
ON THE DESIGN OF OPTIMIZATION SOFTWARE

by

Jorge J. More '

Prepared for

Conference on

MASTER'
.---------DISCLAIMER--------.

Thit boolo: WIJJ orepared as a n account of WOflc spoosorrd cy .-n agency of tnt: United States Government.
N•ither the United St~es 00\ll!fnment nor any agency thl.!reol . nor ~~"V of the1r employees, tNkes anv
w..rranty, m~press or lmpli«t Of IUSUmM any legal 1'-bilitv 01'" re,pons,bithy for the iJCCutaty,
comoletenes:s, Of us.efulneu of any InformatiOn, apoaraHA, prOduct, or proc:eM; dirtoted, or
r~re$8nts that its ute 'MX~id not 1nfringe prwately owned rigtla. Aeferet'ICC! hete'ln to any soeclflc
mmmercia! produa, process, or set\ltee bV trade name, tt&demark, manulacturl!f, or otnerw;s.e, <:10ft
1'101 ~ily consthute or imply Its endorJBmcnt, rccommenoat ion, or fifVQI' ing by the United
Statts GoYII"nment Of any agency thereof. The~ .11'\d opinions of Mlthou expreued hcrP.ln do not
necesarllv state or reflect thoSoe of the United Stna GO'vtmmoent or anv agency thereof.

Nonlinear Optimization and Applications

L'Aquila, Italy

J une 18-20, 1979

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated under Contract W-31-1 09-Eng-38 for the

U. S. DEPARTMENT OF ENERGY

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency Thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or any
agency thereof. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in
electronic image products. Images are produced
from the best available original document.

The facilities of Argonne National Laboratory are owned by the United States Government. Under the
terms of a contract (W-31-109-Eng-38) among the U. S. Department of Energy, Argonne Universities
Association and The University of Chicago, the University employs the staff and operates the Laboratory in
accordance with policies and programs formulated , approved and reviewed by the Association.

MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION

The University of Arizona
Carnegie-Mellon University

The University of Kansas
Kansas State University
Loyola University of Chicago
Marquette University

The Ohio State University
Ohio University

Case Western Reserve University
The University of Chicago
University of Cincinnati The University of Michigan

Michigan State University
University of Minnesota
University of Missouri
Northwestern University
University of Notre Dame

The Pennsylvania State University
Purdue University
Saint Louis University

Illinois Institute of Technology
University of Illinois

Southern Illinois University
The University of Texas at Austin
Washington University Indiana University

The University of Iowa
Iowa State University

Wayne State University
The University of Wisconsin-Madison

~--------------NOTICE----------------

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the
United States nor any agency thereof, nor any of their
employees, makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for any third party's
use or the results of such use of any information, apparatus,
product or process disclosed in this report, or represents that its
use by such third party would not infringe privately owned
rights . Mention of commercial products, their manufacturers,
or their suppliers in this publication does not imply or connote
approval or disapproval of the product by Argonne National
Laboratory or the United States Government.

l

- 2 -

1-. Introduction

MINPACK is a research project whose long term goal is the development of a

systematized collection of quality optimization software. One of the results of

this project is a package, ML~PAC~-1, for the solution of systems of nonlinear

equations and nonlinear least squares problems. Section 2 of this paper

. provides an outline of this package and then some .of the design decisions made

during the production of this package are discussed.

The goal of MINPACK-1 is to minimize the amount of effort required of the

user and the computer to solve a particular problem. This goal deman.ds that

close attention be.paid to the ease of use, reliability and efficiency of

MINPACK-1. Ease of use requires the careful design of the user documentation

and user interface, while reliability and efficiency require that the algorithms

have acceptable global and local convergence properties and that the

implementations extend the domain of the algorithms ·as much as possible.

It is not my intention to provide a complete description of the design

principles behind ~ITNPAC<-1, but rather to illustrate some of these principles

by considering specific examples. The concepts discussed in this paper are

robustness, scale invariance, interface.routines, and reverse communication.

The concept of robustness has been used with great success tn other areas

of mathematical software, but it is frequently given too little attention in

optimization software. In Section 3 we illustrate the importance of this

concept by discussing the robustness of a very simple but important calculation:

cubic interpolation. The importance of this calculation derives from its use

as a basic step in many one-dimensional optimization routines.

Similarly, although .almost every successful developer of optimization

algorit!:mls is aware of the importance of scale invariance, the use of this

concept in the implementation of opti~ization software has been overlooked by

many. Scale. invariance is .discusssed in Section 4 and there we note a connection

bet-.veen robustness ·and scale invariance and show how scale invariance can be

used to decide between different versions of an algorithm.

Interface routines and reverse communication are concepts that have been

-used to facilitate the use of MINPACK-:-1. Some of the i~plications

- 3 -

of these concepts are treated in.Sections 5 and 6 by discussing the design of an

interface routine for a nonlinear least squares algorithm, and the implementation

of ·an algorithm for checking that the user-supplied derivation information is

tonsistent.with the function values.·

An important topic that has been left out is the implications of these

concepts to the testing of optimization software. For this topic the interested

reader may consult [9] and (10] .

Acknowledg~ents Many people have contributed to the development of MINPACK-1.
. .

Amo.ng them Jim Boyle spent a lot of time and effort in developing a version of

TAMPR suitable for optimization software, Brian Smith and Jim Cody have been

very generous _with their advice on general software considerations, and Larry

Nazareth and Dudley Goetschel contributed to the development of the. software.

The final product is, however, the responsibility of three people: Burt Garbow

Ken Hillstrom, and myself.

•.

- 4 -

2. MINPACK-1

To solve a system of nonlinear equations the user of,MINPACK-1 is required

to specify n functions The algorithms are designed to solve the

system

(2.1) ••• , X) - 0.
n 1 < i - _sn

If F •. Rn ___,., Rn · h h
--v ~s t e mapping w ose i-th coordinate is the· residual fi

(2 .• 1) can be written in vector form as

(2.2) F(x) = 0.

then

For a nonlinear least squares p~oblem, the user is required to supply m functions

n
. fi: R ~R. The algorithms are designed to solve the problem

(2.3)

If F

min
{

m·

2:
i=l

2 f. (x)
~

Rn~ Rm is the mapping whose i-th coordinate function is the residual

fi' then (2.3) is equivalent to the minimum ~2-norm problem

(2.4) min { lJ F(x) IJ

To solve problems (2.2) and (2.4) we have implemented modifications of

Powell's hybrid algorithm and the.Levenberg-Marquardt algorithm, respectively.

f?ome of the necessary modifications to the Levenberg-Harquardt. algorithm are

described in [8] , but at present there is no description of our modifications

to Powell's hybrid algorithm. We hope to provide complete descriptions of the

modified algorithms in the near future.

For each of the algorithms there are two versions. One of the versions

only requires the user to provide the function F, while in the other version

.the user is required to provide the function F and the Jacobian matrix

F' (x) =
~f. (x)

(~)
. a xj

--~---------~- ~

5 -

of F. The advantage of providing the Jacobian is increased reliability; for

example, the algorithms are then much less sensitive to noisy functions. The

disadvantage of providing the Jacobian is that this is· an error-prone task. For

this reason, HINPACK-1 also contains a program to check tm t the Jacobian is

consistent with the function values.

There is one additional program in HINPACK-1. Prompted by minicomputer

users we have provided a version of the Levenberg-Marquardt algorithm which only

requires the storage of an n by n matrix~ This algorithm is suitable for

nonlinear least squares problems with a large amount of da~a but a moderate

number of variables.

- 6 -

3. -Robustness

A robust implementation extends the domain of the algorithm.so that it copes

with as many problems as possible without a serious loss of efficiency.

There are many aspects to robustness. For linear algebra software these

aspects have been discussed by Smith, Boyle and Cody [12], for special

functions see Cody's work (z, 3], and for optimization see my discussion in (to].
In what follows we illustrate one of these aspects by considering a very simple

calculation: Hermite interpolation by a cubic polynomial. This calculation is a

basic step in many one-dimensional linear search routines, and yet, to my

knowledge, the problems noted below have not been discussed before.

Cubic interuolation. Given distinct points C(1 and o< 2 , function values f 1

and f , and derivative values
2.

and g
2

·' let Q be the cubic interpolant

such that

If

and

then Q has a minimizer

·Almost any book on

for example [6, 13].

&;:!{ *

) Q'(d.)=gl. .• . l.

or

b~tween o< 1
and

optimization has the formula

A straightfoward use of this

following implementation.

_Implementation

OR

& = 3

i = 1, 2 .

0(2.

for the calculation of oc
formula leads to the

*• '

- 7 -

r = sign (o(2 ~ o(1) [e 2- gl • 821
~

ot..* o((c< 2 - c< 1} ~ r - gl +

~21 = 1 + 2(- gl +

This implementation is mathematically correct; in particular ~ * lies in

the interval with endpoints c(l and CX 2 • Moreover, this implementation

attempts to reduce the round-off error in the evaluation of ex * (see [4 J) .
We now show that this implementation is 'not robust unless the input values f

1
,

f 2 _, __ s1 , and g2 are severely restricted.

To make the above claim precise, we first need to discuss three machine

parameters: the machine precision, the smallest positive magnitude and the largest

magnitude.

The machine precision is the smallest floating point number ~ such that ~ M

in working precision, and thus specifies when a floating point number is

negligible in an additive operation. In particular,

y +X= X \YJ ~EM l xl

The smallest positive maznitude DWARF and the largest magnitude GIANT provide

bounds on the allowable (working precision) .floating point numbers; an attempt

tQ calculate a floating point number x with

0 < I X I < DWARF

causes an underflow, while an a-tte!Ilpt to calculate a floating point number x

with

J X I > GIAi'IT

.. causes an overflow.

The trea~ent of underflows and overflows depends on the installation, the

. computer and the compiler. In many systems a ·quality which underflows is just

I
.I

I

- 8 -

set to zero and the computation continues. The treatment of overflows is much

more varied, but it is reasonable to assume that a quantity which overflows is

set to G!AJ.'IT (with the appropriate sign) and that the user is allowed a certain

number of overflows, say .10, before the computation is terminated by the system ..

In the remainder of this paper it is assumed that overflows and underflows are

treated as described above.

In any system it is clearly desirable to avoid overflows and underflows.

In general.it is not possible to avoid all overflows and underflows without a

serious effect on efficiency, so HINPAC:{-1 implementations only try to avoid

destructive overflows and underflows:. that is, any overflow or underflow which
. . . .

damages .the accuracy of the computation. One of the implications of this design

decision is that any underflow in a MINPACK-1 implementation should be ignored,

while an overflow signals an unusual condition; namely> that the desired quantity

is out of the range of the machine.

It· is now natural to ask if the above implementation avoids destructive

overflows and underflows. To answer this question in the negative, we show that

the comput:ation of· g
1

•. g
2

and "(may lead· to destructive overflows and

underflows. For example if

g = -g 1 2 = lj (DWARF)~

then underflows and thus C(* is not calculated by the interpolation

formula. This ~ay not seem like a serious error, but it is nevertheless a

deficiency of the implementation and moreover, an unnecessary deficiency. To ·

fix this problem it is sufficient to replace g1 · g2 by

in the test. A serious error can occur if r underilows or overflows. For

example if

' . - 9 -

(3 .1) 0(1 <C(z a < 0 01

f2 - fl

0(2-~1 2:: g2 > 0
(3.2)

f2 - fl
~ (GIANT)~

«2 -C(t
> (3.3)

) then it is straightforward to verify that

- e > (GIANT)~

As a consequence, the computation of B 2 overflows and forces

""i - (GIANT)~

This error is disastrous because. it now leads to

r - g1 + e < o

while 2 ¥ - gl + g2 is clearly positive. Thus

ex.* < c< 1 < C(2

This type of failure can also occur if the computation of Y underflows, so it

is clear that this computation is not r.obust. Fortunately it is not difficult

to fix matters. If we let

and compute Y as

(3.5) (~1) ,;2)]
then it is clear that all destructive overflows are avoided. Row about underflows?

It can be shown that all underflows are non-destructive unless the following two

conditions hold:

- 10 -

(3.6) min{ I gd I g2 I] underflows
. . '[" v

(3. 7) (_!_)2
(j underflows or is zero •

Although (3.6) will hold from time to time, it is unlikely that (3.7) will

hold. To see this, first note that rounding errors usually guarantee that

(3.8) ' e I > E M max { I gl I

where EM is the machine precision. In fact, about the only ~ay in which (3.8)

can fail to hold is if 9 = 0. Now, if (3.7) holds then

and thus (3.8) implies that

~ 2 However, \:.M does not underflow on any of the major machines (although on at

least two machine ranges. € M
2

is fairly close to DWARF), so (3. 7) does not

·hold. It is best not to depend on (3.8) and thus we recommend the addition of

the test

c(* = 0(+
1

It could be argued that with this test the above modifications are unnecessary.

Our claim is that this test makes the cubic interpolation algorithm robust even

in those rare cases where (3.6) and (3.7)-hold. On the other hand, the overflow

and underflow problems which prompted the above modifications can occur quite

frequently during the initial stages of a search where large function and derivative

·values are likely, or during the final .stages where small derivatives are expected.

- 11

. 4. Scaling

MINPACK-1 algorithms must be scale invariant. To be ~ore precise, we
A.

require that if the algorithm is applied to functions F and F related by the

change of scale

1\
F(x) = of. F(Dx)

(4.1) ""' -1
xo = D xo

where c{ is a positive scala.r and D is a diagonal matrix with positive

diagonal entries, then the algorithm must generate iterates which satisfy

(4.2) = -1
D k > 0 •

This is a very natural requirement which can have a significant effect on the

implementation and performance of the algorithm ..

To illustrate some of the consequences of scale invariance, consider the

cubic interpolation algorithm of the previous section .. For this algorithm it is

easy to verify that « * is unchanged if it is applied to the scaled data.

(4.3)

for any jV > 0, and thus we also.would like the implementation oo satisfy t~is

requirement. However, if the original data satisfies (3.1) ·and (3.2), then the

·scaled data also satisfies (3.3) for suitable/, and we have already seen that

a naive implementation fails if (3.1), (3.2) and (3.3) holds. Thus scale

invariance requires robust implementations.

As another illustration of the consequences of scale invariance, ~onsider ,..
the problem of determining an approximation to the Jacobicn matrix. If F and

F are related by the change of scale (4.1) then

12 -

and thus we would like our approximation to retain this property. If we compute

an approximation A(x) to · F' (x) by forward differences then

A(x)ej =
F(x +"?·e.) F(x)

for some non-zero scalar "1'J.. If E specifies. the relative errors in the·
. J F

function F , ·then our choice of '>] . is
. J

"(4.4)

unless this results in a zero ~· .J
is set to €

F and in this case

Two other choices that have been proposed in the literature are

(4.5)

and

(4 .6) 'l'J j = E F ~ (I xj I + l)

A.
It is now straightforward to verify that if A(x) is the forward difference

" approximation to F'(x) then

(4. 7) =

for choice (4.4), but not for choice (4.5) or {4.6).

In obtaining (4.7) we assumed that the relative errors in the function are

not affected by the change of scale (4.1); this is· certainly the case if 0(and

the elements of D are powers of the base of the machine. . In general the·

_appropriate choice of·· E. . is. difficult, but if the functions are not subject
F

to large errors then · E · F should be of the order of the machine precision.
>

. ' .,

- 13 -

lve emphasize that although (4.4) leads to a scale invariant determination

of the forward difference approximation·, this does not mean that choice (4.4)

is good. Experience has shown, ho~ever, that scale invariance in an important

property ,.,hich should not be given up lightly, and that unless other considerations

·prevail a scale invariant algorithm is to be preferred. Thus scale invariance

gives the edge to (4.4) over (4.5) and (4.6). Also note that (4.5) is sometimes

inappropriate since

= X.
J

for sufficiently large xj I , ·and in this case the j-th col~ of A(x) is

·zero.

- 14 -

5. Interface Routines

It is almost a truism that the user of any piece of mathematical software

prefers a short calling sequence. The main reason for this is .that a subprograt:1

With a short calling sequence is easier to use than a subprogram with a longer

calling sequence. On the other hand, a subprogram with a short calling sequence

may not provide the necessary flexibility.

This con.t:lict between flexibility and ease of use is usually resolved by

providing an interface routine. The construction of these interface routines

. requires some design decisions which are of particular importance to the testing

and_ comparison of the software. The reason for this is that the testing and

comparison of algorithms is only reasonable if the number of parameters which

affect the behaviour of the algorithm are limited as much as possible and thus,

testing and comparisons are usually carried out on these interface.routines. It

is therefore important that these interface routines do not impose a heavy burden on

the efficiency and reliability of the main routines. If the underlying routine

is well-designed this is easy to do~ but othen;ise the interface routine can be

-unreliable and inefficient on very reasonable problems.

To illustrate the process by which these interface routines are constructed,

-consider the ML~PACK-1 program for the solution of nonlinear least squares

proble~s with a user-supplied Jacobian. This program (~IDER) has 24 parameters:

FCN; M, N, X, FVEC, FJAC, and LDFJAC are the parameters associated with the user­

supplied subroutine. FCN is the name of the subroutine, M and N are the number

,of equat.ions and variables, respectively, X is the vector of variables, FVEC is

the vector of function values, and FJAC is the (LDFJAC ,N) array for the Jacobicn

matrix.

FTOL, XTOL and GTOL are three kinds of tolerances.

MAXFEV is a limit on the number of function evaluations.

·DIAG and MODE specify the type of scaling that is desired.

__ FACTOR _is used to determine a limit on the initial step

NP.RINT specifies the amount of printi~g to be done.

INFO returns information to the user on t~ reason for the termination of the iteration.

- 15 -

NFEV and NJEV are the number of function and Jacobian ev~luations, respectively,

used by the algorithm.

IPVT, QTF, WAl, WA2, WA3, and WA4 are various arrays used by L"!DER.

To ·obtain an easy to use interface routine we simplify the calling sequence

as follows:

FTOL, XTOL, GTOL are replaced by TOL. l}IDER is then called with FTOL = TOL,

XTOL = TOL, and GTOL = 0.

MAXFEV is set to lOO*(N+l).

}10DE is set to 1. This specifies automatic scaling and does not require DIAG to

be -specified on input.

FACTOR is set to 100.

NPRINT is set to 0. This·specifies no printing.

NFEV and NJEV are not returned to the user.

QTF, WAl, ~\TA2, WA3, and WA4 are replaced by the parameters \\TA, LWA.

This interface (~IDERl) has 12 parameters. It is possible to reduce th~

number further by eliminating FCN, TOL, FJAC, and LDFJAC, but in th~ case of FCN

and TOL it was judged that the flexibility provided'by these parameters justifies

their appearance in the calling sequence. In the ca.se of FJAC and LDFJAC it just

seemed somewhat unnatural for FJAC not to appear in the calling sequence of

LMDERl and yet to appear in the calling sequence of FCN. Other decisions are

certainly possible and for exampl:, Gill et al. [5] decided not to include FC~

or TOL in the calling sequence of their interface routines.

In addition to providing an interface, L"!DERl could also perform other tasks.

For.example, it could check for consistency of the Jacobian with the function

values. If an inconsistency ~ found then the computation could be tan:1inated

and the user informed of the inconsistency. This course of action assumes that

the check for consistency does not fail, and this can be a very risky assumption.

An alternative course of action is to allcw the user to t~rn off the _consistency

,check, but this complicates the interface. It seems best to limit the role of

LMDERl to that of an interface.

- 16 -
.·

It is important that the automatic choice of parameters made by ~IDERl does

not degrade the efficiency and reliability of LriDER. For example, FACTOR is.

used to determine a bound on the length of the initial step taken by the

algorithm. A severe underestimate for FACTOR can lead to a decrease in

efficiency. However, since the stepbound is ~ontinually revised and if.necessary

doubled at each iteration, a small value for FACTOR does not have a seriou·s

effect on efficiency. Soille algorithms have a parameter which-allows_a user .to

limit the steplength at every iteration; for these algorithms the distance

travelled by the algorithm is bounded by a linear function of the number of

iterations, and thus a severe underestimate for the initial stepbound has a

disastrous . effect on efficiency.

,----------...... -----------------------------.,-------------------
- 17 -

·6. Reverse Comounication

To solve a system of nonlinear equations or a nonlinear least squares

problem, a user of HINPAq<-1 mus·t write a subroutine FCN which provides function

values and if needed, t~~ Jacobian matrix. In the case of the nonlinear least

_squares solver l}IDER, the calling sequence of FCN is

FCN (M, N, X, FVEC, FJAC, LDFJAC, IFLAG) •

If IFIAG == 1 the user must calculate the functions at X and return this vector

in.FVEC, while if IFLAG = 2 then the Jacobian matrix at X must be returned in

the (LDFJAC, N) array FJAC. Requiring tbe user to specify FCN can have some

disadvantages which would disappear if l}IDER were to communicate with the user

by reverse communication. In the remainder of. this section we elaborate on this

remark.

The main disadvantage of requiring the user to write FCN is that it makes

the sharing of information with FCN difficult. For example, it is often the

case that the Jacobian matrix F'(x) has some terms which already appear in F(x),

and in these cases it may be important to share this information. For instance,

if the i th residual is of the form

3
fi(x) = g(x)

·for some function g, then. the gradient of fi is

V f. (x) = 3 g(x)
2 V g(x) ,

1

..

and in this case the evaluation oi the i throw of F'(x) would be simplified if

the value of g(x) were available. Note, however, that sharing information

between function and Jacobian usually requires C~!ON and is therefore not

always convenient.

··'The ·above problem .does not exist if the. user .is not providing the Jacobian,

but a related problem is that in some cases the information necessary to compute

F(x) or F'(x) is naturally available in the user's main program. For example,

- 18 -

if the residuals of a nonlinear least problem are of the form

. for some functions <pi and data y., and if the data
l.

yi is calculated in the

main program, then this information must be passed to FCN. This requires the

use of COMMON.

The concept of reverse communication is best explained by considering the

following problem: Write a subroutine CHKDER which checks that the user-supplied

derivative information is consistent with the function values. CHKDER must check

Jacobians of nonlinear equations, Jacobians of nonlinear least squares, gradients,

and Hessians.

As a first step, note that all of the problems mentioned above 3re special

cases of checking that the gradients of m nonlinear functions are consistent.

with the function values, or equivalently, that the Jacobian of a mapping

F·: Rn ~Rm is consistent with the function values. For example, if checking

gradients then m = 1 while if checking Hessians then m = n and

F(x) = V f(x)

for some function f: Rn ~ R.

To tmplement CHKDER we will use the following outline:

Algorithm

i. Detertuine a suitable vector p •

2. Evaluate F(x), F(x+p), and F'(x).

3. Compare F(x+p)- F(x) with F'(x)p.

If the tmplementation. of CHKDER requires. that the. user supply the. function

values and Jacobian matrix by a subroutine FCN, then the resulting implement3tion

vould have all of the problems mentioned at the beginning of this section.

Moreover, ·the user must now write an interface routine between FCN and the

routines which provide function and derivative information.

- 19 -

·To avoid thes~ problems, consider an implementation of CHKDER with the calling

sequence

CHKDER (M, N, X, FVEC, FJAC, LDFJAC, XP, FVECP, MODE, ERR)

.The user must call CHKDER twice, first with MODE = l and then with MODE = 2.

The first call to CHKDER executes the first step of the algorithm by setting XP

to x + p • Before the second call to CHKDER the user must set FVEC. to F(x),

FVECP to F(x+p), and FJAC to F'(x). The second call to CHKDER executes the

third· step of the algorithm; on exit ERR(I)· is set to a normalized estimate of

the -consistency between the I th function and the I th gradient.

Although the use of reverse communication in the above problem provided a

yery neat sol~tion, the use of reverse communication on a general opttmization

problem has its problems. One of the problems is that reverse communication .
..........

increases the cci:nplex.i ty c)f /tf''-: code and is thus not as easy to use. For example,
. ...:· ·~.;~ :>.~·-_:;··._::_.:·.:.:;;i_:J!~ #~~- ::=.-.:· :~~f:t;_ ~- /7

the use of reverse .. 'ccmmunica· . ·requires saving the values of certain variables
... ·.: .;>:; ... : .. ~.:.;.·._ . --··.l''· .. _·,;.~~~~-

between calls. If these. var.iab les are saved by placing them in the calling

sequence, then this increases the complexity of the calling sequence. Another
:·:'·;-

possibility is to use COMMON, but this requires that the user insert the

appropriate COMMON block in his program. Note, however, that the SAVE statement

of Fortran 77 [1 1 would eliminate this particular problem. Another problem is

that reverse communication requires repeated entries (exits)·into (from)

.different parts of the program, and thus the resulting code is harder to write and

understand.

In a particular application the advantages of using reverse communication may

outweigh the disadvantages. This was the case in the above problem of checking

for consistency between function and derivative values. A more sophisticated use

of reverse communication is described by Mallin~Jones (7] . It also seems that

reverse con:munication will be very useful in the solution of sparse optimization

problems (Reid [ttJ).

- 20 -

References

1. Brainerd, W. (editor}, Fortran 77, CACM 21 (1978), 806-820.

2. Cody, W.J., The construction of numerical subroutine libraries, S~

Review, 16 (1974), 36-46.

3. Cody, W.J., An overview of software development for special functions, in

Numerical Analysis: Dundee 1975, G.A. Watson, ed., Lecture Notes in

Mathematics 506, Springer-Verlag, 1976.

4 . Davidon, W.C., Solution of problem 74-3: Davidon's cubic interpolation, by

S.K. Park and T.A. Straeter, SIAM Review, 17 (1975), 170-171.

5 • . Gill, P. E., Murray, W., Picken, S.M., and '-lright, M.H., The design and

structure of a Fortran program library for optimization, National ?hysical

Laboratory Report NAC82, Teddington, England, 1977.

6. Luenberger, D.G., Introduction to linear and nonlinear programming, Addison­

Wesley, . 1973.

7.

8.

Mallin-Janes, A.K., Nonlinear algebraic equations in process engineering

calculations, in Numerical Software - Needs and Availability, D. Jacobs, ed.,

Academic Press, 1978.
, \

More, J.J. , The Levenberg-}~rquardt algorithm: implementation and theory, in

Numerical Analvsis, G.A. Watson, ed., Lecture Notes in Mathematics 630,

Springer-Verlag, 1977.

I
9. More, J.J., Garbow, B.S., and Hillstrom, K.E., Testing unconstrained

optimization software, Applied Mathematics Division 'l;_echnical Hemorandum 324,

Argonne National Laboratory, 1978.
,

10. More, J.J., ~plementation and testing of optimization software, Depart~ent

of Applied ¥Athematics and ~heoreticaL Physics Report D~~p 79/NA4,

University of Cambridge, England, 1979.

11. Reid, J.K., Software for sparse matrices, in Numerical Software- Needs . arrl

Availability, D. Jacobs, ed., Academic Press, 1978.

12. Smith, B.T. , ·Boyle, J.~. and Cody, W.J . , The NATS approach to quality

softvare, in SofD•are for Numerical Mathematics, D.J. Evans, ed.,

Academic Press, 1974.

13. Wolfe, M.A., Numerical methods for unconstrained optimization, Van Nostrand,

1978.

