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Preface

The need for increased éfficiency in the use of our
energy resources has stimulated applied research in many
areas. ﬁecently progress has been made in the field of
aerodynamics, where the development of the supercritical’
wing promises siénificant savings in the fuel consumption
of aircraft operating near the speed of sound. Computa-
tional transonic aerodynamics haé proved to be a useful
tool in the design and evaluation of these wings.

We present here a numerical technique for the design
of two—dimehsional supercritical wing sectioﬁs with low
wave drag. The method is actually a design mode of the
analysis code H developed by Bauer, Garabedian, énd Korn
[2,3,4]. 'This analeis code gives excellent agreement
with experimental results and is used widely by the air-
craft industry. We hope the addition of a conceptually
simple design version will make this code even more useful

to the engineering public.
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I. INTRODUCTION

1. Description of the Problem

In this section we discuss some of the principles
behind the supercritical wing and describe our contribu-
tion to the subject.

General considerations show that the range of an
raircraft is roughly proportional to the pérameter M_L/D,
where L is the 1lift, D is the drag, andrthe free.stream
Mach number M_ is the ratio of fhe aircraft's speed to
the speed of sound. The top curve in Figure 1 shows the
general behavior of this parameter as the Mach number M
is varied.A The value of M _L/D that maximizes the range
- of the aircraft occurs near a region of rapid increase
in drag known as drag risé, shown by the bottom curve of
Figure 1. At this speed the flow is observed to be
transonic, with regions of supersonic flow appearing where
the air accelerates over the wing. When the free stream
Mach number has the value Mc depicted in Figure 1, the
maximum speed of the flow is equal to the speed of
sound. When M_ > Mc the flow is said to be supercritiqal.

Figure 2 illustrates some important characteristics
of the flow past an airfoil at speeds corresponding to drag.
rise. The region of supersonic flow is terminated by a

shock, where the pressure is observed to be discontinuous.



As the speed of the wing is increased, the supersonic zone
grows in size and the pressure jump becomes larger. The
occurrence of such shocks in the flow imposes a retarding
force on the wing known as wave dfag, which is one reason

- -for the drag rise seen in Figure 1. The large pressure
gradients present in strong shocks can alSO'induce separa-
tion of the boundary layer of air that'adheres to the wing
because of friction; separation results in a‘decrease in

; lift and more drag. The'study of transonic flow is
therefore important not only because transonic flow
encompasses the most economical regime for aircraft opera-
tion, but because the deteriorationlof an aircraft's |
efficiency at higher speeds is due to transonic effects.

The supercritical wing is designed to delay the onset
of drag rise to higher Mach numbers. Since the efficiency
of the wing is governed by the optimal value ovawﬁ/D,
postponing the onset of drag rise to higher Mach numbers
results in a corresponding decrease in the fuel reguirements
of the aircraft. The delay in drag rise can be effected by
constructing the wing so that the strong shocks accompanying
supersonic zones of moderate size on conventional wings are
replacéd by weaker shocks with less wave drag and no appreci-
able boundary layer separation.

We are mainly concerned here_with the contributions to

supercritical wing technology made by computational transonic

aerodynamics. The numerical solution of the partial




differential equations of gas dynamics proVides a theoreti-
cal means for both the design and evaluation of supercriticél
wings. For example, two-dimensional shockless airfoils can
be obtained by calculating real analyticlsolutions to the
hodograph equations of transonic flow. These airfoils have
the property that at a specified speed and angle of attack,
the calculated two-dimensional transonic flow is smooth.
This guarantees that the wave drag will be small near at
least one opérating condition. It may happen that there is
an increase in wave drag at supercritical Mach numbers below
thendesign condition known as drag creep. Since a wing must
operate efficiently over é rangevof conditions it is‘desir—
able to avoid the occurrence of drag creep. Provided this
is done, a practical approach to the supercritical wing is
to design the wing using computer-generated shockless airfoils
in each cross-section.

It is also possible to evaluate the performance of wings
at off-design conditions using computer codes. Programs
that calculate the three-dimensional transonic flow past
wing-body combinations'are usgd regularly by the aircraft
industry. Considerable savings can be realized by replacing
preliminary wind tunnel testing of new wing designs by such
computer simulation.

‘There is presently much interest in the possibility of
developing a numerical schemg for the design of three-

dimensional wing-body combinations. Hodograph methods employed




in the design of two-dimensional shockless wing sections
éannot be used for this purpose. .Our contribution in
this direction is a two-dimensional design code based on
techniques that may prove useful in such an endeavor,
Although our method does not produce shockless airfoils,
we show that it is possible to obtain wing séctions with
low wave drag by using an artificial viscosity to smear
shocks properly. The design procedure is outliﬂed in
Section 4.1.

Our program- is actually a newvdesign mode of the
two-dimensional analysis code H developed by Bauer,
Garabedian, and Korn [2,3,4]. This analysis code solves
the direct problem of obtaining thé transonic flow past
a given wing section. The code includes a turbulent
boundary layer correction which gives a reliable approxima-
tion to the drag due to skin friction and predicts boundary
layer separation. Drag estimates obtained with the
code are in good agreement with experimeﬁt, and the program
has found wide acceptance in the aircraft industry.

There are two.major steps in the operation of the
analysis routine. Given the coordinates of the airfoil,
the region exterior to the airfoil is mapped conformally
to the interior of the unit circle as in Sell's treatment
of subcritical flow past an airfoil [33]. The nonlinear
partial differential equations of transoﬁic flow are then
solved iteratively in the unit circle using a type-

dependent difference scheme similar to the one first
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developed by Murman and Cole [27]. 1If boundary layer
cor;ections are desired, the shock wave - boundary layer'
interaction is simulated by iterating between inviscid
flow calculations and boundary layer corrections until
convergence is achieved.

The design modification we have aaded to the code
solves the inverse problem of calculating the shape
an airfoil must have in order fo achieve a specified
pressure distribution. When opefating in this mode, an
initial gueas is pfovided for the shape of the desired
airfoil and the region extericr_to this airfoil is mapped
into the unit circle as in ﬁhe analysis mode. A number
of flow iterations are performed using an arfificial
viscosity that ihhibits the formation of shocks, as
described in Section 2.2. The pressure distribution
resulting from these calculatiohs is then compared withb
the.desired‘input pressure distribution and a better
approximation to the desired airfoil ié obtained, as
described in Section 2.3. This new profile is mapped
to the unit circle as in the first step and the process
is repeated until the approximations converge. A boundary
layer correction may then be calculated on the basis of
the’last pfessure distribution. The desired airfoil is
obtained by subtracting the displacement thickness of the
turbulent‘boundary layer from the coordinates of the

computed profile.



The inverse méthod transfers the difficulty in
designing Wihgs from determining the coordinates of the
airfoil to finding pressure distributions that giQe rise
to airfoils with desired specifications. We therefore
include deécriptions of some pressure distributions that
‘generate airfoils with low wave dfag, and indicate how.
to modify £he input distribution in order to obtain air-
foils with a desired lift, thickness-to-chord ratio, and
design Mach number.

The remainder of the paper is organized as follows.
The mathematical statement of the problem is formulated
in Chapter II. The computational procedure is outlined

‘ | in Chapter III. In Chapter IV we'preseﬁt results obtained
with the design mode, together with some comparisons to
airfoils obtained by other methods. 'Chapter V is more
theorétical in nature and includes a convergence proof for
the design problem in a special case of subsonic flow.

We provide a description of the modified version
of the Bauer, Garabedian, and Korn analysis code H in
Chapter VI.

i would like to'express my gratitude for the advice
and encouragement of Paul R. Garabedian, who suggested this
problem and made the work possible. I am also grateful for
the help of Frances Bauer and Antony Jameson at various

stages of the research, and for a fast and accurate typing

job by Connie Engle.




2. References to Other Work

Transonic flow research has a colorful history [5,29].
In the late 1940's, arguments to the effect that smooth
transonic flows past arbitrary profiles should not generally
be expected to exist were formulated by Busemann [10],
Frankl [15],.and Guderley [16]. These observations raised
doubts aboutrthe physical significance of the smooth solu-
tions to the steady, two-dimensional potential equation for
transonic flow that were known at the time. It was observed
experimentaliy that transonic flows generally exhibit shocks
when the supersonic zones afe of moderate size, but there
were occasional instances of near-shockless flow that
seemed to contradict the implications of the nonexistence
theorems. A "transonic controversy" developed over ‘the
true nature of transonic flows in general and of shockless
flows in particular.

The controversy attracted cdnsiderable attention from
mathematicians in the hopes that a rig§rous investigation of
whether the flow [roblem was well-posed would help clarify
‘matters. From this viewpoint, a satisfactory demonstration
that the problem of finding smooth transonic flows past
convex symmetric profiles was not correctly set was supplied
by Morawetz [26], although the apparent discrepancies between
theory and experiment remained unresolved.

More progress was made in the early 1960's with the

experimental work of Pearcey [ 31], who was able to systemati-




cally produce near—shockleés flows past wing sections having
a suction pressure peak near the nose of the pfofile. The
subsequent developmeﬁt of numerical techniques capable of
treating transonic flows with shocks brought about a
reinterpretation of the nonexistence theorems since the
computatiohal problem seemé to be correctly
set in . terms of weak solutions. Results of both
experiment and computation show that shockless and
neighboring near—éhqckless solutions do in fact have
physical significance and can provide_an important means
of reducing the drag experienced by airfoils travelling
at transonic speeds .
. Several numerical techniques have been developed for
the design of two-dimensional supercritical wing seétions
" using inviscid flow theory. We can distinguish between
approaches relying on hodograph methods and the remaining
approaches. |
The hodograph transformation consists of reversing
the roles of the dependent and independent variablesvin the
flow equations with the resuit that the paftiai differential
equations are linear. Using this transformation, several
methods have been devised to allow the systematic computa-
tion of airfoils that have shockless flows ét given operat-
ing conditiohs [2,4,8,30]. Such airfoils necessarily have

low wave drag at nearby operating conditions, although

drag creep can occur elsewhere.




Other approaches to the design problem do not
generally proviae shock-free solutions to the equations.
This is not necessarily a disadvantage, since for some
'applicétions it is possible that an airfoil designed with
a weak shock might have an overall performance that is
as good or better than a shockless airfoil with similar
specifications. The main difficulty is to find pressure
distributions that will generate airfoils with low drag
levels.

Some design methods use the approximations of small
disturbance theory and thin airfoil theory [11,22,31].

With this approach the solution is expanded in terms of a
parameter describing the thickness of the ' profile, which
is assumed to be small. This has the advantage that to
leading order the profile can be replaéed by a given slit.
The desired pressure distrubution along thevsurface of

the airfoil can then be used in a boundary condition applied
at the slit, and so the difficulties caused by the unknown
boundary are avoidéd. The coordinates of the desiréd air-
foil can be determined from the resulting velocity components.
This technique has the disadvantage that the flow is not
represented  correctly near fhe stagnation point at the
leading edge of a bluht—nosed airfoil. It should be noted
that applications of this technique to the design of three-

dimensional wings have been initiated [17,34].




The design methods of Carlson [12] and Tranen [36]
solve the inverse problem for the full potential equation
with a free boundary. Both of these methods use the
prescribed pressure distribution in a boundary condition
for the determination of the velocity potential, and
calculate the position of the surface of the profile by
‘using the condition of flow tangency along the body. 1In
Carlson's method the calculation is performed using Cartesian
coordinates. The coordinates near the nose are given in
advance and the remainder of the profile is determined as a
free boundary. Tranen uses the analysis code H to perform
the flow calculations'énd to provide a computational domain,

| and proceeds by alternating between analysis and design
computations. At each cycle the user modifies the prescribed
pressure distribution in order to achieve convergence.

The design procedure of Hicks and his associates [18]
is based on the use of a numerical optimization routine
together with the analysis code H to minimize the drag coeffi-
cient with respect to design variableé that describe
the shape of the profile, while satisfying various constraints
on.the operating conditions and geometry. This technique
has the advantage of drag reduction without the necessity
of choosing the pressure distribution. Its main drawback"
is the large amount of computing time required when many

parameters are allowed to vary.
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The method we present for supercritical wing design
uses the prescribed pressure distribution in a boundatry
condition for thevdétermination of the conformal mapping
from the unit circle to the desired airfoil. fThis
approach to the dééign problem is similar in spirit to
Lighthill's inverse method [23], which is based on the
linear theory of incompressible flow and so does not
require an iterative procéduré to determine the flow and
profile. Other incompressible treatments along these
lines have also appeared [1,13].

The practical success Ofvan inverse method of airfoil
design depends on the prescribed pressure distribution.
It is therefore important to study the relation between

the assigned pressure distribution and the performance of

the resulting airfoil [7,29]. Much work remains to be done

on this aspect of the problem. The many shockless flows
produced by hodograph methods provide a good basis for

investigation.
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II. THE PARTIAL DIFFERENTIAL EQUATIONS OF TRANSONIC FLOW

In this chapter we consider the mathematical formula-
tion of the design problem. We summarize the basic equa-
tions of motion for gas dynamics and discuss the boundary

conditions appropriate for the direct and‘iqverse problems.

1. The Equations of Gas Dynamics

We begin with some comments about the’choice'of equa-
tions to describe the problem. We wish to model the
flight of aerodynamically effiéient wings at transonic
speeds. We are especially concerned.with the drag on such
bodies, which includes forces due to skin friction and
shocks. For our treatment to be of practical use we must
consider equations which allow estimates of the wave drag
due to shocks, and we must provide for the calculation
of viscous effects. Furthermore, we must choose equations
that are compatible with the inherent storage limitations
of computers.

It is common in experiment as well as theory
to £reat‘the case of steady, two-dimensional flow past a
wing of uniform cross section. This provides a good
approximation of the flow near the middle section of

a three-dimensional wing with a straight leading edge

12




moving with a constant velocity. This geometrical simpli-
fication permits the use of just two independent variables,
which we take to be the x and y’coordinates.

Another important simplification is possible if the
airfoil is streamlined so that viscous effects are confined
to the immediate vicinity of the profile. 1In this case
the flow outside the boundary layer can be obtained from
lower order partial differential equations describing
“inviscid fluid motion. The inviscid solution can then
be used to calculate a boundary layer correction to the
flow past the airfoil, making it possible to obtain esti-
mates of the drag due to skin frictioh [28,32]. Separation
of the boundary layer should be avoided for aerodynamical %
reasons, too, so it is important for the theory to give
reliabie estimates of the growth of the boundary layer.

Inviscid fluid flow can be described by conservation
laws consisting of nonlinear, first order partial differ-
ential equations involving the velocity components of the
flow and two thermodynamic variables such as the density
and entropy; The conservation laws also provide shock
conditions which determine the jump in these quantities
across a surface of discontinuity in the flow. For the
case of flows past thin bodies at speeds close to the
speed of sound, the shocks are usually weak in the sense
that the jump in velocity across”the shock is small compared

to the speed of sound. The jump in entropy across a shock

13




is of third order in the shock strength; to a good
approximation, the change in entropy can therefore be
neglected in a weak shock. With this assumption, the
entropy of a flﬁid particle is constant throughout its.
'motion, and the flow may be considefed isentropic.

As a result of considering the entropy to be con-
served écross a shock, the shock condition expressing-
conserﬁation of the normal component of momentum is lost.
The defect in_this quantity can be interpreted as an
épproximétion of the wave drag exerted on the airfoil
by the shock.

For isentropiévflow, the velocity field is irrotational
if the flow is uniform at infinity. This permits the
introduction of a velocity botential whose derivatives are
the velocity components. The inviscid equations of motion
can then be reduéed to a single second order partial differ-
ential equation for the potential, and in the computation
it is ohly necessary to store values of a single dependent
variable. | |

We shall list below_fhe equations describing the flow
of an inviécid, isentropic -gas. In Séction 3.4 the equa-
tions used to describe a turbulent boundary layer correction
will be discussed. It is found in practice that these
equations provide a description of the transonic flow past
‘an airfoil that agrees well with experiment over a wide

~range of conditions [3,4].
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The equations describing the steady two-dimensional
motion of an ideal polytropic gas are familiar [14,25].

From thermodynamics we have the equation of state
- voY
(2.1) p = A(s)p

where p, p, aﬁd S are the pressure, density, and specific
‘entropy of the gas. A(s) 1is a knOwﬁ function of the
entropy and vy > 1 is a constant dependihg on the nature

of the gas.

Conservation of mass gives
(2.2) (pu)x‘+ (pv)y_= 0

where u and v are the x and y components of the velocity.

Similarly, the conservation of momentum asserts that

I
o

(2.3) (wu, + vu) + py

I
o
-

2.4 uw_ + vv.) +
( ) ( X y) Py
and the conservation of energy gives

(2.5) uS_ + vS_ =0
X y

As mentioned above, we consider the case of constant
entropy, so that (2.5) is automatically satisfied and A(S)
in (2.1) is a constant. The flows we consider become
uniforh at large distances. It then follows from a theorem

of Kelvin that the flow is irrotational,

15



(2.6) u -~ v, =20 .

Using (2.1), (2.2) and (2.6) we obtain Bernoulli's law

r

: _ 2 2

| u + v c” _ 1 ¥y 1 2
(2.7) 2 Ty I3 y=1 S
where 02 = dp/dp 1is the square of the local speed of
sound and c, is a constant known as the critical speed.

The dimensionless ratio

2 2y1/2
_u+vw/
M= |=—T Y
2
C

is called the local Mach number and is greater than one if
u2+ v2 = q2 > cf (locally supersonic flow) and less than
one if q2 < cf (locally subsonic flow).

According to (2.2) and (2.6), there are two functions

¢ and ¥ such that

(2.8a) u=4¢_ = wy/o

(2.8b) V=0, =-b /0

y

¢ and Yy are the velocity potential and stream function of
the flow. We may obtain a single equation for ¢ from (2.1),
(2.2), and (2.7),

2 2 | 2 2

(2.9)  (c® = 0,0y = 20,0 0, * (T -0 Db = 0.

This is the partial differential equation that is the basis

of our numerical work. ¢ satisfies a similar equation.

16




Equation (2.9) is a quasilinear partial differential

equation which is elliptic when M2 < 1 and hyperbolic when

M2 > 1. We are interested in the case of transonic flow,
so tﬁat (2.9) has mixed type in the region of interest.
It is appropriate to consider_weak solutions to (2.9)

or (2.2) wunder the conditions that ¢ is cohtinuoﬁs and

that any shocks present are compressive. This corresponds

to the proper entropy inequality in nonisentropic flows.




2. The Direct Problem

In this section we discuss the formulation of the
direct, or analysis, problem of determining the flow
past a given wing section.

We consider an airfoil with coordinates (x(s),y(s))
parametrized by arc length s measured from ﬁail to tail
as in Figure 2. The included angle at the trailing edge
is deﬁoted by €. The frame of reference is chosen
so that the airfoil is at rest and the air has a resulting
velocity g'= (a, cos‘u, d, sin o) at infinity, where
the angle of attack a gives the direction of motion relative
to fixed coordinate axes. |

The fact that the flow must be tangential to the
surface of the airfoil provides one boundary condition
for (2;9). if'G is a unit normal to the profile, thén

this condition can be stated as
g 5 . = .8;4) =
(2.10) - v-u ™ 0

on the curve (x(s),y(s)). Since the airfoil is a stream-

line of the flow, this fact can also be expressed by
(2.11) v (x(s),y(s)) = constant.

We consider lifting profiles with cusped trailing edges,
0 < € << 1, in which case the potential ¢ need not be
single-valued. The circulation T' = [¢] of the flow around
"the airfoil is then uniquely determined by the Kutta-

Joukowski condition

18




(2.12) ' Ig(x(o),y(O))l < © ,

which states that the velocity must be finite at the
trailing edge. If ¢ > 0 the flow necessarily has a
stagnation point at the trailing edge. This is not the
case for € = 0. The presence of a stagnation point at
the tail of the‘airfoil should generally bevavoided
since the resulting adverse pressure gradient promotes
separation of the boundary layer.
It can be shown [24] that ¢ has an asymptotic

expansion

(2.13) ¢ ~ g,r cos(6-a) + 5% taﬁ_l(B tan(6-a))

as r2 = x2 & y2 -~ », where 82 =1 - Mi and 8 = ta'n—l y/x.

This is similar to the corresponding expansion for
incompressible flow. The Prandtl-Glauert scale factor B
commonly occurs in linearized treatments of compressible
flow.

For the analysis problem it is convenient to express

Bernoulli's law (2.7) in fhe form

2,2 |
+ 2
(2.14) ¢X2¢Y + fl = qi[% + ———i—~§_},
Y (y-1)MZ

where M is the Mach number at infinity. With this nota-

tion,vthe direct problem can be formulated by specifying

the airfoil coordinates (x(s),y(s)), the angle of attack o,

- 19




and M_ < 1. In this case we are free to choose the units
so that g is normalized to one. The flow is then obtained
by solving the partial differential equation (2.9), along
with the boundary conditions (2.10), (2.12), (2.13), and
(2.14).

The 1lift of the airfoil is proportional to the
circulation I'. When the angle of attack is varied, the
circulation of the flow adjusts so that the Kutta condi-
tion (2.12) is satisfied. For a given Mach number M_ o,
the 1ift is therefore a function of the angle of attack.

A variant of the above formulation of the problem that
is useful in applications is to specify the 1ift of the
airfoil instead of a. - The angle of attack necessary to
produce this lift is theh determined by imposing the Kﬁtta

condition.

20




3. The Inverse Problem

In this section we describe the inverse, or design,
problem of calculating the shape that a profile must have
in order to achieve a given pressure distribution.

Suppose there is a flow past a profile such as the one

depicted in Figure 2. TIf the velocity of the flow along

the profile is written in the form

u(s) - iv(s) = o(s) e 10(8)
then the direct problem consists of specifying the angle

©(s), which determines the shape of the airfoil, and solv-

_ing for the flow. For the inverse problem, the values of

Q(s) are given and both the flow and the body are to be
determined. Since Bernoulli's law (2.7) provides a corres-

2 and &2 = constant-p(Y—l)/Y,

pondence between the values of ¢
we may formulate the inverse problem in terms‘of either

g or p, and the choice of g is only a matter of mathematical
¢onvenience.

The inversé problem is seen to be a free boundary problem
and is for this reason more complicated than the direct
problem. The coordinates (x(s),y(s)) of the airfoil are
now unknown and are to be determined from the knowledge
of the velocity distribution Q(s). We may write the

relationship between ¢ and Q(s) as an additional boundary

condition

21



(2.15) ¢ (x(s),y(s)}) = Q(s)

Qa,Q-:
n

on the interval 0 < s < &, where & is to be the total
length of the airfoil.

It is also necessary to specify the constant in
Bernoulli's lawf In the direct problem the Mach number
and speed at infinity are prescribed as in (2.14); for
the design problem we give instead the value of the
critical speed c, in (2.7). This means that the Mach
numbers of the flow along the airfoil are specified.

The choice of ¢, determines the type of the equation (2.8).
If ¢, > max |Q(s)|, .the flow will be subsonic and (2.9)

" will be elliptic; if there are points with |Q(s)| > c, ,
the flow will be transonic and (2.9) willvhave»mixed type.

We remark that with this fofmuiation d, is not speci-
fied as data, but must be determined along with ¢ and
(x_(s),y(s)).

The.fact that Q(s) is to be the velocity distribution
of a flow past an airfoil places restrictions on the form
Q(s) may have. A typical choice for Q(s) is illustrated
in Figure 3. Q(s) must have a zero corresponding to the
stagnation point that forms at the nose of the airfoil,
and then must be nonzero along the surface bf the airfoil
until the tail is reached. At the tail the velocity must
be continuous and may be taken to be nonzero provided the

included angle e at the trailing edge 1is zero.
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Q(s) must satisfy further compatibility conditions in

order to determine profiles defined by simple closed curves.
Note that since the circulation of the flow is given

by the'integral of the speed along the profile, the 1lift

of the airfoil can be calculated from the prescribed

velocity distribution. The angle of attack may still be

-specified in the asymptotic form (2.13), since in the design

problem the airfoil is free to rotate with respect to the
fixed coordinate system so as to‘satisfy (2.12).

To summarize, the design problem is posed by specify—
ing the speed distribution Q(s), the critical speed c, ,
and the angle of attack a. The potential of the flow and

the airfoil coordinates are then obtained by solving the

equations

(2.9) (e®0Dr0 - 20,00, + 2+ 0 Pre = 0,
a It @1 el o2,

(2.10) 3 o) v(e) =0

(2.15) o (x(),¥(s)) = als) ;

(2.12) lu(x(0),y(0))]| <=

(2.13) ¢ v q,r cos(b-a) + —%? tan_l(B tan(6-a) )
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ITI. DISCUSSION OF THE COMPUTATIONAL PROCEDURE

In this chapter we describe the method used to solve
the design problem outlined in Section 2.3. In Section 3.4
we also provide a brief summary of the equétions used to

compute the boundary layer correction.

1. Overview of the Computation'

The procedure we describe here is based on the Bauer,

‘Garabedian, and Korn analysis code H [2,3,4] which solves

.

the direct problem deécribed in Section 2.2. The analysis
routine computes the inviscid flow past a given airfoil in
two steps. The region exterior to the airfoil in the
z-plane is mapped conformally onto the interior of the
unit circle in the z-plane, and ﬁhe partial differential
equation (2.9) for ¢(x,y) is expressed in terms of the
variables (r,w), where ¢ =vr ei@. The resulting nonlinear
equation is then approximated by a finite difference scheme
which is solved by a relaxation procedure to provide the
solution ¢ (r,w).

For the inverse problem, we are given the velocity

distribution Q(s) rather than the coordinates of the

airfoil. The basic idea is to use Q(s) to determine both
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: ' | 4

the'mapping z = £(z) of the unit circle onto the desired

airfoil and the potential ¢. With this free boundary

‘approach, the flow calculations are .done in a fixed

computational domain and the geometry is determined by
intrdducing the appropriate mapping as an additional
unknown. This results in coupled nonlinear equations for
¢ and for the mapping function f which we solve iteratively
using existing routines in the analysis code.

The iterations go rbughly as follows. We start with a
first gﬁeés for the potential function which we take_to be .

(0)

the incompressible solution ¢ obtained by replacing the

partial differential equation (2.9) by Laplace's equation.

(0)

The values of ¢ are used in the equation for the mapping
function, which we solve for the approximation z = f(l)(s).
Using the mapping f(l) in the flow equation then provides
a better approximation ¢(l)(r,w) to the potential, and
the process is repeated until the approximations convergé.
In terms of the analysis code, at each cycle the design mode
(n)

14

starts with an approximation to the desired airfoil P

maps it to the unit circle, and solves for the flow past P(n)

" in the usual way. The resulting speed distribution is then

compared to the desired speed distribution Q(s), and a correc-.

(n) p(n+1)

tion to P is made to obtain the new approximation

The iterations continue until the computed speed distribu-

tion agrees with the prescribed distribution Q(s) within

an acceptable accuracy.
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We now describe this procedure in more detail. Consider
a conformal mapping z = £(g) from the unit circlé onto the
exterior of an airfoil such as appears in Figure 2. We
assume f has a pole at the origin and takes the point
é = 1 into the tail of the profile (x(0),y(0)). The
included angle at the trailing edge wili be taken to be
zero, although the less important case € > 0 could be
treated similarly. The derivative of the map function has
an expansion of the form -

o]

dz 1 -¢ k
(3.1) =2 = f'(g) = - exp ) c©.T ,
dc z? k=0 %

where the behavior of the mapping at the trailingvedge of
the airfoil is taken into account by the factor (1 - 7).
The mapping determines a boundary correspondence
between the unit circle r = eiw and the airfoil which we
write as s = s(w), where s is-arc length along the profile.

If we denote the inclination of the tangent to the airfoil

by 6(s), as in Figure 2, then on the unit circle g = et
we have
(3.2) f'(g) = |§E| exp fl arg dz }
dt \ dg
= =— exp fi(@(s(w)) -w - )
dw \ 2 :
If Cr T 2 + lbk’ then (3.1) gives
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] o0

(
1 ds .
(3.3a) log |——=— =] = ) a,cos kw - b, sin kw
5 sin %d“’J k=0 X k
w o .
(3.3b) @(s(w)) tytTmo= Y bkcos kw + a,sin kw .

k=0 k

These equations show that the mapping is essentially
determined once the correspondence s = s(w) is known.
Under the change of variables z = f(¢), ¢ = r elw,

the partial differential equation (2.9) for ¢ becomes

2, 2 2.7 ~ 2 2, >

(3.4) r"(c™= u )¢rr - 2ruv¢rw + (¢ v )¢ww
2 2, 1 2 2 3 2 _
+ r(c™= v )¢r + T (u ™+ v7) [r uhr+ r Vhw] =0 ,

~ 2' . ~9

where ¢ (r,w) = ¢(x,y), h"™ = IdZ/dC|2, u2 = ¢§/h2 ’
2 _ 2 2, 2 2 . . -

ve = ¢w/(r h™), and ¢~ is given by Bernouli's law (2.7).

Note that the mapping function f appears in (3.4) through
the Jacobian h. Furthermore, for the inverse problem the
solution @(r,w) of (3.4) can be used together with the

|

- .

‘ data OQ(s) to provide boundary values for the determination
| of £'(z). The relation ¢(1,0)= ¢(x(s(w)),y(s(w))) yields
|

upon differentiation

ds _ 1 26
(3-3) 3 =~ o@ dw el

which can be used in the expression (3.3a) for loglf'(elw)l
The problem is therefore described by the equations

(3.1), (3.3a), (3.5), and (3.4), together with the appropriate
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“for n =1,2,3,..., where un

boundary cénditions for ¢ to supplement (3.4). The

iterations used in the computation to solve this problem
start with the approximation 5(0)(r,w) provided by
incompressible theory. If we introduce harmonic function
G(z) = log ch(l - g)_lf'(c)J, the iteration scheme then

proceeds by solving in succession

(n) ' 3 (n-1)
o(s' (w))
J_ ™ gy =0
(3.7)
. (n)
l ¢(™) (&) = 109 [ ~— (w)
2 sin =
2
(3.8) nt™ () = ‘l—|‘|—§i exp 6™ (0)
(3.9) rz(crzl-urzl)$r(?) + runvniég) + (crzl;vrzl)gu(xg)
For(ci- v m oL 02002 30 ™ 4 L2 h(n)],= ,
n n’ r r n n nr nw

2,2 N2 2
2 _ ¢én)‘/h(n) v2 = ¢(n) /(rZh(n) )

" "n !

and ci is given in terms of ui and vi by Bernoulli's
law (2.7). The boundary conditions used to solve (3.9)
are those of the direct problem.

The mapping computation (3.7) can be done rapidly using

~the fast Fourier transform to evaluate the coefficients

(n)

appearing in a truncated series expansion for G .
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The flow computation is performed using a nonconserva-

tive difference scheme similar to thé one first deVeloped
by Murman and Cole [27]. Its main feature is type-~
dependent differencing which captures shocks over two mesh
widths by effectively producing an artificial viscosity
in the supersonic regions. |

The iterative procedure works very well for subsonlc
flows, presumably because the initial guess is a good
approximation to the solution. 1In fact we prove in
Section 5.2 that a similar iteration converges to a solu-
tion provided the maximum Mach number in the flow is small
enough. |

For the case of transonic flow, the problem is
complicated by the possible presence of shocks in the fléws
rast the various approximations to the desired airfoil.
A large gradient in the derivative of $(n_l)(l,w) appearing
in (3L6) is undesirable, since.a discontinuity in (3.3a)
causes a logarithmic singularity in (3.3b), which is-
inconsistent with the assumed smoothness of the airfoil.

One way to avoid this difficulty is to solve the equa-
tions on a coarse mesh. The coefficient of the artificial
viscosity implicit in the Murman-Cole scheme is of the
order of a mesh width. If the grid is coarse enough, weak
shocké are suppressed by this viscosity, as illustrated
in Figure 4. _This-smoothing effect allows the process to

converge even in the case of transonic flow. If the grid
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is refined, unwanted shocks may appear in the flow,

causing the iterations to diverge. On the other hand,

a solution computed on too coarse a mesh may not accurately

model the actual flow‘past the airfoil because of the
smoothing effect of the artificial viscosity.

In order tovoperate,on a fine mesh, we have added
an additional smearing term td inhibit the formation of
shocks. We describe this term in more detail in the
next section. It has the form of an artificial viscosity
-multiplied by a coefficient elAw , where Aw is the
mesh width in the angular direction. The factor €, can
be varied to change the amount of smoothing used. This
permits the use of more viscosity in the early itera-
tions when it is important to suppress shocks, and less
viscosity towards the end of the computation when a more
accurate éolution is desired. The additional smoothing

term therefore significantly increases the versatility of

the design routine.
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2. The Flow'Computation

In this section we discuss the difference scheme
used in the flow calculation and also give the form of
the additional artificial viscosity term used in the
design procedure.

'For computational purposes it is convenient to -

remove the singularities of $(r,w) and h(r,w) by defining
%0
o 3 © H(r,w)
¢(r,0) = ——— cos (w+ o - by) + &(r,w) , h(r,w) = ==
r

The equations for ¢ (r,w) then become

2, 2 2 2 2 2 2 2
(3.10) r“(c"™- u )@rr - 2ruv®rw+ (c™-v )@ww+ r(c -2u”-v )@r

1 2 2 _
+ E:(u + v )[ruHr + VHw] = 0,

where
a

2 - g.e 0cos(w+a—b0)]/H ,

u = [r @r

a
v =[re, - qe Jsin(w +a - by)l/H ,
and c2 is given by Bernoulli's law (2.7). The boundary

conditions (2.13), (2.10), and (2.12) become

ol
- 57 tan (8 tan(w+a—b0)) '

(3.11) ¢(0,w)

%
g,e cos (w + a - bo) ’

il

(3.12) @r(l,w)

20
- g,e sin (o - bo) .

(3.13) @w(l,O)
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In the flow computation, centered differences are used

[4

, @ , and @w

to approximate the coefficients of @r' o

r w

as'well as all of the lower order terms in (3.10). A rotated
difference scheme dué to Jamesoﬁ [20] is uéed to evaluate
the second derivatives. This method uses centered differ-
eﬁces at all subsonic points. At supersonic points,
éne-sided differences that are retarded in the local stream
direction are used to produce an artificial viscosity
similar to (3.15) below. The resulting nonlinear algebraic
equations are solved using line relaxation in the direction
of the flow.

For the two-dimensional flows past a wing section that
we consider, the direction of supersonic-flow is to a good
approximation alligned with the w-coordinate direction.

The original Murman-Cole scheme would suggest the approxi-

mation
©,.=20. L 0. .
(3.14) ¢ (i Ar, J Aw) = J 1i.] rJ
ww . 2
(Aw)
which is first order accurate at (i Ar, j Aw). The dominant

truncation error in (3.14) is Am@w m(i Ar, j Aw), which has

w

the effect of an artificial viscosity. We may consider

this scheme as an approximation to the equation

2,2 2 _ 2_ 2
(3.15) r“(c”-u )¢rr+ ee. = Aw max [0, (v™-cC )]@www .
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The artificial-viscoéity on the right is absent in the
subsonic regions and the coefficient tends to zero
at the sonic line.

| In order to improve the convergence of the design

routine, we have added an additional artificial viscosity

to the flow equation (3.10). The added term has the form
(3.16) e by & V(M) ¢ ]
) 1 ) ww

which is motivated by the Murman-Cole artificial viscosity

appearing in (3.15). Here V(M) is a smooth function of

the local Mach number M which vanishes for M < M0 and is
‘one for M > Ml' We choose the numbers M0 and Ml‘so that

this term is effective across the sonic line. For example,

we may use M0 = 0.85 and Ml = 0.95. This is in contrast

to the behavior of the artificial viscosity in (3.15),:

_which is switched off at the sonic line.

The term (3.16) is added directly to the rotated

difference scheme, so that for El = 0 the original scheme

- remains unchanged. Figure 5 illustrates the smoothing effect

of (3.16) for a flow with a weak shock on a fine mesh.
Note that the shock does not appear on a cruder mesh.

By adding the term‘(3.l6) to the partial differential
equation (3.10) we can obtain satisfactory convergence of

the design scheme on either crude or fine meshes as desired.
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3. The Conformal Mapping

In this section we discuss the calcﬁlation of the
mapping function from (3.3a), and we also explain how the
Mach number M_ , the coefficient of lift CL , and the
rotation factor b0 are obtained.

During each design iteration we use the data Q(s)

(01D (L u)

and the previous estimate ¢ for the potential

function to calculate a boundary correspondence s = s(n)(w)
between the unit circle and the nth approximation to the
airfoil. The values 5‘“‘1)(r,@) arevobtained from the
analysis routine, which uses dimensionless units that are
normalized by the free stream velocity g and the chord
length L of the profile. Since g and L are not specified
for the design problem, it is necessary to adjust the scal-
ing at each iteration to make the prescribedvdata compatible
with the units used by the analysis routine.

In order to use the analysis routine we need to supply

values for the free stream Mach number Mé and the 1lift

coefficient CL. To determine M_ we use the relation

C
(3.17) % [ *2} Y+l o _

N
+

1
(y-1)M_2

which results from Bernoulli's law (2.14) and (2.7). The

speed g corresponding to the data Q(s) and c, is obtained

(0)

(o]

iteratively. In the first cycle we use the value for g

provided by the incompressible solution. At the nth step,
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qén) is chosen to be the scale factor that minimizes the
expression
-2 (s ™ wp)?
(3.18) Y ol - f — ,
; i 2
i (n)
R

where the points w; are evenly distributed around the unit

circle and qin_l) are the velocities along the surface of
the (n-1) st approximation to the airfoil as computed by
the analysis roﬁtine.

The coefficient of 1lift supplied to the analysis
routine,

£
jo Q(s')ds [5]

7 dur 7 9l
is also affected by the scaling and must be similarly
adjusted. |

In order to evaluate s(n)(w) we use the data Q(s) and
¢(n_l)(l,w) as follows. Formula (2.15) is integrated to
provide the function

®l(S) = Q(s') ds' .

o0

@l has a minimum at the stagnation point of Q, say So ;

and is monotonic on either side of Sq e We define a smooth
function
, J— /@l(s) - @l(so) , s < 54
(3.19) @2(5) = l
+ /@l(s) - @l(so) , s > Sg 7
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which is monotonically increasing and can be inverted.
Both the speed Q and the arc length s may then be considered

functions of the modified potential o, .

At the nth stage of the iteration, the potential»

~0rl
¢&r %1,&) is modified as in (3.19). The result is

scaled to have the same range as ¢, and inserted into the

appropriate expressions for Q and s. This provides an

(n) (w)

expfession s = s which. can be differentiated and
used directly in (3.3a) instead of using (3.5), which
requires special treatment at the staghatiOn point.

The series

(n). oo
(3.3a) 1log [ L m gz ) = ) aén)cos kw - bén)sin kw
2 sin 5 k=0
is truncated at N terms and the coefficients aén) and

al® 4 i)

Fourier transform. This procedure does not provide the

k =1,...,N-1 are obtained using a fast

(n)
bO

the -airfoil with respect to the coordinate axes. To find

_coefficient , which determines the orientation of

bénx, we appeal to the Kutta}condition

a

(3.13) 2 (1,00 = - q, e’

sin (a - bo) .

At the nth stage of the iteration, bén) is determined so

that (3.13) will be satisfied as the iterations converge.
In summary, at each iteration we rescale the data to

update M_ and C. , and determine the mapping coefficients

L
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a, and Cp = 3 + ibk , k=1,...,N-1, which are used as
input to the analysis routine. The analysis routine then
provides the potential $(r,w) along with the necessary

rotation factor b, to complete the cycle. The iterations

0
continue until the velocity along the airfoil computed

by the analysis code agrees well enough with the prescribed
data Q(s). The remaining boundary conditions are automati-

cally satisfied, since at each iteration we use the analysis_

routine to solve for the flow past a given airfoilﬂ
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4. The Boundary Layer Correction

For the computations to be of practical value it is
important to supplement the inviscid equations discussed
thus far with equations describiné the flow near the
surface of the wing section where viscous effects cannot
be.disregarded. To do this, the inviscid theory is used
to design a profile with a finite thickness between the
upper and lower surfaces at the trailing edge. Next a
boundary layer correction is computed én the basis of
the inviscid pressure distribution. The displacement
thickness of the boundary layer is then subtracted from
the coordinates of ﬁhe inviscid profile. Thus the end
results of the computations are the actual coordinates of
the ‘airfoil, a viscous boundary layer next to the surface
of the airféil, and inviscid flow outside the streamline
determined by the boundary layer.

The method of Nash and Macdonald [28] is used to
compute the turbulent boundary iayer correction. The
momentum thickness e* and the displacement thickness s

are calculated from the von Karmen momentum equation

* *
de _ w2y dg 6 T
(3.20) 35 + (2 + H M™) as q - pq2

where H = 6*/8* is the shape factof and T is the skin

friction. M2 and g are functions of arc length s determined

by the inviscid solution, and H and t are given by
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semi-empirical formulas. The ordinary differential equation

(3.20) is integrated from transition points (x ) that must

R'YR
be prescribed on the upper and lower surfaces of the aiffoil,
and a starting value for 6% is obtained from the specified
Reynolds number of the flow.
Separation of the boﬁndary layer is predicted when the
Nash-Macdonald parameter |
6" dq

Csep - T g ds

exceeds 0.004. It is important to choose the input speed
distribution so that Csep remains around 0.003 on the upper
surface near the trailing edge. This is our version of a
criterion due to Strafford for avoiding boundary layer
separation [35].

When theoretically designed airfoils are evaluated
in wind tunnel tests, it is\sometimes found that the effects
of the boundary layer causé losses in lift and other
discrepancies between ﬁheory and experiment. However,
airfoils designed with such a Stratford pressure distribu--
tidn.using a similar inverse formulation {[4] have been
found to meet their design specifications in wind tunnel

testing.
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IV. COMPUTATIONAL RESULTS

In this chapter we present some results produced
by the design.mode of the analysis code. We include
a description of pressure distributions that generate
profiles with no significant drag éreep according to
the aﬁalysis code. Possible extensions of the main
ideas to other problems' in transonic flow are discussed

in Section 4.2.

1. The Design Procedure v -

The invérse method of airfoil design uses as input
the pressure distribution rather than the airfoil
coordinates. 1In order to obtain airfoils with acceptable
drég levels, an appropriate pressure_distribﬁtion must be
prescribed. In this section we discuss a method of using
‘thé_design modé Uﬁw.prodﬁées wing sections with low wave
drag as predicted by the analysis mode. |

Our first ekample.appears'in Figures 6 and 7. Figure 3
shows the speed distribution uséd to produce the airfoil
of Figure 6. On the ﬁpper surface the speed distribution
rises from the stagnation point at the nose to a flat

section of supersonic values along the first sixty percent
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of chord, and then falls into a Stratford distribution
near the tail. fhe distribution over the lowér surface
is entirely subsonic and is arranged so that the lift

is evenly distributed along the section, with aft load-
ihg at the tail. The profile  has been provided with a

gap at trailing edge so that a boundary layer correction

can be removed from the displayed coordinates, as shown

in Figure 7.

Our experience with the design routine to date
indicates that drag creep can be avoided by designing the
airfoil to have a small enough supersonic zone. The |
supersonic zone can be increased or decreased in size
as desired by varying the critical speed Cyu ﬁsed iﬁ'the
design'routine; If too large a supersonic zone is used
at design, the middle part of the zone tends to collapse
at speeds below design, giving rise to one or two shocks
that can cause significant wave drag at off-design condi-
tions. This effect is reduced by designing at a lower Mach
numbef with a smaller supersonic zone.

Figure 8 shows an airfqil design'with a speed distri-
bution similar to that of Figure 6 but with the,critical
speed c, iowered so that the supersonic zone is significant-
ly larger. The pressure distribution was altered slightly
near the nose and tail of the airfoil to retain the same

thickness-to-chord ratio and about the same gap at the tail.
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When drag rise curves are computed for these two airfoils,
the profile designed with_the larger supersonic zone

| exhibits drag creep as illustrated in Figure 9. The

i observed difference in the drag levels for the two profiles

‘ is due to increases in both the wave drag and the form drag

of the second airfoil, although both airfoils have virtually
identical form drag at subcritical speeds.

The design mode can also.be used to improve the
performahce of airfoils by altering off-design pressure
distributions. For example, we may exploit the fact that
some shockless airfoils designed by hodograph procedures
exhibit characteristic off-design distributions when
evaiuated near ﬁhe design angle of attack with a lower Mach
number (cf. [2], p. 96; [31, p. 131, p.143). The speed along

. much of the uéper surface is roughly sonic, with a pronounced
peak near the nose of the profile. Such‘peaky distributions
also recall the experimental work of Pearcey [31], as well as

\ - Boerstal and Uijlenhoet [9 ] aﬁd Nieuléﬁd and Spee [29],
who have published examéies Qf shockless airfoils designed

.with peaky distributions. |

We illustrate the use of this observation with another
example. We begin with an airfoil that was obtained
using thé design mode with a Mach number M_ = 0.745. We
use the analysis routine to compute flows past this profile

with the same angle of attack but with smaller Mach numbers.
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At Mw = 0.710 there results the distribution shown in
Figure 10, with an upper surface distribution that
resembles the characterisiic distributions except for

a bump in the distribution around sixty percent of chord.
This distribution is obtained as output from the code in
the form of punched cards. We modify the distribution by
removing‘the bump so that the distribution remains relatively
flat along this section of the airfoil. The resulting
distribution is used in the design mode to obtain the . -
airfoil shown in Figure 11. In Figure 12 we display drag
rise cur&es for this airfoil and a shockless airfoil with
similar specifications designed by Dr. Jose Sanz using
the hodograph code of [4]. The airfoil produced by the
design mode of the analysis code compares quite favorably
with the shockless airfoil. Figure 13 shows that a near-
shockless flow is obtained at M_ = 0.740.

‘The two previous examples illustrate ﬁhe procedure we
use to obtain airfoils with low wave drag. We start with
an upper surface speed distribution similar to the one
appearing iﬁ Figure 3. This portion of the distribution
determines the wave drag experienced by the airfoil at
off-design conditions and also determines the growth of
the boundary layer near the tail. To obtain airfoils with
a given gap at the tail, thickness-to-chord ratio, and lift;

the lower surface distribution should be modified as we
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will indicate in Section 6.1. The value of c, used
determines the free stream Mach number M_-, as well as
the size of the supersonic zone. In order to find the
proﬁer size for the supersonic zone, it may be necessary
to make a tentative choice for c, and use the analysis
code to calculate a drag rise curve for the resulting
profile. The size of the 'supersonic zone should be .
decreased if the wave drag is too high at speeds below
design.

The size of the supersonic zone used at design -
determines the height of the pressure peak near the nose
of the profile at off—design.conditions, which in turn is
related to the amount of wave drag oecurring below design.
The amount of wave drag near the design condition is
effected by the curvature of the profile at the rear of
the supersonic zone, which is governed by both the
prescribed pressure distribution and the amount of
artificial viscosityeused in the design routine. Rather
than attempting to adjust this area of the profile Qhen
it is in the most sensitive region of flow, we have found
it more convenient to make ahy necessary modifications in
an additional design run at a lower Mach numﬁer correspond-—
ing to the characteristic off-design condition as in
Figures 8 and 9. To do this, the analysis modevis used

- to obtain‘the flow past the profile at the design angle of

attack but with lower Mach numbers. At some Mach number
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the flow shduld have a pressure péak near the nose
followed by a section of neariy constant sonic flow.

The pressure distribution over the region‘corresponding

to the'rear of the supersonic zone at the designlcondition
is examined for any irregularities, and, if necesSary, the
pressure distribution is modified near this point so that
it more closely resembles the charabteristic off-design
distribution of shockless airfoils. |

In taking this approach, our philosophy is therefore
to use a felatively simple upper Surface distribution as
in Figure 3 at the design condition. At this stage we
adjust the remainder of the inputldistriubtion so that the
airfoil has the desired specifications and.we determine
the size of the supersonic zoné SO thét the off-design
performance'is acceptable. In doing so we operate on the
fine mesh of code H with enough addea artificial viscosity
to ensuré convergence of the scheme.

If-the analysis mode is used to evaluate the airfoil
at the design condition, the resulting pressure distribution
usually agrees with the assigned pressurerdistribution
except near the rear of the supersonic zone. where the
extra artificial viscosity used in the design mode has
‘its largest effect. Rather than attempting to achieve
better agreement between design and analysis in this region
by using less artificial viscosity'in the design mode, we

instead go -to the off-design condition to make any necessary
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modifications to the profile at this point. Smail-correc—
tions usually do not significantly alter the specifications
of the airfoil that were determined at design. The result
is a smooth profile with low wave drag at off-design condi-
tions.

We discuss the implementation of this procedure,
£ogether with the necessary boundéry layer correction,
in Sections 6.i and 6.2.

iFigure 14 shows an airfoil with a larger supersonic
zone desiéned on a fine mesh using a relatively small
coefficient € = 0.05 in the additional artificial
viscosity term (3.16). The appearance of the sonic line
suggests the presence of a shock in the interior of the
flow region which weakens as it approaches the profile.
This picture illustrates the fact that this approach does

not produce shockless airfoils, but can provide some control

.over the shock strength at the body by fitting a smooth

pressure distribution.
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2. Extensions of the Technique

A procedure similar to the one presented here would
allow the design of transonic cascades with low wave drag.
Codes which compute transonic flow past turbines and
compressors by using relaxation schemes similar to the
one 1in the analysis code used here have been written [19]
and would presumably lend themselveé to a similar design
modification. An attractive feature of this approach
would be .avoiding the complicated paths of integration
necessary for the design of transonic cascades using complex
characteristics in the hodograph plane [4]. For example,
it might prove possible to obtain cascades with a smaller
gap—to—chord ratio than can be obtained using the hodograph
method.

An important extension of this method is to the case
of three-dimensional transonic flow past wing-body combina-
tions. The results obtained so far with the design routine
suggest that by choosing the proper pressufe distribution,
a satisfactory wing might be obtained with the‘mesh widths
usually available to three-dimensional codes. Analysis
codes that compute the transonic flow past a given wing
are currently available [3,21]. It would be necessary
to extend the method used in two dimensions to treat the
more complicated free boundary. One possibility would be
to use a separate conformal mapping. at each wing section

to define the wing.

47



V. A CONVERGENCE THEOREM

This chapter tréats some theoretiéal aspects of the
design problem. Section 1 describes the simplest design
problem in incompressible flow, where the method is exact.
Section 2 outlines a convergence proof for an iteration
scheme similar to the one used in the computations. The

estimates needed for the'proof are described in Section 3.

1. The Incompressible Problem

In this section the design problem is illustrated for

‘the elementary case of incompressible flow. The explicit

solution obtained here is used in the next section as the
basis for a convergence proof of an iteration scheme similar
to the procedure outlined in Chapter 3 in the case of
subsonic compressible flow.

To make the presentation as simple as poésible we will
consider the case of purely circulatory flow around a
smooth object. The Kutta-Joukowski condition (2.12) is
then unnecessary and the speed of the flow at‘infinity is
zero, which simplifies the aéymptotic-representation (2.13).
It is also convenient to formulate the problem in terms of
the stream function ¥ as well as the velocity potential ¢.

We first establish some notation which will be useful
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in the next section. Cbhsider a flow circulating around
a smooth body as indicated in Figure 15. We choose units
so that the total arc length of the body is 2m, so that
the density tends ﬁo one at infinity, and so that the
maximum speed on the surface of the body is one. We
measure arc length s from a fixed reference point on the
body and express the coordinates as functions (x(s),y(s)]
of s for 0 < s i 2 . The speed of the fluid along the

body is denoted by
(5.1) Q(s) = [u(x(s),y(s)) ]|

for 0 < s < 2m. We let § = min Q(s) > 0 so that § < Q(s) < 1.

The potential function

S

(5.2) o(s) = J Q(s') das'
O .
is then monotonically increasing and ¢(27)-¢(0) = -T > 276,

where T < 0 is the circulation of the flow.

It is convenient to consider Q(s) as defined by (5.1)
to be a 2r-periodic function defined for -« < s < o, and to
consider & to be defined on the whole real line. The

function
(5.3) s = S(9)
inverse to ®(s) then satisfies

S(¢ + T) = S(9) + 21
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for -» < & < « , and the fﬁnction
(5.4) 0(e) = o(s())

has period -T over the real axis.
In this section the motion is assumed to be incompres-
sible, which means we may take p = 1 in (2.2). Formulas

(2.8a) and (2.8b) then show that the complex function
(5.3) x(z) = ¢(z2) + iy(z)
is analytic with derivative

=u - 1iv .

Q-IIQ:
N[>

Near infinity, the asymptotic form analogous to (2.13) is

- r
(5.4) x(z) ~ 50T log z

We normalize ¥ so that
(5.5) P(x(s),y(s)) = 0.

We begin by observing that the body is determined up
to a rotation and translation by the function Q(s). To see
this,rconsider the conformal mapping z = f(z) which takes
the interior of the unit circle in the z-plane onto the
region exterior to the body in the z-plane. We assume the
pole of f is located at ¢ = 0 and £(1) = x(0) + iy (0).

In the z-plane, the complex potential x assumes the

simple form
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X(C) = :“—I— log T,
and in particular for 7 = e ",

iw, _ Tw

) = - =

d(e

corresponds to the function ¢(s). This provides a corres-
pondence s = s(w) between the unit circle and the surface

of the body of the form

_ I'w
(5.6) s = S{— EFJ’

which is valid for all w. To determine the body from the

boundary correspondence (5.6), we note that if

F(z) = —czf'(c), we have
iwyy _ | Az, iw _ | as
[F(e™) | = l ac (e™™) ’ = | a (w)
and therefore
(5.7) log|F(e™*)| = 1log ds do| _ log —-r
d¢ dw ar=Tw
, 2m 0 (=5)

This determines the boundary values of the harmonic function

log |F(z)

. If G(g) is a conjugate harmonic function for

log|F(z) ]|, we have
2
(5.8) £'(c) =¢ |F(z)| exp i{G(z) + b}

where bO is a real constant. The mapping f(z) is therefore
determined up to a translation and a rotation by Q(s). The

flow
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r .
2mig £'(7)

(5.9) » u - iv =
, . ' -ib
is determined as well up to a multiplicative factor e .
This is all that can be expected, since a Euclidean
transformation of the coordinates leaves the speed distri-
bution Q unchanged.

We may now change our viewpoint and let the formulas

(5.7), (5.8), and (5.9) determine a nonzero analytic
function f'(z) and a flow u -~ iv(z), say with_b0 =0,
from a prescribed function Q(s). Provided that the func-

_tion. f(r) determines a reasonable profile, the boundary
condition (5.7) shows. that the resulting'flow u-iv(z)

does have magnitude Q on the body, since
. : 4d _
lu-iv(x(s),y(s))| = Igg o(x(s),y(s)) | = I55l1ggl = a(s) .

The question arises whether every smooth, periodic
function Q(s) determines a reasonable profiie (x(s),y(s)).

This is not the case. For example, if

£1(z) =——l-—2—exp I ec’
C n=0
then
o
0 = dz = - # f'(z) dg = 27i cq e ,
body lz]=1
where i
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log|F(z) ] e ¥ quw .

Q
I
-
Ot

This imposes a compatibility condition

on Q(s) in order to obtain a closed body in the z-plane:
In the transonic design problem for flow past an airfoil,
an analogous condition on Q allows one to design airfoils
that have a finite thickness between the upper and lower
surfaces of the trailing edge in order to represent a
wake extending downstream from the tail of the airfoil.

A more subtle detail is that the mapping_z = £(t)
determined by Q(S)-may define a profile with self-intersect-
ing boundaries. In the airfoil design problem, this
consideration is important since the body determined by
Q(s) may havevso much curvature that the top and bottom
surfaces overlap.

Nevertheless, we emphasize that the formulas (5.7),
(5.8), and (5.9) do provide a locally one-one mapping
Z =‘f(§) and a flow u-iv(z) if only Q(s) is positive and
periodic. Similarly, the numerical computations for the
transonic design problem are possible under very mild
requirements on Q(s),, and the process converges whether

or not the resulting airfoil is physically realizable.
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It falls to the user of our computer code to make the
modifications of Q(s) necessary to obtain an acceptable

geometry.
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2. A Convergence Proof for the Compressible Case

We now consider the more complicated case of subsonic
compressible flow around a smooth obstacle. We wish to
show that an iterative procedure‘similar to the one used
in the numerical computation converges to a solution of
the inverse problem. The approach we take exploits the
idea that  incompressible flow can be considered to be
a limiting case of compressible flow as the speed of
sound ¢ becomes infinitely large. The convergence proof
requires the maximum Mach number in the flow to be small,
which can be assured by taking the préscribed critical
speed c, large enough. 1In this case we obtain a Poisson
problem with nonlinear inhomogeneous terms which we solve
by iteration. ‘We are able to use standard estimates
expressed in terms of H8lder continuity to show that the
iterative procedure defines a contraction, so that the
iterations éonverge. Less restrictive results could prob-
ably be obtained using deeper techniques from the mathemati-
cal theory of subsonic flows. However, the proof outlined
here is a satisfactory illustration of the computatiénal
procedure, which is our main concern.

For the subsonic désign problem, the critical speed
c, 1is given in addition to the speed distribution Q(s).

We éontinue to use the conventions of Section 5.1, with
units chosen so that ) approaches.one at infinity and

max Q(s) = 1. As in the computational procedure, we solve
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-the free boﬁndary problem by finding both the map z = £(7)
from the interior of the unit circle to the region exterior
to the desired body and by solving for the compressible
flowvg(c). We show that for a fixed speed distribution
Q(s), if c, is sufficiently large we may construct a map
z = f£(z) and a stream function yY(z), both depending on c*\,
which approach the corresponding incompreséible"solutions
determined by Q(s) as c, » ® .

For compressible flow, the velocity potential ¢ and
stream function v, éonsidered as functions of the variable

r = & + in, satisfy
(5.10a) ' D¢g = Y

(5.10b) . p¢n = —wg hd

We choose to work with y instead of ¢ so that we may use
the Dirichlet Eoundary condition ¥ = 0 rathervthan the
Neumann condition 8¢/8v = 0.

By'eliminating ¢ from (5.10a) and (5.10b) we obtain
the equation
2

2 2 q ' vl Y
Lu w££+ 2uv¢£n+ v l"nnJ’ (wélf |£+ ll)nlf In]’ ¢

(5.11) Ay =

Q IH
of

2 2

2 2 2, 2 2 2 ~
|©, v =¥/ [£'1° , g= u“+ v°,

where u2 = wnz/pzlf'

and c? = (Y+l)cpr_l/2. The density p can be obtained from

Bernoulli's law in the form
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27 2
+
Vet vy 1(y+1) 2 y-1 v+l 2
*

1
(5.12) : + — cLp == 1= &
202|f'(c)|2 2(y-1) —* 2

+
vy=1
The solution we shall obtain has the asymptotic form

T
[ 57 log ||

as ¢ » 0, where the circulation T is given by

27
r = - j Q(s) ds .
0

We have 27 > -T > 2nd, with § = min Q(s) > 0.
We again consider the analytic function F(g) = —czf'(c), |

which satisfies the by now familiar boundary condition

(5.13) log|F(e™¥) |

=.log = 1

3 iw
- 3= ¢(e"T)y .
Q(¢(e}w)) aw.

Using (5.10) we have p 3¢/dw = =-3y/dr , so that we may express

the potential function on the boundary in the form

. w
(5.14) o (0) = - f SO

iw, 9r -
0 ple ™)

w

If we knew the solution qb(rel ). (5.14) could be used in

the boundary condition (5.13) for the determination of |f'(Z)

We consider the expressions

(5.15) ¥(z) = ¢(z) - (r/2m) log|c| ,

Il

(5.16) H(z) = log|F(z)| - log|F,(z) ],
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where —C_ZFO(C) is the derivative of the conformal mapping

obtained by solving the incompressible problem with the

same data Q(s), as described in Section 5.1. ¥ and H are
perturbations of the corresponding incompressible solutions.
Note that ¥ and H are not singular at the point z = 0, in
contrast to bofh the mappihg f(z) and the stream function

v(z).

Substitution of the expressions (5.13) and (5.14) into

the equations (5.11) and (5.13) for ¢ and F shows that

¥ and H must satisfy equations of the form

AY = M[Y,H,c,]

(5.17) '
¥(e™™) =0 '
AH = 0
(5.18) -
H(elw) = N[lylch*] ’

where M and N depend nonlinearly on ¥ and H and formally
tend to zero as cf + o, We give the explicit form of M
and N in the next section. M is a function of Y and the
partial derivatives of ¥ up to second order, H and log]Fol
and their first order derivatives, and the variables

£ and n. N involves the boundary values of H,Y , and

the normal derivative (8?/8r)(eiw) in a manner

similaf to (5.13) and (5.14). Tne.functibn O(s) enters

the problem through the term N[Y,H,c,].
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We are interested in solving equations (5.16) and

(5.17) by iteration. We set W(O) = H(O) = 0, and formally

(n+1) and H(n+l)

define V as solutions of

| Ay (n+l) M[lf,(n),H(n),c*]
(5.19) | _
T(n+l)(e1w) -0

ar (0FL)
(5.20) _ .

H(n+l)(e1w) - N[?(n+l),H(n),c*] .
We denote this operation by
(5.21) (v (OFD) q(ntl)y _ py@) o) oy

We wish to show that for a given Q(s), if cy, is large

enough the iterates satisfy an inequality of the form
(5.22) "W(n-l-l)—‘{}(n)ﬂ + "H(n+l)_H(n)“ i e(qu(n)_qj(n—l)“
_i_ "H(n)_H(n—l)n)

with 6 < 1, which implies convergence of the iteration.
We therefore must examiﬁe»how the solutions W(n+l) and H(n+l)
of (5.19) and (5.20) depend on the functions y (n) and H(n),
and we must define the norms to be used in (5.22). It

turns out that since M and N are formally small as Cy, > @,

we may succeed by using basic estimates for Laplace's

equation which are expressed in terms of H8lder continuity.
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Let D denote the closed unit disk and consider the
space Cn+a(D) consisting of n-times continuously differ-

entiable functions u defined in D with finite norm

ful_, = sup ‘aiaj u(c)l +
n+o rep £ n
i,j<n
isg i3
3,0 - 9
. sup |359; ulzy) (97 ulzy) |
o
i+j =n :
where n is a nonnegative integer and 0 < o < 1. C (D)

n+o.
is a complete space with this norm. In addition, if

L
u € cn+u(D)' then u € C ,(D) when n' < n

n'+a

1
and o' < a, and | ﬂuﬂn,+u, < “u“n+u' If u; s, € Cn+a(D)’

then u; *u € Cn+a(D) and fu < K I Tu i

2 l'u2"n+a'— n+u"ul n+o 2 nto’

If u € Cn+a(D)-and G is (n+l)-times continuously differ-

entiable on the real axis, then G(u(g)) € Clyq (D) -

+o,
We also need the idea of H8lder continuous boundary

values. If g(w) is an nftimes continuously differentiable,

2m-periodic function defined for all w, we will say

g €C (3D) if the norm

n+o
, 137G (w,) =8 g (w,) |
_ i W 1 w 2
b9l 4q,3p = Sup |3 g(w)| + sup _ S
w Wy, le - w2|
i<n
is finite. The norm “'nn+u 5D has properties similar to
. ) iw
»ﬂ “n+a' Note that if f(z) € Cn+a(D)’ then f(e ) € Cn+a(aD)
iw ,
and £ (e )“n+a,8D < Kn+a“f"n+a'
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(n)

For any fixed o, 0 < o < 1, we will show V¥

(n)

E'CZ a(D)

and H € C (D) by using the following fact which is
.an elementary instance of the more general a priori esti-

estimates of Schauder [6 ]:
THEOREM. Let u(z) be the solution of

I Aua = £

l ul(e

iw

) = ¢

where f € C (D) and ¢ € C (BD) Then u € C (D) and

(5.23) - hub, < RG(IEN 4+ Mol

2+a,8D) !

where K3 depends only on a.
We will also use the following consequence of (5.23).

COROLLARY. Let u(z) be the solution of

Ad = 0
~ l(ﬂ) ~

u(e =¢" . .

~

where ¢ € Cl+a(aD)' Then u € C (D) and

(5.24) lul < R, 06l

1+o 1+o0,3D '

where K4 depends only on a.

This result can be obtained from the previous theorem

(5.23) by setting

21
el = & uwe)) +dn [ Gn aur
0
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‘where u is obtained by solving

[ Au = 0

u(eiw) = 5(w') dw' - 5% $(w') dw' .

O£
O*———=3

We assume the data Q(s) is three times continuously
differentiable. The expressions (5.2),. (5.3), and (5.4)

show that the function 6(@) is also that smooth, and

we set
(5.25) K. = sup ‘——- Q (o)
. Q -l <o
j=1,2,3

Using (5.24) we see that the harmonic function log|FO(c)|

determined by (5.7) is in C, (D) with HloglF () |

1+a
< Ké , Where Ké depends 'Only on KQ ;, 6 , and a. This
implies IF (?;)l2 € C1,,(D) with a similar bound
LiE, (z,)lzﬂ o S Ko oo
Consider the closed subset B(rl'r2) of C2+a(D)xCl+a(D)
defined as
B(rl,r2) = {(‘P,H): ”"2+a < rys "H"l+oc irz}

In order to show the iteration scheme (5.21) converges,

we first establish the following

LEMMA A. There is a constant KA depending only on

o, Y, 8§ = min Q(s), and K such that for c, > K the

Q A’
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operator L(*,-,é;) formally defined by (5.19) and (5.20)

. is well defined on B(6/2,1) and maps B(6/2,l) into itself.

y (n+1) and H(n+l)

Thus the iterates all . exist and satisfy

1+o < 1.

We sketch the derivation of the estimates necessary for

(n+l) . (n+1)
Ty "2+a < 8/2, IH f

the proof of Lemma A in the next section. There we 'show that if
€ i i :
(Wl’Hl). B(6/2,l) and if c, 1is large enough, we have

MI[Y.,H ,c,] € Cu(D) and N[Wl,Hl,c*] € Cl+a(aD) , w;th

1’71

MDYy oy oyl = Kg/e,™ and INTY; Hyeudly ) op

2
< K6(l/c* + "W1“2+u) , Where K¢ depends only on

a,Y,8, and KQ. Using the basic estimates (5.23) and (5.24),

we then have that the functions (W2,H2) = L(Wl,Hl,c*)

defined by solving (5.15) and (5.16) satisfy

2
(5.26) ¥, 5, < Ko/e”

2

(5.27) LA P ST

with K., depending on a,Y,8, and K, , which establishes

7
. 2 _
Lemma A with KA = K7/6.

Q

(n) (n)

Lemma A shows that the functions V¥ and H can
indeed be generated for n = 1,2,... . In order to show
convergence, we have

-

LEMMA B. There 1is a constant KB depending only on

a,Y,8, and KQ such that for ¢, > KB . the operator

L(+,+,c,) defined on B is a contraction. More

(6/2,1)




specifically, if (WZ,HZ) = L(Yl,Hl,c*) and

(W4,H4) = L(W3,H3,c*), we have

nwzf w4n2+a+ HH2— H4Hl+a < e(nwl—w3n2+a+nH1—H3nl+a)

(n)

where 8 < 1. Thus the iterates V and H(n)vform Cauchy

(D) .

sequences in the complete spaces C2+a(D) and C1+a,

To establish Lemma B we consider the expressions

A(Y,-¥,) = MI[Y,,H, ,c,] - M[¥,,H,,c,]
(5.28) 2iw4 il 1 ‘3 3
- wy =
Yy(er™) - ¥, (e™”) 0.
A(HZ—H4) =0
(5.29) ,
’ iw iw, _
H2(e ) - H4(e ) = N[Wz,Hl,c*] - N[W4,H3,c*] .

In the next section we see that

ﬂM[Yl,Hl,c*] - M[W3,H3,c*]ﬂav_

2
< (Rg/ey ™) (R =¥aly o V) =Byl o)

"N[qu,leC*] - N[\P4IH3IC*]"l+a,8D

2
< Kg(hyy=w o, + VH -H T, /)

‘where K9 dpends on a,Y,8, and K Applying the basic

o
estimates. (5.23) and (5.24) to equations (5.28) and (5.29),
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we have

2
P P PN LSV )(uwl—w3n2+a+ bH -H 0, )

(v — _, 2
VHy-H by, S Ry -y, + H -H N, /e )

which together yield the statement of Lemma B with

2 - 2, 2
KB = Klo(l + 3K10) and 6 = KB /c. .

(n) (n)

The Cauchy sequences of iterates V¥ and H there~

fore converge to functions VY € C2+d(D) and H € C (D)

1+a

which must satisfy (¥,H) = L(Y,H,c,) 1if Cxy > K We.

B*
note that since L is a contraction, V¥ and H are the

only solutions of (5.16) and (5.17) with HWH2+Q < 8/2

and [ HI < 1. Moreover, the expressions (5.26) and (5.27)

1+ —
show that the solution satisfies

vl + 1ml < 2k /e

2+a 1+a

Recalling that ¥ and H are perturbation quantities represent-

ing the difference between the compressible and incompressible

solutions for a given Q(s), we see ﬁhat the compressiblé
solution indeed tends to the corresponding incompressible
solution as theicritical speed c, > «. fhis fact, together
with the explicit solution available in the incompressible
case, 1is the underlying basis of the above convergence

proof.
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3. Inequalities for the Convergence Theorem

In this section we consider in more detail the
inhomogeneous terms M[Y¥,H,c,] and N[W,Hl,c*] appearing

in eguations (5.17) and (5.18) and indicate how the

estimates mentioned in the discussions of Lemmas A and B

are derived.
A calculation shows that the inhomogeneous term

M[¥,H,c,] of (5.17) has the form

H, ,log|F

(e, LY , )
irte, e e ole,

(5.28) M[Y,H,c,]

' cpr+l|F0|2 exp 2H

where'c’;l = g, 52 =7, and T is a third degree polynomial

in its arguments with coefficients depending only on the

circulation I'. The term N[Y¥,H,c,], takes the form
(5.29) N[Y,H,c,] = 1og[1 + 3% %% (e*®)

- log p(e™®)-1og [O(®(w)) /O (~Tw/2m) ]

Here the density p can be defined by Bernoulli's law (5.12)

to be a function p = R(&2/cz), where &2 =»(w§ + wi)/lf'
valid for 0 < &2 < 2ch£ , with R(0) = 1. R 1is the

subsonic branch of the multiple—valued function giving
0 in terms of the gradient of the stream function. The
constant Kl 1
only information about R that we need is that for

depends on Yy, 2K, = [2/(y+l)]2/(Y—l). The
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&2 < chf

that 1 > R > K

+ there is a constant'K2 depending on Y such

2_1 >0 and [R'],|R"| < K,. Recalling the

expressions (5.15) and (5.16) giving ¥ and H in terms

of y and f', we have that , : . ‘
|
(5.30) g = 5 '(55) lz]® - ;L—L— (£¥ +n¥ )
[FO| exp 2H -
4,2 2 5
+ + 1.
LNCGERES]

The term ¢ (w) appearing in the expression (5.28)

for N[¥,H,c,] is written in the form

o .
_ 1 r 3¥ (') '
(5.31) ©®(w) = (T'/c) J ;?gzay {‘Eﬁ t o5 } dw
0

rather than (5.14), where the constant ¢ is given by

21 r ]
- _ 1 T ¥ (e™)
(5.32) c = J '———I—w——- o7 + 8—;————— dw .
o Ple™ ) |]
The . factor c is introduced to make sure o (w+2m)-¢(w)= =T,

so that Q(®(w)) is 2m-periodic and smooth.

We first describe the inequalities used in the proof
of Lemma A. Since the expressions (5.28); (5.29), (5.30),
and (5.31) are rather complicated, we do not attempt to
present all the details. We have chosen the data Q(s) to
be smooth enough so that nothing more sophisticated than

the mean value theorem is needed.




"We assume (V¥,H) € B(6/2,l) . We claim that if c, is

-large enough, M[¥,H,c,] € C (D) with HM[W{H,C*]HQ < K6/c*2)

and N[Y¥,H,c,] € C; (D) with IN[Y,H c*]H 69D S
, -

i_K6[l/c* + HWH2+Q). In the following expressions, Kj

will denote constants depending only on.' o,6,y, and KQ. |
" Consideration of the expression (5.30) for ﬁz shows

that q2 €C o (D) with "q ﬂ b S K;.

properties of the function p = R(éz/ci) defined by (5.12),

Recalling the

. . .
we see that p € Cl+a(D) with "p"l+ < Klo , prov;ded
2

that we have chosen cg > Ké/Kl' This choice keeps 5['2/c*2
on the subsonic branch of the density-stream function
‘relation. We then see from (5.28) that M[Y¥,H,c,] € Ca(D)‘
and we obtain "M[W,H,c*]"a < Kl'l‘/c*2
We next observe that each of the three terms on the

right hand side of the expression (5.29) for N[Y¥,H,c,] are
in C (BD) The first term is well behaved since we have
iw

[T| > 276 and I¥l,, < §/2, giving |(2n/T) @¥/or) (™) | <3,

~The

and its norm is bounded by a constant times HWH2+a.

second term log p(elw) is also well behaved since p is

bounded away from zero, and we can estimate

llog p(e™®)t

2
140,30 < ¥127Cx

The .desired factor l/c*2 is essentially due to the fact that

log o(e™) = log R(G%(e™) (c,?) - 1log R(0)
(eiw) L R'(tﬁz/c*z)
= ) f 2,2, 4t
Cy b R(tg™/c,™)
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by the mean value theorem.

The last term in (5.2a) can be estimated by

(5.31) flog Q(%¢(w))-log Q(-Fw/2n)ﬂl+a,aD < K13(l/c* + “?“2+u .

This inequality is more complicated and we sketch it as
follows. Using the fact that 0 is three times continuously

differentiable one can easily obtain

Ilog @(e(w)) - log O(-Tw/2m)l,, 4y

< K 4ﬂ®(w) + Tw/2ﬂn1+a,3D .

1

We then express ¢(w) + Tw/2m in the form

w
_ TI'+c 1 |T oV
<I>(w) + 110.)/271' = c j E "2—,”_' + ﬁ{l dw
’ 0
W . (A()
Jf ae T av) g, o fay

J 5 [2W + rJ dw J 57 dw

0

and estimate the three expressions on the right in terms
of I'+c, p-1, and ¥, respectively. The factor I'+c can be
written

.2? - 27
0 0

-~

0 LZﬂ 3r r

We again gain a factor l/c*2 from the expression p-1, and
we may obtain

2
b o(w) + Tw/amly, o ap < Kyg(l/eg + 0¥l )
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and (5.31) follows. We'therefore have an inequality

2
Kyg(1/cy™ + 1905, 0)

IN[Y,H,c,ll o

l4+a,dD <

as stated in Lemma A, provided c*2

)
> Ko /Ky
We now consider Lemma B. We wish to verify that if
S f o
(Wl,Hl), (W2,H2) B(6/2,l) and c, is'large enough, we

have

(5.32) HM[Wl,Hl,c*] - M[WZ,HZ,C*]HG

2
< (Rg/c, D) (hy =¥ 0, o+ I ~H M )

(5.33) INLY Hy 0] - NIY,, Hy e 0l 0 oy

2
< Kg(uwl-w2u2+a + nHl_H3“1+a/c* ) .

Consider the first inequality. The form of (5.28) shows

that, with an obvious notation, we may write

K19 1 1

- = - - — fl

an Mzﬂa < = (lwl W2"2+a+ HHl Hol g * f T 7T o
Cx ‘ %1 Pa

+ ﬂexp(szl) - exp(—2H2)ﬂa) .

It is easily seen that the last term is dominated by some

constant times HH1¥ H2H Examination of the expression

1+a°

(5.30) for éz shows that we also have
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~ 2~ 2
Fa; A4y < KZO("Wl_W2n2+a + hE -H b )

and using this result with p = R(iz/c*z) then gives the
first inequality (5.32).

To obtalin the estimate (5.33) we write

inN. -
N N2ﬂ

1 < Ilog(1+(2m/T)a¥, /or (e1*))

1+a,3D

- log (1+(2m/T) 8¥,/5r (™)) . o0

iw

+1log pl(elw)— logpz(e )i

l1+a,9D

+1 log Q(®l(w)) - log Q(Qz(w))"l+a,3D

and estimate each of the terms on the right separately.
The last expression is the most complicated, and can be
treated in the same fashion as was the term

Ilog é(@(w)] - log é(—Fw/Zﬂ)"l in Lemma A.

+0,3D
Straightforward calculations then show that an estimate
of the form (5.33) holds, and the statements of L.emma B
follow. The map (WZ,HZ) = L(Wl,Hl,c*) is a contraction
and has a unique fixed.point that can be obtained by
iteration.

There remains a technical point due to the introduction

of the factor c in the expression (5.30) for %(w).

We desire the fixed point (¥,H) of the mapping to provide




solutions Y (Z) ahd F(z) = —C2 f'(g) to the equations (5.11)

and (5.13), where (5.14) rather than (5.30) is the expres-
sion for ¢ (w). Therefore we should check that for the

fixed point\(W,H) we have
27

_ 1r_, av - .
c = J 5 f?“ + 8?} dw = T
0 .

To see this, note that the corresponding function
y(z) = (T/2m) loglz| + ¥(z) by construction satisfies

the equation
(wg/p)g + (wh/p)n '

with ¢(z) ~ T'/2n log |z| as ¢ - 0, whether or not ¢ = = T.

By Green's theorém we therefore have

27 ) : 27

- . _ 1 3y, _iw
c = J - ———%m—- %% (e™) dw = lim J (eeiw) griee’ e dw
5 ele™) e+0* P
= - L
. p(0) -~
The expression (5.30) for &2 shows that
p(0) = R(éz(O)/c*z) =1, so c = - T as desired. This

completes the convergence proof for the subsonic inverse

problem.
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VI. DESCRIPTION OF THE CODE

In this chapter we explain how to modify the input
speed distribution in order to obtain airfoils with given
specifications. We also describe the other input para-

meters necessary for the operation of the design mode.

1. Achieving Design Specifications

We refer again to the speed distribution illustrated
invFigure 2. The form of the upper surface distribution
determinés the amount of wave drag experienced by the
airfoil and the growth of the boundary layer along the
upper surface. We suggest using a distribution with
constant supersonic values over the first portion of the
profile, followed by decreasing valugs along the rest
of the surface in accordance with the Stratford criterion
csép v 0.003 near the trailing edge.

The value of c, should be determined so that the
supersonic zone has the proper size, as discussed in
Section 4.1. -

The lift of the airfoil is related to the area between
the upper and lower surface speed distributions. By varying

the lower surface distribution, the 1lift can be distributed




as desired over the airfoil. The free stream Mach number
is also affected by changes in.the speed distribution.
For example, increasing the magnitude of the velocities
along the lower surface will generally decrease the lift
and increase M_. | |

The thickness-to-chord ratio of the wing section .can
be adjusted by varying the slope of the speed distribution
near the stagnation point Q = 0. Increasing the slope
will result in a thinner profile with little change in
the 1ift of the airfoil. The free stream Mach number élsov
_increases as the thickness-to-chord ratio is decreased.

' The vertical separation between the upper and lower surfaces
is decreased as the slope is increased.

The relative position of the upper and lower surfaces
at the trailing>edge can be adjusted by changing the
velocity distribution near the tail. The vertical separa-
tion is increased by raising the préscribed speed at the
tail on both the upper and lower surfaces. This will not
have a strong effect on the thickness-to~chord ratio. For
most purposes the vertical separation should be around
0.015 so that after removing the boundary layer a gap of-
around 0.007 remains. The horizontal séparation can be
adjusted by changing the amount of arc length near the
tail.

Finally, we mention that a decrease in the prescribed

critical speed C* will generally increase the size of the
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supersonic zone, increaée the free stream Mach number,
decrease the thickness-to-chord ratio, and increase

'the vertical separation at the trailing edge. It should
have litélé effect on the lift or horizontal separation
at the tail.

When designing an airfoil with givén specifications
it is advisable to proceed in stages by modifying the
pressure distribution in the appropriate areas one at a
time SO that the effects of each changé can be isolated.
When beginning a new design it is useful to make the
initial runs on a coarse mesh of 40x7 or 80x15 points,
where resulfs can be obtained in one or two minutes
on the CDC 6600. The finer mesh can then be used to
make minor adjustments to the pressure distribution and

obtain accurate resolution for the final runs.




2. Operation of The Code

We have‘included the design modification to program H
in sﬁch a way that when design parameters are not explicitly
specified, they assume.default values that do not affect |
the operation bf the anélysis routine. The descriptién
of the operation of the_analysis code given in [4] therefore
remains in effect for the new version also. We assume
the user is'familiar‘with this descfiption of the analysis
routine.

For §peration of the design mode, the input speed
distribution should be provided on TAPE6 in the format |
given in Table 7;1, with negative values along the lower
surface followed by positive values on the upper surface,
as in Figure 3. The arc length sA must be monotonically
increasing.

Table 7.2 contains the other input parameters necessary
for operation in the design mode. These parameters have
default values as indicéted and can also be specified using
standard namelist conventions. We provide some sample
commands below to illustrate their use.

The parameter NDES specifies the number of overall
iterations to be performed in the design mode. Each ifera—
tion consists of NS cycles of- flow computations, followed
by a ne&vmapping to the unit circle as described in Sec-

tion 3.3. Since the time required to calculate a new
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mapping function is-émall compared to the time required
to find the flow pést a profile, we use relafively few
. cycles of flow computation between each mapping. We
generally specify NS = 10, NFAST = 0, and NREXLAX = 1,
so that 10 relaxation sweeps are used between each
mapping. The results we have présented have all beéﬁ
"produced with this choice.

The parameter TSTEP is a felaxation factor for the
Fourier - coefficients determining the mapping function.
The rate of convergence of the overall iteration procedure
depends on the value of TSTEP. If TSTEP is too large, the
coordinatés of the pfofile may oscillate and the scheme |
will converge slowly or not at all. When a small amount
of artificial viscosity is being used in the flow equations,
it is sometimes necessary £o use smaller wvalues of TSTEP
to avoid abrupt changes in the successive profiles that
may cause undesirable shock formation. We have TSTEP 0.2
for the design procedure outlined in Section 4.1.

An example of the control cards and data cards used
to design an airfoil on the CIMS CDC 6600 is given below.

. To improve turnaround time we have found it convenient to
break up the job into several shorter jobs rather than one
longer job.

The relevant control cards have the form




GETPF (TAPE 6=SPEED) Speed contains Q(s) as in Table 7.1

GETPF (LGO=HDES) HDES is a compiled version of the
modified éanalysis code H.

LGO.
SAVE (TAPE3-COMP1) Tape3 contains.data to continue

the computation if'désired.
SAVE (TAPE4=COORD1) Taped4 contains the coordinates
| “of the resulting airfoil in FSYM=1.0
format, and the final pressure

distribution.

For an initial run on a crude grid, the first card

used as input to the program could be
{ SP RN = 0., ALP=0., NDES=1 $ ]

NDES = 1 puts the code in the design mode. Thelspecified
angle of attack with respect to the x and-y axis must also
be given on this cara. The Reynolds number is zero for the
inviscid flow calculations. The speed distribution is read
from TAPE6 and a plot of Q(s) is provided. (if CSTAR < 0,
the program will then terminate.)

The next cards are
[ $P NS=-1, ITYP=1l § ]
The grid is coarsened from 160x30 to 80x15.

[ $P NS=-1, ITYP=1 §$ ]
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The gird is coarsened from 80x75 to 40x7.

[ $P NDES=20, NS=10, NFAST=0,
NRELAX=1, EPS1=0.5, TSTEP=0.2,
REM=0.5, ITYP=4, XP=1.0,

KDES=10 ]

Twenty design cycles are performed. After each increment
of 10 (KDES) cycles, the coordinates of the resﬁlting air-
foil, the Mach number diagram, and a Calcomp plot of

the flow are prbduced. XP=1. causes the desired preésure
distribution to be plotted on the graph also; if_XP=0.

it will not appeér. The results of this computation are

automatically saved on TAPE3 after NDES cycles.
[ $P NS=1, ITYP=-1 §$ ]
The grid is refined from 4057 to 80x15.
[ SP.NDES=20, NSélO, ITYP=4 ] |

Twenty more design runs are performed on the new grid, and

the results rewrittenvon TAPE3.
[ $P ITYP=0, XP=0. ]

The computation stops. XP=0. causes the airfoil coordinates
to be written on TAPE4. This run takes about 90 CP sec-
.onds execution time.

If the airfoil produced by this run does not meet the

desired design specifications, Q(s) is changed and the run:
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is repeated. If the airfoil is satisfactory, the run may be

continued on a finer mesh as follows.

GETPF (TAPE3 = COMP1)
GETPF (LOG = HDES)

LGO.
SAVE (TAPE3 = COMP2)
SAVE (TAPE4 = COORD2)

The.data .cards are then
[ $P NDES = 1, RN = 0., ALP = 0. %]
[ $P NS = -1, ITYP =1 § ]
cOérsen mesh from 160 30 to 80 15.
T $p ﬁs =0, IfYP =11
Read in data stored on TAPE3 (stored with MxN = 80x15)
to continue the computation.

[ $P NS=1, ITYP= -1 § ]

[ $SP NDES

10, NS = 10, EsPl =1., ITYP = 4 $ ]

[ SP ITYP = 0. $ ]

I
o
:><:~
v

This run takes about 130 CP seconds execution time.

The next run might have

[ $P NDES 1, RN 0., ALP = 0. $ 1

S [ SP NS = 0, ITYP = 1 ]

[ $P NDES = 10, NS = 10, EPS1 = 0.75, ITYP = 4 § ]

[ $P ITYP

0, Xp = 0. $1 ,

and so on. .
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If it is desired to do the design in a single run,

the data cards might read:

[ $SP NDES = 1, RN = 0., ALP = 0. $ ]
[ $P NS = -1, ITYP = 1 ]
[ $P NS = -1, ITYP = 1 ]

[ $P NDES = 20, NS 10, NFAST = O,

NRELAX = 1, EPS1l 0.5, TSTEP = 0.2,

I

REM = 0.5, ITYP = 4, KDES = 10, XP = 1. § 1

[ $P NS = 1, ITYP

-15 1

[ $P NDES = 20, NS = 10, ITYP 4 S ]

[ $P NS =1, ITYP = -1 § ]

[ $P NDES = 10, NS = 10, EPSl

1.0, ITYP = 4 $ ]
4 $ ]
4 $ ]

I
i

[ $P NDES = 10, NS = 10, EPS1 0.75, ITYP

I

[ $P NDES = 10, NS = 10, EPS1 0.50, ITYP

[ $P ITYP = 0, XP = 0. ]

This run takes about 520 CP seconds execution time on the
CIMS CDC 6600.

For the present version of the code, a separate run
is required to perform a boundary layer correction for
the airfoil designed with inviscid theory. Assuming the
coordinates and pressure distribution from the design run
were stored on TAPE4 = COORD1, the control cards for a

boundary layer correction would be
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GETPF (TAPE3 = COORD1)
GETPF (LGO = HDES)
LGO.
SAVE (TAPE3 = COORD2)
The required data cards have the form
[ P RN = 20.E06, XP = -1., PCH = 0.07, PLTSZ=8.0 $ ]

[ $P ITYP = 0, XP = 0. ]
COORD2 then contains the corrected coordinates in FSYM = 2.0

format. A plot of the profile is also generated by this
run. |

Finally, we mention that the parameter XOUT can be
used to obtain speed distfibutions for use.inbthe design

mode. The command
[ SP XOUT = 1.0 ]

will cause the speed distribution currently in memory to be

written on TAPE3 in the format shown in Table 7.1.
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TABLE 7.1. TAPE6 INPUT SPEED DISTRIBUTION Q(s).

\\cols. , 1-10 11-20 21-40
~.
\\\

Cards \\\\'

1 , XIN CSTAR

2 -lo] at tail initial value of

: arclength
3 speed along profile increasing values

‘of arclength

CXIN + 1 |l at tail final value of
arclength
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TABLE 7.2. DESIGN PARAMETERS

Glossary of Input Parameters for Design Mode

Parameter Default

-CSTAR

KDES

EPS1

NDES

PLTSZ

QPL

QPU

TSTEP

XouT

XIN

100.

10

50.

.85

.95

None

Description

Real. Critical speed c¢,. If c, < 0, the

‘program plots the prescribed speed distri-

bution and halts.

Integer. Graphs and flow printout are
generated every KDES design cycles.
Real. Artificial viscosity coefficient €
appearing in the expression (3.16).
Integer. Number of design iterations

to be performed.

Real. Length in inches of profile in
graph generated when boundary layer
correction is performed.

Real. Lower limit M; of the cutoff
function V(M) in formula (3.16)

Real. Upper limit Ml of the cutoff
function V(M) in formula (3.16)

Real. Relaxation parameter for determina-
tion of M_.

Real. Relaxation parameter for coeffici-
ents of mapping function.

Real. XOUT = 1 causes the current
velocity distribution to be written

on TAPE3 in the format of Table 7.1.

The computation is then terminated.

Real. Number of points used in prescribing

input speed distribution Q(s).
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AIRFOIL 72-05-12 M=.750 CL=0.600 RN=0.00
—  MxN=160%30 EPS1=0.0 CD=.0008
-~ MxN=160%30 EPS1=0.1 CD=.0002

A MxN=160%30 EPS1=0.4 '~ CD=.0000
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Figure 6

VISCOUS DESIGN MxN=160x30  NCY= 300  EPSI= .500
— ART. VISC. M=.746 ALP= 0.00 ClL= .618 CD=.0011
A INPUT CP T/C= .118 DO= .B4E-02 OPHI= .11E-03
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Figure 7
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Figure 8

VISCOUS DESIGN MxN=160%30  NCY= 200 EPS1= .750
— ART. VISC. M=.776 ALP= 0.00 CL= .639 (CD=.0056

A INPUT CP T/C= .118 DQ@= ..45E-02 DPHI=-.49E-04
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Figure 10
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VISCOUS DESIGN MxN=160%50 NCY: 200 EPS1= .500
— ART. VISC. M=.712 ALP= 0.00 CL= .480 CD=-.00r
A INPUT CP TC= .133. RD= .24E-02 ODOPHI=-.21E-04
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Figure 12
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~-1.6 _ Figure 13

AIRFOIL 75-05-13  MxN=160x30 NCY= 10  R= 8 MILLION
— THEORY ~ M=.740 ALP= .01 CL= 540 CD=.C773
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Figure 14

VISCAUS DESIGN MxN=160%30  NCY= 700 EPS1= .050
— ART. VISC. M=.775 ALP= 0.00 ClL= .839 (D=.0040
A INPUT CP T/C= .117 DQ= .38E-02 ODPHI= .S5E--04
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Figure 15




LISTING OF CODE

PROGRAM H{INPUT = 66,0UTPUT = S00sTAPE3 = 600»TAPE4 = 400s TAPEZ
LOUTPUT,TAPES = INPUTSTAPED)

COMMON/FL/FLUXTG4»CD4sCOWs INGCD

COMMON PH1(162531)sFP(162531)5A(31)58(31)sC(31)5D(31),E(31)
1 »RPI{31),FPP(31)sR(31)sRS(31)sKI(31)5AA(162),86(162)sC0(1t2)
2 »sSI(162)sPHIR(162)» XC{102)sYCL162)»FM(1H2)9ARCL{LEZ2)SDSUM(LE2)
3 JANGOLD(1i62),X0LE(262)»YOLL(162),ARCOLD(162),DELOLD(L162)
4 9yRP4(31),KkP5(31)

COGMMUON /ZA7 PlsTPyRADSEMIALPIEN)PCHsXPsTUsCHDSOUPHISCLIRCLSYK
s XA» YA» TEsDT»DORsDELTHIDELRIRKA» DCNs DSNsRA4,EPSILSQCRITHC1sC2
" 9C49C59CHsCTHBETIRETAs FSYMs XSEPSSEPMsTTLE(S)»MsN)MMsNNs NSP
2 IKsJK» IZ» ITYP>MODE) ISH)NFCHONCY»NRNy NGs IDIMIN2sN3sN&syNTs I1XX
sNPTSsLLsIsLSEP»MayNEW) EPSLyNUDESy XLEN»SCALQ]

s SCALQOINGIGAMMASNQPT» CSTARYREMs DEP» QINF» TSTEP, XOUT
»INCHQFAC)GAMyKDES)PLTSZ,QPLs»QPU '
DIMENSIDON COMC(87)sCLA(2)s NAMEKR(6)

EQUIVALENCE (COMC(L)yPIVs(CLXyCLACL))» (ALPX,CLA(2))

LSTERR IS THE SUBRGUTINE TG PROUOCESS A NAMELIST ERROR
EXTERNAL LSTERR '

*EENON=-ANS T %%

NAMELIST /P/ ALP>BETA»BCPsCLyEMs FSYMs GAMMAS IS»ITYPs IZsKPsLLs LSEP,
1 MaNsNFCosNPTSsNRNs NSeNSL1sPCHsRBCPIRCLIRODELsRFLOSRNySEPMSSTS
2 XMONs XPsXSEPsNRELAXsNFAST ) ,
3 SEPS1sCSTARYNDESHIREMIDEP» TSTEP» XOUT»KCES»PLTSZ»QPLSQPU

DATA GAMMA/le4/ s ST/0e/ » XMON/Z.95/7 » RBCP/.10/ s RFLO/1.47 »
1 KDEL/.125/ » BCP/e4/ » NS1/207 » N3/1/ » KP/ZL/
DATA N5/57 » NAMERR/6%0/ 5 D1502»SL/3%Ca/ » (P17 o4/ s XPF/1o/
1 sNE/B/

AA(l) = 99939,

INDCL=0

NEW=1

NFAST=1

NRELAX=6

THESE TwWO CARDS TRANSMIT TO THE SYSTEM THE RECOVEKRY ADDKRESS
NAMERR(5) = LOCF(LSTERR)

CALL SYSTEMC(66s NAMERK)

M& = N4

REWIND N4

WRITE (N2,180)

READ (N5,P)

IF (CL.NE.100,) MODE = 0

oV I SN SURE S I
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IF (IZ.GE.B0) N4 = NP
IF (NSLEG.0) GU TO 30
CALL RESTRT :
Cix = CL ,
ALPX= RADX*ALP
60 TG 140
10 WRITE (N2,180)
NEw=1
ALP = 100,
CL = 100,
C ****NUN—ANSI**\*#
READ (N5,P)
LN = RN*]1,E=6+,.%
TXT = 3HALP
IF (MODE.EQ.0) TXT = 3H CL
Call SECOND(TIME) .
WRITE(NZ2,200) EMy TXT>CLA(MODE+1)sLNsMsNs NSy TIMES RFLOSRCLIRDEL S
1 RBCPsBETA» STy PCHy SEPMyXSEPsSNPTS,ISsLLs1IZ
2 sEPS1,NDESIREMsNFASTINRELAXs ITYPSFSYM,TSTEP,DEP
IF (ABS(XOUT).GT.s5) GJ T3 7727
GO TO 7728
7727 CALL QUTPT
CALL PLOT(04504.5999)
ST0P
7728 CONTINUE
¢ SELECT QUTPUT TAPE
NG = M4
IF (IZ.GE+B80) N4 = N2
C2 = J5%(GAMMA-1.,)
C7 = GAMMA/Z(GAMMA~-1,)
IfF (ALPLECQ.100,.,) GO TO 20
C ALP HAS BEEN INPUTTEDs, KEEP IT FIXED
NCY = 0
MODE = 1
ALPX = ALP
20 ALP = ALPX/RAD
IF (CL.EQ.100.) GO TG 25

¢ CL HAS BEEN INPUTTED, KEEP IT FIXED
NCY = O
MODE = 0

YA = J5%CL/CHD-DPHI
DO 114 L = 1sM
00 114 4 = 1NN
114 PHI(LsJ) = PHI(L,»J)+YA*PHIR(L)
DPHI = .5#%CL/CHD

CLX = CL
25 CL = CLX
C CHANGE PARAMETERS WHICH DEPEND ON THE MACH NUMBER
EM = AMAXL1(EM» . 1E-4C)

IF (EMJNELEMX) NCY = 0

Cl = C2+1./(EM %*EM )
Co6 = C2%EM *EM

C4 = 1.+4Co

C5 = 1./7(CH6%CT7)
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OO

(]

QCRIT = (C1l+C1)/(GAMMA+1.)
BET = SQRT(1l.-EM *EM )-1.,
CHECK FOR TERMINATE, RETRIEVEs OR STORE INSTRUCTIONS
IK WILL BE =1 ONLY IF THERE IS A NAMELIST ERRGOR
IF ((ITYP.EQG.0) ORs(IKsEQs=1)) €0 TO 170
CaLL COSI
IF (NS.NE«O) GO TO 4C
REWIND N3
IF (ITYPLGT.0) GO TO 30
WRITE(N3) COMCsPHIs»AAyBBsARCOLDSANGOLD, XOLD» YOLDSDELOLDsRsRSHRI
1 »DSUMyGAMMAY XMONSRBCPSRFLUOsRDELSBCPpNSLsKP»ST
GO TGO 140
30 READ (N3) COMCsPHI»AAsBBs AKCOLDs» ANGULD» XOLDs» YOLDs>DELOLDs Ry KS»R1
1 »DSUMsGAMMA XMONSRBCP,)RFLO»RDELBCPINSL1sKP,ST
CALL MAP
60 TO 140
40 CONTINUE
IF (NS.GT.0) GG TO 70
NS = O
60 TO CRUDE GRID IF ITYP.GT.O
IF (ITYP.G6T.0) CALL REMESH(-1)
© G0 TO 140 .
70 1IF (1TYP.GT.0) GU TO 99
GO0 BACK TO FINER GRID
CALL REMESH(1)

GO TO 140 : :
SET UP CONSTANTS AND DO CUNFOKMAL MAPPING
99 Kp =1

100 XPHII = O,
IF ( RCLoNE.Os) XPHII = 2.%CHU/KCL
XA = 1.=2./KFLO
ANGO = =-RAD*BB(1)
TXT = 3H CL
IF (MODECEGQ.O) TXT = 3HALP
DO AT MOST NS CYCLES
IF (RNsLE+O+) NS1 = 1000000
IXX = M+2
80 IXX = IXX-1
IF (XCUIXX=1)eGT+XMON) GU TO 80
LC = 0 :
DO 120 K = 1y NS
IF (NDES.GE.O) GO TO 105
IF (MOD(LC»%6)«NE.O) GO TO 105
WRITE (N2,210) TXT
LC = LC+1
‘105 CONTINUE
IF(NFAST.LELD) GO TC 14l
CALL SWEEP1 :
141 IF(NRELAX.LE.OQO) GO TO 151
CC 142 LF=1,NRELAX
CALL SWEEP
142 CONTINUE
151 NEW=0
NCY = NCY+1

107




ALPX = RAD#*ALP
CLX= 2+*%DPHI*CHD
YA = YA*XPHII
WRITE RESIDUALS ON NZ EVERY KP CYCLES
IF. (NDES«GE.O) GO TGO 110
If (MOD(KsKP) NELO) GO TO 110
LC = LC+1
INDCD=1 '
caLL GTURB(Dl;DZ;CPlJLDWJSL,RDEL’RbCP)
INDCC =0
ANGO = ‘RAD*BB(l)
WRITE (N25190) NCY»YR»YA»D1sD2s IKs JKyNSPsCLA(Z2-MUOE)» ANGOsCP1L»
1 CDWsCD4
DO A BOUNDRY LAYER CORRECTION EVERY N31 CYCLES
110 IF (MOD(KsNSL).NELO) GO TO 125
IF (K+EQ.NS) GO TO 140
WRITE (N2,190)
LC = LC+1
FSYM = 6.
“CALL GTURB(Dl;U?;CPl)BLP)SL:RDEL,RBCP)
ANGDO = ~RAD*BB(1)
IF (MODE.EQ.G) DPHI = +45%¥CLX/CHD
CHECK TO SEE IF WE HAVE SATISFIED CONVERGENCE CRITERIA
125 IF (AMAX1(ABS(YR)»ABS(YA))«LT4ST) GO TC 310
120 CONTINUE -
310 IF(NDES.LELO) GU TO 140
CALL CYCLE
IF (MOD{ KDsKDES ).NE.Q) GO TO 138
CALL GTURB(DI’DZ)CPI;BCP,SL,PDEL,RbCP)
CALL MAP
CALL COSI
138 IF (KD+EQ.NDES) 60O TUO 139
KO = KD+1
GG TO 10¢
139 REWIND N3
ITYP = 1 N
WRITE(N3) COMCsPHI»AA»8B»ARCOLDs ANGOLDs XULO» YULDSDELOLDSRIRSHRI
1 »DSUM»GAMMAY XMON»RBCPyRFLO)RDELSBCPINSLIsKP»ST
140 ITYP = TABS(ITYP)

CL = CLX .

LN = RN*%1.E=6+.5

XPF = XPF*AMINO(LlsIABS{(M4- N4))
XP = XP¥XPF

"CALL SECOUOND(TIME)

NTPE = N4

TXT = 3HALP
IF (MODELEQ.0) TXT = 34 CL
150 WRITE (NTPE»200) EMyTXTHsCLA(MODE+L)sLNsMsNsNSsTIMES RFLOs KCLsKDELS
1 RBCPsBETAsST»PCHs>SEPMs XSEPsNPTS»ISs»LLs1IZ
"2 SEPS1yNDES»REMyNFASTHNRELAXsITYP»FSYMs TSTEPSDEP
IF (NTPELEG.N2) GU TCO 160
NTPE = N2
G0 T0 150
160 IF (ITYP.GEe2) CALL GTURB(D1sD2sCPLsBCP»SLIRDELSRECP)
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EMX = EM
1TYP=1
GO T0 10

170 ITYP = 4
IF (IKeEQ =1) WRITE (N4,220)
CALL GTURB(D1sD2sCPL,B8CPsSLsRDEL,RBCP)
TERMINATE PLOT
CALL PLOT(042045599)
. CALL EXIT :
180 FORMAT (7H READ P/)
190 FORMAT(5Xs 145 4E1243514,1351692F10e452F114%5F1145)
200 FORMAT (4HOEM=F4.3:3XA3;1H=F5.2:3X3HRN=1292HE6;3X4HM*N=;13’1H*’12J |
3X3HNS=14,3X5HTIME=F7.2/6H RFLO=F4¢253Xs4HRCL=F44253X5HKLEL=F443
s3X5HRBCP=F3 425 3X5HEETA=F44253X3HST=,£7.1/ 5H PCH=F4.2,
3X5HSEPM=F5-4;3X5HXSEP=F4.2;3X5HNPTS=I3’3X3HIS=12:3X3HLL=I3;
3X3H1Z=13/ 6H EPS1=F8.453X6H NDES=13,3X !
s 4HREM=FB o4, TH NFAST=13,3X, 7THNRELAX=13,/,
3Xs SHITYP=13,3Xy 5SHFSYM=F8445s3Xy 6HTSTEP=yF 644, 3Xs4HDEP =sFBekys//)
210 FORMAT(1H15X3HNCY6X4HDPHISXBHDCL,BXp4HDDEL;5X,4HDBCP:5X;2HIK;
1 2Xs2HJIK» ZX3HNSP»5XA4 s 5X4HANGO» BX3HCP I»8X3HCOWs 8X2HCD /)
220 FORMAT (21HO***NAMELIST ERRGR¥%%,10Xs 20HPRUGRAM TU TERMINATE )
END ‘ o : '

T WS W

SUBROUTINE LSTERR
COMMON /A7 M(47), 1K
IK = -1

RETURN

END

SUBRJOUTINE RESTRT '
. CCMMON PHI(162531)sFP(162531)9A(31)»8(31),C(31)sD(31),E(31)
1 sRPU3L)SRPP(31)sR(31)sRS(31),RI(31),AA(162)sBB(L162)sC0(162)
2 9SI(162))PHIR(162);XC(lCZ);YC(léZ))FM(le)’ARCL(I&Z):DSUM(le)
3 JANGOLD(162)»XOLD(162),YOLD(162)s ARCOLD(162)sDELOLD(LE2)
4 sRP4(31),RP5(31)

COMMON 7a/ PIsTPsRAD, EMsALP RNy PCHy XPoTCoCHO» DPHISCLIRCL s YR
)XA;YA:TE,DT,DR)DELTH)DELR;RA)DCN;DSN:RAQ)EPSIL:QCRIT)CI)CZ
9C45Co9C6rCTRETSBETA, FSYMs XSEPySEPMyTTLE(4)sMsNyMMs NNy NSP
)IK;JK)IZ)ITYP)MGDE)IS)NFC}NCY}NRN;NG)IDIN;NZ!N3)N49NT}IXX
sNPTSsLLsIsLSEPsMas NEW) EPS1oNDESsXLEN,SCALQI
»SCALQOWN6»GAMMAS NQPT» CSTARS REM) DEP» QINF, TSTEP» XCUT
)INC,QFAC}GAM’KDES:PLTSZ}QPL;QPU-

SET UP CONSTANTS

TP = PI+PI

RAD = 180./P1

ALP = ALP/RAD ,

IF ((N+1) JNEJNNOR(M+1)eNELMM) NCY = ©

MM = M+1

U W




10

40
70

100

50
60

IF (LLeEQ.0) LL = M/2+1

NN = N+l

DR = =1./FLOATIN)
DT = TP/FLOAT(M)
DCN = COS(DT)

DSN = SIN(DT)
CELR = «5/0KR
DELTH = 5/DT7

RA = DT/DR

RA4 = DT*DT

DO 10 K = 1sN

R(K) = 1.+DK*FLOAT(K-1)
RS(K) = (RA®R(K))I*(RA*R({K))
RI(K) = =+25%DT/R(K)
CONTINUE

R(NN) = 0.

BET = SQRT(1l.-EM*EM) -1.

IF (NDES.GE.O) GO TO 5
CALL AIRFOL

GO TG 6

CALL READQS
CONTINUE

IF (MDDELEQ.1) CL
DPHI = «5%CL/CHD
MA = MM/3

ME = MM=2%((Ma+1)/2)

IF((NT 6T e140) eORe(XPebLTe0e)) JK = -1
J=1

DO 40 L = 1,MM

DELOLD(L) = 0.

DSUM(J) = 0.
ARCOLD(L)=ARCL(J)
IF(J.GE.MM) GO TGO 70
IF((JeLE«MA) s ORe(JeGELMB))
DSUMUJ) = 0.

J=J+1

CONTINUE

NT = L

WRITE (N&4,100) NT

FORMAT (1HO»I4»45H POINTS WILL BE USED TO DEFINE INNER AIRFOIL )
CALL SPLIF(MM,ARCL,XC,PHI(1;3);PHI(l;5),PHI(117),3;00:3,0.)

CALL INTPL(NT,ARCOLD, XOLDsAKCL XCo PHI(153)s PHI(155)sPHLI(157))
catLt SPLIF(MM}ARCL)YC;PHI(l}g);PHI(lpﬁ))PHI(1)7)13)0.’3p0.)

CALL INTPL(NT,»ARCOLD» YOLOD» ARCLsYCsPHI(L193)sPHI(1s5)sPHI(L1»7))
CALL SPLIF(MM,ARCL,FM)PHI(1)3);PHI(l)S))PHI(l)?))3,C-,3,0o)

catLl INTPL(NT:ARCDLD;ANGOLD)ARCL,FM:PHI(193))PHI(l:ﬁ);PHl(l;7))
DO 60 L = 1M

D0 .50 J = 1NN

PHI(LsdJd) = ROJII¥CO(L)+DPHI*PHIR(L)

CONTINUE

FSYM = FSYM=-12.

IS = 2

RETURN

END

= B,%PI%CHD*SI(1)/(1.+BET)

J=J+1
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SUBROUTINE COSI
SET THE SINES,COSINES, AND THE TERM AT INFINITY
COMMON PHI(162)31))FP(162131))A(31))B(31)}C(3l))0(3l);E(31)

1 )RP(31))RPP(31);R(31))RS(31),R1(31))AA(162))58(162))CU(162)

2 931(162):PHIR(le),XC(le);YC(162),FM(le))ARCL(léZ))DSUM(le)

3 ,ANGULD(162)JXOLD(162):YULD(IbZ);ARCOLD(IGZ):DELULD(le)

4 sRP4(31)sRP5(31)

COMMON /a/ PI)TP)PAD’EM)ALP)RN;PCH;XPJTC)CHD;DPHI)CL;RCL,YR
,XA)YAJTEJDT;DR)UELTH)DELR;RA)UCN}DSN)RAQ;EPSIL)QCRIT;CI)CZ
’CQ)C5)C6’C7)BLT’BETA;FSYM;XSEP}SEPM)TTLE(9))M;N)MM)NN;NSP
)IK;JK;IZ’ITYP)MDDE,IS’NFC)NCY’NRN;NG)IDIM,NZ:N3:N4;NT;IXX
SNPTSyLLs oL SEPsMay NEWSEPS1yNDESy XLENS SCALQI A
’SCALQG)N&:GAMMA’NQPT’CSTAR;REM;DEP)QINF:TSTEP’XUUT
s INCHQFACYGAMS KDES»PLTSZ»QPL>QPU

TPI = 1./7°P

ANG = ALP+BB(1)

SN SIN(ANG)

CN SART (1.~SN*SN)

DO 10 L = 1,M

Co(L) = CN

SI(L) SN

PHIR(L) =(ANG+ATAN((BET*SN*CN)/(lQ+BET*SN*SN)))*TPI

CN = CN*¥DCN-=SN*DSN

SN = CO(L)*DSN+SN*DCN

ANG = ANG+DT

CONTINUE

CUO(MM) = CN

CO(MM+1) = CO(2)

SI(MM) = SN

SI(MM+1) = SI(2)

RETURN

END ‘

[S AN R O N
W on

SUBROUTINE SWEEP

SWEEP THROUGH THE GRID ONE TIME

COUMMON/FL/FLUXT4»CD4

COMMCON PHI(162)31),FP(162)31))A(31),8(31)’C(31))0(31):5(31)

1 )RP(31))RPP(31))R(31))RS(31))RI(31))AA(le):BB(lGZ))CU(léZ)

2 151(162))PHIR(162)’XC(lbz);YC(le))FM(le);ARCL(IGZ),DSUM(162)

3 ,ANGULD(162),XBLD(le);YULD(le))ARCULD(IbZ)pDELULD(le)

4 »RP4(31),RP5(31)

COMMON 7/ PI,TP;RAD)EM)ALP;RN)PCH)XP)TC;CHD)DPHI)CL’RCL,YR
,XA,YA)TE;DT;DR;DELTH;DELR;RA)DCN,DSN)RAQ;EPSIL)QCRIT,CI;CZ_
;CQ,C5’C6’C71BET;BETA)FSYM:XSEP)SEPMJTTLE(4);M’N)MM)NN,NSP
’IK;JK;IZ)ITYP’MUDE,IS)NFC)NCY}NRN’NG,IDIM;NZ)N3)N4)NT;IXX
SNPTS,LLsIsLSEPs M4y NEW)EPS1yNDES,XLENy SCALOI
)SCALQU:Nb;GAMMA:NQPT:CSTAR)REM}DEP}QINF)TSTEP’XUUT
s INCYQFAC»GAMS KDESH,PLTSZsQPL,QPU

YR = 0,

NSP = 0O

DG 10 J = 14NN

[0 ANRN S RN SR NP

111




PHI(MMyd) = PHI(LlsJ)+DPHI
PHI(MM+1,J) = PHI(2,J)+DPHI
E(J) = 0.
RP&(J)
RP5(J) 0.
10 RPP(J) O.
C SWEEP THRUOUGH THE GRID PROF NOSE TO TAIL ON UPPER SURFACE
TE = =2,
LLP=LL+]
DG 30 I=LLPsM
CALL MURMAN
DO 30 J = 1sN
30 PHI(I-1,Jd) = PHI(I-1,J)=RP(J)
DO 32 J=1»sN
32 PHI(M»J)=PHI(MsJ)~ E(J)
DO 51 J=1,sN
E(J)=0,
RPP(J)=0,
RP4{J) = 0.
RP5(J) = 0.
51 CONTINUE
C SWEEP THROUGH THE GK1D FROM NOSE TU TAIL ON LOWER SURFACE
' TE = 2.
I =Lt
80 I = I-1
CALL MURMAN
D0 60 J = 1N
60 PHI(I+1,J) = PHI(I+1,J)=RP({J)
IF (I.6GT.2) GO 70 80
DO 70 4 = 1sN
70 PHI(2sJ) = PHI(2,J)-E(J)
DG 11 J=1s NN
CPHI(MM+1,J)=PHI(2,J)+DPHI
E(J) =0,
RP&{J)
RP5(J)
11 CONTINU
TEz’Zo
I=MM
CALL MURMAN
DO 50 J=1,N ;
PHI(MM, J)=PHT (MM J)-EJ)
50 PHI(l;J)-PHI(MM’J)—DPHI
' DO 12 J=1»N
E(J)=0.
RP&4(J)
RP5(J)
12 CONTINUE
TE=2.,
I=L1L
CALL MURMAN
. DG 13 J=13N
13 PHI(LLsJ)=PHI(LL,J)=-E(J) .
C . ADJUST CIRCULATIUK TG SATISFY THE KUTTA CONDITION

0.

wounn

C.
0.

m n on

0.
0.
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c

41
42

90

95
97

IF (RCL +EQ.0.) GO TO 90
YA = RCL*((PHI(M:I)‘(PHI(Z!I)*DPHI))*DELTH+SI(1))
IF (MODEJEQ.1) GO TO 90
IF (NDES.GE.O) GO TO 41
ALP = ALP=,5%YA

G0 TO 42

BB(1) = BB(1l)=.5%YA

CALL COSI

60 TO 95

YA = TP#YA/(1.+BET)
DPHI = DPHI+YA

DO 97 L = 1M

PHICLSNN) = DPHI%*PHIR(L)
FLUXT=0.

NF=N~10

IF(NJLT.30) NFsN~5

. DO 242 L=2,MM

242

100

"UsRINFIX(PHI(L+1,NF)-PHI(L-1sNF))*DELTH=SI(L)
VER{NF)*RINF)*(PHI(L)NF+1)=PHI(LsNF=1))*%DELR =-CO(L)
QF s (URU+VEV)/FPILINF).
RH‘(1.+.2*EM*EM*(10-QF))**2 5

FLUX=RH*V/R(NF)

FLUXT=FLUXT+FLUX

CONTINUE ‘
FLUXT=DT*FLUXT*CHD
FLUXT4=FLUXT :
IF(MODE+EQ.0) RETURN

00 100 J = 1»N

DO 100 L = 1,M

PHI(L,J) = PHI(LsJ)+YAXPHIR(L)

- RETURN
END

SUBROUTINE MURMAN

SET UP COEFFICIENT ARRAYS FOR THE TRIDIAGONAL SYSTEM USED FUR LINE.

RELAXATION AND COMPUTE THE UPDATED PHI ON THIS LINE

COMMON PHI(162,31)5FP(162531)5A(31)58(31),C(31)5D(31),E(31)
1l »RP(31),RPP({31),R(31),RS(31),RI(31)5AA(162)5BB(162),C0(162)
2 »SI(162)5PHIR(162)sXC(162)5YC(162)sFM(162)sARCLE162),DSUM(162)
3 )ANGDLD(162):XOLD(le):YDLD(léZ);ARCDLD(IbZ);DELDLD(le)

4 »RP4(31),RP5(31)

COMMON 7A/ PI)TP)RAD)EM)ALP:RN:PCH;XP)TC CHD,DOPHISCLsRCL,YR
sXAsYA, TE,DT»OR»DELTHs)DELRsRAs DCNs DSNs RA49EPSILSQCRITHC1»C2
2C4sC55C69CTsBETIBETAS FSYMyXSEP»SEPMsTTLE(4) »Ms Ny MMy NNy NSP
2IKsJKs IZ>ITYPsMODES» ISsNFCoNCYs NRNsNGs IDIM)N2sN3sN4s» NT» IXX

sNPTSsLLsI»LSEPsMa sy NEWSEPSL1yNDES» XLENsSCALQI

[o ARSI RN VIS AU ol

s INC,QFAC,GAMsKDES»PLTSZ»QPL»QPU
DO THE BOUNDARY:

E(NN) = 0,

FAC = -,5%TE
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10

40

IM = I-1
IF (FACLTeCs) 1M = 1I+1

KK = 0

PHIO = PHI(I»2)-2.%DR*CO(I)

PHIYP= PHI(I,2)-PHI(I»1)

PHIYY = PHIYP+PHICO-PHI(I,1)

PHIXX = PHI(I+1,1)4PHI(1-1,1)=PHI(1,1)=-PHI(I»1)
PHIXM = PHI(I+1,1)-PHI(I-151)

PHIXP = PHI(I+1,2)~PHI(I-1,2)

CHECK FOR THE TAIL POINT
IF (I.NE.MM) GC TO 10

C(1) = (C1+C1)*RS(1)

A(l) = -C(1)+XA*C1l-C1l

D(1) = Cl¥(PHIXX+RS(1)*PHIYY+RA4*CO(I)=-E(1))
GG TO 40

U = PHIXM*DELTH-3I(I)

BQ = U/FP(Is1)

QS = U*BQ

CS = C1-C2%*QS

BQ = BQ*QS*(FP(1-1,1)-FP(I+151))

X = RA4*(CS+035)*C0(1I)

C(l) = (CS+CS)I*RS(1)

D(l) = CS*RS{LI*¥PHIYY+RI(1)*BQ+X
cMQ@S = CS=-QS

PHIXT = BETA®*ABS(U)+A35(CMQS)
EM2 = QS/CS

EPS2 = EPSLI*VLAYER(EMZ,QPL,QPU)
PHIXXX= EPS2%¥PHIXX-RP4(1)

RP&4(1) = EPS2*PHIXX

D(1) = D(1) + PHIXXX

IF (QS.LELQCRIT) GG T3 30

FLOwW IS SUPERSONIC, BACKWARD UDIFFERENCES
KK = 1 ' ‘

PHIXT = PHIXT-CMQS

PHIXXM = RPP(1)

A(Ll) = =(C(L)+PHIXT)

D(1) = D(1)+CMQS*PHIXXM=PHIXT*E(L)
A(l) = A(1)=-2.%EPS2-RP5(1)

D(1) = D(1) —(EPS2+2.*%RP5(1))*E(1)

RP5(1) = EPSZ2
GO TO &4C v
FLOW SUBCRITICALs CENTRAL DIFFERENCES -

all) = XA*CMQS =C(1)=-PHIXT
D(1) = D(1)+CMQS*¥PHIXX~PHIXT*E(1)
A(l) = A(1)-2.%EPS2=-RKP5(1)
D(1) = D(1) —(EPS2+2.%RP5(1))*E(])

RP5(1) = EPS2

DG NON—-BUOUNDARY POINTS

RPP(1) = PHIXX

DD 60 J = 2,N

PHIXX = PHI(I+1,J)+PHI(I=15J)=PHI(Is»J)=-PHI(IsJ)
DU = PHIXP

PHIXP = PHI(I+1,J+1)=PHI(I-15J+1)

PHIXY = PHIXP=PHIXM+(E(J+1)=E(J=1))*FAC
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PHIXM = DU

DU = DU*DELTH

PHIYYM = PHIYY

PHIYM = PHIYP

PHIYP = PHI(I,J+1)=PHI(IsJ)
PHIYY = PHIYP-PHIYM

U = R{JI*¥DU=-SI(I)

DV = ROJ)*(PHI(I»J+1)-PHI(I»J=1))*DELR
V = DV*R(J)-CO(]) '
RAV = R(J)*RA*V

BU = 1le/FP(Iyd)

BQU = BQ*U

US = BQU*U

UV = (BQU+BQU) *V

VS = BQR*Vx*V

CS = US+VS

€S = C1l-Ce2*as

CMVS = CS-VS

CMUS = CS-US

PHIXT BETA*ABS(U)

uu

PRIYT BETA*ABS(RAV)

EM2 = QS/CS

EPS2 = EPS1I¥VLAYER(EMZ2»QPL,QPU)

PHIXXX= EPS2*%PHIXX=RP4(J)

RP4(J) = EPS2*PHIXX

COMPUTE CONTRIBUTION OF RIGHT-HAND SIDE FROM LOW ORDER TERMS

DOJ) =RA4*((CMVS+US=VS)*DV-UV*DU)+RI(J)*Q5*BQA*(UX(FP(I=1sd)~
FPUI+1sJ))+RAVHE(FP(IsJ=1)~FP(Isd+1)))

DGJ) = D(J) +PHIXXX

UV = 5%BQU*RAV

IF (QS.LELQCRIT) GO TO 50 4

SUPERSONIC FLOWs USE BACKWARD DIFFERENCING

KK = KK+1
CMQS = CS-GS

FQ = lo/QS

AUU = US*FQ

BUU = RS(JI*AUU

BVV = VS*FQ

AVV = RS({J)*BVV

BUV = UV%FQ

AUV = BQU¥ABS(RAVI*FG%TE

PHINN = BVVXPHIXX~BUV*PHIXY+EUUXPHIYY
B(J) = CS*BUU

PHIXT = PHIXT~CMQS*(AUU+AUU—-AUV) +CS*BVV
PHIYT = PHIYT =-CMQS*(AVV+AVV=AUV)
CJ) = B(JI+PHIYT '

PHIXXM = RPP(J)

IF (V,LT.0) GO TO 45

PHIYYM = PHI(I,»J+2)=PHI(I,J+1)-PHIYP
PHIXYM = PHIYP+PHI(IM,J)=PHI(IM,J+1)
GG TO 46 '

PHIXYM = PHI(IMsJ)=PHI(IMsJ~=1)=PHIYM
BQ = 8(J)

B(J) = C(J)
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46

50

60

10

C(J) = BQ

PHISS = AUU*PHIXXM+AUV*PHIXYM+AVV*PHIYYM
A(d) = =(B(J)+C(J)+PHIXT)
- D(J) = D(J)+CMOSHPHISS+CS*PHINN=E(J)*PHIXT
A(d) = A(J)=2¥EPS2-RP5(J)

D(J) = D(J) =~(EPS2+2, *RPb(J))*E(J)

RP5(J) = EPS2

GO TU 60

SUBSONIC FLOW» USE CENTRAL DIFFERENCES
C(Jd) = RS(J)%RCMVS

B(J) = C(J)I+PHIYT

PHIXT = PHIXT+CMUS

A(J) =  XA%CMUS-B(J)=-C(J)-PHIXT

D(J) = D(J)I+CMUSHPHIXX=UV*PHIXY+C{J)*PHIYY=PHIXT*E(J)
A(J) = A(J)=2.%EPS2=-RP5(J)

D(J) = D(J) =—(EPS2+42%¥RP5(J)I*EL(J)

RF5(J) = EPS2

IF (VeLT+0e) GO TO 60

B(J) = ClJ) -

C(J) = C(J)+PHIYT

RPP(J) = PHIXX

NSP = NSP+KK

SOLVE THE TRIDIAGONAL SYSTEM
CALL TRID '
RETURN

END

SUBRGUTINE TRID

SOLVE N DIMENSIONAL TRIDIAGONAL SYSTEM OF EQUATIONS

COMMON PHI(162s31)sFP(162531)9A(31),B(231)sC(31)sD(31)sE(31)
1 »RP(31)sRPP(31)sRE31)»RS(31)sKI(31),AA(1€2)5BB(162),C0(162)

2 »SI(162)sPHIR(162)5XC(162)5YC(162)sFM(162)sARCL{162),D5UM(L02)

3 SANGOLD(162)sXOLD(162),YOLD(162)sARCOLD(162),DELOLL(162)

4 4JRP4(31),RP5{31)

COMMOUGN /A7 PIsTPsRADIEMIALPIRNSPLCHy XPsTCsCHUs DPHISCLyRCLYYR
sXA>YAs TEs DTy DR DELTHIDELRSRASDCNy DSNyRAG» EPSILSQCRITSC1»C2
3C4sC5sChEICTsRETIBETAs FSYMs XSEPSSEPMs TTLE(4) s My NsMMs NNs» NSP
s IKsJKs IZ»ITYPIMUODE)ISoyNFCoNCY s NRNyNGos IDIMs N2y N3y Nas NT»1XX
sNPTS)LLs I»LSEPs M) NEWHEPSISNDES» XLENS SCALQI
)SCALQU:Nb)GAMMA)NQPT;CSTAR;PFM)DEP)QINF;TSTEP)XDUT
» INC>QFAC»GAMIKDESsPLTSZ> QPL}QPU

XX = 1./74A(1)

RP(1) = E(1)

E(1) = XX*D(1)

DO ELIMINATION

DO 10 J = 2sN

Cld=1) = C(JI=-1)*XX

XX = 1e/7(A0J)=-BlJI*C(J~-1))

RPUJ)Y = E(J)

E(J) = (D(J)-BUJ)*E(J=-1))%XX

DO BACK SUBSTITUTION

Ut WP
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EMX = ABS(E(N))

DO 20 J = 24N

L = NN-J

E(L) = E{L)=CULI*E(L+1)

EMX = AMAX1(EMX»ABS(E(L)))

FIND THE LOCATION OF THE MAXIMUM RESIDUAL

IF (EMXJLE.ABS(YR)) RETURN

IK = I

DO 70 J = 1,N

IF (ABS(E(J)).EQ.EMX) GO TO 74 . |
CONTINUE | |
JK = 4 :

YR = E{JK)
RETURN

END

SUBROUTINE REMESH(LSIGN) :

GO TOD CRUDER GRID IF LSIGN IS -1

60 TO FINER GRID IF LSIGN IS +1

COMMON PHI(162s31)sFP(162531)5A(31)5B(31)5C(31),D(31)5E(31)"

1 >RP{31),RPP(31)5R(31)5RS(31)»RI(31)5AA(162)5BB(162)sCO(162)

2 »5I(162),PHIR(162)sXC(162)sYC(162),FM(162)sARCLI162),DSUM(162)

3 ,ANGDLD(162)’XULD(le)’YDLD(162))ARCOLD(162)’DELULD(IOZ)

4 sRP4(31),RP5(31)

COMMON /A/ PI;TP)RAD)EM,ALP)RN)PCH’XP’TC;CHD’DPHI’CL’RCL;YR
s XA» YA, TEsDT>DR> DELTHs DELRsRA» DCNsDSNyRAGSEPSIL,QCRITSC15C2
9C49sC55C69CTsBETSBETASFSYMy XSEP,SEPMyTTLE(4)sMs Ny MMsNNsNSP
’IK)JK:IZ}ITYP:MUDE’IS:NFC,NCY:NRN’NG’IDIM;NZ:NB)N#)NT,IXX
sNPTSsLLs IsLSEP» M4, NEWSEPS1sNDESsXLEN»SCALQI
,SCALQD;Nb;GAMMA)NQPT;CSTAR;REN’DEP;QINF,TSTEP’XGUT
» INCoQFACsGAMSKDESs PLTSZ» QPL»QPU

X = 2,%%  SIGN

G = FLOATI(NG)/X+,2

FLOAT(M) %X +.2

FLOAT(N)*X+,2

IF (N.EQ.14) N=15

LtL = FLOAT(LL=-1)*X+1,.2

IF (LSIGN.GT.0) MM = M+l

IF (LSIGN.GT.0) NN = N+1

LSEP = FLOAT(LSEP=1)%X+1.2

PF = 1./X

DELR = X*DELR

DELTH = X*DELTH

VP W

N
M
N

[ ]

DR = PF*DR

DT = PF*DT

DCN = €COS(DT)
DSN = SIN(DT)
RA4 = PF*PF*RA4
NCY = 0

I = LSIGN

MP = MM+l
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CALL PERMUT (R»NNy»1)
CALL PERMUT (RS»NNs1)
D0 5 J = 1N
5 R1I(J)Y = =.25%¥DT/R(J)
CALL PERMUT (DSUMsMP,1)
DO 20 Lt = 1sNN
20 CALL PERMUT (PHI(1l,L)»MP>1)
DO 30 L = 1,MP
30 CALL PERMUT (PH1(Ls1)sNNsIDIM)
MM = M+1
NN = N+1
IF (X.EQ.+5) GO TO 8C
DG 40 L = 1sM»2
DSUM(L+1) = 5%(0SUM(L)+DSUM(L+2))
DO 40 . J = 1sNN,Z
40 PHI(L#15Jd) = 5% (PHI(LsJ)+PHI(L+25J))
DO 5C J = 1sNs2
DO 50 L = 1,MM
50 PHI(LsJ+1l) = o5%(PHI(L,Jd)+PHI(L,»J+2))
80 CALL MaP
RETURN
END

SUBROUTINE PERMUT {AXpNXpJX)
C REQRDERS POINTS WITHIN AN ARRAY
COMMON PHI(162531)sFP(162531)sA(31)sR(31)5C(31),D(31),E(31)
1 »RP(31)»KPP{31),R(31),RS(31),kKI(31),AA(162),BB(162),C0(1062)
2 »SI(162)sPHIR(162)sXC(162)sYC(162)sFM(162)sARCL{162),DS5UM(162)
3 ’ANGOLD(lbz);XOLD(léZ))YGLD(le))ARCOLD(I@Z))DELGLD(I@Z)
4 »RP4(31),RP5(31) ,
COMMON 74/ PI)TP)RADJEM)ALP)PN;PCH;XP)TC:CHU’DPHIJCL’RCL)YR
sXAs YAy TESDT sDRIDFELTH) DELRIRASDCNSDSNsRAG»EPSIL,GCRITSC15C2
9ClsCH9CbsCT»BETIRETASFSYMs XSEPSSEPMs TTLE(4) » Mo Ny MMs NNy NSP
s IKs JK» IZs ITYPsMODE» ISsNFCoNCYs NRKNs NGy IOIMsN2sN3sN4sNT» i XX
sNPTSsLLs IsLSEPsMae s NEWSEPSIoNDES»XLENsSCALQL
s SCALQUsS N6 GAMMASNQPT» CSTAR) REM» DEPs QINFS TSTEP» XUUT
s INCIQFACIGAMIKDES,PLTSZ»QPLQPUYU
DIMENSION AX(1)
L =1
JY

Lo SR I S TCRY U B

JX+JX
NY 2*¥({INX-1)/21+1
NZ 2% (NX/72)
IF(I.GT.0) GO TG 30
NY = JX¥(NY=1)+1
NZ = JX*(NZ-1)
DO 1C J = 1sNY,JY
ALY = AX(J)

10 L = L+1 '
DO 2C J = JXsNZ,JY
ALY = AX(J+1)

20 L = L+1
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1
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3
4

U W e

1

GO TO 60

DG 40 J = 1sNYs2
ACJ) = AX(L)

L =.L+JX

DU 50 J = 24NZs2
A(J) = AX(L)

L = L+JX

L =1

DB 70 J = 1sNX
AX(L) = A(J)

L = L+JX

RETURN

END

SUBROUTINE GETCP(CDF) .

COMPUTE (CP»CD» AND CM BY INTEGRATIUN AND CUTPUT MACH CIAGRAM

COMMON/FL/FLUXT4,CD4sCOWs INDCLD

COMMON PHI(162531)sFP(162531)9A(31)5B(31)5C(31)»D(31)sE(31)
sRPU{31)»RPP(31)sR{31)sRS(31L)ISRI(3L)sAA(L62),BB(1E2),C0(102)
2SI(162)sPHIR(162)9XC(162)sYC(162)sFM({162)sARCLILE2)s0SUM(1E2)
s ANGOLD(162) s XULL(162)»YOLD(162)s ARCOLD(162),DELCLD(162)
2RP4(31)yRPH5(31)

COMMON /A/ PIsTPsRADSEMyALPSRN)PCHy XKP»TCoCHO»DPHI»CLsIRCLS YR
2 XAy YAy TESDTsDR, DELTHy DELRyRAs DCNyDSNyRAG,EPSIL,QCKRITSC1lsC2
9C45sC5,CosCT7sBETSBETAS FSYMyXSEPSSEPMaTTLE(4) sMyivsMits NNy NSP
)IK)JK;IZ)ITYP)MUDE)IS)NFC)NCY;NRN)NG’IDIM)NZ}N3,N4)NT’IXX
SNPTSsLLsIsLSEPsMa, NEWs EPS1yNLES»XLENySCALOQL
»SCALQUsINO)GAMMASNOPT ) CSTARS REMIDEP» GINFs TSTEPS XOUT
2 INCIQFACIGAMIKDESIPLTSZsQPLSQPU

REAL MACHNsMACH

COMPLEX CLCD»TMP

DIMENSION MACHN(1I)»CPX{1)sMN(1)sIMACH(21)

EQUIVALENCE (MACHN(1)»A(L) ) (CPX(L)sPHIRILII)Is(MN(L)»FP(1931))

DATA IMACH/1HQs 1HRs LHSs LHT s 1HUs 1HVs 1HWs 1HX» 1HY» 1HZs1HO» 1H1» 1H2» 1H3

3 1H4 s 1HS5 5 1H6s LH7 s 1H8 s 1H9s 1H+/

DATA TX /4HCDF=/

MACH(Q) = SOQRT(Q/(C1-C2%¢))

IMC(G) = MINO(21sIFIX{1C.%Q)+1)

CLCD = 0.

cM = 0,

IF ((XPaGTo0e)eORe(IZWLELBD)) GO TU 10

DY = YOLD(NT)-YOLD(1)

IF (FSYMJNE«Ce) DY = YC(MM)-YC(1)

REWIND M4

WRITE (M45126) EMsCLIDY»TCs NRNsMM

£O0 20 L = 1,MM

CP = CPX(L)

COMPUTE (CP*DZ

TMP = CP*SQRT(FP(Ls 1) )*CMPLXCCUSIFACL))»SINCFMIL)))

SUM UP CL,CDs» AND CM

CLCD = CLCD+TMP
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CM = CM+(XC(L)=e25)*REAL(TMP)=YC(L)*AIMAG(TMP)
WRITE PUNCH OUTPUT ON M4 IF XP=0 AND IZ.5T7.80
IF ((XPeGTe0e)eORW(IZ,LEWBO)) GG TO 20

Q = ﬁACHN(L)*SORT(Cl/(1.+C2*NACHN(L)*MACHN(L)))
V = Q*¥SIN(FM(L))
U = @*COS(FM(L))

IF (XP.EQ.0) GO TO 15

WRITE (M4, 130) UsVsXC(L),YGLD(L),CP

60 TO 20

WRITE (M4,130) UsVsXC(L)»YC(L),CP

CONTINUE

CORRECT CL»CD FOR ANGLE OF ATTACK

CLCD = =(D T*CHD)*CLCD*CHPLX{SIN(ALP),COS(ALP))
Ch = DT*CHD*CM

WRITE CD»CLsCM ONTO N4

. CDW = REAL(CLCD)

C
15
20

C

C
261
160
70

C
80

c

c

C
40
50

QCR=SAQRT(QCKRIT)
DCD4=2. ¥ (QCR~1.)*¥FLUXT4

CO = CDW+COF

CD4=CD+DCD4

COW=CDW+DCD4 .
IFCINDCDW.EGL0) PRINT 261sCDWsCDFs>Ci4
FORMAT{5H CDW=F10.%,95H CDF F10e5s4H CD=2F1045)
CL2 = AIMAG{CLCD)

IF (INDCD.EQ.O) GO TO 160

CALL COSI

RETURN

CONTINUE

IF (M4EGGN3) GO TO &5

IF (CDFeEQe0Qes) GO TG 70

WRITE (N4,90) EMsCL2»CMsCDWsTXsCUF»CD4
G0 TO 80 '

WRITE (N4»,90) EMsCL2sCMy»CD4

CUNSTRUCT MACH NUMRER DIAGRAM

WRITE (N&4,140)

I = IMC(EM)

I = IMACH(I)

USE PRINT WIDTH OF 1IZ FOR MACH NUMBER DIAGRAM
M8 MM

MC MAXO(1sMB/1Z)

MA = MC+MAXO(1sMB~IZ%MC)

WRITE QOUT MACH NUMBEKS AT INFINITY
WRITE (N4,100) (I, L = MA,MB,MC)

DO MACH NUMBERS UNE LINE AT A TIME DOUOWN TO THE BUDY
J = NN=MC

RSJ = R{JI*¥R(J)

DO 50 L = MAsMBsMC

U = (PHI(L+1,J)=PHI(L=1,J))*R{JI*DELTH-5I(L)
V = (PHI(LsJ+1)=PHI(LyJ= 1))*OELR*R3J =CO((L)
Q = (UXU+V*V)/FP(L,J)

I IMC{MACHI(Q))

- MN(L) = IMACH(I)

CONTINUE : ‘ .
WRITE (N4,10C) (MN(L),L = MAsMByMC)
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Jd = J=-MC
IF (J«GTW1l) GO TO 4G
DO THE LINE WHICH IS THE 30DY
PO 60 L = MA,MBsMC
I = IMC(MACHN(L))
60 MN(L) = IMACH(I) :
WRITE (N4,100) (MN(L)»L = MAasMEsMC)
IF (ITYP.GE.4) CALL GRAFICI(CD)
RETURN
85 RNX = 1%#AINT(RN%*1,E-5)
WRITE (N4s150) EMsCLITCHCMsRNX»CDF
RETURN
90 FORMAT (1H12X3HEM=F5.45s4X3HCL=F74454X3HCM=FOe4s 4X4HCOW=FTe554XA%
1l »F7e594X 3HCD=F7.57171)
100 FORMAT (3X,130A1)
120 FORMAT (3H M=5F44355Xs3HCL=9F543,5Xs3H0Y=5F543,6Xs4HT/C=)
1l F4.3514%X,215)
130 FORMAT (40320)
140 FORMAT (1HO//7)
150 FORMAT (1HOI/7X3HFM-;F“.594X3HCL—;F6 45 4X4HT/C=»F44354X3HCM=)
1 FHe4s4X3HRN=)F4o1,4X4HCDF=sF6sa/)
END

SUBRGUTINE GRAFIC(CD)
COMPLEX ZPsZQsSFAC,SIG
REAL MACHN
CDMMGN/FL/FLUXTQ}CD4)CDW;INCCD
COMMGN PHI(162531)sFP(162,31)sA(31)sB5(31)5C(31)sD(31)5E(31)
1 »RP(31)sRPP(31),R(I31)5RS(31)sRI(31),AA(162),BB(162)sC0(162)
2 sST(162),PHIR(162)sXC(L162)sYC(162)sFM(162)sARCL(1E2)9DSUM(L1E2)
3 )ANGULD(162))XULD(le))YDLD(lbd),ARCDLJ(le):uELGLD(le)
4 »RP4(31),EKP5(31)
COGMMON /A7 PIsTPsRADGSEM»)ALPSRNyPCHy XP»TC»CHDYUPHISCLSRCLyYR
s XAy YAy TEs DT DR DELTH) DELRIRAS DCNs DSNsRAGS EPSIL,)QOCRITHC1yC2
2C4sC5sCOHICTsBET»BETAs FSYMy XSEPSSEPMsTTLE(4)sMsNsMMyNNs NSP
»IKsJKy IZs ITYPs»MUDE,ISsNFCsNCY, NRN;NG;IOIN;NZ}N3,N4,NI;IXX
sNPTS»LL)IsLSEP»M4s NEWs EPSTIsNDESSXLEN,SCALQI
2SCALQBINE)GAMMAINUPTY CSTARY REM) DEP» QINF» TSTEP, XCUT
s INCSQFAC»GAMsKDES»PLTSZ»QPL»QPU
DIMENSION CPX(1)sMACHN(1)sT(O)
EQUIVALENCE (CPX{1)sPHIR(C1)) »(MACHN(1)»A(1))
DATA TOL/1e.E=67 » PF/—=e4/ s SCF/75.0/5YLR/4, 0/;SIZE/.14/’SCO/LUO./
MOVE THE ORIGIN TWO INCHES OVEK AND TWC INCHES uP
CALL PLOT(2.052¢55-3) .
YCGR AMAXL(3 .59 e S¥AINT(20.%¥EM-7,0))
PLOT CP CURVE AS A FUNCTIGON OF X
CPF l./PF
ccp CPFXCPX(1)
CALL PLOT(SCF*XC(1)>»YOR+CCPs»3) -
DO 10 L = 2,MM
CCP = AMIN1(B845=YCRsCPFXCPX{(L))

O v Wi e

#
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10

20

200

30

40

220

230

CALL PLOT(SCF*XC(L)s YOR+CCPs2)

DRAW AND LABEL THE CP-AXIS

CALL CPAXIS(—e5sYORs1e=1e/PFs7.5—YORsPF)
COMPUTE AND PLOT CRITICAL SPEED

CALL SYMBOL (=o5s YOR+CPF*CPX(MM+1)s2¢%SIZEs1550es-1)
PLOT BODY

CALL PLOT(SCF#*XC(1)sSCF*YC(1),3)

DO 20 L = 2,MM

CALL PLOT{SCF*xXCI{L)sSCF*YC(L)»2)

LABEL THE PLOT

ALPX = RAD*ALF

TXT=BHANALYSIS

IF (EPS1.GT40e) TXT = 10HART. VISC.
IF(FSYMeGE«He) TXT=6HTHEORY

XL==.9

¥ xkNON=ANST — SEE WRITEUP AT END***%
IF(FSYM.GE«H6.) GO TO 30

IF {(NDES.LT«0) AND(EPS1.LE.O.)) GO TG 200

TTLE(L1) = 4HVISC

TTLE(2) = 4HQUS

TTLE(3) = 4HPESI

TTLE(4) = 4HGN

ENCODE (6GCs210sT) TTLEsMyNsNCY,EPS1
GO TO 40

ENCODE (6051G1,T) TTLE»MsNsNCY

GO TO 40

LN=sRN*1,E=-6+.5

ENCODE(60,1905sT) TTLE»MsNsNCY,LN

CALL SYMBOL(=14145=140sS1ZEsT50es56)

%% %¥NON-ANSI - SEE WRITEUP AT END#*%*xX%
ENCODE(6051705T) TXTHEM,ALPX,CL,»CD4 :
IF(CD4.LT.0) ENCODE(60s171sT) TXTHEMsALPXsCLs»CD4
CALL SYMBOL(XLs»=1e355S5I2tsT»0es60)

CALL SYMBOL(XL=e10s=1+35+e5%SIZE»1e5%S1ZEs1550es~1)
CN=CO(1)

SN=SI(1)

READ AND PLOT EXPERIMENTAL DATA IF XP 15 NOT ZERC
IF (XP.EG.0s) GO TO 130

REWIND M4

READ (M4,140) NP

IF (EOF(M4).NE.O) GO TUO 130

IF (NDES.GE.C) GO TO 220

READ (M4,150) EMX,ALPX»CLX»CDX» SNX

READ (M4,160) (CO(L)sSI(L)sL = 1sNP)

TXT = 10HEXPERIMENT '

G0 TO 230

READ (M4, 240) TCXsDGAVE, YRXy» SNX

READ (M4,160) (CO(L)sSI(L)»L = 1sNP)

TXT = BHINPUT CP

CONTINUE

NC=5G

IF(SNX+GE.04)G0 TO 50

TXT=6HDESIGN

~NC=3
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50

180
130
C
C
60
C
C
70
¢
80
82
" C
¢

- CALL PLOT(SCF*REAL(ZP)s SCFXAIMAG(ZP)s»IPEN)

¥¥EENON=ANSI = SEE WRITEUP AT END*%%x#

ENCODE (6051705 T) TXTsEMXsALPXsCLXsCDX

IF (CD4.LT.0) ENCOUDE(60s171sT) TXT,EMXs ALPXsCLXsCDX
IF(NDES<GE.O) ENCODE(605s2505T) TXT,TCX,DQAVE,s YRX
CALL SYMBOGL(XLs=147sSI2ZE»T50.560) _
CALL SYMBOL(XL=4e10s~1,7445*%SI12EsSIZEsNC»0as-1)
DO 180 L = 1,NP

CCP = YOR+4CPF*SI(L)

IF (CCP.GT.8.4) GO TO 180

CALL SYMBOL(SCF*CO(L)sCCPs o5*SIZEsNCsDas=~1)
CONTINUE

IF (ITYP.EQ.5) GO TO 122

PLOT THE SONIC LINE

EX = 1.-EPSIL

SET SINES AND CUSINES FOR USE IN FOURIER SERIES
MX = M/2

Co(1) = 1.

SI(1) = 0.

DU 60 L 1, MX

CO(L+1) CO(L)*DEN-SI(L)*DSN

CO(MM=-L) = CO(L+1)

SI(L+]1) COCL)I*DSN+SI(L)*DCN

SI(MM=L) = =-SI(L+1)

DO 120 L .= 2, M

LOOK FOR SONIC POINTS ON THE BGDY

IF (MACHN(L)+LT+1le) GO TO 110

IF (MACHN{L-1).GE.1.) GO TO 80

IPEN = 3

COMPUTE Z AT SONIC LINE ON BODY

Rl = (MACHN(L)~1.)/ (MACHN(L)=MACHN(L=-1))

IP = CMPLX(XC(L)+R1I*(XC(L=1)=XCAL))s YC(L)+RLI*(YC(L-1)=-YC(L)))

IF (IPEN.EQ.2) GO TO 120

FIND THE SONIC LINE ALONG A RAY
Q = MACHNI(L) :
SX = SI(L)*CN+SN*CG(L)

CX = CO(L)*CN=SN*SI(L)

FAC = .5%DR .

ZQ = CMPLX{XCA(L)sYC(L))

DO 9C J = 1,N

IP = SFAC
R = R(J)
Qs = Q

IF (J.EQ.1) GO TO 82

U = (PHI(L+1,J)-PHI(L-1sJ))*¥RJI*DELTH=-SX

V = (PHI(LsJ+1)=PHI(Ls»J=1))*DELR*RI*RI=-CX
Q@ = (UxU+VXV)/FPILsJ)

Q = SORT(Q/(C1-C2*Q))

SIG = CMPLX{RJI*XCO(L)I»RJI*SI(L))

COMPUTE ((1-SIGMA)**(1-EPSIL))ISIGMA

SFAC = CEXP(EX*(CLOG((1es04)=-SIG))/SIG

SUM UP FOURIER SERIES TO OBTAIN CUNJUGATE OF W
S = -BB(1)

DO 84 K = 1,NFC
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LT = MOD((L-1)*KyM)
S = S+RJ*(AA(K+1)*SI(LT*l)-BB(K+l)*CD(LT+1))
RJ = RJI*R(J) :
IF (RJ.LT.TOL) GO TD 86
84 CONTINUE -

¢ COMPUTE THE ARGUMENT OF DZ/DR
86 SFAC = —SFAC*CMPLX(COS(S)’SIN(S))ICABS(SFAC)
C MULTIPLY THE ARGUMENT BY THE MAGNITUDE TO OBTAIN DZ/DR
SFAC = SFAC*(CHD*SQRT(FP(LsJ)))/{R(JI*R(J))
C . PERFORM THE INTEGRATION
ZQ = ZQ+FAC*SFAC.
FAC = DR

90 CONTINUE
100 ZQ = ZQ-.5%DR*SFAC
IP = 7Q-.5*DR*(SFAC+ZP)
R1 = (Q-1.)/(Q-QS) |
IP = ZQ+R1*(1P-1Q)
CALL PLOT (SCF*REAL(ZP)s AMAX1(~2.05SCF*AIMAG(ZP)),2)
60 TD 120
110 IPEN = 2
| | IF (MACHN({L=-1).GE.1s) GO TO 70
120 CONTINUE
C- POSITION PEN AT BEGINNING OF NEXT PAGE
122 CALL FRAME
CALL PLOT(=2.05-2455-3)
IF ((FSYMuNEe7+)eORa(ITYP.EQ.6)) RETURN
c PLOT THE BOUNDARY LAYER DISPLACEMENT
MX = INDEXR {0.sXCoM) |
CALL PLOT(2451455-3)
CALL SYMBOL(1.365-465,SIZE»19HLOWER SURFACE DELS 504,19)
CALL CPAXIS (045045045445 14/5SCD)
c PLOT LOWER SURFACE
CALL PLOT (SCF*XC(1),SCD*DSUM(1),3)
DO 132 L = 25MX
132 CALL PLOT (SCF*XC(L)sSCD*DSUM(L),2)
CALL PLOT(O4s4455-3) |
CALL SYMBOL(1+36s=0655SI1ZEs 19HUPPER SURFACE DELS 500519)
CALL CPAXIS (045045 04944514/5SCD)
c PLOT UPPER SURFACE |
CALL PLOT (SCF®XC(MX)»SCD*DSUM(MX)53)
DO 134 L = MXsM
134 CALL PLOT (SCF*XC(L+1),SCO*DSUM(L+1),2)
CALL PLOT(10es~64s=3)
RETURN
140 FORMAT (10X,1I3)
150 FORMAT (3F6.35F7.55,E9.1)
160 FORMAT (2F10.4) 3 -
170 FORMAT (Al2,4H M=F4.353X4HALP=F5.253X3HCL=5F5.3,3X3HCD=sF544)
171 FORMAT(AL1254H M=F4.3,3X4HALP=F5.253X3HCL=5F543,2X3HCD=F6.4)
190 FORMAT(4A4s3X4HM¥N=I3,1H*I2,3X4HNCY=1454X2HR=12,8H MILLION)
191 FORMAT(4A4»3X4HM¥N=13,1H*I12,3X4HNCY=14,4X12HNO VISCOSITY)
240 FORMAT (F7.352E10.25F4.1)
210 FORMAT(4A4s3X4HM*N=13,1H*I253X4HNCY=1454Xs5HEPS1=5F5.3)

IF (Q.LE«.1ls) GU TO 100
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FORMAT(A1252X»4HT/C=F54352Xs3HDQ=E8, 2;2X;5HDPHI E8.2)
END

SUBROUTINE CPAXIS(XORs»YORsBOT»TOPsSCF)

DRAWS AND LABELS THE CP AXIS

XORs YOR IS THE LOCATION OF THE DRIGIN OF THE AXIS
BOT IS THE LENGTH OF THE AXIS BELOW THE ORIGIN

SCF IS A SCALE, FACTOR USED FOR LABELING

DRAW THE LINE FOR THE AXIS v
SCF NEGATIVE FOR CP AXIS AND POSITIVE FOR DELS AXIS
SIZE = 412-SIGN(+02,SCF)

CALL PLOT (XORsYOR+TOP»3)

CALL PLOT (XOR»YOR-BOT»2)

DRAW HATCH MARKS AND LABELS ONE INCH APART

N = 1+INT(BOT)+INT(TOP)

'S = ~AINT(BOT)*SCF +1.E-12

XH = XOR-{3.%SIZE)/.7

YH = YOR-AINT(BOT)

DO 10 I = 1,N

CALL SYMBOL (XOR;YH;SIZE:15,0.,'1)
#%XkXNON—-ANSI - SEE WRITEUP AT THE END*%*x
IF (SCF.GT.0.) ENCODE (10,255A) S

IF (SCFsLEJO.) ENCODE (105205A) S

S = S+SCF
CALL SYMBOL (XHsYH»SIZE»A»O0er4d)
YH = YH+1.

IF (SCF.6T.0.) GO TO 30

CALL SYMBOL(XOR+.15Y0OR+2, 5;.14,1HC,0.)1)

CALL SYMBOL(XDOR+4255YOR+2.385¢1491HP5»04s1)
RETURN

DRAW THE X-AXIS

CALL PLOT (XOR»YOR-BOT»s3)

CALL PLOT (XOR+5.0,Y0OR-BOT,»2)

CALL SYMBOL (XOR+5.55Y0OR=e07541%451HX904s1)

YH = YOR-BOT-SIZE~SIZE o
DO 40 I = 15

S = J2*FLOAT(I)

ENCODE (10,205A) S

XH = YOR+FLOAT(I)-SIZE-SIZE

CALL SYMBDOL (XHsYHs SIZEsAsOes %) :

CALL SYMBOL (XUR+FLDAT(I),YGR—BDT’SIZE’15:90o,-l)
CALL SYMBOL (XOR+4255YOR+3e0541494HDELS»0es4)
RETURN _

FORMAT ( F4.3)

FORMAT (F4.1)

END
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READ IN CCORDINATES AS PRODUCED BY PRUGRAMS D AND F

EPSIL = 2. : :
XX{1) = 0.

NL = 2

REWIND N3

READ (N3,510) EMsCL»DY» TC»NRN
IMC = MOD(INT(100.*EM+.5)5100)

ICLLI = MOD(INT(CL+.05)510)
ICLZ2 = MODCINT{10.%CL++5)510)
ITCL = MODC(INT(104%TC+.05)510)
ITC2 = MODUINT(1004%TC+.5)5,10)

ENCODE (405530,TTLE) IMCHICLL»ICL2,ITC1,ITC2
MODE = O
IF (NRN.LT.0) FSYM=2,
DO 4C L = 1,999
READ (N35500) UCL)»VIL)I»XX{(L)»YY(L)sFAC
%k CHECK FOR END UF FILE®#%%
IF (ECF(N3).NE.O) GO TO 590
IF (XX{L)«LTeXX{NL)) NL = L
40 CONTINUE
AIRFOIL HAS BEEN EXTENDED IN PROGRAM D
50 NT = L-1
NRN = TABS({NEN)
GO TG 1590
READ IN AIRFOIL DATA FKOM CARDS
100 READ (N3,420) FNUsFNL,EPSIL
READ (N3,470)
NT = FNU+FNL-1.
NL = FNL
DO 110 I = NLsNT
110 READ (N3,420) U(I)sV(I)sXX(I)sYY(I)
READ (N3,470)
DO 120 1 = 1,NL
J = NL+1-1
120 READ (N35420) ULJ)» VI XX{J)sYY(J)
CO 130 J = 1,54
130 TTLE(J) = TITLE(J)
IF (FSYMJLEs4s) GO TO 150
DO 140 L = 1sNT
THCL) = XX(L)/RAD
XX(L) = U(L)
140 YY(L) = V(L)
GO TO 195
NO PERIOD IN THE STREAM FUNCTION
G5 EPSIL = 0.
DEFINE SLOPES SO THAT ARC LENGTHS CAN BE COMPUTED TO FIRST URDER
150 IF ((FSYMWEQele) e ORe(FSYMeEC.3.)) GO TG 170
DO 160 I = 1,NT
160 TH(I) = 0.
ISyM = 1
GU TG 200
COMPUTE SLOPES FROM VELOCITIES
170 TH(1) = ATAN(V(1)/7U(1))
GSR(1) = U(L)*ULLI+V(1)*Vv{l)
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190
195

200

210

220

230

232

240

322

Do 190 I = 2,NT

CHOOSE NEAREST BRANCH FOR THE ARCTANGENT

DTH = ATANCIUCI=1)*V(D)=UCD)AV(I-1))/(UCI-1)*%UCI)+V(I=1)%V(I)))
TH{I) = TH(I-1)+DTH

QSREI) = UCI)*UCI)+V(I)*V(I)

IF (EPSIL.GT.14) EPSIL = (TH(1)=(PI+TH(NT)))/PI

IF (FSYMsGTe54¢) EPSIL = (TH(L)+TH(2)=TH(NT)-TH(NT-1))/TP-1.

COMPUTE ARC LENGTH TC FOUKTH ORDER ACCURACY

SP(1) = 0. -

DO 210 I = 2,NT

DUM = AMAX1{e1E=209+5%ABS({TH(I)=TH(I-1)))
DX XX(I)=XX{I-1)

DY YY(I)=-YY(I-1)

SP(I) = SP(I~1)+SQRT(DX*DX+DY*DY)*DUM/SIN(DUM)
ARC = SP(NT)

SN = 2./ARC

SCALE = ,25%ARC

EE = 05*(10-EPSIL)

DO 220 L = 1,NT

SS(L) = ACOS(1.-SN®SP(L))

SSINT) = PI

IF (ISYM.NE.O) GO TO 350

CALL SPLIF (NT»SS»THyUsVseWsr3s0es5350.)

IF (FSYM.GT.5.) GO TO 232

WRITE (N&5»410) TITLEsVALsSNRN

IF (N4oNEJN2) WRITE (N25410) TITLE»VALs NRN
PRINT OUT DATA ON THE AIRFOIL

WRITE (N4,430)

DO 230 L = 1sNT

VAL = TH(L)*RAD

CSUM ==SN¥U(L)/AMAX1(41E=5ySIN(SS(L)))

IF ((LeEQ.1)+ORe(LaEG.NT)) SUM = ViL)#SIGN(SNs FLOAT(L=2))
WRITE (N45480) XX{L)sYY(L)»SPCL) VAL SUMs V(L)W iL)
WRITE (N&s440)

MAKE INITIAL GUESS OF ARC LENGTH AS A FUNCTION GF CIRCLE ANGLE
DX = (XX(NT)=XX(1))/TP

DY = (YY(NT)=YY(1))/Tp

DO 240 I = 1,MC

ANGL = FLOAT(I-1)#%PILC

CIRC(I) = ANGL

CX(I) = COS(ANGL)

SX{I) = SIN(ANGL)

YY(I) = 1.

IF (EEGNE.OW) YY(I) = (2.=2.%CX(I))%**EE

FAC = SIGN(1e+CX(I),FLOAT(LC=I))

SPUI) = ACOS(.5%FAC)

SP(MC) = PI

CIRC(MC) = TP

IF (FSYMJLT.64) GO TU 244

SCALE = ARC/ARCL(MM)

SN1=24/ARCL(MM)

DG 322 I=1,M

ARCL(I)=ACOS (1.=SN1#ARCL (1))

ARCL (MM) =PI
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242
244

245

250

260

270

290

295
296

299
300

D0 242 L = 1,MM

Z(L) = FLOAT(L-1)%DT

CALL SPLIF (MM’Z’ARCL)CD)SI’PHIR)3)0.)3)0.)

CALL INTPL (NMPsCIRC»SPs»Zy»ARCL»COsSIs»PHIR)

DO 245 L = 1,LC

BB(L) = CX{2%L-1)

AAM{L) = =SX{2%L~-1) , ‘
DO AT MOST 100 ITERATIONS TO FIND THE FOURIER COEFFICIENTS
DO 320 K = 1,100

CALL INTPL(NMPsSP»yTTsSSsTHsU»VyW)

DO 250 1 = 1,NMP

TT(I) = TT(I)*o5*(CIRC(I)*EPSIL*(CIRC(I)“PI))
TT(1)=a5%{(TH(1)+THINT)+PI)

ENSURE CLOSURE

DuM = 0,

SUM = Q.

FAC = 0.

DU 260 L = 1sNMP

CUM = DUM =TT (L)

SUM = SUM=TTIL)*CX(L)
FAC = FAC+#TT(L)I®*SX(L)
DUM = DUM/FLOAT(NMP)

DA = 1.=EPSIL-{DX*SIN(DUM)+DY*COS(DUM))/SCALE-FAC/FLOAT(LC)
DB = (DY*SIN(DUM)-DX*COS(DUM))/SCALE-SUM/FLOAT(LC)

DO 270 L = 1,NMP

TT(L) = TT(L)+DA®XSX(L)-DB*CX(LJ

FIND THE CONJUGATE FUNCTION DS

. CALL CONJ(NMP,TT,DS,»XX»BBsaA)

DO 290 I = 1, NMP

SUuM = DS(I)

DSCI) = YY(I)*EXP({SUM)

DS(MC) = DS(1)

Z(1)=0.

VAL=.5%PILC

VAL1=PILC/3.

Z{2)=VAL¥(DS(1)+4DS(2))

Ni=NFC+1

DO 295 J=3,NI,y2
Z(J)=Z(J=2)+VALL*(DS{J=2)+4.*¥DS(J-1)+DS(J))
IF(JLEQ.NI) 60 TO 296

ZUJ+1)=Z(J)+VAL¥X(DS(J)+DS(J+1))

CONTINUE

Z(MC)=0,

ZIMC~=1)=VAL*(DS{MC)+LS(MC-1))

NII=NFC=-2

DO 299 J=2sN1l,s2

MCJ=MC-J

ZIMCJ)=Z(MCJI+2) +VALLI*(DS{MCJ+2)+4, *DS(MCJ+1)+DS(MCJ))
Z(MCJ=1)=Z(MCJI)+VAL*(DS(MCJ)I+DS(MCJ- l))

CONTINUE ,
Z1=Z(MC-NII)+VALI*{(DS(MC-NII)+4¢%DS(MC-NII~-1)+DS(MC-N1I=2))
Z1=Z{(NI+1)~-Z1

DU 3C1 J=3sNIy2
DS1=Z(NFC+J)=-Z(NFC+J-1)
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303

301

310

320

330

344

341

340
342

350

355

360

LINFC+J=1)=Z(NFC+J-2)~11
IF(J.EQ.NI) GO TO 303
LZ1=Z (NFC+J+1)=~Z(NFC+J)

CONTINUE

LINFC+J)=Z(NFC+J=-1)-DS1

CONTINUE

SCALE = ARC/Z{MC)

ERR = 0. N

DO 310 I = 1,NMP

VAL = ACOS(le-2¢*%Z2(1I)/72(MC))

ERR = AMAXI(LRR»ABS(SP(I)-VAL))

SP(I) = VAL

IF (FSYMJLE«Ss) WRITE (N4,490) ERR,»DA,DS8
IF (ERR.LT.TCGL) GO TG 330

CONTINUE

WRITE (N&4»450)

CALL FDUCF(NMP;TT;CX;&B,AA)

AA(1l) = ARC

AA(2) = l.-EPSIL-(DX*SIN(BB(l))+DY*CGS(BB(1)))/SCALt
BB(2) = (=-DXx*COS(BB(L))+DYXSIN(BR{(1)))/SCALE
IF (FSYMJ.GT.5.) GO TO 342

WRITE (N4,460) EPSILs NMP

IF ((FSYMJNEWLls) ANCL(FSYM,. NE 3.)) GO TQ 341
DG 344 L = 1sMM

Z{L) = FLOAT(L-1)%DT

CALL SPLIf(MC,CIRC,SP,U,V,w;3;0.,3,0.)
CALL INTPL(MMs»ZsDSsCIRCsSPyUsVyW)

CALL SPLIF (NT,SS»yQSRsUsVsenslsDaslsO.)
CALL INTPL(MM»DS»AsSS»QSRsUsVs W)

DO 4 L = 1,MM

IF (A(LYLELO.) A(L) = O.

IF (IZ.NEL120) GG TO 342

WRITE (N4,540) :

DO 340 L = 1s,NFC

WRITE (N4»490) AA(L)»B3(L)

CALL MAP

RETURN

IF (FSYMJ.LE«54+) GO TG 355

DXDS1 = (XX(2)=-XX(1))/55(2)
DXDS2 = {(XX{NT)=XX(NT=1))/(SSINT)-SS(NT-1))
DYDS1 = (YY(2)-YY(1))/35S(2)
OYDS2 = (YY(NT)=YY(NT-1))/(SSINT)=SS{NT=-1))

CALL SPLIF(NT»SSyXXsUsSPsWslsDXDS1»1,DXDS2)

“CALL SPLIF(NT»SS»YYsVsTTsDS»1sDYDS1»1,0YDS2)

IF (IS.LT.0) GG TO 397

OC = PI/FLUOAT(NMP)

ERR SS(NL)

DUM DIS(C.)

FAC = PI/(DIS(PI)-DUM)

DC 360 L = 1,MC

CIRC(L) = FAC*(DIS(FLOAT(L-1)%DC)-DUM)
CALL INTPL(NMP»CIRCsSXsSSsyXXsUsSPsW)
CALL INTPL{(NMPsCIRCs»CXsSS»YYsV,TT,DS)
SX{MC) = XX(NT)
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CX{MC) = YY(NT)

SFAC = l./(XX(NT)—XX(NL))
XXNL = XX{NL)

DO 370 L = 1,MC

CX{(L) = SFAC*CX(L)
SX{L) = SFAC*(SX(L)=XXNL)
XX{L) = Sx(L)

370 YY(L) = CXx(L)

WRITE (N4,520) IS

IF (N2 NEJN4) WRITE (N2,9520) IS
IF(IS.EQ.0) GU TO 395

DO IS SMOOTHING ITERATIONS

DG 390 K = 1,1IS

DG 380 L = 2,NMP

XX{L) = SMOOTHOSX(L=1)»SX{L)sSX{L+1)sSX(L))
380 YY(L) = SMOOTH(CX(L-1),CX{L)sCX{L+1)5SX(L))
DO 390 L '= 2, NMP
SX{L) = XX{(L)
390 CXx(L) = YY{(L)

395 NT = MC |
CALL SPLIF(NTSCIRCsXXsUsSPsWs1lsDeslsO,s)
CALL SPLIF(NTSCIRCs»YYsVsTT»DSs150e2150.)
397 ISYM = 0
IF (FSYMsGTW5e) GO TO 170
u(l) = SP(1)
VIl) = TT(1)
UCNT) = SP(NT) )
VINT) = TT(NT) ,
GG TO 170 | :

410 FORMAT (1X1b6A4,14) \

420 FORMAT (5F10.7) . _

430 FURMAT (35HOAIRFOUIL COUORDINATES AND CURVATURES/Z1IHGs» 6X» 1HX»14X1HY
1l ,9Xs10HAKC LENGTH;7X3HANG’8XJHKAPPA’lCX}ZhKP:llX;3HKPP//)

440 FORMAT (1H1»4 Xy 3HERKR»14Xs2HDA»14Xs2HEB/ /)

450 FORMAT (32H FDUKIER SERIES DID NOT CONVERGE)

460 FORMAT (34HOMAPPING TU THE INSIDE UF A CIRCLE//3X11HDZ/DSIGMA = .
1 50H =(1/SIGMA#%x2)*%(1-SIGMA)**(1—-EPSIL)I*(EXP({W(SIGMA))//3Xs
24ZHW(ISIGMA) = SUMC(A(N)=I%B(N))*SIGMA**(N=1))//3Xy7THEPSIL =
3 F5.3520Xs14525H POINTS ARUUND THE CIRCLE )

470 FORMAT (1H1)

480 FORMAT (Fl2.692F14eb6sF14%e3sF1l4.452E14,.3)

490 FORMAT (3E15.6)

*x%%xCHANGE (4020) TOU (20A4) ON IBM 360%#%%%

500 FORMAT (4020)

510 FORMAT (3X;F4.3y8X,F5.3)8X;Fb.B;lOX;F4.3;14X)15)

520 FDORMAET (1CHOTHEKE AREbsI4,26H SMOOTHING ITERATIOUNS USED /)

530 FORMAT(4HAIRF»OXs3HOILs 7Xs 125 IH-» 119 6Xs 11y 1H=»21I1)

540 FUORMAT (//7X4HA(N) 1GX4HB(N)/ /)

END
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SUBROUTINE MAP
C SUM UP FOURIER SERIES TO OBTAIN MAPPING FUNCTION

COMPLEX TT5TMP

COMMON PHI(162531)sFP(162531)5A(31)58¢(31)5,C(31)sD(31)5E(31)
1 »RP(31)»RPP(31)sR(31)»RS(31)sRI(31)»AA(162)5BB(162),C0(162)
2 »sSI(162)sPHIR(162)sXC(162)sYC(162)sFM{162)sARCL(162),DSUM(162)
3 LANGOLD(162) s XOLD(162)>YOLD(162)5 ARCOLD(162),DELOLD(162)
4 yRP4(31),RP5(31)

COMMON /ZA7 PI»TP,RADSEMyALPSRNyPCHsXP»TCoCHD»DPHIsCLsRCLs YR
2 XAy YAy TEsDT» DRy DELTHs DELR»RASDCNsDSNsRAG)EPSIL,QCRITHC1sC2
9C4sC55C6»CT7sBETIBETAS FSYMsXSEP»SEPMsTTLE(4)s Moy Ns MMy NNs NSP
s IKs JK» IZs ITYPs MODES> IS»NFCoNCYsNRNs NGy IDIMsN2sN3sNGs NTs IXX
sNPTS»LLsI,»LSEPsM4s NEWs»EPS1,NDES,XLENsSCALQI
2 SCALQO» N6 GAMMAS NQPTSCSTARSREMy DEP» QINFs TSTEP» XOUT |
»INCIQFAC»GAMpKDESsPLTSZ,»QPL,QPU
C ***x*CHANGE TO 1.E-6 FOR SINGLE PRECISION IBM 360%%%x

DATA POWsTOL/-124510.E-12/
C NOTE THAT THE SQUARE OF THE MAPPING MODULUS IS BEING COMPUTED
MX = M/2
c SET THE SINES AND COSINES
- Co(1) = 1.
SI(1) = O,
DO 5 L = 1sMX
CO(L+1) = COCL)*DCN-SI(L)*DSN
CO(MM=L) = CO{(L+1)
SI(L+1) = COCL)*DSN+SI(L)*DCN
. 5 SI(MM=L) = =SI{L+1l)
C SET MAPPING MODULUS FOR CUSP AT THE TAIL
DO 10 J = 1N
FP (1sJd) = 1++RUJIX(R(J)=-2,)
DO 10 L = 1,MX
10 FP{L+1sd) = 1.+R{JI*(R(J)=-2.%CO(L+1))
“IF (EPSIL.EQ.O0.) GO TO 30
o ADJUST IFf THERE IS AN ANGLE AT THE TAIL
DO 20 J = 1sN
FP{1lsJd) = FP{lyJ)**(]1.-EPSIL)
DO 20 L = 1,MX
20 FP(L+1sJ) = FP(L+1,J)**(1.-EPSIL)
C ~ NOW COMPUTE CONTRIBUTION FROM FDURIER SERIES
30 DO 50 J = 1N
NFCX = MINO(NFC,1+INT(POW/ALOGL1O(R(J)-TOL)))
RJ = 2+%R{J) -

o BN LI R T AV g

K = NFCX
S = AA(K+1)

35 S s R(JI*S+AA(K)
K = K=1

IF (K.GT.1) GO TO 35
FP(1,J) = FP(1,J)¥EXP(S#RJ)
DO 50 L = 1,MX

K = NFCX

LX = K¥L

LT = MOD(LXsM)

S a AACK+1)#CO(LT+1)

Q = BB(K+1)*SI(LT+1)
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40

50

60

65

70

80

S0

LX = LX-L

LT = MOD(LX»M)
RUOJIXS+AA(K)I*CO(LT+1)
ROJI*Q+BB(K)*SI(LT+1)

S
Q
K K-1

IF (KeGTel) GO TO 40

DUM = FP(L+1s4)

FPIMM=LsJ) = EXP(RJI*(S=Q))I*DUM
FP{L+15J) = EXP(RJI*(S+Q))*DUM

DO 65 L = 1,M

S = PI-BB(1)

DD 60 K = 1sNFC

LT = MOD((L-1)%*K,M)

S = SHAA(K+1)*ST(LT+1)=-BB(K+1)*CO(LT+1)

CANG = FLOAT(L-1)%DT

FPILsNN) = 1,

FMIL) = S- 5% (ANG+EPSIL*(ANG-PI))

FMIMM) = FM(1)-(1.+EPSIL)*PI-

DG 7G J = 1sNN

FP(MMsJ) = FP(1lyJ)

FPIMM+1,J) = FP(2,J) ,
COMPUTE ARC LENGTH AND BODY FROM THE MAPPING BY INTEGRATIGN

XMIN = 0.,
YMIN = O.
YMAX = 0.

S = -=SQRT(FP(1,1))
TMP = CMPLXUS*COS(FM(1))sS*SIN(FM(1)))
DO BO L = 1,MM

Q@ = SQRT(FP(L,1))
S = S+Q '
ARCL(L) = S

S = S+Q

TT = CMPLX(Q¥COS(FM(L))»Q*SIN(FM(L)))
TMP = TMP+TT

XC{L) = REAL(TMP)

YC(L) = AIMAG(THMP)

XMIN = AMINL(XMIN,REAL{TMP))

YMIN = AMINL(YMINsAIMAG(TMP))

YMAX = AMAXL(YMAX, AIMAG(TMP))

TMP = TMP4TT

CONT INUE

CHD = 14/ (o5%XC(MM)=XMIN)

TC = (YMAX=YMIN)*CHD

DU 90 L = 1,MM

ARCL(L) = CHD*ARCL(L)

XC(L) = CHD®*(XC(L)=XMIN)

YC(L) = CHD*YC(L)

CHD = CHD/(.5%DT)

IF (NDES.GE.0) RETURN

IF (ABS(FSYM).GT45.) GU TO 100

ANGO= =RAD*BB(1)

WRITE (N4»120) TC,ANGO

IF (N2.NEJN4) WRITE (N2,120) TC»ANGO
IF (MODE.EQeQ) ALP = (1.+BET)*CL/(8.%PI*CHD)~-BB(1)
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OO OO0 OO0

100

120

10
20
30

40

50

CAtL COSI

RETURN ' .
FORMAT (32HOTHE THICKNESS TG CHORD RATIG IS »F6.4//10H THE ANGLE
1 17H OF ZERO LIFT IS »F6.35,8H ULEGREES)

END

SUBROUTINE SPLIF (NsSyFsFPyFPPsFPPPs KMy VMy KNy VN)

SPLINE FIT - SUBROGUTINE CONTRIBUTED BY ANTHUNY JAMESON
GIVEN S AND F AT N CORRESPONDING PUINTS,COMPUTE A CUBIC SPLINE
THROUGH THESE POINTS SATISFYING AN END CONDITION IMPOSED ON
EITHER END. FPyFPP»FPPP WILL BE THE FIRST,SECUND AND THIRD
DERIVATIVE RESPECTIVELY AT EACH POINT ON THE SPLINE

KM IS THE DERIVATIVE IMPOSED AT THE START-OF THE SFLINE

VM WILL BE THE VALUE OF THE CERIVATIVE THEKE

KN IS THE DERIVATIVE IMPOSED AT THE END OF THE SPLINE

VN WILL BE THE VALUE OF THE DERIVATIVE THERE"

KMs KN CAN TAKE VALUES 1,2, OR 3

S MUST BE MONOTONIC

DIMENSION S(1)s F(1)s FP(1l)s FPP(1l)s FPPP(1)

K =1

M= 1

I =M

J = M+K

DS = S{J)=S(I)
D = DS |

IF (DS<EQ.0.) CALL ABORT
DF = (F(J)=F(I1))/DS
IF (IABS(KM)=-2) 10,20,30

U = 5

V = 3.%(DF-VM)/DS
G0 TO 50

U = 0.

vV = VM

60 TO 50
U= -1,

V = ~DS*VM
GG TO 50

I =4

J = J+K

DS = S(J)=S(I) »
1f (D*DS.LE.O.) CALL ABOR
DF = (F(J)-FL(I))/DS

B 1./(DS+DS+U)

U 8*DS -

) B¥(6.*¥DF=-V)

FP(I) = U

FPP(I) = V

U = (2.-U)*DS

V = 64%¥DF+D3*V

IF (J.NEWN) GO TQ 40

IF (KN=2) 60,70,80

134




[aNeNe!

60

70

80
90

100

10

20

30

V = (6.%¥VN=-V) /U

GO 70 990

V = VN

GG TO 90

V = (DS*¥UN+FPP(I))/(1e+FP(1))
B =V '

D = BS

DS = S{J)=S(I)
U = FPPII)-FP(I)*V
FPPP(I) = (V-U)/DS

FPP(I) = U

FPOI) = (FOJ)=F(I))/DS-DS*(V+U+U)/6b,
V = U

b o= 1

I = I-K

IF (JoNEWM) GO TO 1060

FPPPIN) = FPPP(N-1)

FPP(N) = B

FPIN) = DF+D*(FPP(N-1)+B+B)/6,

IF (KM.GTe0) RETURN ‘

IF KM IS NEGATIVE CUOMPUTE THE INTEGRAL IN FPPP
FPPP(J) = 0.

V = FPP(J)

1 J

J J+K

DS = S(J)=S(I)

U = FPP(J)

FPPP(J) = FPPP(I)+ 5%DS*{F(I)+F(J)=DS*DS*(U+V)/12,)
Vv = U

IF (JoNEJN) GO TO 105

RETURN

END

SUBRCUTINE INTPL (NXsSIsFILsSsFsFPsFPP,FPPP)

GIVEN S»#(S) AND THE FIRST THREE DERIVATIVES AT A SEV OF POINTS
FIND FI(SI) AT THE NX VALUES OF SI BY EVALUATING THE TAYLUR SERIES
OBTAINED B8Y USING THE FIRST THREE DERIVATIVES

DIMENSION SIC1)s FI(1), S(1)s F(1)s EP(l)s FPP(1)s FPPP(L)

DATA PT/.33333333333333/

J = ¢

DO 30 I = 1,NX
VAL = 0.

SS = SI(I)

J o= J+l

TT = S(J)=SS

IF (TT) 10530,20
J = MAXO(1sJ-1)
SS = $5=S(J)

VAL = SSH(FP(J)++5%SSH(FPP(J)+SSHPTHFEPEP(J)))
FI(I) = F(J)+VaL
RETURN

END




OO0

10

22

12

40

SUBRGUTINE CONJ (N»FsGyXsTNsSN)

CONJUGATIUN BY FAST FOURIER TRANSFORM

GIVEN THE REAL PART F OF AN ANALYTIC FUNCTION ON THE UNIT CIkCLE
THE IMAGINARY PART G IS CDNSTRULTED

COMPLEX FsGsEIVLETIT

DIMENSION F{1),G(1)s»X(1), CN(1),SN(1)
DATA PI/3.14159265358979/
L = N/2

DX = 1./FLOAT(L) |
EIV = CMPLX{COS(PI*DX)sSIN(PI*DX))
0O 2 1 = 1,L

G(I) = F(I)

CALL FFORM(L,GsXsCNySN)
G(l) = 0.

I =1

DO 1C J = 1yl s2

EIT = CMPLX(SN(I)*DXsCN(I)*DX)
1 = 1+1 '
G(J) = G(J)I*EIT

G(J+l) = G(J+l)*EIT*EIV

DO 22 I=1,L

SN(I). = ~SN(I)

CALL FFORM{LjsGsXsCNySN)

DO 32 I=1,L - :

SN(I) = =SN(I)

EIV = CMPLX(AIMAG(G(L)),REAL(G(1)))
I =L

G(I) = CMPLX(AIMAG(G(I=1)),REAL(G(I)))
I = I-1

IF (I.6T.1) GO TO 40

G(1) = EIV

RETURN

END

SUBROUTINE FOUCF(N»GsXsAsB)

FOURIER COEFFICIENTS BY FAST FOURIER TRANSFORM
COMPLEX GsEIV,QPs X»GK

DIMENSION G(1l)sX{1)>» A{l),B(1)

DATA PI/3,14159265358979/

L = N/2

v = PI/L

EIV = CMPLX(CGS(V),SIN(V))
ENI = 1./FLOAT(N)

CALL FFORM(LsGsXsAs»B)
GK = O

I =1 .

DO 5 J = 1sls2

X{J) = CMPLX(B(I),A(I))
X{(J+1) = X{J)*E]IV

1 I1+1

K L
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OO0

DO 10 4 = 1,L
QP = GK-CUNJGI(G(J))

GK = GK+CGNJG(G(J))=UP*X(J)
A(J) = =KEAL(GK)*ENI

B(J) = AIMAG(GK)*ENI

6K = G(K)

K o= K-1 |

ACL+1) = =B(1)

B(1) = 0.

B(L+1) = 0.

RETURN

END

SUBRUUTINE FFORM(NsFs XsCNySN)

FAST FOURIER TRANSFOKRM

INPUT ARRAY F WITH REAL AND IMAGINARY PARTS IN ALTERNATE CELLS
REPLACED BY ITS FOURLER TRANSFORM

COMPLEX F(Ll)yX(1),sW

DIMENSION CN(1),SN(1)

IF (NeLT+2) RETURN

NS =1 : '
NR = 2
NQ = N

SET THE SINES AND COSINES
PI=3.14159265356979

OT = (PI+PI)/FLOAT(N) :
IFCOSNCL) eEQeO4) e ANDWISN(2).EQ.SIN(DT))) GO TO 11
ANG = 0.~ '

00 5 J = 1,N

CN(J) = COS(ANG)

SN(J)==SIN(ANG)

ANG = ANG+DT

00 10 K = NRyN

IF (MOD(NQ,K)EC.0) GO TO 21

CONT INUE

ND=NGC/K

NS = NS*K

NK = K

IQ = 0

ID = 0

DO 22 I = 1,NS

DO 24 J = 1,ND
L o= IQ4+d

LP=L+ND

M=1D

W sF(L)+F(LP)*CMPLX(CN(M+1)sSN(M+1))
IF(NR.EQ.2) GO TO 24

L=LP

DG 26 K=3,NK

L = L+ND

M = M+ID
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26
24

22

32

61

60
71

76
74

72

10

IF (M.GE.N) M = M=N

W= WHF(L)*CMPLX(CN(M+1),SN(M+1))
X(ID+J) = W

ID = ID+ND

1g=1Q+NQ

IF(IQsGEWN) IQ=I1GQ~-N

CONTINUE

N@ = ND

IF (ND.GT.1) G0 TO 61

DG 32 K = 1N

FIK) = X{(K)

RETURN

CO 60 K = NRsN

IF (MOD(NG,K)EQ.0) GO TG 71
CONTINUE

ND=NQ /K

NS = NS*K

NR = K

Ie = 0

ID = ©

DO 72 I = 1sNS
DO 74 J = 1sND
L = 10+J
LP=L+ND

M=10D

W=X(L)+X(LPI®CMPLX(CN(M+1) 5 SN{MN+1))
IF(NR.EQ.2) 6O TO 74

L=LP

DU 76 K=3,NR

L+ND

M+1ID

F (MeGEeN) M = M=N

W = WeX(L)¥CMPLX(CN(M+L),SNIM+1))
FOID4+J) = W

ID = ID+ND

10=10+NQ

IF(IG.GESN) IQ=IQ=N

CONTINUE

NQ = ND

IF (ND+GT.1) GO TO 11

RETURN

END

L
M
1

FUNCTION INDEXR(X»ARRAY,sN)
DIMENSION ARRAY(1)

S = ABS({X=ARRAY(N))

DO 10 L = 1N '

IF (ABS(X—ARRAY(L)).6T4S) GO TO 10
INDEXR =

S = ABS({X-ARRAY(L))

CONTINUE

RETURN

END
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20

30

SUBROBUTINE GTURB{(DELMAXsDELBPsCPOsBCP»SLsRDELSRBCP)

COMMON/FL/FLUXT4,CD4sCDW» INDCE

COMMON PHI(162,31),FP(162531)5A(31)sB8(31)5C(31)5D(31)5E(31)

1 »sRP(31),RPP(31),R(31)sRS(31)sRI(31),AA(162),BB(162),C0(162)

2 »S1(162)sPHIR(162)s XC(162)sYC(162)sFM(162)s ARCL(I162)yDSUM(162)
3 JANGOLD(162)»X0LD(162)»YOLD(162)sARCOLD(162),DELOLD(162)

4 »RP4(31),RP5(31)

COMMON /A7 PIsTP, RAD)EM,ALP)RN,PCH’XP’TC,CHD)DPHI:CL,RCL)YR

s XAy YA, TESDT s DRy DELTH)DELRYRASDCNSDSNsRA4SEPSIL,QCRIT,C1sC2

9C45C55C6sCT7s»BETHBETAY FSYMs XSEP» SEPM»TTLE( &) s My Ns MMy NNyNSP

s IKs JK» T2 ITYPyMODES ISHNFCHNCY s NRNy NG» IDIMsN2s N3sNayNT,» IXX

sNPTSHLLyIsLSEPsMas,NEWSEPSISNCESsXLENs SCALQL

»SCALQUIN6SGAMMASNQPTYyCSTARSREMSDEPY QINF» TSTEP, XOUT

» INC>QFACsGAMIKDESSPLTSZsCPLsQPU
REAL MACH,MACHN)NEW,MACHS
DIMENSION HP(162)sSEPP(162)sCPP{162), THETAP(162)sDELP(162)

1 >DELX(1)s»TD(1)

DIMENSION H(1),THETA(L)»DELS(1)sXX{(1)sYY(1)sMACHN(L)
1 »SEPR(1)»CPX(1)»DSBT(1)»S(1),MACHS(1)s ANGNEW(1)

EQUIVALENCE (MACHN(1)»A(1)) = »(H(1)sFP(lst))s (THETA(L)»FP(1,8))
1 s UXXCL)»FP(1s3 ))s(YY(L)sFP(1s5))s(DELS(1)sFP(1,10))
2y (ANGNEW(1)sFP(1524))s (SEPR(L)sFP(1y14))s(CPX(1),PHIR(1))

3 5(S(1)sFP(1,16))s (MACHS(1)sFP({1526))s(DSDT(1)»FP(1530))
4 »(DELX(1)sFP{(1512))s(TD(1)»FP(1,20))

CPLQ) = CH*((C4/(1.+C2%Q*Q))**C7-1.)

QSX(Q) = (Ca-(1.+Q/C5)**x(1./C7))/CO

MACH({Q) = SQRT (Q/(C1-C2*Q))

DATA ISW/O0/sCDF/0e/»XPLT/ 45/ XFAC/1004/

IF (NDES.GE.1) GO TO 5

DG 10 J = 1,NN

PHI(MM»J) = PHI(1,J)+DPHI

PHI(MM+1,J) = PHI(2,J)+DPHI

IF (ISWeEQeO +ANDJCSTAR.EQ.100.) CALL GOPLOT(NRN)

COMPUTE AND STORE CP CRITICAL

CPX{MM+1) = CP(1l.) ' o

ISX SET TC 1 FOUOR FSYM=1., AND FSYM=3 IF FLOW HAS NUT BEEN CUOMPUTED

ISX = (NCY+1L)*(ITYP-3)*ABS(FSYM+10.)+.2

IF (ISX.NE.1) GO TG 30

M4 = N3

FSYM = 0.

ALP = 0,

XSEP = AMAX1{Oes»XSEP=-1.)
QS = A(MM)

DO 20 L = 1,MM

XOLD(L) = XC(L)

YOLD(L) = YCU{L)

MACHN(L) = MACHC(A(L))

CPX(L) = CP(MACHNI(L))

IF (CABS(YC(MM)I-YC(1))oLEsleE=5) 4 AND.(IABS(NRN)GT.999)) GU TO 50
G0 76 110

DO 40 L = 2»M

L = (PHI(L+1,1)-PHI(L~- l;l))*DELTH =-SI(L)

@S = (U*U)/FP(Ls1)

MACHN(L) = MACH(QS)
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40 CPX(L) = CP(MACHN(L))

MACHN(MM) = +5%(MACHN(Z2)+MACHN(M))

MACHN(1) = MACHN(MM)

CPX(1) = CP(MACHN(1))

CPX(MM) = CPX(1)

QS=QSX(CPX(MM))

IF(CINDCD.EQ.1) sANDL(FSYM.EQ.7)) GO TO 50
| IF (FSYM.EQs6.) GO TO 60
| . IF ((FSYMeLE«5+) OR(ITYP.LE.2)) GO TO 50

C ADVANCE PLOTTER PAPER TO THE NEXT BLANK PAGE
IF(XPLTo6Tee5) CALL PLUT(12¢O0%FLUOATCINT((20624XPLT)/124))50e5=3)
XPLT = 5

50 CALL GETCP(CDF)
IF(INDCD.EQ.1) ISW=1"
IF(INDCD.EQ.1) RETURN
CALL GOPRIN (HPyTHETAP,»SEPP,CPP,DELP,XTRANS)
IF (ISXeEQ.1) CALL EXIT
ISW = 1
~ RETURN
60 DO 70 L = 1,MM
70 CPP({L) = CPX(L)
IF((ISWeEG.0) sURL(FSYMoNELEL)) GO TO 90
C FIND THE BASE PRESSURE
DELBP = 10.
CPO = CPIMACHN(IXX-1))
DO 80 L = IXXsM
CPN = CPI{MACHNI(L))
DELBP = AMINL(DELBPsCPN=-CPD)

80 CPD = CPN
BCP = BCP+RBCP*DELBP
90 ISW =1
PCH = ABS(PCH)
If (LSEP.GE.MM) GO TO 110
¢ MUDIFY THE MACH DISTRIBUTION

CPO = CP(MACHN(LSEP))

SEPX = XC(LSEP)

SL = (BCP=CPO)/(XC(MM)=SEPX)

DD 100 L = LSEP,MM

CPP(L) = CPO+SL*(XC(L)=SEPX)
100 MACHN(L) = MACH{QSX(CPP(L)))
110 KQMIN = 1 '

KQMAX = 1

QMIN = MACHN(1)

GMAX = QMIN

DARC = TP/FLOAT(NPTS-1)

DO 115 L = 1, NPTS

115 H(L) = FLOAT(L-1)*DARC
H(NPTS) = TP '

- DD 116 L = 1M

116 YY(L) = FLOAT(L-1)*DT
YY(MM) = TP .
CALL SPLIF (MMyYYsARCLsDSDTsCO»TD»350453504)
CALL INTPL (NPTSsHsS»YY,ARCL,DSDT»COsTD)
S(NPTS) = ARCL(MM)
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leNe!

120

140

141

170

180

185

. CALL SPLIF (MM»>»ARCL,MACHN,DSDTsCU0sTDs35045350,)

CALL INTPLI(NPTSsS sMACHS s ARCLIMACHN,DSOT,CO,TD)
CALL SPLIF (MMsARCLsXC»DSDTs»COsTD93504535C.)
CALL INTPL (NPTS»SsXXsARCLSXCsDSDT»CU»TO)

DO 120 L = 1,NPTS

IF (MACHS{L)«GT.GMAX) KQMAX = L

IF (MACHS(L).LT.QMIN) KQMIN = |

QMIN = AMINLI(MACHS{L)»QMIN)

QMAX = AMAX1{MACHS(L),QMAX)

SEPR(L) = 0.

H{L) = 0.

DELS(L) = 0.

THETA(L)Y = 0.

IF (PCH.LT.0.) GO TO 140

KQMAX = KQMIN+INDEXR(PCHs XX(KQMIN+1)s NPTS=KQMIN)
IF (KQMAX.GE.NPTS) CALL ABORT

CALL NASHMC (KUMAXsNPTS)

XTRANS = PCH

IF (PCHeLT+0) XTRANS = XX(KQMAX)

KUGBOT = INDEXR(XTRANSs XXsKQMIN)

IFf (KQBOTWLE.1) CALL ABORT

CALL NASHNMC (KGBOT»1)

FAC=S5(4)/(S(4)~-5{(2))
THETA(L)=FACATHETA(2)+(1le~FAC)*THETA(4)
H{1)=FAC*H(2)+(1.~FAC)*H(4)
DELS(1)=H(1)*THETA(1)

IF(XSEP.GE«Qe) GO TO 141
FAC=(SINPTS=3)~S(NPTS))/(SINPTS=-3)=-S(NPTS-1))
THETA(NPTS)=FAC*THETA(NPTS=1)+(1.=FAC)*THETA(NPTS~3)
HINPTS) =FAC*H(NPTS=1)+(1.~FAC)*¥H(NPTS=3)
DELSINPTS)=H(NPTS)*THETA(NPTS)

CONTINUE ' S

COMPUTE THE SKIN FRICTION DRAG

G = SQRT(QS)

RT = (C1l-C2*GS)/7(C1-C2)

HBT = (H(NPTS)+1.)%(1.-C2%Q5/C1)-1.

HBB = (H(1l)+1.,)*(1.-C2*QS/C1l)-1, :
COF = 2¥THETA(NPTS)*Q¥%x(5%( HBT +5.))%KkT*%3
COF = COF+42.%THETA(L1)*Q¥*(.5%( HBB+5.))*RT#x%3

IF (ISXeEQel) GC TO 200

MAKE DISPLACEMENT MONOTUONE INCREASING ON THE UPPER SURFACE
00 170 L = KQMAX,NPTS

Ir (DELS(L+1).LTLOELS(L)) DELS(L+1) = DELS(L)

CUNTINUE ' '

LOWER SURFACE - FIND WHERE DELS STARTS DECREASING

. TREAT THE LOWER SURFACE LIKE THE UPPER SURFACE IF XSEP.LT.O

XPC = .60

IF (XSEPLT40.) XPC = 2,
J = KQBOT

J = J-1

IF (DELS(J=~1)«LT.DELS(J)) GO TO 185
It (J.GE.2) €O TO 180

GG TC 200

IF (XX(J).GT4XPC) GO TO 190
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190

200

210
220

221

230

240

DELS(J=1) = DELS(J)

GO TO 1890

DISPLACEMENT MUST STAY MUONOTONE DECREASING

J = J-1 .

IF (DELS(J-1)+GT.DELS(J)) DELS(J~-1) = DELS(J)

IF (J.GT.2) GO TGO 190

SMOOTH DELS IS TIMES

IF (IS.LE.Q) GO TO 220

DO 210 I = 1,18

OLD = DELS(1)

DG 210 L = 3,NPTS

NEW = DELS(L~-1)

DELS{L=1) = «25%¥(CLD+NEW+NEW+DELS(L))

CLD = NEW

XPLT = XPLT+.5
FAC=(S{NPTS=1)=S{NPTS))/(S(NPTS-1)=S(NPTS-2))
DELSU(NPTS)=FAC*DELS(INPTS=2)+(1.-FAC)*DELS(NPTS=-1)
IF(XSEP.GELG.) GO TO 221
FAC={S(2)=-S(1}))/(5(2)~-5(3))
DELS(1)=FAC*DELS(3)+(lo~FAC)*DFL5(2)

CONT INUE

IF (ISX.EQ.1) GO TO 260

YFAC = 104/S{NPTS)

CH = (H(KQMAX+1)-H{(KGBOT-1))/ FLOAT(Z2+KGMAX~-KUMIN)
FAC = ARCOLD{NT)/S{NPTS)

IFOXPLTeLTele2) CALL SYMBOL(435984745¢14»5568DISPLACEMENT THICKNESS
1 AT EACH BOUNDARY LAYER ITERATION»270.555)

CaLL PLOT (XPLT+XFAC*DtLS(1)y10 553)

DU 230 L = 1sNPTS

CALL PLOT(XPLT+XFAC*DELS(L)»1045-YFACK*S(L)»2)

IF ((L.GE+KQBUT)« ANDs(L+LEJKQMAX)) H{L) = H(L-1)+DH
YY{L) = S({L}*FAC

YY(NPTS) = ARCOLD(NT)

DELX WILL BE BOUNDRY LAYER ODISPLACEMENT AT NT PUINTS
CALL SPLIF(NPTS»YY,DELS»DSDTsCU»TD»350e9350.)

CALL INTPL(NT»ARCOLDsDELX»YY»DELS»DSDT»C0,T0D)

THE FOLLOWING ARE BEING COMPUTED FUOR FUTURE PRINT 0OUT
CALL SPLIF(NPTS»SsDELSsDSDTsCD0sTD»35045350,)

CALL INTPL(MM,ARCL»DELP»Ss»DELSsDSDT»C0O»T1D)

CALL SPLIF (NPTS»yS»HsDSDT»COsTD»350e2350.)

CALL INTPL(MMsARCLIHP,»S»HyOSDT»CO»TD)

CALL SPLIF{NPTSsS»THETA»OUSDT»CU»TD»350e¢5350,4)

CALL INTPL (MMsARCLs THETAPsS,THETA,DSDT»CO0,TD)
CALL SPLIF(NPTS»S» SEPRsDSOTsCOsTD»350Ce»350.)

CALL INTPL{MMy»ARCL» SEPP»S»y SEPR,DSDT,COsTD)

GET THE SLOPES FUR THE OUTER AIRFOIL AT CURRESPONDING PUINTS
DO 240 L = 1,MM

DDEL = RDEL*(DELP(L)=-DSUMIL))

DELP(L) = DDEL

DSUM(L) = DSUM(L)+DDEL

S(L) = FAC*ARCL(L)

S(MM) = ARCOLD(NT)

CALL SPLIF(MM,S»FMyDSDT»C0sT0»350e9350.)

CALL INTPL(NT»ARCDLDy ANGNEWsSsFMsDSOT»CO»TD)
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250

2690

276

1
2
3
4

[0 BN IV S VO RR VI

1

DELMAX = 0. -

0O 250 L = 1,NT

DDEL = DELX(L)~DELOLD(L)

DELMAX = AMAX1(DELMAXsABS(DDEL))

DY = DELOULD(L)+RDEL*CDEL

ANG = +5%(ANGOLD(L)+ANGNEW(L))

XX(L)=X0LD(L)

YY{L)=YOLD(L)+DY/COS(ANG)

DELOLD(L) = DY

1SS = IS

IS = -1

IF (ITYP.EQ.99) CALL GUPRIN (HPs THETAP»SEPPsCPP»DELP, XTRANS)
CALL AIRFOL

IS = 1SS

FSYM = 7,

RETURN

DO 270 L = 1,MM

ARCOLD(L) = ARCL(L)

CPP(L) = CPXIL)

ANGOLD(L) = FM(L) _
CALL SPLIF(NPTS»SsDELS»DSDT»CO0sTDs350e5350,)
CALL INTPL(MMsARCLsDSUMsS»DELSsDSDT»CU»TD)
CALL SPLIF(NPTSsSs»SEPRsDSDT»C0sTD»3»50453504)
CALL INTPL (MMsARCL»SEPPs»S»SEPR,DSOT»CC»TD)
CALL SPLIF (NPTSs»ySsTHETA»DSDT»CUsTD»35Ces350,)
CALL INTPL (MMsARCL» THETAP,S, THETA»DSDT»C0sTD)
CALL GOPRIN (HP, THETAP,SEPP,CPPsDELPs XTRANS)
NT = MM

CALL GETCP(CDF)

IF (JUKJLEs=1 ) CALL PLOT (0e»045999)

CALL EXIT

END

SUBROUTINE GUPRIN(Hs THETAS»SEPSCPPsDELS XTR)

REAL MACHN

COMMGON PHI(1625,31)sFP(162531)5A431),8B(31)5C{31)50(31),E(31)
»RP{31)sRPP(31)sR(31)sRS(31)>RI(31)5AA0(162),BB(1e2),C0(162)
»ST(162),PHIR(162)s XCL{162)sYC(162)sFM(162)sARCL(162),DSUM(1E2)
s ANGOLD(162) s X0LD(162)sYOLD(162),ARCOLD(162),DELOLD(162)
2RP4(31)»RPH(31)

COMMON /A7 PI»TPyRADSEMeALPyRNSPCHs XP»TCrCHDsDPHISCLIRCLs YR
sXAsYAs» TE, DT> DRy DELTHs DELRS KA GCNy OSNyRAGSEPSIL,QCRITHC15C2
sCa4sC59CEICT»BETYBETAs FSYMpy XSEPSSEPMTTLE(S4) »Ms Ny MMy NNINSP
sIKsJK» 172, ITYPyMODES ISHNFCoNCYSNRNy)NGs IDIMyN2s N3 s NGy NTy IXX
SNPTSsLLsIsLSEPIMA4» NEWSEPS1yNDESHXLENSSCALQI
»SCALQUOI N6 GAMMASNQPTHCSTARSREMSDEP» QINFS TSTEP» XOUT
s INCQFAC» GAMsKDES»PLTSZ»QPLsQPU

DIMENSION DSDT(L)sFPP(Ll)sFPPP(1)sH(1)sSEP(L)s THETA(1)»CPP(1)
sMACHN(1)sCP{1)sDEL(1)sBL(4&)

EQUIVALENCE (FPP{1)»CO(1))s{FPPP(L1)»SIC(1))s{DSOT(1)sFP(1y31))

EQUIVALENCE (MACHN(L)s A(1))s(CP({1)»PHIR(1))
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10

20

25

555
6C0

556

610

30
670

40"

50

60

70

DATA IONsIQFFsZsSEPMAX/1s050.5.004/
SN = -2./ARCL(MM)

QMIN=MACHN(1)

DO 10 L = 1M

QMIN=AMINL(MACHN{(L), QMIN)

ARCLI(L) = ACOS(1.+SN*ARCL(L))

ARCL(MM) = PI

CALL SPLIF(MMsARCLsFMsDSDTSsFPPy FPPPs15sCesls04)

DSDT(1) = FPP(1)*1,E-5

DSDT(MM) = —-FPP(MM)*1.E-5

DO 20 L = 1,MM

FPP(L) = RAD*FM(L)-180.

FPPP(L)= SN*DSDT{(L)/AMAX1(1.E- 5,SIN(ARCL(L)))

IF (FSYM.GT.5.) GO TC 120

IF (FSYM.,EQ.O0.) GO TO 60

WRITE (N4»310) :

IF (FSYM.EQ.0) WRITE (N4,320) TTLE

IF (XP.EQ.O+) WRITE(N4s360) IOFF

IF (XPoNE.Oos) WRITE{(N4,660) IOFF

IF (XP.EQ.0.) GG TO 600

REWIND M4

READ (M&4,55%5)

READ (M4s555)

FORMAT (1H1)

DO 30 L = 1sMM

IF (XP.EQ.0.) GO TO 610

IF (MOD(L+1555)+EQeQ) WRITE (N&4,660) IGN

READ(M4,556) DUM,DUM

FORMAT(2F10.4) _
WRITE(N4,670) LsXC(L)sYC(L)»FPP(L)sFPPP(L)sMACHN(L)»CP(L)»DUMN
GO TG 30 \

IF (MOD(L+1555)«£040) WRITE (N&4,360) ICN

WRITE(N4»260) LsXC(L)>YC(L)sFPP(L)sFPPP(L)sMACHN(L)SCP(L)
CONTINUE ‘

FORMAT (11452F9.552F84253F9.4)

RESTORE QUANTITIES TO VALUES THEY HAD UPON ENTtRING THIS ROUTINE

DO 50 L = 1sMM
ARCL(L) = (COSC(ARCL(L))=1.)/SN
FP(LsNN) = 1.

CALL COSI

RETURN

RNX = +1*#AINT(RN*1.E~5)

IF CCABS{YC(MMI-YC{1))eLEs1.E~-5) AND (IABS(NRN)GT. 999)) GU TGO 25
WRITE (N4,390) TTLE»RNX

WRITE (N4,330) I0FF

IF ( JK.GE.O ) GO TO 80

CALL PLOT (24504s-3)

ENCODE (30537C»TTLE) EMsCL,TC

CALL SYMBOL (1le2s¢75e1l4sTTLE»Oe»30)
ENCODE (205380,TTLE) RNX

CALL SYM3COL (1551405414, TTLE, 0.,20)
CALL PLOT(PLTSZ¥XC(1)s5+PLTSZ*¥YC(1),»3)
60 70 L = 2,MM

CALL PLOT(PLTSZ%*XC(L)s5«+PLTSZ*YC(L)>»2)
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80

85
90

100

120

125

130

150

260

230 FORMAT(3X,

IPEN = 3

DO 100 L = 1,MM

XS = XOLD(L)+DSUM(L)*SIN(ANGULD(L))

YS = YOLD(L)=-DSUM(L)*CUS(ANGULD (L))

XC(L) = XS

YC(L) = YS

IF (JKeLEWs=1) CALL PLOT(PLTSZ*XSs5.+PLTSZ*YS>IPEN)

IPEN = 2 .

IF (MOD(L+3555)+EQ.0) WRITE (N4,330) ICN

IF (XOLD(L)«GT4XTR) GO TO 90

TRANS = 1H :

IF (MACHN(L)«EQ.QMIN) TRANS = 1O0HSTAGNATION

IF ((XOLD(L+1)eGToXTR)eORe(XULD(L=1)eGT+XTR)) GO TO 85

IF ((XOLD(L42)+eGToXTR)4OR{XOLD(L=2)+GT XTK))TRANS= 1O0HTRANSITION
WRITE (N&4sy340) XOLD(L)»YOLD(L)sFPP(L)SFPPP(L)»CPPIL)s TRANS»XS,»YS
60 TO 100 ‘
WRITE (N45350) XOLD(L)sYOLD(L)sFPP(L)SFPPP(L)sCPP(L)sTHETA(L)
1 »SEP(L)» XS»YS

CONTINUE

IF (XP.EQeDe) NRN = —TABS(NRN)

XP = —ABS(XP)

RETURN

WRITE (N&4,310)

WRITE (N%,300) IOFF

I =1

YSEP = ABS(XSEP)’

IF (XSEP.GT.0.) YSEP = 2.

GO 150 L = 1sMM :

IF (MOD(L»55) «EQ.0) WRITE (N4»300) ION

IF (XC(L)+GT.XTR) 60 TO 130

TRANS = 1H

IF (MACHN(L)+EQ.QMIN) TRANS = 1O0HSTAGNATION

IF ((XCUL+¥1)eGToeXTR)IW&ORIXCIL=1)eGT«XTRK)) GO TO 125

I = -1

YSEP = ABS(XSEP)

IF ({XCUL+2)eGTeXTR)4OR{XC(L=2)4GToXTR)) TRANS = 10OHTRANSITION
WRITE (N&»290) LaXCUL)sYC(L) s FPP(L)sFPPP(L)»MACHN(L)»
1 CP(L)sCPP(L)sZsZsTRANSsL

GO TO 150

BL(1) = 1H

BL(2) 1H

BL(3) 1H

BL(4)= 1H

IF (L EQ.LSEP) BL(1) = 2HLS

IF((SEP(L) «GT eSEPMAX) s ANDo (SEP(L+I)oLToSEPMAX)) BL(2)= 2HCS
IF (L+EQsIXX) BL{3)= 2HLM

IFCOXCOL) oGESYSEP)  ANDW(XC(L+I)oLTLYSEP)) BL(4) = 2HLP

WRITE (N4,280) 8L sLaXCLL)YSYC(L)sFPP(L)»FPPP(L)sMACHN(L) S
1 CPUL)sCPPUL)Y»THETA(L)» DSUMIL)» SEP{L)sH(L)»DEL(L)sL

CONTINUE

GO TO 40

FDRMAT(II4,2F9.J’ZF8 252F9 ¢4)
4A291592F9459FGe2sFB8425FB8e4s2F94%sFGa59F9, 5;?9 5s5F742
1E9.2,15) ‘
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290 FORMAT (I1692F9¢59FFe2sFBelsF8e4s2FF4452FF4558X5A10,7X515)
300 FORMAT(Il,»14X1HLOX2ZHXSs 7X92HYSy 7Xs 3HANG, 4X» SHKAPPA,» 4Xy 4HMACHEX2HC -
1 s6X3HCP1y 4X5HTHETAY 5X4HDELS, 6X3HSEP» 6X1HH, 6X2HDDs 6X1HL/)
310 FORMAT(1H1,15X,40HLOWER SURFACE TAIL TG UPPER SURFACE TAIL )
320 FORMAT(1H1/ 17X26HLISTING OF CUORDINATES FUORs2Xs4A4)
330 FORMAT(I1 /11X1HXsBXs1HYs6Xs3HANGs4XsS5HKAPPASGEXy2HCPY S X,
1 SHTHETA»S5Xs3HSEP»6Xs2HXS» 7Xs2HYS/)
340 FORMAT (Fl4e5sF9455F8425F8edsFT4454X»A1054X52FF45)
350 FORMAT (Fl4e55FGe¢55F842sF8425F94454F9.5)
360 FORMAT (I1/12X1HLs6Xs1HXs8Xs1HYs6Xs 3HANGs 4 X5HKAPPA4X4HMACHOXZHCP/)
370 FORMAT ( 2HM=,F6.3s4Xs3HCL=9F54354Xs 4HT/C=sF443)
380 FURMAT (4H RN=,F4.159H MILLION )
390 FORMAT(1HL/ 9X26HLISTING OF COORDINATES FORs2Xs4A4 s4Xs3HRN=,
1 F4.198H MILLIGN )
660 FORMAT (Il/lZXlHL:bX:ldX,8X,1HY;6X,3HANG,4X5HKAPPA4X4HMALHCX2HCP;
1 8X,4HDATAY)
END

SUBRUOUTINE NASHMC (K1sK2)
C COMPUTE THE BOUNDRY LAYER FRUM POINT K1 TO K2
C K3 WILL BE THE SEPARATION PQOINT
COMMON PHI(162531)sFP(162531)sA(31)»8(31)»C(31)sD(31)5»E(31)
1 »RP(31),RPP{31)sR(3L)IsRS(31)I»RI(31)IAL(162),B8(162),C0(1H62)
2 »SI(162),PHIR(162)sXC(162),YC(162)»FM(102)s ARCL(162),DSUM(1E2)
3 ,ANGULD(162))XULD(lé’))YDLD(le),A&CULD(loZ):DELCLD(léZ)
4 sRP4(31)sRP5(31)
- CUMMON /7A7 PIsTPsRADIEMIALPIRN)PCHs XPsTCs»CHDsDPRISCLIRCLS YR
sXAsYAs TEs DT s DRs DELTH, DELRIRASDCNy DSNyRAG» EPSILY»QCRIT»CLls(C2
sC4sC55C6sCT>BETH»BETAs FSYMy XSEP» SEPMsy TTLE(4)sMsa Ny MMs NNy NSP
s IKs UKy IZs ITYPyMODESISoNFCHNCY s NRNoNGs IDIMyN2s N3 s NGy NTH»IXX
sNPTS»LLyI»LSEP» M4y NEWs EPSL1yNDES»XLEN»SCALQIL
2SCALQOI N6 GAMMASNQPT,CSTARSREMyDEPy GINFy TSTEP, xOUT
»INC>QFAC»GAMyKDES»PLTSZ»QPL,GCPY '
DIMENSION MACHS(1)»H(1) s THETA(L)sSEPR(L)»S(1)sDELS(L1) s XX(1)
EQUIVALENCE(MACHS(L)sFP(1s28))s (H{1)sFP(1s6))s ({THETA(L)»FP(1s81))
EQUIVALENCE (SEPR(1)sFP(1s514))s(DELS(L)»FP(1510))5(S{1)sFP(1s16))
EQUIVALENCE (XX{(1)»FP(153))
REAL MHsMHSUQsNUsMACHS
DATA TRsRTHOs TE1sTE2»SEPMAXSPIMINSPIMAX /7434249320095 eE=3954E~5y
1 +004s5-1e5s14E4/

GAM1 = J5/C2

CSIINF = C4

INC = ISIGN(1l,K2-K1l)

YSEP = ABS{XSEP)

IF ((XSEPeGTeOe) e ANDS(INCSLTWL0)) YSEP = "1,

SEPMAX = SEPM

[o NS IRV SIS I AV

GE = 6.5
L = K1
DS = ABS(S(L)-S(L-INC))
10 LP = L+INC
MH = 5% ({MACHS(L)+MACHS(LP))
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MHSQ = MH#*MH

CSIH = 1.+C2%¥MHSQ

LSOLG = OS

DS = ABS(S(LP)=S(L))

Dabs = (MACHS(LP)—MACHS(L))/(DS*MH*CSIH)
T = CSIINF/CSIH

RHOH = T*%*GAM1

NU = T*(1++TR)/(RHOH*{T+TR))

RTH = RN*MH/ (EM*NU)

IF (L.NE.K1) GO TC 3¢C

THETAH= RTHO/RTH

THT = THETAH

30 FC = 140+,066*%MHSCU~e Q0B%*MHEMHSQ

FR = Le=el34%MHSQ+.027%MHSQ*MH

DO AT MOST 200 ITERATIONS

DU 140 J = 1,499

RTAU= 14/(FC*(2.4711%ALOG(FR*RTHXTHETAK)+4.75)+1.5%6E+1724./
1 (GE*GE+200.)-16.87)

TAU = RTAU*RTAU

HB = le/(le=GEX*RTAU)

HH = (HB+1s)%(1.+.178%MHSQ)~-1.
SEP = -THETAH*DQDS

IF (SEP.LTLSEPMAX) GC TO 50

IF (XX{L)«LToYSEP) SEP = SEPMAX

50 PIE HH¥SEP/TAU

PI1E AMAXI(PIMINY AMINLI(PIMAX>PIE))
G = 6e1*SURT(PIE+1.81)-1.7

T2 = ABS(G6-GE)/GE
GE = G
DT2 = DOT1

DTl = (HH+2,-MHSQ)*SEP+TAU
IF (J.EQ.1) GO TG 11C
TI = ABS((DT1-DT2)/DT1)
IF ((TIeLTWTEZ2)WANDC(T24LTWTE1)) GO TO 130
110 THETAH = THT+.5%DT1%*DS
140 CONTINUE )
130 THETA(LP) = THT+DT1%DS
SEP = =-THETAH*DCDS
THETAH = THETA(LP)
THT = THETA(LP)
SEPR(L) = (SEPR(L)I*DS+SEP*DSOLU)/(DS+DSULD)
SEPR(LP) = SEP
HIL) = (H(L)*DS+HH*DSOLD)/{DS+DSOLD)
H(LP) = HH
CELSC(L) = H(L)*THETA(L)
L = LP
IF (L+NEWK2) GO TO 10
H(K2)=H(K2- INC)+(DS/D>JLD)*(H(K2 —INC)-H(K2~INC-INC))
SEPR(KZ2) = 2.%SEPR{(K2)=SEPR(K2=-INC)
DELS(K2) = HIK2)*THETA(KZ2)
H(K1) = 0.
SEPR(K1) = 0,
CALL NASHLS(K2)
DELS(K2=INC) = H(K2=INC)*THETA(K2=-INC)
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DELS(K2) = H(K2)*THETA(K2)
RETURN
END

SUBRCUTINE TRID1(AsBsCsRHSsUOUTs N> IDIM)
COMPLEX RHS,0UT

DIMENSION A(1)s8(1),C(1)

DIMENSION GA(35)sRHS(IDIM)»OUT(35)
REC=1./8(1)

GA{1)=REC*C(1)

‘OUT(1)=REC*RHS{1)

DO 10 J=2,N-
REC=1e/{B(J)=ALJ)I*GA(I=1))
GA(J)=REC*C(J)
OUT(J)-REC*(RHS(J)—A(J)*UUT(J 1))
DO 20 JJ=2»N

J=N=JJ+1
GUT(J)-DUT(J)—GA(J)*GUT(J+1)
RETURN

END

SUBROUTINE SOLV1

COMMON PHI(162531)sFP(162531),A(31)58(31),C(31)5,0(31)5E(31)
1 »RP(31)sRPP(31),R{31),RS(31),RI(31),AL(162)5BB(1€2),00(162)
2 5SI(162)sPHIR{162)sXC{162)sYC(162)FM(162)5ARCL{1E2),DSUNM(162)
3 5 ANGOLD(162),X0LD(1€2),Y0LD(162)5sARCOLD(162),DELOLD(162)

4 sRP4(31),RP5(31) ' _

COMMON /A/ PIsTPsRADSEMsALPs RNy PCHy XP»TCs CHU» UPHISCLsRCLs YR
»XAsYAs TEsDT sDRsDELTHsDELRsRASDCNsDSNy RAGSEPSILSGCRITHC1,C2
5C45C59C6sCT79»BETIBETAY FSYMy XSEPS» SEPMs TTLE(4)» My Ny MMy NNsNSP
pIKsJKs IZo ITYP,MODESISsNFCHNCYsNRNs NGy IDIMsN2sN3sNas NT» IXX
sNPTSsLLs IoLSEPs Ma s NEWSEPSL1yNDESy XLENs SCALQI
»SCALQDsNG6sGAMMAINGPT S CSTARSKEMSDEPy QINF» TSTEP, XOQUT

s INCYQFAC»GAMIKDES»PLTSZy» UPLsQPU '

COMPLEX FFsFl,GG

DIMENSION CX(162)»SX(162);FP(162))oG(162)1F1(31)

COMMCN /S0OL17 Q(162531)

IF(NEW.NEL1) GO TO 30

DGO 1 I=1,M

CX(1)=COS((I-1)%DT)

SX{IL)=SIN((I-1)*%DT)

CONT INUE

NEW=0,

MMP=MM+1

CONTINUE

MA=M/2

MAl=MA+1

PO 2 J=1sNy2
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CALL TWDFPT(M:Q(l,J)yQ(1:J+1);FF:GG;CX:SX;1)
DO 7 I=1,MAl

IM=M~-1+3

Q(I»J)sREALIFF(I))
Q(I,J+1)=REAL(GG(I))
Q(IMsyJ)=—-AIMAG(FF(1))
QEIM»J+1)==AIMAG(GG(1))
CONTINUE

CONTINUE

HR =4 £%DR

DO 3 J=1,N

DUJ)=2.%RS(J)

T=RA*RA%*R(J)

B{J)=T%*(R(J)=~HR)
COJ)=T*{R({J)+HR)

C(l)=D(1)

DO 4 1I=1,MA1

IM=M=-1+3

DO 5 J=1»N
AlJ)==D(J)=2¢%(1e=CX(1))
FECJ)=CMPLX{Q(IsJ)y Q{IMsJ))
CALL TRID1(BsAsCsrFFsFlsNsl62)
DO 8 J=1,N

QEIsJ)=REALIF1I(J))
QUIN,J)=AIMAG(F1(4d))

CUNTINUE

CONTINUE .

D0 9 J=1sNy2

DU 10 I=1,MAl

IM=M=1+3
FECI)=CMPLX(Q(IsJ)s=Q(IMsyJ))
GGII)=CMPLX(Q(IsJ+1)s=Q(IMsd+1))
FFOIM)=CMPLX(Q(I»J)s»G({IMsd))
GG(IM)=CMPLX(Q(I»J+1)sQ{IMyJ+1))
CALL TWOFFT(=-MsQ(1sJ)sQU1lsJ+1)sFFsGGsCXySXs1l)
CONTINUE

DO 12 J=1,N

QIMM,J)=Q(1lsJ)
QIMMF,J)=Q(2,J)

RETUEKN

END

SUBROUTINE SWEEP1
COMMON PHI(162»31)sFP(162531),A(31)s8(31)sC(31)50(31)5E(31)
1 »RP(31),RPP(31)sR(31)sRS(31),RI(31)5AA(162)5BB(162),C0(162)
2 »SI(162)»PHIR(1E2)9XC(162)5YC(162)5FM(L162)5ARCL(162),DSUM(162)
3 »ANGOLD(162)s XOLD(162)sYOLD(162),ARCOLD{162)sDELGLD(162)
4 sRP4(31),RP5(31)
COMMON /A/ PIsTPsRADSEMIALPIRNSPCHy XP, Tb)CHD)UPHI;CL;RCL:YR
1 sXA» YAy TE»DT»DRsDELTH,DELR)RASDCNsDSNyRA4» EPSIL,QCRIT,C1C2
2 3C43C59C6yCT7sBETIBETAIFIYMy XSEPSSEPMs TTLE(4)» Mo Ns MMy NNy NSP
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,IK’JK;IZ)ITYP;MUDE,IS;NFC;NCY:NRN’NG’IDIM)NZ;N3;N4)NT;IXX
SNPTSsLLs»I»LSEPsMasNEWS EPSLIyNDESs XLEN»SCALGL
s SCALQOs N6» GAMMAS NUPTs CSTARs REM» DEP» QINF» TSTEP» XOUT
s INCsQFAC» GAMI KDES»PLTSZ»QGPLsQPU
COMMON /750L1/7 G(162,31)

DATA Q/5022%0.C/ '
YR=Q.

NSP=0

DO 10 J=1sNN
PHI(MM»J)=PHI(1lsJ)+DPHI
PHI(MM+1pJ)=PHI(2yJ)+DPHI

CONTINUE

TE=-2

DO 30 I=LLsMM

CALL MURMAN1

00 100 J=1sN

Q(I,Jd)=D(J)

CONTINUE

CONTINUE

TE=2

I=LL

I=1-1

CALL MURMANL

D0 60 Jd=1,N

QiI»J)=00J)

CONT INUE

IF({I.GT.2) GO TO &0

0G 61 J=1,N

C(lsJ)=Q(MMyJ)
FORMAT(5(2I4sE1l6.8))

calLL SOLV1
FORMAT(5(I4sE1648))

D0 110 I=1,M

DC 110 J=1sN
PHI(IsJ)=PHI{IsJ)+0(1I,J)

PG 111 J=1»N _
PHI(MM,J)Y=PHI(1,J)+DPHI

IF(RCLLEQ.O4) GG TO 90

YA= RCL*((PHI(M;l)-(PHI(Z;l)*DPHI))*DELTH+SI(1))
IF(MODELEQ.1) GO TO 90

IF (NDES.GE.O0) GO TO 41
ALP=ALP—-.5%YA

GO TGO 42

BB(1) = BB(l)-.E5%YA

CALL COUSI

GO 10 95

YA=TPRYA/ (L.+BET)

OPHI=DPHI+YA

DO 97 L=1,M
PHI(L,NN)=DPHI*PHIR(L)
IF(MODELEQ.0) RETURN

DO 120 J=1yN

DO 120 L=1,M
PHI(L)J)—PHI(L,J)+YA*PHIP(L)
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RETURN
END

SUBROUTINE MURMANI]
COMMON PHI(162,31),FP(162531)5A(31)98(31)5C(31)»D(31)s6(31)

1 )RP(31))RPP(31))R(3l);RS(3l),RI(3l)JAA(le))BB(le))CU(léZ)

2 )SI(le):PHIR(le))XC(le):YC(le))FM(l@Z))ARCL(le)’DSUM(léZ)

3 s ANGOLD(162),XOLD(162),YOLD(162)s ARCOLD(162),DELGLD(162)

4 »RP4(31),RP5(31)

COMMON Z7A/ PI1sTPsRADSEMs ALPSRNyPCHs XPsTCsCHD»DPHISCLsRCLy YR
JXA;YA)TE:DT)DR)DELTH:DELR}RA;QCN’DSN)RAQ;EPSIL:QCRIT}ClJCZ
9C45C55CbsC7BETS BETAS FSYMyXSEPySEPM» TTLE(G) s My NsMMsNNs NSP
s IKs JKs IZ5 ITYPsMOGDES ISsNFCoNCYsNRNs NGs IDIMsN2yN3sNGs NT» IXX
NPTSsLLsIsLSEP)Ma, NEWs EPSTIyNUES» XLENSsSCALQI
s SCALQOs NG GAMMAINCPTSCSTARS REM)DEPS QINFo TSTEP, XOUT
»INCsQFAC»GAMIKDESSPLTSZsQPLsGPU

PHIO=PHI(152)~2¥DK*CO(I)

PHIYP=PHI(I»2)=PHI(I,1)

PHIYY=PHIYP+PHIG-PHI(I,1)

PHIXX:PHI(I*l)l)*PHI(I‘l)l)‘PHI(I)l)-PPI(I)l)

PHIXM=PHI(I+1,1)-PHI(I-1,1)

PHIXP=PHI(I+1,2)~PHI(I-1,2)

IF(I.NE.MM)Y GO TO 10

DE1)=CLl*(PHIXX+RS(1)*PHIYY+RA4*CO(I))

D(1)==D(1)/C1

GO TO 40

U=PHIXM*DELTH=-SI(I)

BQ=U/FP({I»1)

QS=U*BQ

J=1 .

IF(QS«LEQCRIT) GG 70O 30

D(1)=0.

GO TU 40

CONTINUE

CS=C1-C2*QS

BU=BOUXQS*(FP( I~ 1}1)‘FP(I+1,1))

X=RA4* (CS+QS)*CC(I)

CHQS=CS=-QS

D(l)-CJ*RS(l)*PHIYY+RI(l)*5&+X+CMQ5*PHIXX

L(1)==-D(1)/CS )

CONTINUE

DO 60 J=2,N

PHIXX= PHI(I*l)J)+PHI(I 1,J)=-PHI(I,3)=PEI(I,4)

DU=PHIXP

PHIXP=PHI(I+1,J+1)=PHI(I-1yJ+1)

PHIXY=PHIXP=PHIXM

PHIXM=DU

DU=DU*DELTH

PHIYM=PHIYP

PHIYP=PHI(I»J+1)=PHI(I,J)
PHIYY=PHIYP=PHIYM

CCWwm S ON -




UsR(J)I*DU-SI(I) ,
DVaR(J)*(PHI(I,J+1)=PHI(I,J=1))*DELR
V=DV*R(J)=CO(I)
RAV=R(J)%*RA%Y
BQ=1./FP(IsJ)
BQU=BQ*U
US=8GU*U
UV=(BQU+BQU) *V
VS=BQ¥V*Y
| - QS=US+VS
' IF(QS.LECQCRIT) GO TO 50
D(J)=0.
60 TO 60
50 CS=C1-C2*QS
CMVS=CS-VS
CMUS=CS=US
UV1=.5%BQURAV
CJ)=RS(JI%CMVS
D(J)=RAG*((CMVS+US-VS)*DV-UVHDU) +RI(J)I*QS*¥BA*(U* (FP(I-1,J)~FP(I+1,
1)) +RAVF(FP(IsJ=1)=FP(IsJ+1)) )+ CHMUSHPHIXX=UV1*PHIXY+C{J)*PHIYY
D(J)==D(J)/CS
60 CONTINUE
RETURN
END

SUBROUTINE TWOFFT(NS,FsGsALPYBET»CNsSNyIDIM)
ABSINS) IS THE NUMBER OF POINTS IN EACH ARRAY :
DO FFT FOR F AND G Ok REVERSE TRANSFCRM FOR ALP AND BET
IF NS<0 THE REVERSE TRANSFORM IS PREFORMED
FUNCTIONS F AND G ARE REPRESENTED BY ARRAYS 0OF THEIR VALUES
ALP AND BET ARE COMPLEX FOURIER COEFFICIENTS FOUR F AND G
ALP(N) IS OF THE FUORM A(N)-I*B(N)
CN AND SN ARE THE COSINE. AND SINE ARRAYS
IDIM IS THE SKIP FACTOR BETWEEN POINTS 'IN F AND G
COUMPLEX ALPSBET»X
DIMENSION F(IDIM,I);G(IDIM)l))ALP(l))BET(l))CN(l))SN(l)
N = IABS(NS)
L = N/2
C SET UP AND DO COMPLEX TRANSFORM
IF (NS.LT.0) GO TG 20
Do 10 J = 1N
10 ALPU(J) = CMPLX(F(1lsJ)sG{1lsd))
60 TG 40
C SET UP FOR REVERSE TRANSFUEM
20 J=N+1
DD 30 K = 1yl
X ==CMPLX(AIMAGU(BET(K))=REAL(ALP(K))s AIMAG(ALP(K))I+REAL(BET(K)))
ALP(J) =X
X = CMPLX(REAL(ALP(K))+AIMAG(BET(K))’AIMAG(ALP(K))-REAL(BET(K)))
ALP(K)=X
30 4 = J-1

OO0 O0
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K=L+1

ALP(K) =1.%(CMPLX{REAL(ALP(K))+AIMAG(BET(K))» AIMAG(ALP(K))=-REAL(BE
T(K))))

40 CALL FFORM(Ns ALP»BETSCNsSN)

NOW SEPARATE OUT THE REAL AND IMAGINARY PARTS
J = N

IF (NS.LT.0) GG TO 60 .

ENI=.5

"DU 50 K = 1yl

X = CONJG(ALP(J))~ALP(K+1)
BET(K+1) ==ENI*CMPLX( AIMAG(X)sREAL(X))
ALP(K+1l) = ENI*(CONJGUALP(K+1))+ALP(J))

J = J-1

BET(1) = (ENI+ENI)*AIMAG(ALP(1))
CALP (1) = (ENI+ENI)I*REALCALP(1))
RETUEKN

DO 7C J = 1N

F(lsJd) = REALCALP{J))/N

G(lsJ) = —~AIMAG(ALP(J))/N

RETURN

END

FUNCTION VLAYER(EM2,A,8)

- X=(EM2-A)/(B-A)

1
2

3

4

U

VLAYER = 0,

IF (XeLELO4) RETURN

IF (X.GE.ls) GO TO 1G
VLAYER = 34%X%X=2%kX¥X%X
RETURN
VLAYER
RETURN
END

1,

SUBRCGUTINE NASHLS(K2)

QUADRATIC LeSe FIT HIKZ=1)sH(K2)sSEPR(K2=-1)sSEPR(K2) USING

PREVIOUS 5 VALUES

COMMON PHI(162531)sFP(1625s31)5A(31)5sB(31)5C(31),0(31)5E(31)

)RP(31))RPP(31)9ﬁ(3l):k5(31);FI(31);AA(162))BB(le);CD(léé)

2ST(162)sPHIR(162)sXC(162)sYC(162)s FMIL62) ARCLI162)5D5UM(182)

s ANGOLD(162)»X0LD(162),YOLD(162)5ARCOLO(162),DELOLD(162)

»RP4(31)sRP5(31) _

COMMON ZA/ PIsTFPyRADSEMy)ALPsRNyPCHy XP»TCoCHDO»DPHI»CLsRCLs YR
sXAs YAy TE)DTsCRyDELTH) DELRsRAY DCNsDSNsRAGEPSILSQCRITHCLyC2
3C45C55CEICTIBETIBETAS FSYMyXSEP, SEPMa TTLE(G) » My No MMy NNs NSP
)IK;JK;IZ:ITYP;MUDE)IS’NFC;NCY:NRN,NG’IDIM:NZ’N3,N4,NT;1XX
SNPTS»LULs»Is LSEPs M4 s NEWIEPSIsNDES»XLENSSCALGI
s SCALQUOs N6» GAMMASNGPT> CSTARS REMsDEP s GINFs TSTEP, XGUT
»INC,QFAC,GAM)KDESs PLTSZs QPLyQPU

DIMENSION S(1)»H(1)sSEPR(1)

EQUIVALENCE (SU1)sFP(Lsl6))s(H(L1)sFP(1s6))s(SEPR(1)sFP(1s14))
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F(S)

NLS =
XNLS

LLS =
X1l =
X2 =
X3 =
X4 =
DO 10
DUM =
X1l =
X2 =
X3 =

bo 20
DUM =

-
LS
[ I I 1

A1ll
B111l
Cl1ll
H(KZ-
H(KZ2)
Yl =
Ye
Y3
DO 30
DUM =
DUMM
Yi =
Ye
Y3
2
L3 =
Alll
B11ll
Cill
SEPRA(
SEPR(
RETUR
END

[I I I I |

= AL11%S*S + B111i#*S + (Cli1l1l
5
= FLOAT(NLS)

NLS + 1

S{K2=-FLOAT(L*INC))
X1 + DUM
X2 + DUM*DUM
X3 + DUM*DUM*DUM
X4 + DUM*DUM*QUM%DUM
X2=X1#%X1/XNLS
X3=-X2#%X1/XNLS
X4-X2% X2 /XNLS

0.
O.
0.

L=2sLLS

S(K2=-FLOAT(L*INC))

= H{K2=-FLOAT(L*INC))
Y1l + DUMM
Y2 + DUMM*DUM -

Y3 + DUMM*DUM*DUM
Y2=-Y1*X1/XNLS
Y3-Y1%X2/XNLS 7
(Z3%72211-22#%2321)/17422%2211-7321%2321)
(22-A111%72321)/12211
(Y1-A111%X2=-B111*X1)/XNLS
INC) = F(S(K2-INC))

= F(S(K2))
Os
0.
0.

L=25LLS

S{K2-FLOAT(L*INC))

= SEPR(KZ2-FLOAT(L*INC))
Y1 + DUMM

Y2 + DUMM*DUM
Y3 + DUMM*DUM%DUM
Y2=Y1%X1/XNLS
Y3-Y1%X2/XNLS

= (23%7211-72%7321)/7(7422%2211-2321%7321)
= (72-A111%7321)/72211

= (Y1-A111#%X2-B111%X1)/XNLS
K2=INC) = F(S(KZ=-INC))
K2) = F(S(K2))

N
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SUBRCUTINE INTPLI(MXsXIsFIsNsXsFsFPsFPPsFPPP)
DIMENSION X(1)sF (1), FP(L)sFPP(L)yFPPP(Ll)sXI{1)sFI(1)
REAL NEWsLEFT

DATA TOL /1.E=9 /

C XI(L) WILL SATISFY F(XI(L)) = FI(L) FOR L = 1 TU ABS(MX)
C Fs FP» FPPsFPPP ARE THE FUNCTICN AND DERIVATIVES AT THE X POINTS
NX =TABS(MX)
K = 2
L1 =1
NEW = X(1)
FN = F(1)

FVAL = FI(1)
IF (ABS(F(1)=-FI(1)).6T.TOL) GO TO 5
Ll = 2
XI(1) = X(1) .
IF (NXeEGe1l) RETURN
5 DO 100 L = L1,NX |
IF ((FVALJNEJFI(L))4ORe{L.EQs1)) GU TO 6
NEW = X(K)
FN = F(K)
IF (FP(K)¥FP(K=1).6T+0.) GU TO 6 _
ROOT = SQRT(FPP(K=1)%%2=2,%FP(K=1)%FPPP(K=1))
DX = —2.*%FP(K=1)/(FPP(K=1)+SIGN(ROUT»FPP(K=1)))
NEW = X{K=1)+DX
C FN =F(K=1)+DX*(FP(K=1)+DX*( S*FPP(K=1)+DX*¥FPPP(K=1)/64))
6 FVAL = FI(L) ,
SGN = F(K=1)-FVAL
IF (NEWeGTWX(K=1)) SGN = FN=-FVAL
DO 10 J = KsN
IF(FP(JI*FP(J=1).LE.CW) 6D TO 7
IF (SGN*(F(J)=FVAL).LE.O.) GO TO 20

GO TO 10
7 RUOT = SQRTAFPP(J=1)%%2=2,%FP(J=~1)%FPPP(J=1))
DX = =2.%FP(J-1)/(FPP(J~- 1)+SIGN(RDUT;FPP(J 1))

RIGHT = X(J=1)+DX
LEFT = AMAXL(X(J=1), NEW+TOL)
IF (LEFT.GT.RIGHT) GU TO 10
F2 = «5%FPP(J-1)
F3 = FPPP(J-1)/6.
FN = F(J=1)+DX*(FP(J=1)+DX*(F24DX%*F3))
- IF (SGN*(FN-FVAL).LE.O) GO TO 6%

10 CONTINUE _
IF (MX.GT.0) 60 TO 11
MX = L-1 ,
RETURN'

11 PRINT 499,L,FI(L)

499 FOURMAT ( * TROUBLE AT #,15,3X,£16.6)

J = K
G0 TO 100

20 OLD = AMAX1(X(J=1)sNEW+TOL)
F2 = JH¥FPP(J-1)
F3 = FPPP(J=1)/6.
START=0LD
DO 40 K = 1,10




40

60

65

8C

70

90
100

DX = OLD=-X{J~-1)

FPOLD = FP(J=1)+DX*(FPP(J-1)+.5%DX*FPPP(J- 1))
IF (ABS(FPOLO).LE.TOL) GO TO 60

FN = F(J-1)+DX*(FP(J=-1)+OX*(F2+0X*F3))

NEW = OLD-(FN-FVAL)/FPOLD

IF (NEW.LT.START) 60 TO 69

NEW = AMINI(NEW»X(dJ))

IF (ABS(NEW-OLD).LT.TUL) GO TO S0

OLD = NEW
CALL ABORT
RIGHT = X(J)
LEFT = OLD

IF (SGN*(FN=FVAL) .GT.0.) GO TO 65
RIGHT = LEFT

LEFT = XI(L-1)

IF (LeEQe1) LEFT = X(1)

DO 70 K = 1,50

If ((RIGHT-LEFT).LE.TOL) 6O TO 90
NEW = o5%(LEFT+RIGHT)

DX = NEW=X{J-1)

FN = F(J=1)+DX*(FP(J=1)+DX* (F2+DX*F3))
IF ((FN-FVAL)*SGN.LE.O.) GG TO 80
LEFT= NEW

GO0 TO 70

RIGHT = NEW

CONTINUE

XI{L) = NEW

K = J

MX = NX

RETURN

END

SUBRUOUTINE READGS
SUBROUTINE TG READ IN THE INPUT PRESSURE DISTRIBU1IGN
COMMON PHI(162531)sFP(162531)»A(31)s8(31)sC{31)sD(31)sE(31)

1 sRP(31)sRPP(31),R(31)»RS(31),kI(31)5AA(162)5,8B(162),C0(162)

2 5SI(162)sPHIR(162)sXC(162)5YC(L162)s FM(162)sARCLILE2)DSUM(LES)

3 ;ANGULD(162)’XDLD(162)yYULD(162);ARCDLD(I&Z);DELOLU(le)

4 »RP4(31)sRP5(31)

COMMON 74/ PI)TP:RAD)tM)ALP)RR)PCH}XP:TC:CHD}DPHI;CL;RCL’YR
sXAsYA» TEs DT s DRy DELTHs DELRsRAs DCNy DSNsRAG4SEPSIL,QCRITSC15C2
2C4sC5sCHsCT»BETIBETAS FSYMs XSEPSSEPMITTLE(S) s My Ny MMy NNy NSP
s IKsJKs IZoITYPy MODES ISsNFCoNCYs NRNy NGy IDIMs N2y N3sN&yNT» IXX
SNPTSsLLsIsLSEPs Moes NEWIEPS1IoNDESsXLENSSCALQL
sSCALQOYNG» GAMMASNQPT» CSTARS REMsDEPYQINFS TSTEP» XOUT
s INC»QFAC» GAMyKDES»PLTSZsQPLsQPU v

DIMENSION QI(1)»SF(1l)sGX{L)sSX{L1)»ES(L)sGP{1)sGPP(L),GPPP(1)

1 sDQDS(L)» PHT(L)» DPHDS(1)» GPP(1)sGPPP(1)sC(1)

EQUIVALENCE (QIC1)»FP{ls1))s(SF(1)sFP(153))(QX(1)sFP(1s5))

(o BN N PV o
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500

- 510

20

30

600

60

70

TN N

sASX(L)SFP(L1s 7))o (ES(L)sFP(15G))s(GP(1)sFP(1y11))

s (GPP(1)sFP(1s13))5(GPPP(L),FP(1,15)),(DQDS(1)sFP(1517))

2 (PHT(L)»FPU1519)) s (DPHDS(1)»FP(1s21))»(QPP(L)5FP(1523))

s (QPPP (L) FP(1525))5,(Q(1)sFP(1527))

XMACH(QS) = SQRT(QS/( 5% (GAMMA+L )*CSTARXCSTAR= 5% (GAMMA=~1,)%*GQS5))
DATA NINMAX 7300/ :
MGDE = 0

REWIND N6

"READ(N65,500) XIN»CSTAR

FORMAT (2F10.4)
NIN = ABS(XIN)

.CALL GOPLGT(NRN)

IF (NIN.GT.NINMAX) GO TO 90
READ IN Q(S)

DO 20 4 = 1y,NIN.

READ(N6,510) SFUJ)»QI(J)
FORMAT(2E20.10) .

QMAX = AMAX1(QMAXs ABS(QI(J)))
CONTINUE.

XFAC = 24/(SF(NIN)=-SF(1))
CONST = =1.=-XFAC*SF(1)

FaC = 1.

IF(QMAX«GTelab) FAC = 1.56/7QAMAX
WEITE (N4,130)

DO 3¢ J = 1s,NIN

SX(J) XFAC*SF(J)+CONST

Qx{J) FAC*¥QI(J)

Q(J) = XMACHIGX(J)*GX(J))
WRITE (N&45140) JrSF(J)»QI(J)sSX{J)»QX{J)»Q(J)
CI(J)=QXx(J)

'CONTINUE

WRITE (N4,600) CSTAR
FORMAT (1Xs/s5Xs24HINPUT CRITICAL SPEED IS sF10.4)

CSTAR = FACX*CSTAR
SIZE = .14

SCX = 5,

SCY = 2.5

XOR = 64,0

IF (XINsLT.04) XOR = 5.75

CALL PLUT(XDR:D-J’-B)

0O 60 L=1,NIN

CALL SYMBUL()CX*SX(L):SCY*QX(L),.5*)IZE;3’C-;—1)
CALL PLOT(=5.05-4,0s53)

CALL PLOT(=5.0s4.0,2)

CALL SYMBOL(-%4¢553¢5»512E»1HQs0451)

CALL SYMBOL (-=540sSCY*®CSTARS24%SIZE»1550e5~1)
CALL SYMBOL (=-5.05-SCY¥CSTAR»2+%SIZE»155045~1)
DO 70 L=1,9

YH = FLOAT(L-1)=-4.0

S = J4*¥FLOAT(L-1)=1.6

‘CALL SYMBOL(-540sYHs»STZE»155045-1)

ENCODE(1051005A) S _
CALL SYMBOL(=5.7sYHsSIZESA»Oes4)
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CALL PLOT(-5.050.»3)
CALL PLOT(54090452)
CALL SYMBOL (4459=459512E»1HS»0.»1)
DG 80 L=1,11
XH = FLDAT(L-1)-5.0
S = J2%FLOAT(L-1)-1.0
CALL SYMBOL (XHs0esSIZ2E51559Ces-1)
ENCOUE (10»1005A) S _
EC CALL SYMBOL(XH=2+4*%S1ZEs=e39S5S1Z7EsA20er4)
100 FORMAT(F4.1)
CALL SYMBOL(=1459=44,55SIZE»24HINPUT SPEED DISTRIBUTION»Ges24)
SX(NIN) = 1, '
DS = (SX{NIN)=SX(1))/FLOAT(NCPT-1)
C FIND Q(S) AT EVENLY SPACED PUOINTS.
ES(1) = SX{(1) :
DO 4G J = 2sNQPT
40 ES(J) = ES(J=-1)+DS
ES(NGPT) = SX(NIN) v
CALL SPLIF(NIN sSXsQXsGPyGPPsGPPP»35Ces35C.)
CALL INTPL(NQPTSES»Qs»SXsQXsGPyGPPyGPPP)
CALL PLOT{SCX*ES(1),SCY*Q(1)»3)
DO 95 L=2,NQPT
95 CALL PLOT(SCX*ES(L)»SCY*Q(L)s2)
CALL PLOT(-XORs»=5459-3)
CALL FRAME
IF (CSTAR.LT.0.) GG TO 2190
CALL SPLIF(NQPTSESsGUsGPsGPPyGPPP»35045350.)
CALL INTPLI(15SCr0esNQPTSES»QsGPsGPPsGPPP)
C INTEGRATE Q(S) TO GET PHI(S)
CALL SPLIF(NQPT»ES»QsDQADSs»QPPsPHTS=3504e93504)
CALL INTPL(1,SOsPHMNSIESsPHT»Q»DQDS»QPP)
GAM = PHT(NQPT)-PHT(1)
SCALQI = PHT(NQPT)=PHMN
DO 50 I = 1,NQPT
QI(I) = PHT(I)=PHMN
VAL = AMAX1(D.»CI(I))/SCALQI
50 PHT(1) = SIGN(SQRT(VAL)»ES(I)-SU)
REWIND N6 _
WRITE (N6) (PHT(JII»ES(II»QI(J)»QlJ)rd=1sNGPT)
CALL INCUMP
RETURN :
90 WRITE (N45110) NINMAX
210 CALL PLOT(Ces045999)
' CALL EXIT
RETURN
110 FORMAT (15HOX****¥MORE THAN »I45,30H INPUT CARDS NOT PERMITTEOD*%*%** /
1 32HC**%PROGRAM STOPPED IN READQS**% )
130 FORMAT{1HO/11X24HCARDsSX» 7THS—INPUT»8Xe 7HQ=INPUT» LOX» 6HS~USED
1 »9Xs6HQ-USED, 11X, 6HM-USED /)
140 FORMAT (3XsI992F154633X92F154693XsF1%.6)
END
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SUBROUTINE INCOMP
COMMGN PHI(162)31),FP(162’31))A(31))8(31))L(3l))0(31);E(3l)

1 sRP(31),RPP(31)5k(31)sRS(31)>RI{31),A2(162),5B(162),C0(162)

2 »SI(162)sPHIR(162)sXC(LE2)sYC(162)YyFM(L162)sARCL(162)sDSUM(162)

3 s ANGOLD(162)s XCLD(162)» YOLD(162),ARCOLD(162),DELOLD(162) |

4 4,RP&4(31)»RP5(31)

COMMON /A7 PIsTPsRADSEMyALPIRNyPCHy XP»TCyCHD»DPHISCLsRCLy YR
sXA>YAs TEs DT s DRs DELTHs CELRSRAS DCNy DSNsRA4LEPSILIQCRITHC1lsCL
2Cb4sC59CHsCTsBET>BETAYFSYMy XSEP)SEPMy TTLE(4) s My Ny MMy NN, NSP
2 IKs JKs IZs ITYPs MODE» ISH)NFCHNCY s NRNs NGy IDIMy N2s N3sNGsNT» IXX
sNPTS»yLLsIsLSEP)MayNEWSEPSIyNDES»XLENYSCALQI
»SCALQOs» NOSGAMMASNQFT s CSTAKS REMy DEPs QINF» TSTEP» XOUT
s INCHyQFACSGAMIKDESS»PLTSZ»QPLSQPU

QFAC = SCALQI-+.5*%GAM

DO 10 I=1,10

TAU = ASIN(-GAM/(PI*QFAC))

10 QGFAC = (SCALQI+GAM¥TAU/PI-.5%GAM)/COS(TAU)

TAU = ASIN{-GAM/(PI*QFAC))

[o SR G TR X =]

BB(1) = -TAU-ALP
DPHI = 4.*GAM/QFAC
CALL COSI

ANG = 0,

DG 20 I=1,M :

PHI(I»1) = (+5%QFAC-14)*CO(I)+GAM*ANG/TP
ANG = ANG+DT

PHI(MM,1) = PHI(1,1)+CGAM

PHI(MM+1,1) = PHI(2,1)+GAM

INC = 1

CaLL CYCLE

RETUEN

END

SUBROUTINE CYCLE

COMMON/FL/FLUXT4»CLOsCDWs INDCD

COMMON PHI(162531)sFP(162531)5A(31)58(31),C(31),0(31),E(31)

1 sRP{31)sRPP(31)sR(31)sRS(31)»RI(31)sAA(162),BB(162)sC0(162)

2 »SI(162)sPHIR{162)sXC(162)sYC(162)sFM(162)sARCL(162),05UM(1E2)
3 SANGOLD(162)sXULD(162)>YOLD(162), ARCOLD(162),DELLCLD(162)
4 SRP&4(31),RP5(31)
COMMON /A/ PI»>»TPsRADSEMyALPsRNyPCHe XPsTCy»CHD»DPHISCLsRCLY YR

s XAs YAs TEsDT»DRIDELTHs DELRIRASDCNyDSNsRA4,EPSILsQCRIT,C1,C2
9C49C5sC6sCToBET)BETASFSYMy XSEPSSEPMyTTLE(4) s My Ns MMy NNy NSP
)IK!JK,IZ,ITYP)MUDE,IS;NFC)NCY;NRN)NG,IDIM)N21N3,N4,NT’IXX
sNPTS»LLsIsLSEPsM4s NEWs»EPS1IyNDES,XLEN» SCALQI

s SCALQUs N6 GAMMAS NQPT» CSTAR) REMy DEPS QINF» TSTEP, XOUT

» INCrQFACSGAMIKDES»PLTSZ»QOPL,QPU

DIMENSTIUN PHIS(1)sCIRC(L)s DPHDW(L1)s D2PHDW(L)»PHIT(1)sQ(1)
1 SFPP(L)»FPPP(Ll)s FPPPP(L)»QX({L)sPHIV(1)sDS(1),CXx{1)sSX{1)s55(1)
2 sCCP(1)sA1(1)sA2(1)5A3(1)sA4(1),81(1)

EGUIVALENCE ( DS(1)sFP(151))»(CIRC({L)sFP(15»3))s (UPHDW(L1)sFP(1s5))
1 s(DZ2PHOW(L)s FPU1s 7))o (PHIT(1)sFP(1»9))»(G(1)yFP(1y11))

[0 ANR S I SRSV AV I )
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VS WN

s (FPP({1),FP(1513))s (FPPP(L)sFP(1s15))s (FPPPP(1)sFP(1,»17))

2 (QAX(1)sFP(1s19))s (PHIV(L)sFP(1521))s(PHIS(1)s»FP(1,23))

s (CX{1)»FP{1525) )5 (SX(L)sFP(1527))5(SS{1)sFP(1529))

s (CCP(1)sPHIR(1))s (AL(1)»RP(1))s (A2(1)sRP(T))

s CA3(1)HRP(13)),(A4(L)»RP(19)),(B1(1),RP(25))

XMACH(QS) = SQRT(QS/(«5*(GAMMA+1,)*CSTAR¥CSTAR-.5*(GAMMA-14)%QS))
CP{Q) = CH*X((C4/{1.+C2%Q*Q))**CT7~1,)

DATA KD/0OV/
LC = NFC
NMP = 2%L(

MC = NMP +1 |
PILC = PI/FLOAT(LC)
NDUM1 = NMP/M

NDUM2 = NDUM1-1

IF (INC.EQ.1) 60O TO 6080
INDCD = 1

’ CALL GTURB(O.)O.) »"’CDW’O.’ 0125) ol)

6080

10

20

INDCD = O

DO 10 I=1,MM

CIRC(I) = FLCAT(I-1)%DT

PHIS(I) = PHI(I»1)+CD(I)

Bl = BB(1l) ' .

CALL SPLIF{MM,CIRCsPHIS»DPHDWy FPPPs» FPPPPs»1s0asls0.)
IF (MM.EQ.MC) GO TO 5

DO 6 I=1,MM

Q(I) = PHIS(I)

SS(I) = CIRC(I)

00 7 I=1,MC

CIRC(I) = FLOAT(I-1)%PILC

CALL INTPL(MCH»CIRCsPHIS»SSsQsLCPHDWsFPPPsFPPPP)
CALL SPLIF(MCsCIRCs»PHIS»DPHDWs FPPPs FPPPP»1904»150.)
DO 9 I=41,120

SS{I-40) = CIRC(I)

Q(I-40) = DPHODW(I)

CALL SPLIF(BD0sSSs»QsFPPsyFPPPsFPPPP»350e93+04)

CALL INTPLI(1>WNPs0.»80s35sQsFPP»FPPP,FPPPP)

CALL SPLIF(MCsCIRCHPHIS»OPHDWsO2PHDWs FPPPy»1s0eslsUa)
CALL INTPL(l’WNP:PHMN,CIRC)PHIS;DPHDW}DZPHDW:FPPP)
SCALQO = PHIS(MC)=PHMN

REWIND Nb

READ (N&) (PHIT(I)»SS(I),PHIV(I)»Q(I)sI=1,NGPT)
CALL SPLIF(NQPTs»PHIT»QsFPPsFPPPsFPPPP»3,0423,50.)
VAL = SQRT((PHIS{(1)-PHMN)/SCALQD)

DD 20 I=1,MC

VAL = AMAX1(0.»PHIS(I)=-PHMN)/SCALQO

FAC z 1.

IF (CIRC{I)«LEJWNP) FAC = =1,

PHIS(I) = FAC*SQRT(VAL)

CALL INTPLUMC»PHIS»QXsPHIT»QsFPPsFPPP,FPPPP)

Ir (INC.EQ.1) GO TO 8887

DETERMINE EM

XNUM = 0,

DEN = 0.

DO 4444 J = 2,M
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4444

K=

IF (MCoNEJMM) K=NDUM1*J=-NDUM2

VAL = (PHI(J+1s1)=PHI{J=-1s1))%DELTH=-531I(J)

VAL = (VAL*VAL)/FP(J,y1l)

FPPP(J) = VAL

IF CEQX(K)I*QX(K)) «GT{CSTAR®CSTAR)) GO TO 4444
XNUM = XNUM + QX{K)*CGX(K)*VAL '

DEN = DEN + VAL*VAL

CONTINUE

QINF = SQURT(XNUM/DEN)
DQMAX = 0.

DQAVE = 0. .

DO 4445 J = 2,M

K = J

“IF (MCeNE.MM) K=NDUM1*J-NDUM2

DQAVE = DQAVE + ({QX{K)*UX(K))=QINF*QINF*FPPP(J))*

1 ((QAX(K)*QX(K))=QINF*QINF*FPPP(J))

4445

47
8887

8886

DOMAX = AMAX1(DGMAX» ABS(SQRT(FPPP(J))I=(ABS{GX{(K))I/QINF)))
CONTINUE '

DGAVE = SQRT(DQAVE/FLOAT(M-1))

C2 = 5% (GAMMA-1.)

C7?7 = GAMMA/(GAMMA-1.)

EMX = EM

EM = (GAMMA+1.)*CSTAR*CSTAR/(QINF*QINF)'GAMMA+1.
EM = 2./EM

EM = SQRT(EM) '

EM = (1e~REM)*EM+REM*EMX

Cl = C2+1./(EM*EM)

C6 = C2%EM*EM

Cée = 1.+4(6

C5 = 1./(C6%C7)

- QCRIT = (C1+C1)/(GAMMA+1.)

DETERMINE SCALING FOR PHI BY LEAST SQUARES FIT
CALL SPLIF(NQPTyPHIT,PHIV,FPP,FPPP,FPPPP;350453,504)
CALL INTPL(MC»PHIS»Q »PHIT,PHIV,FPPsFPPP,FPPPP)
Q(MC) = PHIVI(NQPT)

XNUM = 0.

DEN = 0.

DO 47 J=1,MM

K= J

IF (MC.NE.MM) K=NDUM1*J-NDUM2

XNUM = XNUM#PHI(J»1)+CO(J)=PHNN

DEN = DEN+ Q(K)

FAC = XNUM/DEN

DPHI = FAC*GAM

DO 8886 J=1,MM

K= J

IF (MC.NE.MM) K=NDUMI*J=NDUM2

CCPJ) = OX(K) '

CALL SPLIF(NQPTsPHITsSSsFPP,FPPPyFPPPPs345004534504)
CALL INTPL(MCsPHISsSXsPHITsSSsFPPsFPPPsFPPPP)

Cosktdrbhhdhbhhhdrkroherhhhs

CAaLL SPLIF(MC:CIRC;SX:DS,FPPP’FPPPP’1)0.)1:0.)
DO 40 I=2»NMP
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VAL = ABS(DS(I)/(2.*SIN(CIRC(I)*,5)))
DS(I) = ALOG(VAL)
40 CONTINUE
€ 3% e o o ook ook ook ok ko o ook ok ok ok o
VAL = ABS(FPPP(1))
DS{1) = ALOG(VAL)
DS{MC) = DS(1)
43 CONTINUE
DG 240 1=1,MC.
ANGL = FLOAT(I-1)*PILC
CX{I) COSCANGL)
240 SX(I) SIN{ANGL)
CO 1C40 I=1sLC
FPPP(I) = AA(I)
FPPPP(I) = BB(I)
AA(I) = Cx(2%1-1)
1040 BB(I) = -SX(2*1-1)
CALL FOUCF(NMP,[LSsFPPyAA,BE)
DFAVE = 0.
DO 1050 I=1,LC
AA(]L) = —-AA(])
" IF (FPPP(1)EQ.99999,) GO TO 1050
"AACT) = TSTEP*AA(I) + (l.-TSTEP)*FPPP(I)
BB(I) = TSTEP*BB{I) + (1l.~TSTEP)*FPPPP(I)
1050 DFAVE = DFAVE *(AA(l)-FPPP(I))*(AA(I) FPPP(I))+(BB(I)-FPPPP(I))*
1 (88(I)-FPPPP(I))
DFAVE = SQRTI(DFAVE/160,.)
BB(1) = BBl
IF (INC.EQ.O) GO TO 45
QINF = QFAC/{4.%EXPLAA(L1)))
EM = (GAMMA+1.,)*CSTARXCSTAR/(QINF*QINF)-GAMMA+1,

" H

EM = SQRT(2./EM)

CZ = 05*(GAMMA'10)
C7 = GAMMA/(GAMMA=-1.)
Cl = C2+1./(EM*EM)

C6b = C2*¥EM*EM

Cl' = 10"‘(:6

C5 = 14/(COEXCT)

GCRIT = (Cl+Cl1)/(GAMMA+]1,)
45 CONTINUE
IF (INC.EQ.1l) GO TO €030
IF (KDES.EG.1) GO T3 6040
IF ((MOD( KDsKDES ) eNEW1)eANDWs(KDeGES 2)) GO TO 6C0OC
6040 WRITE (N2,6010) :
6010 FURMAT (1H1s/»8Xs5SHDGAVE s6Xs EHOQMAXs 6Xs SHDFAVE» 6 X5 4HDPHINT7X
1 »4HDBBl1»5Xs 3HNSPs4Xs 2HEMy 7TXs 2HCL» 7Xs3HALP»6Xs 4HANGO
2 »5Xs3HCDWy» 66Xy 2HTCs /)
6000 ANGO = —-RAD*BB(1)
ALPl = ALP*RAD . ‘
WRITE(N2,6020) KDsDQAVEs DQMAXs»UFAVES YRy YA NSP»EMsCLyALPL, ANGO
1 »CDW,TC ' .
£020 FORMAT (1X»13»5(2x5£9., 3))2X}I3:2X:Fb.4:3(cX)F7 4)
1 »2XsFBeb5s2XyF543)
6030 INC =0
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KD = KD+1

IF (KD.GTLNDES) KE=1

CALL MaAP

CL = 2.%*DPHI*CHD

REWIND M4

WRITE(M4»800) MM
#00 FORMAT(10X»I3)

SNX = 1,

WRITE (M4,805) TCH>DAAVE » YRS SNX
805 FORMAT (F7.352E10425r4.1)

DO 5555 I = 1,MM

VAL = XMACH(CCP(IN*CCP(I))

CCP(I) = CPLVAL)

WRITE(M4,810) XC(I)s»CCP(I)
5555 CUNTINUE
510 FORMAT(2F10.44)

CALL COSI

EPS1 = EPS1-DEP

RETUEN

END

SUBROUTINE QUTPT _
COMMON PHI(162531)sFP(162531)5A(31)58(31),C(31)»D(31)sE(31)

1 SRP(31),RPP(31)sR(31)sRSI31)sRI(31L),AL(1062),BB(162),C0(162)

2 »SI(162)sPHIR(LE62)sXC{162),YC(162)sFM{1062)sARCL(I162)DSUM(LGL)
3 SANGOLD(162)» XCLD(162) YOLD(162)sARCOLD(162)s DELOLDI162)

4 »RP4(31)sRP5(31)

CUMMON /A7 PLlsTPyKADIEMIALPSRN)PCHYXP»TCoCHOU» DPHISCLsRCLY YR
9XAsYAs TESDTs»URS DELTHY DELRy kA DCNs DSN»RAGSEPSILIUCRITSCL(C2
2C4sCS59CEsCTIPETH)BETASFSYMyXSEP,SEPMy TTLE(G) s Mo Ny MMs NNy NSP
sIKsJKs ITZs ITYP,MODE» ISs NFCoONCYSNRNo NGy IDIMs N2y NIs NGy NT, IXX
sNPTS»LLs»IoLSEPyMay NEWIEPSLIyNDESSs XLEN»SCALQL
»SCALQOINAB» GAMMASNQPT» CSTAKS KEMy DEP» QINFSs TSTEP s XULUT
sINCIQFACIGAMIKDESHSFLTSZyWPLyGPU. '

DIMENSION G(L)sCIRC{(1)sFPP(1)sFPPP(1)sFPPPP(Ll)s»FPPPPP(1)sPHIS(])
EQUIVALENCE (GUL1)sFP{1s13) ), (CIRCILIPFP(1s3))s(FPP(L)sFP(1s5))
1 L(FPPP(L)sFP(1s7))s (FPPPP(L1)sFP(159)),(FFPPPP(1)»FPI1s11))

2 s (PHIS(1)»FP(1s15)) =
EEWIND N3
XM o= MM . )
IF (XOUT.GT.0,.) GG TO 100
100 QQ= SQRT(GCRIT)
WRITE(N3,120) XMs@QQ
120 FORMAT(2F10.4)
D0 140 L=2sM
U = (PHI(L+1s1)=PHI(L=151))*DELTH-SI(L)
QS = {(UxU)/FP(L,1)
QL) = SQRTIQS)
PHIS(L=1) = PHI(L,1)+CO(L)
CIRC(L-1) = FLOATI(L=1)=DT
140 CONTINUE

oW
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Q1) = 5%(Q(2)+Q(M))
QIMM) = Q(1)
MZ = M-1 |
CALL SPLIF(MZsCIRCsPHISsFPPsFPPPs FPPFP»3,0453,0)
CALL SPLIF(MZ,CIRC,FPPsFPPPsFPPPPsFPPPPPsy3,04s3504)
CALL INTPLI(1sWNPsOusMZsCIRCIFPP,FPPPsFPPPP,FPPPPP)
Q(1) = -Q(1)
| DO 200 I=2,M |
| QUI) = SIGN(Q(I)>CIRC(I=1)=WNP)
200 CONTINUE
C Q(MM) = Q(MM)
ARC1 = 0.
WRITE(N3,160) AKRC1,Q(1)
PRINT 160, ARC1,G(1)
DO 150 L=2,MM
DX = XC(L)=XC(L-1)
DY = YC(L)=YC(L-1)
ARCL = ARC1 + SQRT(DX*DX+DY*DY)
WRITE(N3,160) ARC1,Q(L)
PRINT 160, ARC1sQ(L)
160 FORMAT(2E20410)
150 CONTINUE

XUUT = Oo
RETURN

END

BLOCK DATA

COMMON PHI(162»31)sFP(162531)sA(31)sB(31)sC(31)5sD(31)5E(31)

1 »RPU31)sRPP(31)sR(21)>RS(31)sRI(31)5AA(162),BB(lé2)sCL(162)

2 »SI(162)sPHIR{162)sXC{162),YC(162)yFM(162)sARCL(162),0DSUM(162)
3 SANGOLD(162)»X0LD(162)s YOLD(162)sARCOLD(162)»DELOLD(182)

4 yRP4(31)sRP5(31) _

COMMON /A7 PIsTPsRAUSEMsALPSRNsPCHsXP»TCoCHD» UPHISCLIRCLS YR
sXAsYAs TE>DT»DRyDELTHs DELRs RAs DCNy DSNsRA4>EPSILsQCRITSCLls (2
2C4,C5sCHICTsBETIBETASFSYMyXSEPsSEPMy TTLE(4) s My Ny MMs NNy NSP
:IK)JK’IZ;ITYP}MDDE}IotNFC)NCY’NRN)NG’IDIM;NZ;N3,N4’NT,IXX
sNPTSsLLsIoLSEPsM4, NEWSEPSTISNDES)XLENsSCALQIL ‘
JSCALQD,NépGAMMA’NQPT;CSTAR’REM’DEP’UINF,TSTEP,XDbT

. »INCSQFAC»GAMIKDES»PLTSZsQPLS»QPU

C *%x*%IDIM MUST BE SET TO THE FIRST DIMENSIUN OF. PHI**** v

DATA PI/3,14159265358979/ » EM/ 75/ » ALP/O0s/ » CL/1COs/ »

PCH/+077/ » FSYM/1.0/ » RCL/1.0/ » BETA/O.0/» RN/20.EG/ »
SEPM/.004/7 s XSEP/493/ » XP/0.G/ » M/160/ s N/Z30/ s NRN/ZL1/ »
NFC/B0Q/ » NPTS/B1/ » LL/O/ » NG/1/7 5 1IS727 s 1DIM/162/ » MUDE /14

> JK/Q/ » N212/ » N3/3/ » N&/4/ » LSEP/16L/ » 11/125/ » 1TYP/17
sNQPT/321/7/sREM/Qe/sEPS1/04/sCSTAR/100/ . ‘
sDEP/O4/sNDES/-1/sTSTEP/ . 2/,KDES/l0/)FLTSZ/bO./)QPL/.b5/,

QPU/ .95/

END

oCWm P wnNn -
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