

UPGRADING OF COAL LIQUIDS
INTERIM REPORT

HYDROTREATING AND REFORMING SRC II PROCESS DERIVED NAPHTHA

FREDERICK J. RIEDL AND ARMAND J. deROSSET
UOP INC.
CORPORATE RESEARCH CENTER
TEN UOP PLAZA
DES PLAINES, IL 60016

DATE PUBLISHED - JUNE, 1979
PREPARED FOR THE UNITED STATES
DEPARTMENT OF ENERGY
UNDER CONTRACT No. EF-77-C-01-256

DISSEMINATION OF INFORMATION

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT.....	1
1. INTRODUCTION.....	2
2. EQUIPMENT.....	2
3. CHARGE STOCKS.....	2
3.1 Naphtha Hydrotreating.....	2
3.2 Naphtha Reforming.....	3
4. RESULTS AND DISCUSSION.....	3
4.1 Naphtha Hydrotreating.....	3
4.2 Naphtha Reforming.....	4
4.3 Hydrogen Production.....	4

LIST OF TABLES

	<u>Page</u>
Table 1. Inspection of Data of SRC II Process Naphtha.....	5
Table 2. MS Analysis of SRC II Naphtha 3777-1.....	6
Table 3. Upgrading of SRC II Naphtha, Plant 505, Run 874.....	7
Table 4. Upgrading of SRC II Naphtha 3777-1 Product Distribution and Hydrogen Consumption, Plant 505, Run 874.....	8
Table 5. Upgrading SRC II Naphtha 3777-1 Distribution of Hydrogen Consumption, Plant 505, Run 874.....	9
Table 6. Distribution of Upgraded SRC II Naphtha 3777-2.....	10
Table 7. Platforming ^(P) Upgraded SRC II Naphtha, Plant 636, Run 335....	11
Table 8. Platforming Upgraded SRC II Naphtha Product Distribution and MS Analysis, Plant 636, Run 335, Period 1.....	13
Table 9. Platforming Upgraded SRC II Naphtha Product Distribution and MS Analysis, Plant 636, Run 335, Period 4.....	14
Table 10. Platforming Upgraded SRC II Naphtha Product Distribution and MS Analysis, Plant 636, Run 335, Period 6.....	15
Table 11. Platforming Upgraded SRC II Naphtha Product Distribution and MS Analysis, Plant 636, Run 335, Period 2.....	16
Table 12. Platforming Upgraded SRC II Naphtha Product Distribution and MS Analysis, Plant 636, Run 335, Period 3.....	17
Table 13. Platforming Upgraded SRC II Naphtha Product Distribution and MS Analysis, Plant 636, Run 335, Period 5.....	18

LIST OF FIGURES

	<u>Page</u>
Figure 1. Naphtha Hydrotreating Plant	19
Figure 2. Naphtha Reforming Plant.....	20
Figure 3. Yield Octane Curve for Upgraded SRC II Naphtha.....	21
Figure 4. Hydrogen Yield on Reforming Upgraded SRC II Naphtha.....	22

ABSTRACT

Solvent Refined Coal II (SRC II) process naphtha has been refined in UOP research pilot plants to 100 octane fuel by conventional refinery processing using commercial UOP catalysts.

The naphtha is principally comprised of cyclic hydrocarbons. In addition, it contains over 9% phenols and heterocyclic structures, such as pyridines and thiophenes. Hydrotreatment was effective in reducing the sulfur and nitrogen to levels acceptable for reforming. Conditions used were substantially more severe than required to clean up a Middle East naphtha. However, they were well within commercial practice for hydrotreating heavier petroleum distillates.

Reforming the hydrotreated SRC II naphtha produced 88 vol-% of 99.9 octane (RON) gasoline. Conditions were relatively mild due to the predominance of cyclic structures in the feed. Dehydrogenation of naphthenes to aromatics was the principal reaction. The reforming operation yielded 1550 SCF/bbl hydrogen, about three times the amount needed for naphtha hydrotreatment.

1. INTRODUCTION

The object of the work reported is to produce high octane motor fuel by refining Solvent Refined Coal II (SRC II) process naphtha. The work entails hydrotreatment of the naphtha to a quality suitable for a reformer feedstock, and development of a yield octane relationship by Platforming.® All processing is done in research pilot plants. Detailed analyses of feed and product streams are provided.

This is the third primary coal derived naphtha examined under Task 3 of Contract EF-77-C-01-2566. DOE Report FE-2566-12 covers parallel work on H-Coal process derived naphthas, and DOE Report FE-2566-25 covers work on Exxon Donor Solvent process derived naphthas.

For reporting purposes, the experimental conditions employed in this work were expressed in terms of base conditions:

Temperature	T-T (base), °C
Pressure	P-P (base), psi
Space Velocity	LHSV/LHSV (base)

The base conditions for hydrotreating represent conditions employed commercially for hydrotreating a typical straight run naphtha from Light Arabian crude to make Platformer feed quality. Similarly, the base conditions for Platforming refer to those conditions used commercially for typical modern Platformers processing hydrotreated Light Arabian straight run naphtha.

2. EQUIPMENT

Naphtha hydrotreating was carried out in a bench scale continuous unit (UOP Research Plant 505). A simplified flow diagram of this plant is shown in Figure 1. Hydrogen and primary naphtha were passed concurrently downflow over a fixed bed (100 ml) of commercial hydrotreating catalyst. The catalyst was a composite of Group VI and Group VIII metals on a high surface area refractory support.

Reforming of the upgraded naphtha was conducted in UOP Research Plant 636. Figure 2 is a simplified flow diagram of a bench scale reforming plant. The reforming reactor was loaded with 50 ml of a commercial Platforming catalyst.

3. CHARGE STOCKS

3.1. Naphtha Hydrotreating

Three 5-gallon containers of SRC II naphtha were received on November 3, 1978 from the Pittsburgh and Midway Coal Mining Co. in DuPont, Washington. The contents of the containers were blended together into a 15 gallon stainless steel drum and thoroughly mixed.

Analysis of the SRC II naphtha showed that the sample contained 4400 wt-ppm sulfur, 5140 wt-ppm nitrogen, and 7814 wt-ppm oxygen. These are relatively high compared to petroleum-derived naphthas. Tables 1 and 2 show the inspection and mass spectroscopy (MS) analysis of this liquid (3777-1). Paraffin content (P) was 31.5 vol-%, considerably higher than other primary coal naphthas examined.

In accordance with current UOP procedures for evaluating Platformer charge stocks, it was necessary to hydrotreat the naphtha to bring the heteroatoms content within acceptable limits.

3.2. Naphtha Reforming

The Platforming run was carried out on the upgraded SRC II naphtha. Inspection of this Platformer feed 3777-2 is given in Table 1.

4. RESULTS AND DISCUSSION

4.1. Naphtha Hydrotreating

The primary objective in hydrotreating the SRC II primary naphtha was the reduction of nitrogen, sulfur and oxygen contents to levels acceptable for a Platformer feedstock. The hydrotreating was successfully carried out over a commercial hydrotreating catalyst in UOP Research Plant 505, Run 874. Conditions used, shown in Table 3, were similar to those employed in hydrotreating the EDS naphtha (FE-2566-25). No attempt was made to optimize hydrotreating conditions. Operating temperature was adjusted to maintain the nitrogen content of the product at less than 1 ppm. The run was on stream for 16.5 days. A comparison of feed and product inspections is given in Table 1.

Table 4 is a summary of the overall material balance for the hydrotreating operation. The total over 100% represents hydrogen added to the feedstock. Since hydrocracking to C₂-C₄ light gases was fairly low, a high C₅+ liquid yield of 95.9 wt-% was obtained.

Hydrogen consumption was 560 SCF/bbl. Of this hydrogen 78.5 wt-% remained in the hydrocarbon products, while the remaining 21.5% was lost as NH₃, H₂O, and H₂S (Table 5). A comparison of MS analyses of raw naphtha and upgraded product (Tables 1, 2 and 6) indicates a large increase in naphthene content from saturation of cyclo-olefins and some aromatics. Of the non-hydrocarbon compounds, phenol would yield aromatics, while pyridines and thiophenes would yield paraffins. The reason for the considerable drop in paraffin content is not clear.

4.2. Naphtha Reforming

The upgraded SRC II naphtha from Plant 505, Run 874 was blended to provide the feedstock for the reforming run. Inspections are given in Table 1, Table 6 shows the distribution of C_5 and C_6^+ fractions. The table also gives MS analysis of the C_6^+ fractions.

The hydrotreated material was reformed over a commercial Platforming catalyst in a continuous UOP Research unit, Plant 636. The run was carried out at base pressure and 1.5x base space velocity, the same conditions as were used for reforming the EDS naphtha. A range of temperatures was studied to obtain yield-octane curves. Since this feed is highly naphthenic, the required reforming temperature was relatively low. As naphthene dehydrogenation is a fast reaction, a high space velocity was adequate. At these low severity conditions the yield of gasoline of a given octane number is generally very high.

The effect of temperature on C_5^+ gasoline yield and unleaded gasoline Research octane number (RON) was as follows:

<u>T-T Base, °C</u>	<u>RON Clear</u>	<u>C_5^+ Yield, Vol-%</u>
-68	88.5	91.7
-58	92.1	90.8
-48	93.8	91.1
-48	94.5	90.2
-33	97.6	88.4
-16	99.9	88.0

These data are summarized in Table 7 which also shows reforming conditions, product yields, octane number and inspection of C_5^+ products (stabilized). Figure 3 is the yield-octane curve. The 88 vol-% yield at 99.9 RON is slightly less than obtained with H-Coal and EDS naphtha (90 vol-% and correlates with the slightly higher paraffin content of the SRC II upgraded naphtha.

Mass spectroscopy analyses were made on each of the C_6^+ reformates. These results, as well as the corresponding product distribution data, are shown in Tables 8-13. These tables are arranged in the order of increasing temperature. Since increasing temperature favors aromatics formation, these tables also appear in the order of increasing RON of C_5^+ reformate. Dehydrogenation of naphthenes was the primary reaction. Naphthene content of the product dropped by some 47.5 vol-% over the temperature range. The aromatic content increased from 22 vol-% in the Platformer feed to 78.5 vol-% in the reformate with a 99.9 RON.

4.3 Hydrogen Production

Naphtha reforming is an important source of hydrogen for upstream processing. The yield of hydrogen in reforming to 99.9 RON amounted to 3.1 wt-%. This corresponds to 1550 SCF/bbl, which is well within excess of the 560 SCF/bbl required for the naphtha hydrotreatment. A plot of hydrogen yield (SCF/bbl) vs. RON is shown in Figure 4.

Table 1
Inspection Data of SRC II Process Naphtha

	<u>As Received</u>	<u>Upgraded</u>
Sample No.	3777-1	3777-2
API @ 60°F	49.7	52.0
Sp. Gr. @ 60°F	0.7809	0.7711
Distillation ASTM D-86		
IBP, °F	107	136
5%	134	168
10%	157	180
20%	188	196
30%	209	209
40%	226	220
50%	243	233
60%	261	249
70%	279	270
80%	292	289
90%	316	311
95%	346	330
EP°F	367	388
% Over	97.5	98.5
Hydrogen, Wt-%	12.91	13.66
Carbon, Wt-%	85.87	86.00
Sulfur, Wt-ppm	4400	0.22
Nitrogen, Wt-ppm	5140	0.8
Oxygen, Wt. ppm	7814	359
Chloride, Wt-ppm	195	3.8
FIA, Vol-%		
A	-	18.8
P&N	-	81.2
M S Hydrocarbon Types, Vol-%		
A	23.0 ^(a)	22.0
N	37.1	52.8
P	31.5	25.2
O	8.4	-
Bromine Index	30.0 ^(b)	101.0
RON, Clear	80.8	70.9
N Jet Gum, mg/100 ml	12.0	-

(a) Includes 6.8% Polars.

(b) Bromine number.

Table 2
MS Analysis of SRC II Naphtha 3777-1

<u>Series</u>	<u>Hydrocarbon Types</u>	<u>Wt-%</u>	<u>Vol-%</u>
C_nH_{2n+2}	Paraffins	27.8	31.5
	Naphthenes		
C_nH_{2n}	Monocycloparaffins	28.4	28.9
	Cyclopentanes	-	-
	Cyclohexanes	-	-
C_nH_{2n-2}	Bi, Dicycloparaffins	7.1	7.2
C_nH_{2n-4}	Tricycloparaffins	1.0	1.0
	Aromatics		
C_nH_{2n-6}	Alkylbenzenes	17.4	15.6
C_nH_{2n-8}	Indanes/Tetralins	0.7	0.6
C_nH_{2n-10}	Dinaphthenebenzenes	<0.1	Trace
C_nH_{2n-12}	Naphthalenes	<0.05	Trace
	Polars		
$C_nH_{2n-5}N$	Pyridines	3.0	2.3
$C_nH_{2n-4}O$	Furans	-	-
$C_nH_{2n-6}O$	Phenols	4.5	3.2
$C_nH_{2n-7}N$	Naphthenopyridines	Trace	Trace
$C_nH_{2n-4}S$	Thiophenes	1.6	1.3
	Olefins*		
C_nH_{2n}	Monoolefins	1.9	2.1
C_nH_{2n-2}	Diolefins and/or Monocycloolefins	5.1	5.0
C_nH_{2n-4}	Triolefins and/or Dicycloolefins	1.4	1.3
	Total	100.0	100.0

Carbon Number Distribution, Vol-%

Carbon No.	Aromatics				$J = 6^0$
	<u>$J = 6$</u>	<u>$J = 8$</u>	<u>$J = 10$</u>	<u>$J = 12$</u>	
5					1.4
6	1.0				4.6
7	4.2				0.8
8	8.1				0.4
9	3.7	0.5	Trace		0.2
10	0.4	0.2	Trace		<0.05
11	Trace	Trace			<0.05
Total	17.4	0.7	Trace		7.4

*The total olefin number was obtained by SiO_2 separation, but the mono-, di-, tri-olefin split is estimated since no calibration coefficients are available.

Table 3

Upgrading SRC II Naphtha

Plant 505, Run 874

LHSV/LHSV (base) = 0.125; P-P(base) psi = 450; T-T (base) °C = 24 to 37

<u>Period No.</u>	<u>Hours on Stream</u>	<u>N, ppm</u>	<u>S, ppm</u>
Feed		5140	4400
1	16	-	0.27
2	26	-	0.29
4	46	0.44	0.13
7	76	-	0.28
9	96	0.50	0.40
11	116	0.43	0.10
13	136	0.60	0.10
15	156	0.75	0.10
17	176	0.92	0.10
19	196	1.31	0.10
20	208	2.08	0.10
24	246	0.62	0.10
26	266	0.78	0.10
32	326	-	0.10
39	396	-	0.10

Table 4

Upgrading of SRC II Naphtha 3777-1
Product Distribution and Hydrogen Consumption
Plant 505, Run 874

Product Distribution, Wt-% of Feed

C ₁	Trace
C ₂ -C ₄	3.20
C ₅ and C ₆ (in Plant Gas)	3.50
Liquid Product ^(a)	92.43
H ₂ O	0.86
H ₂ S	0.48
NH ₃	<u>0.63</u>
Total	101.10

Hydrogen Consumption, Wt-% of Feed	1.10
Hydrogen Consumption SCF/bbl	560

(a) Designated as Upgraded SRC II Naphtha 3777-2

Table 5

Upgrading of SRC II Naphtha 3777-1
Distribution of Hydrogen Consumption
Plant 505, Run 874

	<u>Wt-%</u>
C ₂ -C ₄	15.38
C ₅ and C ₆ (in Plant Gas)	10.82
Liquid Product ^(a)	52.27
H ₂ O	8.72
H ₂ S	2.54
NH ₃	<u>10.27</u>
Total	100.00
Total Hydrogen Consumption, SCF/bbl	560

(a) Designated as Upgraded SRC II Naphtha 3777-2

Table 6

Distribution of Upgraded SRC II Naphtha 3777-2

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
C ₃	0.1	0.1
C ₄	1.2	1.6
<u>n</u> -Pentane	2.4	2.9
Isopentane	0.9	1.1
C ₆ Plus	<u>95.4</u>	<u>94.3</u>
Total	100.0	100.0

MS Analysis of C₆ Plus Fraction

<u>I. Hydrocarbon Types</u>	<u>Vol-%</u>
Paraffins	25.20
Naphthenes	
Monocycloparaffins	47.28
Bi, Dicycloparaffins	5.57
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	21.53
Indans, Tetralins	0.42
Naphthalenes	0.0
Total	100.00

II. Carbon Number Distribution, Vol-%

<u>Carbon No.</u>	<u>Paraffins</u>	<u>Monocyclo-Paraffins</u>	<u>J = 6</u>	<u>J = 8</u>	<u>J = 12</u>
6	7.09	17.45	1.32		
7	6.28	12.34	6.24		
8	4.98	8.76	10.10	0.0	
9	3.81	5.89	3.80	0.42	
10	3.03	2.57	0.07	0.0	0.0
11	0.01	0.27	0.0	0.0	0.0
12	0.0	0.0	0.0	0.0	0.0
13	0.0	0.0	0.0	0.0	0.0
Total	25.20	47.28	21.53	0.42	0.0

Table 7

Platforming[®] Upgraded SRC II Naphtha
Plant 636, Run 335

<u>Period No.</u>	<u>Feed</u>	<u>1</u>		<u>2</u>		<u>3</u>		<u>4</u>		<u>5</u>	
Reforming Conditions											
P-P (base), psi		0		0		0		0		0	
T-T (base), °C		-121		-87		-60		-105		-29	
LHSV/LHSV (base)		1.52		1.48		1.50		1.50		1.54	
Product Yields											
H ₂	Wt-%	2.4	Vol-%	2.6	Vol-%	2.9	Vol-%	2.5	Vol-%	3.1	Vol-%
C ₁ -C ₃	-	0.7	-	0.9	-	1.4	-	0.7	-	1.9	-
nC ₄	-	0.4	0.6	1.1	1.4	1.2	1.6	0.9	1.2	0.8	1.1
iC ₄	-	0.7	0.9	0.6	0.8	0.6	0.8	0.5	0.7	0.4	0.6
C ₅ Plus	-	95.8	91.7	94.8	90.2	93.9	88.4	95.4	90.8	93.8	88.0
Total		100.0	93.2	100.0	92.4	100.0	90.8	100.0	92.7	100.0	89.7
Product (C₅+) Inspection											
°API @ 60°F		52.0		43.4		42.1		-		43.0	
Sp. Gr. @ 60°F		0.7711		0.8090		0.8151		-		0.8109	
Distillation, ASTM D-86											
1BP, °F		136		152		158		-		154	
5%		168		172		173		-		172	
10%		180		182		183		-		182	
30%		209		212		209		-		212	
50%		233		244		247		-		246	
70%		270		280		282		-		285	
90%		311		322		330		-		327	
95%		330		343		359		-		351	
EP		388		396		411		-		380	
RON, Clear		70.9		88.5		94.5		97.6		92.6	
Elemental Analysis											
Hydrogen, Wt-%		13.66		11.36		10.91		10.55		11.35	
Carbon, Wt-%		86.00		87.73		87.61		87.31		87.89	
Sulfur, Wt-ppm		0.22		0.1		0.1		0.1		0.1	
Nitrogen, Wt-ppm		-		0.1		0.1		0.1		0.1	
Oxygen, Wt-ppm		359		160		183		299		336	

Table 7, Cont'd.

<u>Period No.</u>	<u>6</u>
Reforming Conditions	
P-P (base), psi	0
T-T (base), °C	-87
LHSV/LHSV (base)	1.46
Product Yields	
H ₂	2.6
C ₁ -C ₃	1.0
nC ₄	0.3
IC ₄	0.2
C ₅ Plus	<u>95.9</u>
Total	100.0
	91.7
Product (C₅+) Inspection	
API @ 60°F	42.7
Sp. Gr. @ 60°F	0.8123
Distillation, ASTM D-86	
IBP, °F	151
5%	171
10%	181
30%	211
50%	245
70%	283
90%	326
95%	351
EP	383
RON, Clear	93.8
Elemental Analysis	
Hydrogen, Wt-%	10.75
Carbon, Wt-%	87.26
Sulfur, Wt-ppm	0.1
Nitrogen, Wt-ppm	0.1
Oxygen, Wt-ppm	251

Table 8

Platforming Upgraded SRC II Naphtha
Product Distribution and MS Analysis

Plant 636, Run 335, Period 1

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	2.4	
C ₁ -C ₃	0.7	
nC ₄	0.4	0.6
iC ₄	0.7	0.9
nC ₅	4.1	5.1
iC ₅	1.2	1.4
C ₆ Plus	<u>90.5</u>	<u>85.2</u>
Total	100.0	93.2

Reformate (C₅ Plus)

Yield, Vol-%	91.7
RON Clear	88.5

MS Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	26.39
Naphthenes	
Monocycloparaffins	13.60
Bi, Dicycloparaffins	1.63
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	56.37
Indans, Tetralins	2.01
Naphthalenes	<u>0.0</u>
Total	100.00

II. Carbon Number Distribution, Vol-%

Carbon No.	<u>Paraffins</u>	<u>Monocyclo- paraffins</u>	<u>Aromatics</u>		
			<u>J = 6</u>	<u>J = 8</u>	<u>J = 12</u>
6	1.66	4.80	16.83		
7	5.78	2.84	16.00		
8	6.64	3.12	14.97		
9	6.25	1.99	7.28	1.54	
10	4.90	0.85	1.26	0.47	
11	1.16	0.0	0.03	0.0	
12	0.0	0.0	0.0	0.0	
13	0.0	0.0	0.0	0.0	
Total	26.39	13.60	56.37	2.01	0.0

Table 9

Platforming Upgraded SRC II Naphtha
Product Distribution and MS Analysis

Plant 636, Run 335, Period 4

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	2.5	-
C ₁ -C ₃	0.7	-
nC ₄	0.9	1.2
iC ₄	0.5	0.7
nC ₅	4.0	4.8
iC ₅	1.1	1.4
C ₆ Plus	<u>90.3</u>	<u>84.6</u>
Total	100.0	90.8

Reformate (C₅ Plus)

<u>Yield, Vol-%</u>	90.8
RON Clear	92.1

MS Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	25.19
Naphthenes	
Monocycloparaffins	10.77
Bi, Dicycloparaffins	1.39
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	60.52
Indans, Tetralins	1.97
Naphthalenes	<u>0.16</u>
Total	100.00

II. Carbon Number Distribution, Vol-%

Carbon No.	<u>Paraffins</u>	<u>Monocyclo- paraffins</u>	<u>Aromatics</u>		
			<u>J = 6</u>	<u>J = 8</u>	<u>J = 12</u>
6	7.53	4.00	19.93	-	-
7	7.24	4.15	16.06		
8	4.92	2.20	14.77	0.0	-
9	3.66	0.42	7.48	1.20	-
10	1.84	0.0	1.95	0.64	0.12
11	0.0	0.0	0.33	0.13	0.04
12	0.0	0.0	0.0	0.0	0.0
13	<u>0.0</u>	<u>0.0</u>	<u>0.0</u>	<u>0.0</u>	<u>0.0</u>
Total	25.19	10.77	60.52	1.97	0.16

Table 10

Platforming Upgraded SRC II Naphtha
Product Distribution and MS Analysis

Plant 636, Run 335, Period 6

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	2.6	-
C ₁ -C ₃	1.0	-
nC ₄	0.3	0.4
iC ₄	0.2	0.2
nC ₅	4.1	5.0
iC ₅	1.2	1.6
C ₆ Plus	<u>90.6</u>	<u>84.5</u>
Total	100.0	91.1

Reformate (C₅ Plus)

Yield, Vol-%	91.1
RON Clear	93.8

MS Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	20.64
Naphthenes	
Monocycloparaffins	6.80
Bi, Dicycloparaffins	1.20
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	68.13
Indans, Tetralins	2.96
Naphthalenes	<u>0.27</u>
Total	100.00

II. Carbon Number Distribution, Vol-%

Carbon No.	Paraffins	Monocyclo- paraffins	Aromatics	J = 6	J = 8	J = 12
6	5.96	3.80		23.25		
7	5.03	1.50		18.18		
8	3.90	0.90		16.36	0.0	
9	3.00	0.43		7.98	1.87	
10	2.24	0.17		2.03	0.97	0.16
11	0.51	0.0		0.33	0.12	0.07
12	0.0	0.0		0.0	0.0	0.03
13	0.0	0.0		<u>0.0</u>	<u>0.0</u>	<u>0.01</u>
Total	20.64	6.80		68.13	2.96	0.27

Table 11

Platforming Upgraded SRC II Naphtha
Product Distribution and MS Analysis

Plant 636, Run 335, Period 2

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	2.6	-
C ₁ -C ₃	0.9	-
nC ₄	1.1	1.4
iC ₄	0.6	0.8
nC ₅	4.3	5.2
iC ₅	1.0	1.3
C ₆ Plus	<u>89.5</u>	<u>83.7</u>
Total	100.0	90.2

Reformate (C₅ Plus)

<u>Yield, Vol-%</u>	90.2
RON Clear	94.5

MS Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	23.89
Naphthenes	
Monocycloparaffins	8.34
Bi, Dicycloparaffins	0.74
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	64.93
Indans, Tetralins	2.10
Naphthalenes	0.0
Total	100.00

II. Carbon Number Distribution, Vol-%

Carbon No.	<u>Paraffins</u>	<u>Monocyclo- paraffins</u>	<u>Aromatics</u>		
			<u>J = 6</u>	<u>J = 8</u>	<u>J = 12</u>
6	7.18	4.00	17.98		
7	6.31	2.31	19.00		
8	4.70	1.24	18.25	0.0	
9	3.36	0.53	8.37	1.56	
10	2.34	0.26	1.30	0.54	
11	0.0	0.0	0.03	0.0	
12	0.0	0.0	0.0	0.0	
13	0.0	0.0	0.0	0.0	
Total	23.89	8.34	64.75	2.10	0.0

Table 12

Platforming Upgraded SRC II Naphtha
Product Distribution and MS Analysis

Plant 636, Run 335, Period 3

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	2.9	-
C ₁ -C ₃	1.4	-
nC ₄	1.2	1.6
iC ₄	0.6	0.8
nC ₅	4.0	4.9
iC ₅	1.3	1.6
C ₆ Plus	<u>88.6</u>	<u>81.9</u>
Total	100.0	88.4

Reformate (C₅ Plus)

Yield, Vol-%	88.4
RON Clear	97.6

MS Analysis of C₆ Plus Fraction, Vol-%

I. Hydrocarbon Types

Paraffins	20.60
Naphthenes	
Monocycloparaffins	7.40
Bi, Dicycloparaffins	0.28
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	69.36
Indans, Tetralins	2.11
Naphthalenes	<u>0.25</u>
Total	100.00

II. Carbon Number Distribution, Vol-%

Carbon No.	Paraffins	Monocyclc- paraffins	Aromatics		
			J = 6	J = 8	J = 12
6	2.91	2.20	17.14	-	-
7	6.74	3.58	19.34		
8	5.96	1.53	19.41	0.0	
9	3.64	0.09	10.19	1.28	
10	1.35	0.0	2.83	0.75	0.16
11	0.0	0.0	0.45	0.08	0.07
12	0.0	0.0	0.0	0.0	0.02
13	<u>0.0</u>	<u>0.0</u>	<u>0.0</u>	<u>0.0</u>	<u>0.0</u>
Total	20.60	7.40	69.36	2.11	0.25

Table 13

Platforming Upgraded SRC II Naphtha
Product Distribution and MS Analysis

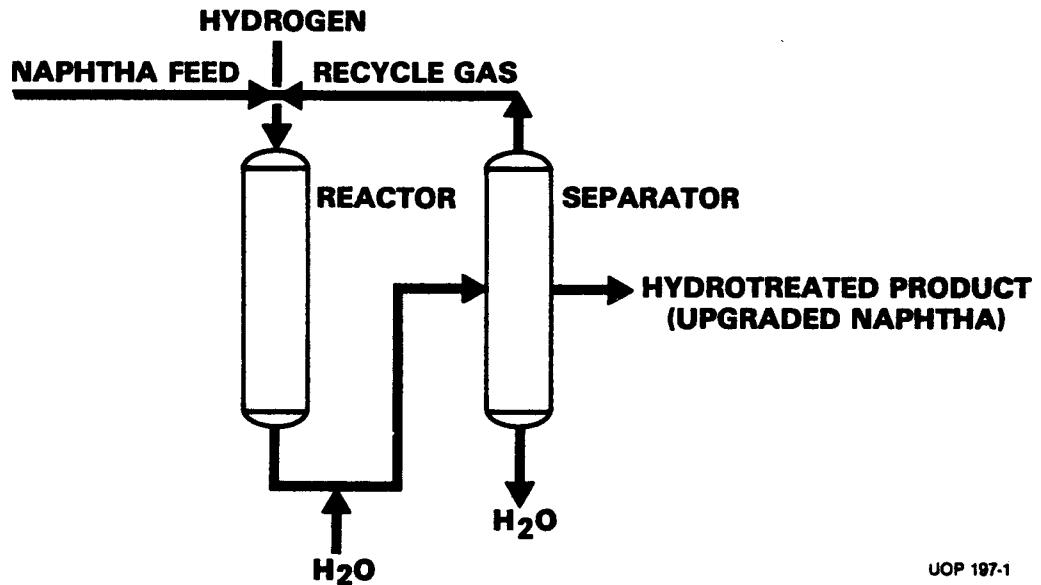
Plant 636, Run 335, Period 5

<u>Product Distribution</u>	<u>Wt-%</u>	<u>Vol-%</u>
H ₂	3.1	-
C ₁ -C ₃	1.9	-
nC ₄	0.8	1.1
lC ₄	0.4	0.6
nC ₅	3.7	4.5
lC ₅	1.3	1.7
C ₆ Plus	<u>88.8</u>	<u>81.8</u>
Total	100.0	88.0

Reformate (C₅ Plus)

Yield, Vol-%	88.0
RON Clear	99.9

MS Analysis of C₆ Plus Fraction, Vol-%


I. Hydrocarbon Types

Paraffins	16.21
Naphthenes	
Monocycloparaffins	5.03
Bi, Dicycloparaffins	0.36
Tricycloparaffins	0.0
Aromatics	
Alkylbenzenes	75.80
Indans, Tetralins	2.17
Naphthalenes	<u>0.43</u>
Total	100.00

II. Carbon Number Distribution, Vol-%

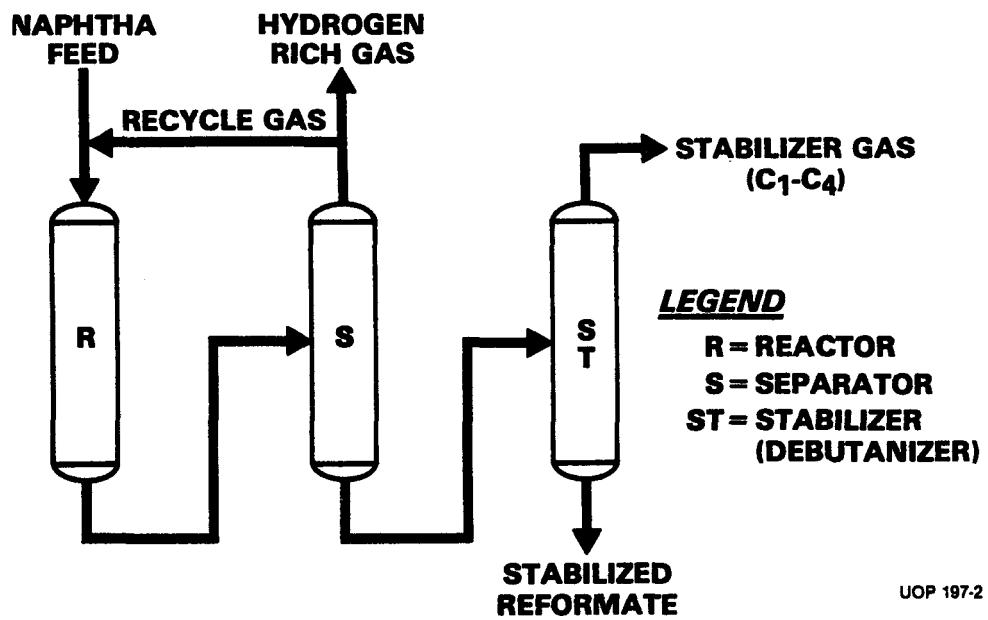
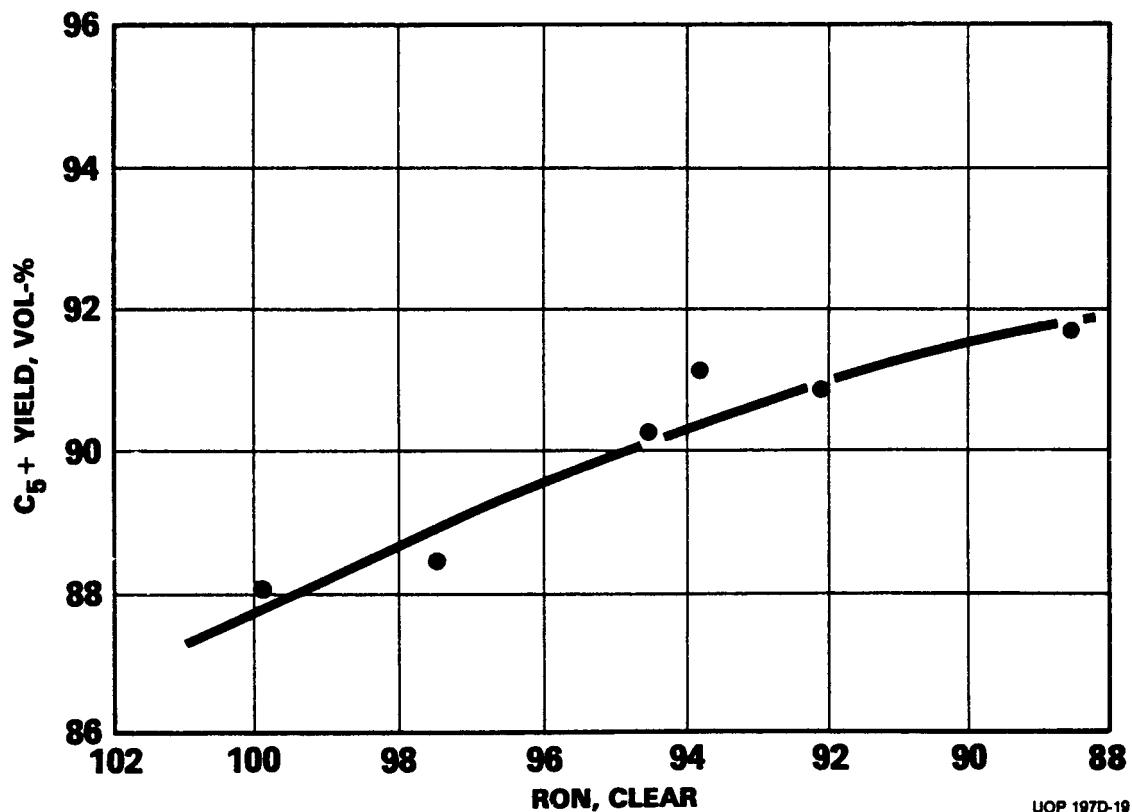

Carbon No.	Paraffins	Monocyclo- paraffins	Aromatics		
			J = 6	J = 8	J = 12
6	7.47	2.20	24.73		
7	5.29	2.15	20.75		
8	2.64	0.68	18.20	0.0	-
9	0.81	0.0	9.28	1.44	-
10	0.0	0.0	2.48	0.65	0.29
11	0.0	0.0	0.34	0.08	0.12
12	0.0	0.0	0.02	0.0	0.02
13	0.0	0.0	<u>0.0</u>	<u>0.0</u>	<u>0.0</u>
Total	16.21	5.03	75.80	2.17	0.43

FIGURE 1
NAPHTHA HYDROTREATING PLANT



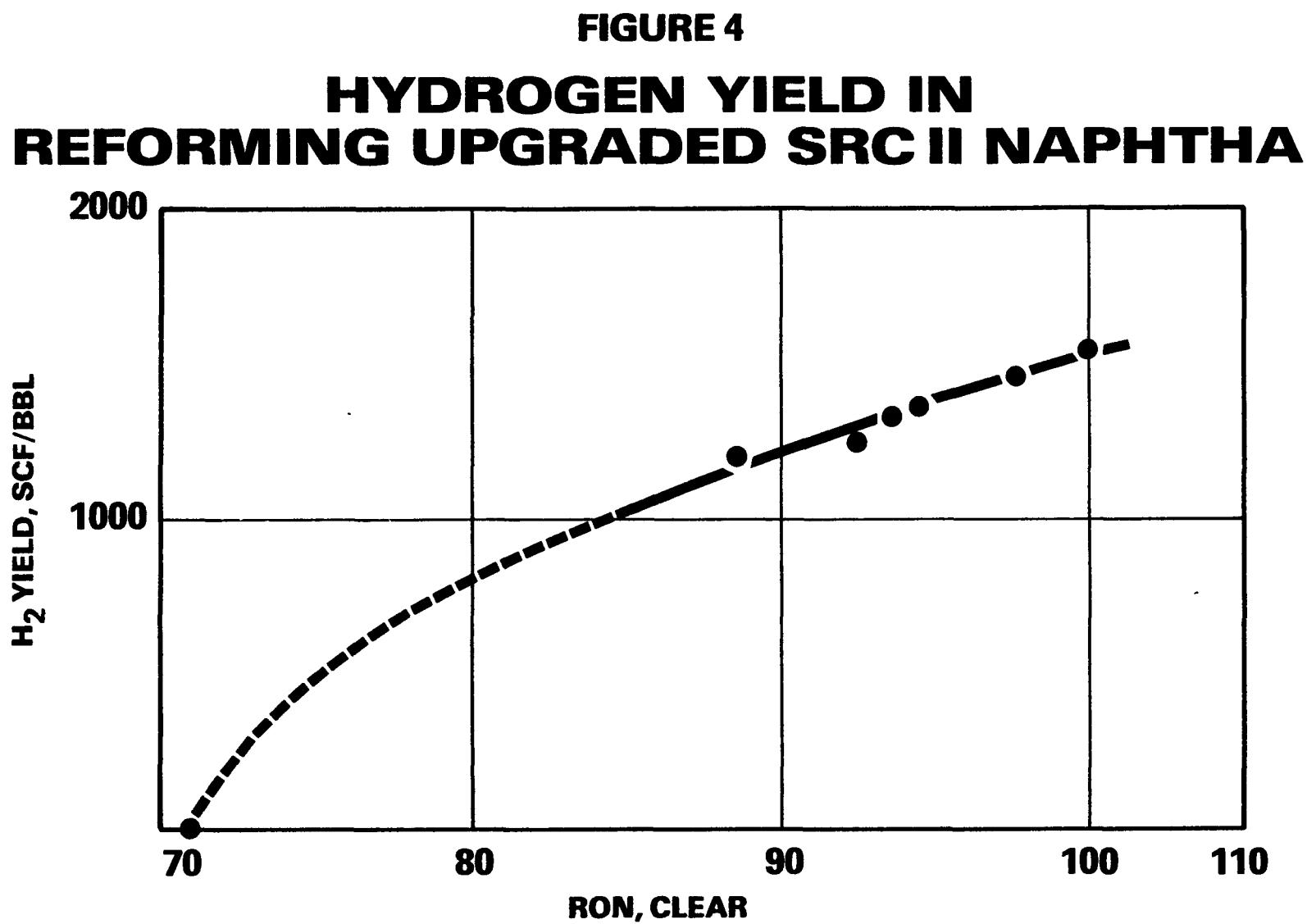

UOP 197-1

FIGURE 2
NAPHTHA REFORMING PLANT

FIGURE 3
YIELD OCTANE CURVE
FOR UPGRADED SRC II NAPHTHA

