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ABSTRACT. An efficient method is presented for calculation
of RMS von Mises stresses from stress component transfer
functions and the Fourier representation of random input
forces. An efficient implementation of the method calculates
the AMS stresses directly from the linear stress and displace-
ment modes. The key relation presented is one suggested in
past literature, but does not appear to have been previously
exploited in this manner.

NOMENCLATURE

f{(t) input force time history in direction i at location j
i frequency-domain representation of f(z)

k(r)  impulse response function matrix

p()  von Mises stress time history

D (@) frequency dependence in stress transfer functions
H transfer function matrix

N,  number of frequency points

Ng number of input force locations

PSD power spectral density

RMS root mean square

Sg input force cross spectral density matrix

Sp input force autospectral density

o(t) stress vector (6x 1)

9,;  displacement eigenvector for mode i atd.of. a
‘Iﬁ; / stress vector for mode i, evaluated at node b
() matrix transpose

() time average

E[ ] expected value operator

(")  complex conjugate

( )T Hemmitian (complex conjugate transpose)

1. INTRODUCTION

The primary purpose of finite element stress analysis is to
estimate the reliability of engineering designs. In structural
applications, the von Mises stress due to a given load is often
used as the metric for evaluating design margins. For deter-
ministic loads, both static and dynamic, the calculation of von
Mises stress is straightforward [1]. For random load environ-
ments typically defined in terms of power spectral densities,
the linear theory normally applied to compute RMS accelera-
tion, displacement, or stress tensor responses cannot be
applied directly to calculate the RMS von Mises stress, a
nonlinear function of the linear stress components. Although,
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what is ultimately sought is not the frequency distribution or
time history of the von Mises stress but it's RMS value, the
probability distribution of von Mises stress is not Gaussian,
nor is it centered about zero as are the stress components.
Therefore, the form of the von Mises probability distribution
must be determined and the parameters of that distribution
must be found. Due to space constraints, determination of the
von Mises probability distribution will be the subject of a later

paper.

The most direct method of calculating von Mises stress from
frequency data requires computation of a long time series of
linear stress components. The stress invariants can be
computed at each time step and an RMS value determined
through time integration. This process is of order NilogNw
for each output location. This expensive computational proce-
dure makes broad surveying for von Mises stress impractical.
Computationally simpler methods, such as Miles' relation {2},
involve significant approximations that can be nonconserva-
tive [3].

A new, computationally efficient process for computing the
RMS values of von Mises stress is introduced. The new
method enables the analyst to perform surveys of von Mises
stress routinely, allowing a thorough investigation into the reli-
ability of an engineering design. This method accounts for the
full frequency response of the structure.

2. THE PROBLEM

In a typical random vibration test, a structure is attached to a
single input load source, such as a shaker table, and
subjected to a vibratory load characterized by a specified
power spectral density (PSD) of the input acceleration. To
illustrate the problem, a finite element model of an aluminum
cylinder, subjected to transverse random vibration at the
base, was created using shell elements. Figs. 1 and 2 show
the cylinder model and the input acceleration PSD applied at
the base, respectively. Current standard procedure is to
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Figure 1: Cylinder FEM.
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Figure 2: Input transverse PSD at cylinder base.

assume single-DOF response of the structure, choosing a
single mode (typically the one with highest modal effective
mass [4] within the bandwidth of the input) to compute an
“equivalent static g-field” using Miles’ relation. Response
contributions from other structural modes are ignored. To the
extent that single-DOF behavior is not realized, this method is
inaccurate for ascertaining the global random stress
response. A method is proposed here that accurately
captures the RMS von Mises stress from all excited modes
throughout the structure, and for all frequencies of interest.

3. STRUCTURE AND INPUTS

Consider a structure, S, for which a complete linear dynamics
analysis has been performed. Input to the linear system are
histories of an extended force vector

f= {0 Ao, £, Fo 2o o, Y ()

where the subscripts denote coordinate direction, the super-
scripts denote location, and ( )T denotes the matrix
transpose. The complete dynamic analysis asserted above
includes generation of deterministic transfer functions
mapping the imposed forces to stresses at the locations of
interest.

At a location x, the stress, c(1), is expressed as a convolu-
tion of the imposed force history with the stress impulse
response function [5],

O = h*f e

Computationally, and for the sake of convenience in nomen-
clature, ¢ is taken to be an algebraic vector of length
six,[o_, Oyy2 Oz Oy O o),z] consisting of the non-redun-

dant components of the stress tensor. Representing the

number of rows of f as N, the impulse response function
hg isa 6xNp matrix.

The common use of digitized data and the Fast Fourier
Transform (FFT) suggest a restatement of the above equa-
tions in terms of Fourier series. Further, the linear analysis is
conveniently and conventionally expressed in terms of
transfer tunctions in the frequency domain.

Let the force vector be expressed as,

NU
) = Y Re{Fn™, @)

n=1
where { = 2m:/T, T is a period on the order of the time of
the experiment, and f, is the o frequency component of f.

Here it is assumed that the time-averaged value of the
imposed force is zero.

The frequency domain representation of f is given by,

-2m'nI/Td

T
Fa= 2[fe ' )
0

In general, f is known only in a statistical sense, and its trans-
form f is known to the same extent.

When Egq. (3) is substituted into Eq. (2), we find,

ND
o) = Y Re{5,e™}, (5)
n=1
where
6]1 = Ho" n}ll (6)
and
Ha, = J:hc(s)e_zni“/Tds ] (7)

The input is often specified in terms of a cross spectral
density matrix given by

Sp(n) = ZE[Fafa] ®)

where EJ[ } IS the expected value obtained by ensemble

- averaging [6] and (") is the complex conjugate operator.

For a single force input, this is the autospectral density,
T 2
sp(n) = EEllf,,] 1. ©

4. RMS VON MISES STRESS IN FREQUENCY DOMAIN

It is of interest to calculate the mean value of the square of
the von Mises stress over a given time period. (In fact, the



method presented here can be used to examine any other
quadratic functions of the linear oufput variables.) The
quadratic functions of the output variables, such as squared
von Mises stress, must be mapped from the imposed force.

Consider quadratic functions of stress, written in the following
form,

p(1) = o' Ac (10)

where A is a symmetric, constant, positive semi-definite
matrix. In the case of von Mises stress,

2

2_ 2 2
p(t) = 0, +0,,+0,, (csncsyy +06,,0,+0,,0,)+

3( cxy + O'XZ + 5,-2)

and,

A=|11 (11)

Equation (10) expanded in Fourier terms is

Nm NN
p2= T Re{6he™ 14 Y Re(6,e™}, (12)
m=1 n=1

and some trigonometric manipulations show the time-aver-
aged value of the square of von Mises stress to be

Nm
1 At A
(7 = 3 Y, 16746,] (13)
n=1
where ( )T denotes the Hermitian operator (complex conju-
gate transpose).

Equation (13) is a form of Parseval's theorem [7]. The root-
mean-square value, pp,.o, of p is given by

(. (13)

To be useful, the above expansions must be expressed in
terms of the input forces

Prus =

P == 2 P HY LAHG Fn - (15)

n-l

With ensemble averaging, Eq. (15) can be expressed in
terms of the input cross spectral density matrix of Eq. (8).

(= 2 2 (Hy AHg ), 5 Spm), . (16)
u—l L, j=1

The one-dimensiona! version of Eq. (16) has been used
previously in stress analysis [3,8], but the equations
presented here appear to be the first that accommodate the
full stress tensor.

5. RMS STRESS USING MODAL SUPERPOSITION

Modal superposition provides a convenient framework for
computation of RMS stress invariants. The linear components
of the stress (not principal stresses) can be superposed since
they are derivatives of linear functions. Let ‘Pf,,i represent
the stress components (1 to 6) for mode i, evaluated at node
b. The “stress modes™ are standard output from most FEA
modal analysis codes {such as the grid point stresses in

MSC/NASTRAN [9]).

The transfer function for a stress at location » due to an input
force at degree of freedom a, can be written as {10}
# modes

Hab Z \Pz, i®ai
a,n

Py
i 0 -0, +i5y0,

Z‘Pz.i(paipi(”)'
' (7)
Here, o is the displacement eigenvector, and D contains all

frequency dependence. For a single axis shaker, Egs. (16)
and (17) can be combined to give

<172) TEZ\P ,(PmD (n)A‘Pb ]‘Pa] j(")sp(") (18)

nij

Grouping terms and simplifying,

# modes
P =Y QTR (19)
Lj
where
Qyj = Pai%aj €0
) b b
T, =¥ A¥,  and (1)
1 +
R; = TZDi (m)Dj(n)sg(n). (22)

Here, Q;; depends only on the shaker input location, T;
depends only on the node location for stress output, and R
contains all the frequency dependence of the problem.

To obtain resuits at every node, Q0 and R may be evaluated
only once while 7 and the modal sums must be computed at




each node. Computation of R is of order N, . Within a modal
survey, the total computation is of order M°N where M is the
number of modes, and N is the number of nodes in the
survey. Even for a very large model, these computations are
easily accomplished on a workstation.

The same approach can be extended to problems with
multiple input forces by adding dimensionality to 0 and R.

6. RESULTS AND VERIFICATION -

The shell elements used to model the cylinder in Fig. 1
produce no out-of-plane stresses [9]. Therefore, in element
coordinates, the three remaining nonzero stress components
are o,, O, {normal stress) and Ty (shear stress). In this
context, A reduces to a 3 x 3 matrix,

(23)

The transfer functions for the stress components were
computed from Eq. (17) at each grid point in the model. A
typical set of transfer functions at one of the grid points is
illustrated in Fig. 3. The stress and displacement eigenvec-
tors, ¥ and o, required to compute the transfer functions were
obtained using MSC/NASTRAN, and 1% modal damping was
applied.

The mean squared von Mises stresses at each grid point
were calculated using three methods: (a) time realization
using Eq. (10) and an inverse FFT of Eq. (6); (b) direct
frequency realization of Eq. (13) using Eq. (16); and (c) the
implementation of Eq. (13) using the efficient modal superpo-
sition procedure of Eq. (19). The mean squared von Mises
stresses at each grid point were found to be identical using
each of the three methods, thus verifying the procedure.

Magnitude (psl/g?)

phase (degrees)

10? — . 1:7’
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Figure 3: Stress component transfer functions.

“Time and frequency realizations of the input acceleration and

output stresses at a typical point are shown in Figs. 4 and 5,
respectively. Time and frequency plots for the mean squared
and RMS von Mises stresses at the same location are
presented in Fig. 6. The RMS von Mises stresses at all grid
points were computed from Eqs. (14) and (19), with contours
of this quant{ty plotted in Fig. 7. .

As illustrated in Fig. 5, the shear and one of the normal stress
components dominate the stress state at this location. ¢ is
driven by the first bending mode of the cylinder, at 724 Hz. 1,
is driven by both first and second bending modes, the second
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Figure 4: Time and frequency realizations
of the lateral input acceleration.
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occurring at 3464 Hz. The relatively low ¢, stress is driven by
the first three modes, the third occurring at 7698 Hz.

We see in Fig. 6 that the frequency content of the squared
von Mises stress contains terms at twice the excited natural
frequencies (e.g., 1448 Hz, 6928 Hz). This observation is
attributable to the fact that a squared sinusoid is another sinu-
soid at twice the original frequency (plus a constant). The
linear stress components respond at the natural frequencies
of the structure, while the squared von Mises stress responds
at twice these frequencies. At this particular location, the
0,0, term in the expression for von Mises stress is small and

Figure 7: RMS von Mises stress contours

Ip{w)! - {psi)

the first two modes, drivers for ¢, and 1_, also drive the von
Mises stress. Von Mises stress fvrequenmes also occur at f; -
f,, where i,j denote excited modes. For example, Fig. 6 shows
von Mises content atf, - f; = 3464 - 724 = 2740 Hz and at 5 -
f, = 7698 - 3464 = 4234 Hz.

7. COMPARISON WITH MILES’ RELATION

Evaluations of RMS von Mises stress using the new proce-
dure and the traditional Miles’ relation were compared. A new
input acceleration PSD was generated, as shown in Fig. 8.
Three cases were examined in which the input PSD
frequency range was selected to excite (a) only the first
mode, (b) only the second mode and (c) both first and second
modes. To excite the first mode only, the input PSD followed
the definition of Fig. 8 up to 1000 Hz, and was set to zero
beyond this frequency. For second mode response, the input
PSD was set to zero below 1000 Hz and followed the Fig. 8
definition between 1000 and 10,000 Hz. Excitation of both
modes resulted by applying the full PSD from zero to 10,000
Hz.

Miles’ method assumes single-DOF behavior of a structure.
An additional constraint on the application of Miles’ relation to
elastic structures is that the shape of the single excited mode
must approximate the profile of the structure under a static g-
field. For example, the first mode of a cantilever beam
assumes the approximate shape of the beam under a trans-
verse g-field.

Miles’ relation is given by,

8eq = ff,,,PSD(f,,,)gQ

where g, is the approximate RMS acceleration response,
commonly used as an “equivalent static-g field”, f, is the
single natural frequency chosen for application of Miles’ rela-
tion, PSD(f,,) is the value of the input acceieration PSD at
frequency £, and Q is the quality factor, defined as 1/(28).

(24)
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Figure 8: Input PSD for Miles’ comparison




For the input PSD shown in Fig. 8, g, from Eq. (24)is 10.7 g
for the first mode at 724 Hz, and 90.5 g for the second mode
at 3464 Hz.

Because the von Mises stress in a static g-field scales with
the magnitude of the field, the static response of the cantile-
vered cylinder to a 1-g field may be used to scale the Miles’
approximations for each mode. The displacement and von
Mises stress responses to a transverse 1-g field are
presented in Figure 9. The profile of the static response is
similar to the first mode of a cantilever beam. The maximum
von Mises stress corresponding to the 1-g static field is 12.6
psi, and occurs at the base top and bottom-most fibers. Thus,
the maximum von Mises stresses corresponding to the Miles’
~ equivalents for the first and second modes are 134.4 and
1138.3 psi, respectively.

The true RMS von Mises stresses were computed using the
new method presented above. The stress contours which
result from the application of the input PSD below 1000 Hz
are superimposed upon the deformed shape for the first
mode in Fig. 10. The stress contours and shape profile
closely resemble those of the static-g response. The
maximum RMS von Mises stress for this case is 117.4 psi,
showing the Mile’s method to be slightly conservative.

When the second mode alone is excited by applying the input
PSD above 1000 Hz, an entirely different result is obtained.
The von Mises stress contours for this case are superim-
posed upon the deformed shape for the second mode in Fig.
11. The stress contours and shape profile do not resemble
those of the static-g response. The maximum RMS von Mises
stress for this case is 106.3 psi, showing the Mile's method to
be conservative by an order of magnitude.

Von Mises Stress
PSI

Figure 9: von Mises stress contours and
displacements for a transverse 1-g field

Figure 10: von Mises stress contours for fpsq < 1000 Hz
superimposed upon mode shape 1

Figure 11: von Mises stress contours for 1,54 > 1000 Hz
superimposed upon mode shape 2

Finally, the entire PSD of Fig. 8 was applied to the cylinder,
and the resulting von Mises stress contours are superim-
posed upon the first and second mode shapes in Figures 12
and 13. The contours are observed to be a blend of the two
narrow-band responses, with the maximum RMS von Mises
stress at 158.4 psi. The firsi-mode Miles’ approximation‘is
slightly non-conservative, whereas the second-mode approx-
imation is much too conservative.

8. SUMMARY AND CONCLUSIONS

A computationally efficient method has been developed for
calculating the RMS von Mises stress in a random vibration
environment. The method retains the full accuracy of the FEM
mode! and modal analysis. Surveys of the RMS stress for the
entire structure can be computed efficiently. The number of
operations per node output is of order MZ, where M is the




Figure 12: von Mises stress contours for 0 < f,5q < 10
KHz superimposed upon mode shape 1

Figure 13: von Mises stress contours for 0 < fpgq < 10
KHz superimposed upon mode shape 2

number of modes comptited. Results exactly match a full time
history development.

Conditions under which Miles’ relation produces good esti-
mates of von Mises siress contours were examined, as well
as conditions resulting in poor estimates. Miles’ relation is
adequate when the system response is dominated by a single
mode, and when the excited mode shape approximates the
response to a static g-field. Otherwise, both conservative and
non-conservative estimates may result from the application of
Miles’ relation.

Work underway will further quantify the statistical properties
of the von Mises stress. These properties will determine the
probability of the von Mises stress exceeding a given value
for infinite time and finite time force histories.
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