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Annual Report on DOE Grant DE-FG05-88ER25068/A 004

Mathematical background for homotopy algorithms.

The nonlinear systems of equations arising in circuit simulation, structural optimization,
closed loop optimal control, chemical engineering of distillation systems, combustion chemistry,
CAD/CAM modelling, robotics, computer vision, and orbital mechanics have several properties
that make them especially amenable to homotopy methods. Even so, the homotopy zero curves are
not trivial to track, and sophisticated curve tracking techniques are sometimes required. The size
of typical engineering problems also presents some interesting numerical linear algebra challenges,
and the supported work has been geared toward developing parallel sparse matrix techniques
specifically tailored to the sparsity structures corresponding to the mentioned problem areas, in
the context of homotopy algorithms. '

The original mathematical model, after some sort of discretization, approximation, or reduc-
tion, ultimately leads to a nonlinear system of equations

F(z) =0,
where F' : E® — E™ is assumed to be a C? map. Suppose there exists a C? map
p: E™x[0,1)x E" - E"

such that
1) the n x (m + 1+ n) Jacobian matrix Dp(a, A, z) has rank n on the set

p71(0) = {(a,\a) | a € E™,0< A < 1,2 € B", p(a, \,2) = 0},

and for any fixed a € E™, letting po(A, 2) = p(a, A, z),

2) pa(0,2) = 0 has a unique solution zo,

3) pall,2) = F(z),

4) p71(0) is bounded.
Then the supporting theory says that for almost all a € E™ there exists a zero curve v of p,, along
which the Jacobian matrix Dp, has rank n, emanating from (0, z9) and reaching a zero % of F at
A = 1. v does not intersect itself and is disjoint from any other zeros of p,. The globally convergent
algorithm is to pick @ € E™ (which uniquely determines z¢), and then track the homotopy zero
curve 7.

There are many different algorithms for tracking the zero curve +; the previous proposal
discussed three such algorithms: ordinary differential equation based, normal flow, and augmented
Jacobian matrix. The descriptions of these algorithms are now in the literature for the software
package HOMPACK, so will not be repeated here. The development of sparse homotopy algorithms
within HOMPACK specifically tailored for various parallel machines (e.g., distributed memory,
shared memory, and vector) and problem areas (e.g., circuit simulation, structural optimization,
optimal control, and combustion chemistry) was the central theme of this research.
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Accomplishments under DOE Grant DE-FG05-88ER25068.

The most recent annual report, DOE/ER/25068-4, for this project summarized the accom-
plishments through February, 1995, and provided a historical perspective on progress on the various
project tasks. At that point in time, DOE support had contributed to over 60 theses, refereed con-
ference papers, and refereed journal papers. Rather than recapitulate that annual report, this
section will simply list publications since the beginning of the current funding period, March 1,
1995. These are:

Y. Mainguy, J. B. Birch, and L. T. Watson, “A robust variable order facet model for image data”,
Machine Vision Appl., 8 (1995) 141-162.

Y. Ge, E. G. Collins, Jr., and L. T. Watson, “A comparison of homotopies for alternative formu-
lations of the L? optimal model order reduction problem”, J. Comput. Appl. Math., 69
(1996) 215-241.

Y. Ge, L. T. Watson, E. G. Collins, Jr., and D. S. Bernstein, “Globally convergent homotopy algo-
rithms for the combined H?/H% model reduction problem”, J. Math. Systems, Estimation,
Control, 7 (1997) 129-155.

Y. Chen and L. T. Watson, “Optimal trajectory planning for a space robot docking with a moving
target via homotopy algorithms”, J. Robotic Sys., 12 (1995) 531-540.

Y. Ge, L. T. Watson, E. G. Collins, Jr., and D. S. Bernstein, “Probability-one homotopy algorithms
for full and reduced order H?/H® controller synthesis”, Optimal Control Appl. Methods,
17 (1996) 187-208.

B. B. Lowekamp, L. T. Watson, and M. S. Cramer, “The cellular automata paradigm for the
parallel solution of heat transfer problems”, Parallel Algorithms Appl., 9 (1996) 119-130.

S. Nagendra, D. Jestin, Z. Giirdal, R. T. Haftka, and L. T. Watson, “Improved genetic algorithms
for the design of stiffened composite panels”, Comput. & Structures, 58 (1996) 543-555.

W. 1. Thacker, C. Y. Wang, and L. T. Watson, “Global stability of a thick solid supported by
elastica columns”, J. Engrg. Mech., 123 (1997) 287-289.

M. C. Cowgill, R. J. Harvey, and L. T. Watson, “The genetic/hill-climbing hybrid: a new algorith-
mic approach to cluster analysis”, Multivariate Behavioral Res., submitted.

M. S. Cramer, B. B. Lowekamp, and L. T. Watson, “Nenlinear thermal waves: part II-—analytical
solutions for pulses”, Internat. J. Heat Mass Transfer, submitted.

M. Sosonkina, L. T. Watson, and D. E. Stewart, “Note on the end game in homotopy zero curve
tracking”, ACM Trans. Math. Software, 22 (1996) 281-287.

S. Burgee, A. A. Giunta, V. Balabanov, B. Grossman, W. H. Mason, R. Narducci, R. T. Haftka, and
L. T. Watson, “A coarse grained parallel variable-complexity multidisciplinary optimization
paradigm”, Internat. J. Supercomputer Appl. High Performance Comput., 10 {1996) 269—
299.

Y. Ge, L. T. Watson, and E. G. Collins, Jr., “Cost-effective parallel processing for H2/H> con-
troller synthesis”, Internat. J. Systems Sci., to appear.

M. S. Cramer, S. H. Park, and L. T. Watson, “Numerical verification of scaling laws for shock-
boundary layer interactions in arbitrary gases”, J. Fluids Engrg., 119 (1997) 67-73.

A. P. Morgan, L. T. Watson, and R. A. Young, “A Gaussian derivative based version of JPEG for
image compression and decompression”, IEEE Trans. Image Processing, submitted.
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J. F. Monaco, M. S. Cramer, and L. T. Watson, “Supersonic flows of dense gases in cascade
configurations”, J. Fluid Mech., 330 {1997) 31-59.

E. G. Collins, Jr., W. M. Haddad, L. T. Watson, and D. Sadhukhan, “Probability-one homotopy
algorithms for robust controller synthesis with fixed-structure multipliers”, Internat. J.
Robust Nonlinear Control, 7 (1997) 165-185.

S. Nagendra, R. T. Haftka, Z. Giirdal, and L. T. Watson, “Derivative based approximation for
predicting the effect of changes in laminate stacking sequence”, Structural Optim., 11 (1996)
235-243.

M. Kaufman, V. Balabanov, S. L. Burgee, A. A. Giunta, B. Grossman, R. T. Haftka, W. H.

Mason, and L. T. Watson, “Variable-complexity response surface approximations for wing
structural weight in HSCT design”, Comput. Mech., 18 (1996) 112-126.

Y. Ge, L. T. Watson, and E. G. Collins, Jr., “An object-oriented approach to semidefinite pro-
gramming”, Math. Comput. Appl., submitted.

M. Sosonkina, L. T. Watson, and R. K. Kapania, “A new adaptive GMRES algorithm for achieving
high accuracy”, Numer. Linear Algebra Appl., submitted.

Y. Wang, D. S. Bernstein, and L. T. Watson, “Convergence theory of probability-one homotopies
for model order reduction”, Automatica, submitted.

L. T. Watson, M. Sosonkina, R. C. Melville, A. P. Morgan, and H. F. Walker, “HOMPACK90: A
suite of FORTRAN 90 codes for globally convergent homotopy algorithms”, ACM Trans.
Math. Software, to appear.

D. Haim, A. A. Giunta, M. M. Holzwarth, W. H. Mason, L. T. Watson, and R. T. Haftka, “Suit-
ability of optimization packages for an MDO environment”, Engrg. Comput., submitted.

G. Soremekun, Z. Giirdal, R. T. Haftka, and L. T. Watson, “Improving genetic algorithm efficiency
and reliability in the design and optimization of composite structures”, Comput. Methods
Appl. Mech. Engrg., submitted.

S. Suherman, R. H. Plaut, L. T. Watson, and S. Thompson, “Effect of human response time on
rocking instability of a two-wheeled suitcase”, J. Sound Vibration, to appear.

A. A. Giunta, V. Balabanov, D. Haim, B. Grossman, W. H. Mason, L. T. Watson, and R. T.
Haftka, “Aircraft multidisciplinary design optimisation using design of experiments theory
and response surface modelling”, Aero. J., to appear.

J. F. Rodriguez, J. E. Renaud, and L. T. Watson, “Trust region augmented Lagrangian methods
for sequential response surface approximation and optimization”, ASMFE J. Mech. Design,
submitted.

V. Balabanov, A. A. Giunta, O. Golovidov, B. Grossman, W. H. Mason, L. T. Watson, and R. T.
Haftka, “A reasonable design space approach to response surface approximation”, ATAA J.,
to appear.

R. H. Plaut, S. Suherman, D. A. Dillard, B. E. Williams, and L. T. Watson, “Deflections and

buckling of a bent elastica in contact with a flat surface”, Internat. J. Solids Structures,
submitted.

Y. Ge, L. T. Watson, and E. G. Collins, Jr., “Distributed homotopy algorithms for H?/H®>
controller synthesis”, in Parallel Processing for Scientific Computing, D. H. Bailey, P. E.
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Bjgrstad, J. R. Gilbert, M. V. Mascagni, R. S. Schreiber, H. D. Simon, V. J. Torczon, and
L. T. Watson (eds.), SIAM, Philadelphia, PA, 1995, 84-89.

S. Burgee, A. A. Giunta, R. Narducci, L. T. Watson, B. Grossman, and R. T. Haftka, “A coarse
grained variable-complexity approach to MDO for HSCT design”, in Parallel Processing for
Scientific Computing, D. H. Bailey, P. E. Bjgrstad, J. R. Gilbert, M. V. Mascagni, R. S.
Schreiber, H. D. Simon, V. J. Torczon, and L. T. Watson (eds.), SIAM, Philadelphia, PA,
1995, 96~-101.

A. A. Giunta, V. Balabanov, S. Burgee, B. Grossman, W. Mason, L. T. Watson, and R. T. Haftka,
“Parallel variable-complexity response surface strategies for HSCT design”, in Computa-
tional Aerosciences Workshop ’95 Proc., W. J. Feiereisen and A. K. Lacer (eds.), NASA CD
Conf. Pub. 20010, NASA Ames Research Center, Moffett Field, CA, 1996, 86-89.

A. A. Giunta, V. Balabanov, S. Burgee, M. D. Kaufman, B. Grossman, W. Mason, L. T. Watson,
and R. T. Haftka, “Aerodynamic and structural optimization of a high speed civil trans-
port on parallel computers”, in Proc. First World Congress Structural Multidisciplinary
Optimization, WCSMO-1, Goslar, Germany, 1995, 765-769.

A. A. Giunta, R. Narducci, S. Burgee, B. Grossman, W. H. Mason, L. T. Watson, and R. T.
Haftka, “Variable-complexity response surface aerodynamic design of an HSCT wing”, in
Proc. 13th AIAA Applied Aerodynamics Conf., San Diego, CA, 1995, 994-1002.

M. S. Cramer, S. Park, and L. T. Watson, “Suppression of shock-induced separation in dense
gases”, in Shock Waves, Vol. 1, B. Sturtevant, J. Shepherd, and H. Hornung (eds.), World
Scientific Pub. Co., Singapore, 1997, 783-788.

A. A. Giunta, V. Balabanov, S. Burgee, B. Grossman, R. T. Haftka, W. H. Mason, and L. T. Wat-
son, “Variable-complexity multidisciplinary design optimization using parallel computers”,
in Computational Mechanics ’95—Theory and Applications, S. N. Alturi, G. Yagawa, T. A.
Cruse (eds.), Springer-Verlag, Berlin, 1995, 489-494.

M. Kaufman, V. Balabanov, S. L. Burgee, A. A. Giunta, B. Grossman, W. H. Mason, L. T. Watson,
and R. T. Haftka, “Variable-complexity response surface approximations for wing structural
weight in HSCT design”, ATAA Paper 96-0089, 1996, 1-18.

V. Balabanov, M. Kaufman, A. A. Giunta, R. T. Haftka, B. Grossman, W. H. Mason, and L.
T. Watson, “Developing customized wing weight function by structural optimization on
parallel computers”, in Proc. AIAA/ASME/ASCE/AHS/ASC 37th Structures, Structural
Dynamics, and Materials Conf., Salt Lake City, UT, AIAA Paper 96-1336, 1996, 113-125.

M. Kaufman, V. Balabanov, B. Grossman, W. H. Mason, L. T. Watson, and R. T. Haftka, “Mul-
tidisciplinary optimization via response surface techniques”, in Proc. 36th Israel Conf. on
Aerospace Sciences, Tel Aviv, Israel, 1996, A-57-A-67.

A. A. Giunta, B. Grossman, W. H. Mason, L. T. Watson, and R. T. Haftka, “Multidisciplinary
design optimization of an HSCT wing using a response surface methodology”, Proc. First

Internat. Conf. on Nonlinear Problems in Aviation and Aerospace, S. Sivasundaram (ed.),
Embry-Riddle Aeronautical Univ. Press, Daytona Beach, FL, 1996, 209-214.

E. G. Collins, Jr., W. M. Haddad, and L. T. Watson, “Fixed-architecture, robust control design
using fixed-structure multipliers”, in Proc. 13th World Congress of Internat. Federation of
Automatic Control, Vol. C, San Francisco, CA, 1996, 73-78.
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A. A. Giunta, V. Balabanov, D. Haim, B. Grossman, W. H. Mason, L. T. Watson, and R. T. Haftka,
“Wing design for a high-speed civil transport using a design of experiments methodology”,
ATAA Paper 96-4001, in Proc. 6th AIAA/NASA/ISSMO Symp. on Multidisciplinary
Analysis and Optimization, Bellevue, WA, 1996, 168-183.

G. Soremekun, Z. Giirdal, R. T. Haftka, and L. T. Watson, “Improving genetic algorithm effi-
ciency and reliability in the design and optimization of composite structures”, AIAA Paper
96-4024, in Proc. 6th AIAA/NASA/ISSMO Symp. on Multidisciplinary Analysis and
Optimization, Bellevue, WA, 1996, 372-383.

V. Balabanov, M. Kaufman, D. L. Knill, D. Haim, O. Golovidov, A. A. Giunta, R. T. Haftka, B.
Grossman, W. H. Mason, and L. T. Watson, “Dependence of optimal structural weight on
aerodynamic shape for a high speed civil transport”, ATAA Paper 96-4046, in Proc. 6th
AIAA/NASA/ISSMO Symp. on Multidisciplinary Analysis and Optimization, Bellevue,
WA, 1996, 599-612.

P. J. Crisafulli, M. Kaufman, A. A. Giunta, W. H. Mason, B. Grossman, L. T. Watson, and R.
T. Haftka, “Response surface approximations for pitching moment, including pitch-up, in
the MDO design of an HSCT”, ATAA Paper 964136, in Proc. 6th AIAA/NASA/ISSMO
Symp. on Multidisciplinary Analysis and Optimization, Bellevue, WA, 1996, 1308-1322.

Y. Ge, L. T. Watson, and E. G. Collins, Jr., “A distributed algorithm for H2/H® controller
synthesis”, in Proc. 35th Conf. on Decision and Control, Kobe, Japan, 1996, 1317-1318.

A. A. Giunta, V. Balabanov, M. Kaufman, S. Burgee, B. Grossman, R. T. Haftka, W. H. Mason,
and L. T. Watson, “Variable-complexity response surface design of an HSCT configuration”,

in Multidisciplinary Design Optimization, N. M. Alexandrov and M. Y. Hussaini (eds.),
SIAM, Philadelphia, PA, 1997, 348-367.

A. A. Giunta, O. Golividov, D. L. Knill, B. Grossman, W. H. Mason, L. T. Watson, and R.
T. Haftka, “Multidisciplinary design optimization of advanced aircraft configurations”, in

Lecture Notes in Physics, Springer-Verlag, Berlin, to appear.

M. S. Driver, D. C. S. Allison, and L. T. Watson, “Scalability of adaptive GMRES algorithm”, in
Proc. 8th SIAM Conf. on Parallel Processing for Scientific Computing, CD-ROM, SIAM,
Philadelphia, PA, 1997, 7 pages.

E. G. Collins, Jr., D. Sadhukhan, and L. T. Watson, “Robust controller synthesis via nonlinear
matrix inequalities”, in Proc. American Control Conf., Albuquerque, NM, 1997, 67-71.

J.F. Rodriguez, J. E. Renaud, and L. T. Watson, “Trust region augmented Lagrangian methods for
sequential response surface approximation and optimization”, in Proc. 1997 ASME Design
Engineering Technical Conf., ASME Paper 97-DETC/DAC-3773, CD-ROM, Sacramento,
CA, 1997, 12 pages.

J. F. Rodrfguez, J. E. Renaud, and L. T. Watson, “Convergence of trust region augmented La-
grangian methods using variable fidelity data”, in Proc. Second World Congress on Struc-

tural and Multidisciplinary Optimization, Zakopane, Poland, 1997, to appear.
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Conversion of HOMPACK to FORTRAN 90.

The entire HOMPACK package has been redone in FORTRAN 90, taking full advantage of
high level array operations, automatic arrays, pointers, and dynamic memory allocation. Along
with this conversion, various improvements to the HOMPACK algorithms were incorporated. For
example, a new end game (see the ACM TOMS paper by Sosonkina cited above) has been added,
and new, more general, data structures and preconditioners are being employed in the sparse
codes. This conversion to FORTRAN 90 was a major undertaking, requiring several years, but the
improvement in readability, portability, and ease of use was spectacular.

Some users of HOMPACK have suggested that HOMPACK be redone using the reverse call
‘protocol. Many users of mathematical software are unfamiliar with reverse call, nor is it the
consensus preference of computer scientists. Therefore, the FORTRAN 90 version of HOMPACK
still uses forward calling (FORTRAN 90 modules obviate most of the advantages of reverse calling,
anyway), but several “expert” routines using reverse call were added. STEPNX is a reverse call
stepping subroutine, designed to be used in lieu of any of the six stepping routines STEPDF,
STEPNF, STEPQF, STEPDS, STEPNS, or STEPQS. STEPNX returns to the caller for all linear
algebra, all function and derivative values, and can deal gracefully with situations such as the
function being undefined at the requested steplength.

The ODE-based (D), normal flow (N), and quasi-Newton augmented Jacobian matrix (Q)
routines provide complete algorithmic “coverage,” but the D and @ routines are rarely used in
practice, because the N routines are usually (but not always!) more efficient. Whether the Jacobian
matrix is sparse or dense is the expert user’s problem—hence only one expert reverse call routine,
STEPNX, is needed.

ROOTNX provides an expert reverse call end game routine. ROOTNX has the same protocol
as STEPNX, and generalizes the ROOT* routines by finding a point on the zero curve where
g(A,z) = 0, as opposed to just the point where A = 1. Thus ROOTNX can find turning points,
bifurcation points, and other “special” points along the zero curve. The combination of STEPNX
and ROOTNX will provide considerable flexibility for an expert user.

Nonlinear systems with large, sparse Jacobian matrices.

Among all the Krylov subspace methods for solving a linear system Az = b with a nonsymmet-
ric invertible coefficient matrix A, the generalized minimal residual algorithm (GMRES) and the
quasi-minimal residual algorithm (QMR) are considered the most robust. Similar to the classical
conjugate gradient method, GMRES produces approximate solutions z; which are characterized
by a minimization property over the Krylov subspaces span{rg, Arg, A%rg, ..., A=Y}, where
ro = ||b — Azp|| and k is the iteration number. However, unlike the conjugate gradient algorithm,
the work and memory required by GMRES grow proportionately to the iteration number. In prac-
tice, the restarted version GMRES(%) is used, where the algorithm is restarted every k iterations
until the residual norm is small enough. The restarted version may stagnate and never reach the
solution.

QMR reduces the computational effort by employing a short-term recursion for building the
Lanczos basis. An implementation of QMR based on the look-ahead Lanczos process avoids break-
downs associated with Lanczos-type algorithms. However, a QMR iterate is a relaxed version of a
minimal residual iterate, which results in more iterations than GMRES(%) (that may or may not
take more time than GMRES(%)). The QMR algorithm may also behave erratically.

The essence of the adaptive GMRES strategy in HOMPACK90 is to adapt the parameter
k to the problem, similar in spirit to how a variable order ODE algorithm tunes the order %.
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With FORTRAN 90, which provides pointers and dynamic memory management, dealing with the
variable storage requirements implied by varying & is not too difficult. & can be both increased
and decreased—an increase-only strategy is described below.

Though GMRES(%) cannot break down, it can stagnate. A test of stagnation developed
by H. Walker detects an insufficient residual norm reduction in the restart number (k) of steps.
Precisely, GMRES(k) is declared to have stagnated and the iteration is aborted if at the rate of
progress over the last restart cycle of steps, the residual norm tolerance cannot be met in some
large multiple (bgv) of the remaining number of steps allowed (itmaz is a bound on the number of
steps permitted). Slow progress of GMRES(%), which indicates an increase in the restart value k
is needed, may be detected with a similar test. The near-stagnation test uses a different, smaller
multiple (smv) of the remaining allowed number of steps. If near-stagnation occurs, the restart
value k is incremented by some value m and the same restart cycle continues. Restarting would
mean repeating the nonproductive iterations that previously resulted in stagnation, at least in the
case of complete stagnation (no residual reduction at all). Such incrementing is used whenever
needed if the restart value & is less than some maximum value kmaz. When the maximum value
for k is reached, adaptive GMRES(k) proceeds as GMRES(kmaz).

Pseudo code for an adaptive GMRES(k) is:

choose z,tol, itmazx, kmax, m;
r:=b— Az; wtno = 0;
while ||r]| > tol do

begin .
rold .= vy = r/||r]; Jj=0;
A: ji=34+ 14

itno = itno + 1,

for i =1 step 1 until j do A, ; := (Av;, vi);

J
f]j+1 = A’Uj — E hi,jv,-;

i=1
hit1,i = (195415
vitr = Oj1 [ Ryjrng
Update [|r[];
if ||r]| £ tol then goto B
if j < k then goto A
test = k x log tol/|Ir{] / og [[Irl /((10+ 9lIr"“|)] ;

if k £ kmaz — m and test 2 smv X (itmaz — itno) then

begin
k:i=k+m;
goto A
end

elseif k 2 kmaz and test 2 bgv X (itmaz — itno) then
Abort




end if
B: €1 1= (1, 0,...,0)T;

Solve myin I lIrllex — Hjy|| for y;;

Vi = [v1,...,05); z =z + Viy;; ri="b- Az

end

In practice, the modified Gram-Schmidt process is used for the construction of an orthogonal
basis of the Krylov subspace. Some numerical experience has been obtained on sequences of linear
systems arising from the application of homotopy algorithms to circuit design and simulation
problems. The sparse matrices involved in circuit problems are nonsymmetric, indefinite, and
unstructured. Following the conclusions of the Pls’ earlier work, ILU(0) (right) preconditioning is
used, the initial vector 2 is zero, and itmaz = 5n.

For five circuit problems from McQuain, Melville, Ribbens, and Watson (cited above), the
table shows the minimum, maximum, and average number of iterations along the homotopy zero
curve, and the CPU time in seconds for the algorithms. The notation for the algorithms is:
AGILU—adaptive GMRES(k) preconditioned with ILU(0) (for AGILU the table also shows the
largest k reached); GILU—GMRES(k) preconditioned with ILU(0); FGILU—flexible GMRES(k),
each iteration of which is preconditioned with one restart cycle of GMRES(%)/ILU(0); QMR—
three-term recursion QMR. An asterisk indicates failure to converge.

Problem |rli13b, n = 31 |upsOla, n = 59|bgatt, n = 125 |is7a, n = 468is7b, n = 1854
AGILU min 1 6 32 178 1178
m =2 max 72 130 245 1004 5656
avg 14.58 35.56 104.14 355 3643

time 0.23 0.22 0.66 3.14 161.61

max k 6 6 9 15 438
AGILU min 1 6 32 178 704
m =4 max 50 55 124 1004 3383
avg 11.75 20.48 82.00 355 2497.80

time 0.19 0.14 0.53 3.17 111.73

max k 6 6 9 15 48
AGILU min 1 6 32 178 558
m =6 max 50 55 120 1004 4344
avg 10.6 17.76 74.50 355 2732.20

time 0.17 0.12 0.48 3.13 124.05

max k 6 6 11 15 50

GILU min * * 178 *
max * * * 1004 *

avg * * * 355 *

time * * * 3.15 *

FGILU min * * 35 86 66
max * * 124 205 126

avg * * 85.29 113.40 95.6

time * * 1.95 3.60 209.38

QMR  min 1 8 24 70 *
max 12 15 27 91 *

avg 7.08 10.48 25.14 76.20 *

time 1.21 0.84 2.12 7.76 *




The values of k (2, 2, 5, 15, 20, respectively) for the problems are chosen to compare AGILU
with GILU when: (1) GMRES(k) does not exhibit near stagnation behavior (is7a); (2) near stag-
nation is detected for some matrices (rli13b, upsOla, bgatt); (3) near stagnation causes an increase
in k for all the matrices (is7b). In the first case, AGILU and GILU perform the same. In the
second case, GILU stagnates on the matrices where AGILU increases the restart value and then
converges. No final solution is reached by GILU in the third case.

The optimal choice of increment values is an open question. The table shows that even a
small increment in the restart value may lead to the convergence. However, if an increment is
too small, an increase occurs more than once, the cost of which is, often, one extra restart cycle
executed. If m is too large, for large problems (is7b), the cost of the last few added iterations
becomes significant and may degrade the performance.

It is clear from the data presented that AGILU outperforms both FGILU and QMR. Con-
tributors to the poor performance of the QMR algorithm are a significant overhead, and two
matrix-vector products per iteration as opposed to one in AGILU. The failure of the QMR algo-
rithm on problem is7b is due to the sensitivity of the QMR algorithm to starting points; for some
starting vectors, QMR converges. Whenever FGILU converges, it requires more work per itera-
tion than AGILU, since a new GMRES(k)/ILU(0) preconditioner is computed in each iteration of
GMRES(k). Other variations of FGILU also appear very expensive in the context of homotopy
algorithms.




