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Abstract

Under the sponsorship of the Department of Energy, we have achieved significant progress in the
modeling, analysis, and computation of superconducting phenomena. Our work has focused on

mezoscale models as typified by the celebrated Ginzburg-Landau equations; these models are in-
termediate between the microscopic models (that can be used to understand the basic structure of
superconductors and of the atomic and sub-atomic behavior of these materials) and the macroscale,
or homogenized, models (that can be of use for the design of devices). The models we have consid-
ered include a time dependent Ginzburg-Landau model, a variable thickness thin film model, models
for high values of the Ginzburg-Landau parameter, models that account for normal inclusions and
fluctuations and Josephson effects, and the anisotropic Ginzburg-Landau and Lawrence-Doniach
models for layered superconductors, including those with high critical temperatures. In each case,
we have developed or refined the models, derived rigorous mathematical results that enhance the
state of understanding of the models and their solutions, and developed, analyzed, and implemented
finite element algorithms for the approximate solution of the model equations.

Introduction
Under the sponsorship of the Department of Energy, we have achieved significant progress in
the modeling, analysis, and computation of superconducting phenomena. Our work has focused
on mezoscale models as typified by the celebrated Ginzburg-Landau equations; these models are
intermediate between the microscopic models (that can be used to understand the basic structure of
superconductors and of the atomic and sub-atomic behavior of these materials) and the macroscale,
or homogenized, models (that can be of use for the design of devices). Mezoscale models are of great
use in understanding important phenomena in superconductors such as pinning, vortex motion,
critical currents, Josepbson effects, fluctuations, vortex glass and vortex fluid structures, resistivity,
ete.
The goals of our efforts in superconductivity center on the following aspects:
e to develop or refine mezoscale and macroscale models for superconductivity so to
enlarge the range of physical problems for which such models are valid;
e to analyze these models in order to gain further understanding of the properties of
these models and of their solutions, and also to determine their validity and usefulness
for solving physically interesting problems;

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
electronic image products. Images are
produced from the best available original
document.




e to develop, analyze, and implement algorithms for the numerical simulation of solutions
of the various models; and

e to use our algorithms and codes to study superconducting phenomena.

We have accomplished much towards meeting these goals. We now give an outline, roughly divided
. by problem characteristics, of the progress we have made under DOE sponsorship.

Time dependent Ginzburg-Landau model - New theoretical results have been obtained,
and finite element algorithms have been defined, analyzed, and implemented. In ad-
dition, we have developed a code for approximate solutions of this model which forms
the basis for all of our computational studies. We have, for example, incorporated
the ability to handle applied voltages and currents, and other intrinsically transient

superconducting phenomena.

Variable thickness thin film model - A new model for thin films having variable thick-
ness has been developed; this model simplifies our own previous model for this sit-
uation. Theoretical results have been obtained, and finite element algorithms have
been defined, analyzed, and implemented. Computational simulations showing the
effectiveness of thin regions in the pinning of vortices have been carried out.

Models for high values of & - Simplified models have been developed and analyzed
that are valid for large values of the Ginzburg-Landau parameter x. Since high-7,
superconductors are known to have large values of &, this model has become one of
our basic tools in the study of such materials. For example, our Lawrence-Doniach
code is based on a high-x version of the model.

Lawrence-Doniach model - The connection between this model for layered supercon-
ductors and the anisotropic Ginzburg-Landau model has been rigorously established.
New theoretical results have been obtained, and finite element algorithms have been
defined. Preliminary computational simulations have been carried out.

Models accounting for normal inclusions and fluctuations - Models that can account
for normal materials such as impurities or layers co-existing with superconducting
materials have been developed and analyzed. Computational simulations showing the

effectiveness of normal impurities in the pinning of vortices have been carried out. The
same code has been used to show how the model we have developed can be used for
the study of Josephson junctions and of fluctuation and de-pinning phenomena. Some
preliminary calculations for these effects have been carried out.
An amplification of the above outline is given in the next section; details may be found in the papers
[1]-[12] listed in the Bibliography.

In recognition of our contributions to the study- of superconductivity, we were invited to give a

plenary talk, as well as to organize a minisymposium, at the SIAM Conference on Emerging Issues
in the Material Sciences held in Pittsburgh in April 1994. We were also invited to give the main
talk at the Conference on Applied Mathematics held in Korea during February, 1993. We have
also been invited to organize a minisymposium on superconductivity at the ICIAM Conference in
Hamburg, Germany in July 1995. On numerous occasions, we have been invited to give talks on our




work in superconductivity at universities, laboratories, and conferences. We have also co-organized
(with Professor John Ockendon of Oxford) the AMS-SIAM-IMS Summer Research Conference on
the Mathematics of Superconductivity which was held in Seattle during July-August 1993. This
conference, which was partially sponsored by DOE, was a major international gathering of scientists,
engineers, and mathematicians actively engaged in superconductivity research. Finally, we have

written (with John Ockendon) an invited article on superconductivity for an upcoming issue of
SIAM News.

Accomplishments

Time dependent Ginzburg-Landau models

We now discuss our work on the time dependent Ginzburg-Landau (TDGL) equations. Details
may be found in [6], [7], and [11}. There is by now a substantial literature about TDGL models. For
the case of a constant applied magnetic field H and in the absence of applied voltages and currents,
the governing equations may be found in Gor’kov and Eliashberg [13]; see also [14]. After a suitable
nondimensionalization, these equations for the order parameter ¥ and magnetic potential A are

given by
. . i 2 ) ,
7 -a-t—+m<l>¢ + ;V+A v—v+YYv=0 inQ (1)
and 9A .
57+ Ve +curlourl A = —5%(¢*v¢ —T¥*) - WPA i Q (2)
along with the boundary conditions
(-’%V+A)~n=0 onT (3)
and
curfAxn=Hxn onl, (4)

where n denotes the unit normal vector of the boundary, and initial conditions
P(x,0) = o(x) inQ (5)

and

A(x,0) = Ag(x) inQ, (6)

where we assume that div Ag = 0 and also that |¢o(z)| < 1, a.e., which means that the magnitude
of the initial order parameter does not exceed its value at the superconducting state. Solutions of
(1)-(6) are unique only up to a gauge transformation; for problems wherein the applied field H is
constant, we usually work with the gauge choice

A-n=0 onI' and &=0 inQ. 0

Also, in (1)-(7), the Ginzburg-Landau parameter « and the relaxation parameter 7 are positive

constants.




We had previously shown the global existence and uniqueness of appropriately defined weak
solutions of (1)-(7). We have also showed that the solution depends continuously on the initial data
and other related resuits. We have also devised and analyzed discretization algorithms for the TDGL
equations. First, semi-discrete Galerkin finite dimensional approximations were examined. (Here, by
semi-discrete, we mean only the discretization in spatial variables is considered.) In this case, under
the usual approximation theoretic assumptions, we proved the convergence of the approximations
as the dimension of the approximating spaces tend to co. This result was also specialized to the
concrete case of finite element approximations. We have also considered a backward Euler based
fully discrete approximating scheme as well as a second-order accurate in time scheme. In both
cases, rigorous error estimates were derived.

These schemes are used in a two-dimensional code we have developed. Spatial discretization is
effected using piecewise biquadratic polynomials. Typical results of our computational simulations
are given in Figures 1 and 2. The Ginzburg-Landau parameter  is set equal to 5 and the external
field H, which points perpendicular to the plane, is set equal to 2.5. Figure 1 shows the time evolution
of the level curves of the magnitude of the order parameter for the phenomena of vortex formation.
The sample is a square having sides equal to 20 coherence lengths. Initial conditions correspond to a
perfect superconducting state. Vortices first start to form at the edges and then settle down into the
interior. Since the applied field is a constant and there are no external currents or voltages applied
to the sample, the vortices approach a steady state configuration which is depicted in Figure 2.

The TDGL code we have developed forms the basis for our other codes that we use to obtain
approximations of solutions of the variants of the Ginzburg-Landau model discussed below. The
results obtained from this code are time accurate so that they can be used to simulate both transient
and steady state phenomena. In particular, we have incorporated the ability to handle applied
currents and applied voltages. More details will be given below when we discuss our proposed
work. Here, we present some preliminary results from the computational simulation of the motion
of vortices in the presence of a constant applied current that is directed in the vertical direction. In
Figure 3, a sequence of contour plots of the magnitude of the order parameter is given at various
time steps. Corresponding to the the applied current, the applied magnetic field varies linearly in
the horizontal direction. Due to the Lorentz force, vortices are moving from the left of the box
towards the right edge of the box and eventually disappear; meanwhile, more vortices are created
at the left edge. Similar simulations have produced strong numerical evidence for the annihilation

of vortices that are of opposite signs.

A variable thickness thin film model

We now turn to a description of a model we have derived for variable thickness thin films.
Thin-films of superconducting material are often modeled as two-dimensional objects. The third
dimension, i.e., that across the film, is eliminated by an averaging procedure. If the material, viewed
as a three-dimensional object, is homogeneous, and the thickness of the film is invariant with position,
then the result of the averaging process will be a two-dimensional model having constant material
properties. Variations in thickness can have significant effects on the electromagnetic behavior of the

superconductor, e.g., there is evidence that vortices can be trapped within narrow (thin) regions.




One would like to develop a two-dimensional model that can account for thickness variations. Any
such model would result from some sort of averaging process across the film. This averaging process
will vary from point-to-point in the plane of the film, and introduce the variable thickness into the
coefficients of the resulting two-dimensional model. We had previously developed such a model;
see {5]. However, in the interim we have developed a simpler, yet equally valid model which we
now briefly discuss. Details concerning the derivation of this model, as well as a variety of results

concerning the model, may be found in [12].

We consider the case where a three-dimensional thin layer in R3 is symmetric with respect to
the (z,y)-plane. The z-axis is thus perpendicular to the symmetry plane of the film. Thus, the
thin-film €2, can be defined by

QE = {(:c,y,z) € R3 | (a:,y) € Q0 - sz zZ€ (—ea(z,y),ea(z,y)) };

where ¢ is small parameter and a(z, y) is assumed to satisfy a(z, y) > ao > 0 for all (z,y) € Q. The
external field is directed perpendicular to the center-plane of the film, ie., H = (0, 0, H# )T. The
platform of the film is denoted by Qg and its boundary by T'g.

In order to formally derive the model we assume that

P(z,y,2) =D vz, ) A(z,9,2) =) Aj(z,9)d
j=0 j=0
for z small, i.e., € small. One then obtains, to leading order, that
<%€7+ Ao) ‘a (im Ao) o +a(|9ol? = Lo =0 in Qo (8)
and ]
<£W° +Aoth) mn=0 onTy, 9)

where Ag = (A~01, figz)T is a magnetic potential such that curl (;&o, 0) = H and V denotes the 2D
gradient. Thus, to leéding order, the magnetic field is unaffected by the presence of the thin film.
We have also derived equations that determine the first-order correction to the magnetic field.

We have derived various results concerning the solution of the variable thickness thin film
equations (8) and (9). In particular, we have established the rigorous connection between solutions
of (8)-(9) and solutions of the three-dimensional steady state Ginzburg-Landau equations. For
example, we have the following consistency result. For any ¢ > 0, we denote by (¢., A.) the solution
of the constant coefficient, three-dimensional, steady state Ginzburg-Landau equations over the
three-dimensional domain Q.. We let

_ 1 €a
we(zsy) = '2—— ¢e(-’b‘,y,2)d2, V(l‘,y) EQO
€Q J_¢q

and

€a

- 1
A (z,y) = 3ea Az,y,2)dz, V(z,y) €.
-€a




Thus, for any (z,y) € Qo, ¥ and A, are the averages across the film of the solutions of the three-
dimensional Ginzburg-Landau equations in the film, the latter viewed as a three-dimensional object.
We then have shown the following consistency result. '

The sequence {{¢, Ac)} of solutions of the three-dimensional Ginzburg-Landau equations

converges strongly (in appropriate function spaces) to a solution (¢, ;&o) of the variable

thickness thin film equations (8)-(9).

We have developed a code for determining finite element approximations to the solution of the
variable thickness thin film equations (8) and (9). Piecewise biquadratic finite element functions
are used. A typical result is given in Figure 4. The parameters for this calculation are the same as
that for Figure 2 for the homogeneous Ginzburg-Landau model. The small boxes in Figure 4 denote
regions where the film is thinner; specifically, a = 1/5 within the small boxes and a = 1 otherwise.
Comparing Figures 2 and 4, one clearly sees that vortices are attracted to the thin regions, i.e., they
are pinned by these regions.

A model accounting for normal/superconducting junctions

Models that can account for normal inclusions, or more generally, normal/su-perconducting
junctions, are of considerable practical interest. For examples, normal impurities can be used to
pin vortices and Josephson junctions consist of thin layers of normal material sandwiched between
superconducting materials. We have developed a two-parameter model that can account for such
situations; it may be viewed as a generalization of a model given in [15] and [16]. Details concerning
the derivation and analysis of our model may be found in [8].

To understand the model we have developed, we need to write down the Ginzburg-Landau
functional in dimensional form, which, to within a constant additive factor, is given by

2 — |2
9’(¢,A)=/n[alw12+§wl4+%|(nvﬁ“) L Hl]dgi

87
Here, ¥ denotes the complex-valued order parameter, h the magnetic field, A = curl h the magnetic

potential, H the applied magnetic field, e the electron charge, ¢ the speed of light, and 27 Plank’s
constant. For a superconducting material, the parameter o changes sign at the critical temperature
T., with @ < 0 for T < T, and a > 0 for T > T.. (The parameter 8 > 0 always.) In our model, we
choose a < 0 in the superconducting material and a > 0 in the normal material. Whenever a > 0,
the role of the parameter § becomes unimportant, so that we choose 8 = 0 in the normal material.
We also allow for the arbitrary choice for the mass parameter m in the two materials and also allow

for different permeabilities in the two materials. Thus, we define a free energy

/. {aal¢l2 Doyt + l( w7+ 2a)

+/ {an|¢|2+ (th+—A> w\ ko Seb- HP} g,
nu

where Q,, and (2, denote the regions occupied by the normal and superconducting materials, respec-

2
22 h — HI?
+8 (h H|}dQ

tively. Minimizers of this functional must satisfy the equations (appropriate nondimensionalizations




have been introduced)

. 2 )
(%V+A> Y=Y+ =0 inQ, (10)
(curl)?A =~ ()" Ve~ ¥99) = [’A  nQ,, (11)
. 2
l(.’.v.;.A) Yv+ap =0  inQn, (12)
m K
%(curl)zA = _r_}‘; (i W'V ~yVy*) + [¢‘2A> in Qn, (13)
[A]l=0, [¥]=0, (14)
[n l(iv+A) w] =0, (15)
and 1
[;curlA X n] =0, (16)

where m = mp/m,, ft = pn/p,, @ = Mpa,/(m,|a,|) and -] denotes the jump across T, and
n denotes the unit normal vector of I'. In general, we have no control over the values of the
permeabilities p, and p,. Likewise, the Ginzburg-Landau parameter x is fixed by the choice of
superconducting material. Thus, we have two constants at our disposal in defining the model,
namely, m and a. The freedom afforded by these two parameters enables the model {10}-(16) to
account for a variety of normal/superconducting phenomena. We now describe how our model
accounts for some of these.

For the model of (10)-(16), the order parameter and the supercurrent in the normal region does
not vanish; the latter is given by '

174, ., .
I=-= (——(w V¢ - VY )+|¢|2A) :
m \ 2k
Thus, the model can be used to describe the proximity effect.
In one dimension and in the absence of a potential it can be shown that on the superconducting

side of a superconducting/normal interface the order parameter satisfies the relation

M—@b

my

¥ = -
Thus, we retrieve the de Gennes boundary condition (see [17])
Y=y

with v = k/a/m. The corresponding boundary condition for a superconducting/vacuum interface
should be 3/ = 0. This boundary condition is recovered from the model (10)-(16) if we let a — oo
and m — oo in such a way that \/a/m — 0.

The model (10)-(16) can also account for the de Gennes relations across a Josephson junction;

see [17]. Here we have a normal region sandwiched between two superconducting regions. We denote




by (:)* and (-)~ evaluation of a quantity in the superconducting material at the left and right-hand
interfaces with the normal material. De Gennes then gave the relation

(aeieetanys) =0 ) (agaeiny) )

for the order parameter and its gauge invariant normal derivative across the junction. Here, the
M;; are real and are determined by the particular junction and depend on its thickness, the type of
material, etc. de Gennes postulates that for an insulating material M), and Ma; are close to unity,
and My, and M>; are small. The junction is symmetric, i.e., has the same type of superconductor
on each side of the junction, if and only if M; = Ms,. In this case, de Gennes shows that

MMy — MiaMa =1. (18)

Finally, the supercurrent across the junction is given by
J = =Wt |sin(ct = x7) (19)
M, '

where x denotes the phase of the order parameter. All of these relations are directly recoverable
from the model {10)-(16). In fact, if we assume that the normal layer has thickness d, and that
we have different superconductors on each side of the junction, then our model yields that (17) is
satisfied with

M1 = cosh(2xd/a) Mz = (m,/v/a)sinh(2xdv/a)

My = (my,/a/my)sinh(2kdva) My = m;, cosh(2xd\/a) . (20)

Here, we have nondimensionalized with respect to one of the superconductors, so that m, and m,,
denote the nondimensionalized masses of the normal material and the other superconductor. Note
that the junction is symmetric if and only if m,, = 1, i.e., only if the superconductors are the same
material, and that in this case (18) is satisfied. Also, our model yields that the supercurrent in the

_ ve ~lsin(x* — v~
- mnsinh(2nd\/a') hb+¢ |Sm(X - X )

Jjunction is given by

which, using (20), recovers the de Gennes relation (19). Note that, as expected, J decreases expo-
nentially as d increases and as o increases. Furthermore, J also decreases as m, increases. Since
large m, corresponds to a highly insulating material, this is in agreement with the experimental
observation that junctions made from insulating materials need to be thinner than junctions made
from metals, in order to obtain the same tunneling current.

In summary, it is important to note that our model recovers all the well-known conditions at
normal /superconducting interfaces, including the de Gennes formula for the tunneling current. Such
agreement is not possible with previous models having only one parameter at one’s disposal.

We have also developed a biquadratic finite element code for the variable a, variable m model
of equations (10)-(16). Some typical computational results obtained from the code are found in

Figures 5 and 6. For Figure 5, the same conditions are in effect as for Figure 2 for the homogeneous




Ginzburg-Landau model, except that some normal impurities are introduced at the locations de-
noted by the small boxes. Comparing Figures 2 and 5 we see that our model clearly can account for
the pinning of vortices by normal impurities. In Figure 6 we have a Josephson junction type con-
figuration; a thin vertical strip of normal material is sandwiched between superconducting material.
Otherwise, the conditions are the same as that for Figure 2. We see that vortices are attracted to

the strip of normal material.

A model accounting for large values of «

Superconductors are largely characterized by the value of the Ginzburg-Landau parameter .
The recently discovered high critical temperature superconductors are known to have values of
& in excess of 50. Thus, for technological reasons, there is interest in exploring the behavior of
superconductors in the limit of large k. For the same reasons, high magnetic fields are also of
interest. Thus, we have developed, analyzed, and computed with simplified models of the Ginzburg-
Landau type that are valid in the limit of high « and high applied fields. The discussion below is
in the context of the homogeneous, isotropic Ginzburg-Landau model. We have effected analogous
simplifications to other models for superconductivity such as the anisotropic Ginzburg-Landau and
Lawrence-Doniach models for layered high critical temperature superconductors. Details can be
found in [9] and [10].

We assume that the (nondimensionalized) applied field H = xHy, where Hj is independent of
k. Note that this does not imply that H is near the upper critical field H., = «; for example, we
could take |Hg| = 1/2. To derive the model, we formally expand the order parameter and magnetic

potential in powers of x:

1 1
q/,-_-z;;z_jwj AznZOEAj (21)
J= j=

and then substitute these expansions into the full steady state Ginzburg-Landau equations. Equating
powers of k yields, to leading order, the system for Ag:

curl curl Ag =0 inQ and Q,, (22)
[Ag xn}]=0 onT, (23)
[curlAg xn]=0 onTl, (24)
and
curlAg - Hy as|x|—> (25)
and the system for vq:
(iV + Ao)? W0 ~ o + [do[*do =0 in Q, (26)
and ‘
n-(iV+Ag) =0 onl, (27)

where 2 denotes the region occupied by the superconducting material, 2, the region external to
the superconductor, and T' the boundary of the superconductor. We have also derived governing
systems for the corrections A; and ;.




Note that the system (22)-(25) for A, is uncoupled from the system (26)-(27), i.e., one may solve
the former set of equations for Ap and then use this solution in the latter set in order to determine .
Furthermore, the system (22)-(25) implies that to leading order, the magnetic potential is exactly
the same as that would be obtained if the superconducting sample were not present. In many cases,
these equations may be easily solved. Thus, the main task to be performed in solving the high-«,
high field equations is to solve (26)-(27) for the leading order term of the order parameter 1. This
tremendous simplification, e.g., uncoupling, is not possible with the full Ginzburg-Landau model for

which the order parameter and magnetic potential are fully coupled.

On the theoretical side, we have shown that as &k — oo, solutions of the full Ginzburg-Landau
equations converge strongly (in an appropriate function space) to solutions of the leading order
equations {22)-(27). We can actually show that the conve‘rgence is quadratic, i.e., that A, - kAg =
O(x~2%) and ¥, — Yo = O(k™2%) as k = 0o, where (5, A.) denotes the solution of the Ginzburg-
Landau equations for a given value of x. This provides partial justification for the expansions (21)

in terms of powers of 1/k2.

We have also developed a biquadratic finite element code for finding solutions of the simplified
equations (26)-(27). Here, in Figure 7, we compare results obtained using this code with the results
found by using our code for the full, coupled, Ginzburg-Landau equations. As in the previous figures,
the sides of the square superconducting samples are of length equal to 20 coherence lengths. The
non-dimensional applied field is perpendicular to the sample and has magnitude equal to «/2. The
plots labeled with finite values of « were obtained from the full Ginzburg-Landau model with the
indicated values of k. The plot labeled with an infinite value of k was obtained using the simplified
model (22)-(27). It is evident from the plots that there is very little difference between the results
for the full Ginzburg-Landau equations for values of & > 5, and that these are also indistinguishable
from the results obtained using the leading order equations. Thus, it seems that the simplified model
(22)-(27) yields accurate approximations to solutions of the full Ginzburg-Landau model even for
moderate values of k and of the applied field.

The Lawrence-Doniach model for layered superconductors

One of the features of high-T, superconductors is their layered structure, comprising of alter-
nating layers of superconducting and non- (or weakly) superconducting materials. In planes parallel
to the layers, the material is isotropic. However, there is a strong anisotropy present when one
compares material properties parallel and perpendicular to the layers. The homogeneous, isotropic
Ginzburg-Landau model cannot account for the anisotropy of layered superconductors. In its place,
alternative models have been proposed. One of these is the anisotropic Ginzbufg-Landau mode!
or effective mass model introduced by Ginzburg in 1952; see [18] and [19] and the references cited
therein. In this model, the effects of the microscopic layered structure are averaged out so that the
anisotropic nature of the material appears only in the form of a mass tensor with unequal principal
values. The model itself is only a slight variant of the Ginzburg-Landau model. Another model
for layered superconductors (which is thought to be a better model for high-T, superconductors) is
the Lawrence-Doniach model introduced in [20]; see also [21] and [22]. In this model, the material

is treated as a stack of superconducting planes, each pair of which is separated by a vacuum or




insulating material. Furthermore, in this model, the coupling between the superconducting planes
is similar to that that occurs in a Josephson junction. One may also consult [23] and the references
cited therein for a discussion of these models and the physical circumstances necessary for their
validity.

We have analyzed both the anisotropic Ginzburg-Landau and Lawrence-Do-niach models show-
ing, for example, that appropriately defined free energy functionals have minimizers in suitable func-
tion spaces. We have also rigorously established the connection between the two models. Specifically,
we have shown that minimizers of the Lawrence-Doniach equations converge, as the interlaying spac-
ing tends to zero, to a solution of the anisotropic Ginzburg-Landau equations. We have also derived
simplified versions of both models that are valid for high values of « and applied fields of O(k).
Details may be found in [10]. _

We have also developed biquadratic finite element codes for both models. The anisotropic
Ginzburg-Landau model can be used not only for studying anisotropic, homogeneous superconduc-
tors, but also superconductor samples containing twin boundaries. This code is in the final stages
of testing. Likewise, the Lawrence-Doniach code is in the final stages of testing. This code takes
advantage of the simplifications that can be effected for high values of «; these simplifications are
similar to those that were described in the previous subsection. Most notably, the computation of
the magnetic potential uncouples from that of the order parameter. Using this simplified model, we
are able to “easily” simulate three-dimensional layered superconductors on workstations. Here, we
present some preliminary results obtained using our Lawrence-Doniach code. In Figure 8, we have
surface plots of the magnitude of the order parameters for a two-layer superconducting sample. In
these simulations, we first choose the applied magnetic field to be perpendicular to the layer, i.e.,
along the z-axis; in this case, the vortices align themself vertically {see the picture on the left). Then,
we tilt the applied magnetic field slightly towards the right, (i.e., it has a nonzero y-component).
Specifically, we keep the z-component of the applied field fixed at 1.5, and choose the three different
values 0.0, 0.6, and 1.5 for the y-component. The vortices shift and turn to try to align themselves
with the applied magnetic field. If the applied field is tilted further, the vortex locations in two
layers also shift more.
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Figure 1. Time evolution of vortices for a type-II superconductor.
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Figure 2. Steady state vortex configuration for a type-II superconductor.
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Figure 3. Motion of vortices in the presence of an applied current.

Variable Thickness Model

Figure 4. Pinning of vortices by thin regions (small boxes)

in a variable thickness thin film.




Normal Inclusion Model
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Figure 5. Pinning of vortices by normal inclusions (small boxes).

Normal Inclusion Model

Figure 6. Vortices in a Josephson junction type configuration.
(The thin strip denotes the location of the normal material.)




kappani kappa=$

° o ® - ]
e o o o o
@ o o -y ® o
L o e O @ o
P ) o -] o - ]
® ® o ©O o o
o @ o
kappas20 kappa=infinity
® ® o . ® o o
O e o © O o o ©o
L o o o o @
O o o ® O o ©
o o o @ @ o
e O ® ¢ . @ @ ® o
) o o o o o

Figure 7. Vortices for different values of x and for the simplified high-x model.

Figure 8. Vortices in two layers (top and bottom) vs. tilt of the applied field.
left: Hy = 0.0 (no tilt), middle: H, = 0.6, right: H, =15




