout ine is executed

subsequent ly , many existing p rograms rely on these condit ions. Mult iprocessor compute r s generally ass ign space

for local variables at the t ime a subrout ine is called. It is likely tha t this space w a s previously used for another

purpose. Thus , on mult iprocessors , even unitasking jobs m u s t generally adhere to the practice of assigning

initial values t o each local variable on each entry into a routine. When the value ot a local variable mus t be

retained f rom the previous subroutine call, this can be accomplished by specifying the variable in a F O R T R A N

SAVE s t a t e m e n t or by put t ing it in a COMMON block.

2 POSSIBLE ADVANTAGES OF MULTITASKING

For the user, there are two primary advan tages t o mult i tasking reducing wall-clock t ime for execution

a n d / o r reducing the cost of the job. Mult i tasking will a lmos t always reduce the wall-clock t ime. Of course, this

is only i m p o r t a n t for long-running jobs tha t take greater than the desired tu rna round t ime or too large a f ract ion

of t he m e a n t ime be tween fai lures of the machine. In a t imeshar ing environment , mul t i tasking could improve the

r e sponse t ime as well.

Whe the r mul t i tasking reduces cost depends on the charging a lgor i thm. With an opera t ing s y s t e m tha t gives

the mach ine to a single user , one would suppose tha t the charge is propor t ional to the to ta l residency time

In th is case , mul t i tasking would generally reduce t h e charge However, with opera t ing s y s t e m s such as C T S S

in which use r s can share bo th memory and processors , the advan tage is substant ia l ly reduced. Even in this

env i ronmen t , however , if there is a subs tan t i a l memory residency charge, mul t i tasking may pay off.

T h e user needs t o weigh these t w o potent ia l ga ins agains t the effort of creat ing and mainta ining a multi-

t a sk ing code Moreover, the s t ruc ture necessary for an op t ima l mul t i tasking code will c o m p e t e with other design

cons ide ra t ions , such as minimizing the number of ope ra t i ons or the memory size. In an environment such a s

a Cray X - M P or Crav 2 running under C T S S . we expec t t h a t mul t i tasking will be worthwhile for onl> a small

f r ac t ion of jobs, namely those character ized by very large memory a n d / o r very long run t imes .

2040

3. TASK SYNCHRONIZATION

In th is section, we illustrate how the user s t a r t s t a s k s and, once s t a r t ed , how the order of execut ion is

control led to reflect dependencies a m o n g the tasks. The burden falls entirely on the user t o decide which

ca lcu la t ions can be performed in parallel. The t a sks should be organized to reflect the logic of t he p rogram and

should generally not a t t e m p t to conform exactly t o the number of processors . In mult iuser env i ronments , it is

generally not a d v a n t a g e o u s to try t o main ta in a cons tan t number of t asks .

Generally, a SUBROUTINE is the smallest F O R T R A N unit tha i can be a t a sk . In f ac t , c rea t ing a t a s k is

a n a l o g o u s t o CALLing a SUBROUTINE, except tha t the CALLing routine cont inues t o execute beyond the CALL and

the CALLed rout ine never returns to the CALLer. but instead te rminates ,

W h e n execut ion commences , only one task exists. We shall refer to this as t h e "original" t a sk , even t h o u g h ,

once addi t ional t a s k s are created, they are in some sense equal . For many appl ica t ions , it is conceptual ly easier

t o m a k e the original t ask a controlling t a sk and t o allow the other t a sks t o per form specific b i t s of work. We

r e c o m m e n d this conceptual approach a s being safer , a t least for inexperienced users . Therefore , we shall a s s u m e

tha t t h e original t ask will do the job of s t a r t ing all o ther t a s k s . If the work of the other t a s k s is similar, the

top-level routine in each might be the s a m e , but this is not necessary.

Consider a uni tasking program conta in ing

C EXAMPLE 1A

CALL REDCRl ,R2)

CALL CREEN(G1,G2. . . .)

CALL BLUE(B1,B2 , . . .)

If t he three ca lcula t ions are independent . then instead of the three calls, th ree t a s k s could be smarted:

C EXAMPLE IB (INCOMPLETE)

EXTERNAL RED,GREEN.BLUE

CALL T S K S T A R T (T C A (1 . 1) . R E D , R l , R 2 , . . .)

CALL TSKSTART(TCA(1,2) ,GREEN,G1,G2, . . .)

CALL T S K S T A R T (T C A (1 , 3) , B L U E . B l , B 2 , . . .)

O n e should think of th is as creat ing a s i tua t ion in which a s many a s four t a s k s (including the original t a s k) a re

execut ing a f te r these s t a t e m e n t s are executed . In actuali ty, s o m e t a s k s may be comple t ed before o t h e r s have

s t a r t e d . As long as the uni taskin^ vers ion is correct and the t a s k s RED. GREEN. BLUE, and t h e original t a s k

a re independent , the mul t i tasking version is correct . S o m e addit ional dec la ra t ions are necessary t o m a k e th i s

example comple te : they are described la ter , along with t he TCA array. W e use t h e C T S S s y n t a x here, but s o m e

o the r imp lemen ta t i ons have similar capabil i t ies . For example , on the Denelcor H E P a t ask is s t a r t e d wi th

CREATE RED(R1.R2 , . . .)

4

Tatk Synchronization ,ri

S u p p o s e now tha t the original task should proceed only a f t e r the complet ions of RED. GREEN, and BLUE

This is ensured by wri t ing

C EXAMPLE 1C

INTEGER TCAR,TCAG,TCAB

COMNON/TNAME/TCAR(2).TCAG(2) . TCAB(2)

EXTERNAL RED,GREEN.BLUE

TCAR(1)=2

TCAG(1)=2

TCAB(1)=2

CALL TSKSTART(TCAR,RED.R1.R2,)

CALL TSKSTART(TCAG,GREEN,CI,G2,)

CALL TSKSTART(TCAB,BLUE,BI,B2, . . .)

CALL TSKWAIT(TCAB)

CALL TSKHAIT(TCAG)

CALL TSKWAIT(TCAR)

C RED. GREEN, AND BLUE HAVE COMPLETED

In the C T S S implementa t ion of mul t i tasking, the integer t ask control a r ravs (here TCAR. TCAG. and TCAB) are

ob jec t s , consist ing of two or more e lements , t ha t are assoc ia ted with each task . In th is casr they a s soc i a t e

each TSKWAIT with an appropr ia te TSKSTART. and each TCA is t w o e lements . The user mus t s tore the number

of e lements in the first e lement ; hence TCAR(1) = 2 A TCA with m o r e e lements al lows the user t o p a s s more

in format ion i r to the task , but w e shall not i l lustrate tha t here. In example 1C. the original task will wait fo r each

of the other t a sks to be comple ted in turn before proceeding. T h e order of the TSKWAIT's is immater ia l in this

example . The TSKSTART and TSKWAIT for BLUE could be replaceo with a CALL BLUE so tha t the original task ,

which would o therwise be wai t ing anyway, would do this work. However , one should not be overly concerned

a b o u t t a s k s left wai t ing Choices such a s this should be resolved on the bas i s of creat ing the m o s t unde r s t andab le

code, ra ther than on "opt imizat ion ."

Generally, the gain of mul t i tasking is g rea tes t if the execut ion t i m e s of RED. GREEN, and BLUE are equal .

However , it is usually not wor thwhi le to worry about th i s unless one s u s p e c t s tha t the execution t i m e s are greatly

d i spa ra t e , in which case the code approaches the efficiency of a un i task ing code plus the mul t i t a sk ing overhead.

Even if the execution t imes are d i spara te , if the number of t a s k s is grea ter than the number of p rocessors ,

mul t i t a sk ing may be rewarded since short t a sks may execute serially on one processor while long ones execute

on o the r processors . In this sense, the operat ing sys tem may provide a fo rm of dynamic load leveling.

Another c o m m o n s i tuat ion in which mult i tasking may apply is

(> Ta'k Synchronization

C EXAMPLE 2A

DO 10 N=1,NNAX

10 CALL VORK(N,W1.V2.)

END

SUBROUTINE VORK(NN.Vl ,1*2, . . .)

COMMON A (1 0 0 , 1 0 0) , B (1 0 0) , C (1 0 0)

DO 10 J = l , 1 0 0

10 A (N N . J) = N N * B (J) + C (J)

RETURN

END

Usually one would prefer t ha t the subrout ine t o be mul t i tasked contain more work , but t h e example is intended

to i l lustrate the case in which the NNAX execut ions of VORK can be per formed in parallel:

C EXAMPLE 2B

INTEGER TCA

COMMON/TNANE/TCA(2,100)

DIMENSION NARRAY(IOO)

EXTERNAL VORK

DO 10 N=1,NMAX

TCA(1 ,N)=2

NARRAY(N)=N

10 CALL TSKSTART(TCA(1,N),VORK,NARRAY(N),V1,W2)

DO 20 N=1,NHAW

20 CALL TSKVAIT(TCA(1 ,N))

Thus , the original t a sk will s ta r t the NNAX copies of VORK and wai t for them all t o be comple ted . Subrou t ine

VORK is not a l tered. Note that it would have been incorrect to p a s s N as the a r g u m e n t , since the value of variable

N con t inues to change af ter each task is s t a r t ed . Th i s crucial point will be add res sed fu r the r in t he next sect ion.

Any t a sk can s t a r t new t a s k s a t any t ime a s long a s the necessary synchronizat ion is provided for all of t he

t a s k s t h a t can b e running a t any t ime.

Now consider a more complicated un i task ing code:

C

1 0

EXAMPLE 3A

DO 10 N=1,NMAX

CALL V0RK1(N,V11 ,V12)

Tatk Synchronization ,ri

C COULD DO WORK HERE IN ORIGINAL TASK

DO 20 N-l.NNAX

20 CALL W0RK2(N.W21,W22 ,)

END

The c o m m e n t line "COULD DO WORK HERE..." indicates the placement of work which mus t follow the complet ion

of all execut ions of W0RK1 and precede all execut ions of W0RK2. Suppose tha t W0RK1 and W0RK2 can each be

mul t i t a sked . but all o ' the WORKl's mus t he completed before any of the W0RK2's s t a r t . The sa fes t approach is

t o c rea te addi t ional t a sks

C EXAMPLE 3B

INTEGER TCA

COMMON/TNAME/TCA(2,200)

DIMENSION NARRAY(100)

EXTERNAL W0RK1.W0RK2

DO 10 N=1.NNAX

T C A (1 , N) = 2

NARRAY(N)-N

10 CALL TSKSTART(TCA(1,N).WORK1.NARRAY(N).W11.W12)

DO 15 N=1.NNAX

IB CALL TSKWAIT(TCA(1,N))

C COULD DO WORK HERE IN ORIGINAL TASK

DO 20 N=1,NNAX

TC;.(1,KMAX-»N)=2

2 0 CALL TSKSTART(TCA(1,NMAX+N),W0RK2,NARRAY(N).W21,W22, . . .)

DO 25 N=1,NNA.X

25 CALL TSKWAIT(TCAfl.NNAX+N))

END

In principle, this t echnique of total ly independent t a s k s is sufficient . However , consider the addi t ion of an

overall DO loop around example 3 6 . This could result in a very large number of TSKSTART's being executed.

There is an overhead cos t a s s o c i a t e d with s ta r t ing new t a sks , so execut ion efficiency may suffer. To reduce the

necessary number of TSKSTART's and increase the a m o u n t of ca lcula t ion in each task , s o m e too l s have been

developed which allow t a s k s t o coope>ate during their execut ion. In th i s example we could combine W0RK1 and

W0RK2 in to a single t ask for each N. One could use E V E N T S to synchronize the NNAX t a s k s a s each one f inishes

Tatk Synchronization ,ri

V0RK1. An event is like a bit (with t w o s t a t e s . P O S T E D and C L E A R E D) t h a t all t a s k s can see. The user can

c rea te as m a n y events a s he desires. There are three opera t ions tha t a t a sk can perform with respect t o each

event : pos t , wa i t , and clear. Generally, one t a sk will al ternately pos t and clear a given event and certain o ther

t a s k s will wai t for the event t o be pos ted . In example 2 6 . the TSKVAIT in the original t ask could have been

replaced wi th «vent wai t s .

DO 20 N=1,NNAX

2 0 CALL E W A I T (E T (N))

a n d at the end of subrou t ine VORK. one would have

CALL EVPQST(ET(NN))

As each VORK t a s k is comple ted , it p o s t s t he ET event t ha t cor responds t o t h a t t a sk . W h e n all NNAX even t s have

been p o s t e d , t h e original t a sk breaks out of t he E W A I T loop.

Clearly, t h i s example can be generalized t o establish a n u m b e r of synchronizat ion poin ts within t a s k s .

Synchron iza t ion poin ts can involve at ' or jus t s o m e t a sks . For synchroniza t ion above the simplest level. e x t r e m e

ca re should be exercised because an incorrect even t s t ruc ture may no t be apparen t in the resul ts of t he ca lcula t ion.

We r ecommend t w o w a y s t o minimize th i s dange r : S T R O N G S Y N C H R O N I Z A T I O N and use of synchroniza t ion

t e m p l a t e s .

S t r o n g synchroniza t ion refers t o the prac t ice of mak ing the event s t ruc tu re robus t by using more t h a n the

m i n i m u m n u m b e r of even t s . This will a l so reduce the chance t h a t s u b s e q u e n t p rogram changes will in t roduce

an error in to a correct event s t ruc ture . T h e fol lowing example has th i s proper ty , a s well a s providing a t e s t e d

synchron iza t ion t empla te . We will use 2*(WMAX-f I) events .

Cons ider a uni tasking code t h a t general izes example 3A with t he addi t ion of an overall loop:

C EXAMPLE 4A

DO 100 J=1,JMAX

C COULD DO VORK HERE IN

DO 10 N=1,NNAX

10 CALL V 0 R K 1 (N , V l l , V 1 2 ,

C COULD DO VORK HERE IN

LO 2 0 N=1,NNAX

2 0 CALL W0RK2(N,V21 ,V22 ,

100 CONTINUE

ORIGINAL TASK

.. .)
ORIGINAL TASK

.. .)

END

Task Synchronization 9

This could correspond, for example, t o a t ime-stepping or iteration loop in which each s tep or iteration calls for

t w o blocks of work, each of which can be mult i tasked

O n e way to visualize the implementat ion of example 4 with events is to show the t ime sequence within the

original and other t a s k s and the points (indicated by arrows} at which control is passed between the original

task and the other t asks :

ORIGINAL TASK WORK(N)

start WORK (N)

DO 100

wait for all E T (1 , N) 30 p o s t E T (l . N)

d o work

clear EN(2)

post EM(1)

wait fo r all E T (2 , N)

do work

clear EM(1)

pos t E N (2) wait for EN(2)

100 CONTINUE do work

clear E T (2 , N)

wait fo r all E T (l . N) GO TO 3 0

T h e original task s t a r t s NMAX copies of WORK and then wai ts until all NNAX events E T (1 ; N) have been posted;

then before post ing event EN(1) it can perform some work while the other t a sks are idle. The post ing of EN(1)

by the original t a sk is the signal t ha t all the o ther tasks can commence their first block of work. Note tha t events

are not cleared jus t a f te r being posted, because that provides no guarantee tha t the t a s k s looking for the event

will see it while it is pos ted . In this t empla te , events are a lways cleared af ter wait ing for a different event which

conf i rms tha t the original event w a s seen. T h e sequence post-wait-work-clear can be repeated any number of

t imes. In each such block, pott and clear refer t o the same event and wait refers to an event pos ted by another

t a sk or t a s k s . T h e work-clear order can be reversed as long a s v>ork and c{ear are sandwiched in between the

wait and the following post. The expression of this event s t ruc ture in C T S S F O R T R A N is

C EXAMPLE 4B

INTEGER TCA.ET.EN

COMMON/TNAME/TCA(2,100)

CONNON/EVCON/ET(2,100),EM(2)

wait for EN(1)

do work

clear E T (l . N)

post E T (2 . N)

Task Synchronization 2047

DIMENSION NARRAY(IOO)
EXTERNAL WORK

CALL EVASGN(EM(1),ASTAT)
CALL EVASGN(EM(2),ASTAT)
DO 10 N=1,NNAX
TCA(1. N) = 2
NARRAY(N)=N
CALL EVASGN(ETC 1.N).ASTAT)
CALL EVASGN(ET(2.N).ASTAT)

10 CALL TSKSTART(TCA(1,N).WORK.NARRAY(N).Wll,W21.W12.W22.
DO 100 J=1,JMAX
DO 11 N=1.NMAX

11 CALL EVWAIT(ET(1,N))
C COULD DO WORK HERE (OTHER TASKS IDLE)

CALL EVCLEAR(EN(2))
CALL EVP0ST(EM(1))
DO 12 N=1.NMAX

12 CALL EVWAIT(ET(2,N))
C COULD DO WORK HERE (OTHER TASKS IDLE)

CALL EVCLEAR(EN(1))
CALL EVP0ST(EN(2))

100 CONTINUE
DO 20 N=1,NNAX

20 CALL EVWAIT(ET(1,N))

END
SUBROUTINE WORK(NN,Wll.W21.V12,V22. . . .)
INTEGER ET.EN
COMMON/EVCOM/ET(2.iOO),EM(2)

30 CALL EVP0ST(ET(1.NN))
CALL EVWAIT(EM(1))

C ORIGINAL TASK IDLE
CALL WORKKNN,Wll.W12, . . .)
CALL EVCLEAR(ET(1,NN))
CALL EVP0ST(ET(2.NN))

Task Synchronization 11

CALL EV!'AIT(EN(2))

C ORIGINAL TASK IDIE

CALL VDRK2 (NN , V21, V22 . . .)

CALL EVCLEAR(ET(2,NN))

GO TO 30

END

Note tha t a f te r the first trip through s t a t emen t 10, more than one task is active. The comments indicate the

po in t s in each task at which synchronization al lows work t o be done.

In SUBROUTINE VORK we have chosen to CALL V0RK1 and V0RK2 to isolate the event structure from the rest

of the code. If large sections of in-line F O R T R A N appeared here, it is possible that an (erroneous) GO TO could

go f rom V0RK1 to V0RK2. skipping a c lear-post-wai t sequence. However, the event structure has sufficiently

s t rong synchronizat ion to detect this "break" in the event s tructure. T h e code will run to a deadlock. It is

a lways preferable t o deadlock than to have the code proceed with the t a sks potentially out of s tep.

Another way to visualize this event s t ruc ture is to show the time sequence organized by event For each

event , we show the posting, t he clearing, and the waiting. [When the original task initiates the act ion, upper

case (P . C . V) is used: when it refers to the VORK tasks , l owerca se (p , c , » | is used.J

E T (l . N) EN(1) E T (2 , N) EM(2)

W.P

C

w,P

c

" ' p

C

» , P

c

Work can be done in the main t a sk just before or a f t e r C. and work can be done in the other t a sks jus t before or

a f t e r c. Note tha t in the F O R T R A N for example 4 B . there is a final wait for E T (l . N) to ensure tha t the VORK

t a s k s are all idle before proceeding. To generalize th i s example to perform more blocks of work within each task ,

simply ex tend the pat tern . Each addit ional block a d d s t w o columns and t w o rows to the pa t te rn .

Al though events are powerful , they a re not convenient for some s i tua t ions . Consider the case of a variable

that m u s t be modified by each t a sk in any order. It is no t necessary t o synchronize the t a sks all a t once: one

mus t merely prevent the s imul taneous modif icat ion of the variable by more than one task. This can easily be

accompl ished with a "lock" which, like an event, is an object with two possible s t a t e s . The s t a t emen t

II' Tank Sytirhrotnzutiim

CALL LDCKON(LOCKNANE)

(.n ises the lo< k lo be set ii it is riot and causes the t ask to wait (or the lock to be turned off if it is already set.

T h i s c o n t r a s t s with events . Pos t i ng an tvent that is already pos ted h a s no effect . T h e s t a t e m e n t

CALL LOCKOFF(LOCKNANE)

clears a lock and cont inues . As wi th events , locks m u s t be assigned

CALL LOCKASGN(LOCKNANE)

before they arc used . Before each t a sk modif ies the shared variable(s) . it locks t he lock: a f t e rward it t u r n s the

lock off:

CALL LOCKASGN(LOCKA)

CALL LOCKON(LOCKA)

A=A+1

CALL LOCKOFF(LOCKA)

T h e effect of th is , a s s u m i n g that each t a s k con ta ins similar coding, is t ha t the s t a t e m e n t in which shared variables

are modif ied (here A=A-»l) is not executed s imul taneous ly by different t a s k s . In con t ras t to our examples for

events , th is d o e s not cause all t he t a s k s t o wai t for a c o m m o n signal (an event) : it merely prohibi ts the

s i m u l t a n e o u s execut ion of the critical section of code — but the order in which the t a s k s execute t h e critical

sect ion is unpredic tab le .

4 DATA SHARING

Depend ing on how they are declared, variables are visible to one or more t a s k s . Variables t h a t are visible to

more t h a n one t a sk m u s t be t r ea t ed carefully t o ensure t h a t they are used and ass igned in t he proper sequence

by di f ferent t a s k s T h e se r iousness of this issue is emphas ized by considering an apparen t ly isolated sect ion

of c o d e . If t h a t section of code can be execut ing s imultaneously with ano the r t ask , ev en t s a n d / o r locks m u s t

generally be used when referring to shared d a t a .

In t radi t ional F O R T R A N , variables can be classed a s local, COMMON, or d u m m y a r g u m e n t . T h e scope of a

variable b e c o m e s more complex in a mul t i t ask ing code, a s shown in the table

UnitaBking M u l t i t a s k i n g

S h o r e d Not S h a r e d

LOCAL SAVEd LOCAL

COMNON COMMON TASK CONMON

D U M M Y A R G U M E N T d e p e n d s

T h e C T S S general izat ion of COMMON is not defined a t t he t ime of this writ ing, so w e use t he nomencla ture

e s t ab l i shed by Cray Research . Inc. Local variables that are not SAVEd a re only defined during the execution of

the rou t ine in which they a p p e a r . Thei r value is not retained af ter RETURN f rom the routine. For SUBROUTINES in

more t h a n one task , local variables are not shared be tween tasks . S e p a r a t e copies of each local variable exist for

each t a s k . When local variables are SAVEd. t w o th ings happen , b o t h being a consequence of the fac t t ha t SAVEd

var iables are assigned, t o a single s t a t i c locat ion. The s a m e variable value is available t o all t a s k s . The value is

r e ta ined for subsequen t execut ions of t he subrou t ine in t he s a m e or a n o t h e r t a s k . During a period of t ime in

which a SAVEd variable is not modif ied by any t a sk , it can be used by all t a s k s a s a c o n s t a n t . Any modificat ion

of SAVEd variables should be control led by the use of even t s and locks. Clearly, each t a sk could be allowed to

m o d i f y independent e lements of a SAVEd array wi thou t synchroniza t ion .

All four possibil i t ies of shar ing or not shar ing be tween rout ines and t a s k s are available:

S h a r e d B e t w e e n

R o u t i n e s T a s k s

local n o n o

SAVEd no y e s

TASK CONNON y e s n o

CONNON y e s y e s

Var iables in CONNON are global wi th respec t t o bo th t a s k s and rout ines . A new declara t ion syn t ax .

13

14 Data Sharing

TASK C0MN0N/CNANE/V1.V2

c r e a t e s a CONNON h a v i n g a s e p a r a t e copy (or e a c h task . T h u s a var iable in a TASK COMNDN (a s wi th a local

var iab le) c a n s i m u l t a n e o u s l y h a v e d i f fe ren t v a l u e s in each t a s k .

It is a deeply ingra ined n o t i o n in t r ad i t i ona l p r o g r a m m i n g t h a t w i th in a s e g m e n t of in-line c o d e all mod i f i ca

t i o n s of t h e values of va r i ab l e s a re a p p a r e n t . T h e occur rence of SUBROUTINE or FUNCTION i n v o c a t i o n s c a n resul t

in m o d i f i c a t i o n of a r g u m e n t s a n d var iab les in CONNON. In a m u l t i t a s k i n g code , sha red var iab les c a n be c h a n g i n g

u n p r e d i c t a b l y dur ing t h e c o u r s e of execu t ion , s o it is essen t ia l t o h a v e a clear m e n t a l p i c tu re of which va r iab les

a r e s h a r e d a m o n g t a s k s

T h e s cope of d u m m y SUBROUTINE a r g u m e n t s d e p e n d s first on t h e dec l a r a t i on of tfv? ac tua l (or iginal)

a r g u m e n t . A var iable t S a t is originally local w i t h respect t o t a s k s will be s h a r e d a m o n g t a s k s if it is p a s s e d in a

TSKSTART invoca t ion . H o w e v e r , we r e c o m m e n d cau t ion when p a s s i n g a r g u m e n t s i n t o t a s k s , b e c a u s e t h i s c r e a t e s

n u m e r o u s po t en t i a l fa i lure m o d e s . If t h e CALLing rout ine t e r m i n a t e s be fo re t h e t a s k t h a t it s t a r t e d t e r m i n a t e s ,

no t only d o var iables local in t h e CALLing rou t i ne b e c o m e u n d e f i n e d , b u t , in s o m e i m p l e m e n t a t i o n s , t he a d d r e s s e s

of all a r g u m e n t s p a s s e d t o a t a s k may a l so b e c o m e unrel iable . It is far t h i s r e a s o n , in e x a m p l e 4 B a b o v e , t h a t

w e u s e CONNON t o c o m m u n i c a t e the e v e n t s t o t h e t a s k s . In e x a m p l e s 3 B end 4 B . t h e t a s k index N is p a s s e d in to

t h e t a s k s a s an e l e m e n t of t h e ar ray NARRAY(N)=N. To p a s s N itself f r o m t h e or iginal t a s k would resul t in all

t a s k s referencing t h e s a m e loca t ion N. r a t h e r t h a n o b t a i n i n g t h e va lue of N p r e s e n t a t t h e t i m e of t he TSKSTART.

It is a l s o n e c e s s a r y t o m o d i f y t h e n o t i o n of a r g u m e n t s p r e s e r v e d o n exit f r o m a SUBROUTINE. C o n s i d e r

CALL L I N (B . A . C)

a n d a s s u m e t h a t t h e a r g u m e n t s A a n d C a r e i npu t a r g u m e n t s : t h a t is . t hey a r e u n c h a n g e d on exit f r o m LIN.

S j p p o s e t h a t t he m u l t i t a s k e d s u b r o u t i n e VORK in e x a m p l e 2 B c o n s i s t s of

C EXAMPLE BA

SUBROUTINE VORKCNN)

CONNON A , B (1 0 0) , C (1 0 0)

CALL L I N (B . A . C . N N)

RETURN

END

SUBROUTINE L I N (B . A . C . N N N)

DIMENSION B (1 0 0) , C (1 0 0)

B(NNN)=B(NNN)+C(NNN)*A

RETURN

END

Data Sharing 15

Variables A. B. and C arc shared, but the simultaneous calls to LIN are correct because within the tasks . A and

C are unchanged, so all t a sks can use them Variable B is modilied but each task can only modify one element .

However, a modification to LIN that retains the property that A and C are unchanged on exit from LIN results

in an incorrect t ask .

C EXAMPLE BBC INCORRECT)

SUBROUTINE WORK(NN)

COMMON A . B (I O O) , C (1 0 0)

CALL LIN(B.A,C ,NN)

RETURN

E.'JD

SUBROUTINE LIN(B.A,C,NNN)

DIMENSION B (I O O) , C (1 0 0)

A=A*C(NNN)

B(NNN>=B(NNN)+A

A=A/C(NNN)

RETURN

END

This w a s intended to produce the s ame results as example 5A. The problem is that one copy of variable A is

shared among all the tasks . Within each task . A is temporarily multiplied by the element of C associated with

that t a sk . It is quite possible tha t another task will pick up A before it is restored to its original value. Thus ,

the resul ts of example 5B will be irreproducible unless locks or events are employed. Unfortunately, such an

incorrect code may execute numerous test runs correctly, failing to reveal i ts lack of correctness .

5. S11MMARY

Mult i tasking F O R T R A N programs are more susceptible to error and considerably more difficult to debug

than uni tasking codes . The results of an incorrect mul t i tasking code may be irreproducible. and t h u s may be

correct in any given run. The following guidelines provide a s t a r t ing point opt imized for C T S S . They will not be

equally true in other environments .

To mul t i t ask or no t? Mult iprocessor compute r s may run uni tasking (t radi t ional) p rograms . Mul t i t ask ing

can reduce wall-clock t ime, computer t h a r g e . and response t ime. Mult i tasking a d d s a sys tem overhead cost in

addit ion to being in compet i t ion with other code design object ives such a s readability, minimum memory , e tc .

J n e should not mul t i t ask a code wi thout the clear prospect of a net gain

St ra tegy: (1) organize the program so tha t it will be sui table for mul t i tasking: (2) employ convent ional

opt imizat ion (such as vectorization) f rom the b o t t o m up: and (3) mul t i task f rom the top down. T a s k s should

contain enough work t o overcome the overhead of s ta r t ing t h e m . Mult i task at a level (or levels) a t which the

program has na tu ra l parallelism. Do not t ry to ma tch the number of t a sks to the number of p r o c e s s o r s — m a t c h

the number of t a s k s t o the problem. In a mult iuser env i ronment , it is not worthwhi le t o try to main ta in a

cons t an t number of t a sks .

Task synchronizat ion and da t a shar ing should be planned carefully t o obta in a correct, efficient code. It

is safes t to use an exist ing, t e s ted synchronizat ion t emp la t e (event a n d / o r lock s t ruc ture) . Use S T R O N G

S Y N C H R O N I Z A T I O N — a n overdesigned synchronizat ion scheme wi th more than the minimum n u m b e r of even ts

a n d / o r locks. T h i s will help prevent t a s k s f rom ge t t ing out of s tep. S t rong synchronizat ion is designed to

increase the probabil i ty t ha t an incorrect program will go to an error condition or deadlock.

SAVEd and CONNON variables and s o m e d u m m y a r g u m e n t s are visible to . and can be modified by. different

t a sks . Use d o c u m e n t a t i o n and p rog ramming convent ions (e .g. . naming convent ions) t o make such snared

variables appa ren t . Minimize pass ing a r g u m e n t s into t a s k s . Access to shared variables m u s t be control led with

events a n d / o r locks.

10

BIBLIOGRAPHY

1- G. Andrews and F. Schneider. "Concepts and Nota t ions for Concurrent Programming." ACM Computing Surveys

15 (1983) . 3.

2. J . M t G r a w and T. S. Axelrod. "Exploiting Mult iprocessors: Issues and Options." LLNL Report UCRL-91734.

Oc tobe r 31. 1984.

3. J . L. Baer . "A Survey of S o m e Theoretical Aspects of Mult iprocessing." ACM Computing Surveys & (1973).

31.

4. G. J . Blair. "Reentrancy and Mult i tasking on Cray Compute r s . " LLNL Report UCID-30199. May 15. 1984.

5. P. Brinch Hanzen, "Concurrent P rogramming Concepts ." ACM Computing Surveys 5 (1973). 223.

6 . Cray Research . Inc., "Mult i tasking User ' s Guide." Cray Computer S y s t e m s Technical Note S N - 0 2 2 2 (February

1984) . Mendo ta Heights, Minnesota .

7. K. Fong. "Mul t i t . sk ing . " NMFECC Buffer 8(9). 2 (September 1984).

8. K. Fong. "Locks and Events in Mult i tasking." NMFECC Buffer 8(10) (October 1984) .

9. IEEE. Proceed ings of the International Conferences on Parallel Processing, Columbus. Ohio. Aug. 2 6 - 2 9 . 1980:

Bellaire. Michigan. Aug. 2 4 - 2 7 . 1982 and Aug. 2 3 - 2 6 . 1983.

10. P roceed ings of the Fourth S u m m e r School on Computa t iona l Physics . S ta ra Lesna. Czechoslovakia. May 1 9 - 2 8 .

1981, in Comput. Phys. Commur.. 26 (1982), 237.

11. Nat ional Magnet ic Fusion Energy Compute r Center. " M P D O C " (on-line documenta t ion) .

12. E. Lusk and R. Overbeek. "Implementat ion of Moni tors with Macros: a Programming Aid for the HEP and Other

Parallel P rocessors . " A N L - 8 3 - 9 7 , Argonne National Laboratory. December 1983.

13. M. Ben-Ar i , Principles of Concurrent Programming, Prent ice-Hal l . 1982.

14. P. Brinch Hanzen. The Architecture of Concurrent Programs, Prent ice-Hal l , 1977.

15. R. C. Holt , et al.. Structured Concurrent Programming, Addison-Wesley, 1978.

19

ORNL/TM-9493
Dist. Category UC-20

INTERNAL DISTRIBUTION

1. B. A. Carreras 19. L. W. Owen
2. W. A. Cooper 20. K. E. Rothe
3. E. C. Crume, Jr. 21. D. I. Strickler
4. L. Garcia 22. J. S. Tolliver
5. M. T. Heath 23. T. C. Tucker
6. J. A. Rome 24. W. I. van Rij
7. S. E. Attenberger 25. G. E. Whitesides
8. J. L. Cantrell 26-40. H. R. Hicks
9. L. A. Charlton 41-55. V. E. Lynch

10. D. N. Clark 56-57. Laboratory Records Department
11. R. H. Fowler 58. Laboratory Records, ORNL-RC
12. J. D. Galambos 59. Document Reference Section
13. J. A. Holmes 60. Central Research Library
14. D. K. Lee 61. Fusion Energy Division Library
15. R. W. McGaffey 62-63. Fusion Energy Division Publications
16. R. N. Morris Office
17. J. K. Munro 64. ORNL Patent Office
18. C. W. Nestor, Jr.

EXTERNAL DISTRIBUTION

65. D. V. Anderson, Lawrence Livermore National Laboratory, P.O. Box 5509, Livermore, CA
94550

66. P. Andrews, GA Technologies, Inc., P.O. Box 81608, San Diego, CA 92138
67. A. Y. Aydemir, Institute for Fusion Studies, University of Texas, Austin, TX 78712
68. M. Azumi, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken,

Japan
69. D. C. Barnes, Institute for Fusion Studies, University of Texas, Austin, TX 78712
70. R. H. Berman, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge,

MA 02139
71. L. C. Bernard, GA Technologies, Inc., P.O. Box 81608, San Diego, CA 92138
72. O. Buneman, ERL Stanford, Stanford, CA 94305
73. E. J. Caramana, Los Alamos National Laboratory, Ctr. 6, MS 642, Los Alamos, N M 87545
74. M. S. Chu, GA Technologies, Inc., TO 500, P.O. Box 81608, San Diego, CA 92138
75. B. I. Cohen, L630, Lawrence Livermore National Laboratory, P.O. Box 5511, Livermore, CA

94550
76. J. Delucia, Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ

08544
77. F. J. Helton, Fusion Division, GA Technologies, Inc., Box 81608, San Diego, CA 92138
78. D. W. Hewett, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA

94550
79. S. C. Jardin, Plasmas Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ

08544

20

80. C. Karney, Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ
08544

81. G. D. Kerbel, Lawience Livermore National Laboratory, P.O. Box 5509, Livermore, CA
94550

82. G-I. Kurita, Japan Atomic Energv Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken,
Japan

83. L. L. Lao. GA Technologies, Inc., P.O. Box 81608, San Diego, CA 92138
84. J. K. Lee, GA Technologies, Inc., P.O. Box 81608, San Diego, CA 92138
85. C. C. Lilliequist, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545
86. J. Manickam, Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ

08544
87. F. W. McClain, GA Technologies, Inc., P.O. Box 81608, San Diego, CA 92138
88. B. McNamara, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA

94550
89. A. A. Mirin, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550
90. D. A. Monticello, Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton,

NJ 08544
91. W. Park, Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ

08544
92. G. Rewoldt, Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, NJ

08544
93. D. D. Schnack, Science Applications, Inc., La Jolla, CA 92038
94. A. G. Sgro, Los Alamos National Laboratory, P.O. Box 1663, MS 642, Los Alamos, NM

87545
95. A. I. Shestakov, L-561, Lawrence Livermore National Laboratory, P.O. Box 5509,

Livermore, CA 94550
96. T. Takeda, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken,

Japan
97. Y. Tanaka, Fujitsu Limited, 1-17-25, Shinkamata, Ohta, Tokyo 144, Japan
98. R. E. Waltz, Fusion Dept. TO-521, GA Technologies, Inc., P.O. Box 81608, San Diego, CA

92138
99. R. M. Wieland, Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton,

NJ 08544
100. Office of the Assistant Manager for Energy Research and Development, Department of

Energy, Oak Ridge Operations, Box E, Oak Ridge, TN 37830
101. J. D. Callen, Department of Nuclear Engineering, University of Wisconsin, Madison, WI

53706
102. R. W. Conn, Department of Chemical, Nuclear, and Thermal Engineering, University of

California, Los Angeles, CA 90024
103. S. O. Dean, Director, Fusion Energy Development, Science Applications, Inc., 2 Professional

Drive, Gaithersburg, MD 20760
104. H. K. Forsen, Bechtel Group, Inc., Research Engineering, P.O. Box 3965, San Francisco,

CA 94105
105. J. R. Gilleland, GA Technologies, Inc., Fusion and Advanced Technology, P.O. Box 85608,

San Diego, CA 92138
106. R. W. Gould, Department of Applied Physics, California Institute of Technology, Pasadena,

CA 91125
107. R. A. Gross, Plasma Research Laboratory, Columbia University, New York, NY 10027
108. D. M. Meade, Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton,

NJ 08544
109. P. J. Reardon, Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, NJ 08544

21

110. W. M. Stacey, Jr., School of Nuclear Engineering, Georgia Institute of Technology, Atlanta,
GA 30332

111. G. A. Eliseev, I. V. Kurchatov Institute of Atomic Energy, P.O. Box 3402, 123182 Moscow,
U.S.S.R.

112. V. A. Glukhikh, Scientific-Research Institute of Electro-Physical Apparatus, 188631
Leningrad, U.S.S.R.

113. I. Shpigel, Institute of General Physics, Academy of Sciences, Ulitsa Vauilova, 38, Moscow,
U.S.S.R.

114. D. D. Ryutov, Institute of Nuclear Physics, Siberian Branch of the Academy of Sciences of
the U.S.S.R., Sovetskaya St. 5, 630090 Novosibirsk, U.S.S.R.

115. V. T. T lok, Kharkov Physical-Technical Institute, Academical St. 1, 310108 Kharkov,
U.S.S.R.

116. R. Varma, Physical Research Laboratory, Navrangpura, Ahmedabad, India
117. Bibliothek, Max-Pianck Institut fur Plasmaphysik, D-8046 Garching bei Munchen,

Federal Republic of Germany
118. Bibliothek, Institut fur Plasmaphysik, KFA, Postfach 1913, D-5170 Julich, Federal

Republic of Germany
119. Bibliotheque, Centre de Recherches en Physique des Plasmas 21 Avenue des Bains,

1007 Lausanne, Switzerland
120. Bibliotheque, Service du Confinement des Plasmas, CEA, B.P. 6, 92 Fcntenay-aux-

Roses (Seine), France
121. Documentation S.I.G.N., Departement de la Physique du Plasma et de la Fusion

Controlee, Centre d'Etudes Nucleaires, B.P. No. 85, Centre du Tri, 38041 Cedex,
Grenoble, France

122. Library, Culham Laboratory, UKAEA, Abingdon, Oxfordshire, OX 14 3DB, England
123. Library, FOM Instituut voor Plasma-Fysica, Rijnhuizen, Jutphaas, The Netherlands
124. Library, Institute of Physics, Academia Sinica, Beijing, Peoples Republic of China
125. Library, Institute of Plasma Physics, Nagoya University, Nagoya 64, Japan
126. Library, International Centre for Theoretical Physics, Trieste, Italy
127. Library, Laboratorio Gas Ionizzati, Frascati, Italy
128. Library, Plasma Physics Laboratory, Kyoto University, Gokasho Uji, Kyoto, Japan
129. Plasma Research Laboratory, Australian National University, P.O. Box 4, Canberra,

A.C.T. 2000, Australia
130. Thermonuclear Library, Japan Atomic Energy Research Institute, Tokai, Naka, Ibaraki,

Japan
131. D. Steiner, Rensselaer Polytechnic Institute, Nuclear Engineering Department, NES

Building, Tibbets Avenue, Troy, NY 12181
132-237. Given distribution as shown in TID-4500, Magnetic Fusion Energy (Category

Distribution UC-20)

