Cov - 10140 --|

ON THE DESIGN OF OPTIMIZATION SOFTWARE

by

Jorge J. More'

DISCLAIMER

This book was prepared 8 an sccount of work sponsored by an agency of the United Sta

Prepared for
Conference on
Nonlinear Optimization and Applications
L'Aquila, Italy

June 18-20, 1979

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Uof C-AUA-USDOE

Operated under Contract W-31-109-Eng-38 for the
U. S. DEPARTMENT OF ENERGY

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the
terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities
Association and The University of Chicago, the University employs the staff and operates the Laboratory in
accordance with policies and programs formulated, approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona The University of Kansas The Ohio State University

Carnegie-Mellon University Kansas State University Ohio University

Case Western Reserve University Loyola University of Chicago The Pennsylvania State University

The University of Chicago Marquette University Purdue University

University of Cincinnati The University of Michigan Saint Louis University

Illinois Institute of Technology Michigan State University Southern Illinois University

University of Illinois University of Minnesota The University of Texas at Austin

Indiana University University of Missouri Washington University

The University of lowa Northwestern University Wayne State University

Iowa State University University of Notre Dame The University of Wisconsin-Madison
NOTICE

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the
United States nor any agency thereof, nor any of their
employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party’s
use or the results of such use of any information, apparatus,
product or process disclosed in this report, or represents that its
use by such third party would not infringe privately owned
rights. Mention of commercial products, their manufacturers,
or their suppliers in this publication does not imply or connote
approval or disapproval of the product by Argonne National
Laboratory or the United States Government.

1. Introduction

MINRACK is a research project whose long term goal is the'development ofla
systematized collection of quality optimization software. One of the results of
this project is a package,‘MINPACK-l, for the solution of systems of AOnlinear
equations and nonlinear least squares problems. Section 2 of this paper
'prdvides an outline of this package and then some .of the design decisions made
duging the production of this package are discussed.

The goél of MINPA&K-I is to minimize the amount of effort required of the
user and the computer to solve a particular problem. This goal demands that
close attention berpaid to the ease of use, reliability and eificiency of
MINPACK-1l. Ease of use requires the careful design of the user documentation
and user interface, while reliability and efficiency require that the algorithms
have écceptable global and local-convergence properties and that the
implementations extend the domain of the algorithms as much as possible.

‘It is not my intention to provide a complete description of the design
principles behind ﬁINPACKrl, but rather to illusﬁrate some of these principles
by considering specific examples. The concepts discussed in this papér are
robustness, scale invariance, interface routines, and reverse communication.

The concept of robustnesé has been used with great success in other areas
of mathematical software; but it is frequently given too little attention in
optimization software. In Sectién 3 we illustrate the importance 6f this
concept by discussing the robustness of a very simple but important calculation:
cubic interpolation. The importance of this calculation derives from its use
as a basic step.in many one-dimensional optimization routines.

Similarly, although almost every successful deve;oper of'oﬁtimization
algori;hms is aware of thefimportapce of scale invariance, the use of this
concept in the implementation éf optimization software has been overlooked by
many. .Scale:invariance is discusssed in Section &4 and there we note a connection
between robustness and scale invariance apd show how scale iﬁvariance can be
used to decide between different versions of an algorithm.

Interface routines and reverse communication are Ebncepts that have been

-used to‘facilitate the © use of MINPACK-1l. Some of the implications

|
|

| | . i
of these concepts are treated in .Sections 5 and 6 by discussing the design of an
interface routiﬁe for a nonlinear least squares algorithm, and tﬁe implementation ' ’
of an algorithm for checking that the user-supplied derivation information is |
consistent. with the function values.

An important‘topic that has been left out is the implications of these

concepts to the tescing of optimization software. For this topic the interested

reader may consult [9] and {10] .

Acknowledgements Many people'have contributed to the development. of MINPACK-1.

Among them Jim Boyle spent a lot qf time and effort in developing a version of
TAMPR suitable for optimization software, Brian Smith and Jim Cody have been
very genersus with their advice on general.softwarg considerations, and LarryA
Nazareth and Dudley Goetschel contributed to the devélopmént of the software.
The final product is, however,.the responsibility of.three people; Burt Garbow

Ken Hilistrom, and myself.

" 2. MINPACK-1

To solve a system of nonlinear equations the user of.MINPACK-1 is required

to specify n functions fi : R%=> R. The aigorithms are designed to solve the

system

(2.1) £,(x, ooy x) =0, l<ign

n n : . .
If F: R =—» R 1is the mapping whose i-th coordindte is the residual fi‘ then

(2.1) can be written in vector form as
(2.2) F(x) = 0.

For a nonlinear least squares problem, the user is required to supply m functions

£, = R'—> R . The algorithms are designed to solve the problem

i

(2.3) min Z £

If F : Rn—) R® is the mapping whose i-th coordinate function is the residual

fi, then (2.3) is equivalent to the minimum —ez-norm problem

(2.4) min {“ F(x)“ :o% € R® E

To solve problems (2.2) and (2.4) we have implemented modifications of
Powell's hybrid algoritlm and the. Levenberg-\iarquardt algorithm, res;;ectively.
Some of the necessary modifications to the Levenberg-Marquardt algorithm are
‘described iﬁ [8] , but at present there is no description of our modifications
to Powell's hybrid algorithm. We hope to provide complete descriptions of the
modified algorithms in the near future.

For each of the algorithms there are two versions. One of the versions
onl’y requires the user to provide the functiom F, whille“in‘ the other ;iersion

the user is required to provide the function F and the Jacobian matrix

_afi(x)

)

F'(x) = '(3_’_‘;— o | - | o

of F. The advantage of providing the Jacobian is increased reliability; for

example, the algorithms are then much less sensitive to noisy functions. The

disadvantage of providing the Jacobian is that this is a2n error-prone task. For

this reason, MINPACK-1 also contains a program to check that the Jacobian is
consistent with the function values.-

Theré is one addifioqal program in MINfACK-l. Prompted by minicomputer
users we have provided a version of the Levenberg-Marquardt algorithm which only
requires the storage of an n by n matrix. Thi§ algorithm is suitable for
nonlinear least squares problems with a large amount of data but a moderate

number of variables.

3: -Robustness

A robust implementation extends the domain of the algorithm so that it .copes
with és many problems as possible without a serious loss of efficiéncy.

There are many aspects to robustness. For linear algebra softwére these

aspects have been discussed by Smith, Boyle and Cody [12], for special

‘functions see Cody's work {:2, 3] , and for optimization see my discussion in [10].

In what follows we ill.ustrate one of these aspects by considering a very simple '
calculation: Hermite interpolation by a c'ubtic polynomial. This calculation is a
basic step in many one-dimensional linear search routines, and yet, to my
knowledge, time problems noted bgl_ow have not i:een discussed befor'e.'

Cubic intervolation. Given distinct points & 1 and 0(2, function values fl

and f2’ and derivative values 81 and 'g2 , let Q be the cubic interpolanf.

such that . ‘
= © ' = 3 ::
Q(di) fi ; Q (di) gi, i 1, 2,
1f
g, (X, =KD <o | T
and

gl.gzso or flsfz,

then Q has a minimizer & * between 4 1 and & 2"

-Almost any book on optimization has the formula for the calculation of & *;
for example [6, 13] . A straightfoward use of this formula leads to the
following implementation.

Implementation

IF (glagz<0 4):3 flsfz)

£ - €
1”5
= 3 y +

6 TR

+ 8,

-7 -

ol
]

sign(dzio(l) [Gz-gl.gz] 5

Y -81'*'9

o °<1+(d2'°<1)

This implemeﬁtatiop is mathematically correct; in pafticular~ o * iies in
the interval with endpoints C(]. and C(Z. Moredver, this implementation
attempts to reduce the round-off error in the evaluidtion of X * (see [&]).
We now show that this implementation is not robust unless the input values fl’
fZi_gl’ and gz are severely restricted.

To make the above claim precisé, we first need to disguss three machine
parameters: the machine precision, the smallesﬁ positive magnitude and the largest

magnitude.

The machine precision is the smallest floating point number 6'}1 such that

1+ EM>1

- in working precision, and thus specifies when a floating point number is

negligible in an additive operation., In particular,

y+x=x =p ‘ y] L€y i X ‘ :

The smallest positive magnitude DWARF and the largest magnitude GIANT provide
bounds on- the allowable (working precision) .floating point numbers; an attempt

to calculate a floating point number =x with
0 <|x| < DWARF

causes an underflow, while an attempt to calculate a floating point number X
with

]x) > GIANT

..causes an overflow.

The treaﬁment of underflows and overflows depends on the installation, the

- computer and'the compiiér. In many systems a'quality which underflows is just

”

e o et e

-8 -

set'to zero and the computation continues. The treatment qf overflows is much
more varied, but it is reasonable to assume that a quantity which overflows is
set to GIANT (with the appropriate sign) and that the user is allowed a certain
number of overflows, say}lO, before the computation is terminatéd by the system.
In the remainder of this paper it is assumed that overflows and underflows are
treated as described above.

In any system it is clearly &esirable to avoid overflows ard underflows.
In general.it is not possible to avoid all overflows and underflows without a
sefious effect on efficienc&, so MINPACK-1 implementations only try to avoid

destructive overflows and undefflows:.that is, any overflow or underflow which

damages the accuracy of the computation. One of the implications of this design
decision is that any underflow in a MINPACK-1 implementation should be ignored,

while an overflow signals an unusual condition; namely; that the desired quantity-

is out of the range of the machine.

It is now natural to ask if the above implementation avoids destructive
overflows and underflows. To answer this question in the negative, we show that
the computation of- 81 + 8 and 3’ may lead to destructive overflows and

underflows. For example if

g = -8 = 5 (DWARF)%

then gy - & underflows and thus ©&{ * is not calculated by the interpolation
formula. This may not seem like a serious error, but it is nevertheless a
deficiency of the implementation and moreover, an unnecessary deficiency. To .

fix this problem it is sufficient ;b replace _gl'. g, by

in the test. A serious error canm occur if 3’ under<lows or overilows. For

example if

- (3.1) X 1 <“2 , 8, <O
(3.2) | £,- 4 > & o0
Y >
Xy -y = 72
£, - £ ;
- (3.3) ﬁL>‘% (GIANT)%A,
2 1 A
then it is straightforward to verify that V . L -

-9 > (ranm ¥ .

. 2
As a consequence, the computation of £ overflows and forces

¥ = (GIANT)%‘ .

This error is disastrous because. it now leads to

Y ’81+9 <.0 2

while 2 3’ -8 + g, is clearly positive. Thus
et K X

This type of failure can also occur if the computation of Y underflows, so it
is clear that this computation is not robust. Fortunately it is not difficult

to fix matters. If wé let -
o Temfi0l gl 5]
and compute Y as |

) g8, 8
35 Y= s, - A T ? D (—aﬁ)] :

then it is clear that all destructive overilows are avoided. How about underflows?
It can be shown that all underflows are non-destructive unless the following two

conditions hold: ' ' - 4 o _ ‘ | B

[1 | 81 |
(3.6) min f—a:- T underflows
0 .2 ')
(3.7) (—ar) underflows or is zero .

Although (3.6) will hold from time to time, it is unlikely that (3.7) will

hold. To see this, first note that rounding errors usually guarantee that

(3.8) !e' 2 EM max { IR lgzi}

where €514 is the machine precision. In fact, about the only way in which (3.8)

can ‘fail to hold is if & = 0. Now, if (3.7) holds then

9' =max{lgli’ l?z'}

and thus (3.8) implies that
e _
J=leen

However, €_M2 does not underflow on any of the major machines (although on at

least two machine ranges €

M is fairly close to DWARF), so (3.7) does not

~hold. 1t is besc‘noc to depend on (3.8) and thus we recommend the addition of

the test S .

d*=« +

‘It could be argued that with this test the above modifications are unnecessary.

Our claim is that this test makes the cubic interpolation algorithm robust even.
in those rare cases where (3.6) and (3.7) hold. On the other hand, the overfloy
and underfloﬁ problems which prompﬁed the above modifications can occur - quite

frequently during the initial stages of a search where large function and derivative

~values are likely, or during the fihal‘stages where small derivatives are expected.

- 11 -

b, 'Scaling

MINPACK-1 algorithms must be scale invariant. To be more precise, we
ry » ' . 3 A ‘
_require that if the algorithm is applied to functions F and F related by the

change of scale

A
) F(x) = O(A‘F(Dx)

4.1) A

where o 1is a positive scalar and D 1is a diagonal matrix with positive
diagonal entries, then the algorithm must generate iterates which satisiy
. A -1 '
(4.2) x, = D X k>0,
This is a very natural requirement which can have a significant effect on the
implementation and performance of the algorithm.
To illustrate some of the comsequences of scale invariance, consider the

cubic interpolation algorithm of the previous section.. For this algorithm it is

easy to verify that @ * is unchanged if it is applied to the scaled data.

4.3) /ufl,/ufz, /ugl,/ugz

for any /V > 0, and thus we also_would lik‘e the implementation to satisfy this
requirement. However, if the original data satisfies (3.1) and (3.2), then the
'slcaled da't:a'also satisfies (3.3) for sv.i:'.tab].e/‘«l , and we have already seen that
a naive implementation fails if (3.1), (3.2) and (.3.3) holds. Thus scale
invariaﬁce requires robus; implementat'ions.
As another illustration of the consequences o‘f scale invariance, ,consid'erA
~

the problem of determining an approximation to the Jacobiam matrix. If ¥ and

F are related by the change of scale (4.1) then

n~ A |
F (xo) = d F (xo? D,

and thus we would like our approximation to retain this property. If we compute

an approximation Alx) to F'(x) by forward differences ‘then

F(x+ 7..e.) - AF(x)
A(x)e = ')7)] J -

. n;

for some non-zero scalar ’Y]j. 1f € 7 specifies the relative errors in.the’

function F , then our choice of ’))j is

(4.4) | ”]J. = EF% l xj,

\

. unless this results in a zero 7) ; and in this case ‘y)j is set to é F%' .

Two other chqices that have been proposed in the literatu:re are
- 5
(4.5) , ')7 it € ;

and

4.6) "?j*GF%(Ile_+.l)

A .
It is now straightforward to verify that if .A(x) 1is the forward difference

A
approximation to F'(x) then

G.7) 3(20) = & A(x) D

for choice (4.4), but not for choice (4.5) or (4.6).
In obtaining (4;7) we assumed that the relative errors in the_ function are
not affected by the change of scale (4.1); this is certainly the case if & and

the elements of D are powers of the base of the m;chine. In general the- -

~appropriate choice of- € F is difficult, but if the functions are not subjgct

to large errors then € F should be of the order of the machine precision.

- 13 -

We emphasize that although (4.4) leads to a scale invariant determination
ofache forwafd difference approximafion; this does not mean that choice (4.4)
is good. ﬁxperience has shown, however, that scale invariance in an important
property which should not be given up light}y, and that unless other considerationé
‘prevail a scale invariant algorithm is to be preferred. 'Thus scale invariance
lgives the edge to (4.4) over (4.5) and (4.6). Also note that (4.5) is sometimes
inapprépriate since | . ' -

¥ _
X4 + €:F = %

for sufficiently large l xj l,'and in this case the j-th column of A(x) is

‘Zero.

5. Interface Routines

| ’ It is almost a truism that the user of any piece of mathemétiéal software
| prefers'A short calling sequence. The main re#son for this is that a subprogram
with a short éalling sequence is easier to use than a subprbgram with a longer

i _ calling sequence. On the other hand,la subprogram with a short calling sequence
may not provide the necessary flexibility.

This conflict between flexibility and ease of usé is usually resolved by
providing an interface routine. The construction of these interface routines
_reéuires some design decisions which are of particular‘importancé to the testing
and_ comparison of the software. The reason for this is tﬁac’the testing and
comparison of algorithms is only reasonable if the number of parameters which
affect the behaviour of the algorith& are_limitéd as much as possible and thué,
testing and cbmparisons are usually carried out on.these.intefface.routines. It
is therefore important tﬁat these interface routines do not impose a heavy burdeﬁ on
the efficiency and reliability of the main routines. If the underlying routine
is-well-designed this is easy to do, but otherwise the interface routine can be
~ﬁnre1iabie and inefficient on very reasonable problems.

'To illustrate the process by which these interface :oucinés are constructed,
.consider the MINPACK-1l program for the solution of nonlineaf least squares

problems with a user-supplied Jacobian. This program (LMDER) has 24 parametars:

FCN, M, N, X, FVEC, FJAC}.and LDFJAC are the parameters associated with the usér—
supplied subroutine. FCN is the ;ame of thé subroutine, M and N are the number
=of equations and variabies, respectively, X is the vector of variables, FVEC is
the vector of function values, and FJAC is the (IDFJAC,N) array fo; the Jacoﬁiax
matrix.

FTOL, XTOL and GTOL are thrée kinds of tolerances.

MAXFEV is a limit on the number of function evaluationms.

‘DIAG and MODE specify the type of scaling that is desired.

_FACTOR is used to detérmine a limit on the initial.scep §

NPRINT specifies the amount of piinﬁing to be done.

INFO returns information to. the user oa the reason for the termination of the iteratiom.

- 15 -

NFEV and NJEV are the number of function and Jacobian evaluations, respectively,
used by the algorithm;
IPVT, QTIF, WAL, WA2, WA3, and WA4 are various arrays used by LMDER.

To obtain an easy to use interface routine we simplify the cailing sequence

~as follows:

FTOL, XTOL, GIOL are ;eplaced by TOL. IMDER is then calied with FTOL = TOL,
XTOL = TOL, and GTOL = 0. |

MAXFEV is set to 100%(M+1).

MODE is set to 1. This specifies automatic scaling and 50es not require DIAG to
bé"specified on input.

FACIOR is>set to 100.

NPRINT is set to Q; This specifies no'printing.

NFEV and NJEV are not returned to the user.

QTF, WAl, WA2, WA3, and WAA are replaced by the pérameters WA, LWA.

This interface (IMDER1) has 12 parameters. It is possible to reduce_thi;
number further by eliminating FCN, TOL, FJAC, and LDFJAC, but in the case of FCN
andvTOL it was judged that the flexibility provided by these parameters justifies
their appearance ia the»calling sequence. In the caseé of FJAC and LDFJAC it just
seemed somewhat unnatural for FJAC not ‘to aépear in the calling sequence'oéA
IMDER1 and yet to appear in the calllng sequence of FCN. Other deéisions are
certainly possible and for example, Gill et al. { ']dec1ded not to iaclude FCN
or TOL in the callzng sequence of their interface routines.

In add1t10n to providing an lnterface, IMDERL could also perform other tasks.
For example, it could check for consistency of the Jacobian with the function
values. If an incomsistency is found then the computaticn could bé ;arminated-
and the user informed of the incomsistency. This course of action assumes that
the .check for consistency does not fail; and this can be a very risky assumption.
An alternative course of action is to allcw the user to turm oIf the comsistency
-check, but this complicates the interface. It seems best to limit the role of

LMDERL to that of an interface.

- 16 -

It is important that the automatic choice of parameters made b&IIMDERl does
not degrade the efficiency and reliability of IMDER. For example, FACTRR is.
used to determine a bound on the length of the iﬁitial step taken b? the
algorithm. A severe unﬁe:estimate'for FACTOR can lead to a decrease in
_efficiency. However, since the stepbound is continually.revised and if~neceésa;y
doubled at each iteration, a small value for FACTOR does ﬁ&t have a serious |
effect on efficiency. Some algorithms have a parameter which.allows a user .to
limit the stepiength at every iteration; for these algorithms the distance
travelled by the algorithm is.bounded by a linear function of the number of

iterations, and thus a severe underestimate for the initial stepbound has a

disastrous . effect on efficiency.

‘6, Reverse Communication

To solve a system of nonlinear equations or a nonlinear least squares
problem, a user of MINPACR~l must write a subroutine FCN which provides function

values and if needed, the Jacobian matrix. In the case of the nonlinear least

~squares solver IMDER, the calling sequence of FCN is

FCN (M, N, X, FVEC, FJAC, LDFJAC, IFLAG) .

If IFIAG = 1 the user must calculate the functioms at X and return this vector
in FVEC, while if IFLAG = 2 then the Jacobian wmatrix at X must be returned in.
the (LDFJAC, N) array FJAC. Requiring the user to specify FCN can have some:

disadvantages which would disappear if IMDER were to communicate with the user

by reverse communication. In the remainder of this section we elaborate on this

remark.
The main disadvantage of requiring the user to write FCN is that it makes

the sharing of information with FCN difficult. For example, it is often the

. case that the Jaccbian matrix F'(x) has some terms which already appear in F(x),

and in these cases it may be important to share this information. For instance,

4f the i th residual is of the form

_ 3
fi(x) = g(x)

for some function g, then the gradient of fi is

g =3 Vg,

and in this case the evaluation of the i th row of F'(x) would be simplified if

the value of g(x) were available. Note, however, that sharing information

" between function and Jacobian usually requires COMMON and is therefore not

always convenient.

~“The -above problem does not exist if the user is not providing the Jacobian,»
but a tgléted problem is that in some cases the information necessagy to compute
F(x) or TF'(x) is_nacurall§ available in.the user's main program. Forvggample,A

- 18 -

if the residuals of a nonlinear least problem are of the form

JCRRACKSA

',for some functions <Pi and data ;s and if the data vy is calculated in the
" main program, then this information must be passed to FCN. This requires the
use of‘COMMON.

The concept of reverse communication is best expiained by coﬁsidering the
following problem: Write a subroutine CHKDER which checks that the user—sﬁpplied
derivative information is consistent with thé function valugs. CHKDER'must check
Jacobians of nonlinear equations, Jacobians of nonlinear least squares,-gradients,
and Hessians. |

As a first step, note that all of the problems mentiohed above are special
cases of checking that the gradients of m nonlinear‘functions aré consi;teutﬁ
with the function values, or equivaiently, that fhé Jacobian of aﬂmapping-

F: R? — " is‘consisfentlwith the function values. For example, if‘checking

gradients then m =1 while if checking Hessians -then m = n and

F(x) = Vi)

. n
for some funetion - £: R* —> R.

To implement CHKDER we will use the following outline:

Algorithm

1. Determine a suitable vector p .
2. Evaluate F(x), F(x+p), and F'(x).

3. Compare F(x+p) - F(x) with F'(x)p .
1f the implementation.of CHKDER requires. that the user supply the function
values and 3acobian matrix by a subroutine FCN, thena the resulting implementatiqhv,~‘
would have all of the problems mentioned at the beginning of this secﬁiqn.
Moreover, the user'mﬁst now write an interféce routine between FCN and thei

routines which provide function and derivative information.

R - 19 -

'To avoid these problems, consider an implementation of CHKDER with the calling

sequence
CHKDER (M, N, X, FVEC, FJAC, LDFJAC, XP, FVECP, MODE, ERR)

.The user must call CHKDER twice, first with MODE = 1 and then with MODE = 2.
The first call to CHKDER executeé the first step of the algorithm by setting XP
to x+ p . Before the second call to CHKDER the user must set FVEC to F(x),
FVECP to F(x+p), and FJAC to F'(x). The second call to CHKDER executes the
third step of the algorithm; on exit ERR(I) is set to a normalized estimaté of
the consistency between the I th function and the I th gradient.

Although the use of reverse communication in the aSove problem provided a
very neat solution, the use of reverse communication on a general optimization

" problem has its problems. Omne of theAproblems is that reverse communication.

increases the;cd@p}eﬁgty éf‘}ﬁ code and is thus not as easy to use. For example,

PR T

the use of reverse ¢ equires saving the values of certain variables

betwegn'callg;'Eifﬁtszse.végiéblés are saved by placing them in the calling
.sequence, then this increases the complexity of.the calling sequence. Another
possibility is to use COMMON, but this réquires that tﬁé d;;r insert the
appropriate COMMON block in his program. -Note, hcwevef, that the SAVE statement
of Fortran 77 [1.] would eliminate this particular problem. Another problem is
that reverse communication requires repeated entries (exits) into (from)v
.different parts of‘the program, and thus the resulting code is harder to write and
uAderstand.

In a particular application the a&vantages of using reverse communication may
outweigh the disadvantages. This was the case in the above problem of checkiﬁg
for consistency between function and derivative values. A more sophisticated use
of réverse communication is described by Mallin-Jones [7] ."It also seems that

reverse communication will be very useful in the solutiom of sparse optimization

problems (Reid [11]).

.

- 20 -

References

3.

10.
11.
12,

13.

Brainerd, W. (editor), Fortran 77, CACM 21 (1978), 806-820.

Cody, W.J., The construction of numerical subroutine libraries, SIAM
Review, 16 (1974), 36-46.

Cody, W.J., An overview of software development for special functions, in

Numerical Analysis: Dundee 1975, G.A. Watson, ed., Lecture Notes in

Mathematics 506, Springer-Verlag, 1976.

Davidon, W.C., Solution of problem 74-3: Davidon's cubic interpolation, by
S.K. Park and T.A. Straeter, SIAM Review, 17 (1975), 170-171.

.Gill, P.E., Murray, W., Picken, S.M., and Wright, M.H., The design and

structure of a Fortran program library for optimization, National Physical

Laboratory Report NAC82, Teddington, England, 1977.

Luenberger, D.G., Introduction to linear and nonlinear programming, Addison-
Wesley, . 1973.

Mallin-Jones, A.K., Nonlinear algebraic equations in process enginesring
calculations, in Numerical Software - Needs and Availability, D. Jacobs, ed.,

Academic Press, 1978.

L4 b
More, J.J., The Levenberg-Marquardt algorithm: implementation and theory, in

Numerical Analvysis, G.A. Watson, ed., Lecture Notes in Mathematics 630,

- Springer-Verlag, 1977.

, - -
More, J.J., Garbow, B.S., and Hillstrom, K.E., Testing unconstrained
optimization software, Applied Mathematics Division Technical Memorandum 324,

Argonne National Laboratory, 1978.

More: J.J., Implementation and testing of optimization software, Department
of Applied Mathematics and Theoretical Physics Report DAMI? 79/NA4,
University of Cambridge, England, 1979.

Reid, J.K., Software for sparse matrices, in Numerical Software - Needs armd

Availability, D. Jacobs, ed., Academic Press, 1978.

Smith, B.T., Boyle, J.M. and Cody, W.J., The NATS approach to quality

software, in Software for Numerical Mathematics, D.J. Evans, ed.,

Academic Press, 1974.

Wolfe, M.A., Numerical methods for unconstrained optimization, Van Nostrand,

1978.

