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Preface

The need for increased efficiency in the use of our

energy resources has stimulated applied research in many

areas. Recently progress has been made in the field of

aerodynamics, where the development of the supercritical

wing promises significant savings in the fuel consumption

of aircraft operating near the speed of sound. Computa-

tional transonic aerodynamics has proved to be a useful

tool in the design and evaluation of these wings.

We present here a numerical technique for the design

of two-dimensional supercritical wing sections with low

wave drag.  The method is actually a design mode of the

analysis code H developed by Bauer, Garabedian, and Korn

[2,3,4].  This analysis code gives excellent agreement

with experimental results and is used widely by the air-

craft industry. We hope the addition of a conceptually

simple design version will make this code even more useful

to the engineering public.
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I.  INTRODUCTION

1.   Description of the Problem

In this section we discuss some of the principles

behind the supercritical wing  and  describe our contribu-

tion to the subject.

General considerations show that the range of an

aircraft is roughly proportional to the parameter MwL/D,

where L is the lift, D is the drag, and the free stream

Mach number M is the ratio of  the aircraft's speed to00

the speed of sound. The top curve in Figure 1 shows the

general behavior of this parameter as the Mach number Mw

is  varied. The value of M-L/D that maximizes th6 range

of the aircraft occurs near a region of rapid increase

in drag known as drag rise, shown by the bottom curve of

Figure 1. At this speed the flow is observed to be

transonic, with regions of supersonic flow appearing where

the air accelerates  over the wing.  When the free stream            

Mach number has the value Mc  depicted in Figure 1, the

maximum speed of  the flow is equal to the speed of

sound. When M >M the flow is said to be supercritical.
CO             C

Figure 2 illustrates some important characteristics

of the flow past an airfoil at speeds corresponding to drag

rise. The region of supersonic flow is terminated by a

shock, where the pressure is observed to be discontinuous.
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As the speed of the wing is increased, the supersonic zone

grows in size and the pressure jump becomes larger. The

occurrence of such shocks in the flow imposes a retarding

force on the wing known as wave drag, which is one reason

for the drag rise seen in Figure 1.  The large pressure

gradients present in strong shocks can also induce separa-

tion of the boundary layer of air that adheres to the wing

because of friction; separation results in a decrease in

lift and more drag. The study of transonic flow is

therefore important not only because transonic flow

encompasses the most economical regime for aircraft opera-

tion, but because the deterioration of an aircraft's

efficiency at higher speeds is due to transonic effects.

The supercritical wing is designed to delay the onset

of drag rise to higher Mach numbers.  Since the efficiency

of the wing is governed by the optimal value of MwL/D,

postponing the onset of drag rise to higher Mach numbers

results in a corresponding decrease in the fuel requirements

of the aircraft.  The delay in drag rise can be effected by

constructing the wing so that the strong shocks accompanying

supersonic zones of moderate size on conventional wings are

replaced by weaker shocks with less wave drag and no appreci-

able boundary layer separation.

We are mainly concerned here with the contributions to

supercritical wing technology made by computational transonic

aerodynamics. The numerical solution of the partial
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differential equations of gas dynamics provides a theoreti-

cal means for both the design and evaluation of supercritical

wings. For example, two-dimensional shockless airfoils can

be obtained by calculating real analytic solutions to the

hodograph equations of transonic flow. These airfoils have

the property that at a specified speed and angle of attack,

the calculated two-dimensional transonic flow is smooth.

This guarantees that the wave drag will be small near at

least one operating condition. It may happen that there is

an increase in wave drag at supercritical Mach numbers below

the design condition known as drag creep. Since  a wing must

operate efficiently over a range of conditions it is desir-

able to avoid the occurrence of drag creep. Provided this

is done, a practical approach to the supercritical wing is

to design the wing using computer-generated shockless airfoils

in each cross-section.

It is also possible to evaluate the performance of wings

at off-design conditions using computer codes. Programs

that calculate the three-dimensional transonic flow past

wing-body combinations are used regularly by the aircraft

industry. Considerable savings can be realized by replacing

preliminary wind tunnel testing of new wing designs by such

computer simulation.

There is presently much interest in the possibility of

developing a numerical scheme for the design of three-

dimensional wing-body combinations. Hodograph methods employed
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in the design of two-dimensional shockless wing sections

cannot be used for this purpose. Our contribution in

this direction is a two-dimensional design code based on

techniques that may prove useful in such an endeavor.

Although our method does not produce shockless airfoils,

we show  that it is possible to obtain wing sections with

low wave drag by using an artificial viscosity to smear

shocks properly. The design procedure is outlined in

Section 4.1.

Our program is  actually a new design mode of the

two-dimensional analysis code H developed by Bauer,

Garabedian, and Korn [2,3,4]. This analysis code solves

the direct problem of obtaining the transonic flow past

a given wing section.  The code includes a turbulent

boundary layer correction which gives a reliable approxima-

tion to the drag due to skin friction and predicts boundary

layer separation. Drag estimates obtained with the

code are  in good agreement with experiment, and the program

has found wide acceptance in the aircraft industry.

There are two major steps in the operation of the

analysis routine.  Given the coordinates of the airfoil,

the region exterior to the airfoil is mapped conformally

to the interior of the unit circle as in Sell's treatment

of subcritical flow past an airfoil [33]. The nonlinear

partial differential equations of transonic flow are then

solved iteratively in the unit circle using a type-

dependent difference scheme similar to the one first
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developed by Murman and Cole [27]. If boundary layer

corrections are desired, the shock wave - boundary layer

interaction is simulated by iterating between inviscid

flow calculations and boundary layer corrections until

convergence is achieved.

The design modification we have added to the code

solves the inverse problem of calculating the shape

an airfoil must have in order to achieve a specified

pressure distribution. When operating in this mode, an

initial guess is provided for the shape of the desired

airfoil and the region exterior to this airfoil is mapped

into the unit circle as in the analysis mode. A number

of flow iterations are performed using an artificial

viscosity that inhibits the formation of shocks, as

described in Section 2.2. The pressure distribution

resulting from these calculations is then compared with

the desired input pressure distribution and a better

approximation to the desired airfoil is obtained, as

described in Section 2.3. This new profile is mapped

to the unit circle as in the first step and the process

is repeated until the approximations converge.  A boundary

layer correction may then be calculated on the basis of

the last pressure distribution. The desired airfoil is

obtained by subtracting the displacement thickness of the

turbulent boundary layer from the coordinates of the

computed profile.
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The inverse method transfers the difficulty in

designing wings from determining the coordinates of the

airfoil to finding pressure distributions that give rise

to airfoils with desired specifications. We therefore

include descriptions of some pressure distributions that

generate airfoils with low wave drag, and indicate how

to modify the input distribution in order to obtain air-

foils with a desired lift, thickness-to-chord ratio, and

design Mach number.

The remainder of the paper is organized as follows.

The mathematical statement of the problem is formulated

in Chapter II.  The computational procedure is outlined

in Chapter III.  In Chapter IV we present results obtained

with the design mode, together with some comparisons to

airfoils obtained by other methods. Chapter V is more

theoretical in nature and includes a convergence proof for

the design problem in a special case of subsonic flow.

We provide a description  of the  modified  version

of the Bauer, Garabedian, and Korn analysis code H in

Chapter VI.

I would like to express my gratitude for the advice

and encouragement of Paul R. Garabedian, who suggested this

problem and made the work possible. I am also grateful for

the help of Frances Bauer and Antony Jameson at various

stages of the research, and for a fast and accurate typing

job by Connie Engle.
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2.   References to Other Work

Transonic flow research has a colorful history [5,29].

In the late 1940's, arguments to the effect that smooth

transonic flows past arbitrary profiles should not generally

be expected to exist were formulated by Busemann [10],

Frankl   [15],   and Gud erley [16]. These observations raised

doubts about the physical significance of the smooth solu-

tions to the steady, two-dimensional potential equation for

transonic flow that were known at the time. It was observed

experimentally that transonic flows generally exhibit shocks

when the supersonic zones are of moderate size, but there

were occasional instances of near-shockless flow that

seemed to contradict the implications of the  nonexistence

theorems. A "transonic controversy" developed over the

true nature of transonic flows in general and of shockless

flows in particular.

The controversy attracted considerable attention from

mathematicians in the hopes that a  rigorous investigation of

whether the flow Eroblem was well-posed would help clarify

matters. From this viewpoint, a satisfactory demonstration

that the problem of finding smooth transonic flows past

convex symmetric profiles was not correctly set was supplied

by Morawetz  [2 6] , although the apparent discrepancies between

theory and experiment remained unresolved.

More progress was made in the early 1960's with the

experimental work of Pearcey  [ 31] , who was able to systemati-
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cally produce near-shockless flows past wing sections having

a suction pressure peak near the nose of the profile. The

subsequent development of numerical techniques capable of

treating transonic flows with shocks brought about a

reinterpretation  of the  nonexistence theorems since the

computational problem seems to be correctly

set in terms of weak solutions. Results of both

experiment and computation show that shockless and

neighboring near-shockless solutions do in fact have

physidal significance and can provide an important means

of reducing the drag experienced by airfoils travelling

at transonic speeds.

Several numerical techniques have been developed for

the design of two-dimensional supercritical wing sections

using inviscid flow theory.  We can distinguish between

approaches relying on hodograph methods and the remaining

approaches.

The hodograph transformation consists of reversing

the  roles  of the dependent and independent variables  in  the

flow equations with the result that the partial differential

equations are linear.  Using this transformation, several

methods have been devised to allow the systematic computa-

tion of airfoils that have shockless flows at given operat-

ing conditions [2,4,8,30]. Such airfoils necessarily have

low wave drag at nearby operating conditions, although

drag creep can occur elsewhere.

8



Other approaches to the design problem do not

generally provide shock-free solutions to the equations.

This is not necessarily a disadvantage, since for some

applications it is possible that an airfoil designed with

a weak shock might have an overall performance that is

as good or better than a shockless airfoil with similar

specifications. The main difficulty is to find pressure

distributions that will generate airfoils with low drag

levels.

Some design methods use the approximations of small

disturbance theory and thin airfoil theory [11,22,31].

With this approach the solution is expanded in terms of a

parameter describing the thickness of the profile, which

is assumed to be small. This has the advantage that to

leading order the profile can be replaced by a given slit.

The desired pressure distrubution along the surface of

the airfoil can then be used in a boundary condition applied

at the slit, and so the difficulties caused by the unknown

boundary are avoided. The coordinates of the desired air-

foil cin be determined from the resulting velocity components.

This technique has the disadvantage that the flow is not

represented correctly near the stagnation point at the

leading edge of a blunt-nosed airfoil. It should be noted

that applications of this technique to the design of three-

dimensional wings have been initiatdd [17,34].
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The design methods of Carlson [12] and Tranen [36]

solve the inverse problem for the full potential equation

with a free boundary. Both of these methods use the

prescribed pressure distribution in a boundary condition

for the determination of the velocity potential, and                  

calculate the position of the surface of the profile by               

using the condition of flow tangency along the body. In

Carlson's method the calculation is performed using Cartesian

coordinates. The coordinates near the nose are given in

advance and the remainder of the profile is determined as a

free boundary. Tranen uses the analysis code H to perform

the flow calculations and to provide a computational domain,

and proceeds  by alternating between analysis and design

computations. At each cycle the user modifies the prescribed

pressure distribution in order to achieve convergence.

The design procedure of Hicks and his associates [18]

is based on the use of a numerical optimization routine

together with the analysis code H to minimize the drag coeffi-

cient with respect to design variables that describe

the shape of the profile, while satisfying various constraints

on the operating conditions and geometry. This technique

has the advantage of drag reduction without the necessity

of choosing the pressure distribution. Its main drawback

is the large amount of computing time required when many

parameters are allowed to vary.
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The method we present for supereritical wing design

uses the prescribed pressure distribution in a boundary

condition for the determination of the conformal mapping

from the unit circle to the desired airfoil. This

approach to the design problem is similar in spirit to

Lighthill's inverse method [23], which is based on the

linear theory of incompressible flow and so does not

require an iterative procedure to determine the flow and

profile.  Other incompressible treatments  along these

lines have also appeared [1,13].

The practical success of an inverse method of airfoil

design depends on the prescribed pressure distribution.

It is therefore important to study the relation between

the assigned pressure distribution and the performance of

the resulting airfoil [7,29].  Much work  remains to be done

on this aspect of the problem. The many shockless flows

produced by hodograph methods provide a good basis for

investigation.
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II. THE PARTIAL DIFFERENTIAL EQUATIONS OF TRANSONIC FLOW

In this chapter we consider the mathematical formula-

tion of the design problem.  We summarize the basic equa-

tions of motion for gas dynamics and discuss the boundary

conditions appropriate for the direct and inverse problems.

1.   The Equations of Gas Dynamics

We begin with some comments about the choice of equa-

tions to describe the problem. We wish to model the

flight of aerodynamically efficient wings at transonic

speeds. We are especially concerned with the drag on such

bodies, which includes forces due to skin friction and

shocks. For our treatment to be of practical use we must

consider equations which allow estimates of the wave drag

due to shocks, and we must provide for the calculation

of viscous effects. Furthermore, we must choose equations

that are compatible with the inherent storage limitations

of computers.

It is common in experiment as well as theory

to treat the case of steady, two-dimensional flow past a

wing of uniform cross section. This provides a good

approximation of the flow near the middle section of

a three-dimensional wing with a straight leading edge

12



moving with a constant velocity. This geometrical simpli-

fication permits the use of just two independent variables,

which we take to be the x and y coordinates.

Another important simplification is possible if the

airfoil is streamlined so that viscous effects are confined

to the immediate vicinity of the profile. In this case

the flow outside the boundary layer can be obtained from

lower order partial differential equations describing

inviscid fluid motion. The invisc,id solution can then

be used to calculate a boundary layer correction to the

flow past the airfoil, making it possible to obtain esti-

mates of the drag due to skin friction [28,32]. Separation

of the boundary layer should be avoided for aerodynamical

reasons, too, so it is important for the theory to give

reliable estimates of the growth of the boundary layer.

Inviscid fluid flow can be described by conservation

laws consisting of nonlinear, first order partial differ-

ential equations involving the velocity components of the

flow and two thermodynamic  variables such as the density

and entropy. The conservation laws also provide shock

conditions which determine the jump in these quantities

across a surface of discontinuity in the flow. For the

case of flows past thin bodies at speeds close to the

speed of sound, the shocks are usually weak in the sense

that the jump in velocity across' the shock is small compared

to the speed of sound. The jump in entropy across a shock

13



is of third order in the shock strength; to a good

approximation, the change in entropy can therefore be

neglected in a weak shock.  With this assumption, the

entropy of a fluid particle is constant throughout its

motion, and the flow may be considered isentropic.

As a result of considering the entropy to be con-

served across a shock, the shock condition expressing

conservation of the normal component of momentum is lost.

The defect in this quantity can be interpreted as an

approximation of the wave drag exerted on the airfoil

by the shock.

For isentropic flow, the velocity field is irrotational

if the flow is uniform at infinity. This permits the

introduction of a velocity potential whose derivatives are

the velocity components. The inviscid equations of motion

can then be reduced to a single second order partial differ-

ential equation for the potential, and in the computation

it is only necessary to store values of a single dependent

variable.

We shall list below the equations describing the flow

of an inviscid, isentropic gas. In Section 3.4 the equa-

tions  used to describe a turbulent boundary layer correction

will be discussed. It is found in practice that these

equations provide a description of the transonic flow past

an airfoil that agrees well with experiment over a wide

range of conditions [3,4].

14



The equations describing the steady two-dimensional

motion of an ideal polytropic gas are familiar [14,25].

From thermodynamics we have the equation of state

(2.1) p   =  A(s)p Y

where  p, p, and S are the pressure, density, and specific

entropy of the gas. A(s) is a known function of the

entropy and y>l i s a constant depending on the nature

of the gas.

Conservation of mass gives

(2.2) Cpu,X· +   C pv) y  =  0

where u and v are the x and y components of the velocity.

Similarly, the conservation of momentum asserts that

(2.3) (Uux + Vuy) +p x=o'

(2.4) (Uvx + Vvy) +p y=0,

and the conservation of energy gives

(2.5) US + VS =0.
X Y

As mentioned above, we consider the case of constant

entropy, so that (2.5) is automatically satisfied and  A(S)

in (2.1) is a constant. The flows we consider become

uniform at large distances. It then follows from a theorem

of Kelvin that the flow is irrotational,

15



(2.6)                 u -v =0.
Y    X

Using (2.1), (2.2) and (2.6) we obtain Bernoulli's law

222
'(2.7) u  + v     c  =1  7+1   2

2 y-1 2 y-1 C* ,

where c 2 = dp/dp  is the square of the local speed of

sound and c* is a constant known as the critical speed.

The dimensionless ratio

r 2 211/2
M=l u  +V I

l  c2  J

is called the local Mach number and is greater than one if
2222
u+v  =q >c* (locally supersonic flow) and less than

one if  q2 < c   (locally subsonic flow).

According to (2.2) and (2.6), there are two functions

4 and 9 such that

(2.8a) U = 4)  = 9 /P
X Y

(2.8b) V=
ty = -*x/P

4 and W are the velocity potential and stream function of

the flow. We may obtain a single equation for $ from (2.1),

(2.2), and (2.7),

(2.9)  (c2 - ¢x2)4  -2 0 0 0  + (c2 - 0-2)0      0.XX x y xy Y   yy

This is the partial differential equation that is the basis

of our numerical work. 4 satisfies a similar equation.

16



Equation (2.9) is a quasilinear  partial differential
2    _equation which is elliptic when M  <1  and hyperbolic when

M2 > 1.  We are interested in the case of transonic flow,

so that (2.9) has mixed type in the region of interest.

It is appropriate  to consider weak solutions to (2.9)

or (2.2) under the conditions that 0 is continuous and

that any shocks present are compressive. This corresponds

to the proper entropy inequality in  nonisentropic flows.

17



2.   The Direct Problem

In this section we discuss the formulation of the

direct, or analysis, problem of determining the flow

past a given wing section.

We consider an airfoil with coordinates (x(s),y(s))

parametrized  by arc length s measured from tail to tail

as in Figure 2. The included angle at the trailing edge

is denoted by €. The frame of reference is chosen

so that the airfoil is at rest and the air has a resulting

velocity u = (q  cos a, q- sin a) at infinity, where
-

the angle of attack a gives the direction of motion relative

to fixed coordinate axes.

The fact that the flow must be tangential to the

surface of the airfoil provides one boundary condition
A

for (2.9).  If v is a unit normal to the profile, then

this condition can be stated as

A

(2.10) V.u = 80 = 0-   Bv

on the curve     (x (s) ,y(s)  ) . Since the airfoil is a stream-

line of the flow, this fact can also be expressed by

(2.11) *Ex(s),y(s)) = constant.

We consider lifting profiles with cusped trailing edges,

0 < E << 1, in which case the potential 4 need not be

single-valued. The circulation r = [$] of the ·flow around

the airfoil is then uniquely determined by the Kutta-

Joukowski condition
18



(2.12) ly(X(0),y(0))I < 00 ,

which states that the velocity must be finite at the

trailing edge. I f s>0 the flow necessarily has a

stagnation point at the trailing edge. This is not the

case for E = 0.  The presence of a stagnation point at

the tail of the airfoil should generally be avoided
since the resulting adverse pressure gradient promotes

separation of the boundary layer.

It can be shown [24] that $ has an asymptotic

expansion

(2.13) 0 0 q-r cos(8-a) + - tan (B tan(8-a))
r    -1

2 T

2    2    2             2        2             -1as r =    x        +    y        +    oo,    wher e B =1-M and 8 = tan y/X.00

This is similar to the corresponding expansion for

incompressible flow. The Prandtl-Glauert scale factor B

commonly occurs in linearized treatments of compressible

flow.

For the analysis problem it is convenient to express

Bernoulli's law (2.7) in the form

 2 42     2
(2.14) X2  Y  +  951  =  q2 fl +        1        1 lz 2  '

Cy-1)M- '

where M is the Mach number at infinity. With this nota-00

tion, the direct problem can be formulated by specifying

the airfoil coordinates (x(s),y(s)), the angle of attack a,

19



and  Mw  <  1.    In  this  case  we  are  free to choose the units

so  that  q- is normalized  to  one.    The  flow  is then obtained

by solving the partial differential equation (2.9), along

with the boundary conditions (2.10), (2.12), (2.13), and

(2.14).

The lift of the airfoil is proportional to the

circulation r. When the angle of attack is varied, the

circulation of the flow adjusts so that the Kutta condi-

tion (2.12) is satisfied. For a given Mach number Mw ,

the lift is therefore a function of the angle of attack.

A variant of the above formulation of the problem that

is useful in applications is to specify the lift of the

airfoil instead of a. The angle of attack necessary to

produce this lift is then determined by imposing the Kutta

condition.

20



3.   The Inverse Problem

In this section we describe the invers4 or desig4

problem of calculating the shape that a profile must have

in order to achieve a given pressure distribution.

Suppose there is a flow past a profile such as the one

depicted in Figure 2. If the velocity of the flow along

the profile is written in the form

-ie(s)u(s) - iv(s) = Q(s) e

then the direct problem consists of specifying the angle

0(s), which determines the shape of the airfoil, and solv-

ing for the flow. For the inverse problem, the values of

Q(s) are given and both the flow and the body are to be

determined. Since Bernoulli's law (2.7) provides a corres-

2      2              (y-1)/ypondence between the values of q  and c  = constant·p

we may formulate the inverse problem in terms of either

q or p, and the choice of q is only a matter of mathematical

convenience.

The inverse problem is seen to be a free boundary problem

and is for this reason more complicated than the direct

problem. The coordinates (x(s),y(s)) of the airfoil are

now'unknown and are to be determined from the knowledge

of the velocity distribution Q(s). We may write the

relationship between 4 and Q(s) as an additional boundary

condition

21



(2.15) -¢lx(s),y(s)) = Q(s)
d
ds

on the interval O l s < 2, where £. i s t o b e the total

length of the airfoil.

It is also necessary to specify the constant in

Bernoulli's law. In the direct problem the Mach number

and speed at infinity are prescribed as in (2.14); for

the design problem we give instead the value of the

critical speed c* in (2.7).  This means that the Mach

numbers of the flow along the airfoil are specified.

The choice of c* determines the type of the equation (2.8).

If c* > max |Q(s)|,  the flow will be subsonic and (2.9)

will be elliptic; if there are  points with IQ(s)1 > c* ,

the flow will be transonic and (2.9) will have mixed type.

We remark that with this formulation q- is not speci-

fied as data, but must be determined along with $ and

(X(S)  ,Y(S) )  .

The fact that Q(s) is to be the velocity distribution

of a flow past an airfoil places restrictions on the form

Q(s) may have. A typical choice for Q(s) is illustrated

in Figure 3. Q(s) must have a zero corresponding to the

stagnation point that forms at the nose of the airfoil,

and then must be nonzero along the surface of the airfoil

until the tail is reached. At the tail the velocity must

be continuous and may be taken to be nonzero provided the

included angle e at the trailing edge is zero.
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Q(S) must satisfy further compatibility conditions in

order to determine profiles defined by simple closed curves.

Note that since the circulation of the flow is given

by the integral of the speed along the profile, the lift

of the airfoil can be calculated from the prescribed

velocity distribution. The angle of attack may still be

specified in the asymptotic form (2.13), since in the design

problem the airfoil is free to rotate with respect to the

fixed coordinate system so as to satisfy (2.12).

To summarize, the design problem is posed by specify-

ing the speed distribution Q(s), the critical speed c* ,

and the angle of attack a. The potential of the flow and

the airfoil coordinates are then obtained by solving the

equations

(2.9)  (c2-02)0  -2 0 0 0   + (c2 +0 2)0 O,X XX x y xy Y   YY

0   +  0 2
(2.7)

y     c 2   =  1  7+1   2
2 y-1 2   7-I    c*  ;

(2.10) 33   (x c s) ,y(s) )    =   0    ;
3$

d
(2.15) as ¢lx(s),y(s)) = Q(s) ;

(2.12) l u i x(0) ,y(0) )  1    <   00          ;

(2.13)  0 0 q-r cos(0-a) + --   tan-1(B tan(0-a).) .
2 1T
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III. DISCUSSION OF THE COMPUTATIONAL PROCEDURE

In this chapter we describe the method used to solve

the design problem outlined in Section 2.3. In Section 3.4

we also provide a brief summary of the equations used to

compute the boundary layer correction.

1.   Overview of the Computation

The procedure we describe here is based on the Bauer,

Garabedian, and Korn analysis code H  [2,3,4] which solves

the direct problem described in Section 2.2. The analysis

routine computes the inviscid flow past a given airfoil in

two steps. The region exterior to the airfoil in the

z-plane is mapped conformally onto the interior of the

unit circle in the 6-plane, and the partial differential

equation (2.9) for $(x,y) is expressed in terms .of the

variables (r,w), where < =r e The resulting nonlinear
iw

equation is then approximated by a finite difference scheme

which is solved by a relaxation procedure to provide the

solution $(r,w).

For the inverse problem, we are given the velocity

distribution Q(s) rather than the coordinates of the

airfoil. The basic idea is to use Q(s) to determine both
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the mapping z = f(C) of the unit circle onto the desired

airfoil and the potential $. With this free boundary

approach, the flow calculations are .done in a fixed

computational domain and the geometry is determined by

introducing the appropriate mapping as an additional

unknown.  This results in coupled nonlinear equations for

4  and for the mapping function f which we solve iteratively

using existing routines in the analysis  code.

The iterations go roughly as follows. We start with a

first guess for the potential function which we take to be

the incompressible solution $ obtained by replacing the
(0)

partial differential equation (2.9) by Laplace's equation.

The values of 0 are used in the equation for the mapping
(0)

function, which we solve for the approximation z=f (S).
(1)

Using the mapping f in the flow equation then provides(1)

a better approximation 4 (r,w) to the potential, and(1)

the process is repeated until the approximations converge.

In terms of the analysis code, at each cycle the design mode

(n)starts with an approximation to the desired airfoil P

maps it to the unit circle, and solves for the flow past P (n)

in the usual way. The resulting speed distribution is then

compared to the desired speed distribution Q(s), and a correc-
(n) (n+1)tion to P is made to obtain the new  approximation P

The iterations continue until the computed speed distribu-

tion agrees with the prescribed distribution Q(s) within

an acceptable accuracy.
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We now describe this procedure in more detail. Consider

a conformal mapping   z=f(C).from  the  unit  ci'rcle  onto  the

exterior of an airfoil such as appears in Figure 2. We

assume f has a pole at the origin and takes the point

4 = 1 into the tail of the profile (x(0),y(0)).  The

included angle at the trailing edge will be taken to be

zero, although the less important case € >0 could be

treated similarly.  The derivative of the map function has

an expansion of the form

00

(3.1) -= f'(C) = -
1  24 exp  I  ckck ,

dz
dC k=0

where the behavior of the mapping at the trailing edge of

the airfoil is taken into account by the factor (1 - 4).

The mapping determines a boundary correspondence

iw
between the unit circle & =e   and the airfoil which we

write as s = s(w), where s is·arc length along the profile.

If we denote the inclination of the tangent to the airfoil

by 8(s), as in Figure 2, then on the unit circle c = e iw

we have

idzi dz 1
(3.2)        f ' (C)     =     1 3-41     exp      i    arg   dE-   f

=  ds exp  <i (0 (s (w) 1  -  w  - 6 } .da

If ck = ak + ibk' then (3.1) gives

26



r   1    dsl    -(3.3 a) log             =    a cos kw -bsin kww 35.J       k        kL2 sin
2

k=0

00

(3.3b)  0(s(w)) + 6 +w  =  I  bkcos kw + aksin kw .k=0

These equations show that the mapping is essentially

determined once the correspondence s = s(w) is known.
i (1)Under the change of variables z= f(C), 4=r e

the partial differential equation (2.9) for $ becomes

2   0    i -
2     2

(3.4) r (c-- u*)4 - 2ruvt + (C - V )$rr re (DCO

+ r((2- v2)'ir + 1 (u2+ V2).[r3uhr+ r 2vhw] -0,

where  $(r,w) = 4(x,y),  h2 = |dz/d<12,  u2 = $2/h2 ,

v2 = j2/(r 2h2), and (2 is given by Bernouli's law (2.7) .

Note that the mapping function f appears in (3.4) through

the Jacobian h. Furthermore, for the inverse problem the

solution  $(r,w) of (3.4)  can be used together with the

data  Q(s) to provide boundary values for the determination

of f'(4). The relation $(1,w)= 0(x(s(w)),y(s(w))) yields

upon differentiation

ds      1    34(3.5)
dw    =    Q  (s  ( (O) )     AW     (l,W)

iw
which can be used in the expression (3.3a) for loglf'(e  )1.

The problem is therefore described by the equations

(3.1), (3.3a), (3.5), and (3.4), together with the appropriate
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boundary conditions for $ to supplement (3.4). The

iterations used in the computation to solve this problem
-(0)

start with the approximation 4 (r,w) provided by

incompressible theory. If we introduce harmonic function

G(C) = log 142(1 - C)-lf'(C) 1, the iteration scheme then

proceeds by solving in succession

ds          1      30(n) -(n-1)
(3.6)      =           (1,w) ,

d (0                                     Q  (s   (n)     (w)   )         3 w

AG (4) = 0
(n)

(3.7)

(n) iw
f   1     ds    (w)1

(n)
G (e ) = log

1 w dw
L2 sin 2

(3.8) h (n) (C)    =     11    -     4  |     exp    G  (n) ( U      ,

ICIL

2 2 2 -(n) -(n) 2 -(n)(3.9)  r (cn-un)0rr + runvn0rw + (c2-vn)0ww

+ r(c2- vn)tr   + F (un+vn)[r unhr   + r2vnh n)1 = 0
2  -(n)      1     2    2 3 (n)

2                             22  _  -(n) 2    (n)        2      -(n) 2     2  (n)  ,
for n = 1,2,3,..., where un - tr   /h    , vn = 4 / (r h 1 ,

2                                      2            2and c is given in terms of u and v by Bernoulli'sn                                                                                    n                           n

law (2.7). The boundary conditions used to solve (3.9)

are those of the direct problem.

The mapping computation (3.7) can be done rapidly using

the fast Fourier transform to evaluate the coefficients

(n)appearing in a truncated series expansion for G

28
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The flow computation is performed  using a  nonconserva-

tive difference scheme similar to the one first developed

by Murman and Cole [27]. Its main feature is type-

dependent differencing which captures shocks over two mesh

widths by effectively producing an artificial viscosity

in the supersonic regions.

The iterative procedure works very well for subsonic

flows, presumably because the initial guess is a good

approximation to the solution. In fact we prove in

Section 5.2 that a similar iteration converges to a solu-

tion provided the maximum Mach number in the flow is small

enough.

For the case of transonic flow, the problem is

complicated by the possible presence of shocks in the flows

past the various approximations to the desired airfoil.

A large gradient in the derivative of $ (n-1)(1,w) appearing

in (3.6) is undesirable, since a discontinuity in (3.3a)

causes a logarithmic singularity in (3.3b), which is

inconsistent with the assumed smoothness of the airfoil.

One way to avoid this difficulty is to solve the equa-

tions on a coarse mesh. The coefficient of the artificial

viscosity implicit in the Murman-Cole scheme is of the

order of a mesh width. If the grid is coarse enough, weak

shocks are suppressed by this viscosity, as illustrated

in Figure 4. This smoothing effect allows the process to

converge even in the case of transonic flow. If the grid
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4

is refined, unwanted shocks may appear in the flow,

causing the iterations to diverge. On the other hand,

a solution computed on too coarse a mesh may not accurately

model the actual flow past the airfoil because of the

smoothing effect of the artificial viscosity.

In order to operate on a fine mesh, we have added

an additional smearing term to inhibit the formation of

shocks. We describe this term in more detail in the

next section. It has the form of an artificial viscosity

multiplied by a coefficient  law , where  Aw  is the

mesh width in the angular direction.  The factor el can

be varied to change the amount of smoothing used. This

permits the use of more viscosity in the early itera-

tions when it is important to suppress shocks, and less

viscosity towards the end of the computation when a more

accurate solution is desired. The additional smoothing

term therefore significantly increases the versatility of

the design routine.
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2.   The Flow Computation

In this section we discuss the difference scheme

used in the flow calculation and also give the form of

the additional artificial  viscosity term used in the

design procedure.

For computational purposes it is convenient to  -

remove the singularities of $(r,w) and h(r,w) by defining
a
0

qoo e
H(r,w)$(r,w) =

cos ((i)+ a - bO) + $(r,w) ,  h(r,ll)) =r                                                     2'r
The equations for $(r,w) then become

222
(3.10) r (c - u )0   - 2ruve  + (c 2-v2)0  + r((2-2u2-v2)#rrr rw WOO

122
+    F     (u    +    v    )   [ruHr    +    vHw]         =        0     ,

where
a20u  =   [r  $r  -  q-e    Cos (ll)+a-b,)]/H   ,

a
0

v    =     [r$w    -    go e        s i n (w    +    a    -    b l) ] /H     ,

2
and c is given by Bernoulli's law (2.7). The boundary

conditions (2.13), (2.10), and (2.12) become

(3.11) 0(0'W) - -L tan-1(B tan(w+a-b )) ,27T

a
(3.12) *r(1,w) q-e cos (w + a- b ) ,

0

a
(3.13) ew(1,0) - qooe sin (a -b) .0

0
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In the flow computation, centered differences are used

to approximate the coefficients of 0 , $ . and 0
rr rw . Woj '

as well as all of the lower order terms in (3.10). A rotated

difference scheme due to Jameson [20] is used to evaluate

the second derivatives. This method uses centered differ-

ences at all subsonic points. At supersonic points,

one-sided differences that are retarded in the local stream

direction are used to produce an artificial viscosity

similar to (3.15) below. The resulting nonlinear algebraic

equations are solved using line relaxation in the direction

of the flow.

For the two-dimensional flows past a wing section that

we consider, the direction of supersonic flow is to a good

approximation alligned with the w-coordinate direction.

The original Murman-Cole scheme would suggest the approxi-

mation

0..-20. . +0.
(3.14) 0  (i Ar, j Aw) 0 11 1,1-1 1,J-2

low                                                                    2
(8(1))

which is first order accurate at (i Ar, j Aw). The dominant

truncation error in (3.14) is Aw# (i Ar, j Aw), which hasWWW

the affect of an artificial viscosity. We may consider

this scheme as an approximation to the equation

(3.15) r  (c -u )0 + . . .   =   Aw  max   [0,    (v   -c   ) ]0
222 2   2

rr (1)(DO
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The artificial viscosity on the right is absent in the

subsonic regions and the coefficient tends to zero

at the sonic line.

In order to  improve the convergence of the design

routine, we have added an additional artificial viscosity

to the flow equation (3.10). The added term has the form             

(3.16) E  Aw  -  [V (M)   0     ]
3

1 3w WOO                                                     '

which is motivated by the Murman-Cole artificial viscosity

appearing in (3.15). Here V(M) is a smooth function of

the local Mach number M which vanishes for M i M  and is

one for M > Ml.  We choose the numbers M  and Ml so that

this term is effective across the sonic line. For example,

we may use M  = 0.85 and Ml = 0·95.  This is in contrast

to the behavior of the artificial viscosity in (3.15),

which is switched off at the sonic line.

The term (3.16) is added directly to the rotated

difference scheme, so that for El = 0  the original scheme

remains unchanged. Figure 5 illustrates the smoothing effect

of (3.16) for a flow with a weak shock on a fine mesh.

Note that the shock does not appear on a cruder mesh.

By adding the term (3.16) to the partial differential

equation (3.10) we can obtain satisfactory convergence of

the design scheme on either crude or fine meshes as desired.
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3.   The Conformal Mapping

In this section we discuss the calculation of the

mapping function from (3.3a), and we also explain how the

Mach number M  , the coefficient of lift CL ' and the00

rotation factor bQ are obtained.

During each design iteration we use the data Q(s)

-(n-1)
and the previous estimate $ (r,w) for the potential

(n)
function to calculate a boundary correspondence s=s   (w)

between the unit circle and the nth approximation to the

airfoil. The values 4 (r,to) are obtained from the-(n-1)

analysis routine, which uses dimensionless units that are

normalized by the free stream velocity q- and the chord

length L of the profile. Since qw and L are not specified

for the design problem, it is necessary to adjust the scal-

ing at each iteration to make the prescribed data compatible

with the units used by the analysis routine.

In order to use the analysis routine we need to supply

values for the free stream Mach number M and the lift
00

coefficient C . To determine M we use the relation
L                                               CO

2

(3.17)
1211121   11::1}1   -1,      1 2'

90                (7-1) Moo

which results from Bernoulli's law (2.14) and (2.7). The

speed qw corresponding   to  the  data  Q (s)   and  c* is obtained

(0)
iteratively. In the first cycle we use the value for qw

provided by the incompressible solution. At the nth step,
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(n)
qw is chosen to be the scale factor that minimizes the

expression
/ (n) ,,22     Q2 (s      (wi) j

(3.18) 4  qi      -
r   (n-1)

2
1                            gin)»

where the points wi are evenly distributed around the unit
(n-1)circle and qi are the velocities along the surface of

the (n-1) st  approximation to the airfoil as computed by

the analysis routine.

The coefficient of lift supplied to the analysis

routine, 1
Q(s')ds'

O               [01C=      =

L       9-L        1     '2 qooL

is also affected by the scaling and must be similarly

adjusted.

In order to evaluate s (w) we use the data Q(s) and(n)

(n-1)
$ (1,(1)) as follows. Formula (2.15) is integrated to

provide the function

S
r

01(s) =   0(s') ds' .
0

01 has a minimum at the stagnation point of Q, say s  ,

and is monotonic on either side of s . We define a smooth
0

function

_  40  Cs)  -  01(so) , S<
(3.19) $ (S)

1                       so '
2

.+  401 (s)  _  01 (s ) , S> SO /
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which is monotonically increasing and can be inverted.

Both the speed Q and the arc length s may then be considered

functions of the modified potential 02.

At the nth stage of the iteration, the potential
-(rrl)
4   (1,w) is modified as in (3.19). The result is

scaled to have the same range as 02 and inserted into the

appropriate expressions for Q and s. This provides an

(n)expression s=s (W) which. can be differentiated and

used directly in (3.3a) instead of using (3.5), which

requires special treatment at the stagnation point.

The series

1 1 ds (n)(n) 1    
(3.3a)

109  1               dw            =   I   ak   cos  kw  - bCn  sin kwc2 sin 6 k=0

(n)is truncated at N terms and the coefficients a  and

al(n)     + ibin) , k =1 I..., N-1  are obtained using a fast

Fourier transform. This procedure does not provide the

coefficient b n), which determines the orientation of

the ·airfoil with respect  to the coordinate axes. To find

bCn , we appeal to the Kutta condition

a

(3  .1 3)         -           ew  (1,0)      =    -    qw
e sin (a -b)0

0

At the nth  stage of the iteration, b  is determined so(n)

that (3.13) will be satisfied as the iterations converge.

In summary, at each iteration we rescale the data to

update M- and CL ' and determine the mapping coefficients
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a  and ck =a k+ ibk 'k= 1,...,N-1,  which are used as0

input to the analysis routine. The analysis routine then

provides the potential $(r,w)  along.with the necessary

rotation factor  b  to complete the cycle.  The iterations

continue until the velocity along the airfoil computed

by the analysis code agrees well enough with the prescribed

data Q(s).  The remaining boundary conditions are automati-

cally satisfied, since at each iteration we use the analysis

routine to solve for the flow past a given airfoil.
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4.   The Boundary Layer Correction

For the computations to be of practical value it is

important to supplement the inviscid equations discussed

thus far with equations describing the flow near the

surface of the wing section where viscous effects cannot

be disregarded. To do this, the inviscid theory is used

to design a profile with a finite thickness between the

upper and lower surfaces at the trailing edge. Next a

boundary layer correction is computed on the basis of

the inviscid pressure distribution. The displacement

thickness of the boundary layer is then subtracted from

the coordinates of the inviscid profile. Thus the end

results of the computations are the actual coordinates of

the  ·airfoil, a viscous boundary layer  next  to the surface
of the airfoil, and inviscid flow outside the streamline

determined by the boundary layer.

The method 02 Nash and Macdonald [28] is used to

compute the turbulent boundary layer correction. The
*

momentum thickness 0  and the displacement thickness 6*

I are calculated from the von Karmen momentum equation

*                              *

(3.20) de     + (2  +  H  -  M2)   dq   e     =  -1-
ds ds q      2Pq

where  H = 6*/0*  is the shape factor and T is the skin

2
friction.  M  and q are functions of arc length s determined

by the inviscid solution, and H and T are given by
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semi-empirical formulas. The ordinary differential equation

(3.20) is integrated from transition points (xR'YR) that must

be prescribed on the upper and lower surfaces of the airfoil,
*

and a starting value for 8 is obtained from the specified

Reynolds number of the flow.

Separation of the boundary layer is predicted when the

Nash-Macdonald parameter

C     =_0*dq
sep q  ds

exceeds 0.004. It is important to choose the input speed

distribution so that C remains around 0.003 on the uppersep

surface near the trailing edge. This is our version of a

criterion due to Stratford for avoiding boundary layer

separation [35].

When theoretically designed airfoils are evaluated

in wind tunnel tests, it is sometimes found that the effects

of the boundary layer cause losses in lift and other

discrepancies between theory and experiment. However,

airfoils designed with such a Stratford pressure distribu-

tion using a similar inverse formulation [4] have been

found to meet their design specifications in wind tunnel

testing.
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IV. COMPUTATIONAL RESULTS

In this chapter we present some results produced

by the design mode of the analysis code. We include

a description of pressure distributions that generate

profiles with no significant drag creep according to

the analysis code. Possible extensions of the main

ideas to other problems in transonic flow are discussed

in Section 4.2.

1.   The Design Procedure                                        -

The inverse method of airfoil design uses as input

the pressure distribution rather than the airfoil

coordinates. In order to obtain airfoils with acceptable

drag levels, an appropriate pressure distribution must be

prescribed. In this section we discuss a method of using

the design mode that produces wing sections with low wave

drag as predicted by the analysis mode.

Our first example appears in Figures 6 and 7. Figure 3

shows the speed distribution used to produce the airfoil

of Figure 6. On the upper surface the speed distribution

rises from the stagnation point at the nose to a flat

section of supersonic values along the first sixty percent
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of chord, and then falls into a Stratford distribution

near the tail. The distribution over the lower surface

is entirely subsonic and is arranged so that the lift

is evenly distributed along the section, with aft load-

ing at the tail. The. profile- has been provided with a

gap at trailing edge so that a boundary layer correction

can be removed from the displayed coordinates, as shown

in Figure 7.

Our experience with the design routine to date

indicates that drag creep can be avoided by designing the

airfoil to have a small enough supersonic zone. The

supersonic zone can be increased or decreased in size

as desired by varying the critical speed c* used in the

design routine. If too large a supersonic zone is used

at design, the middle part of the zone tends to collapse

at speeds below design, giving rise to one or two shocks

that can cause significant wave drag at off-design condi-

tions.  This effect is reduced by designing at a lower Mach

number with a smaller supersonic zone.

Figure 8 shows an airfoil design with a speed distri-

bution similar to that of Figure 6 but with the critical

speed c* lowered so that the supersonic zone is significant-

ly larger.  The pressure distribution was altered slightly

near the nose and tail of the airfoil to retain the same

thickness-to-chord ratio and about  the  same  gap  at.  the  tail.
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When drag rise curves are computed for these two airfoils,

the profile designed with the larger supersonic zone

exhibits drag creep as illustrated in Figure 9. The

observed difference in the drag levels for the two profiles

is due to increases in both the wave drag and the form drag

of the second airfoil, although both airfoils have virtually         

identical form drag at subcritical speeds.

The design mode can also.be used to improve the

performance of airfoils by altering off-design pressure

distributions.  For example, we may exploit the fact that

some shockless airfoils designed by hodograph procedures

exhibit characteristic off-design distributions when

evaluated near the design angle of attack with a lower Mach

number (cf. [ 21, p. 96; [ 31, p. 131, p.143) . The speed along

much of the upper surface is roughly sonic, with a pronounced

peak near the nose of the profile. Such peaky distributions

also recall the experimental work of Pearcey [31], as well as

Boerstal and Uijlenhoet  [9] and Nieuland  and  Spee  [ 29] ,

who have published examples of shockless airfoils designed

with peaky distributions.

We illustrate the use of this observation with another

example. We begin with an airfoil that was obtained

using the design mode with a Mach number Mw = 0.745.  We
use the analysis routine to compute flows past this profile

with the same angle of attack but with smaller Mach numbers.
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At M = 0.710 there results the distribution shown in00

Figure 10, with an upper surface distribution that

resembles the characterisiic  distributions except for

a bump in the distribution around sixty percent of chord.

This distribution is obtained as output from the code in

the form of punched cards. We modify the distribution by

removing the bump so that the distribution remains relatively

flat along this section of the airfoil. The resulting   -

distribution is used in the design mode to obtain the

airfoil shown in Figure 11. In Figure 12 we display drag

rise curves for this airfoil and a shockless airfoil with

similar specifications designed by Dr. Jose Sanz using

the hodograph code of [4]. The airfoil produced by the

design mode of the analysis code compares quite favorably

with the shockless airfoil. Figure 13 shows that a near-

shockless flow is obtained at Mw = 0.740.

The two previous examples illustrate the procedure we

use to obtain airfoils with low wave drag. We start with

an upper surface speed distribution similar to the one

appearing in Figure 3. This portion of the distribution

determines the wave drag experienced by the airfoil at

off-design conditions and also determines the growth of

the boundary layer near the tail. To obtain airfoils with

a given gap at the tail, thickness-to-chord ratio, and lift,

the lower surface distribution should be modified as we
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will indicate in Section 6.1.  The value of c* used

determines the free stream Mach number M- , as well as

the size of the supersonic zone. In order to find the

proper size for the supersonic zone, it may be necessary

to make a tentative choice for c* and use the analysis

code to calculate  a drag rise curve for the resulting

profile. The size of the supersonic zone should be

decreased if the wave drag is too high at speeds below

design.

The size of the supersonic zone used at design

determines the height of the pressure peak near the nose

of the profile  at of f-design conditions, which  in  turn  is

related to the amount of wave drag occurring below design.

The amount of wave drag near the design condition is

effected by the curvature of the profile at the rear of

the supersonic zone, which is governed by both the

prescribed pressure distribution and the amount of           -

artificial viscosity used in the design routine. Rather

than attempting to adjust this area of the profile  when

it is in the most sensitive region of flow, we have found

it more convenient to make any necessary modifications in

an additional design run at a lower Mach number correspond-

ing  to the characteristic off-design condition as in

Figures 8 and 9. To do this, the analysis mode is used

to obtain the flow past the profile at the design angle of

attack but with lower Mach numbers. At some Mach number
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the flow should have a pressure peak near the nose

followed by a section of nearly constant sonic flow.

The pressure distribution over the region corresponding

to the rear of the supersonic zone at the design condition

is examined for any irregularities, and, if necessary, the

pressure distribution is modified near this point so that

it more closely resembles the charatteristic off-design

distribution of shockless airfoils.

In taking this approach, our philosophy is therefore

to use a relatively simple upper surface distribution as

in Figure 3 at the design condition. At this stage we

adjust the remainder of the input distriubtion so that the

airfoil has the desired specifications and we determine

the size of the supersonic zone so that the off-design

performance is acceptable. In doing so we operate on the

fine mesh of code H with enough added artificial viscosity

to ensure convergence of the scheme.

If the analysis mode is used to evaluate the airfoil

at the design condition, the resulting pressure distribution

usually agrees with the assigned pressure distribution

except near the rear of the supersonic zone  where the

extra artificial viscosity used in the design mode has

its largest effect. Rather than attempting to achieve

better agreement between design and analysis in this region

by using less artificial viscosity in the design mode, we

instead go to the off-design condition to make any necessary
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modifications to the profile at this point. Small correc-

tions usually do not significantly alter the specifications

of the airfoil that were determined at design. The result

is a smooth profile with low wave drag at off-design condi-  -

tions.

We discuss the implementation of this procedure,

together with the necessary boundary layer correction,

in Sections 6.1 and 6.2.

Figure 14 shows an airfoil with a larger supersonic

zone designed on a fine mesh using a relatively small

coefficient el = 0.05  in the additional artificial

viscosity term (3.16). The appearance of the sonic line

suggests the presence of a shock in the interior of the

flow region which weakens as it approaches the profile.

This picture illustrates the fact that this approach does

not produce shockless airfoils, but can provide some contro]

over the shock strength at the body by fitting a smooth

pressure distribution.
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2.   Extensions of the Technique

A procedure similar to the one presented here would

allow the design of transonic cascades with low wave drag.

Codes which compute transonic flow past turbines and

compressors by using relaxation schemes similar to the

one in the analysis code used here have been written [19]

and would presumably lend themselves to a similar design

modification. An attractive feature of this approach

would be,avoiding the complicated paths of integration

necessary for the design of transonic cascades using complex

characteristics in the hodograph plane [4]. For example,

it might prove possible to obtain cascades with a smaller

gap-to-chord ratio than can be obtained using the hodograph

method.

An important extension of this method is to the case

of three-dimensional  transonic flow past wing-body combina-

tions.  The results obtained so far with the design routine

suggest that by choosing the proper pressure distribution,

a satisfactory wing might be obtained with the mesh widths

usually available to three-dimensional codes.  Analysis

codes that compute the transonic flow past a given wing

are currently available [3,21]. It would be necessary

to extend the method used in two dimensions to treat the

more complicated free boundary.  One possibility would be

to use a separate conformal mapping at each wing section

to define the wing.
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V.  A CONVERGENCE THEOREM

This chapter treats some theoretical aspects of the

design problem.  Section 1 describes the simplest design

problem in incompressible flow, where the method is exact.

Section 2 outlines a convergence proof for an iteration

scheme similar to the one used in the computations. The

estimates needed for the proof are described in Section 3.

1.   The Incompressible Problem

In this section the design problem is illustrated for

the elementary case of incompressible flow. The explicit

solution obtained here is used in the next section as the

basis for a convergence proof of an iteration scheme similar

to the procedure outlined in Chapter 3 in the case of

subsonic compressible floQ.

To make the presentation as simple as possible we will

consider the case of purely circulatory flow around a

smooth object. The Kutta-Joukowski condition (2.12) is

then unnecessary and the speed of the flow at infinity is

zero, which simplifies the asymptotic representation (2.13).

It is also' convenient to formulate the problem in terms of

the stream function 9 as well as the velocity potential $.

We first establish some notation which will be useful
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in the next section. Consider a flow circulating around

a smooth body as indicated in Figure 15. We choose units

so that the total arc length of the body is 2A, so that

the density tends to one at infinity, and so that the

maximum speed on the surface of the body is one. We

measure arc length s from a fixed reference point on the

body and express the coordinates as functions (x(s),y(s))

of s for O l s < 2. The speed of the fluid along the

body is denoted by

(5.1) Q(s) = Iu(x(s),y(s)) 1

for 0<s< 21T.  We let 6= min Q(s) >O s o that 6 < Q(,s) <1.
-

The potential function

S

(5.2) $(S) Q(s') ds'

0

is then monotonically increasing and 0(2w)-0(0) -r > 2A6,

where  r<O i s the circulation of the flow.

It is convenient to consider Q(s) as defined by (5.1)

to be a 2A-periodic function defined for -oo <s< oo, and to

consider 0 to be defined on the whole real line. The

fuhction

(5.3) S  = S (93)

inverse to $(s) then satisfies

S(0   +   r)    =   S(0)    +   27[
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for -oo <0<o o, and the function

(5.4) 6($) = Q(s(e))

has period -P over the real axis.

In this section the motion is assumed to be incompres-

sible, which means we may take p E 1 in (2.2). Formulas

(2.8a) and (2.8b) then show that the complex function

(5.3) X(z) = 4(z) + i*(z)

is analytic with derivative

_X=U-i v.dz

Near infinity, the asymptotic form analogous to (2.13) is

(5.4) x(z,    0   2 i   log   z    .

We normalize X so that

(5.5) 0(X(S),y(S))  = 0.

We begin by observing that the body is determined up

to a rotation and translation by the function Q(s). To see

this, consider the conformal mapping z = f(C) which takes

the interior of the unit circle in the 6-plane onto the

region exterior to the body in the z-plane. We assume the

pole of f i s located at < =0 and f(1) = x(0) + iy(0).

In the 4-plane, the complex potential X assumes the

simple form
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-r
%(4) = FiFT log 4,

iwand in particular for < =e

0(eiw) = - Ew
2 T

corresponds to the function $(s). This provides a corres-

pondence s = s(w) between the unit circle and the surface

of the body of the form

(5.6) s=S
1- LE]27T j '

which is valid  for  all w. To determine the body from the

boundary correspondence (5.6), we note that if
2

F(C) = -6 f'(C), we have

1,'(„iw) 1 =1  - Ce  ) 1-1 13 (w) 1
1W

and therefore

(5.7) logIF(eiw)   = logl- fl·L  = logIds & -r
Id$ de

2 ·tr       6   C -rwl21'
-        -

This determines the boundary values of the harmonic function

logIF(C)1.  If G(C) is a conjugate harmonic function for

log|F(<)1, we have

(5.8) f,  (C)     =   4 -21 F (C)   I     exp    i{G  (C)     +    b o}

where b  is a real constant.  The mapping f(<) is therefore

determined up to a translation and a rotation by Q(s). The

flow
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r
(5.9) U - iv =

2NiC f'(C)

-ibois determined as well up to a multiplicative factor e

This is all that can be expected, since a Euclidean

transformation of the coordinates leaves the speed distri-

bution Q unchanged.

We may now change our viewpoint  and let the formulas

(5.7), (5.8), and (5.9) determine a nonzero analytic

function f'(4) and a flow u - iv(C), say with bQ = 0,

from a prescribed function Q(s). Provided that the func-

tion  f(4) determines a reasonable profile, the boundary

condition (5.7) shows that the resulting flow u-iv(z)

does have magnitude Q on the body, since

dlu-iv{x(s),y(s))1 = 1- $1 x (s),y (s)) 1 = 1 ·21 1 I flw  = Q (s) .
ds c : aw''ds

The question arises  whether every smooth, periodic

function Q(s) determines a reasonable profile (x(s),y(s)).

This is not the case. For example, if

1                  n
f'(C) = - --2 exp  I  c c  ,n

C      n=0
then

(00=
   dz = -     f'(C) dc = 2Ai cl e

body 141=1

where
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2A
-iw

cl = 1    log|F(C)|e dw .

0

This imposes a compatibility condition

2 FT

f    - 1- w 1 -iw0=
J   log  Q 1-2r,TJ e        dw

on Q(s) in order to obtain a closed body in the z-plane:

In the transonic design problem for flow past an airfoil,

an analogous condition on Q allows one to design airfoils

that have a finite thickness between the upper and lower

surfaces of  the trailing edge in order to represent a

wake extending downstream from the tail of the airfoil.

A more subtle detail is that the mapping z = f(C)

determined by Q(s) may define a profile with self-intersect-

ing boundaries. In the airfoil design problem, this

consideration is important since the body determined by

Q(s) may have so much curvature that the top and bottom

surfaces overlap.

Nevertheless, we emphasize that the formulas (5.7),

(5.8), and (5.9) do provide a locally one-one mapping

z = f(c) and a flow u-iv(C) if only Q(s) is positive and

periodic. Similarly, the numerical computations for the

transonic design problem are possible under very mild

requirements  on  Q (s),,  and the process converges whether

or not the resulting airfoil is physically realizable.
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It falls to the user  of our computer code to make the

modifications of Q(s) necessary to obtain an acceptable

geometry.
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2.   A Convergence Proof for the Compressible Case

We now consider the more complicated case of subsonic

compressible flow around a smooth obstacle. We wish to

show that an iterative procedure similar to the one used

in the numerical computation converges to a solution  Of

the inverse problem. The approach we take exploits the

idea that incompressible flow can be considered to be

a limiting case of compressible flow as the speed of

sound c becomes infinitely large.  The convergence proof

requires the maximum Mach number in the flow to be small,

which can be assured by taking the prescribed critical

speed c* large enough. In this case we obtain a Poisson

problem with nonlinear inhomogeneous terms which we solve

by iteration. We are able to use standard estimates

expressed in terms of H8lder continuity to show that the

iterative procedure defines a contraction, so that the

iterations converge. Less restrictive results could prob-

ably be obtained using deeper techniques from the mathemati-

cal theory of subsonic flows. However, the proof outlined

here is a satisfactory illustration of the computational

procedure, which is our main concern.

For the subsonic design problem, the critical speed

c* is given in addition to the speed distribution Q(s).

We continue to use the conventions of Section 5.1, with

units chosen so that p approaches one at infinity and

max Q(s) = 1.  As in the computational procedure, we solve
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the free boundary problem by finding both the map z = f(C)

from the interior of the unit circle to the region exterior

to the desired body and by solving for the compressible

flow u(C) . We show that for a fixed speed distribution

Q(s), if c* is sufficiently large we may construct a map'

z = f(4) and a stream function *(c), both depending on c* ,

which approach the corresponding incompressible solutions

determined by Q(s) as c* + oo .

For compressible flow, the velocity potential $ and

stream function 4, considered as functions of the variable

4=6+ in, satisfy

(5.1 Oa)                p*c =  4 n

(5.1 Ob) pto = -06 0

We choose to work with 4 instead of ¢ so that we may use

the Dirichlet boundary condition * =0 rather than the

Neumann condition 34/Bv = 0.

By eliminating 4 from (5.10a) and (5.1Ob) we obtain

the equation

21          2                                    2
(5.1 1)      69   =   -2     u   9     +   2uv*      +   v 4      (*Clf,11&+ *nlf'|n)  '

EE      En     nn  2lf'|C

where u2 = *n2/92'f,12.,  v2 = 462/p2'f,12 'q=u+v,222

2         2 y-1and c  = (y+1)c*p /2. The density p can be obtained from

Bernoulli's law in the form
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(5.12) = *E  *n     1(7+1)  2 7-1 = 1 7+1   22   2(y-1) c*P 27-1 c* .2pzlf'(4)1

The solution we shall obtain has the asymptotic form

111 0 -b log 'c l

as 4 + 0, where the circulation r is given by

2 T

r=- Q(s) ds .

0

We have 21 > -r > 2 6, with 6 = min Q(s) > 0.- -

2We again consider the analytic function F(c) = -6 f' (C),

which satisfies the by now familiar boundary condition

(5.13)  log|F(eiw)1 = log|. 1

2-   0  (e ill) )          .16(0(eiw)}  aw

Using (5.10) we have p 30/3w = -34/Br , so that we may express

the potential function on the boundary in the form

(5.14) 0  (W)             -      1
                    1                          39         (e i w)        d w         .

  P(eiw) dr

ilo
If we knew the solution *(re  ), (5.14) could be used in

the boundary condition (5.13) for the determination of  f'(C)1.

We consider the expressions

(5.15) 9(6) = 4(6) - (r/2,r) log'cl ,

(5.16) H(C) = logIF(&)1 - logIFo(4)1'
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where -4-2F (C) is the derivative of the conformal mapping

obtained by solving the incompressible problem with the

same data Q(s), as described in Section 5.1. T and H are

perturbations of the corresponding incompressible solutions.

Note that T and H are not singular at the point 4 = 0, in

contrast to both the mapping f(<) and the stream function

41(4).

Substitution of the expressions (5.13) and (5.14) into

the equations (5.11) and (5.13) for 9 and F shows that

9 and H must satisfy equations of the form

AW = M[W,H,c*]

(5.17)
iw

9(e  ) =0

AH = O

(5.18)
iw

- H(e  ) = NIT,H,c*] ,

where M and N depend nonlinearly on T and H and formally
2tend to zero as c* + 00 We give the explicit form of M

and N in the next section. M is a function of 9 and the

partial derivatives of T up to second order, H and log|F  

and their first order derivatives, and the variables

E and n. N involves the boundary values of H,9 , and

the normal derivative {39/gr) (eiw)  in a manner

similar to (5.13) and (5.14). Tite   function Q(s) enters

the problem through the term N[W,H,c*].
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We are interested in solving equations (5.16) and

(5.17) by iteration. We set 9 (0) = H(0) = 0, and formally

define 9 and H as solutions of
(n+1) (n+1)

(n+1) (n) (n)89 = MIT ,H ,C*]
(5.19)     <

7(n+1)(eiw) = 0

'   AH (n+1)     =    0

(5.20)  <

HCA+1)
ilt) (n+1) (n)

Ce  ) = NIT     ,H   ,c*] .

We denote this operation by

(5.21) (9(n+1),H(n+1)  = L(9(n),H(n),c*).

We wish to show that for a given Q(s), if c* is large

enough the iterates satisfy an inequality of the form

(5.22) #T(n+1)-9(n)R + IH(n+1)-H(n)U 1 8(IT(n)_9(n-1)H

+ UH(n)-H(n-1)  

with e < 1, which implies convergence of the iteration.

...  ( n+ 1 ) (n+1)We therefore must examine how the solutions 9 and H

of (5.19) and (5.20) depend on the functions T(n  and H(n),

and we must define the norms to be used in (5.22). It

turns out that since M and N are formally small as c* + oo,

we may succeed by using basic estimates for Laplace's

equation  which are expressed in terms of H8lder continuity.

59



Let D denote the closed unit disk and consider the

space C (D) consisting of n-times continuously differ-n+a

entiable functions u defined in D with finite norm

Ilull = sup lat,j.(4,1 +n+a
CED

i,jin

latit "(41) - Btat "(42)1+   sup a
41'42€D 141 - 421
i+j =n

where n is a nonnegative integer and 0<a<1. C   (D)n+a

is a complete space with this norm. In addition, if

U E C (D), then u E C .(D) when n' < nn+a n'+a'            -

and a' < a, and Ilull < Ilull If u ,u. E C (D),-             n'+or' - n+a' 1 2 n+a

then  ulou2 E C (D) and liu ·U 11 <K liu 11 11 U 11n+a 1  2 n+a - n+a 1 n+a 2 n+Er'

I f u€C (D) and G is (n+1)-times continuously differ-n+a

entiable on the real axis, then G(u(C)) E C (D).n+a

We also need the idea of Hdlder continuous boundary

values. If g(w) is an n-times continuously differentiable,

2A-periodic function defined for all w, we will say

g€C (3 D) if the normn+a

1
awng  (w l) -3   g  (w 2)   1

Igin+a,BD = sup 13ig(w)1 + sup             a
60                                                 w l' (1)2 'wl    -    w21i<n

is finite. The norm U·R has properties similar ton+a,DD
iw

11.11 Note that if f(C) E C (D), then f(e )E C (3D)n+a n+a n+a

and Hf(eiw)# < K' Ilfll
n+a,BD - nta n+ao
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(n)For any fixed a, 0<a<1,w e will show 9 E C (D)2+a

and H EC (D) by using the following fact, which is
(n)

1+a

an elementary instance of the more general a priori esti-

estimates of Schauder  [6] :

THEOREM. Let u(C) be the solution of

Au = f

i w
u(e  ) = $

where  f€ Ca(D) and $E C (BD). Then u E C (D) and2+a 2+a

(5.23) Ilull < K (li f li +    110112+a -   3 c a 2+a,BD  '

where K3 depends only on a.

We will also use the following consequence of (5.23).

COROLLARY.  Let u(<) be the solution of

c„=0iwG(e  ) =0

where $E C (BD).  Then G E C (D) and1+a 1+a

(5.24)           nun    < K U Wil1+a - 4   1+a,aD '

where K4 depends only on a.

This result can be obtained from the previous theorem

(5.23) by setting

2 T
-

U (reill)) = 38ui (u (reill)) ) + ( T) 0(w') dw'
0
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where u is obtained by solving

AU   0

w                2 iw    f

u  (e-       )     =          $(w')     du)  '     -     -w         I     $  (w')     dw'      .Z 1T  j

0                          0

We assume the data Q(s) is three times continuously

differentiable. The expressions (5.2), (5.3), and (5.4)

show that the function 6(0) is also that smooth, and

we set

l dj  -   1
(5.25)

K      =         sup       I.       Q(0)   Q  -co<*<oo ld0]
j=1,2,3

Using (5.24) we see that   the harmonic function log F (4)1

determined by (5.7) is in C
(D) with #log |FO (C) 1 111+a 1+a

<K' . where K  depends  only on KQ ,6, and a.  This-5'

implies  IF (4)12 E C   (D) with a similar bound1+a

'.|FO(Z)1211
<K1+a - 5.

Consider the closed subset B of C (D)xc (D)
Crl,r2)

2+0 1+0

defined as

B             (T,H): IT| <r 11 HI < r
Crl,r2) 2+a - -1' 1+a -  2

In order to show the iteration scheme (5.21) converges,

we first establish the following

LEMMA A.  There is a constant KA depending only on

a, y, 6 = min Q(s), and KQ  such that for c* > KA ' the
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operator L(-,·,c*) formally defined by (5.19) and (5.20)

is well defined on B and maps B into itself.
(6/2,1) (6/2,1)

Thus the iterates W and H all  exist and satisfy
(n+1) (n+1)

UT(n+1)# < 6/2, #H(n+1)I      1.2+a - 1+a i

We sketch the derivation of the estimates necessary for

the proof of Lemma A in the next section. There we show that if

C9l'Hl) E
B and if c* is large enough, we have(6/2,1)

M[Fl'Hl'c*] E Ca(D) and N[Fl'Hl'c*] E Cl+a(BD) , with

#M[Wl'Hl'c*] la = K6/(*2 and IIN[91'Hl'c.]li*  1+a,BD

i X6(1/c*2 + 99-I   )   where K6 depends only on1 2+a  '

a,y,6, and KQ.  Using the basic estimates (5.23) and (5.24),

we then have that the functions (92'H2) = L(91'Hl'c*)

defined by solving (5.15) and (5.16) satisfy

(5.26) 19292+a 1 K7/c*2 ,

2
(5.27) l'H 11

1 K7/c*  ,2 1+a

with K7 depending on a,y,6, and KQ , which establishes

Lemma  A with KA2 = K7/6.

Lemma A shows that the functions W and H can(n) (n)

indeed be generated for n = 1,2,... . In order to show

convergence, we have

LEMMA B.  There  is a constant KB depending only on

a,y,6, and KQ  such that for  c* > KB ' the operator

L(·,·,c*) defined on B is a contraction. More
(6/2,1)
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specifically, if (92'H2) = L(91'Hl'c*) and

C94'H4) = L(93'H3'c*), we have

I92- 9
1

+  H2- H
H <  0 (1 9--9 11 +HH -H U

4 2+0 4 1+a - 1  3 2+a 1 3 1+a 

where 0 < 1. Thus the iterates T and H form Cauchy
(n) (n)

sequences in the complete spaces C (D) and C (D).2+a 1+a

To establish Lemma B we consider the expressions

8(9 -9 ) =2   4 M[Wl'Hl'c*] - M[93'H3'c*]
(5.28)

92(eiw) - 94(eiw) =0

6(H2-H4) = 0
(5.29)

H2(eiw) - H4(e  ) = N[92'Hl'c*] - N[94'H3'c*]
iw

In the next section we see that

#M[Wl'Hl'c*] - M[93'H3'c*] la

i       (K 9/c *  2  )     C  H   W l- T 3  H   2+a+        ||   H       -H      .11                      )1 -3 1+a '

IN[92'Hl'c*] - N[94'H3'c*]91+a,aD

1 K9{#92-9492+a+ 1Hl-H311+a/c*2) ,

where K9 dpends on a,y,6, and K .  Applying the basic

estimates (5.23) and (5.24) to equations (5.28) and (5.29),
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we have

H12-94H2+a i (KlO/c*2)(191-9392+Q+ 'Hl-H3Hl+a  '

21

"H2-H4|'1+et i K10(1192-94||2+a + U.Hl-H3111+a/C*  J  ,

i which together yield the statement of Lemma B with
2                                       22

KB  = K10(1 + 3K10) and 0 = KB /C* .
The Cauchy sequences of iterates W and H there-(n) (n)

fore converge to functions Y E C (D) and H E C (D)2+0 1+a

which must satisfy (T,H) = L(W,H,c*) if c* 1 KB.  We

note that since L is a contraction, 9 and H are the

only solutions of (5.16) and (5.17) with  TU < 6/22+a -
and    I H U < 1.   Moreover, the expressions (5.26) and (5.27)1+a -

show that the solution satisfies

  TU 2+a + U Hil 1+a  5-  2K7/c*2 .

Recalling that T and H are perturbation quantities represent-

ing the difference between the compressible and incompressible

solutions for a given Q(s), we see that the compressible

solution indeed tends to the corresponding incompressible

solution as the critical speed c* + oo. This fact, together

with the explicit solution  available in the incompressible

case, is the underlying basis  of the above convergence

proof.
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3.   Inequalities for the Convergence Theorem

In this section we consider in more detail the

inhomogeneous terms M[W,H,c*] and NIT,Hl'c*] appearing

in equations (5.17) and (5.18) and indicate how the

estimates mentioned in the discussions of Lemmas A and B

are derived.

A calculation shows that the inhomogeneous term                 I

M[W,H,c*] of (5.17) has the form

T (Ei, TE., TE.E .'HE .,log |Fo I ci 

(5.28) M[F,H,c*] =
1-l l   1

c2PY+1 FO 12 exp 2H

where El = 8, &2 = n, and T is a third degree polynomial

in its arguments with coefficients depending only on the

circulation r. The term N[W,H,c*], takes the form

21T 39 iw. 1

(5.29)  NIT,H,c*]  = 109 1 +-Br (e  )]

iw- log p(e  )-log[6(0(w))/6(-rw/27r)]

Here the density p can be defined by Bernoulli's law (5.12)

to be a function p = R(82/c2), where q2 = (4  + 42)/If,12 ,
-0

valid for 0 i q. 1 2Klc  , with R(0) = 1.  R is the

subsonic branch of the multiple-valued function giving

p in terms of the gradient of the stream function. The

constant Kl depends on y,  2Kl = [2/(Y+1)] The2/(y-1)

only information about R that we need is that for
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-2
q  i Klc2 , there is a constant K2 depending on Y such

-1that 1>R>K 2   >0 and |R'1,IR"1 2 K2.  Recalling the-

expressions (5.15) and (5.16) giving 9 and H in terms

of 9 and f', we have that

-2        1           2     - r'<12(5.30)  q =
1- C b}     1 6

12 (69 +ng )
|FO 2exp 2H -            A        C   n

+  1 4 1 4 <9   +  92  )-1
n  J                                                       I

The term  $(w) appearing in the expression (5.28)

for NIT,H,c*] is written in the form

(.0                                           - iw
(5.31)  0(w) = (r/c)   1           r     39(e    )2A   Br dw

6 P(elw,  _

rather than (5.14), where the constant c is given by

2          -            -

(5.32) C= - dw .j                l i w                2r      +      89(«iw)

0 P(e  ) -                    -

The .factor c is introduced to make sure $(w+27T)-0 (w)= -r,
A

so that Q($(w)) is 2A-periodic and smooth.

We  f irst de scribe the inequalities  used  in the proof

of Lemma A. Since the expressions (5.28), (5.29), (5.30),

and (5.31) are rather complicated, we do not attempt to

present all the details. We have chosen the data Q(s) to

be smooth enough so that nothing more sophisticated than

the mean value theorem is needed.
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We assume (T,H) E B We claim that if c* is(6/2,1) '
large enough, M[W,H,c*] E Ca(D)  with UM[W,H,c*lila 3 K6/c*2,
and N[F,H,c*] E C (D) with  NIT,H,c.]H        <1+a · *      1+a,3D   -

< X6(1/c*2 + ITI   ).  In the following expressions, K -               2+a

will denote constants depending only on 1,6,7, and K .Q
Consideration of the expression (5.30) for (2 shows

-2that q EC (D) with 1 2n < K9.  Recalling the1+a 1+a -

properties of the function p .= R(q2/c 2) defined by (5.12) ,

we see that  p E Cl+a (D)  with Upll < K, . provided1+1 - 10 '
-2   2that we have chosen  c  1 K /Al.  This choice keeps q /c*

on the subsonic branch of the density-stream function

relation.  We then see from (5.28) that M[T,H,c*] E Ca(D)

and we .obtain lIMIT,H,c*] 11  <K' /c 2a -  11  * '

We next observe that each of the three terms on the

right hand side of the expression (5.29) for N[Y,H,c*] are

in C (3 D)   . The first term is well behaved since we have1+0

Ir' 1 216 and  FU2+a i 6/2, giving 1(2w/r)(39/Dr)(eiw)1 3  ,

and its norm is bounded by a constant times IFU The2+00
iwsecond term log p(e ) is also well behaved since p is

bounded away from zero, and we can estimate

nlog p(eiw)1 <K 'cl1+a,BD - 12  * '

The.desired factor 1/c*2 is essentially due to the fact that

log p(eiw) = log R( 2(eiw) (c*2) - log  R(0)

=q (e )
r dt

-2  iw   1  R'(t 2/c*2)

c*2       R(t 2/c*2)
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by the mean value theorem.

The last term in (5.2a) can be estimated by

(5.31) Illog Q-(0(w))-log 6-·(-rw/2Tr)11 <K  (1/ 2 +IT#1+0,3 D  -    13 c* 2+a o

This inequality is more complicated and we sketch it as

follows.  Using the fact that 6  is three times continuously

differentiable one can easily obtain

Illog 0(0(w)) - log 6 (-rw/2,T) 111+a,3 D

<K 1 0(w) + rw/2'rrn- 14 1+a,3 D '

We then express $(w) + I'w/21T in the form
(0

$(to) + rw/2 Tr = dwr+ ' c        f     1 1-r 3 91
c   J p [2# + 3-F]

0
(1)                                                            W

f      1- p       FL   + . dil    dw--1   1-1  dw
J             p             1_2 Tr BrJ J ar
0                                 0

and estimate the three expressions on the right in terms

of P+c, 9-1, and 9, respectively. The factor P+c can be

written

2A 2 T

I['+c  = -     j     1-p      1.,r     +  9-9.|   de  -     1-  dw.
f ag

p         L2'IT        B r]                    J    D r
0 0

We again gain a factor 1/c*2 from the expression p-1, and

we may obtain

1 0(w) + rw/2.Irl 1+a,BD i X15(1/c* + 'TU2+a  '
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and (5.31) follows. We therefore have an inequality

UN[T,H,c*]11 < K  (1/c*2 + HT    )1+a,DD - 16 2+a

as stated in Lemma A, provided c* 2 , K9/Kl'

We now consider Lemma B. We wish to verify that if

(Fl,Hl)' (92'H2) E 8(6/2,1) and c* is·large enough, we

have

(5.32) IM[lill'Hl'c*] - M[92'H2'c*]1|a

i (K9/(*2)(Hwl-93H2+a + UHl-H3nl+a) '

(5.33) IN[Wl'Hl'c*] - N[92'H2'c*] nl+a,BD

i    K 9(1 1  W     -W
11 +  11 H  -H 11 /c*lh ·1  2 2+a   · 1 3 1+a

Consider the first inequality. The form of (5.28) shows

that, with an obvious notation, we may write

K
1

11  M     -     M      ||            <            1 9        4   1 1-9 2"                  +      I  H-H
11 + Ill -1

1 2 a-2 l 2+a 1  2 1+a Y+1 y+1 a
C*                             P      P12

+ Uexp(-2Hl) - exp(-2H2)na 

It is easily seen that the last term is dominated by some

constant times IH -H U Examination of the expression1   2 1+a'

(5.30) for 42 shows that we also have
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- 9g 12 - a -R <  K   (1 9 -92" +     ||  H    -H     I'2      1+a   -      2 0 c 1 2+a 1  2 1+a 

and using this result with p = R(q2/c*2) then gives the

first inequality (5.32).

To dbtain the estimate (5.33) we write

iwHN -N U < ulog(l+(2w/r)391/ar (e  ))1  2 1+a,DD -

iw- log(1+(2A/r) 392/Br (e ))# 1+a,DD

iw i CO

+ 109 Fl(e  )- 10992(e  )H 1+a,3D

A -

+Ilog Q(01(w)) - log Q(02(w))Ul+a,DD

and estimate each of the terms on the right separately.

The last expression is the most complicated, and can be

treated in the same fashion as was the term

ii log 6 (0(w)) - log 6 (-rw/2,T) H in Lemma A.1+a,DD

Straightforward calculations then show that an estimate

of the form (5.33) holds, and the statements of Lemma B

follow.  The map (92'H2) = L(91'Hl'c*) is a contraction

and has a unique fixed point that can be obtained by

iteration.

There remains a technical point due to the introduction

of the factor c in the expression (5.30) for 0 (W).

We desire the fixed point (T,H) of the mapping to provide
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solutions *(4) and F(C) = -42 f'(C)  to the equations (5.11)

and (5.13), where (5.14) rather than (5.30) is the expres-

sion for  0 (w). Therefore we should check that for the

fixed point' ( F, H) we have

27T

1 1 |-I_ + 3-91 d = -r
c                               j       p 127[ 3 r.j

0

To see this, note that the corresponding function

4(4) = (r/2A) 109141 + 9(4)  by construction satisfies

the equation

(WE/p)6 + (Wn/p)n '

with *(c) # r/21 log 141  as  4 +0, whether or not c= -r.

By Green's theorem we therefore have

2 T 2A

1                 3  41             i W _              1                 2-1- (£ eiw)  E   de

c  =       -        i.
3. p(Ee  )
- (e ) dw = lim iw  3r

P(e ) E+0   0

r
--

P(0)

The expression (5.30) for q2 shows that

PCO) = R<q2(0)/c*2) =1,s o c= -r a s desired. This

completes the convergence proof for the subsonic inverse

problem.
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VI. DESCRIPTION OF THE CODE

In this chapter we explain how to modify the input

speed distribution in order to obtain airfoils with given

specifications. We also describe the other input para-

meters necessary for the operation of the design mode.

1.   Achieving Design Specifications

We refer again to the speed distribution illustrated

in Figure 2. The form of the upper surface distribution

determines the amount of wave drag experienced by the

airfoil and the growth of the boundary layer along the

upper surface. We suggest using a distribution with

constant supersonic values over the first portion of the

profile, followed by decreasing values along the rest

of the surface in accordance with the Stratford criterion

C    0 0.003 near the trailing edge.
sep

The value of c* should be determined so that the

supersonic zone has the proper size, as discussed in

Section 4.1.    -

The lift of the airfoil is related to the area between

the upper and lower surface speed distributions. By varying

the lower surface distribution, the lift can be distributed
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as desired over the airfoil. The free stream Mach number

is also affected by changes in the speed distribution.

For example, increasing the magnitude of the velocities

along the lower surface will generally decrease the lift

and increase M .
00

The thickness-to-chord ratio of the wing section  can

be adjusted by varying the slope of the speed distribution

near the stagnation point Q = 0. Increasing the slope

will result in a thinner profile with little change in

the lift of the airfoil. The free stream Mach number also

increases as the thickness-to-chord ratio is decreased.

The vertical separation between the upper and lower surfaces

is decreased as the slope is increased.

The relative position of the upper and lower surfaces

at the trailing edge can be adjusted by changing the

velocity distribution near the tail. The vertical separa-

tion is increased by raising the prescribed speed at the

tail on both the upper and lower surfaces.  This will not

have a strong effect on the thickness-to-chord ratio. Fer

most purposes the vertical separation should be around

0.015 so that after removing the boundary layer a gap of

around 0.007 remains. The horizontal separation can be

adjusted by changing the amount of arc length near the

tail.

Finally, we mention that a decrease in the prescribed

critical speed c* will generally increase the size of the
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supersonic zone, increase the free stream Mach number,

decrease the thickness-to-chord ratio, and increase

the vertical separation at the trailing edge. It should

have little effect on the lift or horizontal separation

at the tail.

When designing an airfoil with given specifications

it is advisable to proceed in stages by modifying the

pressure distribution in the appropriate areas one at a

time  so that the effects of each change can be isolated.

When beginning a new design it is useful to make the

initial runs on a coarse mesh of 40x7 or 80x15 points,

where results can be obtained in one or two minutes

on the CDC 6600. The finer mesh can then be used to

make minor adjustments to the pressure distribution and

obtain accurate resolution for the final runs.
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2.   Operation of The Code

We have included the design modification to program H

in such a way that when design parameters are not explicitly

specified, they assume default values that do not affect

the operation of the analysis routine. The description

of the operation of the analysis code given in [4] therefore

remains in effect  for  the new version also. We assume

the user is familiar with this description of the analysis

routine.

For operation of the design mode, the input speed

distribution should be provided on TAPE6 in the format

given in Table 7.1, with negative values along the lower

surface followed by positive values on the upper surface,

as in Figure 3.  The arc length  s  must be monotonically

increasihg.

Table 7.2 contains the other input parameters necessary

for operation in the design mode.  These parameters have

default values as indicated and can also be specified using

standard namelist conventions. We provide some sample

commands below to illustrate their use.

The parameter NDES specifies the number of overall

iterations to be performed in the design mode. Each itera-

tion consists of NS cycles of-flow computations, followed

by a new mapping to the unit circle as described in Sec-

tion 3.3. Since the time required to calculate a new
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mapping function is small compared to the time required

to find the flow past a profile, we use relatively few

cycles of flow computation between each mapping.  We

generally specify NS = 10, NFAST = 0, and NREXLAX = 1,

so that 10 relaxation sweeps are used between each

mapping. The results we have presented have all been

produced with this choice.

The parameter TSTEP is a relaxation factor for the

Fourier  coefficients determining the mapping function.

The rate of convergence of the overall iteration procedure

depends on the value of TSTEP. If TSTEP is too large , the

coordinates of the profile may oscillate and the scheme

will converge slowly or not at all. When a small amount

of artificial viscosity is being used in the flow equations,

it is sometimes necessary to use smaller values of TSTEP

to avoid abrupt changes in the successive profiles that

may cause undesirable shock formation. We have TSTEP  0  0.2

for the design procedure outlined in Section 4.1.

An example of the control cards and data cards used

to design an airfoil on the CIMS CDC 6600 is given below.

To improve turnaround time we have found it convenient to

break up the job into several shorter jobs rather than one

longer job.

The relevant control cards have the form
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GETPF(TAPE 6=SPEED) Speed contains Q(s) as in Table 7.1

GETPF(LGO=HDES) HDES is a compiled version of the

modified canalysis code H.

LGO.
SAVE(TAPE3-COMPl) Tape3 contains data to continue

the computation if desired.

SAVE(TAPE4=COORDl) Tape 4 contains the coordinates

of the resulting airfoil in FSYM=1.0

format, and the final pressure

distribution.

For an initial run on a crude grid, the first card

used as input to the program could be

[ $P RN = 0., ALP=0., NDES=1 $ ]

NDES = 1 puts the code in the design mode. The specified

angle of attack with respect to the x and y axis must also

be given on this card. The Reynolds number is zero for the

inviscid flow calculations. The speed distribution is read

from TAPE6 and a plot  of Q(s) is provided. (If CSTAR < 0,

the program will then terminate.)

The next cards are

[ $P NS=-1, ITYP=1 $ ]

The grid is coarsened from 160x30 to 80x15.

[ $P NS  1, ITYP=1 $ ]
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The gird is coarsened from 80x75 to 40x7.

[ $P NDES=20, NS=10, NFAST=0,

NRELAX=1, EPS 1=0.5, TSTEP=0.2,

REM=0.5, ITYP=4, XP=1.0,

KDES=10 ]

Twenty design cycles are performed. After each increment

of 10 (KDES) cycles, the coordinates of the resulting air-

foil, the Mach number diagram, and a Calcomp  plot of

the flow are produced. XP=1. causes the desired pressure

distribution to be plotted on the graph also; if XP=0.

it will not appear. The results of this computation are

automatically saved on TAPE3 after NDES cycles.

[ $P NS=1, ITYP=-1 $ ]

The grid is refined from 40x7 to 80x15.

[ $P NDES=20, NS=10, ITYP=4 ]

Twenty more design runs are performed  on the new grid, and

the results rewritten on TAPE3.

[ $P ITYP=0, XP=0.  ]

The computation stops. XP=0. causes the airfoil coordinates

to be written on TAPE4. This run takes about 90 CP sec-

onds execution time.

If the airfoil produced by this run does not meet the

desired design specifications, Q(s) is changed and the run
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is repeated. If the airfoil is satisfactory, the run may be

continued on a finer mesh as follows.

GETPF(TAPE 3 = COMPl)

GETPF(LOG = HDES)

LGO.

SAVE(TAPE3 = COMP 2)

SAVE ( TAPE 4 = COORD 2 )

The data cards are then

[ $P NDES = 1, RN = 0., ALP = 0. $]

[ $P N S= -1, ITYP =1$ ]

Coarsen mesh from 160 30 to 80 15.

[ $P N S=0, ITYP =1$ ]

Read in data stored on TAPE3 (stored with MxN = 80 x15)

to continue the computation.

[ $P NS=1, ITYP= -1 $ ]

[   $P  NDES  =  10,  NS  =  10,  ESPl  =1. ,   ITYP  =  4   $   ]

[ $P ITYP = 0, XP = 0. $ ]

This run takes about 130 CP seconds execution time.

The next run might have

[ $P NDES 1, RN = 0., ALP = 0. $ ]

[ $P N S=0, ITYP =1]

[ $P NDES = 10, NS = 10, EPS1 = 0.75, ITYP =4$ ]

[ $P ITYP =O,X P=0. $ ] ,

and so on.
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If it is desired to do the design in a single run,

the data cards might read:

[ SP,NDES = 1, RN = 0., ALP = 0. $ ]

[ $P N S= -1, ITYP =1]

[ $P NS = -1, ITYP =1]

[ $P NDES = 20, NS = 10, NFAST = 0,

NRELAX = 1, EPS 1 = 0.5, TSTEP = 0.2,

REM = 0.5, ITYP = 4, KDES = 10, XP = 1. $ ]

[ $P NS = 1, ITYP = -1 $ ]

[ $P NDES = 20, NS = 10, ITYP =4$ ]

[ $P NS = 1, ITYP = -1 $ ]

[ $P NDES = 10, NS = 10, EPS 1 = 1.0, ITYP =4$ ]

[ $P NDES = 10, NS = 10, EPS1 = 0.75, ITYP =4$ ]

[ $P NDES = 10, NS = 10, EPS1 = 0.50, ITYP =4$ ]

[ $P ITYP = 0, XP = 0. ]

This run takes about 520' CP seconds execution time on the

CIMS CDC 6600.

For the present version of the code, a separate run

is required to perform a boundary layer correction for

the airfoil designed with inviscid theory. Assuming the

coordinates and pressure distribution  from the design run

were stored on TAPE4 = COORDl, the control cards for a

boundary layer correction would be

81



GETPF(TAPE 3 = COORDl)

GETPF(LGO = HDES)

LGO.

SAVE (TAPE 3 = COORD 2 )

The required data cards have the form

I $P RN = 20.E06, XP = -1., PCH = 0.07, PLTSZ=8.0 $ 1
[ $P ITYP = O, XP = O. ]

COORD2 then contains the corrected coordinates in FSYM = 2.0

format. A plot of the profile is also generated by this

run.

Finally, we mention that the parameter XOUT can be

used to  obtain speed distributions for use in the design

mode. The command

[ $P XOUT = 1.0 ]

will cause the speed distribution currently in memory to be

written on TAPE3 in the format shown in Table 7.1.
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TABLE 7.1. TAPE 6 INPUT SPEED DISTRIBUTION Q(s) .

Cols. 1-10 11-20 21-40
\
\.

\\\.

Cards »....

0.

1 XIN CSTAR

2 -|Q| at tail initial value of
arclength

3                speed  along  profile increasing values
of arclength

XIN + 1 lQj  at tail final value of
arclength
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TABLE 7.2. DESIGN PARAMETERS

Glossary of Input Parameters for Design Mode
Parameter Default Description
CSTAR 100. Real. Critical speed c*. If c* < 0, the

program plots the prescribed speed distri-

bution and halts.

KDES 10 Integer. Graphs and flow prihtout are

generated every KDES design cycles.

EPS1         0     Real.  Artificial viscosity coefficient El
appearing in the expression (3.16).

NDES -1 Integer. Number of design iterations
to be performed.

PLTSZ 50. Real. Length in inches of profile in

graph generated when boundary layer

correction is performed.

QPL .85  Real.  Lower limit Mo of the cutoff
function V(M) in formula (3.16)

QPU .95  Real.  Upper limit Ml of the cutoff

function V(M) in formula (3.16)
REM          0. Real. Relaxation parameter for determina-

tion  of  Mw.
TSTEP .2   Real.  Relaxation parameter for coeffici-

ents of mapping function.

XOUT         0· Real. XOUT = 1 causes the current

velocity distribution to be written
on TAPE3 in the format of Table 7.1.

The computation is then terminated.

XIN None Real. Number of points used in prescribing

input speed distribution Q(s).
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LISTING OF CODE

PROGRAM H(INPUT = 66,OUTPUT = 500, TAPE3 = 600,TAPE4 = 400, fAPE2 =
lOUTPUT, TAPE5 = INPUT,TAPE6)

COMMON/FL/FLUXT4, CD4,COW, INDCD
COMMON PH1(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)

1 *RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),88(162),CO(122)
2 ,SI(162),PHIR(162),AC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),kP5(31)
COMMON /A/ PI,TP,RAD,EM,ALP,EN, PCH, XP,TC,CHD,DPHI,CL,RCL,YR

1 ,XA, YA,TE,DT,DR,DELTH,DELR,RA, DCN, DSN, RA4,EPSIL,QCRIT,Cl,C2
2 ,(4,(5,C6,(7,BET,BETA, FSYM,XSEF,SEPM,TTLE(4},M,N,MM,NN,NSP
3 ,IK,JK, IZ,ITYP,MODE,IS,NFC,NCY,NRN, NG, IDIM,N2,N3,N4,NT, IAX
4 ,NPTS,LL,I,LSEP,M4,NEW, EPSl,NUES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NQPT,CSTAR, REM, DEP,QINF, TSTEP,XOUT
6 ,INC,QFAC,GAM,KDLS,PLTSZ,UPL,QPU
DIMENSION COMC(87),CLA(2),NAMERR(6)
EQUIVALENCE.(COMC(1),PI),(CLX,CLA(1)),(ALPX,CLA(2))

C     LSTERR IS THE SUBROUTINE TO PROCESS A NAMELIST ERROR
EXTERNAL LSTERR

C     ***NON-ANSI***
NAMELIST /P/ ALP,BETA,6CP,CL, EM,FSYM,GAMMA, IS,ITYP, IZ,KP,LL,LSEP,
1   M,N,NFC,NPTS,NRN, NS,NSl,PCH,RBCP,RCL,RDEL,RFLO,RN,SEPM,ST,
2 XMON,XP,XSEP,NRELAX,NFAST
3 ,EPSl,CSTAR,NDES,REM,DEP,TSTEP,XOUT,KCES,PLTSZ,OPL,QPU
DATA GAMMA/1.4/ , ST/0./ , XMON/.95/ , RBCP/•10/ , RFLO/1.4/ ,

1                RDEL/.125/ , BCP/.4/ , AS1/20/ , NS/1/ , AP/1/
DATA N5/5/ , NAMERP/6*0/ , bl,D2,SL/3*0./ , CP1/.4/ ,XPF/1./

1  ,N 6/6/
AA(1) = 99999.
INDCD=0
NEW=1
NFAST=1
NRELAX=6

C     THESE TWO CARDS TRANSMIT TO THE SYSTEM THE RECOVERY ADDRESS
NAMERR(5) = LOCF(LSTERR)
CALL SYSTLMC(66,NAMERR)
M 4 = N 4
REWIND N4
WRITE (·N2,180)
READ (N5,P)
IF (CL.NE.100.) MODE = 0
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IF (IZ.GE.80) N4 = N2
IF (NS.EQ.0) GO TO 30
CALL RESTRT
CLX = CL
ALPX= RAD*ALP
GO TO 140

10 WRITE (N2,180)
NEW=1
ALP = 100.
CL = 100.

C     ****NON-ANSI****
READ (N5,P)
LN = RN*1.E-6+.5
TXT = 3HALP
IF (MODE.EQ.0) TXT = 3H CL
CALL SECOND(TIME)
WRITE(N2,200) EM, TXT,CLA(MODE+1),LN,M,N,NS,TIME,RFLO, RCL,RDEL,

1 RBCP,BETA,ST,PCH, SEPM,XSEP,NPTS, IS,LL, IZ
2 ,EPSl,NDES,REM, NFAST,NRELAX, ITYP,FSYM,TSTEP,DEP
IF (ABS(XOUT).GT..5) GJ 10 7727
GO TO 7728

7727 CALL OUTPT
CALL PLOT(0.,0.,999)
STOP

7728 CONTINUE
C     SELECT OUTPUT TAPE

N 4 = M 4

IF (IZ.GE.80) N4 = N2
(2 = .5*(GAMMA-1.)
C7 = GAMMA/(GAMMA-1.)
IF (ALP.EQ.100.) GO TO 20

C     ALP HAS BEEN INPUTTED, KEEP IT FIXED
NCY = 0
MODE = 1
ALPX = ALP

20 ALP = ALPX/RAD
IF (CL.EQ.100.) GO TO 25

C     CL HAS BEEN INPUTTED, KEEP IT FIXED
NCY = 0
MODE = 0
YA = .5*CL/CHD-DPHI
DO 114 L = 1,M
DO 114 J = 1, NN

114 PHI(L,J) = PHI(L,J)+YA*PHIR(L)
DPHI = .5*CL/CHD
CLX = CL

25 CL = CLX
C     CHANGE PARAMETERS WHICH DEPEND ON THE MACH NUMBER

EM = AMAX1(EM,.lE-40)
IF (EM.NE.EMX) NCY = 0
Cl = C2+1./(EM *EM )
C6 = C2*EM *EM
C 4 = 1 . + C 6

C 5 = 1 . / ( C 6*C 7 )
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QCRIT = (Cl+Cl)/(GAMMA+1.)
BET = SQRT(1.-EM *EM )-1.

C     CHECK FOR TERMINATE,RETRIEVE, OR STORE INSTRUCTIONS
C     IK WILL BE -1 ONLY IF THERE IS A NAMILIST ERROR

IF ((ITYP.EQ.0).OR.(IK.EQ.-1)) GO TO 170
CALL COSI
IF (NS.NE.0) GO TO 40
REWIND N3
IF (ITYP.GT.0) GO TO 30
WRITE(N3) COMC, PHI, AA,88,ARCOLD,ANGOLD,XOLD, YOLD,DELOLD,R,RS,RI

1 ,DSUM,GAMMA, XMON, RBCP,RFLO,RDEL,BCP,NSl,KP,ST
GO TO 140

30 READ (N3) COMC,PHI,AA, 88,ARCOLD,ANGOLD, XOLD, YOLD,DELOLD, R, kS, Rl
1 ,DSUM,GAMMA, XMON,RBCP,RFLO,RDEL,BCP,NSl,KP, ST
CALL MAP
GO TO 140

40 CONTINUE
IF (NS.GT.0) GO TO 70
NS = 0

C     GO TO CRUDE GRID IF ITYP.GT.0
IF (ITYP.GT.0) CALL REMESH(-1)
GO TO 140

70 IF (ITYP.GT.0) GO TO 99
C     GO BACK TO FINER GRID

CALL REMESH(1)
GO TO 140

C     SET UP CONSTANTS AND DO CONFORMAL MAPPING
99 KD = 1
100 XPHII = 0.

IF ( RCL.NE.0.) XPHII = 2.*CHD/kCL
XA = 1.-2./RFLO
ANGO = -RAD*BB(1)
TXT = 3H CL
IF (MODE.EQ.0) TXT = 3HALP

C     DO AT MOST NS CYCLES
IF (RN.LE.0.) N51 = 1000000
IXX = M+2

80 IXX = IXX-1
IF (XC(IXX-1).GT.XMON) GO TO 80
LC = 0
DO  120  K  =  1, NS
IF (NDES.GE.0) GO TO 105
IF (MOD(LC,56).NE.0) GO TO 105
WRITE (N2,210) TXT
LC = LC+1

105 CONTINUE
IF(NFAST.LE.0) GO TO 141
CALL SWEEPl

141 IF(NRELAX.LE.0) GO TO 151
DO 142 LF=l,NRELAX
CALL SWEEP

142 CONTINUE
151 NEW=0

NCY = NCY+1
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ALPX = RAD*ALP
CLX= 2.*DPHI*CHD
YA = YA*XPHII

C     WRITE RESIDUALS ON N2 EVERY KP CYCLES
IF (NDES.GE.0) GO TO 110
IF (MOD(K,KP).NE.0) GO TO 110
LC = LC+1
INDCD=1
CALL GTURB(Dl,D2,CPl,COW, SL,RDEL,RBCP)
INDCD=0
ANGO = -RAD*88(1)
WRITE (N2,190) NCY,YR,YA,Dl,02, IK,JK,NSP,CLA(2-MODE),ANGO, CP1,

1 CDW,CD4
C     DO A BOUNDRY LAYER CLRRECTION EVERY NSl CYCLES

110 IF (MOD(K, N51).NE.0) GO TO 125
IF (K.EQ.NS) GO TO 140
WRITE (N2,190)
LC = LC+1
FSYM = 6.
CALL GTURB(Dl,02,CPl,BCP,SL,RDEL,RBCP)
ANGO = -RAD*BB(1)
IF (MODE.EQ.0) DPHI = .5*CLX/CHD

C     CHECK TO SEE IF WE HAVE SATISFIED CONVERGENCE CRITERIA
125 IF (AMAX1(ABS(YR),ABS(YA)).LT.ST) GO TO 310
120 CONTINUE
310 IF(NDES.LE.0) GO TO 140

CALL CYCLE
IF (MOD( KD,KDES ).NE.0) GO TO 138
CALL GTURB(01,D2,(Pl,BCP,SL,ADEL, RECP)
CALL MAP
CALL COSI

138 IF (KD.EQ.NDES) GO TO 139
KD = KD+1
GO TO 100

139 REWIND N3
ITYP = 1
WRITE(N)) COMC,PHI,AA,BB,ARCOLD,ANGOLD, XOLD,YOLD,DELOLD,R,RS,RI

1 ,DSUM,GAMMA, XMON,RBC·P, RFLO, RDEL,BCP,NSl,KP,ST
. 140 ITYP = IABS(ITYP)

CL = CLX
LN = RN*1.E-6+.5
XPF = XPF*AMINO(1, IABS<M4-N4))
XP = XP*XPF
CALL SECOND(TIME)
NTPE = N4
TXT = 3HALP
IF (MODE.EQ.0) TXT = 3H CL

150 WRITE (NTPE,200) EM,TXT,CLA(MODE+1),LN,M,N,NS,TIME,RFLO, RCL,ADEL,
1 RBCP, BETA,ST,PCH,SEPM, XSEP,NPTS,IS,LL, IZ
2 ,EPSI,NDES,REM,NFAST,NRELAX,ITYP,FSYM, rSTEP,DEP
IF (NTPE.EU.N2) GO TO 160
NTPE = N2
GO TO 150

160 IF (ITYP.GE.2) CALL GTURB(Dl,D2,CPl, BCP,SL,RDEL,RBCP)
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EMX = EM
ITYP=1
GO TO 10

170 ITYP = 4
IF (IK.EQ.-1) WRITE (N4,220)
CALL GTURB(Dl,02,CPI, BCP,SL,RDEL,RBCP)

C     TERMINATE PLOT
CALL PLOT(0.,0.,999)
CALL EXIT

180 FORMAT (7H READ P/)
190 FORMAT(5*,I4,4El2.3,I4,I3,I6,2F10.4,2Fll.5,Fll.5)
200 FORMAT (4HOEM=F4.3,3XA3,1H=F5.2,3X3HRN=I2,2HEE,3X4HM*N=,13,1H*,I2,1 3X3HNS=I4,3X5HTIME=F7.2/6H RFLO=F4.2,3X,4HRCL=F4.2,3X5HkDEL=F4.3

2 ,3X5HRBCP=F3.2,3X5HEETA=F4.2,3X3HST=,67.1/ 5H PCH=F4.2,
3  3X5HSEPM=F5.4,3X5HXSEP=F4.2,3X5HNPTS=I3,3X3HIS=12,3X3HLL=I3,4 3X3HIZ=I3/ 6H EPSI=FB.4,3X6H NDES=I3,3X
5 ,4HREM=F8.4,7H NFAST=I3,3X,7HNRELAX=I3,/,
6 3X, 5HITYP=13,3X,5HFSYM=FB.4,3X,6HTSTEP=,F&.4,3X,4HDEP=,F8.4,//)

210 FORMAT(1H15X3HNCY6*4HDPHIBX3HDCL,8X,4HDDEL,NX,4HDBCP,5X,2HIK,
1 2X,2HJK,2X3HNSP,5XA4,5X4HANGO,8X3HCPI,8X3HC0W,8X2HCD/)

220 FORMAT (21HO***NAMELIST ERROR***,1OX,20HPROGRAM TO TERMINATE  )
END

SUBROUTINE LSTERR
COMMON /A/ M(47),IK
IK = -1
RETURN
END

SUBROUTINE RESTRT
COMMON PHI(162,31),FP(162,31),A(31),8.(31),C.(31),0(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),WC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLO(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP, RAD, EM,ALP,RN, PCH, XP,TC,CHO, DPHI,CL,RCL,YR

1 ,XA, YA, TE,DT,DR,DELTH, DELR,RA,DCN,DSN, RA*,EPSIL,OCRIT,Cl,(2
2 ,C4,C5,C6,C7,BET, BETA, FSYM, XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK,IZ,ITYP,MODE,IS,NFC,NCY, NRN,NG, IDIM,N2,N3,N4,NT, 1XX
4 ,NPTS,LL,I,LSEP,M4,NEW,EPSl,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NOPT, CSTAR, REM,DEP, QINF,TSTEP, XCUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU

C     SET UP CONSTANTS
TP = PI+PI
RAD = 180./PI
ALP = ALP/RAD
IF (CN+1).NE.NN.OR.(M+1).NE.MM) NCY = C
MM = M+1
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IF (LL.EQ.0) LL = M/2+1
NN = N+1
DR = -1./FLOAT(N)
DT = TP/FLOAT(M)
DCN = COS(DT)
DSN = SIN(DT)
DELR = .5/DR
DELTH = .5/DT
RA = DT/DR
RA4 = DT*DT
DO 10 K = 1,N
R(K) = 1.+DR*FLOAT(K-1)
RS(K) = (RA*R(K))*(RA*R(K))
RI(K) = -.25*DT/R(K)

10 CONTINUE
R(NN) = 0.
BET = SQRT(1.-EM*EM) -1.
IF (NDES.GE.0) GO TO  5
CALL AIRFOL
GO TO 6

5 CALL READQS
6 CONTINUE

IF (MODE.EQ.1) CL • 8.*Pl*CHD*SI(1)/(1.+BET)
DPHI = .5*CL/CHD
MA = MM/3
MB = MM-2*((MA+1)/2)
IF((NT.GT.140).OR.(XP.LT.0.)) JK = -1
J=1
DO 40 L = 1,MM
DELOLD(L) = 0.
DSUM(J) = 0.
ARCOLD(L)=ARCL(J)
IF(J.GE.MM) GO TO 70
IF((J.LE.MA).OR.(J.GE.MB)) J=J+1
DSUM(J) = 0.
J=J+1

40 CONTINUE
70 NT = L

WRITE (N4,100) NT
100 FORMAT (1HO, I4,45H POINTS WILL BE USED TO DEFINE INNER AIRFOlL )

CALL SPLIF(MM,ARCL,XC,PHI(1,3),PHI(1,5),PHI(1,7),3,0.,3,0.)
CALL INTPL(NT,ARCOLD, XOLD,AkCL,XC, PHI(1,3),PHI(1,5),PH1(1,7))

CALL SPLIF(MM,ARCL,YC,PHI(l,B),PHI(1,5),PHI(1,7),3,0.,3,0.)
CALL INTPL(NT,ARCOLD, YOLD,ARCL,YC, PHI(1,3),PHI(1,5),PHI(1,7))

CALL SPLIF(MM,ARCL,FM,PHI(1,3),PHI(1,5),PHI(1,7),3,0.,3,0.)
CALL INTPL(NT,ARCOLD, ANGOLD,ARCL,FM, PHI(1,3),PHI(1,5),PH1(1,7))
DO 60 L = 1,M
DO 50 J = 1,NN

50 PHI(L,J) = R(J)*CO(L)+DPHI*PHIR(L)
60 CONTINUE

FSYM = FSYM-12.
IS = 2
RETURN
END
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SUBROUTINE COSI
C     SET THE SINES,COSINES, AND THE TERM AT INFINITY

COMMON PHI(162,31),FP(162,31),A(31),8(31),0(31),D(31),E(31)1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),BB(162),CO(162)2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP, RAD,EM, ALP,RN, PCH,XP,TC,CHD,DPHI,CL,RCL, YR1 ,XA,YA, TE,DT,DR,DELTH,DELR,RA, DCN,DSN,RA4,EPSIL,QCRIT,Cl,(22 ,(4,(5,(6,(7,BET,BETA,FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP3 ,IK,JK,IZ,ITYP,MODE,IS,NFC,NCY,NRN, NG, IDIM,N2,N3,N#,NT,IXX4 ,NPTS,LL,I,LSEP,M4, NEW,EPSl,NDES,XLEN,SCALQI

5 ,SCALOO, N6,GAMMA, NQPT,CSTAR,REM,DEP,QINF, TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU
TPI = 1./TP
ANG = ALP+88(1)
SN = SIN(ANG)
CN = SORT (1.-SN*SN)
DO 10 L = 1,M
CO(L) = CN
SI(L) = SN
PHIR(L) =(ANG+ATAN((BET*SN*CN)/(1.+BET*SN*SN)))*TPI
CN = CN*DCN-SN*DSN
SN = CO(L)*DSN+SN*DCN
ANG = ANG+DT

10 CONTINUE
CO(MM) = CN
CO(MM+1) = CO(2)
SI(MM) = SN
SI(MM+1) = SI(2)
RETURN
END

SUBROUTINE SWEEP
C     SWEEP THROUGH THE GRID ONE TIME

COMMON/FL/FLUXT4,CD4
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),0(31),E(31)1 *RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),88(162),CO(162)2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)

4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD,EM,ALP,RN,PCH,XP,TC,CHD, DPHI,CL,RCL,YR

1 ,XA,YA,TE,DT,DR,DELTH,DELR,RA, DCN,DSN,RA4,EPSIL,QCRIT,Cl,(2
2 ,C4,C5,C6,C7, BET, BETA,FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK, JK, IZ,ITYP,MODE,IS,NFC,NCY,NRN,NG, IDIM, N2,N3,N4,NT, IX*
4 ,NPTS,LL, I,LSEP,M4,NEW, EPSl,NDES,XLEN, SCALOI
5 ,SCALQO,Nb,GAMMA,NOPT, CSTAR, REM, DEP,OINF,TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU
YR = 0.
NSP = 0
DO 10 J = 1,NN

111



PHI(MM, J) = PHI(l,J)+DPHI
PHI(MM+1,J) = PHI(2,J)+DPHI
E(J) = 0.
RP4(J) = 0.
RP5(J) = 0.

10 RPP(J) = 0.
C     SWEEP THROUGH THE GRID FROM NOSE TO TAIL ON UPPER SURFACE

TE = -2.
LLP=LL+1
DO 30 I=LLP,M
CALL MURMAN
DO 30 J = 1,N

30 PHI(I-l,J) = PHI(I-l,J)-RP(J)
DO 32 J=l,N

32 PHICM,J)-PHICM,J)-E(J)
DO 51 J=l,N
E(J)=0.
RPP(J)=0.
RP4(J) = 0.
RP5(J) = 0.

51 CONTINUE
C     SWEEP THROUGH THE GRID FROM NOSE TO TAIL ON LOWER SURFACE

TE = 2.
I = LL

80 I = I-1
CALL MURMAN
DO 60 J = 1,N

60 PHICI+1,J) = PHICI+1,J)-RP(J)
IF (I.GT.2) GO TO 80
DO 70 J = 1, N

70 PHI(2,J) = PHI(2,J)-E(J)
DO 11 J=l, NN
PHI(MM+1,J)=PHI(2,J)+DPHI
E(J)=0.
RP4(J) = 0.
RP5(J) = 0.

11 CONTINUE
TE=-2.
I=MM
CALL MURMAN
DO 50 J=l, N
PHI(MM,J)=PHI(MM, J)-E(J)

50 PHI(l,J)=PHI(MM, J)-DPHI
DO 12 J=l,N
E(J)=0.
RP4(J) = 0.
RP5(J) = 0.

12 CONTINUE
TE=2.
I=LL
CALL MURMAN
DO 13 J=l,N

13 PHI(LL,J)=PHI(LL,J)-E(J)
C     ADJUST CIRCULATION TO SATISFY THE KUTTA CONDITION
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IF (RCL .EQ.0.) GO TO 90
YA = RCL*((PHICM,1)-(PHI(2,1)+DPHI))*DELTH+SI(1))
IF (MODE.EQ.1) GO TO 90
IF (NDES.GE.0) GO TO 41
ALP = ALP-.5*YA
GO TO 42

41 88(1) • BB(1)-.5*YA
42 CALL COSI

GO TO 95
90 YA = TP*YA/(1.+BET)

DPHI = DPHI+YA
95 DO 97 L = 1,M
97 PHI(L,NN) = DPHI*PHIR(L)

FLUXT=0.
NF=N-10
IF(N.LT.30) NF=N-5
DO 242 L=2,MM
U=R(NF)*(PHI(L+1,NF)-PHI(L-1,NF))*DELTH-SI(L)
V=R(NF)*R(NF)*(PHI(L,NF+1)-PHI(L,NF-1))*DELR -CO(L)
QF.(U*U+V*V)/FP(L,NF)
RH=(1.+.2*EM*EM*(1.-OF))**2.5
FLUX=RH*V/R(NF)
FLUXT=FLUXT+FLUX

242 CONTINUE
FLUXT=DT*FLUXT*CHD
FLUXT4=FLUXT
IF(MODE.EQ.0) RETURN
DO  100  J  =  1, N
DO 100 L = 1, M

100 PHICL,J) = PHICL,J)+YA*PHIR(L)
RETURN
END

SUBROUTINE MURMAN
C     SET UP COEFFICIENT ARRAYS FOR THE TRIDIAGONAL SYSTEM USED FOR LINE.
C     RELAXATION AND COMPUTE THE UPDATED PHI ON THIS LINE

COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),BB(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD, EM,ALP,RN, PCH,XP,TC,CHD,DPHI,CL,RCL,YR

1 ,XA,YA,TE,DT,DR,DELTH,DELR,RA, DCN, DSN, RA4, EPSIL,QCRIT,Cl,C2
2 ,T4,(5,(6,(7, BET,BETA, FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ,ITYP,MODE, IS,NFC,NCY,NRN, NG, IDIM,N2,N3,N4, NT, IXX
4 ,NPTS, LL,I,LSEP,M4, NEW,EPSl,NDES,XLEN,SCALQI
5 ,SCALQO, N6, GAMMA,NQPT, CSTAR, REM, DEP,QINF, TSTEP, XOUT
6 ,INC,QFAC,GAM,KDES, PLTSZ,QPL,QPU

C     DO THE BOUNDARY
E(NN) = 0.
FAC = -,5*TE
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IM = I-1
IF (FAC.LT.0.) lM = I+1
KK = 0
PHIO = PHI(I,2)-2.*DR*CO(I)
PHIYP= PHI(I,2)-PHI(I,1)
PHIYY = PHIYP+PHIO-PHI(I,1)
PHIXX = PHICI+1,1)+PHICI-1,1)-PHICI,1)-PHICI,1)
PHIXM = PHI(I+1,1)-PHI(I-1,1)
PHIXP = PHI(I+1,2)-PHI(I-1,2)

C     CHECK FOR THE TAIL POINT
IF (I.NE.MM) GO TO 10
C(1) = (Cl+Cl)*RS(1)
A(1) = -C(1)+XA*Cl-Cl
D(1) = Cl*(PHIXX+RS(1)*PHIYY+RA4*CO(I)-E(1))
GO TO 40

10 U = PHIXM*DELTH-SI(I)
BQ = U/FP(I,1)
QS = U*BQ
CS = Cl-C2*QS
BQ = BQ*QS*(FP(I-1,1)-FP(I+1,1))
X = RA4*(CS+QS)*CO(I)
C(1) = (CS+CS)*PS(1)
D(1) = CS*RS(1)*PHIYY+RI(1)*BQ+X
CMOS = CS-QS
PHIXT = BETA*ABS(U)+ABS(CMQS)
EM2 = QS/CS
EPS2 = EPS1*VLAYER(EM2,QPL,QPU)
PHIXXX= EPS2*PH1XX-RP4(1)
RP4(1) = EPS2*PHIXX
D(1) = 0(1) + PhIXXX
IF (QS.LE.QCRIT) GO TO 30

C     FLOW IS SUPERSONIC, BACKWARD DIFFERENCES
KK = 1
PHIXT = PHIXT-CMQS
PHIXXM = RPP(1)
A(1) = -(C(1)+PHIXT)
8(1) = D(1)+CMQS*PHIXXM-PHIXT*E(1)
A(1) = A(1)-2.*EPS2-RP5(1)
0(1) = D(1) -(EP52+2.*RP5(1))*E(1)
RP5(1) = EPS2
GO TO 40

C     FLOW SUBCRITICAL, CENTRAL DIFFERENCES
30 A(1) = X4*CMQS -C(1)-PHIXT

D(1) = D(1)+CMQS*PHIXX-PHIXT*E(1)
A(1) = A(1)-2.*EPS2-RP5(1)
0(1) = D(1) -(EPS2+2.*RP5(1))*E(1)
RP5(1) = EPS2

C     DO NON-BOUNDARY POINTS
40 RPP(1) = PHIXX

DO 60 J = 2, N
PHIXX =.PHICI+1,J)+PHICI-1,J)-PHICI,J)-PHICI,J)
DU = PHIXP
PHIXP = PHI(I+1,J+1)-PHI(I-l,J+1)
PHIXY = PHIXP-PHIXM+(E(J+1)-E(J-1))*FAC
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PHIXM = DU
DU = DU*DELTH
PHIYYM = PHIYY
PHIYM = PHIYP
PHIYP = PHI(I,J+1)-PHI(I,J)
PHIYY = PHIYP-PHIYM
U = R(J)*DU-SI(I)
DV = R(J)*(PHI(I,J+1)-PHI(I,J-1))*DELR
V = DV*R(J)-COCI)
RAV = R(J)*RA*V
BQ = 1./FP(I,J)
BQU = BQ*U
US = BQU*U
UV = (BQU+BQU)*V
VS = BQ*V*V
OS = US+VS
CS = Cl-(2*QS
CMVS = CS-VS
CMUS = CS-US
PHIXT = BETA*ABS(U)
PHIYT = BETA*ABS(RAV)
EM2 = QS/CS
EPS2 = EPS1*VLAYER(EM2,QPL,QPU)
PHIXXX= EPS2*PHIXX-RP4(J)
RP4(J) = EPS2*PHIXX

C     COMPUTE CONTRIBUTION OF RIGHT-HAND SIDE FROM LOW ORDER TERMS
D(J) =RA4*((CMVS+US-VS)*DV-UV*DU)+RI(J)*05*BQ*(U*(FP(I-1,J)-

1 FP(I+1,J))+RAV*(FP(I,J-1)-FP(I,J+1)))
D(J) = D(J) +PHIXXX
UV = .5*BQU*RAV
IF (OS.LE.OCRIT) GO TO 50

C     SUPERSONIC FLOW, USE BACKWARD DIFFERENCING
KK = KK+1
CMQS = CS-OS
FQ = 1./QS
AUU = US*FQ
BUU = RS(J)*AUU
RVV = VS*FQ
AVV = PS(J)*BVV
BUV = UV*FQ
AUV = BQU*ABS(RAV)*FQ*TE
PHINN = BVV*PHIXX-BUV*PHIXY+EUU*PHIYY
B(J) = CS*BUU
PHIXT = PHIXT-CMQS*(AUU+AUU-AUV) +CS*BVV
PHIYT = PHIYT -CMQS*(AVV+AVV-AUV)
C(J) = 3(J)+PHIYT
PHIXXM = RPP(J)
IF (V.LT.0) GO TO 45
PHIYYM = PHI(I,J+2)-PHI(I,J+1)-PHIYP
PHIXYM = PHIYP+PHI(IM, J)-PHI(IM,J+1)
GO TO 46

45 PHIXYM = PHI(IM, J)-PHI(IM,J-1)-PHIYM
BQ = 8(J)
8(J) = C(J)
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C(J) = BQ
46 PHISS = AUU*PHIXAM+AUV*PHIXYM+AVV*PHIYYM

A(J) = -(8(J)+C(J)+PHIXT)
D(J) = D(J)+CMOS*PHISS+CS*PHINN-E(J)*PHIXT
A(J) = A(J)-2.*EP52-RP5(J)
D(J) = D(J) -(EPS2+2.*RP5(J))*E(J)
RP5(J) = EP52
GO TO 60

C     SUBSONIC FLOW, USE CENTRAL DIFFERENCES
50 C(J) = RS(J)*CMVS

8(J) = C(J)+PHIYT
PHIXT = PHIXT+CMUS
A(J) = XA*CMUS-B(J)-C(J)-PHIXT
D(J) = D(J)+CMUS*PHIXX-UV*PHIXY+C(J)*PHIYY-PHIXT*E(J)
A(J) = A(J)-2.*EP52-RP5(J)
D(J) = D(J) -(EPS2+2.*RP5(J))*E(J)
RP5(J) = EP52
IF (V.LT.0.) GO TO 60
B(J) = C(J)
C(J) = C(J)+PHIYT

60 RPP(J) = PHIXX
NSP = NSP+KK

C     SOLVE THE TRIDIAGONAL SYSTEM
CALL TRIO
RETURN
END

SUBROUTINE TRID
C     SOLVE N DIMENSIONAL TRIDIAGONAL SYSTEM OF EQUATIONS

COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI<31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD,EM,ALP,RN,PCH,XP,TC,CHO,DPHI,CL, RCL,YR

1 ,XA,YA,TE,DT,DR,-DELTH,DELR,RA, DCN,DSN, RA#,EPSIL,OCRIT,Cl,C2
2 ,(4,(5,(6,(7,BET,BETA,FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ,ITYP,MODE,IS,NFC,NCY,NRN, NG, IDIM,N2, N3,N4,NT, IXX
4 ,NPTS,LL, I,LSEP,M4,NEW,EPSi,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NQPT,CSTAR, REM,DEP,QINF, TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU
XX = 1./A(1)
RP(1) = E(1)
E(1) = XX*D(1)

C     DO ELIMINATION
DO 10 J = 2,N
C(J-1) = C(J-1)*XX
XX = 1./(A(J)-8(J)*C(J-1))
RP(J) = E(J)

10 E(J) = (D(J)-8(J)*E(J-1))*XX
C     DO BACK SUBSTITUTION

116



EMX = ABS(E(N))
DO 20 J = 2,N
L = NN-J
ECL) = E(L)-C(L)*E(L+1)

20 EMX = AMAX1(EMX, ABS(E(L)))
C     FIND THE LOCATION OF THE MAXIMUM RESIDUAL

IF (EMX.LE.ABS(YR)) RETURN
IK = I
DO 70 J = 1,N
IF (ABS(E(J)).EQ.EMX) GO TO 74

70 CONTINUE
74 JK = J

YR = E(JK)
RETURN
END

SUBROUTINE REMESH(LSIGN)
C     GO TO CRUDER GRID IF LSIGN IS -1
C     GO TO FINER GRID IF LSIGN IS +1

COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),BB(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP, RAD, EM,ALP,RN,PCH, XP,TC, CHD, DPHI,CL, RCL, YR
1 ,XA,YA, TE, DT, DR, DELTH,DELR,RA, DCN,DSN,RA4,EPSIL,QCRIT,Cl,C2
2 ,C4,C5,C6,C7,BET, BETA,FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK, JK, IZ, ITYP,MODE,IS,NFC,NCY,NRN,NG, IDIM,N2,N3,N4,NT, IXX
4 ,NPTS,LL, I,LSEP,M4,NEW, EPSl,NDES,XLEN,SCALQI
5 ,SCALQO, N6, GAMMA, NQPT,CSTAR, REM, DEP, QINF, TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES, PLTSZ, QPL,QPU
X • 2.**LSIGN
NG = FLOAT(NG)/X+.2
M = FLOAT(M)*X +.2
N = FLOAT(N)*X+.2
IF (N.EQ.14) N=15
LL = FLOAT(LL-1)*X+1.2
IF (LSIGN.GT.01 MM = M+1
IF (LSIGN.GT.0) NN = N+1
LSEP = FLOAT(LSEP-1)*X+1.2
PF = 1./X
DELR = X*DELR
DELTH = X*DELTH
DR = PF*DR
DT = PF*DT
DCN = COS(DT)
DSN = SIN(DT)
RA4 = PF*PF*RA4
NCY = 0
I = LSIGN
MP = MM+1
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CALL PERMUT (R,NN,1)
CALL PERMUT (RS,NN,1)
DO 5 J= 1,N

5 Rl(J) = -.25*DT/R(J)
CALL PERMUT (DSUM,MP,1)
DO 20 L = 1,NN

20 CALL PERMUT (PHI(l, L),MP,1)
DO 30 L = 1,MP

30 CALL PERMUT (PH1(L, 1),NN, IDIM)
MM = M+1
NN = N+1
IF (X.EQ..5) GO TO 80
DO 40 L = 1,M,2
DSUM(L+1) = .5*(DSUM(L)+DSUM(L+2))
DO 40 J = 1,NN,2

40 PHI(L+1, J) = .5*(PHI(L,J)+PHI(L+2, J))
DO 5C J = 1,N,2
DO 50 L = 1,MM

50 PHI(L,J+1) = .5*(PHI(L,J)+PHI(L,J+2))
80 CALL MAP

RETURN
END

SUBROUTINE PERMUT (AX,NX, JX)
C     REORDERS POINTS WITHIN AN ARRAY

COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),Bb(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD,EM,ALP,RN, PCH, XP,IC,CHO, DPHI,CL,RCL,YR
1 ,XA,YA,TE,DT,DR,DELTH, DELR,RA,DCN,DSN,RA4, EPSIL,QCRIT,Cl,(2
2 ,(4,Ck,(6,(7,BET,BETA,FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK,IZ,ITYP,MODE,IS,NFC,NCY,NRN,NG,IDIM,NZ,N3,N4,NT,ix*
4 ,NPTS,LL, I,LSEP,M#,NEW,EPSl,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NQPT,CSTAR,REM, DEP,wINF,TSTEP, XCUT
6 ,INC,QFAC,GAM,KDES, PLTSZ,QPL,QPU
DIMENSION AX(1)
L=1
JY = JX+J*
NY = 2*((NX-1)/2)+1
NZ = 2*(NX/2)
IF(I.GT.0) GO TO 30
NY = JX*(NY-1)+1
NZ = JX*(NZ-1)
DO 10 J = 1,NY,JY
A(L) = AX(J)

10 L = L+1
DO 20 J = JX, NZ,JY
A(L) = AX(J+1)

20 L = L+1
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GO TO 60
30 DO 40 J = 1,NY,2

A(J) = AX(L)
40 L = L+JX

DO 50 J = 2,NZ,2
A(J) = AX(L)

50 L = L+JX
6 O L=1

DO 70 J = 1,NX
AX(L) = A(J)

70 L = L+JX
RETURN
END

SUBROUTINE GETCP(CDF)
C     COMPUTE CP,CD, AND CM BY INTEGRATION AND OUTPUT MACH DIAGRAM

COMMON/FL/FLUXT4,CD4,COW, INDCD
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),6(31)

1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 *ANGOLD(162),XOLL(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TF,RAD, El, ALP,RN, PCH, XP,TC,CHO,DPHI,CL,RCL, YR

1 ,XA,YA,TE,DT,DR,DELTH, DELR,RA, DCN,DSN, RA4, EPSIL,QCRIT,Cl,C2
2 ,C4,(5,(6,(7,BET,BETA,FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ,ITYP,MODE,IS,NFC,NCY,NRN, NG, IDIM,N2,N3,N4, NT, IXX
4 ,NPTS,LL,I,LSEP,M4, NEW, EPSl,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NOPT,CSTAR,REM,DEP,QINF,TSTEP, XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU
REAL MACHN,MACH
COMPLEX. CLCD,TMP
DIMENSION MACHN(1),CPX(1),MN(1),IMACH(21)
EQUIVALENCE (MACHN(1),A(1)),(CPX(1),PHIR(1)),(MN(1),FP(1,31))
DATA IMACH/1HQ, 1HR, 1HS,1HT,1HU, 111V,1HW, 1HX,1HY,1HZ,lHO,101,11·12,1H3

1,1 H 4,1 H 5,1 H 6,1 H7,1 H 8,1 H 9,1 H+ /
DATA TX /4HCDF=/
MACH(0) = SORT(e/(Cl-(2*Q))
IMC(Q) = MINO(21, IFIX(10.*Q)+1)
CLCD = 0.
CM = 0.
IF ((XP.GT.0.).OR.(IZ.LE.80)) GO TO 10
DY = YOLD(NT)-YOLD(1)
IF (FSYM.NE.0.) DY = YC(MM)-YC(1)
REWIND M4
WRITE (M4,120) EM,CL,DY,TC, NRN,MM

10 DO 20 L = 1,MM
CP = CPX(L)

C     COMPUTE CP*DZ
TMP = CP*SORT(FP(L,1))*CMPLX(COS<FM(L)),SIN(FMIL)))

C     SUM UP CL,CD, AND CM
CLCD = CLCD+TMP
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CM = CM+(XC(L)-.25)*REAL(TMP)-YC(L)*AIMAG(TMP)
C     WRITE PUNCH OUTPUT ON M4 IF XP=0 AND IZ.GT.80

IF ((XP.GT.0.).OR.(IZ.LE.80)) GO TO 20
Q = MACHN(L)*SORT(Cl/(1.+C2*FACHN(L)*MACHN(L)))
V = Q*SIN(FM(L))
U = Q*COS(FM(L))
IF (XP.EQ.0) GO TO 15
WRITE (M4,130) U,V, XC(L),YOLD(L),CP
GO TO 20

15 WRITE (M4,130) U,V, XC(L),YC(L),CP
20 CONTINUE

C     CORRECT CL,CD FOR ANGLE OF ATTACK
CLCD = -(D T*CHD)*CLCD*CAPLX(SINCALP),COS(ALP))
CM = DT*CHD*CM

C     WRITE CD,CL,CM ONTO N4
CDW = REAL(CLCD)
QCR=SORT(QCRIT)
DCD4=2.*(OCR-1.)*FLUXT4
CD = CDW+CDF
CD4=CD+DCD4
COW=CDW+DCD4
IF(INDCD.EQ.0) PRINT 261,CDW,CDF,CD*

261 FORMAT(5H CDW=F10.5,5H CDF=F10.5,4H CD=F10.5)
CL2 = AIMAG(CLCD)
IF (1NDCD.EQ.0) GO TO 160
CALL COSI
RETURN

160 CONTINUE
IF (M4.EQ.N3) GO TO 85
IF (CDF.EQ.0.) GO TO 70
WRITE (N4,90) EM, CL2,CM,CDW,TX,CDF,CD#
GO TO 80

70 WPITE (N4,90) EM,CL2,CM,CD*
C     CONSTRUCT MACH NUMBER DIAGRAM

WRITE (N4,140)
80 I = IMC(EM)

I = IMACH(I)
C     USE PRINT WIDTH OF I2 FOR MACH NUMBER DIAGRAM

MB = MM
MC = MAXO(l,MB/IZ)
MA = MC+MAXO(l,MB-IZ*MC)

C     WRITE OUT MACH NUMBERS AT INFINITY
WRITE (N4,100) (I, L = MA,MB,MC)

C     DO MACH NUMBERS ONE LINE AT A TIME DOWN TO THE BODY
J = NN-MC

40 RSJ = R(J)*R(J)
DO 50 L = MA,MB,MC
U = {PHI(L+1,J)-PHI(L-1,J))*R(J)*DELTH-SI(L)
V = (PHI(L,J+1)-PHI(L, J-11)*DELR*RSJ -CO(L)
Q = (U*U+V*V)/FF(L,J)
I = IMC(MACH(Q))
MN(L) = IMACH(I)

50 CONTINUE
WRITE (N4,100) (MN(L),L = MA,MB,MC)
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J = J-MC
IF (J.GT.1) GO TO 40

C     DO THE LINE WHICH IS THE 80DY
DO 60 L = MA, MB, MC
I = IMC(MACHN(L))

60 MN(L) = IMACH(I)
WRITE (N4,100) (MN(L),L = MA,MB,MC)
IF (ITYP.GE.4) CALL GRAFIC(CD)
RETURN

85 RNX = .1*AINT(RN*1.E-5)
WRITE (N4,150) EM,CL,TC,CM,RNX,CDF
RETURN

90 FORMAT (1H12X3HEM=F5.4,4X3HCL=F7.4,4X3hCM=F6.4,4X4HCDW=F 7.5,4XA4
1 ,F7.5,4X 3HCD=F7.5///)

100 FORMAT (3X,130Al)
120 FORMAT (3H M=,F4.3,5X,3HCL=,F5.3,5X,3HCY=,F5.3,6X,4HT/C=,

1 F 4 . 3,1 4 X, 2 1 5 )

130 FORMAT (4020)
140 FORMAT (1HO//)
150 FORMAT (1HO//7*3HEM=,F4.3,4*3HCL=,F6.4,4*4HT/C=,F4.3,4*3HCM=,

1 F6.4,4X3HRN=,F4.1,4X4HCDF=,F6.4/)
END

SUBROUTINE GRAFIC(CD)
COMPLEX ZP,ZQ,SFAC,SIG
REAL MACHN
COMMON/FL/FLUXT4, CD4,CDW, INDCD
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31},AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLO(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD,El, ALP,RN, PCH, XP,TC,CHD,DPHI,CL,RCL,YR

1 ,XA, YA, TE,DT,DR,DELTH, DELR,RA, DCN,DSN,RA4,EPSIL,OCRIT,Cl,(2
2 ,(4,(5,(6,(7,BEr,BETA, FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ, ITYP,MODE,IS,NFC,NCY,NRN, NG, IDIM,N2,N3,N4,NI, IXX
4 ,NPTS,LL,I,LSEP,M4,NEW, EPSl,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NOPT, CSTAR,REM, DEP,OINF,TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,OPL,QPO
DIMENSION CPX(1),MACHN(1),T(6)
EQUIVALENCE (CPX(1),PHIR(1)) ,(MACHN(1),A(1))
DATA TOL/1.E-6/ , PF/-.4/ , SCF/5.0/,YOR/4.0/,SIZE/.14/,SCD/200./

C     MOVE THE ORIGIN TWO INCHES OVER AND TWO INCHES UP
CALL PLOT(2.0,2.5,-3)
YOR = AMAX1(3.5,.5*AINT(20.*EM-7.0))

C     PLOT CP CURVE AS A FUNCTION OF X
CPF = 1./PF
CCP = CPF*CPX(1)
CALL PLOT(SCF*XC(1),YOR+CCP,3)
DO 10 L = 2,MM
CCP = AMIN1(8.5-YOR,CPF*CPX(L))
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10 CALL PLOT(SCF*XC(L),YOR+CCP,2)
C     DRAW AND LABEL THE CP-AXIS

CALL CPAXIS(-.5, YOR,1.-1./PF,7.5-YOR,PF)
C     COMPUTE AND PLOT CRITICAL SPEED

CALL SYMBOL (-.5,YOR+CPF*CPX(MM+1),2.*SIZE,15,0.,-1)
C     PLOT BODY

CALL PLOT(SCF*XC(1),SCF*YC(1),3)
DO 20 L = 2,MM

20 CALL PLOT(SCF*XC(L),SCF*YC(L),2)
C     LABEL THE PLOT

ALPX = RAD*ALP
TXT=SHANALYSIS
IF (EPSl.GT.0.) TXT = 10HART. VISC.
IF(FSYM.GE.6.) TXT=6HTHEORY
XL=-•9

C     ****NON-ANSI - SEE WRITEUP AT END****
IF(FSYM.GE.6.) GO TO 30
IF ((NDES.LT.0).AND.(EPS1.LE.0.)) GO TO 200
TTLE(1) = 4HVISC
TTLE(2) = 4HOUS
TTLE(3) = 4HDESI
TTLE(4) = 4HGN
ENCODE (60,210,T) TTLE,M,N,NCY,EPS1
GO TO 40

200 ENCODE (60,191,T) TTLE,M,N,NCY
GO TO 40

30 LN=RN*1.E-6+.5
ENCODE(60,190, T) TTLE,M,N,NCY,LN

40 CALL SYMBOL(-1.14,-1.0, SIZE,T,0.,56)
C     ****NON-ANSI - SEE WRITEUP AT END****

ENCODE(60,170,T) TXT,EM,ALPX, CL,CD4
IF(CD4.LT.0) ENCODE(60,171, T) TXT,EM,ALPX, CL,CD4
CALL SYMBOL(XL,-1.35,SIZE,T,0.,60)
CALL SYMBOL(XL-.10,-1.35+.5*SIZE,1.5*SIZE, 15,0.,-1)
CN=CO(1)
SN=SI(1)

C     READ AND PLOT EXPERIMENTAL DATA IF XP 15 NOT ZERO
IF (*P.EQ.0.) GO TO 130
REWIND M4
READ (M4,140) NP
IF (EOF(M4).NE.0) GO TO 130
IF (NDES.GE.0) GO TO 220
READ (M4,150) EMX,ALPX,CLX,CDX, SNX
READ (M4,160) (CO(L),SI(L),L = 1,NP)
TXT = 10HEXPERIMENT
GO TO 230

220 READ (M4,240) TCX,DUAVE,YRX,SNX
READ (M4,160) (CO(L),SI(L),E = 1,NP)
TXT = 8HINPUT CP

230 CONTINUE
NC=59
IF(SNX.GE.0.)GO TO 50
TXT=6HDES1GN
NC=3
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C     ****NON-ANSI - SEE WRITEUP AT END****
50 ENCODE (60,170, T) TXT, EMX,ALPX,CLX,CDX

IF (CD4.LT.0) ENCODE(60,171, T) TXT,EMX,ALPX,CLX,CDX
IF(NDES.GE.0) ENCODE(60,250,T) TXT,TCX,DQAVE,YRX
CALL SYMBOL(XL,-1.7,SIZE,T,0.,60)
CALL SYMBOL(XL-.10,-1.7+.5*SIZE,SIZE, NC,0.,-1)
DO 180 L = 1, NP
CCP = YOR+CPF*SI(L)
IF (CCP.GT.8.4) GO TO 180
CALL SYMBOL(SCF*CO(L),CCP,.5*SIZE,NC,0.,-1)

180 CONTINUE
130 IF (ITYP.EQ.5) GO TO 122

C     PLOT THE SONIC LINE
EX = 1.-EPSIL

C     SET SINES AND COSINES FOR USE IN FOURIER SERIES
MX = M/2
CO(1) = 1.
SI(1) = 0.
DO 60 L = 1,MX
CO(L+1) = CO(L)*DEN-SI(L)*DSN
CO(MM-L) = CO(L+1)
SI(L+1) = CO(L)*DSN+SI(L)*DCN

60 SI(MM-L) = -SI(L+1)
DO 120 L = 2,M

C     LOOK FOR SONIC POINTS ON THE BODY
IF (MACHN(L).LT.1.) GO TO 110
IF (MACHN(L-1).GE.1.) GO TO 80
IPEN = 3

C     COMPUTE Z AT SONIC LINE ON BODY
70 Rl = (MACHN(L)-1.)/(MACHN(L)-MACHN(L-1))

ZP = CMPLX(XC(L)+Rl*(XC(L-1)-XC{L)),YC(L)+Rl*(YC(L-1)-YC(L)))
CALL PLOT(SCF*REAL(ZP),SCF*AIMAG(ZP),IPEN)
IF (IPEN.EO.2) GO TO 120

C     FIND THE SONIC LINE ALONG A RAY
80 Q = MACHN(L)

SX = SI(L)*CN+SN*CO(L)
CX = CO{L)*CN-SN*SI(L)
FAC = .5*DR
ZQ = CMPLX(XC(L),YC(L))
DO 90 J = 1,N
ZP = SFAC
RJ = R(J)
QS = Q
IF (J.EQ.1) GO TO 82
U = (PHI(L+1, J)-PHI(L-1,J})*RJ*DELTH-SX
V = (PHI(L,J+1)-PHI(L, J-1))*DELR*RJ*RJ-CX
Q = (U*U+V*V)/FP(L,J)
0 = SQRT(Q/(Cl-(2*0))

82 SIG = CMPLX(RJ*CO(L),RJ*SI(L))
C     COMPUTE ((1-SIGMA)**(1-EPSIL))SIGMA

SFAC = CEXP(EX*CLOG((1.,0.)-SIG))/SIG
C     SUM UP FOURIER SERIES TO OBTAIN CONJUGATE OF W

S = -88(1)
DO 84 K = 1,NFC
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LT = MOD((L-1)*K, M)
S = S+RJ*(AACK+1)*SI(LT+1)-BB(K+1)*CO(LT+1))
RJ = RJ*R(J)
IF (RJ.LT.TOL) GO TO 86

84 CONTINUE
C     COMPUTE THE ARGUMENT OF DZ/DR

86 SFAC = -SFAC*CMPLX(COS(S),SIN(S))/CABS(SFAC)
C     MULTIPLY THE ARGUMENT BY THE MAGNITUDE TO OBTAIN DZ/DR

SFAC = SFAC*(CHD*SQRT(FP(L,J)))/(R(J)*R(J))
C     PERFORM THE INTEGRATION

ZQ = ZQ+FAC*SFAC
FAC = DR
IF (Q.LE.1.) GO TO 100

90 CONTINUE
100 ZQ = ZQ-.5*DR*SFAC

ZP = ZQ-.5*DR*(SFAC+ZP)
Rl = (Q-1.)/(Q-OS)
ZP = ZQ+Rl*(ZP-ZQ)
CALL PLOT (SCF*REAL(ZP),AMAX1(-2.0, SCF*AIMAG(ZP)),2)
GO TO 120

110 IPEN = 2
IF (MACHN(L-1).GE.1.) GO TO 70

120 CONTINUE
C     POSITION PEN AT BEGINNING OF NEXT PAGE

122 CALL FRAME
CALL PLOT(-2.0,-2.5,-3)
IF ((FSYM.NE.7.).OR.(ITYP.EQ.6)) RETURN

C     PLOT THE BOUNDARY LAYER DISPLACEMENT
MX = INDEXR (0.,XC,M)
CALL PLOT(2.,1.5,-3)
CALL SYMBOL(1.36,-.65, SIZE,19HLOWER SURFACE  DELS ,0.,19)
CALL CPAXIS (0.,0.,0.,4.,1./SCD)

C     PLOT LOWER SURFACE
CALL PLOT (SCF*XC(1),SCD*DSUM(1),3)
DO 132 L = 2, MX

132 CALL PLOT (SCF*XC(L),SCD*DSUM(L),2)
CALL PLOT(0.,4.5,-3)
CALL SYMBOL(1.36,-.65, SIZE,19HUPPER SURFACE DELS ,0.,19)
CALL CPAXIS (0.,0.,0.,4.,1./SCD)

C     PLOT UPPER SURFACE
CALL PLOT (SCF*XC(MX),SCD*DSUM(MX),3)
DO 134 L = MX,M

134 CALL PLOT (SCF*XC(L+1),SCD*DSUM(L+1),2)
CALL PLOT(10.,-6.,-3)
RETURN

140 FORMAT (1OX, I 3)
150 FORMAT (3F6.3,F7.5, E9.1)
160 FORMAT (2F10.4)
170 FORMAT (A12,4H M=F4.3,3X4HALP=F5.2,3X3HCL=,F5.3,3X3HCD=,F5.4)
171 FORMATIA12,4H  M=F#.3,3X#HALP=F5.2,3X3HCL=,F5.3,2X3HCD=F6.4)
190 FORMAT(4A4,3X4HM*N=I3,1H*I2,3X4HNCY=I4,4X2HR=I2,8H MILLION)
191 FORMAT(4A4,3X4HM*N=I3,1H*I2,3X4HNCY=I4,4X12HN0 VISC0SITY)
240 FORMAT ( F 7 . 3,2 E 10 . 2, F 4 . 1 )

210 FORMAT(4A4,3X4HM*N=I3,1H*I2,3X4HNCY=I4,4X, 5HEPS1=,F5.3)
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250 FORMAT(A12,2*,4HT/C=F5.3,2X,3HDQ=E8.2,2X,5HDPHI=E8.2)
END

SUBROUTINE CPAXIS(XOR, YOR, BOT,TOP,SCF)
C     DRAWS AND LABELS THE CP AXIS
C     XOR, YOR IS THE LOCATION OF THE ORIGIN OF THE AXIS
C     BOT IS THE LENGTH OF THE AXIS BELOW THE ORIGIN
C      SCF IS A SCALE, FACTOR USED FOR LABELING
C     DRAW THE LINE FOR THE AXIS
C     SCF NEGATIVE FOR CP AXIS AND POSITIVE FOR DELS AXIS

SIZE = .12-SIGN(.02,SCF)
CALL PLOT (XOR,YOR+TOP,3)
CALL PLOT (XOR,YOR-BOT, 21

C     DRAW HATCH MARKS AND LABELS ONE INCH APART
N = 1+INT(BOT)+INT(TOP)
S = -AINT(BOT)*SCF +1.E-12
XH = XOR-(3.*SIZE)/.7
YH = YOR-AINT{BOT)
DO 10 I = 1,N
CALL SYMBOL (XOR, YH, SIZE,15,0.,-1)

C     ****NON-ANSI - SEE WRITEUP AT THE END****
IF (SCF.GT.0.) ENCODE (10,25,A) S
IF (SCF.LE.0.) ENCODE (10,20, A) S
S = S+SCF
CA*LL SYMBOL (XH, YH, SIZE,A, 0.,4)

10 YH = YH+1.
IF (SCF.GT.0.) GO TO 30
CALL SYMBOL(XOR+.1,YOR+205,.14,1HC,0.,1)
CALL SYMBOL(XOR+.25,YOR+2.38,.14,1HP, 0.,1)
RETURN

C     DRAW THE X-AXIS
30 CALL PLOT (XOR, YOR-BOT, 3)

CALL PLOT (XOR+5.0, YOR-BOT, 2)
CALL SYMBOL (XOR+5.5,YOR-.07,.14,1HX, 0.,1)
YH • YOR-BOT-SIZE-SIZE
DO 40 I = 1,5
S = .2*FLOAT(I)
ENCODE (10,20, A) S
XH = YOR+FLOAT(I)-SIZE-SIZE
CALL SYMBOL (XH,YH, SIZE,A, 0.,4)

40 CALL SYMBOL (XOR+FLOAT(I),YOR-BOT,SIZE, 15,90.,-1)
CALL SYMBOL (XOR+.25,YOR+3.0,.14,4HDELS, 0.,4)
RETURN

25 FORMAT ( F4.3)
20 FORMAT (F4.1)

END
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C     READ IN COORDINATES AS PRODUCED BY PROGRAMS D AND F
EPSIL = 2.
XX(1) = 0•
NL = 2
REWIND N3
READ (N3,510) EM,CL, DY,TC,NRN
IMC = MOD(INT(100.*EM+.5),100)
ICLl = MOD(INT(CL+.05),10)
ICL2 = MOD(INT(10.*CL+.5),10)
ITCl = MOD(INT(10.*TC+.05),10)
ITC2 = MOD(INT(100.*TC+.5),10)
ENCODE (40,530,TTLE) IMC,ICLl,ICL2, ITCl,ITC2
MODE = 0
IF (NRN.LT.0) FSYM=2.
DO 40 L = 1,999
READ (N3,500) U(L),V(L),XX(L),YYCL),FAC

C     ****CHECK FOR END Of FILE****
IF (EOF(N3).NE.0) GO TO 50
IF (XX(L).LT.XX(NL)) NL = L

40 CONTINUE
C     AIRFOIL HAS BEEN EXTENDED IN PROGRAM D

50 NT = L-1
NRN = IABS(NRN)
GO TO 150

C     READ IN AIRFOIL DATA FROM CARDS
100 READ (N3,420) FNU,FNL,EPSIL

READ (N3,470)
NT = FNU+FNL-1.
NL = FNL
DO 110 I = NL,NT

110 READ (N3,420) U(I),V(I),XX(I),YY(I)
READ (N3,470)
DO 120 I = 1,NL
J = NL+1-I

120 READ (N3,420) U(J),V(J),XX(J),YY(J)
DO 130 J = 1,4

130 TTLE(J) = TITLE(J)
IF (FSYM.LE.4.) GO TO 150
DO 140 L = 1,NT
TH(L) = XX(L)/RAD
XX(L) = U(L)

140 YY(L) = V(L)
GO TO 195

C     NO PERIOD IN THE STREAM FUNCTION
95 EPSIL = 0.

C     DEFINE SLOPES SO THAT ARC LENGTHS CAN BE COMPUTED TO FIRST ORDEf
150 IF ((FSYM.EQ.1.).OR.(FSYM.EQ.3.)) GO TO 170

DO 160 I = 1,NT
160 TH(I) = 0.

ISYM = 1
GO TO 200

C     COMPUTE SLOPES FROM VELOCITIES
170 TH(1) = ATAN(V(1)/U(1))

QSR(1) = U(1)*U(1)+V(1)*V(1)
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DO 190 I = 2, NT
C     CHOOSE NEAREST BRANCH FOR THE ARCTANGENT

DTH = ATAN((U(I-11*V(I)-U(I)*V(I-1))/(U(I-1)*U(I)+V(I-1)*V(I)))
TH(I) = TH(I-1)+DTH

190 QSR(I) = U(I)*U(I)+V(I)*V(I)
195 IF (EPSIL.GT.1.) EPSIL = (TH(1)-(PI+TH(NT)))/PI

IF (FSYM.GT.5.) EPSIL = (TH(1)+TH(2)-TH(NT)-TH(NT-1))/TP-1.
C     COMPUTE ARC LENGTH TO FOURTH ORDER ACCURACY

200 SP(1) = 0.
DO 210 I = 2, NT
DUM = AMAXIC.lE-20,.5*ABS(TH(I)-TH(I-1)))
DX = XX(1)-XX(I-1)
DY = YY(I)-YY(I-1)

210 SP(I) = SP(I-1)+SQRT(DX*DX+DY*DY)*DUM/SIN(DUM)
ARC = SP(NT)
SN = 2./ARC
SCALE = .25*ARC
EE = .5*(1.-EPSIL)
DO 220 L = 1,NT

220 SS(L) = ACOS(1.-SN*SP(L))
SS(NT) = PI
IF (ISYM.NE.0) GO TO 350
CALL SPLIF (NT,SS,TH,U,V,W,3,0.,3,0.)
IF (FSYM.GT.5.) GO TO 232
WRITE (N4,410) TITLE,VAL,NRN
IF (N4.NE.N2) WRITE (N2,410) TITLE,VAL,NRN

C     PRINT OUT DATA ON THE AIRFOIL
WRITE (N4,430)
DO  230  L  =  1, NT
VAL = TH(L)*RAD
SUM =-SN*U(L)/AMAX1(.lE-5,SIN(SS(L)))
IF ((L.EQ.1).OR.(L.EC.NT)) SUM = V(L)*SIGN(SN, FLOAT(L-2))

230 WRITE (N4,480) XXCL),YY(L),SP(L),VAL, SLM,V(L),W(L)
WRITE (N4,440)

C     MAKE INITIAL GUESS OF ARC LENGTH AS A FUNCTION OF CIRCLE ANGLE
232 DX = (XX(NT)-XX(1))/TP

DY = (YY(NT)-YY(1))/TP
DO 240 I = 1, MC
ANGL = FLOAT(I-1)*PILC
CIRCCI) = ANGL
CXCI) = COS(ANGL)
SX(I) = SIN(ANGL)
YY(I) = 1.
IF (EE.NE.0.) YY(I) = (2.-2.*CX(I))**EE
FAC = SIGN(1.+CX(I),FLOAT(LC-I))

240 SP(I) = ACOS(.5*FAC)
SP(MC) = PI
CIRC(MC) = TP
IF (FSYM.LT.6.) GO TO 244
SCALE = ARC/ARCL(MM)
SN1=2./ARCL(MM)
DO 322 I=l,M

322 ARCLCI)=ACOS(1.-SN1*ARCL(I))
ARCL(MM)=PI
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DO 242 L = 1,MM
242 Z(L) = FLOAT(L-1)*DT

CALL SPLIP (MM,Z,ARCL,CO,SI,PHIR,3,0.,3,0.)
CALL INTPL (NMP,CIRC,SP,Z,ARCL,CO,SI,PHIR)

244 DO 245 L = 1,LC
88(L) = CX(2*l-1)

245 AA(L) = -SX(2*L-1)
C     DO AT MOST 100 ITERATIONS TO FIND THE FOURIER COEFFICIENTS

DO 320 K = 1,100
CALL INTPL(NMP,SP,TT,SS,TH,U,V,W)
DO 250 I = 1,NMP

250 TT(I) = TT(I)+.5*(CIRC(I)+EPSIL*(CIRC(l)-Pl))
TT(1)=.5*(TH(1)+TH(NT)+PI)

C     ENSURE CLOSURE
DUM = 0.
SUM = 0.
FAC = 0•
DO 260 L = 1,NMP
DUM = DUM -TT(L)
SUM = SUM-TT(L)*CX(L)

260 FAC = FAC+TT(L)*SX(L)
DUM = DUM/FLOAT(NMP)
DA = 1.-EPSIL-(DX*SIN(DUM)+DY*COS(DUM))/SCALE-FAC/FLOAT(LC)
DB = (DY*SIN(DUM)-DX*COS(DUM))/SCALE-SUM/FLOAT(LC)
DO 270 L = 1, NMP

270 TT(L) = TT(L)+DA*SX(L)-DB*CX(L)
C     FIND THE CONJUGATE FUNCTION DS

CALL CONJ(NMP,TT,DS,XX,BB,AA)
DO 290 I = 1, NMP
SUM = DS(I)

290 DS(I) = YY(I)*EXP(SUM)
DS(MC) = DS(1)
Z(1)=0.
VAL=.5*PILC
VALl=PILC/3.
Z(2)=VAL*(DS(1)+DS(2))
Ni=NFC+1
DO 295 J=3,NI,2
Z(J)=Z(J-2)+VALl*(DS(J-2)+4.*DS(J-1)+DS(J))
IF(J.EQ.NI) GO TO 296

295 Z(J+1)=Z(J)+VAL*(DS(J)+DS(J+1))
296 CONTINUE

Z(MC)=0.
Z(MC-1)=VAL*(DS(MC)+LS(MC-1))
NII=NFC-2
DO 299 J=2,NII,2
MCJ=MC-J
Z(MCJ)=Z(MCJ+2)+VALl*(DS(MCJ+2)+4.*DS(MCJ+1)+DS(MCJ))

299 Z(MCJ-1)=Z(MCJ}+VAL*(DS(MCJ)+DS(MCJ-1))
300 CONTINUE

Zl=Z(MC-NII)+VALl*(DS(MC-NII)+4.*DS(MC-NII-1)+DS(MC-NII-2))
Zl=Z(NI+1)-21
DO 301 J=3, NI,2
DSl=Z(NFC+J)-2(NFC+J-1)

129



2(NFC+J-l)=Z(NFC+J-2)-Zl
IF(J.EQ.NI) GO TO 303
Zl=Z(NFC+J+1)-Z(NFC+J)

303 CONTINUE
Z(NFC+J)=Z(NFC+J-1)-DSl

301 CONTINUE
SCALE = ARC/Z(MC)
ERR = 0.
DO 310 I = 1, NMP
VAL = ACOS(1.-2.*Z(I)/Z(MC))
ERR = AMAX1(ERR,ABS(SP(I)-VAL))

310 SP(I) = VAL
IF (FSYM.LE.5.) WRITE (N4,490) ERR,DA,DB
IF (ERR.LT.TOL) GO TL 330

320 CONTINUE
WRITE (N4,450)

330 CALL FOUCF(NMP,TT,CX,88,AA)
AA(1) = ARC
AA(2) = 1.-EPSIL-(DX*SIN(BB(1))+DY*COS(BB(1)))/SCALE
88(2) = (-DX*COS(88(1))+DY*SIN(88(1)))/SCALE
IF (FSYM.GT.5.) GO TO 342
WRITE (N4,460) EPSIL, NMP
IF ((FSYM.NE.1.).AND.(FSYM.NE.3.)) GO TO 341
DO 344 L = 1,MM

344 Z(L) = FLOAT(L-1)*DT
CALL SPLIF(MC,CIRC,SP,U,V,W,3,0.,3,0.)
CALL INTPL(MM,Z,DS,CIRC,SP,U,V,W)
CALL SPLIF (NT,SS,QSR,U, V,W,1,0.,1,0.)
CALL INTPL(MM,DS,A,SS,QSR,U, V, W)
DO 4 L= 1,MM

4 IF (A(L).LE.0.) A(L) = 0.
341 IF (IZ.NE.120) GO TO 342

WRITE (N4,540)
DO 340 L = 1, NFC

340 WRITE (N4,490) AA(L),83(L)
342 CALL MAP

RETURN
350 IF (FSYM.LE.5.) GO TO 355

DXDSl = (XX(2)-XX(1))/SS(2)
DXDS2 = (XX(NT)-XX(NT-1))/(SS(NT)-SS(NT-1))
DYDSI = (YY(2)-YY(1))/SS(2)
DYDS2 = (YY(NT)-YY(NT-1))/(SS(NT)-SS(NT-1))

355 CALL SPLIF(NT,SS,XX,U, SP,W,1,DXDS1,1,DXDS2)
CALL SPLIF(NT,SS,YY,V,TT,DS,1,DYDS1,1,6YDS2)
IF (IS.LT.0) GO TO 397
DC = PI/FLOAT(NMP)
ERR = SS(NL)
DUM = DIS(0.)
FAC = PI/(DIS(PI)-DUM)
DO 360 L = 1,MC

360 CIRC(L) = FAC*(DIS(FLOAT{L-1)*DC)-DUM)
CALL INTPL(NMP,CIRC,SX,SS,XX,U,SP,W)
CALL INTPL(NMP,CIRC,CX,SS,YY,V,TT,DS)
SX(MC) = X.X(NT)
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CX(MC) = YY(NT)
SFAC = 1./(XX(NT)-XX(NL))
XXNL = XX(NL)
DO 370 L = 1,MC
CX(L) = SFAC*CX(L)
SX(L) = SFAC*(SX(L)-XXNL)
XX(L) = SX(L)

370 YY(L) = CX(L)
WRITE (N4,520) IS
IF (N2.NE.N4) WRITE (N2,520) IS
IF(IS.EQ.0) GO TO 395

C     DO  IS  SMOOTHING ITERATIONS
DO 390 K = 1, IS                                                '
DO 380 L = 2, NMP
XX(L) = SMOOTH(SX(L-1),SX(L),SX(L+1),SX(L))

380 yy(L) = SMOOTH(CX(L-1),CXCL),CX(L+1),Sk(L))
DO  390  L -=  2,NMP
SX(L) = XX(L)

390 CX(L) = YY(L)
395 NT = MC

CALL SPLIF(NT,CIRC,XX,U, SP,W, 1,0.,1,0.2
CALL SPLIF(NT,CIRC,YY,V, TT,DS,1,0.,1,0.)

397 ISYM = 0
IF (FSYM.GT.5.) GO TO 170
U(1) = SP(1)
V(1) = TT(1)
U(NT) = SP(NT)
V(NT) = TT(NT)
GO TO 170

410 FORMAT (1X16A4, I4)
420 FORMAT (5F10.7)
430 FORMAT (35HOAIRFOIL COORDINATES AND CURVATURES/lHO, 6X, 1HX,14*1HY

1 ,9X,1OHARC LENGTH,7X3HANG,8X5HKAPPA,1OX, 2HKP,11X,3HKPP//)
440 FORMAT (1Hl,4X,3HERR,14X,2HDA, 14X,2HDB//)
450 FORMAT (32H FOURIER SERIES DID NOT CONVERGE)
460 FORMAT (34HOMAPPING TO THE INSIDE OF A CIRCLE//3*11HDZ/OSIGMA =

1 50H -(1/SIGMA**2)*(1-SIGMA)**(1-EPSIL)*(EXP(W(SIGMA))//3*,
242HW(SIGMA) = SUM((A(N)-I*B(N))*SIGMA**(N-1))//3X,7HEPSIL =
3 F5.3,2OX, I4,25H POINTS AROUND THE CIRCLE )

470 FORMAT (1Hl)
480 FORMAT (F12.6,2F14.6,F14.3,F14.4,2E14.3)
490 FORMAT (3E15.6)

C     ****CHANGE (4020) TO (20A4) ON IBM 360****
500 FORMAT (4020)
510 FORMAT (3X, F4.3,8X, F5.3,8 X, FS.3,1OX, F4.3,14X,I5)
520 FORMAT (1OHOTHERE ARE,I4,26H SMOOTHING ITERATIONS USED /)
530 FORMAT(4HAIRF,6*,3HOIL,7X, I2,111-,Il,6X, Il, 1H-,2Il)
540 FORMAT (//7*4HA(N),10*4HB(N)//)

END
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SUBROUTINE MAP
C     SUM UP FOURIER SERIES TO OBTAIN MAPPING FUNCTION

COMPLEX TT,TMP
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)

COMMON /A/ PI,TP, RAD,EM,ALP,RN, PCH,-XP,TC,CHD, DPHI, CL, RCL, YR
1 ,XA,YA, TE,DT,DR, DELTH, DELR,RA, DCN,DSN,RA4,EPSIL,QCRIT,Cl,C2
2 ,C4,C5, C6,C7, BET,BETA, FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ, ITYP,MODE,IS,NFC,NCY,NRN, NG, IDIM, N2,N3,N4, NT, IXX
4 ,NPTS,LL,I,LSEP,M4, NEW, EPSl,NDES, XLEN, SCALQI
5 ,SCALQO, N6,GAMMA,NQPT,CSTAR, REM, DEP,QINF,TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU

C     ****CHANGE TO 1.E-6 FOR SINGLE PRECISION IBM 360****
DATA POW,TOL/-12.,10.E-12/

C     NOTE THAT THE SQUARE OF THE MAPPING MODULUS IS BEING COMPUTED
MX = M/2

C     SET THE SINES AND COSINES
CO(1) = 1.
SI(1) = 0.
DO 5 L= 1,MX
CO(L+1) = CO(L)*DCN-SI(L)*DSN
CO(MM-L) = CO(L+1)
SI(L+1) = CO(L)*DSN+SI(L)*DCN

5 SI(MM-L) = -SI(L+1)
C     SET MAPPING MODULUS FOR CUSP AT THE TAIL

DO 10 J = 1,N
FP (1,J) = 1.+R(J)*(R(j)-2.)
DO 10 L = 1,MX

10 FP(L+1,J) = 1.+R(J)*(R(J)-2.*CO(L+1))
IF (EPSIL.EQ.0.) GO TO 30

C     ADJUST IF THERE IS AN ANGLE AT THE TAIL
DO 20 J = 1,N
FP(l,J) = FP(l,J)**(1.-EPSIL)
DO 20 L = 1, MX

20 FP(L+1,J) = FP(L+1,J)**(1.-EPSIL)
C     NOW COMPUTE CONTRIBUTION FROM FOURIER SERIES

30 DO 50 J = 1, N
NFCX = MINO(NFC, 1+INT(POW/ALOG10(R(J)-TOL)))
RJ = 2.*R(J)
K = NFCX
S = AA(K+1)

35 S = R(J)*S+AACK)
K = K-1
IF (K.GT.1) GO TO 35
FP(l,J) = FP(l,J)*EXP(S*RJ)
DO 50 L = 1,MX
K = NFCX
LX = K*L
LT = MOD(LX, M)
S = AA(K+1)*CO(LT+1)
Q = 88(K+1)*SI(LT+1)
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40 LX = LX-L
LT = MOD(LX,M)
S = R(J)*S+AA(K)*CO(LT+1)
Q = R{J)*0+88(K)*SI(LT+1)
K m K-1
IF (K.GT.1) GO TO 40
DUM = FP(L+1, J)
FP(MM-L,J) = EXP(RJ*(S-Q))*DUM

50 FP(L+1,J) = EXP(RJ*(S+Q))*DUM
DO 65 L = 1,M
S = PI-BB(1)
DO 60 K = 1,NFC
LT = MOD((L-1)*K, M)

60 S = S+AACK+1)*SI(LT+1)-88(K+1)*CO(LT+1)
ANG = FLOAT(L-1)*DT
FP(L,NN) = 1.

65 FM(L) = S-.5*(ANG+EPSIL*(ANG-PI))
FM(MM) = FM(1)-(1.+EPSIL)*PI
DO 70 J = 1,NN
FP(MM,J) = FP(l,J)

70 FP(MM+1,J) = FP(2,J)
C     COMPUTE ARC LENGTH AND BODY FROM THE MAPPING BY INTEGRATION

XMIN = 0.
YMIN = 0.
YMAX = 0.
S = -SORT(FP(1,1))
TMP = CMPLX(S*COS(FM(1)),S*SIN(FM(1)))
DO 80 L = 1,MM
Q = SQRT(FP(L,1))
S = S+Q
ARCL(L) = S
S = S+Q
TT = CMPLX(Q*COS(FM(L)),Q*SIN(FM(L)))
TMP = TMP+TT
XC(L) = REAL(TMP)
YC(L) = AIMAG(TMP)
XMIN = AMIN1(XMIN,REAL(TMP))
YMIN = AMIN1(YMIN, AIMAG(TMP))
YMAX = AMAX1(YMAX,AIMAG(TMP))
TMP = TMP+TT

80 CONTINUE
CHD = 1./(.5*XC(MM)-XMIN)
IC = (YMAX-YMIN)*CHD
DO 90 L = 1,MM
ARCL(L) = CHD*ARCL(L)
XC(L} = CHD*(XC(L)-XMIN)

90 YC(L) = CHD*YC(L)
CHD = CHD/(.5*DT)
lF (NDES.GE.0) RETURN
IF (ABS(FSYM).GT.5.) GO TO 100
ANGO= -RAD*88(1)
WRITE (N#,120) TC,ANGO
IF (N2.NE.N4) WRITE (N2,120) TC,ANGO
IF (MODE.EQ.0) ALP = (1.+BET)*CL/(8.*PI*CHD)-88(1)
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100 CALL COSI
RETURN

120 FORMAT (32HOTHE THICKNESS TO CHORD RATIO lS ,F6.4//1OH THE ANGLE
1 17H OF ZERO LIFT IS ,F6.3,8H DEGREES)
END

SUBROUTINE SPLIF (N, S,F,FP,FPP,FPPP,KM,VM,KN, VN)
C     SPLINE FIT - SUBROUTINE CONTRIBUTED BY ANTHONY JAMESON
C     GIVEN S AND F AT N CORRESPONDING POINTS,COMPUTE A CUBIC SPLINE
C     THROUGH THESE POINTS SATISFYING AN END CONDITION IMPOSED ON
C     EITHER END. FP,FPP,FPPP WILL BE THE FIRST,SECOND AND TH1RD
C     DERIVATIVE RESPECTIVELY AT EACH POINT ON THE SPLINE
C     KM IS THE DERIVATIVE IMPOSED AT THE START OF THE SPLINE
C     VM WILL BE THE VALUE OF THE DERIVATIVE THERE
C     KN IS THE DERIVATIVE IMPOSED AT THE END OF THE SPLINE
C     VN WILL BE THE VALUE OF THE DERIVATIVE THERE
C     KM,KN CAN TAKE VALUES 1,2, OR 3
C     S MUST BE MONOTONIC

DIMENSION S(1), F(1), FP(1), FPP(1), FPPP(1)
K=1
M=1
I=M
J = M+K
DS = S(J)-S(I)
D = DS
IF (DS.EQ.0.) CALL ABORT
DF = (F(J)-F(I))/DS
IF (IABS(KM)-2) 10,20,30

10 U = .5
V = 3.*(DF-VM)/DS
GO TO 50

20 U = 0.
V = VM
GO TO 50

30 U = -1.
V = -DS*VM
GO TO 50

4 0 I=J
J = J+K
DS = S(J)-S(I)
IF (D*DS.LE.0.) CALL ABORT
DF = (F(J)-F(I))/DS
8 = 1./(DS+DS+U)
U = 8*DS
V = 8*(6.*DF-V)

50 FP(I) = U
FPP(I) = V
U = (2.-U)*DS
V = 6.*DF+DS*V
IF (J.NE.N) GO TO 40
IF (KN-2) 60,70,80

134



60 V = (6.*VN-V)/U
GO TO 90

70 V = VN
GO TO 90

80 V = (DS*VN+FPP(I))/(1.+FP(I))
9 0 8=V

D = DS
100 DS = S(J)-S(I)

U = FPP(I)-FP(I)*V
FPPP(I) = (V-U)/DS
FPP(I) = U
FP(I) = (F(J)-F(I))/DS-DS*(V+U+U)/6.
V=U
J=I
I   =   I-K
IF (J.NE.M) GO TO 100
FPPP(N) = FPPP(N-1)
FPP(N) = 8
FP(N) = DF+D*(FPP(N-1)+B+B)/6.
IF (KM.GT.0) RETURN

C     IF KM IS NEGATIVE COMPUTE THE INTEGRAL IN FPPP
FPPP(J) = 0.
V = FPP(J)

105 1=J
J = J+K
DS = S(J)-S(I)
U = FPP(J)
FPPP(J) = FPPP(I)+.5*OS*(F(I)+F(J)-DS*DS*(U+V)/12.)
V=U
IF (J.NE.N) GO TO 105
RETURN
END

SUBROUTINE INTPL (NX,SI,FI,S, F, FP,FPP,FPPP)
C     GIVEN S,F(S) AND THE FIRST THREE DERIVATIVES AT A SEl OF POINTS
C     FIND FI(SI) AT THE NX VALUES OF SI BY EVALUATING THE TAYLOR SERIES
C     OBTAINED BY USING THE FIRST THREE DERIVATIVES

DIMENSION SI(1), FI(1), 5(1), F(1), FP(1), FPP(1), FPPP(1)
DATA PT/.33333333333333/
J=0
DO 30 I = 1,NX
VAL = 0.
SS = SI(I)

10 J = J+1
TT = S(J)-SS
IF (TT) 10,30,20

20 J = MAXO(l,J-1)
SS = SS-S(J)
VAL = SS*(FP(J)+.5*SS*(FPP(J)+SS*PT*FPPP(J)))

30 FI(I) = F(J)+VAL
RETURN
END
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SUBROUTINE CONJ (N, F,G, X,CN,SN)
C     CONJUGATION BY FAST FOURIER TRANSFORM
C     GIVEN THE REAL PART F OF AN ANALYTIC FUNCT1ON ON THE UNIT CIRCLE
C     THE IMAGINARY PART G IS CONSTRUCTED

COMPLEX F,G,EIV,EIT
DIMENSION F(1),G(1),X(1), CN(1),SN(1)
DATA PI/3.14159265358979/
L         = N/2
DX = 1./FLOAT(L)
EIV = CMPLX(COS(PI*DX),SIN(PI*DX))
DO 2 I= 1, L

2 G(I) = F(I)
CALL FFORM(L,G, X,CN,SN)
G(1) = 0.
I=1
DO 10 J = 1,L,2
EIT = CMPLX(SN(I)*DX,CN(I)*DX)
I = I+1
G(J) = G(J)*EIT

10 G(J+1) = G(J+1)*EIT*EIV
DO 22 I=l, L

22 SN(I) = -SN(I)
CALL FFORM(L,G, X, CN, SN)
DO 32 I=l, L

32 SN(I) = -SN(I)
EIV = CMPLX(AIMAG(G(L)),REAL(G(1)))
I=L

40 G(I) = CMPLX(AIMAG(G(I-1)),REAL(G(I)))
I = I-1
lF (I.GT.1) GO TO 40
6(1) = EIV
RETURN
END

SUBROUTINE FOUCF(N,G,X, A, B)
C     FOURIER COEFFICIENTS BY FAST FOURIER TRANSFORM

COMPLEX G, EIV,QP, X,GK
DIMENSION G(1),X(1), A(1),8(1)
DATA PI/3.14159265358979/
L         = N/2
V         = PI/L
EIV = CMPLX(COS(V),SIN(V))
ENI = 1./FLOAT(N)
CALL FFORM(L, G,X, A, 8)
GK = 0.
I=1
DO 5 J= 1,L,2
X(J) = CMPLX(B(I),A(I))
X(J+1) = X(J)*EIV

5 I = I+1
K=L
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DO 10 J = 1,L
QP = GK-CONJG(G(J))
GK = GK+CONJG(G(J))-UP*X(J)
A(J) = -REAL(GK)*ENI
8(J) = AIMAG(GK)*ENI
GK = G(K)

10 K = K-1
A(L+1) = -8(1)
8(1) = 0.
8(L+1)
RETURN
END

SUBROUTINE FFORM(N, F,X, CN, SN)
C     FAST FOURIER TRANSFORM
C     INPUT ARRAY F WITH REAL AND IMAGINARY PARTS lN ALTERNATE CELLS
C REPLACED BY ITS FOURlER TRANSFORM

COMPLEX F(1),Xll),W
DIMENSION CN(1),SN(1)
IF (N.LT.2) RETbRN
NS = 1
NR = 2
N Q=N

C     SET THE SINES AND COSINES
PI=3.14159265356979
DT = (PI+PI)/FLOAT(N)
IF((SN(1).EQ.0.).AND.(SN(2).EQ.SIN(DT))) GO TO 11
ANG = 0.
DO 5 J= 1,N
CN(J) = COS(ANG)
SN(J)=-SIN(ANG)

5 ANG = ANG+DT
11 DO 10 K = NR, N

IF (MOD(NQ,K).EQ.0) GO TO 21
10 CONTINUE
21 ND=NO/K

NS = NS*K
NR = K
IQ = 0
ID = 0
DO 22 I = 1,NS
DO 24 J = 1,ND
L = IQ+J
LP=L+ND
M=ID
W =F(L)+F(LP)*CMPLX(CN(M+1),SN(M+1))
IF(NR.EQ.2) GO TO 24
L=LP
DO 26 K=3,NR
L * L+ND
M = M+ID
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IF (M.GE.N) M = M-N
26 W = W+F(L)*CMPLX(CN(M+1),SN(M+1))
24 X(ID+J) = W

ID = ID+ND
1Q=IQ+NQ
IF(IQ.GE.N) IQ=IQ-N

22 CONTINUE
NQ = ND
IF (ND.GT.1) GO TO 61
DO 32 K = 1,N

32 F(K) = X(K)
RETURN

61 DO 60 K = NR,N
IF (MOD(NQ,K).EC.0) GO TO 71

60 CONTINUE
71 ND=NQ/K

NS = NS*K
NR = K
IQ = 0
ID = 0
DO 72 I = 1,NS
DO 74 J = 1,ND
L = 10+J
LP=L+ND
M=ID
W=X(L)+X(LP)*CMPLX(CNCM+1),SNCM+1))
IF(NR.EQ.2) GO TO 74
L=LP
DO 76 K=3,NR
L = L+ND
M = M+ID
IF (M.GE.N) M = M-N

76 W = W+X(L)*CMPLX(CN(M+1),SN(M+1))
74 F(ID+J) = W

ID = ID+ND
IQ=IO+NQ
IF(IQ.GE.N) IQ=IQ-N

72 CONTINUE
NQ =- ND
IF (ND.GT.1) GO TO 11
RETURN
END

FUNCTION INDEXR(X,ARRAY, N)
DIMENSION ARRAY(1)
S = ABS(X-ARRAY(N))
DO 10 L = 1,N
IF (ABS(X-ARRAY(L)).GT.S) GO TO 10
INDEXR = L
S = ABS(X-ARRAY(L))

10 CONTINUE
RETURN
END
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SUBROUTINE GTURB(DELMAX,DELBP,CPO,BCP,SL,RDEL,RBCP)
COMMON/FL/FLUXT4,(04,CDW, INDCD
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)

1 ,RP{31),RPP(31),R(31),RS(31),RI(31),AA(162),BB(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD,EM,ALP,RN, PCH, XP,TC,CHD,DPHI,CL, RCL,YR
1 ,XA,YA,TE,DT,DR, DELTH,DELR,RA,DCN,DSN, RA4,EPSIL,QCRIT,Cl,(2
2 ,(4,(5,(6,(7,BET,BETA, FSYM, XSEP, SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ,ITYP,MODE,IS,NFC,NCY,NRN, NG, IDIM,N2,N3,N4,NT, IXX
4 ,NPTS,LL, I,LSEP,M4,NEW,EPSl,NCES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NOPT,CSTAk,REM,DEP, QINF,TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,OPL,QPU
REAL MACH,MACHN,NEW,MACHS
DIMENSION HP(162),SEPP(162),CPP(162),THETAP(162),DELP(162)
1  ,DELX(1),TD(1)
DIMENSION H(1),THETA(1),DELS(1),XX(1),YY(1),MACHN(1)
1 ,SEPR(1),CPX(1),DSDT(1),S(1),MACHS(1),ANGNEW(1)
EQUIVALENCE (MACHN(1),A(1)) ,(H(1),FP(1,6)),(THETA(1),FP(1,8))

1          ,(XX(1),FP(1,3 )),(YY(1),FP(1,5)),(DELS(1),FP(1,10))
2,(ANGNEW(1),FP(1,24)),(SEPR(1),FP(1,14)),(CPX(1),PHIR(1))
3 ,(5(1),FP(1,16)),(MACHS(1),FP(1,28)),(DSDT(1),FP(1,30))
4 ,(DELX(1),FP(1,12)),(TD(1),FP(1,20))
CP(Q) = C5*((C4/(1.+C2*Q*Q))**C7-1.)
QSX(Q) = (C4-(1.+Q/C5)**(1./C7))/C6
MACH(Q) = SQRT (Q/(Cl-(2*Q))
DATA ISW/0/,CDF/0./,XPLT/.5/,XFAC/100./
IF (NDES.GE.1) GO TO 5
DO 10 J = 1,NN
PHI(MM, J) = PHI(l,J)+DPHI

10 PHI(MM+1,J) = PHI(2, J)+DPHI
5 IF (ISW.EQ.0 .AND.CSTAR.EQ.100.) CALL GOPLOT(NRN)

C     COMPUTE AND STORE CP CRITICAL
CPX(MM+1) = CP(1.)

C     ISX SET TO 1 FOR FSYM=1. AND FSYM=3 IF FLOW HAS NOT BEEN COMPUTED
ISX = (NCY+1)*CITYP-3)*ABS(FSYM+10.)+.2
IF (ISX.NE.1) GO TO 30
M 4 = N 3
FSYM = 0.
ALP = 0.
XSEP = AMAX1(0.,XSEP-1.)
QS = A(MM)
DO 20 L = 1,MM
XOLD(L) = XC(L)
YOLD(L) = YC(L)
MACHN(L) = MACH(A(L))

20 CPX(L) = CP(MACHN(L))
IF ((ABS(YC(MM)-YC(1)).LE.1.E-5).AND.(IABS(NRN).GT.999)) GO TO 50
GO TO 110

30 DO 40 L = 2,M
U = (PHI(L+1,1)-PHI(L-1,1))*DELTH-SI(L)
QS = (U*U)/FP(L,1)
MACHN(L) = MACH(QS)
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40 CPX(L) = CP(MACHN(L))
MACHN(MM) = .5*(MACHN(2)+MACHN(M})
MACHN(1) = MACHN(MM)
CPX(1) = CP(MACHN(1))
CPX(MM) = CPX(1)
QS=QSX(CPX(MM))
IF((INDCD.EQ.1).AND.(FSYM.EQ.7)) GO TO 50
IF (FSYM.EQ.6.) GO TO 60
IF ((FSYM.LE.5.).OR.(ITYP.LE.2)) GO TO 50

C     ADVANCE PLOTTER PAPER TO THE NEXT BLANK PAGE
IF(XPLT.GT..5) CALL PLOT(12.0*FLOAT(INT((20.2+XPLT)/12.)),0.,-3)
XPLT = .5

50 CALL GETCP(CDF)
IF(INDCD.EQ.1) ISW=1
IF(INDCD.EQ.1) RETURN
CALL GOPRIN (HP,THETAP, SEPP,CPP,DELP,XTRANS)
IF (ISX.EQ.1) CALL EXIT
ISW = 1
RETURN

60 DO 70 L = 1,MM
70 CPP(L) = CPX(L)

IF((ISW.EQ.0).OR.(FSYM.NE.6.)) GO TO 90
C     FIND THE BASE PRESSURE

DELBP = 10.
CPO = CP(MACHN(IXX-1))
DO 80 L = IXX,M
CPN = CP(MACHN(L))
DELBP = AMIN1(DELBP,CPN-CPO)

80 CPO = CPN
BCP = BCP+RBCP*DELBP

90 ISW = 1
PCH = ABS(PCH)
IF (LSEP.GE.MM) GO TO 110

C     MODIFY THE MACH DISTRIBUTION
CPO = CP(MACHN(LSEP))
SEPX = XC(LSEP)
SL = (BCP-CPO)/(XC(MM)-SEPX)
DO 100 L = LSEP,MM
CPP(L) = CPO+SL*(XC(L)-SEPX)

100 MACHN(L) = MACH(QSX(CPP(L)))
110 KQMIN = 1

KQMAX = 1
QMIN = MACHN(1)
QMAX = QMIN
DARC = TP/FLOAT(NPTS-1)
DO 115 L = 1, NPTS

115 H(L) = FLOAT(L-1)*DARC
H(NPTS) = TP
DO 116 L = 1, M

116 YY(L) = FLOAT(L-1)*DT
YY(MM) = TP
CALL SPLIF (MM,YY,ARCL,DSDT,CO,TD, 3,0.,3,0.)
CALL INTPL (NPTS,H, S,YY,ARCL,DSDT,CO,TD)
S(NPTS) = ARCL(MM)
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CALL SPLIF (MM,ARCL,MACHN, DSDT, CO, TD, 3,0.,3,0.)
CALL INTPL(NPTS,S ,MACHS,ARCL,MACHN,OSDT,CO,TD)
CALL SPLIF (MM,ARCL,XC,DSDT,CO, TD, 3,0.,3,0.)
CALL INTPL (NPTS,S,XX, ARCL,XC,DSDT,CO,TD)
DO 120 L = 1,NPTS
IF (MACHS(L).GT.QMAX) KQMAX = L
IF (MACHS(L).LT.QMIN) KQMIN = L
QMIN = AMIN1(MACHS(L),QMIN)
QMAX = AMAX1(MACHS(L),QMAX)
SEPR(L) = 0.
H(L) = 0.
DELS(L) = 0.

120 THETA(L) = 0.
IF (PCH.LT.0.) GO TO 140
KQMAX = KQMIN+INDEXR(PCH,XX(KQMIN+1),NPTS-KQMIN)
IF (KQMAX.GE.NPTS) CALL ABORT

140 CALL NASHMC (KQMAX,NPTS)
XTRANS = PCH
IF (PCH.LT.0) XTRANS = XX(KOMAX)
KQBOT = INDEXR(XTRANS, XX,KQMIN)
IF (KQBOT.LE.1) CALL ABORT
CALL NASHMC (KQBOT, 1)
FAC=5(4)/(S(4)-5(2))
THETA(1)=FAC*THETA(2)+(1.-FAC)*THETA(4)
H(1)=FAC*H(2)+(1.-FAC)*H(4)
DELS(1)=H(1)*THETA(1)
IF(XSEP.GE.0.) GO TO 141
FAC=(S(NPTS-3)-S(NPTS))/(S(NPTS-3)-S(NPTS-1))
THETA(NPTS)=FAC*THETA(NPTS-1)+(1.-FAC)*THETA(NPTS-3)
H(NPTS)=FAC*H(NPTS-1)+(1.-FAC)*H(NPTS-3)
DELS(NPTS)=H(NPTS)*THETA(NPTS)

141 CONTINUE
C     COMPUTE THE SKIN FRICTION DRAG

Q = SQRT(OS)
RT = (Cl-(2*OS)/(Cl-C2)
HBT = CH(NPTS)+1.)*(1.-(2*QS/Cl)-1.
HBB = (H(l)+1.)*(1.-C2*QS/Cl)-1.
CDF = 2.*THETA(NPTS)*0**(.5*( HBT +5.))*RT**3
CDF = COF+2.*THETA(1)*Q**(.5*( HBB+5.))*RT**3
IF (ISX.EQ.1) GO TO 200

C     MAKE DISPLACEMENT MONJTONE INCREASING ON THE UPPER SURFACE
DO 170 L = KQMAX, NPTS
IF (DELS(L+1).LT.DELS(L)) DELS(L+1) = DELS(L)

170 CONTINUE
C     LOWER SURFACE - FIND WHERE DELS STARTS DECREASING
C     TREAT THE LOWER SURFACE LIKE THE UPPER SURFACE IF XSEP.LT.0

XPC = .60
IF (XSEP.LT.0.) XPC = 2.
J = KQBOT

180 J = J-1
IF (DELS(J-1).LT.DELS(J)) GO TO 185
IF (J.GE.2) GO TO 180
GO TO 200

185 IF (XX(J).GT.XPC) GO TO 190

141



DELS(J-1) = DELS(J)
GO TO 180

C     DISPLACEMENT MUST STAY MONOTONE DECREASING
190 J = J-1

IF (DELS(J-1).GT.DELS(J)) DELS(J-1) = DELS(J)
IF (J.GT.2) GO TO 190

C     SMOOTH DELS  IS  TIMES
200 IF (IS.LE.0) GO TO 220

DO 210  I = 1,IS
OLD = DELS(1)
DO 210 L = 3, NPTS
NEW = DELS(L-1)
DELS(L-1) = .25*(OLD+NEW+NEW+DELS(L))

210 OLD = NEW
220 XPLT = XPLT+.5

FAC=(S(NPTS-1)-S(NPTS))/(S(NPTS-1)-S(NPTS-2))
DELS(NPTS)=FAC*DELS(NPTS-2)+(1.-FAC)*DELS(NPTS-1)
IF(XSEP.GE.0.) GO TO 221
FAC=(S(2)-S(1))/(5(2)-S(3))
DELS(1)=FAC*DELS(3)+(1.-FAC)*DELS(2)

221 CONTINUE
IF (ISX.EQ.1) GO TO 260
YFAC = 10./S(NPTS)
DH = CH(KQMAX+1)-H(KUBOT-1))/ FLOAT(2+KUMAX-KWMIN)
FAC = ARCOLD(NT)/S(NPTS)
IF(XPLT.LT.1.2) CALL SYMBOL(.35,8.74,.14,55HDISPLACEMENT THICKNESS

1 AT EACH BOUNDARY LAYER ITERATION,270.,55)
CALL PLOT (XPLT+XFAC*DELS(1),10.5,3)
DO 230 L = 1, NPTS
CALL PLOT(XPLT+XFAC*DELS(L),10.5-YFAC*S(L),2)
IF ((L.GE.KQBOT).AND.(L.LE.KQMAX)) HIL) = H(L-1)+DH

230 YY(L) = S(L)*FAC
YY(NPTS) = ARCOLD(NT)

C     DELX WILL BE BOUNDRY LAYER DISPLACEMENT AT NT POINTS
CALL SPLIF(NPTS,YY,DELS,DSDT,CO,TD,3,0.,3,0.)
CALL INTPL(NT,ARCOLD,DELX,YY,DELS,DSOT,CO, TD)

C     THE FOLLOWING ARE BEING COMPUTED FOR FUTURE PRINT OUT
CALL SPLIF(NPTS,S,DELS,DSDT,CO,TD,3,0.,3,0.)
CALL INTPL(MM, ARCL, DELP,S,DELS,DSDT,CO, TD)
CALL SPLIF (NPTS,S,H,DSDT,CO,TD,3,0.,3,0.)
CALL INTPL(MM,ARCL,HP,S,H,DSDT,CO,TD)
CALL SPLIF(NPTS,S,THETA,DSOT,CO, TD,3,0.,3,0.)
CALL INTPL (MM,ARCL,THETAP,S,THETA, OSDT,CO, TD)
CALL SPLIF(NPTS,S, SEPR,DSDT,CO, TD, 3,0.,3,0.)
CALL INTPL(MM,ARCL, SEPP,S, SEPR,DSDT,CO,TD)

C     GET THE SLOPES FOR THE OUTER AIRFOIL AT CORRESPONDING POINTS
DO 240 L = 1,MM
DDEL = RDEL*(DELP(L)-OSUM(L))
DELP(L) = DDEL
DSUM(L) = DSUM(L)+DDEL

240 S(L) = FAC*ARCL(L)
S(MM) = ARCOLD(NT)
CALL SPLIF(MM,S,FM, DSDT,CO,TD,3,0.,3,0.)
CALL INTPL(NT,ARCOLD, ANGNEW,S,FM,DSDT,CO,TD)
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DELMAX = 0.
DO 250 L = 1,NT
DDEL = DELX(L)-DELOLD(L)
DELMAX = AMAX 1(DELMAX, ABS(DDEL))
DY = DELOLD(L)+RDEL*DDEL
ANG = .5*(ANGOLD(L)+ANGNEW(L))
XX(L)=XOLD(L)
YY{L)=YOLD(L)+DY/COS(ANG)

250 DELOLD(L) = DY
ISS = IS
IS = -1
IF (ITYP.EQ.99) CALL GOPRIN (HP,THETAP,SEPP,CPP,DELP, XTRANS)
CALL AIRFOL
IS = ISS
FSYM = 7.
RETURN

260 DO 270 L = 1, MM
ARCOLD(L) = ARCL(L)
CPP(L) = CPX(L)

270 ANGOLD(L) = FM(L)
CALL SPLIF{NPTS,S,DELS,DSDT,CO,TD,3,0.,3,0.)
CALL INTPL(MM,ARCL, DSUM,S,DELS,DSDT, CO, TD)
CALL SPLIF(NPTS,S,SEPR, DSDT, CO, TD,3,0.,3,0.)
CALL INTPL (MM,ARCL,SEPP,S,SEPR,DSDT,CO,TD)
CALL SPLIF (NPTS,S, THETA, DSDT,CO,TD,3,0.,3,0.)
CALL INTPL (MM, ARCL,THETAP,S, THETA, DSDT,CO,TD)
CALL GOPRIN (HP, THETAP,SEPP,CPP,DELP,XTRANS)
NT = MM
CALL GETCP(CDF)
IF (JK.LE.-1 ) CALL PLOT (0.,0.,999)
CALL EXIT
END

SUBROUTINE GOPRINCH,THETA,SEP,CPP,DEL,XTR)
REAL MACHN
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)

1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC{162),YC(162),FM(162),ARCL(162),DSUM(182)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD, EM,ALP,RN,PCH, XP,TC,CHD,DPHI,CL,RCL,YR

1 ,XA,YA, TE,DT,DR, DELTH, DELR, RA, DCN,DSN,RA4,EPSIL,QCRIT,Cl,(2
2 ,(4,(5,(69(7,BET, BETA, FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK,IZ, ITYP, MODE,IS,NFC,NCY,NRN, NG, IDIM, N2,N3,N4,NT, 1XX
4 ,NPTS,LL,I,LSEP,M#,NEW,EPSl,NDES,XLEN,SCALQI
5 ,SCALQO, N6,GAMMA, NOPT,CSTAR, REM,DEP,OINF,TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU
DIMENSION DSDT(1),FPP(1),FPPP(1),H(1),SEP(1),THETA(1),CPP(1)

1 ,MACHN(1),CP(1),DEL(1),BL(4)
EQUIVALENCE (FPP(1),CO(1)),(FPPP(1),SI(1)),(DSDT(1),FP(1,31))
EQUIVALENCE (MACHN(1),A(1)),(CP(1),PHIR(1))
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DATA ION, IOFF,Z,SEPMAX/1,0,0.,.004/
SN = -2./ARCL(MM)
QMIN=MACHN(1)
DO 10 L = 1,M
QMIN=AMIN1(MACHN(L),QMIN)

10 ARCL(L) = ACOS(1.+SN*ARCL(L))
ARCL(MM) = PI
CALL SPLIF(MM,APCL,FM,DSOT,FPP, FPPP, 1,0.,1,0.)
DSDT(1) = FPP(1)*1.E-5
DSDT(MM) = -FPP(MM)*1.E-5
DO 20 L = 1,MM
FPP(L) = RAD*FM(L)-180.

20 FPPP(L)= SN*DSDT(L)/AMAX1(1.E-5,SIN(ARCL(L)))
IF (FSYM.GT.5.) GO TO 120
IF (FSYM.EQ.0.) GO TO 60
WRITE (N4,310)

25 IF (FSYM.EQ.0) WRITE (N4,320) TTLE
IF (XP.EQ.0.) WRITE(N4,360) IOFF
IF (XP.NE.0.) WRITE(N4,660) IOFF
IF (XP.EQ.0.) GO TO 600
REWIND M4
READ (M4,555)
READ (M4,555)

555 FORMAT (1Hl)
600 DO 30 L = 1,MM

IF (XP.EQ.0.) GO TO 610
IF (MOD(L+1,55).EQ.0) WRITE (N4,660) ION
READ(M4,556) DUM,DUM

556 FORMAT(2F10.4)
WRITE(N4,670) L,XC(L},YC(L),FPP(L),FPPPCL),MACHN(L),CP(L),DUM
GO TO 30

610 IF (MOD(L+1,55).EO.0) WRITE (N4,360) ION
WRITE(N4,260) L,XC (L),YC (L),FPP (L),FP-P P (L),MACHN (L),CP (L)

30 CONTINUE
670 FORMAT (I14,2F9.5,2FB.2,3F9.4)

C     RESTORE QUANTITIES TO VALUES THEY HAD UPON ENTERING THIS ROUTINE
40 DO 50 L = 1,MM

ARCL(L) = (COS(ARCL(L))-1.)/SN
50 FP(L,NN) = 1.

CALL COSI
RETURN

60 RNX = .1*AINT(RN*1.E-5)
IF ((ABS(YC(MM)-YC(1)).LE.1.E-5).AND.(lABS(NRN).GT.999)) GO TO 25
WRITE (N4,390) TTLE,RNX
WRITE (N4,330) IOFF
IF ( JK.GE.0 ) GO TO 80
CALL PLOT (2.,0.,-3)
ENCODE (30,370,TTLE) EM,CL,TC
CALL SYMBOL (1.2,.7,.14,TTLE,0.,30)
ENCODE (20,380,TTLE) RNX
CALL SYMBOL (1.5,1.0,.14,TTLE,0.,20)
CALL PLOT(PLTSZ*XC(1),5.+PLTSZ*YC(1),3)
DO   70  L  =  2, MM

70 CALL PLOT(PLTSZ*XC(L),5.+PLTSZ*YC(L),2)
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IPEN = 3
80 DO 100 L = 1,MM

XS = XOLD(L)+DSUM(L)*SIN(ANGOLD(L))
YS = YOLD(L)-DSUM(L)*COS(ANGOLD(L))
XC(L) g XS
YC(L) = YS
IF (JK.LE.-1) CALL PLOT(PLTSZ*XS, 5.+PLTSZ*YS,IPEN)
IPEN = 2
IF (MOD(L+3,55).EQ.0) WRITE (N4,330) I[N
IF (XOLD(L).GT.XTR) GO TO 90
TRANS = 1H
IF (MACHN(L).EQ.QMIN) TRANS = 10HSTAGNATION
IF ((XOLD(L+1).GT.XTR).OR.(XOLD(L-1).GT.XTR)) GO TO 85
IF ((XOLD(L+2).GT.XTR).OR.(XOLD(L-2).GT.XTR))TRANS= 10HTRANSITION

85 WRITE (N4,340) XOLD(L),YOLD(L),FPP(L),FPPP(L),CPP(L),TRANS,XS,YS
GO TO 100

90 WRITE (N4,350) XOLD(L),YOLD(L),FPP(L),FPPP(L),CPP(L),THETA(L)
1 ,SEP(L),XS,YS

100 CONTINUE
IF (XP.EQ.0.) NRN = -IABS(NRN)
XP = -ABS(XP)
RETURN

120 WRITE (N4,310)
WRITE (N4,300) IOFF
I=1
YSEP = ABS(XSEP)
IF (XSEP.GT.0.) YSEP = 2.
DO 150 L = 1, MM
IF (MOD(L,55).EQ.0) WRITE (N4,300) ION
IF (XC(L).GT.XTR) GO TO 130
TRANS = 1H
IF (MACHN(L).EQ.QMIN) TRANS = 10HSTAGNATION
IF ((XC(L+1).GT.XTR).OR.(XC(L-1).GT.XTR)) GO TO 125
I = -1
YSEP = ABS(XSEP)
IF ((XC(L+2).GT.XTR).OR.(XC(L-2).GT.XTR)) TRANS = 10HTRANSITION

125 WRITE (N4,290) L,XC(L),YC(L),FPP(L),FPPP(L),MACHN(L),
1 CP(L),CPP(L),Z,Z,TRANS,L
GO TO 150

130 BL(1) = 1H
BL(2) = 1H
BL(3) = 1H
BL(4)= 1H
If (L.EQ.LSEP) BL(1) = 2HLS
IF((SEP(L).GT.SEPMAX).AND.(SEP(L+I).LT.SEPMAX)) BL(2)= 2HCS
IF (L.EQ.IXX) BL(3)= 2HLM
IF((XC(L).GE.YSEP).AND.(XC(L+I).LT.YSEP}) BL(4) = 2HLP
WRITE (N4,280) BL ,L,XC(L),YC(L),FPP(L),FPPP(L),MACHN(L),

1 CP(L),CPP(L),THETA(L),DSUM(L),SEP(L),H(L),DEL(L),L
150 CONTINUE

GO TO 40
260 FORMAT(I14,2F9.5,2F8.2,2F9.4)
280 FORMAT(3*, 4A2, I5,2F9.5,F9.2,F8.2,F8.4,2F9.4,F9.5,F9.5,99.5, F7•2,

l E 9.2, I 5 )
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290 FORMAT (I16,2 F9.5,F9.2,F8.2, F8.4,2F9.4,2F9.5,8*,A10,7X, I 5)
300 FORMAT(Il,14XlHL5X2HXS,7*,2HYS, 7X, 3HANG, 4*,5HKAPPA,4X,4HMACHEX2Hr

1 ,6X3HCPl, 4X5HTHETA, 5X4HDELS, 6X3HSEP,6X1HH,6X2HDD,6X1HL/)
310 FORMAT(1Hl, 15X,4OHLOWER SURFACE TAIL TO UPPER SURFACE TAIL )
320 FORMAT(1Hl/ 17X26HLISTING OF COORDINATES FOR,2*,4A4)
330 FORMAT(Il /11XlHX,8X,1HY,6*,3HANG,4*,5HKAPPA,6X, 2HCP,5X,

1 5HTHETA,5X, 3HSEP,6*,2HXS,7X,2HYS/)
340 FORMAT (F14.5,F9.5,FB.2,F8.2,F9.4,4*,A10,4X,ZF9.51
350 FORMAT (F14.5,F9.5,F8.2,F8.2, F9.4,4F9.5)
360 FORMAT (Il/12X1HL,6X,1HX, 8X, lHY,6X, 3HANG,4X5HKAPPA4X4HMACHoX2HCP/)
370 FORMAT ( 2HM=,F4.3,4*,3HCL=,F5.3,4X, 4HT/C=,F4.3)
380 FORMAT (4H RN=,F4.1,9H MILLION )
390 FORMAT(1Hl/ 9X26HLISTING OF COORDINATES FOR,2X,4A4 ,4X,3HRN=,

1 F4.1,8H MILLION )
660 FORMAT (Il/12X1HL,6X,lHX, 8X, 1HY,6X,3HANG,4X5HKAPPA4X4HMACH6X2HCP,

1 8X, 4HDATA/)
END

SUBROUTINE NASHMC (il,KZ)
C     COMPUTE THE BOUNDRY LAYER FROM POINT Kl TO K2
C     K3 WILL BE THE SEPARATION POINT

COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD,EM,ALP,RN,PCH, XP,TC,CHD, DPHI,CL,RCL,YK
1 ,XA,YA,TE,DT,DE, DELTH, DELR,RA,DCN,DSN, RA4,EPSIL,QCRIT,Cl,(2
2 ,(4,(5,Cb,(7,BET,BETA, FSYM,XSEP,SEPM, TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ,ITYP,MODE,IS,NFC,NCY,NRN,NG, IDIM,N2,N3,N4,NT,IXX
4 ,NPTS,LL,'I,LSEP,M4,NEW, EPSl,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA, NQPT,CSTAR, REM,DEP,QINF,TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ, QPL,CPU
DIMENSION MACHS(1),·H(1),THETA(1),SEPR(1),S(1),DELS(1),XX(1)
EQUIVALENCE(MACHS(1),FP(1,28)),(H(1),FP(1,6)),(THETA(1),FP(1,8))
EQUIVALENCE (SEPR(1),FP(1,14)),(DELS(1),FP(1,10)),(S(1),FP(1,16})
EQUIVALENCE (XX(1),FP(1,3))
REAL MH,MASQ,NU, MACHS
DATA TR,RTHO,TEl, TE2,SEPMAX,PIMIN,PIMAX /.3424,320.,5.E-3,5.E-5,
1 .004,-1.5,1.E4/
GAM1 = .5/C2
CSIINF = C4
INC = ISIGN(l,K2-Kl)
YSEP = ABS(XSEP)
IF ((XSEP.GT.0.).AND.(INC.LT.0)) YSEP = 1.
SEPMAX = SEPM
GE = 6.5
L = Kl
DS = ABS(S(L)-S(L-INC))

10 LP = L+INC
MH = .5*(MACHS(L)+MACHS(LP))
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MHSO = MH*MH
CSIH = 1.+C2*MHSQ
DSOLD = DS
DS = ABS(S(LP)-5(L))
DQDS = (MACHS(LP)-MACHS(L))/(DS*MH*CSIH)
T = CSIINF/CSIH
RHOH = T**GAM 1
NU = T*(1.+TR)/(RHOH*(T+TR))
RTH = RN*MH/(EM*NU)
IF (L.NE.Kl) GO TO 30
THETAH= RTHO/RTH
THT = THETAH

30 FC = 1.0+.066*MHSO-.008*MH*MHSQ
FR = 1.-.134*MHSO+.027*MHSQ*MH

C     DO AT MOST 200 ITERATIONS
DO 140 J = 1,499
RTAU= 1./(FC*(2.4711*ALOG(FR*RTH*THETAA)+4.75)+1.5*GE+1724./

1  (GE*GE+200.)-16.87)
TAU = RTAU*RTAU
HB = 1./(1.-GE*RTAU)
HH = (HB+1.)*(1.+.178*MHSO)-1.
SEP = -THETAH*DQDS
IF (SEP.LT.SEPMAX) GO TO 50
IF (XX(L).LT.YSEP) SEP = SEPMAX

50 PIE = HH*SEP/TAU
PIE = AMAX1(PIMIN,AMIN1(PIMAX,PIE))
G = 6.1*SORT(PIE+1.81)-1.7
T2 = ABS(G-GE)/GE
GE = G
DT2 = DT 1
0Tl = (HH+2.-MHSQ)*SEP+TAU
IF (J.EQ.1) GO TO 110
TI = ABS((DT1-DT2)/DT1)
IF ((TI.LT.TE2).AND.(T2.LT.TEl)) GO TO 130

110 THETAH = THT+.5*DT1*DS
140 CONTINUE
130 THETA(LP) = THT+DT1*DS

SEP = -THETAH*DODS
THETAH = THETA(LP)
THT = THETA(LP)
SEPR(L) = (SEPR(L)*DS+SEP*DSOLD)/(DS+DSOLD)
SEPR(LP) = SEP
H(L) = (H(L)*DS+HH*DSOLD)/(DS+DSOLD)
H(LP) = HH
DELS(L) = H(L)*THETA(L)
L = LP
IF (L.NE.K2) GO TO 10
H(K2)=H(KZ-INC)+(DS/DSOLD)*(H(KZ-INC)-H(K2-INC-INC))
SEPR(K2) = 2.*SEPR(K2)-SEPR(K2-INC)
DELS(K2) = H(K2)*THETA(K2)
H(Kl) = 0.
SEPR(Kl) = 0.
CALL NASHLS(K2)
DELS(K2-INC) = H(K2-INC)*THETACK2-INC)
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DELS(K2) = H(K2)*THETA(K2)
RETURN
END

SUBROUTINE TRI01(A,B,C,RHS,OUT, N, IDIM)
COMPLEX RHS,OUT
DIMENSION A(1},8(1),C(1)
DIMENSION GA(35),RHS(IDIM),OUT(35)
REC=1./8(1)
GA(1)=REC*C(1)
OUT(1)=REC*RHS(1)
DO 10 J=2,N
REC=1./(8(J)-A(J)*GA(J-1))
GA(J)=REC*C(J)

10  OUT(J)=REC*(RHS(J)-A(J)*OUT(J-1))
DO 20 JJ=2,N
J=N-JJ+1

20 OUT(J)=OUT(J)-GA(J)*OUT(J+1)
RETURN
END

SUBROUTINE SOLV1
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),0(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)

COMMON /A/ PI,TP, RAD,EM,ALP, RN, PCH, XP,TC,CHU,UPHI,CL, RCL,YR
1 ,XA,YA,TE,DT,DR,DELTH,DELR,RA,DCN, DSN, RA4, EPSIL,OCRIT,Cl,(2
2 ,C4,C5,C6,C7,BET,BETA, FSYM,XSEP, SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ,ITYP,MODE,IS,NFC,NCY,NRN, NG,IDIM,NZ,N3,N4,NT, IAX
4 ,NPTS,LL, I, LSEP,M4,NEW,EPSl,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NOPT,CSTAR,REM,DEP,QINF,TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU
COMPLEX FF,Fl,GG
DIMENSION CX(162),SX(162),FF(162),GG(162),Fl(31)
COMMON /SOL1/ 0(162,31)
IF(NEW.NE.1) GO TO 30
DO 1 I=1,M
CX(I)=COS((I-1)*DT)
SX(I)=SIN((I-1)*DT)

1 CONTINUE
NEW=0.
MMP=MM+1

30 CONTINUE
MA=M/2
MAl=MA+1
DO 2 J=l,N, 2
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CALL TWOFFT(M,Q(l,J),Q(l,J+1),FF,GG, CX,SX, 1)
DO 7 I=l,MAl
IM=M-I+3
Q(I,J)=REAL(FF(I))
Q(I,J+1)=REAL(GG(I))
Q(IM,J)=-AIMAG(FF(I))
Q(IM,J+1)=-AIMAG(GG(I))

7 CONTINUE
2 CONTINUE

HR=.5*DR
DO 3 J=l,N
D(J)=2.*RS(J)
T=RA*RA*R(J)
B(J)=T*(R(J)-HR)

3 C(J)=T*(R(J)+HR)
C(1)=D(1)
DO 4 I=l,MAl
IM=M-I+3
DO 5 J=l,N
A(J)=-D(J)-2.*(1.-CX(I))

5 FF(J)=CMPLX(Q(I,J),Q(IM,J))
CALL TRIDl(B, A,C,FF,Fl,N,162)
DO 8 J=l,N
Q(I,J)=REAL(Fl(J)}
Q(IM,J)=AIMAG(Fl(J))

8 CONTINUE
4 CONTINUE

DO 9 J=l,N, 2
DO 10 I=l,MAl
IM=M-I+3
FF(I)=CMPLX(Q(I,J),-Q(IM,J))
GG(I)=CMPLX(Q(I,J+1),-Q(IM,J+1))
FF(IM)=CMPLX(Q(I,J),0(IM,J))

10 GG(IM)=CMPLX(0(I,J+1),Q(IM,J+1))
CALL TWOFFT(-M, C(l,J),Q(l,J+1),FF,GG,CX, SX,1)

9 CONTINUE
DO 12 J=l,N
Q(MM,J)=Q(l, J)

12 Q(MMP,J)=Q(2, J)
RETURN
END

SUBROUTINE SWEEPl
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),0(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD, EM,ALP,RN, PCH, XP,TC,CHD,DPHI,CL,RCL,YR

1 ,XA, YA, TE,DT,DR,DELTH,DELR,RA,DCN, DSN, RA4, EPSIL,QCRIT,Cl,(2
2 ,(4,(5,(6,(7,BET,BETA, FSYM, XSEP,SEPM,TTLE(4),M,N,MM,NN, NSP
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3 ,IK,JK,IZ,ITYP,MODE,IS,NFC,NCY,NRN,NG, IDIM,NZ, N3,N4, NT, IAX

4 ,NPTS,LL,I,LSEP,M4,NEW,EPSl,NDES,XLEN, SCALQI
5 ,SCALQO,N6,GAMMA,NOPT,CSTAR, REM,DEP,gINF,TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU
COMMON /SOL1/ Q(162,31)
DATA Q/5022*0.0/
YR=0.
NSP=0
DO 10 J=l,NN
PHI(MM,J)=PHI(l,J)+DPHI
PHI(MM+1,J)=PHI(2,J)+DPHI

10 CONTINUE
TE=-2
DO 30 I=LL,MM
CALL MURMAN1
DO 100 J=l,N
Q(I,J)=D(J)

100 CONTINUE
30 CONTINUE

TE=2
I=LL

80 I=I-1
CALL MURMAN1
DO 60 J=l,N
Q(I,J)=D(J)

60 CONTINUE
IF(I.GT.2) GO TO 80
DO 61 J=l,N

61 0(1, J)=Q(MM, J)
210 FORMAT(5(2I4,Eli.8))

CALL SOLV1
200 FORMAT(5(I4,E16.8))

DO 110 I=l,M
DO 110 J=l,N

110 PHICI,J)=PHILI,J)+0(I,J)
DO 111 J=l, N

111 PHI(MM,J)=PHI(1,J)+DPHI
IF(RCL.EQ.0.) GO TO 90                                     -

YA=RCL*((PHICM,1)-(PHI(2,1)+DPHI) )*DELTH+SI(1))
IF(MODE.EQ.1) GO TO 90
IF (NDES.GE.0) GO TO 41
ALP=ALP-.5*YA
GO TO 42

41 88(1) = 88(1)-.5*YA
42 CALL COSI

GO TO 95
90 YA=TP*YA/(1.+BET)

DPHI=DPHI+YA
95 DO 97 L=l,M
97 PHICL,NN)=DPHI*PHIR(L)

IF(MODE.EQ.0) RETURN
DO 120 J=l,N
DO 120 L=l,M

120 PHI(L,J)=PHICL,J)+YA*PHIR(L)
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RETURN
END

SUBROUTINE MURMAN1
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),BB(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(152)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD,EM,ALP,RN,PCH, XP,TC,CHD,DPHl,CL,RCL,YR

1 ,XA,YA, TE,DT,DR, DELTH,DELR,RA,DCN,OSN,RA4,EPSIL,QCRIT,Cl,(2
2 ,(4,(5,Cb,C7,BET, BETA,FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ,ITYP,MODE,IS,NFC,NCY,NRN, NG, IDIM,N2, N3,N4,NT, IXX
4 ,NPTS,LL,I,LSEP,M4,NEW, EPSl,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NOPT, CSTAR, REM,DEP,QINF,TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,OPU
PHIO=PHI(I,2)-2.*DR*CO(I)
PHIYP=PHI(I,2)-PHI(I,1)
PHIYY=PHIYP+PHIO-PHICI,1)
PHIXX=PHICI+1,1)+PHICI-1,1)-PHICI,1)-PHICI,1)
PHIXM=PHI(I+1,1)-PHI(I-1,1)
PHIXP=PHI(I+1,2)-PHI(I-1,2)
IF(I.NE.MM) GO TO 10
D(1)=Cl*(PHIXX+RS(1)*PHIYY+RA4*CO(I))
D(1)=-D(1)/Cl
GO TO 40

10 U=PHIXM*DELTH-SI(I)
BQ=U/FP(I,1)
QS=U*BQ
J=1
IF(QS.LE.QCRIT) GO TO 30
D(1)=0.
GO TO 40

30 CONTINUE
CS=Cl-C2*QS
80=80*OS*(FP(I-1,1)-FPCI+1,1))
X=RA4*(CS+US)*CO(I)
CMQS=CS-QS
0(1)=CS*RS(1)*PhIYY+RI(1)*80+X+CMUS*PHIXX
6(1)=-D(1)/CS

40 CONTINUE
DO 60 J=2,N
PHIXX=PHICI+1,J)+PHICI-1,J)-PHI(l,J)-PHI(l,J)
DU=PHIXP
PHIXP=PHI(I+1,J+1)-PHI(I-l,J+1)
PHIXY=PHIXP-PHIXM
PHIXM=DU
DU=DU*DELTH
PHIYM=PHIYP
PHIYP=PHI(I,J+1)-PHI(I,J)
PHIYY=PHIYP-PHIYM
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VS=BQ*V*V

U=R(J)*DU-SI(I)
DV=R(J)*(PHI(I,J+1)-PHI(I, J-1))*DELR
V=DV*R(J)-CO(I)
RAV=R(J)*RA*V
BQ=1./FP(I,J)
BQU=BQ*U
US=BQU*U
UV=(BQU+BQU)*V

QS=US+VS
IF(QS.LE.QCRIT) GO TO 50
D(J)=0.
GO TO 60

50 CS=Cl-C2*QS
CMVS=CS-VS
CMUS=CS-US
UV1=.5*BQU*RAV
C(J)=RS(J)*CMVS
D(J)=RA4*((CMVS+US-VS)*DV-UV*DU)+RI(J)*OS*80*(U*(FPII-1,J)-FP(I+1,

1J))+RAV*(FP(I,J-1)-FP(I,J+1)))+CMUS*PHIXX-UV1*PHIXY+C(J)*PHIYY
D(J)=-D(J)/CS

60 CONTINUE
RETURN
END

SUBROUTINE TWOFFT(NS,F,G,ALP, BET,CN,SN, IDlM)
C     ABS(NS) IS THE NUMBER OF POINTS IN EACH ARRAY
C     DO FFT FOR F AND G OR REVERSE TRANSFORM FOR ALP AND BET
C     IF NS<0 THE REVERSE TRANSFORM IS PREFORMED
C     FUNCT.IONS F AND G ARE REPRESENTED BY ARRAYS OF THEIR VALUES
C     ALP AND BET ARE COMPLEX FOURIER COEFFICIENTS FOR F AND G
C     ALP(N) IS OF THE FORM A(N)-I*B(N)
C     CN AND SN ARE THE COSINE AND SINE ARRAYS
C     IDIM IS THE SKIP FACTOR BETWEEN POINTS IN F AND G

COMPLEX ALP,BET,X
DIMENSION F(IDIM,1),G(IDIM,1),ALP(1),BET(1),CN(1),SN(1)
N = IABSCNS)
L = N/2

C     SET UP AND DO COMPLEX TRANSFORM
IF (NS.LT.0) GO TO 20
DO 10 J = 1,N

10 ALP(J) = CMPLX(F(l,J),G(l,J))
GO TO 40

C     SET UP FOR REVERSE TRANSFORM
20 J=N+1

DO 30 K = 1,L
X =-CMPLX(AIMAG(BET(K))-REAL(ALP(K)),AIMAG(ALP(K))+REAL(BET(K)))
ALP(J)=X
X = CMPLX(REAL(ALP(K))+AIMAG(BET(K)),AIMAG{ALP(K))-REAL(BET(K)))
ALPCK)=X

30 J = J-1
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K=L+1
ALP(K) =1.*(CMPLX(REAL(ALP(K))+AIMAG(BET(K)),AIMAG(ALP(K))-REAL(BE

l T(K))))
40 CALL FFORM(N, ALP, BET,CN,SN)

C     NOW SEPARATE OUT THE REAL AND IMAGINARY PARTS
J=N
IF (NS.LT.0) GO TO 60
ENI=.5
DO 50 K = 1,L
X = CONJG(ALP(J))-ALP(K+1)
BET(K+1) =-ENI*CMPLX( AIMAG(X),REAL(X))
ALP(K+1) = ENI*(CONJG(ALP(K+1))+ALP(J))

50 J = J-1
BET(1) = (ENI+ENI)*AIMAG(ALP(1))
ALP(1) = (ENI+ENI)*REALIALP(1))
RETURN

60 DO 70 J = 1,N                       -
F(l,J) = REAL(ALP(J))/N

70 G(l, J) = -AIMAG(ALP(J))/N
RETURN
END

FUNCTION VLAYER(EM2, A, 8)
X=(EM2-A)/(B-A)
VLAYER = 0.
IF (X.LE.0.) RETURN
IF (X.GE.1.) GO TO 10
VLAYER 3.*X*X-2.*X*X*X
RETURN

10 VLAYER   1.
RETURN
END

SUBROUTINE NASHLS(K2)
C     QUADRATIC L.S. FIT H(K2-1),H(K2),SEPR(K2-1),SEPR(K2) USING
C     PREVIOUS 5 VALUES

COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)
1 ,RP(31),RPP(31),#(31),RS(31),FI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TF,RAD,EM,ALP,RN,PCH,XP,TC,CHD,DPHI,CL,RCL,YR
1 ,XA,YA, TE,DT,DR, DELTH, DELR,RA,DCN,DSN,RA4,EPSIL,QCRIT,Cl,02
2 ,(4,(5,(6,(7,BET,BETA, FSYM,XSIP,SEPM,TTLE(4),M,N,MM,NN, NSP
3 ,IK,JK, IZ,ITYP,MODE,IS,NFC,NCY,NRN,NG, IDIM,N2, N3.,N*,NT,1XX
4 ,NPTS,LL,I, LSEP,M4,NEW,EPSl,NDES,XLEN,SCALQI
5 ,SCALQO, N6,GAMMA,NOPT,CSTAR,REM,DEP,WINF,TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU
DIMENSION S(1),H(1),SEPR(1)
EQUIVALENCE (S(1),FP(1,16)),(H(1),FP(1,6)),(SEPR(i),FP(1,14))
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F(S) = Alll*S*S + 8111*5 + Clll
NLS = 5
XNLS = FLOAT(NLS)
LLS = NLS + 1
X 1 = 0•
X 2 = 0.
X 3 = 0.
X 4 = 0.
DO 10 L=2,LLS
DUM = S(K2-FLOAT(L*lAC))
X1 = X1 + DUM
X 2 = X 2 + DUM *DUM
X3 = X3 + DUM*DUM*DUM

10 X4 = X4 + DUM*DUM*DUM*DUM
Z211 = X2-Xl*Xl/XNLS
Z321 = X3-X2*Xl/XNLS
2422 = X4-X2*X2/XNLS
Yl = 0.
Y 2 = 0.
Y 3 = 0.
DO 20 L=2,LLS
DUM = S(K2-FLOAT(L*INC))
DUMM = H(K2-FLOAT(L*INC))
Yl = Yl + DUMM
Y2 = Y2 + DUMM*DUM

20 Y3 = Y3 + DUMM*DUM*DUM
Z2 = Y2-Yl*Xl/XNLS
Z3 = Y3-Yl*X2/XNLS
Alll = (Z3*Z211-Z2*Z321)/(Z422*2211-Z321*Z321)
8111 = (Z2-Alll*Z321)/Z211
Clll = (Yl-Alll*X2-8111*Xl)/XNLS
H(K2-INC) = F(S(K2-INC))
H ( K 2 ) = F ( S ( K 2 ) )

Yl = 0.
Y 2 = 0.
Y 3 = 0.
DO 30 L=2,LLS
DUM = S(K2-FLOAT(L*INC))
DUMM = SEPR(K2-FLOAT(L*INC))
Yl = Yl + DUMM
¥2 = Y2 + DUMM*DUM

30 Y3 = Y3 + DUMM*DUM*DUM
Z2 = Y2-Yl*Xl/XNLS
Z3 = Y3-Yl*X2/XNLS
Alll = (Z3*Z211-Z2*2321)/(Z422*Z211-Z321*2321)
8111 = (Z2-Alll*Z321)/Z211
Clll = (Yl-Alll**2-8111*Xl)/XNLS
SEPR(K2-INC) = f(S(K2-INC))
SEPR(K2) = F(S(K2))
RETURN
END
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SUBROUTINE INTPLI(MX, XI,FI,N, X,F,FP, FPP,FPPP)
DIMENSION *(1),F(1),FP(1),FPP(1),FPPP(1),XI(1),FI(1)
REAL NEW,LEFT
DATA TOL /1.E-9 /

C     XI(L) WILL SATISFY F(XI(L)) = FI(L) FOR L=1 T U ABS(MX)
C     F,FP,FPP,FPPP ARE THE FUNCTION AND DERIVATIVES AT THE X POINTS

NX =IABS(MX)
K=2
Ll = 1
NEW = X(1)
HN = F(1)
FVAL = FI(1)
IF (ABS(F(1)-FI(1)).GT.TOL) GO TO 5
Ll = 2
XI(1) = X(1)
IF (NX.EQ.1) RETURN

5 DO 100 L = Ll,NX
IF ((FVAL.NE.FI(L)).OR.(L.EQ.1)) GO TO 6
NEW = X(K)
FN = F(K)
IF (FP(K)*FP(K-1).GT.0.) GO TO 6
ROOT = SQRT(FPP(K-1)**2-2.*FP(K-1)*FPPP(K-1))
DX = -2.*FP(K-1)/(FPP(K-1)+SIGN(ROOT,FPP(K-1)))
NEW = X(K-1)+DX
FN =F(K-1)+DX*(FP(K-1)+DX*(.5*FPP(K-1)+DX*FPPP(K-1)/6.))

6 FVAL = FI(L)
SGN = F(K-1)-FVAL
IF (NEW.GT.X(K-1)) SGN = FN-FVAL
DO 10 J = K,N
IF(FP(J)*FP(J-1).LE.0.) GO TO 7
It (SGN*(F(J)-FVAL).LE.0.) GO TO 20
GO TO 10

7 ROOT = SURT(FPP(J-1)**2-2.*FP(J-1)*FPPP(J-1))
DX = -2.*FP(J-1)/(FPP(J-1)+SIGN(ROOT, FPP(J-1)))
RIGHT = X(J-1)+DX
LEFT = AMAX1(X(J-1),NEW+TOL)
IF (LEFT.GT.RIGHT) GO TO 10
F2 = .5*FPP(J-1)
F3 = FPPP(J-1)/6.
FN = F(J-1)+DX*(FP(J-1)+DX*(F2+DX*F3))
IF (SGN*(FN-FVAL).LE.0) GO TO 65

10 CONTINUE
IF (MX.GT.0) GO TO 11
MX = L-1
RETURN

11 PRINT 499,L,FI(L)
499 FORMAT C * TROUBLE AT *,15,3X,E16.6)

J=K
GO TO 100

20 OLD = AMAX1(X(J-1),NEW+TOL)
F2 = .5*FPP(J-1)
F3 = FPPP(J-1)/6.
START=OLD
DO 40 K = 1,10
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DX = OLD-X(J-1)
FPOLD = FP(J-1)+DX*(FPP(J-1)+.5*DX*FPPP(J-1))
IF (ABS(FPOLO).LE.TOL) GO TO 60
FN = F(J-1)+OX*(FP(J-1)+OX*(F2+DX*F3))
NEW = OLD-(FN-FVAL)/FPOLD
IF (NEW.LT.START) GO TO 60
NEW = AMIN1(NEW,X(J))
IF (ABS(NEW-OLD).LT.TOL) GO TO 90

40 OLD = NEW
CALL ABORT

60 RIGHT = X(J)
LEFT = OLD
IF (SGN*(FN-FVAL).GT.0.) GO TO 65
RIGHT = LEFT
LEFT = XI(L-1)
IF (L.EQ.1) LEFT = X(1)

65 DO 70  K = 1,50
IF ((RIGHT-LEFT).LE.TOL) GO TO 90
NEW = .5*(LEFT+RIGHT)
DX = NEW-X(J-1)
FN = F(J-1)+DX*(FP(J-1)+DX*(F2+DX*F3))
IF ((FN-FVAL)*SGN.LE.0.) GO TO 80
LEFT= NEW
GO TO 70

80 RIGHT = NEW
70 CONTINUE
90 XI(L) = NEW
100 K=J

MX = NX
RETURN
END

SUBROUTINE READOS
C     SUBROUTINE TO READ IN THE INPUT PRESSURE DISTRIBUTION

COMMON PHI{162,31),FP(162,31),A(31),8(31),C(31),0(31),E(31)
1 ,RP(31),RPP(31),R(31),RS<31),RI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),AC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP, RAD,EM,ALP,RN,PCH, XP,TC,CHD, DPHI,CL,RCL,YR
1 ,XA,YA,TE,DT,DR,DELTH,DELR,RA, DCN,DSN,RA4,EPSIL,QCRIT,Cl,(2
2 ,(4,(5,(6,(7,BET,BETA,FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ,ITYP,MODE,IS,NFC,NCY,NRN, NG, IDIM,N2,N3,N4,NT,IXX
4 *NPTS,LL,I,LSEP,M4, NEW,EPSl,NDES,XLEN,SCALQI
5 ,SCALQO, N6,GAMMA,NQPT,CSTAR, REM,DEP,QINF, TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU
DIMENSION QI(1),SF(1),QX(1),S*(1),ES(1),GP(1),GPP(1),GPPP(1)
1 ,DQDS(1),PHT(1),DPHDS(1),QPP(1),UPPP(1),0(1)
EQUIVALENCE (QI(1),FP(1,1)),(SF(1),FP(1,3)),(QX(1),FP(1,5))
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1 ,(Sh(1),FP(1,7)),(ES(1),FP(1,9)),{GP(1),FP(1,11))
2 ,(GPP(1),FP(1,13)),(GPPP(1),FP(1,15)),(DQDS(1),FP(1,17))
3 ,(PHT(1),FP(1,19)),(DPHDS(1),FP(1,21)),(QPP(1),FP(1,23))
4 ,(QPPP(1),FP(1,25)),(0(1),FP(1,27))
XMACH(QS) = SQRT(QS/(.5*(GAMMA+1.)*CSTAR*CSTAR-.5*(GAMMA-1.)*QS))
DATA NINMAX /300/
MODE = 0
REWIND N6
READ(N6,500) XIN,CSTAK

500 FORMAT (2F10.4)
NIN = ABS(XIN)
CALL GOPLOT(NRN)
IF (NIN.GT.NINMAX) -GO TO 90

C     READ IN Q(S)
QMAX = 0.
DO 20 J = 1,NIN
READ(N6,510) SF(J),QI(J)

510 FORMAT(2E20.10)
QMAX = AMAX1(QMAX,ABS(QI(J)))

20 CONTINUE
XMAC = 2./(SF(NIN)-SF(1))
CONST = -1.-XFAC*SF(1)
FAC = 1.
IF(QMAX.GT.1.6) FAC = 1.6/QMAX
WRITE (N4,130)
DO 30 J = 1,NIN
Sx(J) = XFAC*SF(J)+CONST
QX(J) = FAC*QI(J)
Q(J) = XMACH(QX(J)*OX(J))
WRITE (N4,140) J, SF(J),QI(J),SX(J),QX(J),Q(J)
QI(J)=QX(J)

30 CONTINUE
WRITE (N4,600) CSTAR

600 FORMAT (1X,/,5X, 24HINPUT CRITICAL SPEED IS ,F10.4)
CSTAR = FAC*CSTAR
SIZE = .14
SCX = 5.
SCY = 2.5
XOR = 6.0
IF (XIN.LT.0.) XOR = 5.75
CALL PLOT(XOR, 5.5,-3)
DO 60 L=l,NIN

60 CALL SYMBOL(SCX*SX(L),SCY*QX(L),.5*SIZE,3,0.,-1)
CALL PLOT(-5.0,-4.0,3)
CALL PLOT(-5.0,4.0,2)
CALL SYMBOL(-4.5,3.5,SIZE,1HQ,0.,1)
CALL SYMBOL (-5.0,SCY*CSTAR,2.*SIZE,15,0.,-1)
CALL SYMBOL (-5.0,-SCY*CSTAR,2.*SIZE,15,0.,-1)
DO 70 L=1,9
YH = FLOAT(L-1)-4.0
S = .4*FLOAT(L-1)-1.6
CALL SYMBOL(-5.0,YH, SIZE,15,0.,-1)
ENCODE(10,100,A) S

70 CALL SYMBOL(-5.7, YH,SIZE,A,0.,4)
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CALL PLOT(-5.0,0.,3)
CALL PLOT(5.0,0.,2)
CALL SYMBOL (4.5,-.5,SIZE,1HS,0.,1)
DO 80 L=1,11
XH = FLOAT(L-1)-5.0
S = .2*FLOAT(L-1)-1.0
CALL SYMBOL (XH,0.,SIZE,15,90.,-1)
ENCODE (10,100,A) S

80 CALL SYMBOL(XH-2.*SIZE,-.3, SIZE,A,0.,4)
100 FORMAT(F4.1)

CALL SYMBOL(-1.5,-4.5,SIZE,24HINPUT SPEED DISTRIBUTION,0.,24)
SX(NIN) = 1.
DS = (SX(NIN)-SX(1))/FLOAT(NOPT-1)

C     FIND Q(S) AT EVENLY SPACED POINTS
ES(1) = SX(1)
DO 40 J = 2,NQPT

40 ES(J) = ES(J-1)+DS
ES(NQPI) = SX(NIN)
CALL SPLIF(NIN ,SX,QX,GP,GPP,GPPP,3,0.,3,0.)
CALL INTPL(NOPT,ES,Q,SX,QX,GP,GPP,GPPP)
CALL PLOT(SCX*ES(1),SCY*Q(1),3)
DO 95 L=2,NQPT

95 CALL PLOT(SCX*ES(L),SCY*Q(L),2)
CALL PLOT(-XOR,-5.5,-3)
CALL FRAME
IF (CSTAR.LT.0.) GO TO 210
CALL SPLIF(NQPT, ES,Q,GP,GPP,GPPP,3,0.,3,0.)
CALL INTPLI(1,SO,0.,NOPT',ES,Q,GP,GPP,GPPP)

C     INTEGRATE Q(S) TO GET PHI(S)
CALL SPLIF(NOPT, ES,Q,OQDS,QPP,PHT,-3,0.,3,0.)
CALL INTPL(1, SO, PHMN, ES,PHT,Q,DODS,QPP)
GAM = PHT(NQPT)-PHT(1)
SCALQI = PHT(NQPT)-PHMN
DO 50 I = 1,NQPT
QI(I) = PHT(I)-PHMN
VAL = AMAX1(0.,QI(I))/SCALQI

50 PHT(I) . SIGN(SQRT(VAL),ES(I)-SO)
REWIND N6
WRITE (N6) (PHT(J),ES(J),01(J),Q(J),J=l,NCPT)
CALL INCOMP
RETURN

90 WRITE (N4,110) NINMAX
210 CALL PLOT(0.,0.,999)

CALL EXIT
RETURN

110 FORMAT (15HO****MORE THAN ,I#,3OH INPUT CARDS NOT PERMITTED**** /
1 32HO***PROGRAM STOPPED IN READQS*** )

130 FORMAT(lHO/11X,4HCARD,5X,7HS-INPUT,Bx,7HQ-INPUT,10*,6HS-USED
1 ,9X,6HQ-USED, 11X,6HM-USED /)

140 FORMAT (3X, I9,2F15.6,3X,2F15.6,3X, F15.6)
END
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SUBROUTINE INCOMP
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)

1 ,RP(31),RPP(31.),R(31),RS(31),RI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD,EM,ALP,RN, PCH, XP,TC,CHD, DPHI,CL,RCL, YR

1 ,XA,YA, TE,DT,DR,DELTH, DELR,RA, DCN,DSN,RA4,EPSIL,QCRIT,Cl,C2
2 ,(4,(5,(6,(7,BET,BETA,FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ, ITYP, MODE, IS,NFC,NCY,NRN,NG, IDIM, N2,N3,N4,NT, IXX
4 ,NPTS,LL,I,LSEP,M*,NEW,EPSl,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NQPT,CSTAR, REM,DEP, QINF,ISTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,OPL,QPU
QFAC * SCALQI-.5*GAM
DO 10 I=1,10
TAU = ASIN(-GAM/(PI*QFAC))

10 QFAC = (SCALQI+GAM*TAU/PI-.5*GAM)/COS(TAU)
TAU = ASIN(-GAM/(PI*QFAC))
88(1) = -TAU-ALP
DPHI = 4.*GAM/QFAC
CALL COSI
ANG = 0.
DO 20 I=l,M
PHICI,1) = (.5*QFAC-1.)*CO(I)+GAM*ANG/TP
ANG = ANG+DT
PHI(MM,1) = PHI(1,1)+GAM
PHI(MM+1,1) = PHI(2,1)+GAM
INC = 1
CALL CYCLE
RETURN
END

SUBROUTINE CYCLE
COMMON/FL/FLUXT4,(04,CDW,INDCD
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,RAD,EM,ALP,Rh, PCH, XP,TC,CHD,DPHI,CL,RCL,YR

1 ,XA,YA,TE,DT,DR,DELTH,DELR,RA,DCN,DSN, RA4,EPSIL,QCRIT,Cl,(2
2 ,C4,C5,C6,C7,BET,BETA,FSYM,XSEP,SEPM,1TLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ,ITYP,MODE,IS,.NFC,NCY,NRN,NG, IDIM,N2,N3,N4, NT, IXX
4 ,NPTS,LL,I,LSEP,M4,NEW,EPSl,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NQPT, CSTAR, REM, DEP, QINF,TSTEP,XOUT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU

DIMENSION PHIS(1),CIRC(1),DPHDW(1),DZPADW(1),PHIT(1),Q(1)
1 ,FPP(1),FPPP(1),FPPPP(1),QX(1),PHIV(1),DS(1),C*(1),SX(1),SS(1)
2 ,CCP(1),Al(1),A2(1),A3(1),A4(1),81(1)
EQUIVALENCE ( DS(1),FP(1,1)),(CIRC(1),FP(1,3)),(DPHDW(1),FP(1,5))

1 ,(02PHDW(1),FP(1,7)),(PHIT(1),FP(1,9)),(Q(1),FP(1,11))
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2 ,(FPP(1),FP(1,13)),(FPPP(1),FP(1,15)),(FPPPP(1),FP(1,17))
3 ,(QX(1),FP(1,19)),(PHIV(1),FP(1,21)),(PHIS(1),FP(1,23))
4 ,(CX(1),FP(1,25)),(SX(1),FP(1,27)),(SS<1),FP(1,29))
5 ,(CCP(1),PHIR(1)),(Al(1),RP(1)),(A2(1),RP(7))
6 ,(A3(1),RP(13)),(A4(1),RP(19)),(81(1),RP(25))
XMACH(QS) = SQRT(QS/(.5*(GAMMA+1.)*CSTAR*CSTAR-.5*(GAMMA-1.)*QS))
CP(Q) = C5*((C4/(1.+C2*Q*Q))**C7-1.)
DATA KD/0/
LC = NFC
NMP = 2*LC
MC = NMP +1
PILC = PI/FLOAT(LC)
NDUM1 = NMP/M
NDUM2 = NDUM1-1
IF (INC.EQ.1) GO TO 6080
INDCD = 1
CALL GTURB(0.,0.,.4,CDW,0.,.125,.1)
INDCD = 0

6080 DO 10 I=l, MM
CIRC(I) = FLOAT(I-1)*DT

10 PHIS(I) = PHI(I, 1)+CO(I)
881 = 88(1)
CALL SPLIF(MM,CIRC, PHIS,DPHDW, FPPP, FPPPP,1,0.,1,0•)
IF (MM.EQ.MC) GO TO 5
DO 6 I=l,MM
Q(I) = PHIS(I)

6 SS(I) = CIRC{I)
DO 7 I=l,MC

7 CIRC(I) = FLOAT(I-1)*PILC
CALL INTPL(MC,CIRC,PHIS,SS,Q,DPHDW, FPPP,FPPPP)
CALL SPLIF(MC,CIRC,PHIS,DPHOW, FPPP, FPPPP,1,0.,1,0.)

5 DO 9 I=41,120
SS(I-40) = CIRC(I)

9 Q(I-40) = DPHOW(I)
CALL SPLIF(80,SS,Q,FPP,FPPP,FPPPP,3,0.,3,0.)
CALL INTPLI(l,WNP,0.,80,SS,Q, FPP,FPPP,FPPPP)
CALL SPLIF(MC,CIRC,PHIS,DPHDW,02PHDW, FPPP, 1,0.,1,0.)
CALL INTPL(1,WNP,PHMN,CIRC,PHIS,DPHDW,02PHDW, FPPP)
SCALOO = PHIS(MC)-PHMN
REWIND N6
READ (N6) (PHIT(1),SS(I),PHIV(I),Q(I),I=l,NOPT)
CALL SPLIF(NQPT, PHIT,Q,FPP,FPPP,FPPPP,3,0.,3,0.)
VAL = SQRT((PHIS(1)-PHMN)/SCALQO)
DO 20 I=l,MC
VAL = AMAX1(0.,PHIS(I)-PHMN)/SCALQO
FAC = 1.
IF (CIRC(I).LE.WNP) FAC = -1.

20 PHIS(I) = FAC*SQRT(VAL)
CALL INTPLCMC,PHIS,QX,PHIT,Q, FPP,FPPP,FPPPP)
IF (INC.EQ.1) GO TO 8887

C     DETERMINE EM
XNUM = 0.
DEN = 0.
DO 4444 J = 2,M
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K=J
IF (MC.NE.MM) K=NDUM1*J-NDUM2
VAL = (PHI(J+1,1)-PHI(J-1,1))*DELTH-SI(J}
VAL = (VAL*VAL)/FP(J,1)
FPPP(J) = VAL
IF ((QX(K)*OX(K)).GT.(CSTAR*CSTAR)) GO TO 4444
XNUM =.XNUM + QX(K)*OX(K)*VAL
DEN = DEN + VAL*VAL

4444 CONTINUE
QINF = SURT(XNUM/DEN)
DQMAX = 0.
DQAVE = 0.
DO 4445 J = 2,M
K=J
IF (MC.NE.MM) K=NDUM1*J-NDUM2
DQAVE = DQAVE  + ((QX(K)*QX(K))-QINF*QINF*FPPP(J))*

1 ((QX(K)*QX(K))-QINF*QINF*FPPP(J))
DOMAX = AMAX1(DOMAX,ABS(SORT(FPPP(J))-(ABS(QX(K))/QINF)))

4445 CONTINUE
DQAVE = SQRT(DQAVE/FLOAT(M-1))
C2 = .5*(GAMMA-1.)
C7 = GAMMA/(GAMMA-1.)
EMX = EM
EM = (GAMMA+1.)*CSTAR*CSTAR/(QINF*QINF)-GAMMA+1.
EM = 2./EM
EM = SQRT(EM)
EM = (1.-REM)*EM+REM*EMX
Cl = C2+1./(EM*EM)
C6 = C2*EM*EM
C 4 = 1 . +C 6

C 5 = 1 . / ( C 6*C 7 )

QCRIT = (Cl+Cl)/(GAMMA+1.)
C     DETERMINE SCALING FOR PHI BY LEAST SQUARES FIT ,

CALL SPLIF(NQPT, PHIT, PHIV,FPP,FPPP,FPPPP,3,0.,3,0.)
CALL INTPL(MC,PHIS,Q ,PHIT,PHIV,FPP, FPPP,FPPPP)
0(MC) = PHIV(NQPT)
XNUM = 0•
DEN = 0.
DO 47 J=l,MM
K=J
IF (MC.NE.MM) K=NDUM1*J-NDUM2
XNUM = XNUM+PHI(J,1)+CO(J)-PHMN

47 DEN = DEN+ Q(K)
FAC = XNUM/DEN
DPHI = FAC*GAM

8887 DO 8886 J=l,MM
K=J
IF (MC.NE.MM) K=NDUM1*J-NDUM2

8886 CCP(J) = OX(K)
CALL SPLIF(NQPT,PHIT,SS,FPP,FPPP,FPPPP,3.,0.,3.,0.)
CALL INTPL(MC,PHIS,SX,PHIT,SS,FPP,FPPP, FPPPp)

C****************************
CALL SPLIF(MC,CIRC,SX,DS,FPPP,FPPPP,1,0.,1,0.)
DO 40 I=2,NMP
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VAL = ABS(DS(I)/(2.*SIN(CIRC(I)*.5)))
DS(I) = ALOG(VAL)

40 CONTINUE
C****************************

VAL = ABS(FPPP(1))
DS(1) = ALOG(VAL)
DS(MC) = DS(1)

43 CONTINUE
DO 240 I=l,MC
ANGL = FLOAT(I-1)*PILC
CX(I) = COS(ANGL)

240 SX(I) = SIN(ANGL)
DO 1040 I=l,LC
FPPP(I) = AA(I)
FPPPP(I) = BB(I)
AA(I) = CX(2*I-1)

1040 88(I) = -SX(2*I-1)
CALL,FOUCF(NMP, DS, FPP,AA,88)
DFAVE = 0.
DO 1050 I=l,LC
AA(I) = -AA(I)
IF (FPPP(1).EQ.99999.) GO TO 1050
AA(I) = TSTEP*AA(I) + (1.-TSTEP)*FPPP(1)
88(I) = TST.EP*88(I) + (1.-TSTEP)*FPPPP(I)

1050 DFAVE = DFAVE +(AA(I)-FPPP(I))*(AA(I)-FPPP(I))+(88(I)-FPPPP(I))*
1 (88(I)-FPPPP(I))
DFAVE = SORT(DFAVE/160.)
88(1) = 881
IF (INC.EQ.0) GO TO 45
OINF = QFAC/(4.*EXPCAA(1)))
EM = (GAMMA+1.)*CSTAR*CSTAR/(QINF*OINF)-GAMMA+1.
EM = SQRT(2./EM)
C2 = .5*(GAMMA-1.)
C7 = GAMMA/(GAMMA-1.)
Cl = C2+1./(EM*EM)
C6 = C2*EM*EM
C 4 = 1 . +C 6
C 5 = 1 . / ( C 6*C 7 )

QCRIT = (Cl+Cl)/(GAMMA+1.)
45 CONTINUE

IF (INC.EQ.1) GO TO 6030
IF (ADES.EU.1) GO TO 6040
IF ((MOD( KD,KDES ).NE.1).AND.(KD.GE. 2)) GO TO 6000

6040 WRITE (N2,6010)
6010 FORMAT (1Hl,/,8X, 5HDQAVE,6*,5HDQMAX, 6X, 5HDFAVE,·6*,4HDPHI,7X

1 ,4HDB81,5X,3HNSP,4X,2HEM, 7*,2HCL,7X,3hALP,6X,4HANGO
2 ,5X,3HCOW,6X,2HTC,/)

6000 ANGO = -RAD*88(1)
ALPl = ALP*RAD
WRITE(N2,6020) KD,DQAVE,DQMAX,DFAVE,YR,YA, NSP,EM,CL,ALPl,ANGO

1 ,CDW,TC
6020 FORMAT (1*,13,5(2*,Eg.3},2*,I),2*,Fu.4,3(2 X, Fl.4)

1 , 2 X, F 8 . 5,2 X, F 5 . 3 )

6030 INC = 0
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KD = KD+1
IF (KD.GT.NDES) KD=1
CALL MAP
CL = 2.*DPHI*CHD
REWIND M4
WRITE(M4,800) MM

800 FORMAT(1OX, I3)
SNX = 1.
WRITE (M4,805) TC,OQAVE ,YR,SNX

805 FORMAT ( F 7 . 3,2 E 10 . 2, Ff . 1 )

DO 5555 I = 1,MM
VAL = XMACH(CCP(I)*CCP(I))
CCP(I) = CP(VAL)
WRITE(M4,810) XC(I),CCP(I)

5555 CONTINUE
810 FORMAT(2F10.4)

CALL COSI
EPS1 = EPS1-DEP
RETURN
END

SUBROUTINE OUTPT
COMMON PHI(162,31),FP(162,31),-A(31),8(31),C(31),D(31),E(31)

1 ,RP(31),PPP(31),R(31),RS(31),PI(31),AA(162),BB(162),CO(162)
2 ,SI(162),PHIR(162),AC(162),YC(162),FM(162),ARCL(162),DSUM<162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD<162)
4 ,RP4(31),RP5(31)
COMMON /A/ PI,TP,kAD,EM,ALP,RN,PCH, XP,TC,CHD, DPHI,CL,RCL,YR
1 ,XA,YA, TE,DT,DR,DELTH,DELR,kA, DCN,DSN,RA4,EPSIL,OCRIT,Cl,C2
2 ,(4,(5,(6,(7,BET,BETA,FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ, ITYP,MODE,IS,NFC,NCY,NRN,NG, IDIM,N2,N3,N#,NT, 1XX
4 ,NPTS,LL,I,LSEP,M4,NEW,EPSl,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NQPT,CSTAk,REM, DEP, QINF,TSTEP,XOUT
6 ,INC,OFAC,GAM,KDES, PLTSZ,OPL,OPU
DIMENSION 9(1),CIRC(1),FPP(1),FPPP(1),FPPPP(l),FPPPVP(1),PHIS(1)
EQUIVALENCE (0(1),FP(1,13)),(CIRC(1),FP(1,3)),(FPP(1),FP(1,5))

1 ,(FPPP(1),FP(1,7)),(FPPPP(1),FP(1,9)),(FPVPPP(1),FP<1,11))
2 ,(PHIS(1),FP(1,15))
REWIND N3
XM = MM
IF (XOUT.GT.0.) GO TO 100

100 QQ= SQRT(OCRIT)
WRITE(N3,120) XM, QQ

120 FORMAT(2F10.4)
DO 140 L=2,M
U = (PHI(L+1,1)-PHI(L-1,1))*DELTH-SICL)
US = (U*U)/FP(L, 1)
Q(L) = SORT(OS)
PHIS(L-1) = PHI(L,1)+CO(L)

140 CONTINUE
CIRC(L-1) = FLOAT(L-1)*DT
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0(1) = .5*(Q(2)+Q(M))
Q(MM) = Q(1)
MZ = M-1
CALL SPLIF(MZ,CIRC,PHIS,FPP,FPPP, FPPPP,3,0.,3,0.)
CALL SPLIF(MZ,CIRC,FPP,FPPP,FPPPP,FPPPPP,3,0.,3,0.)
CALL INTPLI(1,WNP,0.,MZ,CIRC, FPP,FPPP,FPPPP,FPPPPP)
Q(1) = -Q(1)
DO 200 I=2,M
Q(I) = SIGN{Q(I),CIRC(I-1)-WNP)

200 CONTINUE
C     Q(MM) = Q(MM)

ARCl = 0.
WRITE(N3,160) ARCl,Q(1)
PRINT 160, ARCl,Q(1)
DO 150 L=2,MM
DX = XC(L)-XC(L-1)
DY = YC(L)-YC(L-1)
ARCl = ARC1 + SQRT(DX*DX+DY*DY)
WRITE(N3,160) ARCl,Q(L)
PRINT 160, ARCl, Q(L)

160 FORMAT(2E20.10)
150 CONTINUE

XOUT = 0.
RETUPN
END

BLOCK DATA
COMMON PHI(162,31),FP(162,31),A(31),8(31),C(31),D(31),E(31)
1 ,RP(31),RPP(31),R(31),RS(31),RI(31),AA(162),88(162),CO(162)
2 ,SI(162),PHIR(162),XC(162),YC(162),FM(162),ARCL(162),DSUM(162)
3 ,ANGOLD(162),XOLD(162),YOLD(162),ARCOLD(162),DELOLD(162)
4 ,RP4(31),RP5(31)
COMMON /A# PI,TP,RAD,EM,ALP,RN, PCH, XP,TC,CHD,DPHI,CL,RCL,YR

1 ,XA, YA, TE,DT,DR,DELTH, DELR, RA, DCN,DSN, RA4,EPSIL,QCRIT, Cl,02
2 ,(4,(5,C6,(7,BET,BETA,FSYM,XSEP,SEPM,TTLE(4),M,N,MM,NN,NSP
3 ,IK,JK, IZ, ITYP,MODE, IS, NFC,NCY,NRN, NG, IDIM,N2,N3,N4;NT, IXX
4 ,NPTS,LL, I,LSEP,M*,NEW,EPSl,NDES,XLEN,SCALQI
5 ,SCALQO,N6,GAMMA,NQPT,CSTAR, REM,DEP,WINF,TSTEP,XOLT
6 ,INC,QFAC,GAM,KDES,PLTSZ,QPL,QPU

C    ****IDIM MUST BE SET TO THE FIRST DIMENSION OF-PHl****
DATA PI/3.14159265358979/ , EM/.75/ , ALP/0./ , CL/100./ ,

1     PCH/.07/ , FSYM/1.0/ , RCL/1.0/ , BETA/0.0/, RN/20.E6/ ,
2 SEPM/.004/ , XSEP/.93/ , XP/0.0/ , M/160/ , N/30/ , NRN/1/ ,
3 NFC/80/ , NPTS/81/ , LL/0/ , NG/1/ , IS/2/ , IDIM/162/ , MODE /1/
4  , JK/0/ , N2/2/ , N3/3/ , N4/4/ , LSEP/161/ , IZ/125/ , ITYP/1/
5 ,NQPT/321/,REM/0./,EPS1/0./,CSTAR/100./
6 ,DEP/0./,NDES/-1/,TSTEP/.2/,KDES/iO/,PLTSZ/50./,QPL/.85/,
7 QPU/.95/
END
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