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ABSTRACT 

F O R T R A N applicat ions p r o g i a m s can be executed on mul t iprocessor compu te r s in either a uni tasking 

( t radi t ional ) or mul t i tasking f o r m . The la t ter al lows a single job to use more than one processor s imul taneously , 

wi th a consequen t reduction in wall-clock t ime and. perhaps , the cost of t he calculat ion. An in t roduct ion t o 

p r o g r a m m i n g in th i s environment is presented The concep t s of synchronizat ion and da t a shar ing us ing E V E N T S 

and L O C K S are i l lustrated with examples . T h e s t ra tegy of s t rong synchronizat ion and the use of synchronizat ion 

t e m p l a t e s are proposed . We emphas ize tha t incorrect mul t i task ing p r o g r a m s can produce irreproducible results , 

which m a k e s debugging more difficult 
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1. INTRODUCTION 

C o m p u t e r s with mult iple p rocesso r s are increasingly available tor large scale scientific compu ta t i on . This 

paper is in tended to in t roduce F O R T R A N p rog rammers t o th i s new envi ronment . Since exist ing p rog rams will 

con t inue t o run on many mul t ip rocessor c o m p u t e r s (pe rhaps wi th some changes ) , we will first d i scuss the 

condi t ions under which it is desirable t o modi fy '.hem (or cons t ruc t new ones) to lake a d v a n t a g e of the mult iple 

p roces so r s . For readers who decide t o procesd . we discuss t he t w o f u n d a m e n t a l concep ts of synchroniza t ion and 

da t a shar ing We believe that th is intro auct ion will provide sufficient background for mos t users , but t h o s e w h o 

want a definitive t r ea tmen t will nerd to consult the bibliography. 

Th i s presenta t ion will ref^r to the Cray X - M P or Cray-2 c o m p u t e r s running under the Cray T imesha r ing 

S y s t e m ( C T S S ) . However many of the concep t s are more widely applicable We believe that the reader will find 

it easy to determine the applicabili ty of any remark to his own s i tua t ion . In par t icular , our analys is is appropr i a t e 

for the c lass of c o m p u t e r s with shared memory . Th i s is in con t ras t to c o m p u t e r s in which each processor h a s its 

own m e m o r y and da t a are t r a n s m i t t e d f rom processor to processor as needed. Our discuss ion is a lso influenced 

by the fact that C T S S is a mul t iuser env i ronment . Not only do users share memory , but different users may 

s imul taneous ly use the p roces so r s . The s t r a t eg i e s we sugges t are no t in tended for strict adherence , bu t are 

des igned to provide conceptua l guidelines ( f rom which it may be necessary t o depa r t to an ex ten t t h a t depends 

on the appl icat ions problem a s well a s t he comput ing env i ronment ) . 

A considerable vo lume of l i terature already ex is t s on the subjec t of mul t ip le -processor c o m p u t e r s : however , 

w e feel t h a t there is a need t o a d d r e s s the p rogramming issues in t e r m s famil iar t o appl ica t ions p r o g r a m m e r s 

ra ther t h a n t o compute r sc ien t i s t s . We have found that s o m e p re sen t a t i ons are overly complex . Moreover , some 

excellent art icles are not generally available or c a n n o t be referenced. Al though synchroniza t ion and d a t a shar ing 

can be difficult t o employ, they are not difficult concepts . T h e mater ia l p resen ted here c o m e s f rom our own 

experience, a s well as c o n s t i t u t e s a review of w h a t we have learned f r o m o the r s . We t rea t the subject by way of 

a few simple examples . We hope the reader will be able t o infer f r o m these m o s t of w h a t is necessary t o p roduce 

mul t i t a sk ing programs 

We will regard each processor a s an essent ia l ly comple te c o m p u t e r . T h i s m e a n s t h a t t he N-processo r 

compu te r can execute N independent jobs a s long a s they all can fit in to t he c o m m o n memory . We a s s u m e t h a t 

such a m o d e of operat ion requires no effor t on t he part of the user and t h ^ t t h e ope ra t ing s y s t e m will t end t o 

the detai ls . Tradi t ional jobs which are executed wi th a single s t r e a m of ins t ruc t ions are called UNItask ing jobs . 

T h e only way a p rogram will use more t h a n one processor a t a t ime is if t he p r o g r a m m e r t a k e s t he necessa ry 

s t e p s to organize his p rogram in to sec t ions (called " t a s k s " ) t ha t can be pe r fo rmed s imul taneous ly . T h e s e t a s k s 

need not be totally independent , bu t t he m o r e independent they are . the easier the p r o g r a m m i n g a n d the more 

efficient the resul ts 

J u s t as high-level l anguages such a s F O R T R A N allow t h e user t o ignore h a r d w a r e deta i ls , mul t i t a sk ing in 

such l anguages can be accompl i shed a t t he s a m e high level. In fac t , even the n u m b e r of p roces so r s available 
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2 Introduction 

need not be known Thus , we can approach mult i tasking a t the FORTRAN level. The user, in general, will not 

control whirh processor executes each task, nor will the precise order of execution of instruct ions which are in 

separa te t a s k s be predictable Because of this, mult i tasking programs have a profound new property. A program 

that happens to be incorrect may produce different results on subsequent execut ions with the same input da ta . 

Thus , a correct result will no longer guarantee a correct code, even for the particular logic pa th tes ted . We shall 

recommend w a y s to minimize the probability of producing an incorrect code. Prevention is t he key here because, 

in general, one does not know when an irreproducible code exists , and even if one does know, debugging runs 

are more difficult because they themselves are not necessarily reproducible 

A good s t ra tegy is to first s t ruc ture the code so tt .at it r suitable for mult i tasking. This part requires 

the grea tes t effort and care. It implies identifying the sect ions of the code which can be executed in parallel. 

Next, if necessary, the code should be sped up by conventional programming techniques, such as vectorization. 

Finally, when this has been tes ted , the mult i tasking capability should be added. Tasks can be used a t any level 

of code logic where parallelism exists or can be exploited. However, since there is some cost to creating tasks , 

one should try to mul t i task at relatively high levels. 

There is ano ther mat te r which, strictly speaking, has nothing to do with mult i tasking, but which will affect 

many users convert ing f rom single-processor compute r s to mult iprocessor computers : da ta initialization and 

retent ion. F O R T R A N rules do not specify the con ten t s of an uninitialized variable or the con ten t s of a local 

varu Me on a subsequent execution of a subroutine. However, because many tradit ional loaders provide zero initial 

values and many compilers retain the values of local variables for use when the same subrout ine is executed 

subsequent ly , many existing p rograms rely on these condit ions. Mult iprocessor compute r s generally ass ign space 

for local variables at the t ime a subrout ine is called. It is likely tha t this space w a s previously used for another 

purpose. Thus , on mult iprocessors , even unitasking jobs m u s t generally adhere to the practice of assigning 

initial values t o each local variable on each entry into a routine. When the value ot a local variable mus t be 

retained f rom the previous subroutine call, this can be accomplished by specifying the variable in a F O R T R A N 

SAVE s t a t e m e n t or by put t ing it in a COMMON block. 



2 POSSIBLE ADVANTAGES OF MULTITASKING 

For the user, there are two primary advan tages t o mult i tasking reducing wall-clock t ime for execution 

a n d / o r reducing the cost of the job. Mult i tasking will a lmos t always reduce the wall-clock t ime. Of course, this 

is only i m p o r t a n t for long-running jobs tha t take greater than the desired tu rna round t ime or too large a f ract ion 

of t he m e a n t ime be tween fai lures of the machine. In a t imeshar ing environment , mul t i tasking could improve the 

r e sponse t ime as well. 

Whe the r mul t i tasking reduces cost depends on the charging a lgor i thm. With an opera t ing s y s t e m tha t gives 

the mach ine to a single user , one would suppose tha t the charge is propor t ional to the to ta l residency time 

In th is case , mul t i tasking would generally reduce t h e charge However, with opera t ing s y s t e m s such as C T S S 

in which use r s can share bo th memory and processors , the advan tage is substant ia l ly reduced. Even in this 

env i ronmen t , however , if there is a subs tan t i a l memory residency charge, mul t i tasking may pay off. 

T h e user needs t o weigh these t w o potent ia l ga ins agains t the effort of creat ing and mainta ining a multi-

t a sk ing code Moreover, the s t ruc ture necessary for an op t ima l mul t i tasking code will c o m p e t e with other design 

cons ide ra t ions , such as minimizing the number of ope ra t i ons or the memory size. In an environment such a s 

a Cray X - M P or Crav 2 running under C T S S . we expec t t h a t mul t i tasking will be worthwhile for onl> a small 

f r ac t ion of jobs, namely those character ized by very large memory a n d / o r very long run t imes . 

2040 



3. TASK SYNCHRONIZATION 

In th is section, we illustrate how the user s t a r t s t a s k s and, once s t a r t ed , how the order of execut ion is 

control led to reflect dependencies a m o n g the tasks. The burden falls entirely on the user t o decide which 

ca lcu la t ions can be performed in parallel. The t a sks should be organized to reflect the logic of t he p rogram and 

should generally not a t t e m p t to conform exactly t o the number of processors . In mult iuser env i ronments , it is 

generally not a d v a n t a g e o u s to try t o main ta in a cons tan t number of t asks . 

Generally, a SUBROUTINE is the smallest F O R T R A N unit tha i can be a t a sk . In f ac t , c rea t ing a t a s k is 

a n a l o g o u s t o CALLing a SUBROUTINE, except tha t the CALLing routine cont inues t o execute beyond the CALL and 

the CALLed rout ine never returns to the CALLer. but instead te rminates , 

W h e n execut ion commences , only one task exists. We shall refer to this as t h e "original" t a sk , even t h o u g h , 

once addi t ional t a s k s are created, they are in some sense equal . For many appl ica t ions , it is conceptual ly easier 

t o m a k e the original t ask a controlling t a sk and t o allow the other t a sks t o per form specific b i t s of work. We 

r e c o m m e n d this conceptual approach a s being safer , a t least for inexperienced users . Therefore , we shall a s s u m e 

tha t t h e original t ask will do the job of s t a r t ing all o ther t a s k s . If the work of the other t a s k s is similar, the 

top-level routine in each might be the s a m e , but this is not necessary. 

Consider a uni tasking program conta in ing 

C EXAMPLE 1A 

CALL REDCRl ,R2 . . . . ) 

CALL CREEN(G1,G2. . . . ) 

CALL BLUE(B1,B2 , . . . ) 

If t he three ca lcula t ions are independent . then instead of the three calls, th ree t a s k s could be smarted: 

C EXAMPLE IB (INCOMPLETE) 

EXTERNAL RED,GREEN.BLUE 

CALL T S K S T A R T ( T C A ( 1 . 1 ) . R E D , R l , R 2 , . . . ) 

CALL TSKSTART(TCA(1,2) ,GREEN,G1,G2, . . . ) 

CALL T S K S T A R T ( T C A ( 1 , 3 ) , B L U E . B l , B 2 , . . . ) 

O n e should think of th is as creat ing a s i tua t ion in which a s many a s four t a s k s (including the original t a s k ) a re 

execut ing a f te r these s t a t e m e n t s are executed . In actuali ty, s o m e t a s k s may be comple t ed before o t h e r s have 

s t a r t e d . As long as the uni taskin^ vers ion is correct and the t a s k s RED. GREEN. BLUE, and t h e original t a s k 

a re independent , the mul t i tasking version is correct . S o m e addit ional dec la ra t ions are necessary t o m a k e th i s 

example comple te : they are described la ter , along with t he TCA array. W e use t h e C T S S s y n t a x here, but s o m e 

o the r imp lemen ta t i ons have similar capabil i t ies . For example , on the Denelcor H E P a t ask is s t a r t e d wi th 

CREATE RED(R1.R2 , . . . ) 

4 



Tatk Synchronization ,ri 

S u p p o s e now tha t the original task should proceed only a f t e r the complet ions of RED. GREEN, and BLUE 

This is ensured by wri t ing 

C EXAMPLE 1C 

INTEGER TCAR,TCAG,TCAB 

COMNON/TNAME/TCAR(2).TCAG(2) . TCAB(2) 

EXTERNAL RED,GREEN.BLUE 

TCAR(1)=2 

TCAG(1)=2 

TCAB(1)=2 

CALL TSKSTART(TCAR,RED.R1.R2, ) 

CALL TSKSTART(TCAG,GREEN,CI,G2, ) 

CALL TSKSTART(TCAB,BLUE,BI,B2, . . . ) 

CALL TSKWAIT(TCAB) 

CALL TSKHAIT(TCAG) 

CALL TSKWAIT(TCAR) 

C RED. GREEN, AND BLUE HAVE COMPLETED 

In the C T S S implementa t ion of mul t i tasking, the integer t ask control a r ravs (here TCAR. TCAG. and TCAB) are 

ob jec t s , consist ing of two or more e lements , t ha t are assoc ia ted with each task . In th is casr they a s soc i a t e 

each TSKWAIT with an appropr ia te TSKSTART. and each TCA is t w o e lements . The user mus t s tore the number 

of e lements in the first e lement ; hence TCAR(1) = 2 A TCA with m o r e e lements al lows the user t o p a s s more 

in format ion i r to the task , but w e shall not i l lustrate tha t here. In example 1C. the original task will wait fo r each 

of the other t a sks to be comple ted in turn before proceeding. T h e order of the TSKWAIT's is immater ia l in this 

example . The TSKSTART and TSKWAIT for BLUE could be replaceo with a CALL BLUE so tha t the original task , 

which would o therwise be wai t ing anyway, would do this work. However , one should not be overly concerned 

a b o u t t a s k s left wai t ing Choices such a s this should be resolved on the bas i s of creat ing the m o s t unde r s t andab le 

code, ra ther than on "opt imizat ion ." 

Generally, the gain of mul t i tasking is g rea tes t if the execut ion t i m e s of RED. GREEN, and BLUE are equal . 

However , it is usually not wor thwhi le to worry about th i s unless one s u s p e c t s tha t the execution t i m e s are greatly 

d i spa ra t e , in which case the code approaches the efficiency of a un i task ing code plus the mul t i t a sk ing overhead. 

Even if the execution t imes are d i spara te , if the number of t a s k s is grea ter than the number of p rocessors , 

mul t i t a sk ing may be rewarded since short t a sks may execute serially on one processor while long ones execute 

on o the r processors . In this sense, the operat ing sys tem may provide a fo rm of dynamic load leveling. 

Another c o m m o n s i tuat ion in which mult i tasking may apply is 
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C EXAMPLE 2A 

DO 10 N=1,NNAX 

10 CALL VORK(N,W1.V2. ) 

END 

SUBROUTINE VORK(NN.Vl ,1*2, . . . ) 

COMMON A ( 1 0 0 , 1 0 0 ) , B ( 1 0 0 ) , C ( 1 0 0 ) 

DO 10 J = l , 1 0 0 

10 A ( N N . J ) = N N * B ( J ) + C ( J ) 

RETURN 

END 

Usually one would prefer t ha t the subrout ine t o be mul t i tasked contain more work , but t h e example is intended 

to i l lustrate the case in which the NNAX execut ions of VORK can be per formed in parallel: 

C EXAMPLE 2B 

INTEGER TCA 

COMMON/TNANE/TCA(2,100) 

DIMENSION NARRAY(IOO) 

EXTERNAL VORK 

DO 10 N=1,NMAX 

TCA(1 ,N)=2 

NARRAY(N)=N 

10 CALL TSKSTART(TCA(1,N),VORK,NARRAY(N),V1,W2 ) 

DO 20 N=1,NHAW 

20 CALL TSKVAIT(TCA(1 ,N)) 

Thus , the original t a sk will s ta r t the NNAX copies of VORK and wai t for them all t o be comple ted . Subrou t ine 

VORK is not a l tered. Note that it would have been incorrect to p a s s N as the a r g u m e n t , since the value of variable 

N con t inues to change af ter each task is s t a r t ed . Th i s crucial point will be add res sed fu r the r in t he next sect ion. 

Any t a sk can s t a r t new t a s k s a t any t ime a s long a s the necessary synchronizat ion is provided for all of t he 

t a s k s t h a t can b e running a t any t ime. 

Now consider a more complicated un i task ing code: 

C 

1 0 

EXAMPLE 3A 

DO 10 N=1,NMAX 

CALL V0RK1(N,V11 ,V12 ) 



Tatk Synchronization ,ri 

C COULD DO WORK HERE IN ORIGINAL TASK 

DO 20 N-l.NNAX 

20 CALL W0RK2(N.W21,W22 , ) 

END 

The c o m m e n t line "COULD DO WORK HERE..." indicates the placement of work which mus t follow the complet ion 

of all execut ions of W0RK1 and precede all execut ions of W0RK2. Suppose tha t W0RK1 and W0RK2 can each be 

mul t i t a sked . but all o ' the WORKl's mus t he completed before any of the W0RK2's s t a r t . The sa fes t approach is 

t o c rea te addi t ional t a sks 

C EXAMPLE 3B 

INTEGER TCA 

COMMON/TNAME/TCA(2,200) 

DIMENSION NARRAY(100) 

EXTERNAL W0RK1.W0RK2 

DO 10 N=1.NNAX 

T C A ( 1 , N ) = 2 

NARRAY(N)-N 

10 CALL TSKSTART(TCA(1,N).WORK1.NARRAY(N).W11.W12 ) 

DO 15 N=1.NNAX 

IB CALL TSKWAIT(TCA(1,N)) 

C COULD DO WORK HERE IN ORIGINAL TASK 

DO 20 N=1,NNAX 

TC;.(1,KMAX-»N)=2 

2 0 CALL TSKSTART(TCA(1,NMAX+N),W0RK2,NARRAY(N).W21,W22, . . . ) 

DO 25 N=1,NNA.X 

25 CALL TSKWAIT(TCAfl.NNAX+N)) 

END 

In principle, this t echnique of total ly independent t a s k s is sufficient . However , consider the addi t ion of an 

overall DO loop around example 3 6 . This could result in a very large number of TSKSTART's being executed. 

There is an overhead cos t a s s o c i a t e d with s ta r t ing new t a sks , so execut ion efficiency may suffer. To reduce the 

necessary number of TSKSTART's and increase the a m o u n t of ca lcula t ion in each task , s o m e too l s have been 

developed which allow t a s k s t o coope>ate during their execut ion. In th i s example we could combine W0RK1 and 

W0RK2 in to a single t ask for each N. One could use E V E N T S to synchronize the NNAX t a s k s a s each one f inishes 
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V0RK1. An event is like a bit (with t w o s t a t e s . P O S T E D and C L E A R E D ) t h a t all t a s k s can see. The user can 

c rea te as m a n y events a s he desires. There are three opera t ions tha t a t a sk can perform with respect t o each 

event : pos t , wa i t , and clear. Generally, one t a sk will al ternately pos t and clear a given event and certain o ther 

t a s k s will wai t for the event t o be pos ted . In example 2 6 . the TSKVAIT in the original t ask could have been 

replaced wi th «vent wai t s . 

DO 20 N=1,NNAX 

2 0 CALL E W A I T ( E T ( N ) ) 

a n d at the end of subrou t ine VORK. one would have 

CALL EVPQST(ET(NN)) 

As each VORK t a s k is comple ted , it p o s t s t he ET event t ha t cor responds t o t h a t t a sk . W h e n all NNAX even t s have 

been p o s t e d , t h e original t a sk breaks out of t he E W A I T loop. 

Clearly, t h i s example can be generalized t o establish a n u m b e r of synchronizat ion poin ts within t a s k s . 

Synchron iza t ion poin ts can involve at ' or jus t s o m e t a sks . For synchroniza t ion above the simplest level. e x t r e m e 

ca re should be exercised because an incorrect even t s t ruc ture may no t be apparen t in the resul ts of t he ca lcula t ion. 

We r ecommend t w o w a y s t o minimize th i s dange r : S T R O N G S Y N C H R O N I Z A T I O N and use of synchroniza t ion 

t e m p l a t e s . 

S t r o n g synchroniza t ion refers t o the prac t ice of mak ing the event s t ruc tu re robus t by using more t h a n the 

m i n i m u m n u m b e r of even t s . This will a l so reduce the chance t h a t s u b s e q u e n t p rogram changes will in t roduce 

an error in to a correct event s t ruc ture . T h e fol lowing example has th i s proper ty , a s well a s providing a t e s t e d 

synchron iza t ion t empla te . We will use 2*(WMAX-f I ) events . 

Cons ider a uni tasking code t h a t general izes example 3A with t he addi t ion of an overall loop: 

C EXAMPLE 4A 

DO 100 J=1,JMAX 

C COULD DO VORK HERE IN 

DO 10 N=1,NNAX 

10 CALL V 0 R K 1 ( N , V l l , V 1 2 , 

C COULD DO VORK HERE IN 

LO 2 0 N=1,NNAX 

2 0 CALL W0RK2(N,V21 ,V22 , 

100 CONTINUE 

ORIGINAL TASK 

.. .) 
ORIGINAL TASK 

.. .) 

END 
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This could correspond, for example, t o a t ime-stepping or iteration loop in which each s tep or iteration calls for 

t w o blocks of work, each of which can be mult i tasked 

O n e way to visualize the implementat ion of example 4 with events is to show the t ime sequence within the 

original and other t a s k s and the points (indicated by arrows} at which control is passed between the original 

task and the other t asks : 

ORIGINAL TASK WORK(N) 

start WORK (N) 

DO 100 

wait for all E T ( 1 , N ) 30 p o s t E T ( l . N ) 

d o work 

clear EN(2 ) 

post EM(1) 

wait fo r all E T ( 2 , N ) 

do work 

clear EM(1) 

pos t E N ( 2 ) wait for EN(2) 

100 CONTINUE do work 

clear E T ( 2 , N ) 

wait fo r all E T ( l . N ) GO TO 3 0 

T h e original task s t a r t s NMAX copies of WORK and then wai ts until all NNAX events E T ( 1 ; N ) have been posted; 

then before post ing event EN(1) it can perform some work while the other t a sks are idle. The post ing of EN(1) 

by the original t a sk is the signal t ha t all the o ther tasks can commence their first block of work. Note tha t events 

are not cleared jus t a f te r being posted, because that provides no guarantee tha t the t a s k s looking for the event 

will see it while it is pos ted . In this t empla te , events are a lways cleared af ter wait ing for a different event which 

conf i rms tha t the original event w a s seen. T h e sequence post-wait-work-clear can be repeated any number of 

t imes. In each such block, pott and clear refer t o the same event and wait refers to an event pos ted by another 

t a sk or t a s k s . T h e work-clear order can be reversed as long a s v>ork and c{ear are sandwiched in between the 

wait and the following post. The expression of this event s t ruc ture in C T S S F O R T R A N is 

C EXAMPLE 4B 

INTEGER TCA.ET.EN 

COMMON/TNAME/TCA(2,100) 

CONNON/EVCON/ET(2,100),EM(2) 

wait for EN(1) 

do work 

clear E T ( l . N ) 

post E T ( 2 . N ) 
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DIMENSION NARRAY(IOO) 
EXTERNAL WORK 

CALL EVASGN(EM(1),ASTAT) 
CALL EVASGN(EM(2),ASTAT) 
DO 10 N=1,NNAX 
TCA(1. N) = 2 
NARRAY(N)=N 
CALL EVASGN(ETC 1.N).ASTAT) 
CALL EVASGN(ET(2.N).ASTAT) 

10 CALL TSKSTART(TCA(1,N).WORK.NARRAY(N).Wll,W21.W12.W22. 
DO 100 J=1,JMAX 
DO 11 N=1.NMAX 

11 CALL EVWAIT(ET(1,N)) 
C COULD DO WORK HERE (OTHER TASKS IDLE) 

CALL EVCLEAR(EN(2)) 
CALL EVP0ST(EM(1)) 
DO 12 N=1.NMAX 

12 CALL EVWAIT(ET(2,N)) 
C COULD DO WORK HERE (OTHER TASKS IDLE) 

CALL EVCLEAR(EN(1)) 
CALL EVP0ST(EN(2)) 

100 CONTINUE 
DO 20 N=1,NNAX 

20 CALL EVWAIT(ET(1,N)) 

END 
SUBROUTINE WORK(NN,Wll.W21.V12,V22. . . . ) 
INTEGER ET.EN 
COMMON/EVCOM/ET(2.iOO),EM(2) 

30 CALL EVP0ST(ET(1.NN)) 
CALL EVWAIT(EM(1)) 

C ORIGINAL TASK IDLE 
CALL WORKKNN,Wll.W12, . . . ) 
CALL EVCLEAR(ET(1,NN)) 
CALL EVP0ST(ET(2.NN)) 
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CALL EV!'AIT(EN(2) ) 

C ORIGINAL TASK IDIE 

CALL VDRK2 (NN , V21, V22 . . . ) 

CALL EVCLEAR(ET(2,NN)) 

GO TO 30 

END 

Note tha t a f te r the first trip through s t a t emen t 10, more than one task is active. The comments indicate the 

po in t s in each task at which synchronization al lows work t o be done. 

In SUBROUTINE VORK we have chosen to CALL V0RK1 and V0RK2 to isolate the event structure from the rest 

of the code. If large sections of in-line F O R T R A N appeared here, it is possible that an (erroneous) GO TO could 

go f rom V0RK1 to V0RK2. skipping a c lear-post-wai t sequence. However, the event structure has sufficiently 

s t rong synchronizat ion to detect this "break" in the event s tructure. T h e code will run to a deadlock. It is 

a lways preferable t o deadlock than to have the code proceed with the t a sks potentially out of s tep. 

Another way to visualize this event s t ruc ture is to show the time sequence organized by event For each 

event , we show the posting, t he clearing, and the waiting. [When the original task initiates the act ion, upper 

case ( P . C . V ) is used: when it refers to the VORK tasks , l owerca se ( p , c , » | is used.J 

E T ( l . N ) EN(1) E T ( 2 , N ) EM(2) 

W.P 

C 

w,P 

c 

" ' p 

C 

» , P 

c 

Work can be done in the main t a sk just before or a f t e r C. and work can be done in the other t a sks jus t before or 

a f t e r c. Note tha t in the F O R T R A N for example 4 B . there is a final wait for E T ( l . N ) to ensure tha t the VORK 

t a s k s are all idle before proceeding. To generalize th i s example to perform more blocks of work within each task , 

simply ex tend the pat tern . Each addit ional block a d d s t w o columns and t w o rows to the pa t te rn . 

Al though events are powerful , they a re not convenient for some s i tua t ions . Consider the case of a variable 

that m u s t be modified by each t a sk in any order. It is no t necessary t o synchronize the t a sks all a t once: one 

mus t merely prevent the s imul taneous modif icat ion of the variable by more than one task. This can easily be 

accompl ished with a "lock" which, like an event, is an object with two possible s t a t e s . The s t a t emen t 
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CALL LDCKON(LOCKNANE) 

( .n ises the lo< k lo be set ii it is riot and causes the t ask to wait (or the lock to be turned off if it is already set. 

T h i s c o n t r a s t s with events . Pos t i ng an tvent that is already pos ted h a s no effect . T h e s t a t e m e n t 

CALL LOCKOFF(LOCKNANE) 

clears a lock and cont inues . As wi th events , locks m u s t be assigned 

CALL LOCKASGN(LOCKNANE) 

before they arc used . Before each t a sk modif ies the shared variable(s) . it locks t he lock: a f t e rward it t u r n s the 

lock off: 

CALL LOCKASGN(LOCKA) 

CALL LOCKON(LOCKA) 

A=A+1 

CALL LOCKOFF(LOCKA) 

T h e effect of th is , a s s u m i n g that each t a s k con ta ins similar coding, is t ha t the s t a t e m e n t in which shared variables 

are modif ied (here A=A-»l) is not executed s imul taneous ly by different t a s k s . In con t ras t to our examples for 

events , th is d o e s not cause all t he t a s k s t o wai t for a c o m m o n signal (an event ) : it merely prohibi ts the 

s i m u l t a n e o u s execut ion of the critical section of code — but the order in which the t a s k s execute t h e critical 

sect ion is unpredic tab le . 
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Depend ing on how they are declared, variables are visible to one or more t a s k s . Variables t h a t are visible to 

more t h a n one t a sk m u s t be t r ea t ed carefully t o ensure t h a t they are used and ass igned in t he proper sequence 

by di f ferent t a s k s T h e se r iousness of this issue is emphas ized by considering an apparen t ly isolated sect ion 

of c o d e . If t h a t section of code can be execut ing s imultaneously with ano the r t ask , ev en t s a n d / o r locks m u s t 

generally be used when referring to shared d a t a . 

In t radi t ional F O R T R A N , variables can be classed a s local, COMMON, or d u m m y a r g u m e n t . T h e scope of a 

variable b e c o m e s more complex in a mul t i t ask ing code, a s shown in the table 

UnitaBking M u l t i t a s k i n g 

S h o r e d Not S h a r e d 

LOCAL SAVEd LOCAL 

COMNON COMMON TASK CONMON 

D U M M Y A R G U M E N T d e p e n d s 

T h e C T S S general izat ion of COMMON is not defined a t t he t ime of this writ ing, so w e use t he nomencla ture 

e s t ab l i shed by Cray Research . Inc. Local variables that are not SAVEd a re only defined during the execution of 

the rou t ine in which they a p p e a r . Thei r value is not retained af ter RETURN f rom the routine. For SUBROUTINES in 

more t h a n one task , local variables are not shared be tween tasks . S e p a r a t e copies of each local variable exist for 

each t a s k . When local variables are SAVEd. t w o th ings happen , b o t h being a consequence of the fac t t ha t SAVEd 

var iables are assigned, t o a single s t a t i c locat ion. The s a m e variable value is available t o all t a s k s . The value is 

r e ta ined for subsequen t execut ions of t he subrou t ine in t he s a m e or a n o t h e r t a s k . During a period of t ime in 

which a SAVEd variable is not modif ied by any t a sk , it can be used by all t a s k s a s a c o n s t a n t . Any modificat ion 

of SAVEd variables should be control led by the use of even t s and locks. Clearly, each t a sk could be allowed to 

m o d i f y independent e lements of a SAVEd array wi thou t synchroniza t ion . 

All four possibil i t ies of shar ing or not shar ing be tween rout ines and t a s k s are available: 

S h a r e d B e t w e e n 

R o u t i n e s T a s k s 

local n o n o 

SAVEd no y e s 

TASK CONNON y e s n o 

CONNON y e s y e s 

Var iables in CONNON are global wi th respec t t o bo th t a s k s and rout ines . A new declara t ion syn t ax . 

13 
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TASK C0MN0N/CNANE/V1.V2 

c r e a t e s a CONNON h a v i n g a s e p a r a t e copy (or e a c h task . T h u s a var iable in a TASK COMNDN ( a s wi th a local 

var iab le ) c a n s i m u l t a n e o u s l y h a v e d i f fe ren t v a l u e s in each t a s k . 

It is a deeply ingra ined n o t i o n in t r ad i t i ona l p r o g r a m m i n g t h a t w i th in a s e g m e n t of in-line c o d e all mod i f i ca 

t i o n s of t h e values of va r i ab l e s a re a p p a r e n t . T h e occur rence of SUBROUTINE or FUNCTION i n v o c a t i o n s c a n resul t 

in m o d i f i c a t i o n of a r g u m e n t s a n d var iab les in CONNON. In a m u l t i t a s k i n g code , sha red var iab les c a n be c h a n g i n g 

u n p r e d i c t a b l y dur ing t h e c o u r s e of execu t ion , s o it is essen t ia l t o h a v e a clear m e n t a l p i c tu re of which va r iab les 

a r e s h a r e d a m o n g t a s k s 

T h e s cope of d u m m y SUBROUTINE a r g u m e n t s d e p e n d s first on t h e dec l a r a t i on of tfv? ac tua l (or iginal) 

a r g u m e n t . A var iable t S a t is originally local w i t h respect t o t a s k s will be s h a r e d a m o n g t a s k s if it is p a s s e d in a 

TSKSTART invoca t ion . H o w e v e r , we r e c o m m e n d cau t ion when p a s s i n g a r g u m e n t s i n t o t a s k s , b e c a u s e t h i s c r e a t e s 

n u m e r o u s po t en t i a l fa i lure m o d e s . If t h e CALLing rout ine t e r m i n a t e s be fo re t h e t a s k t h a t it s t a r t e d t e r m i n a t e s , 

no t only d o var iables local in t h e CALLing rou t i ne b e c o m e u n d e f i n e d , b u t , in s o m e i m p l e m e n t a t i o n s , t he a d d r e s s e s 

of all a r g u m e n t s p a s s e d t o a t a s k may a l so b e c o m e unrel iable . It is far t h i s r e a s o n , in e x a m p l e 4 B a b o v e , t h a t 

w e u s e CONNON t o c o m m u n i c a t e the e v e n t s t o t h e t a s k s . In e x a m p l e s 3 B end 4 B . t h e t a s k index N is p a s s e d in to 

t h e t a s k s a s an e l e m e n t of t h e ar ray NARRAY(N)=N. To p a s s N itself f r o m t h e or iginal t a s k would resul t in all 

t a s k s referencing t h e s a m e loca t ion N. r a t h e r t h a n o b t a i n i n g t h e va lue of N p r e s e n t a t t h e t i m e of t he TSKSTART. 

It is a l s o n e c e s s a r y t o m o d i f y t h e n o t i o n of a r g u m e n t s p r e s e r v e d o n exit f r o m a SUBROUTINE. C o n s i d e r 

CALL L I N ( B . A . C ) 

a n d a s s u m e t h a t t h e a r g u m e n t s A a n d C a r e i npu t a r g u m e n t s : t h a t is . t hey a r e u n c h a n g e d on exit f r o m LIN. 

S j p p o s e t h a t t he m u l t i t a s k e d s u b r o u t i n e VORK in e x a m p l e 2 B c o n s i s t s of 

C EXAMPLE BA 

SUBROUTINE VORKCNN) 

CONNON A , B ( 1 0 0 ) , C ( 1 0 0 ) 

CALL L I N ( B . A . C . N N ) 

RETURN 

END 

SUBROUTINE L I N ( B . A . C . N N N ) 

DIMENSION B ( 1 0 0 ) , C ( 1 0 0 ) 

B(NNN)=B(NNN)+C(NNN)*A 

RETURN 

END 
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Variables A. B. and C arc shared, but the simultaneous calls to LIN are correct because within the tasks . A and 

C are unchanged, so all t a sks can use them Variable B is modilied but each task can only modify one element . 

However, a modification to LIN that retains the property that A and C are unchanged on exit from LIN results 

in an incorrect t ask . 

C EXAMPLE BBC INCORRECT) 

SUBROUTINE WORK(NN) 

COMMON A . B ( I O O ) , C ( 1 0 0 ) 

CALL LIN(B.A,C ,NN) 

RETURN 

E.'JD 

SUBROUTINE LIN(B.A,C,NNN) 

DIMENSION B ( I O O ) , C ( 1 0 0 ) 

A=A*C(NNN) 

B(NNN>=B(NNN)+A 

A=A/C(NNN) 

RETURN 

END 

This w a s intended to produce the s ame results as example 5A. The problem is that one copy of variable A is 

shared among all the tasks . Within each task . A is temporarily multiplied by the element of C associated with 

that t a sk . It is quite possible tha t another task will pick up A before it is restored to its original value. Thus , 

the resul ts of example 5B will be irreproducible unless locks or events are employed. Unfortunately, such an 

incorrect code may execute numerous test runs correctly, failing to reveal i ts lack of correctness . 



5. S11MMARY 

Mult i tasking F O R T R A N programs are more susceptible to error and considerably more difficult to debug 

than uni tasking codes . The results of an incorrect mul t i tasking code may be irreproducible. and t h u s may be 

correct in any given run. The following guidelines provide a s t a r t ing point opt imized for C T S S . They will not be 

equally true in other environments . 

To mul t i t ask or no t? Mult iprocessor compute r s may run uni tasking ( t radi t ional) p rograms . Mul t i t ask ing 

can reduce wall-clock t ime, computer t h a r g e . and response t ime. Mult i tasking a d d s a sys tem overhead cost in 

addit ion to being in compet i t ion with other code design object ives such a s readability, minimum memory , e tc . 

J n e should not mul t i t ask a code wi thout the clear prospect of a net gain 

St ra tegy: (1) organize the program so tha t it will be sui table for mul t i tasking: (2) employ convent ional 

opt imizat ion (such as vectorization) f rom the b o t t o m up: and (3) mul t i task f rom the top down. T a s k s should 

contain enough work t o overcome the overhead of s ta r t ing t h e m . Mult i task at a level (or levels) a t which the 

program has na tu ra l parallelism. Do not t ry to ma tch the number of t a sks to the number of p r o c e s s o r s — m a t c h 

the number of t a s k s t o the problem. In a mult iuser env i ronment , it is not worthwhi le t o try to main ta in a 

cons t an t number of t a sks . 

Task synchronizat ion and da t a shar ing should be planned carefully t o obta in a correct, efficient code. It 

is safes t to use an exist ing, t e s ted synchronizat ion t emp la t e (event a n d / o r lock s t ruc ture) . Use S T R O N G 

S Y N C H R O N I Z A T I O N — a n overdesigned synchronizat ion scheme wi th more than the minimum n u m b e r of even ts 

a n d / o r locks. T h i s will help prevent t a s k s f rom ge t t ing out of s tep. S t rong synchronizat ion is designed to 

increase the probabil i ty t ha t an incorrect program will go to an error condition or deadlock. 

SAVEd and CONNON variables and s o m e d u m m y a r g u m e n t s are visible to . and can be modified by. different 

t a sks . Use d o c u m e n t a t i o n and p rog ramming convent ions (e .g. . naming convent ions) t o make such snared 

variables appa ren t . Minimize pass ing a r g u m e n t s into t a s k s . Access to shared variables m u s t be control led with 

events a n d / o r locks. 

10 
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