SENOG7. 2794 ¢

MODEL REFINEMENT USING TRANSIENT RESPONSE

ND~=9

C. R. Dohrmann and T. G. Carne C]g/\)f' q 05/5____

Sandia National Laboratories
P.O. Box 5800, Mail Stop 0439
Albuquerque, NM 87185

1 Abstract

A method is presented for estimating uncertain or un-
known parameters in a mathematical model using mea-
surements of transient response. The method is based
on a least squares formulation in which the differences
between the model and test-based responses are mini-
mized. An application of the method is presented for
a nonlinear structural dynamic system. The method is
also applied to a model of the Department of Energy
armored tractor trailer. For the subject problem, the
transient response was generated by driving the vehi-
cle over a bump of prescribed shape and size. Results
from the analysis and inspection of the test data re-
vealed that a linear model of the vehicle’s suspension is
not adequate to accurately predict the response caused
by the bump.

2 Nomenclature

time

state vector

state vector time derivative
input vector

mode] parameter vector

initial estimate of p

current estimate of p

vector of measurements
model-based vector corresponding to y
parameter weighting matrix
measurement weighting matrix
sensitivity matrix

mass matrix
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3 Introduction

Model parameter estimation for structural dynamic
systems is commonly done using modal test data [1-
4]. The basic idea is to adjust uncertain or unknown
parameters in the model so to improve the correla-
tion between the analysis and test. An advantage of
using modal test data (frequencies, damping ratios,
modes shapes, frequency response functions) is that the
amount of test data used for comparison with the model
is reduced significantly. For example, parameter esti-
mates for a model can often be obtained using just a
limited number of characteristic frequencies.
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Although parameter estimation based on modal test
data has many advantages, it has its limitations as
well. It is assumed implicitly in a modal test that a
structure’s response is linear. Consequently, the use of
modal test data for parameter estimation is restricted
to linear models. The ability of such models to pro-
duce accurate simulations requires that the response of
the system be predominantly linear. For many systems
this requirement is satisfied, but for others it is not.
An illustration of some limitations of linear models is
given by a simple example problem in Section 6. Other
situations that would require the use of transient re-
sponse data include: a) blast loading on a structure,
b) one-time transient events, and c) shock inputs to a

system.

The basis for the proposed method is a least squares
formulation in which the differences between the model
and test-based responses are minimized [5]. An ex-
ample problem is presented to demonstrate the use of
the method to nonlinear systems. Results are also pre-
sented for an application involving the Department of
Energy armored tractor trailer.

4 Problem Formulation

The governing equations for many systems can be ex-
pressed in standard first-order form as

I(t) = g(:z:(t), h(t),p, t) i (1)

where z € R" is the state, h € R™ is the input, p € R™
is a vector of model parameters, and t is time. Given
the input A(t), Eq. (1) can be integrated in time to yield

zi = z(p,ts) (2)
(p, t:) @)

for i =1,...,N. The mathematical formulation of the
parameter estimation problem is stated as follows. De-
termine the parameter values which minimize the func-
tion

=(p—po) Wplp—po) + c—9)TW(c—vy) (4

where the matrices W, and W are symmetric, posi-
tive semi-definite, py is a vector of initial parameter
estimates, y is a vector obtained from the measured
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transient response, and c¢ is a vector function relating
z; and Z; to y. For example, y could be a vector con-
taining accelerometer signals taken at specific points in
time at various locations on a structure. The vector
¢ would then contain the corresponding accelerations
generated by the model. The formulation presented
above allows for various transformations of the mea-
sured and modeled transient responses for purposes of
comparison; one could even use transformed quantities
like principal vectors for the comparison.

5 Problem Solution

Minimization of the function G can be accomplished
using a general-purpose optimization code or, as in this
analysis, with a simple gradient-based scheme. Let

Ap=p—p (5)

where p is the current estimate of p. The function cis
approximated by

e=¢+4+ DAp (6)

where ¢ = ¢(p) and D is the sensitivity matrix, d¢/dp,
evaluated at p = p. Substituting Egs. (5) and (6) into
Eq. (4) yields

G = (8p+D—po)TWy(Ap+5—po)+

(DAp+é—y)TW(DAp +é—y) M

The function G is minimized by setting the gradient of
the right hand side of Eq. (7) equal to zero. The result
is

(Wp+ DTWD)Ap = —[Wp (5 —po) + DTW (2 -y)] (8)

Equation (8) can be solved for Ap provided the coef-
ficient matrix on the left hand side of the equation is
positive definite. Once Ap is obtained, p is updated via
p «— p+alp where a € (0,1]. The process of updating
p is repeated until the desired level of convergence is
achieved.

In the context of structural dynamics, the governing
equations can be expressed as

Mii+ g(u,%,8) =0 (9)

where M is the mass matrix, g is a vector of internal and
external forces, and u is the displacement vector. For
linear problems, one has g(u, u,t) = Ciu+ Ku—F where
C and K and are the damping and stiffness matrices
and F is a vector of generalized forces.

Newmark’s method is a standard technique for the time
integration of structural dynamic systems which is ap-
plicable to both linear and nonlinear problems. Given
the force input F(t), one can use this method to de-
termine the responses u; = u(p,t;), s = u(p,t;) and

o accelerometer locations

2 my,Ih,1,

3
kzgcz kz% )

Figure 1: Simplified model of tractor trailer.

i; = i(p,t;) for i = 1,..., N. In the context of Eq. (2),
one has

(10)

The terms é and D appearing in Eq. (8) can be cal-
culated using Newmark’s method together with finite
difference calculations.

:z:,-=[u,- 'll,' ]T

6 Example Problem

Consider the simplified three degree of freedom model
of a tractor trailer shown in Figure 1. In this example,
L, = 20 feet, Ly = 40 feet, m; = 20000 lbm, my =
40000 bm, I; = myL3/12 and I = myL%/12. The
spring/damper pair k; and c¢; exerts a vertical force f;
on the vehicle given by

fi = —(kju + kjnt® + c;1) (11)
where u is the extension of the spring/damper pair. The
problem is to estimate the values of the coefficients k;,
kin, €1, k2, k2, and ¢ using acceleration measurements
of vertical motion at the three stations shown in Fig-
ure 1.

Simulated test data was generated by driving the ve-
hicle at a speed of 55 mph over a 2-inch vertical half
sine wave bump that is 4 feet long. The data was gen-
erated using parameter values of k; = 5000 1bf/inch,
ko = 20000 Ibf/inch, ¢; = 40 Ibf-sec/inch, c; = 80 Ibf-
sec/inch, k1, = 500 Ibf/inch® and ks, = 2000 1bf/inch3.
To this data was added normally distributed random
numbers with a mean of zero and standard deviation of
5 inch/sec?.

Initial estimates of the suspension parameters were
given by k; = 6000 Ibf/inch, ks = 17000 Ibf/inch, ¢;
=0, ¢cg = 0, k1p, = 0 and ks, = 0. Comparisons of ac-
celeration time series at station 1 (front end of tractor)
are shown in Figure 2 after 0, 2, 4 and 6 iterations of the
approach presented in Section 5. Very close agreement
between the “test data” and the simulation is evident
after 6 iterations. These results were obtained by in-
cluding in the vector ¢ the simulated accelerations at
all three stations over the range of times shown in the
figure. The matrix W), in Eq. (4) was set equal to zero
(no penalty for parameter changes). In addition, the
weighting matrix W was set equal to the identity and
a was set equal to 1 for all iterations. Values of k&,
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Figure 2: Comparison of simulated data (solid lines) and proposed approach (dashed lines).
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Figure 4: Linear model fit (dashed line) to simulated
nonlinear response (solid line).

ko, ¢1 and ky, at each iteration are shown in Figure 3.
Convergence of the parameters to their known values is
evident.

It is noted that the parameters were estimated success-
fully in this example for two primary reasons. First,
the form of the model used in the simulations is ad-
equate for predicting the system response. Indeed, in
this example the model form is exact. Second, the “test
data” contains enough information about all the differ-
ent parameters. The singular values of the matrix DT.D
provide a simple measure of the amount of information
in the data. In this example, the singular values of
DT D at the solution ranged from a minimum value of
1 to a maximum value of 5 x 104,

Attempts were also made to fit a linear model (k;, =0
and k2, = 0) to the simulated test data. Results from
this analysis lead to converged parameter estimates of
ky = 5186 Ibf/inch, k2 = 21090 Ibf/inch, ¢; = 35.8 Ibf-
sec/inch and ¢p = 70.4 Ibf-sec/inch. Comparisons of ac-
celeration time series at station 1 are shown in Figure 4
for these parameter values. Although the agreement
between these results is very good, some limitations of
using a linear model to simulate the transient response
of a nonlinear system are evident, particularly at the
high values of the response.

It is noted that the nonlinear effects in the simulated
data are relatively small for this example. Clearly, the
limitations of the linear model will be more pronounced
as the nonlinear effects become more significant. We
believe that the nonlinear behavior of the leaf springs
and/or shock absorbers in the tractor trailer makes it
very difficult to simulate the response of rolling over a
2-inch bump at 20 mph with a linear model. This point
is discussed further in the next section.

7 Tractor Trailer Problem

A modal-data based system identification of the De-
partment of Energy tractor trailer was performed prior
to this analysis to estimate several tire and suspension
stiffnesses. The results of this system identification pro-
vided valuable information to the modeling process, but
they also suffered from two limitations. First, the ve-
hicle’s shock absorbers were not connected during the
modal tests. Consequently, a characterization of the
shock absorbers could not be made based on modal
test data. Second, we suspected that the suspension
stiffnesses calculated from the modal tests would only
be meaningful for low-level responses. It was thought
that the estimated leaf spring stiffnesses are smaller at
in-service response levels due to sliding between the in-
dividual leaves that was not present in the modal tests.

The data used in this analysis was generated by driv-
ing the vehicle over a 2-inch vertical bump at a nom-
inal speed of 20 mph. The bump was in the shape
of a half sine wave with a length of 48 inches. Both
sides of the vehicle were subjected to the bump in-
put. Displacement and acceleration time histories were
recorded at several locations along the passenger side
of the vehicle. The displacement time histories used in
the analysis included those from relative displacement
gauges mounted between the five axles and correspond-
ing points above them on the tractor or trailer. High
frequency content from the accelerometer gauges often
swamped the signals, thus making it difficult to use this
data directly. In addition, the acceleration time histo-
ries were often much more sensitive to ambient road
roughness than those for displacement.

In addition to stiffness and damping parameters of the
tires and suspensions, it was necessary to estimate the
instants in time when the tires on the five axles first
made contact with the bump. This was necessary be-
cause the speed of the vehicle during the test was only
known approximately and varied slightly over the test
duration. Parameter estimates were obtained by set-
ting W, equal to zero and W equal to the identity.
Only transient responses between the times of 3.2 and
6.0 seconds were used in the analysis. This time win-
dow included the time just before first contact with the
bump to a time after the rear trailer axle tires roll over
the bump. The step length parameter o used to update
the nominal values of the parameters was set equal to
1 for all iterations. '

The process of integrating the equations of motion for
the tractor trailer finite element model was expedited
using modal superposition. This involved first calculat-
ing the mode shapes and frequencies of a model in which
the estimated parameters (e.g. springs and dampers)
were set equal to zero. A modal model of the system
was then constructed which accounted for the presence




Relative Displacement (Inch}

35 4 45 5 55 6
Tme (sec)

Figure 5: Relative displacement time series at steer
axle.

of the parameters to be estimated and the road input.
A total of 36 modes were included in the modal model
spanning a frequency range from 0 to 25 Hz. All calcu-
lations for this analysis were done using the Matlab [6]
computing environment.

Comparisons of relative displacement time series are
shown in Figures 5-8 for the test data (solid lines), ini-
tial model (dot-dashed lines) and the model after 8 iter-
ations (dashed lines). The agreement between the test
and the model-based results is clearly improved after
8 iterations, but the values obtained for the stiffness
and damping coefficients of the tires are unrealistic. A
major difficulty that arose in the analysis was the very
poor conditioning of the matrix DTD. As a result, dif-
ferent “converged” parameter values could be obtained
if different initial parameter estimates were used. This
situation indicates that there is not enough information
in the displacement time series to independently iden-
tify all the unknown parameters in the model and/or
the model form is significantly in error.

In order to investigate potential causes for these diffi-
culties, additional measurements were included in the
vector c. Specifically, the acceleration time series at the
steer axle was integrated twice to obtain the absolute
displacement of the steer axle. These displacements
were then included in the analysis. It was found with
the existing linear model of the tractor trailer that it
is not possible to reasonably match both the absolute
displacement of the steer axle and the relative displace-
ment between the steer axle and the frame. We believe
the main reason for this is that the leaf springs in the
steer axle and trailer axle suspensions respond nonlin-
early to the bump input.

To show why we believe a linear model of the leaf
spring suspensions is inadequate, consider the time se-
ries shown in Figure 9 and 10. These plots show the
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Figure 10: Displacement time series at rear trailer axle.

absolute displacements of the axle and the frame above
the axle for the steer and rear trailer axles. Notice in
the figure that there is very little relative motion be-
tween the axles and the frames shortly after the bump
is rolled over. This indicates that the leaf spring stiff-
nesses are very high for normal highway inputs. In con-
trast, it is evident that the suspension stiffnesses must
decrease significantly when the bump is encountered. A
single value of stiffness clearly cannot be used to model
the behavior of the suspensions for both high and low
amplitude inputs.

Because of time constraints and other considerations,
the leaf spring suspension models were not modified to
include nonlinearities caused by stiction in the leaves.
The test data presented in Figures 9 and 10, however,
suggests that it is reasonable to use linear models of
the suspensions to simulate vehicle response over rel-
atively smooth surfaces such as those encountered in
normal highway driving. The natural excitation tech-
nique (NExT) [7] was recently used to determine the
mode shapes and frequencies of the DOE tractor trailer

using test data collected while driving the vehicle over a
stretch of Interstate 40 east of Albuquerque, New Mex-
ico. In the test, the shock absorbers were connected
and the vehicle was subjected to normal highway road
inputs. A recommendation was made to use a linear
model identified using the results of the NExT analysis
in the design of a cab isolation system for the tractor
trailer.

8 Conclusions

A method was presented for estimating uncertain or
unknown parameters in a mathematical model using
transient response measurements. The method is ap-
plicable to either linear or nonlinear models and was
applied successfully to a simple test problem. As with
other estimation techniques, an adequate model form is
essential to the success of the method. In addition, the
measured transient response must include enough infor-
mation to estimate all of the parameters in the model.
Useful measures in this regard are the singular values of
the sensitivity matrix D. The method can also be used
with various transformations of the transient response.

Several insights were gained as a result of a real-life ap-
plication involving the Department of Energy tractor
trailer. Based on an analysis of the test data and un-
successful application of the method, it was concluded
that a single linear model of the suspension system is
inadequate for both high and low amplitude inputs. Ex-
amination of the test data also revealed that direct use
of accelerometer signals may cause difficulties for the
method because of large amplitude responses at fre-
quencies above the range of interest. Other potential
sources of difficulty are time series with a large number
of cycles. Various transforms of the time series may be
required to address these two issues.
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