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Abstract

This manuscript contains the lecture notes for a course entitled “Patched
Based Methods for Adaptive Mesh Refinement Solutions of Partial Differential
Equations” taught from July 7th through July 11th at the 1997 Numerical Anal-
ysis Summer School sponsored by C.E.A,, INR.LA,, and E.D.F. The subject
area was chosen to support the general theme of that year’s school which is “Mul-
tiscale Methods and Wavelets in Numerical Simulation”. The first topic covered
in these notes is a description of the problem domain. This coverage is limited to
classical PDEs with a heavier emphasis on hyperbolic systems and constrained
hyperbolic systems. The next topic is difference schemes. These schemes are
the foundation for the adaptive methods. After the background material is cov-
ered, attention is focused on a simple patched based adaptive algorithm and its
associated data structures for square grids and hyperbolic conservation laws.
Embellishments include curvilinear meshes, embedded boundary and overset
meshes. Next, several strategies for parallel implementations are examined.
The remainder of the notes contains descriptions of elliptic solutions on the
mesh hierarchy, elliptically constrained flow solution methods and elliptically
constrained flow solution methods with diffusion.




Introduction and
Curriculum Summary

Adaptive meshes are conceptually easy to understand. It is known when ap-
proximating the solution of Partial Differential Equations (PDEs) the overall
accuracy of the solution is determined by local truncation error. Since local
truncation error can be explicitly written down as a sum of higher order deriva-
tives of the solution and some known functions it is easily seen that in many
instances the truncation error is very nonuniform. For example, many problems
with fronts have the largest truncation error at these fronts and small errors
elsewhere. However, only relatively recently have people tried to exploit this
observation. The reason for this is programming complexity. Because of limita-
tions with programming languages and computer architectures, developing an
adaptive mesh algorithm for a multidimensional PDE was a daunting task.

Currently there are a variety- of adaptive methods under development or in
use — so much so that we can easily spend the time allocated for this course
surveying all the developments in this area. Instead, we focus on a particular
" class of problems with a specific mathematical structure. We will further restrict
ourselves to a small collection of difference methods and data structures. Qur
focus will be on hyperbolic conservation laws that may be augmented with
constraints or “small” perturbations on the underlying solution. Constraints
will be exclusively elliptic such as is found in incompressibility conditions in
fluid dynamics. Diffusion terms may also be introduced (formally changing the
system type to parabolic), but the magnitude of the diffusion coefficients will
mostly be small preserving the sharp fronts found in problems of interest.

This manuscript has five chapters. Each chapter corresponds to a lecture.

However, the material covered in each chapter exceeds what is covered in a
lecture because of time constraints of the later. Below is a list of chapter themes:

o Mathematical Preliminaries: Here we describe three classes of PDEs
that are covered in the remaining lectures. These classes are strictly hy-
perbolic equations, parabolic equations that are singular perturbations of
hyperbolic systems, and constrained hyperbolic systems where the con-
straints are elliptic.




e Notation, Computer Languages and Finite Difference Schemes:
In order to discuss adaptive mesh algorithms we start with a description
of the components. These components include a collection of different
types of structured grids that are used, a C++ array class that maps well
to these grids (in fact the class was designed to facilitate development of
finite difference schemes for these grids), and a collection of finite difference
methods. We briefly discuss moving mesh methods as a precursor to
adaptive methods.

Patched Based Algorithms and Parallel Strategies: We outline the
basic steps in a patch based adaptive mesh refinement (AMR) algorithm
for hyperbolic systems of conservation laws on square grids. Data struc-
tures and implementation tips are then given. Finally, the basic methodol-
ogy is generalized to more complicated structured grids. Adaptive meth-
ods can be seen as a way of saving memory and CPU time. However,
the additional complexity of adaptive methods may lead to problems with
implementation on a parallel machine. We describe parallel algorithms
currently in use or under development.

Elliptic Constraints: We briefly describe how to solve elliptic problems
on adaptive mesh hierarchies. These techniques are tailored for singular
perturbation problems and patched grids.

Hyperbolic-Parabolic-Elliptic Methods: Often applications are of
mixed type. There may be a combination of elliptic, hyperbolic and
parabolic parts of a system. Here we describe algorithms that combine
different types of equations within a single application. In particular, the
global influence of elliptic constraints will be explored as well as its impact
on adaptive mesh algorithms.




Chapter 1

Mathematical Foundations

In this chapter we describe sets of equations that fall into the category of clas-
sical PDEs. The central focus of our work is hyperbolic systems. Although our
development will be general, our applications will focus on hyperbolic conserva-
tion laws. The conservation laws will be seen as a limiting case of a parabolic
system where the physical dissipation tends toward zero. This naturally leads to
the next topic which is labeled hyperbolic-parabolic systems. Mathematically,
these systems are simply parabolic. We use the phrase hyperbolic-parabolic sys-
tems to emphasize that our interest will be towards the zero dissipation limit.
However, global coupling of field variables is still present and we will move from
explicit to implicit finite difference techniques. The final topic in this chapter
is elliptically constrained hyperbolic systems. Here, too, global coupling of field
variables will be present. In contrast with parabolic systems, elliptically con-
strained systems much more tightly couple the field variables. This coupling
“will lead to significant changes in adaptive mesh algorithms.

1.1 Hyperbolic Systems

Adaptive methods are highly effective in approximating solutions of hyperbolic
systems. Discontinuities travel at finite speeds and are highly localized. There-
fore explicit finite difference methods can be used to approximate solutions and
mesh refinements, too, will be highly localized. In this section we describe linear
and nonlinear scalar and systems of equations. Qur coverage is limited to equa-
tions that are written in conservation form. We further will limit our discussion
to features of these equations that will be useful to their numerical analysis. The
classic reference for hyperbolic systems and conservation laws is Lax [29]. An
excellent introductory text on numerical analysis of these systems is Le Veque
32].




1.1.1 Linear Equations

The simplest linear equation is the scalar equation

ur ~cuy = us + (cu)y =0 (1.1

where
u = u(z,t), c¢=const, and u(z,0) = ye(z).

Although this problem is trivial (the solution u(x,t) = up(x — ct) is found
by inspection), it displays many properties that are relevant to systems that are
more interesting. The two most important properties that are easily seen are
conservation and the existence of characteristics.

To expose the conservation properties of this equation rewrite the wave equa-
tion as

ut + cuy =us + f(u)y =0

where f(u) = cu. The function f(u) is called a flux function. Integrating the
differential equation over a box in space and time {z;, 23] X [¢1, t2] yields

2 T2
/ / U + fx - 0.
1) x1

This can be rewritten as

t2

/m ez vy - [ Tty = [ fule,at— [ Flulzs, )t

1 r ty t

If v is considered as a density (mass per unit volume) then the above relation
implies that the amount of mass at time level ¢, is equal to the initial mass at
time level ¢; plus the mass flux flowing into the box at x; minus the mass flux
leaving the box at xz9. This property has both engineering, physical and mathe-
matical significance. From the engjineering and physical viewpoint conservation
is the most fundamental starting point for many mathematical models. From
the mathematical viewpoint, conservation represents an important constraint
that helps to insure that discontinuities in a solution (later we will call these
shocks and contacts) move at the proper speed and are calculated in the cor-
rect physical manner. Note that f need not be linear in the solution but only
differentiable.

Characteristics are special directions in space-time that represent how infor-
mation propagates over the evolution of the problem. The special direction for
the linear equation is easily seen as x — ¢t = const. If we define

d —5+c8
dt ot Oz
9




du

— = Uy + Uy = 0.
dt ¢ » =0

In other words the solution is invariant on a characteristic path in space-time.
The concept of characteristics becomes more complicated when we talk about
systems.

Linear systems have the form

U, + AU, =0 (1.2)

where U(z,t) ¢ R™ is a vector and A € R™ x R™ is a constant matrix. The
system is hyperbolic if A has real, distinct eigenvalues. An example system is
the system formulation of the second order wave equation

OREDICEINS

where ¢ is the wave speed. The above is equivalent to the scalar second order
equation

Ut — czum =0.
Since the matrix A is constant the linear system of equations can be seen to be

conservative for each component of the solution vector. This is easily accom-
plished by moving A inside of the x derivative in equation (1.2).

Let E be a matrix whose columns are the eigenvectors of A in (1.2). Since the
eigenvalues are distinct, the eigenvectors are independent and E is invertible.
Therefore a mapping of U into a new space V can be defined as

U=EV.
Substituting the mapping into the linear system (1.2) gives
EVi+ AEV, =EV, + EAV, =0
whéré A is a diagonal matrix whose nonzero elements are the eigenvalues of

A. Since E is nonsingular the above system can be multiplied through by its
inverse. What is left is a diagonalized system

Vi+ AV =0.

Following the same procedure for the wave equation (1.3) leads to a system of
the form




(), (0 %) ()0

Us 0 —c U

“/ 1 “/

which is nothing more than two decoupled waves propagating in opposite direc-
tions with like speeds.

The ability to so easily decouple and solve systems of equations component
by component is lost with nonlinear systems of equations. However, conserva-
tion and characteristics in space-time still remain. Linear systems are useful in
their own right. In sections that follow we will describe a system of equations
called the Euler equations that describe inviscid fluid flow and are nonlinear.
It is easy to find constant solutions to these equations. By perturbing around
these constant states with small excursions we find what are called acoustic
equations. The acoustic equations are quite close to the wave equations de-
scribed above. These linear equations in one or more dimensions are the basis
for the field of acoustics. Applications range from concert hall design to the
study of abatement of noise generated from aircraft flying over populated areas
near airports.

1.1.2 Nonlinear Equations

The study of nonlinear hyperbolic equations often starts with Burgers’ equation

wy + utty = us + (u?/2); =0. (1.4)

The flux function for this equation is seen by inspection as f(u) = u?/2. As
- before we may formally define a directional derivative and express (1.4) as

du_8u+u8u_0
dt ot dx

If uo(x) is the initial condition for (1.4) then it is easy to formally write, again
by inspection, a solution of the form

u(z, t) = oz — u(z, t)t).

Several problems occur with this solution. Most obvious is the solution is ex-
pressed implicitly meaning ug must be inverted. But what can be seen from this
solution or the formal directional derivative is the solution is constant along a
characteristic x—ut. So once u is known at one point along a characteristic then
it is known everywhere. We attempt to cover the x —t plane with characteristic
lines using the slopes of the lines startingat t =0 and z = x4

z = tug{zp) + o.

11




If up{z) = = then a fan-like system of characteristics emanate from the z axis
at t = 0. This solution is often suggestively referred to as an ezpansion or
rarefaction solution. The expansion solution nicely covers the plane for t >=0.
However, if the initial conditions are ug(z) = —z then there is a problem. The
characteristic crossing the x axis at = ~1 will intersect another characteristic
crossing the z axis at * = 1. The crossing point will be at time ¢ = 1. Prior to
this time we can find unique solutions along characteristic lines. The collision
of characteristics is an example of the formation of what is called a shock. The
characteristics for a general scalar conservation can be seen from the derivative
along the characteristic direction, by inspection, as

du  Ou _Ou _Ou —
- = 5 T = g+ fWus = 5+ fu), =0

where a(u) = f'(u) = dz/dt is the characteristic velocity.

We will introduce the idea of a weak solution in order to accommodate shock
solutions. Indeed, a combination of shocks and smooth solutions will suffice to
describe a complete solution of the problem. To understand shocks it is best to
look at an integral form of a conservation law. First integrate the equation on
an interval [a, b]. :

b b
0= [(u+fede=3 [Cudsr @l -f@l @9

The relation simply states that the amount of mass on the interval [a, b] only
changes from the mass flux entering and leaving through the endpoints. A key
observation is that even if a shock exists within an interval mass is neither
created or destroyed. The only way mass is added into the interval is through

_the fluxes at the endpoints. We take this as a starting point and work towards
the differential equation. Suppose there is a shock in the interval {a, b] but the
rest of the mass distribution is a smooth function. Let the shock have a location
£(t) in that interval. Using Leibnitz’s rule on the time derivative of the mass on
the interval leads to

i) = G e g
—_ udr = —— udr + — udz
dt a dt a dt E(t)

= /a S +u€(t) + /‘E IR L0

£(t) . b )
= - / Flw)s dz + ué(t) - / F(w)odz - ué(t)
a £(t) ) )
= flwla — flu)le + flup)ley — Flu)lew +u-&(t) —u &)

where the u_ indicates a limiting value from the left of the discontinuity and u
indicates a limiting value from the right of the discontinuity. Using the integral
of the conservation law (1.5)

12




b
0= c% udz — f(u)la + flu)lo = Flus)lewy = fluz)lee + u-8(t) — uyg(t).

gives a the shock jump condition of the form

Sfuy —u-] = flus) = flu_) (1.6)

where s = £(t).

The shock jump relation, sometimes called the Rankine-Hugoniot relation,
expresses a change in density must be accompanied by a change in fluxes in order
that no mass is lost across a jump. For linear systems and nonlinear systems the
above relations hold on a component by component, basis. For linear systems the
shock values simply turn out to be the same as the wave speeds. For nonlinear
systems a set of algebraic equations must be solved to find the shock speeds.
An important question that can now be asked is the following: Is every jump
that satisfles the Rankine-Hugoniot condition physically correct? The answer
is no! In addition to satisfying a jump condition, the solution must also satisfy
an entropy condition.

The entropy condition for a scalar hyperbolic conservation law states that
characteristics must enter a shock from the left and right side

/\_>8>/\+

where A_ = f'(u_) = a(u-) and Ay = f’(uy). Returning to Burgers’ equation
let us examine the associated Riemann problem. The Riemann problem is the
" solution of a conservation law with piecewise constant initial conditions. To the
left of the origin the initial state is constant and is denoted u; while to the right
of the origin the initial state is also constant and is denoted u,. According to
the entropy condition if w; > u,, then a simple shock propagates with speed
(ur + 1;)/2. On the other hand if u; < u, a rarefaction solution of the form

, v forx/t <=1y
u(z,t) = zft foruy <z/t<u, (1.7)
' u, for u, <=zt

must be used. The rarefaction solution is easily verified to satisfy Burgers’
equation.

The entropy condition for systems of conservation laws is more complex than
the scalar case. Consider the system
e+ F(U)z =0

where U is the solution vector and F is the flux vector of size n. Define

13
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A==
oU

as the Jacodian of the flux vector. Assuming the system is hyperbolic, the
Jacobian has distinct eigenvalues Ay, Ag, ..., An. For systems it is required that
for some index k, 1 <k <n,

M(U_) > 5> Me(Uy)
while
Ak—l(U—) <s < Ak+1(U+).

The entropy condition guarantees that k characteristics impinge on a shock from
the left and » — k + 1 from the right. Coupled with the shock jump relations
and assuming s is fixed the characteristic equations give 2n relations for the two
states on either side of the shock.

Euler Equations.

Nonlinear systems of equations are richer in complexity and behaviors than
scalar equations. Instead of developing a general theory, which only exists in
the small, we will focus our attention on specific systems such as the Euler
Equations. Our goal is to analyze these equations to show a representative set
of solutions representing discontinuous behavior in the solutions and/or their
derivatives. The Euler equations describe the time evolution of an inviscid fluid
and is most easily written in the compact Lagrangian form suggestive of the
discussion of scalar equations

dp

7 + pV-2=0
di 1

T + -p-Vp—O
de L

Py + pV-u=0
p = plpe).

The first equation of the above set is called the mass equation where p is
the density of the material, @ is the vector velocity and ¢ is time. The second
equation is called the momentum equation and uses p as the scalar pressure.
The third equation is the energy equation where e is the specific internal energy.
Finally, the pressure is written as a function of the density and energy and is
called the equation of state (EOS). The Lagrangian derivative

14
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shows how a function, f, evolves along a particle path. Like scalar equations,
this path, as will be seen later, is a characteristic path. There are many ways
to analyze this system. Define a one-dimensional mass coordinate

m(z) = /_;pda:.

In one-dimensional Cartesian coordinates the evolutions equations take on
the form

or Ou 5
5 om0 (18
Ou dp
8t  om 0 (1.9
. OFE O(pu)
5t B 0 (1.10)

where

E:lu“"—keand’r:l
2 p

is the total energy and specific volume of the particle respectively. It is seen
that the equations are in conservation form. We will use these equations to find
‘shock solutions.

A second form of the 1-D Cartesian Euler equations is

op O(pu) _
5 7 oz 0
opu O(puu+p) _
ot + oz =0
9pE  O(puE) _
5 T Tar %

Onece again the system of equations are in conservation form. This form is
most useful for numerical computation. A final form of the equations is called
the primitive equations. The following set of equations can be derived from
any of the above sets of equations by making two observations. First, from
thermodynamics, the pressure can be written in terms of the density and entropy
S: p=p(p, S). Second, the entropy is constant along a smooth particle path or
equivalently

15




The primitive equations are

-(9—/-)-+a—p2-:D

ot oz
ou 0u %
Pt P8z T Br
dp Op 20u

-6-%-“?-11,-8—;4-/)0 -6—:;:0

=0

where
p=1p(p,S) a.hd = =L (g, S)Is
2 951 H .

This form of the equations will be used to find rarefaction or simple wave solu-
tions.

Using the Lagrangian form of the Euler equations, we can examine the sys-
tem of algebraic equations that describes a shock jump. Using (1.8), (1.9) and
(1.10) along with the jump relation (1.6) on each component gives

sir] = [y
slu] = [p]
slE] = - [pul.

where [u] = u; — u_ and s is the shock speed. Defining @ = (a4 + a—)/2 and
using &fa] = [a?]

Using any equation of state of the form p = p(r, e) we get a relationship strictly
between p; and uq given 7, e_, u_ and p_(7_,e..) as

_ —[u? . Pluj®
P+ = p(7- B e~ + ol )-

16




For an ideal equation of state

p={(y—1)pe=(y—-1le/r (111

we get a quadratic relation for either p; or uy in terms of the other. We will
use this information later for the solution of the Riemann problem. Notice that
two arbitrary states cannot be connected by a single shock. Also be aware that
a solution where the relative pressure and velocity increase through a shock is
viable. This is called an expansion shock and is unphysical. Like the nonlhnear
hyperbolic scalar equations, entropy conditions must be imposed to rule out
unphysical shocks. For the fluid equations a physical entropy is known and the
entropy condition that must be satisfied is the physical entropy must increase
across a shock. A characteristic entropy condition generalizing the scalar case
has also been given. The equivalence of the two entropy conditions is proven in
Lax [29].

Let us now look at some other special solutions of the Euler equations called
simple waves (also rarefactions or expansions). The primitive equations can be
written in matrix form as

U+ AU, =0
where
p u p 0
U=ju)andA=}0 uw 1/p
p/) - 0 pc2 w

We look for similarity solutions of the form

U=U(§) =Ula/t).

Note that shocks are also similarity solutions of a very simple type — the dis-
continuity travels in a single direction in space time (z/t = s). Substitute the
similarity solution into the primitive equations yields a nonlinear eigenvalue
problem of the form

(A-IQU'(€)=0

where the wave speed, £, is an eigenvalue. Because the system is hyperbolic,
the wave speeds exist and are u, u + ¢ and u—c. For the wave speeds u+c¢, the
corresponding relations from the eigenvector are

dp _ du _ acp) dP 2
E-Y T = 6 and =2 = ac*(p(¢)).

a is an arbitrary normalization constant for the eigenvector and must be de-
termined along with the other physical quantities. The independence of these

17
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equations is called genuine nonlinearity. Again, like the shock case, with an
equation of state for gamma law gases of the form

v ~
p:pg<£-> andc2:’—p
Po P

we can use these relations to find a direct relationship between the pressure p
and the velocity v

(y=-1)
2¢o

pzp(u):po<1i (u—uo))%

where po, uo, ¢g and pg are known at some reference state.

The eigenvalue corresponding to £ = u yields what is called a linearly degen-
erate or contact solution. That is the corresponding eigenvector only determines
that pressure p and velocity u are constant. Using the equation of state (1.11),
density and internal energy can be increased and decreased respectively without
changing the pressure. Therefore, as long as pressure and velocity are constant
contact solutions may appear with related jumps in internal energy and density.

We have outlined the algebraic relations for shocks, simple waves and con-
vacts. Given two constant arbitrary states, these three types of solutions can
be pieced together to connect the given states. The connecting solution is also
called the Riemann problem. The exact solution of the Riemann problem is com-
plicated by the number of permutations of shocks, contacts and rarefactions! A
complete description of this problem is found in Courant and Friedrichs [18]. In
the numerical solution of hyperbolic equations Riemann solvers are frequently

used but these solvers are approximate and extremely simplified.

Because of the existence of discontinuities in hyperbolic systems as shown
above the mathematical theory for hyperbolic systems is limited. In particular,
most results for general systems are in the small — solutions near constant
states. A good example of theoretical work in this area is by Glimm [24].

1.2 Hyperbolic-Parabolic Systems

In this part of the chapter we discuss the consequences of adding diffusive terms
to the hyperbolic equations and systems described above. Although equations
change type and have infinite signal speeds, we demonstrate that as the diffusive
terms become small solution behavior approaches that of hyperbolic systems.
For nearly singular equations we make the argument that parabolic equations
can be efficiently approximated using AMR.

1Finding the solution involves connecting the two states through matching pressure and
velocity from a combination of shocks and expansion solutions. The contact solution is used
to mediate jumps in internal energy and density between the two solutions.
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1.2.1 Linear Advection Diffusion Equations

Consider the problem
Us + CUL = KUy
where
u(x,0) = g(z), ¢k>0 and ~¢ <z < .

{t is easy to see that the solution, for integrable g, is

1

u(a:, t) = m

le o]
/ e~((z=e)=6)?/(nmt) g £) g
-0

The kernel of the integral operator is a translating delta function for with speed ¢
and thickness proportional to kt. This tells us for small « the advection-diffusion
equation behaves in a wavelike manner for bounded times. Alternatively, for
small « the advection-diffusion equation is a singular perturbation problem with
small parameter x. For initially sharp fronts, regions away from fronts are
treated using the wave equation and sharp boundary layers are constructed to
connect the solutions. Using either interpretation fronts that are initially sharp
remain so.

Now consider the related problem
Ug + Uy = KUy
on a closed interval where
k>0, 0<z<1l, »0,t)=1, u(1,t)=0 and u(z,0)=gx).
For long times the steady state solution has the form

1-— e—(l-—z)c/n

us(x) = 1 —e-c/=

This is called a boundary layer solution. It is characterized by a rapid change on
a small interval near 1. The boundary layer can be quite thin if ¢/« is very large
or holding ¢ fixed and making k small. Thus, in addition to supporting sharp
solutions, the advection-diffusion equation can also support boundary layers.

1.2.2 Navier-Stokes Equations

A nonlinear system of parabolic equations that has all of the features described
in the previous section plus many new singularities not found in linear equations
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is the Navier-Stokes Equations. We write the Navier-Stokes equations in vector
form as

d
£+ V=0
di
Pt
de
P it

where a constitutive relation is defined as
B = [p+ (2/3u— k)(V D) - pl(Va) + (Va)T),
and a Fick’s law for energy is assumed as
§=-AVT,

where closure is achieved with thermodynamic relations

p=ppT) T=T(pe).

The Navier-Stokes equations differ from the Euler equations in several ways.

First, the quantity P is called a pressure tensor. It is composed of the thermo-
dynamic pressure p and two other terms which are often called the bulk and
shear viscosity. The bulk viscosity term, the second part of the coefficient of
the identity tensor, contains the bulk viscosity coefficient k. The shear viscosity
term, the last part of the tensor pressure expression, contains the shear viscos-
ity coefficient p. Besides diffusion present in the momentum equation there is
energy diffusion in the internal energy equation. The energy flux is proportional
to the gradient in temperature .. The proportionality constant is A. Usually
temperature or internal energy is eliminated through the second thermodynamic
relationship above. For polytropic gases

T =cye

where ¢, is the specific heat at constant volume.

The Navier-Stokes equations are of parabolic type. As A, u and k approach
zero the Euler equations are recovered in the limit. Further, shocks satisfying
entropy conditions for the Euler equations are the limits of smooth jumps in
the Navier-Stokes equations. The mathematical foundations for Navier-Stokes
is somewhat limited. It can be shown using standard Cauchy-Kovalewky ar-
guments that smooth initial conditions lead to smooth short time solutions.
However, long time results for Navier-Stokes has eluded researchers.
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1.3 Hyperbolic-Elliptic Systems

Hyperbolic systems with elliptic constraints, like parabolic systems, have infinite
signal speeds. Unlike parabolic equations or systems, large changes can be
triggered in one part of a domain from changes in another. However, from elliptic
regularity, the changes are smooth. Once again, hyperbolic-elliptic systems may
make good candidates for efficient solution approximation using AMR embedded
solution algorithms.

The full Navier-Stokes equations are difficult to analyze. However, an im-
portant simplification is much more accessible. This simplification is the incom-
pressible Navier-Stokes equations

Uy +u-Vi+ Vp = pdd
V-u=0.

These equations are derived by expanding the compressible set of equations
around an assumed solution. The expansion parameter is the Mach number M
which is the ratio of the fluid speed || divided by the sound speed e¢.

= po+ M3p+ Mipy+...
= G+ M?%* + MG+ ...

%+P1+M2p2+...

= To+ M?T +M*Ty+...

N s 2o
I

The coefficient for py is such as to keep the physical scale lengths fixed while
letting the pressure go to infinity. Alternatively, in the Mach number M the
velocity || remains fixed while the sound speed goes to infinity. The use of the
square of the Mach is often justified by experimentalist observing incompressible
behavior of fluids with Mach numbers as high as .3. A final assumption that
must be made to insure the correct limit is met is the heat conduction, A, must
be large to equilibrate the temperature on a time scale much smaller than the
one of interest.

Upon examination of the incompressible equations, it is not clear how pres-
sure p is calculated. The pressure acts as a constraint on the fluid to keep it
divergence free. By computing the divergence of (1.3) we have

—V - (d-Va) = Ap. (1.12)

By solving the associated Laplace equation, pressure can be computed to within
a constant.
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Chorin {15} formalized this approach by using the Hodge decomposition.
This decomposition is a pair of orthogonal projections that split a given vector
field in a domain §2 into a divergence free field and potential field

U=Ug+Vo=ig+i,
The decomposition is easily found by computing the divergence of the above
equation

Within a given domain 2. The boundary condition for ¢ is a homogeneous
Neumann condition

96

-6-1?7_0

on the boundary of the domain 92 where 7 is the normal to the boundary. The
projection operators are then defined as

il

i, = Qu V(ATHV - %))
Gu=Pi = (I-Q)

Applying P to the incompressible equations gives a pure evolution equation for
the momentum |

i@, = P(~i- Vi + pAd).

Using (1.12) the pressure p, to within a constant, can be found. Equivalently
the gradient of the pressure may be found from the Hodge decomposition

Vp = Q(~G- Vi + pAi).

Later we will exploit these relationships to formulate a numerical method.

1.3.1 Boundary Layers and Vortices

In addition to shocks, contacts and rarefactions seen in the inviscid limit of
the Navier-Stokes equation, boundary layers, vortices and vortex sheets are
highly localized phenomena observed in the incompressible limit of the equa-
tions. Boundary layers have the same exponential structure seen in the model
advection-diffusion equations. Vortices and vortex sheets can easily be seen
through some simple analysis.

Consider the upper half plane problem
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L -

Up t UUp = VU Py = plAu
Ut Uty + Uty py, = pAv
ux*rvy = 0
for y > 0 and
u=v=0
for y = 0 and

u=upand v=90
at y = oo. There is a flow that is independent of z. Make the assumption that
u=u(y,t)and v =0

which directly leads to

Ut = Plyy.
The heat equation for u has a classical solution of the form

y/2vut
uly,t) = 2o e ds

VT Jo

where the integral is the error function. Like the advection-diffusion equation,
it is readily observed that for fixed y and small time ¢ a boundary layer is seen.

The 2-D steady state inviscid incompressible equations can be written in
cylindrical coordinates as

2

v v
Uty + ~ttg~—+p. = 0
r r

v uvr 1
UUp+—=vg+~—+=ps = 0

r A

1 1
-(ru)r-i——ve = 0

r r

where u is the radial velocity, v is the angular velocity and p is, again, the
pressure. By inspection

T 2
YR iR

u =0, v:v(r)andpzpo+/ T

To
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satisfy this equation for differentiable v. A perfectly reasonable solution is

1 for0<r<ro

3

v(zt) = (=) - (1-=m)° _3(r—rg)+2 formp<r<rpte

€

0 forr >rg +e

This profile iz a rotating cylinder of fluid that is local and can have an
arbitrarily steep edge. This cylinder of fluid is called a vortex and its behavior
is decoupled in a manner reminiscent of a contact discontinuity.

Another inviscid solution in Cartesian coordinates (u is now the velocity in
the z direction) is

1 for y > ¢/2
3 3
u(z,t) = 2(1 —9{52) _2(g+_:2) -8y for —/2<y<¢/2
-1 for y < —e/2.

This can be seen from inspection of the steady state Cartesian equations.
The solution structure is called a shear layer. Again the solution can be made
arbitrarily steep by making € go to zero.

In both examples a cubic polynomial was chosen in order to have one degree
of differentiability to smoothly connect constant states. Any smooth function
with the same matching conditions at the endpoints would be sufficient. What
is important to notice is the incompressible inviscid equations support steep
localized solutions. In general, if the viscosity u is small enough, the inviscid
profiles used as initial conditions for the viscous case persist. Again, the localized
structure of solutions like those mentioned above point to numerical solution
methods embedded within an AMR framework.
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Chapter 2

Numerical Methods

In this chapter we discuss several topics that lay the foundations for a patched
based adaptive mesh algorithm. First, grids and their associated mappings are
described. The mappings will also allow an opportunity to describe the notation
we will use for writing down finite difference schemes. In a following section we
describe a C++ array class that facilitates the implementation of the numerical
methods that will be used on these mesh domains. Finally we describe a range
of finite difference methods that will be the basis for the algorithms described
in the following chapters.

2.1 Finite Difference Grids and Notation

'2.1.1 Grids and Mappings

The nonlinear systems of equations described in the previous chapter most often
have no closed form solution. They are solved numerically using finite difference
techniques. All structured finite difference techniques use a lattice or mesh of
points on some domain of interest. At each mesh point an algebraic equation
called a discretization is written that approximates the original partial differen-
tial equations or their boundary conditions. For the initial value problem the
initial conditions are sampled at the mesh points and are then advanced in time
through the solution of the discretization.

We use logically rectangular meshes or grids. In general, points are gener-
ated from a smooth mapping from the unit interval, square or cube into the
appropriate 1-, 2- or 3-D domain. In two dimensions a mapping will have the
form

;. = y(iAE, jAn)
Yi g y(2AE, jAn).
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wherei=90,....M-1,7=0,...,N—-1and

1
M-1

A€ and An =

TAM -1

Cartestan grids are simply orthogonal mappings

x(&y 77) - al§+ bl
v(§n) = am+b

It is easy to derive discretizations on these lattices. Cartesian grids can only
be used for a limited set of computational domains and historically analysts
have turned to more complicated mappings as the complexity of computational
domains increased. As domains became even more complicated, particularly
in the aerodynamics community, it became increasingly more difficult to find a
single mapping that would conform to a given computational domain. Therefore
multiple domains or components were patched together to cover a region of space

kTi; = xZ(tAE, jAn)
k¥i,; = xY(IAE, jAN)

where i =0,..., M =1, j=0,...,Ny~1;and k= 1,...,C. C is the number
of component grids. These grids are called multiblock grids. Where domains
are adjacent to each other in physical space, mesh points must be collocated
although faces of these mapped domains need not be completely shared.

Overset grids are also multiple component meshes. What differentiates over-
set grids from multiblock grids is that alignment constraints set in multiblock
grids are relaxed. Overset grids are only required to overlap so that no part
of the computational domain is left uncovered. We will see later that the dis-
cretization becomes more complicated at overlap boundaries of overset grids,
but the flexibility of having overlapping grids seems to be worthwhile. A good
source book on grids and grid generation is by Thompson [41]. The article by
Chesshire and Henshaw [14] gives a complete description of overset grids.

An alternative to overset and multiblock grids are embedded boundary grids.
Here a single Cartesian grid is used but irregular boundaries are placed within
the mesh. Special techniques are then applied to the irregular cells created
near the embedded boundaries. These same special techniques will be used for
internal boundaries of overset grids when they are hybridized with embedded
boundary cutaways at internal boundaries.

2.1.2 Notation

A discrete grid function on a given grid domain reflects the grid topology. For
example a scalar grid function u is represented on the grid as
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k(T 5, Yi5) = k-

We use the convention that integer values of indices indicate cell centers, one
half integer value mixed with whole integer values indicates edges and all half
integer values indicate nodes. Often continuous and discrete function names
will be the same. This will not cause confusion because it will always be clear
from context whether a discrete or continuous function is being used. When
possible, subscripts and/or superscripts may be omitted. When they are left
out, default values can be assumed. For example

kUi = U
kUit1j = U
KUijrd T Yitg

leaves out all values of indices that are not offset by an integer or half integer
value. Like the reuse of names for both continuous and discrete functions,
context will always make it clear what meaning a discretization has.

2.2 An Array Class in C++

The implementation language that is used for the exercises for this course is
C++. C++ has several advantages over FORTRAN that are exploited. First,
C++ is extensible through the definition of structures called classes. Classes are
entities that may contain both data and functions, called members, that have
access to and manipulate the class data. Putting together functions and data
is called encapsulation. Classes are generically referred to as objects. Second,
the language facilitates application of a broader class of data structures than
FORTRAN through the use of pointers and recursion.

To handle the compute intensive part of our work we will use a predefined
libtary called A++/P++!. A++/P++, developed by Quinlan [31, 36}, is a
collection of classes that facilitate the manipulation of multidimensional arrays
of floating point or integer type. The syntax is suggestive of FORTRAN 90 but
has features not found in that language. Perhaps the most significant feature
of this library is the ability to run on serial or parallel computers with little
modification of a program. In fact single grid codes developed in a serial en-
vironment require only a recompilation with a new library in order to run in
parallel.

7 A” in A4+ is used to signify array while ”P” in P4+ is used to signify parallel
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We first describe how logically rectangular domains can be described in
A++/P++. We start with a Range object example:

Range I(1,10,1);

Here the starting point of a domain is the index 1 and the endpoint is 10. The
stride is 1 and could, in this case, be left out for the default stride is 1. Using
Range objects an array can easily be specified:

Range I(1,10), J(1,10);
doubleArray A(I,J);

The array A is an 10 x 10 double precision array having indices ranging between
1 and 10 in both coordinate directions. The Range object and double precision
array are overloaded. Overloaded means that operations typically reserved for
simple arithmetical operations have meaning for array and Range objects. For
example, the following code fragment implements a simple relaxation scheme:

Range IB(0,11), JB(0,11);
Range I (1,10), J (1,10);

doubleArray A(IB,JB), B(IB,JB), C(IB,JB);

C(I,3) = 0.5%A(I,J) + 0.125%(B(I+1,1) + B(I,J+1) +
B(I-1,J) + B(I,J-1) );

In this example, I+1 is a new Range object varying from 2 to 11 with stride 1.
Notice also, that the ”+" operator between array expressions signifies that all
100 array elements are added simultaneously. Further notice the scalar 0.5 is
promoted to an array that multiplies all 100 elements of array A. Conditional
expressions are available. The following example gives an example of conditional
syntax:

intArray A(10), B(10);

where (A > o{

B=1;
}
elsewhere(){
B=-1;

}




Wherever the integer array A is positive, then B is assigned the value 1, oth-
erwise B is assigned -1. Again all conditionals, like arithmetic operations, take
place element by element within the block conditional. For the conditional and
array expressions to function properly all the array expressions must conform
or have the same shape. Also notice that A and B were constructed using the
integer 10. The integer 10 is promoted to a Range object from 0 to 9 with stride
1. This part of the design mimics C array syntax.

A large collection of functions are overloaded for array operations. For ex-
ample in the following fragment

floatArray A(20,20), B(20,20);
double pi = 3.1415926;

B = sin(pi*max(0.0, min(a, 1.0)));

the 20 element single precision array, B, received the sin of 7 times the values
of A constrained to a range of 0.0 to 1.0.

A more complete description of the A++/P++ library can be found on
the World Wide Web at http://www.c3.lanl.gov/ dquinlan. The serial and
parallel libraries are in the public domain and are highly portable. The library
distribution can be found on the World Wide Web at the same locations.

2.3 Upstream Centered Difference Methods

2.3.1 1-D Methods

We use upstream centered finite difference methods as a basis for many of our
AMR algorithms. The simplest example of such a method is the Courant,
Issacson and Rees [19] scheme for the scalar wave equation (1.1)

n+i _ —
z — P A’;’“l for ¢ > 0. (2.1)

We have introduced a superscript 7 to denote the time level, At is a time step
and Az is the mesh spacing. Notice that superscripts and subscripts have been
left out. In particular if a superscript is missing the time level n is assumed and
if a subscript is missing the spatial index ¢ is used. No grid component index
is used as there is only one grid. The above equation can be solved, explicitly,
for u™*! in terms of the u? thereby enabling the advance of the solution a time
step At

u— —A—x(u —ui_1)

= u—Au—ui_y)
w(l = A) + Aus—1.

il
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A is called the Courant Friedrichs Levy (CFL) number. If A < 1 then the
finite difference scheme is stable. Stability in the case of the wave equation is
that the solution’s maximum value does not increase. Remember that all the
wave equation does is translate the nitial conditions. Therefore the continuous
solution and, as we shall see, the discrete solution has a maximum principle.
The maximum principle for the discrete case is easily seen because is u**! is a
linear combination of positive weighted values of u? where the positive weights
add up to one.

i oo = max fuf ™
2

< (=Ml + Aluii oo

= |4l

Another interpretation of this scheme is pictorial. Each cell value represents
a piecewise constant density with the integrated area under this value repre-
senting a mass. For A <1 the scheme has a geometric interpretation illustrated
by figure 2.1. The piecewise constant solution in (a) is translated a distance

(a) Ax
CAt |
l__"—L_.__
(b)

{)

Figure 2.1: A geometric picture of the evolution of a piecewise constant solution
one time step.

cAt < AAz in (b). The density profiles are then integrated over the interval
and a new average value is placed in each cell (c). Also note that
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Azu™t = Azu ~ (At cu — At CUi—1)

is equivalent to the original scheme. The mass of a cells at time level n + 1 is
equal to the mass at time level n plus the differences of the mass fluxes entering
and leaving the cell.

Another important property of scheme (2.1) is it is consistent. Using Tay-
lor series expansions for a solution u(z,t) of the scalar equation at the point
(nAt,iAz)

u((n + 1)At, iAx) u(nAt,ilAx) + At@(nAt, tAx) +

2 52
A2f ‘;;2 (nAt, iAz) + O(AL)
u(nAt, (i — 1)Az) = u(nAt,iAz) - Aa:-,a—x-(nAt, 1Ax) +
Ax? 6 u

= 5 —(nAt, iAx) + O(Az?).

Substituting these expansions into the difference scheme yields
u({n+ 1)At iAz) — u(nAt, zAm) u(nAt, 1Azx) —u{nAt, (i - 1)Ax)
At . Az

= L;t gtg(nAt 1Ax) — Ama z2L(nAt i1Az) + O(AtQ) + O(Aa:2).

Since At = AAuz/c, the right hand side of the above relation, called the trunca-
tion error, has the form :

20202 (i) - B2 2 mat, i) + O(82) = O(Aa)

assuming that the second derivatives of the solution are bounded. In other
words the truncation error goes to zero as Az — (. The power of the rate at
whieh the truncation error goes to zero is the order of the approximation. This
scheme is first order. If the truncation error goes to zero as the mesh is refined
we call the scheme consistent.

Given a consistent and stable difference scheme it can be proven for a large
class of evolution equations that the difference solution converges to the analytic
solution with the order of the difference scheme. We prove convergence of the
scalar scheme. Let the error at a cell be defined as

e} = up —u{nAt,iAzx),
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then we can write a difference scheme for the error as

nt+l _ — e
e e .t -1 _ _n

At Az ¢

The truncation error can be bounded such that
[T < C1Ax

if the initial values have bounded second derivatives. The error estimates at var-
ious time levels can be easily listed using the maximum principle and truncation
error:

|821 lo < C,Az? .

legloo < |e%loo + CIA-T2
< 2C,Az?

leflo < 1€ Moo + (n = 1)C1 AZ?
< nCAz?

Using the definition of the CFL number and letting T = nAt
|e?|oo S %ClA.’l).

Fixing T the estimate bounds the error so that it diminishes linearly with the
mesh spacing Azx. Therefore the scheme is convergent. The stability (maximum
principle) and consistency (truncation error bounds) were both used in the proof
of convergence.

In practice, linearly convergent schemes are not as efficient as higher order
methods. We now introduce a two step scheme called a predictor-corrector
method with second order convergence properties. The method is referred to as
the Fromm scheme [22]. As before we have a flux form of the scalar equation
which is now called the corrector step

yntl _ gy un-h} - un+_é.
FIPLx S e A
At Ax

If the predictor yields u:’:* = u then the first order scheme is recovered. The
Fromm scheme uses a predictor of the form

n 1
i =us 2= Nwn - uin)
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that contributes to the overall second order convergence of the scheme. This can
be verified by expanding the analytic solution in a Taylor series around the point
({(n+ £)At,iAz). 1t is easily seen that the approximate time derivative term is
second order, but some work is necessary to understand the spatial truncation
error. Naively the spacial approximation is only first order because the second
order approximation of the derivative in space is divided by Az. The functional

form of the u % terms only vary by O{Az) giving an extra order to the spatial
difference. Th1s is often called Lax-Wendroff cancelation.

The Fromm scheme has a geometric interpretation just like the first order
method. Figure 2.2 shows in a) reconstruction of the linear profiles from a cell

(a) Ax

cAt |

(c)

Figure 2.2: A geometric picture of the evolution of a piecewise linear solution
one time step.

density value and two neighboring cell values. In b) the profile is translated and
c) the areas are integrated to get new cell density values.

It should be obvious that the form of the first and second order difference
schemes are dependent upon the sign of the coefficients of the differential oper-
ator. For example, if the wave speed ¢ is negative the Fromm scheme has the
predictor form

1
u =y - 5(1 + A) At

i+d T

and the first order scheme samples the data in the other direction
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n-i—.x

ui_,r ; = Ui+l

The schemes are called upstream-centered to indicate that they adapt to the
characteristic direction of the differential equation. This sensitivity to charac-
teristic direction will become more apparent for nonlinear equations.

Observe that the cell in figure 2.2 with a ”*” over it in (c) has a value that
exceeds the values to the left or right of it and the values at the previous time
step. This scheme violates the maximum principle. These local violations of the
maximum principle are sometimes called undershoots or overshoots. Godunov
(proof given in [32]) proved that there is no linear scheme that is second order
and has a maximum principle. However, van Leer {42} discovered a nonlinear
scheme that is second order and has no overshoots. Define

jﬁ:w (1 -NAw

where A;u is called a slope or tilt. The unlimited slope operator is defined as

1
Aju = §(Ui+1 — Ui-1).
Define a limited slope operator as

A= dsign(ui+y — ui—1)
such that

5= { min(1|dou|, 2}d+ul,2|d_u]) for (dyu)(d—wu) >0
- otherwise.

and
dyu=wuy) —u, d-u=1u—u;-1, and dot = Ujp; — Ui—1.
The Fromm scheme using limited slopes in the predictor step

n+~} _ 1 A
Uy =uF E(I-A)A,u

is monotone (Creates no new maxima or minima). This is observed most easily
using the geometric interpretation. In-the first part of figure 2.3 the slopes
are reconstructed so they don’t force the reconstruction lines to exceed the
average values of the neighboring cells. Once the reconstruction is completed,
the translation and integration is identical to the unlimited case. It can also be
shown algebraically that the van Leer limiter is optimal — anything less will
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(a) Ax

Figure 2.3: A geometric picture of the evolution of a limited piecewise linear
solution one time step.

result in overshoots or undershoots. At the same time van Leer limiting effects
the overall order of the convergence of the scheme since it reduces the order of
the predictor to first order near local minima or maxima. Therefore van Leer
- limiting should only be used with data that has discontinuous initial conditions
or is known to develop discontinuous solutions.

2.3.2 2-D Unsplit Methods

1-D methods described previously may be used in multiple dimensions through
splitting techniques such as by Strang [40] or Samarski [39]. Our focus will be on
unsplit schemes. To this end we consider an unsplit scheme published by Colella
[17] generalizing the geometric interpretation found in the previous section of
these notes. 3-D generalizations can be found in Saltzman (38]. Consider a
scalar advection equation in 2-D

C711%=ut+amm+b1‘cy:0, a,b>0.

By inspection the solution, with initial conditions f(z,y), is
. U(x,y,t) = f((L' _at’y - bt)

The characteristic direction is a constant vector, (a, b, 1), in space-time. The
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analogue of constructing profiles, translating them and integrating over the cell
areas is only slightly more complicated in two dimensions. In figure 2.4 a rectan-
gle is translated in the negative characteristic direction to determine where the
solution is translated from. A first order scheme is constructed by multiplying

Ay

Ax

Figure 2.4: A geometric picture of the evolution of a 2-D piecewise constant
solution one time step.

- the piecewise constant values in the four rectangles intersected by the translated
rectangle with the areas of those intersection. The products are summed and
divided by the area of a complete cell (Az, Ay). This can be expressed in two
ways. First

u™tl = ((Az - eAt)(Ay — bAt)u +
(aAt)(Ay — bAt)u;—; +
(bAt)(Az — aAt)u;—; +
(aAt)(bAt)ui-1,5-1)/(AzAy)

shows that u™*! is written as a sum of values of u at time level n with positive
weights summing to one. This is only true if the CFL condition

alAt bAt

ma R Ry ST

Therefore the scalar equation, has a maximum principle and is monotone like
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the continuous equation. A second, equivalent, way of expressing the scheme is
the predictor-corrector form

n+y  ntg n—i—7 nt§
un+1_.u ‘ ué‘*"i’ ui*% b J+é‘ U/]_% _ 59
At - a Ax -+ Ay - O (.......
’U.TL+1% - u— bAL (u —Uj_1 )
tg 2 Ay
n‘f‘é‘ o aAt (u~ Ui-1
T S Az )

What is apparent from this form is how to make the scheme second order.

As in one dimension, u:':f and u;:fg must be second order in time and space.
The Lax-Wendroff cancelation will maintain second order spatial differences.
Using a Taylor series expansion (we use the finite difference notation for the

continuous functions for brevity)

JSHE = Ardu Atdu

2 2
Uy =Y S5 T 55 +O(At*) + Of{Az®)

and then substituting the differential operator into the expansion yields

Uy =T HH S (aﬁx + O(A) + O(Az?).

- Approximating the derivatives with differences obtains
alAt bAt
uz:f~u+ ((1— M)Aiu 2y —(u —uj-1) + O(ALD) + O(Az?).

The predictor step then has the form

LI = w0 )Aw- S WO

1.+§
, 1 1
u:_:g u+ 5(1 - /\y)Aju - §A$(u - u,;_l)

where A; = aAt/Az and A\, = bAt/Ay are the CFL numbers in each coordinate
direction. To minimize overshoots and undershoots limited slopes A; and A
may be used instead of the centered differences A; and A;.
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2.3.3 Linear Systems

Approximating the solution of linear systems of hyperbolic PDEs follows the
treatment of scalar equations. As was seen in the first chapter, systems have
multiple characteristic directions so the predictor step must be modified. A
clue as to how to do this modification comes from the associated diagonalized
systems in the first chapter. Diagonalization would lead to a direct component
by component treatment of the system using the scalar schemes developed in
1-D. However, diagonalization will not work for multidimensional systems of
nonlinear systems.

Instead we use the solution of a Riemann problem as a basis for our numerical
methods. To see this we approximate system (1.2) in the following manner. The
corrector step has the form

ntd _ pntd
Un+1—U+AUi+§ Ui—* -0
At Az

where U is a vector. As in the scalar case we leave out unnecessary indices. The
predictor step is :

U::; = Up+P (Ug-Uy)

Up—~PH(Ur-UpL)
R@(UL,Ug)

|

It

where

1 AtA
Ur = Ugr—3 (I + 7) QUi

and

pP*e Z (¢-er,)er,

;>0

> (6-erer,.

r;<0

P9

er, is a normalized right eigenvector of A corresponding to eigenvalue I';. The
projections PY and P~ break up the jump Uz — Uy, into increments that travel
from left to right and right to left respectively. This is nothing more than
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diagonalizing and solving the system with piecewise initial conditions U/; and
Ug. Further, the only part of the Riemann problem we are interested in is at
the time level » + § and spatial coordinate i + 5. This is sometimes referred
to as edge centered {with respect to the discretization cell) and time centered
data. The solution we seek is either the left state Uy, plus projected increments
crossing from the right or the right state Uz minus projected increments crossing
from the left. By examining the associated diagonal system, the CFL condition

for stability is
At
— ] <1
m;ax( s ) <1

It is observed that even though the Riemann solver only solves a problem
with two piecewise constant states, the Fromm scheme is still quadratically
convergent. The proof involves showing that the Riemann solver only chooses
between second order states on the left and right. Therefore the solver does not
reduce the order of the fluxes.

Since all the operators are linear, we have actually diagonalized the systems
and solved the equivalent set of scalar equations. For multidimensional systems
and nonlinear scalar equations and systems there may not exist a diagonaliza-
tion. The methodology for deriving the difference schemes can still be applied.
Let us now approximate a solution of the system

U+ AU, + BU, =0.
The corrector step is the same as the unsplit scheme (2.2)

n+§ n+% n+§ n+§
At Az Ay '

Riemann solvers are used to resolve various states

UL = BOWopUrsry)
U;‘:; = ROUg 13, Unjry)-

How these Riemann solvers are formulated is discussed below. The left and
right states are defined below as

At
brL,i-f'% = (I— A.’L‘ >A«;U B( +% U i‘)
1 At
Urity = Uin - 2 (I+ Z’A> Al - B( iy~ Uir-4)
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, 1 At oAt
L'B,j%—% = U+ 5 <[ — EB) AjL - m:“ ‘i+% - C/i—ij

- N AN At
Proy = Hin—s (“ ZZB> At = grp AU s~ Bingand)

Finally the U}, , and U; 1 are computed from Riemann solutions
2 2

Uv;-% = R(:D) ((/’: Ui+1 )
Ty = RO U,

In practice, a slightly more accurate estimate for U}, 4 and U;.‘ 1y is used:

ir+% — R(x)( YZ’i_f..%) U;z’i_f.%)
7* . () * *
ity T RY (UB,J'+§> T,j+a})'

where

1 At
7* - — R E— .
L[,i y = U+ 2([ A) AU

. 1 At
IR,H’% = Ui+1 - § (I + EA) AiUi+1

* 1 At
Uagrs = Urg(1-578) 8

. 1 At
Tity = Ujpr1 — 3 (I + KQ/.B) AUz

There is no additional computational expense? using this modification as T e
Tx *

ritd Ubj+d and Uy, .., are computed in the original algorithm. The terms
using the above states are called the transverse terms. The fluxes affected
by these terms are often referred to as high order transverse fluxes (HOTF).
Consequently low order transverse fluxes (LOTF) refers to the original fluxes
computed by piecewise constant estimates of adjacent states. Although the
overall solution is more accurate the HOTF terms don’t affect the overall order
of accuracy.

The Riemann solvers are used to resolve states moving in the z direction or
the y direction. Therefore R®) (U, Ur) need only be the Riemann solution for
the system ‘

2The overall stencil size is larger than the original method which may be a consideration
when implementing these algorithms on a parallel computer.
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Uy + AU, =0

while R (Ug, Ur) need only be the Riemann solution for
Uy + BU, = 0.

2.3.4 Nonlinear Equations

The approximate solution of nonlinear scalar and systems of hyperbolic equa-
tions is easily generalized from the linear methods. For scalar equations we use
the Burger equation (1.4) as a prototype. The corrector step is, once again,
time and space centered as

wi—u W - ST
At Az =

The flux function is f(u) = 4?/2. As in the linear case is
uipy = R®(ug,ug).

The Riemann solution for Burgers’ equation is computed using (1.6) or (1.7).
UL it and ug ;. 4 are from the predictor step such that

1 a(u)At\
Uri+d = “+§(1— (A)m )Aiu

1 alu;q JAL
Uity = Ui+l T3 (1 + %}__) Ajiyr.

Note that the CFL number a(u)At/Az is a function of the cell index. Therefore
for stability

a(u,-)At
ok SV imh AP
max Ap = 1
The generalization of scalar equations to systems is also clear. Scalar quanti-

ties are replaced by vector or matrix quantities and the stability condition must
take into account all the wave speeds at all cells. For a system of the form

Ui+ F(U):; =0

the corrector step is
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e P~ F <U”*>
At Az

where

U::f = R® )(UL,i—i—é-ﬁUR,H‘s})
is some approximation to the Riemann problem. As stated previously, little of
the Riemann solution is actually used. There are many articles on the approx-
imate solution of the Riemann problem and approximate flux functions {35].
The predictor step can have various degrees of complexity. First, if we just use
the states Up ;4 = U and Up ;44 = Uity we have a first order method. This
method is called Godunov’s method as was first applied to the Euler equations
in Lagrangian form [25]. We next describe the simplest second order form of
the predictor

Upirs = U+ 1 (I At OF

2 Az aU(°)> AU

At OF
Urity = Uit1 = (I + AxaU(Uz+l)) AUy

The Jacobian matrix ‘?TF is used like the matrices in the linear system solvers.

Let I'; be the eigenvalues of the Jacobian matrix 2& &7 £ and er, be the associated
eigenvectors. The eigenvalues and eigenvectors are functions of the cell index.
From hyperbolicity of the system

AU = Y (er, Aer, + Y (er, - AllJer, + 3 (e, Ailer
ri>0 ri<0 ;=0

= (Pt+P +PHAU

Letting only waves moving in the appropriate direction gives a new predictor
step

1 At BF
Upirg =U+3 ( = 8U(U)) PYAU

1 At OF
Unsrt = Ui = 5 1+ RegUinn) ) Pia Ol

This would be redundant for a linear system but has some effect for nonlinear
systems. As with the linear systems limited slopes may be applied for solutions
expected to have large gradients or discontinuities.
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The nonlinear solvers can be directly used in splitting methods for mul-
tidimensional computation. The generalizations used in moving from linear to
nonlinear 1-D systems will also serve well in modifying unsplit methods for non-
linear systems. Once again matrices are replaced by Jacobians, linear Riemann
solvers based on projections of waves are replaced by appropriate approxima-
tions of nonlinear waves and the corrector matrix multiplies are replaced by
flux functions. The references for unsplit methods {17, 38] describe linear and
nonlinear schemes in more detail.
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Chapter 3

Adaptive Mesh Refinement
for Conservation Laws

In this chapter we describe the basic structured AMR algorithm as applied to
a hyperbolic system of conservation laws. By way of introduction we describe
predecessors to structured AMR. These include the moving mesh and moving
finite element methods. Work in adaptive unstructured mesh generation is
beyond the scope of this manuscript.

Following the introduction to the basic algorithm, we discuss the necessary
changes needed to handle static mapped and moving mapped grids. Next we
examine how to apply AMR techniques to overset grids. The description of the
overset grid method will include nonconservative and conservative treatments.

3.1 Moving Mesh Methods

Suppose there is a moving coordinate system described by
z = z(7,§), 0<g<y, 0<7<T
t=7, z(r,0)=a, z(r,1)=0b
Using this coordinate change the scalar wave equation transforms to

ur +{c—vg)ug/xe =0




B Ty T T Tﬁ*

By choosing v, = ¢, u; = 0 or u stavs constant which is simply the charac-
teristic solution. Of course it is not always clear how 1o choose an optimal
moving coordinate system but mesh generation techniques coupled with error
estimators have been effective in reducing error in moving meshe algorithms.
Suppose w(z.t) is a function that is strictly positive, bounded away from zero
and proportional to the numerical error of a given finite difference scheme when
the error is above a given tolerance {to guarantee boundedness away from zero).
Minimize the integral

b b b
Tw, z](t) = / Flw,ze)dx = f w(z, t)ze dz = / w(z,t)(ze)? dE
as a functional of z(€) by solving the Euler equation (This Euler equation has
nothing to do with fluids. It represents an infinite dimensional derivative, called
the Frechet Derivative, set to zero)

OF 89 0F dw 0%

3 BEdm - 5z oE

Since w = w(zx, t) then x = z(T1, £) and the solution of Euler equation is therefore
capable of generating a moving mesh. The integral that is minimized has the
property that wherever the error is large g_x is small. Therfore wherever the error
is large, the mesh spacing is made small. In fact the error is equidistributed
— by variational integral and the mesh is optimal in reducing the error. In 1-D
the method has had success [45]. The method has been extended to higher
dimensions with some success [10]. There are some drawbacks to this method.

o The number of mesh points is fixed.

e The mesh may not be smooth or can tangle in higher dimensions. This
leads to adding mesh regularization in the variational principle degrading
the effect of the error estimator.

e Implicit methods may be needed to insure the adaptive mesh keeps up
with the solution error.

o Mesh generation is computationally expensive for complex regions. There-~
fore adaptive mesh generation may be prohibitively expensive.

Another approach to moving mesh methods is the moving finite elenient
(MFE) method by Miller {23]. The solution of an evolution equation is approx-
imated with a set of basis functions of compact support

u(@,t) = Y ai(t)d(s6, Sis1s - - s Sien)-

The basis functions are defined by the location of the nodes s;. For example, the
linear hat function is defined by three nodes (s;_1, $;, $;+1) where ¢; increases

45




linearly from zero to one between s;_; and s; and then decreases linearly back
to zero from s; to s;4;. In the MFE method the nodes are allowed to move as
a function of time

5; = s4(t), i=1,...,n

The residual of the L2 norm of the evolution equation is minimized and evolution
equations for a;(t) and 5;(t) arise. The same drawbacks have been encountered
for the MFE method as for the moving mesh method. However, in recent years,
mesh regularization techniques have been refined enough so that successful mul-
tidimensional computations have been accomplished [13).

3.2 Structured Adaptive Mesh Refinement

Adaptive mesh refinement is a concept that probably was apparent with the ad-
vent, of finite difference methods. However, the implementation of this concept
did not appear until computer software and hardware gained some sophisti-
cation. Multidimensional static {non moving) adaptive mesh refinement for
parabolic problems was first discussed in a publication by Ciment and Sweet
[16). Much work appeared in one dimension. For example Davis and Flaherty
[21] developed a finite element method with refinement. Gropp [26)] developed a
moving refined region to follow shocks in a scalar conservation solution. Berger
and Oliger (8] published the first structured adaptive mesh refinement algo-
rithms in two dimensions. Refinements of this method appeared in Berger and
Colella [7]. Three dimensional computations were first done by Bell et al. [2].

- 3.2.1 Rectangular Tensor Product Grids

The structured adaptive mesh algorithms we describe are based on logically
rectangular, hierarchical, properly nested grid patches. Logically rectangular
patches are simply mappings described in the second chapter. We initially talk
describe an algorithm for grids which are tensor products of 1-D amppings. The
grid hierarchy is a set of grid levels such that the finer grid spacing is an integer
multiple of the adjacent coarser level.

Finer grids may cover sets of cells on coarser grids but all cells will have data
to-minimize data communication between grid levels. To avoid multiple valued
data, only the finest level cell covering a given point will be used as a functio
value. .

To further facilitate and simplify communication between grid levels meshes
are properly nested. Proper nesting is designed to insure that interpolation to
a level n grid patch only occurs from adjacent level n patches or level n — 1
patches. Near boundaries this requirement is relaxed since boundary conditions
are used instead of interpolation.




I N I S | level [

1 i ] 1 ] level -]

2[—[—2
3

Figure 3.1: Examples of a adaptive mesh hierarchies in one and two dimensions.

Physical ‘ Ghost Cells
Boundary

Figure 3.2: Proper nesting insures filling boundary ghost cells using physical
boundaries, data from adjacent patches at the same level or interpolation from
the next coarsest level.
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To generate the grid hierarchy an error estimator is used to flag cells with
high error on a given grid level n to generate or update grids on level n + 1.
Once cells are flagged, they are “boxed” into patches at level n + 1 using the
Berger-Rigoutsos algorithm [5].

Error estimation can be done using estimates of the local truncation error.
The simplest method is to use gradient lengths. Often large gradients are a
good indicator of large truncation error. In a 1-D difference scheme the gradient
length is defined for a positive definite quantity p as

_ lpiy1r = pii|
Pi

€

Another way of estimating error is to use the leading order truncation error
terms of the given difference scheme. There are examples of direct calculation
of leading order truncation error in the literature {30]. Two problems are en-
countered with this approach. First, the complexity and cost of computing the
truncation error for a system of equations is large. More significant is truncation
errors typically are higher order differentials leading to larger difference stencils
and noisier values.

Another way to estimate the leading order truncation error terms is to use
Richardson’s method. Here the error is estimated by comparing two solutions on
two different grids. Let L (At) be an operator that advances a finite difference
solution one time step At on a mesh with uniform spacing h. Further assume the
operator has the same order spatial and temporal truncation error. Truncation
error analysis shows for a ¢** order scheme with a fixed CFL number that

u(to + At) — La(At)u(ty) = h9 f(z, to) + Q(hTH?)

where u is a smooth enough solution of the PDE associated with the difference
operator L, (At). Taking two steps

ulty + 2At) — LE(At)u(ty) = 2RT f(zx, to) + OQ(RIT2).

Applying the difference operator with a time and space grid of size 2At and
2h gives

u(to + 2At) — Lon(2At)u(to) = (2R)7 f(z, o) + O(RIT?).

Subtracting and isolating the truncation error gives

LE(At) — Lon(2At) = 2RI fz, t0) — (2R)TM f(z, ) + O(RTT?
(2 - 29T f(z, t0) + O(RIT?)

L;‘:(At) _ L2h(2At) T4 O(hq+2)

2 — 9qt1
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where 7 is the local truncation error. 7 can be found if a solution at the previous
time level is kept for all grid patches. First coarsen the old time level solution
by a factor of two (this implies the refinement factor must have a power of
two contained in it). Advance the coarsened solution one time step with the
current CFL. Notice this solution will get advanced two time levels because
of the coarser mesh spacing. Advance the current mesh solution one step and
coarsen it. Compare the two data sets using the above formula to derive an
estimate of the truncation error. To leading order the truncation error will have
been computed and can be used as an error estimator.

Once cells are flagged several layers of cells next to flagged cells are marked
to act as a buffer between regridding steps. Because of the CFL limit imposed
on each level, the number of buffer cells, ny, is equal to the number of cycles
between regridding, ny.q, divided by the refinement factor r

_ Pgrd
==

ny

Once cells are determined to have large truncation error new grid patches
must be formed. The Rigoutsos-Berger boxing algorithm can be used to generate
a list of patches. The steps of the algorithm are as follows:

1 Find the smallest box containing all the flagged points from error estima-
tion (see part a of figure 3.3).

2 Compute all the row sums and column sums of flagged points {see part b
of figure 3.3).

3 Find the largest difference of all the adjacent row sums and divide the box
into two at that point (see part ¢ of figure 3.3).

4 If one or two of the boxes generated are satisfactory add them to a list.
Otherwise apply steps 1-3 to one or both of the new boxes that are not
satisfactory.

Given a hierarchy of adaptive meshes, we now describe how to advance the
solutions on all mesh patches. The advance is a recursive algorithm so it will
be sufficient to describe it for two adjacent levels. Assume we have a collection
of mesh patches at level [ — 1 and another collection at level [ that is refined by
a factor r relative to level [ — 1. That is, if level [ — 1 has mesh spacing h then
level | has mesh spacing h/r.

The first step in this process is to advance the numerical solution on all the
level I — 1 patches. To do so, boundary conditions are needed for each patch.
This is done by adding the appropriate number of ghost cells or border cells
around the edges of each patch. The ghost cells are filled in by using data from
other level [ — 1 patches, interpolating from level I — 2 patches, if they exist, or
using physical boundary conditions. The proper nesting of the grid hierarchy
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Figure 3.3: A sequence of pictures of a flagged region illustrating box selection
using the Berger-Rigoutsos algorithm.
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Figure 3.4: An example of a 2-D patch that has its ghost cells filled by physical
boundary conditions, interpolation from the next coarsest level or from data of
adjacent patches at the same level.




guarantees that the ghost cells can be filled in using only adjacent grids, grids
one level lower or from physical boundary conditions.

With the level { — 1 mesh patches advanced from time t to time t — At we
can then advance level { patches using the data from level | — 1 as boundary
conditions. To advance level [ at least r steps of size At/r are taken. The reason
for smaller time steps is the CFL stability limit. The method now becomes
recursive here. If there is a finer level { + 1, for each time step on level [ at
least r time steps will be taken on level { + 1. Returning to level [, ghost cells
are again filled from physical boundary conditions, adjacent level [ patches and
interpolated from level I — 1 data. The interpolation from level [ — 1 data must
be done in space and time.

_L. | | s SN N I |
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Figure 3.5: The recursive advance of three levels is illustrated with the coars-
est mesh advanced first, then fine grids are advanced using coarser grid data
interpolated in space and time.

The solutions at level [ and [ — 1 coincide at a new time ¢ + At after r or
more time steps are taken on level . Once solutions coincide, data from the
finer levels are used to update data on coarser levels. This is done by averaging
all the cell values in level [ that cover I — 1 cells. For example, in 1-D, given a
cell with index j and value p; at level [ -1 and cells at level [ with indices ¢ and
¢+ 1 that cover cell j (r = 2) then

-y 1, @ i
oy V=50 + ).

Treating the p() as conserved quantities, notice the mass m in the cell jis

7
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the same as the sum of the masses in cells ¢ and 7+ 1

m{ ™Y = Az Y = (p(“ i) =m = ml,.

Can the adaptive mesh hierarchy be constrained to be conservative? The
answer is yes. By averaging fine mesh data onto coarser mesh data the conserved
quantities are made identical. Coarse cells that are adjacent to cells covered by
a finer grids need some correction. Correction of coarse cells adjacent to fine
cells is called refluzing. Suppose cell ¢ at level { is adjacent to cell 2i + 1 at level
[+ 1 where a refinement factor r is assumed. Cell ¢ is advanced using

-k

uttl — o Sy -4 _ 0
At Az )

Cell 20+ 1 at level [ + 1 is advanced twice to get to level to the same time level
as cell ¢

2n+£~ 2n+é~

w2ntl g 2m N fa +3 2y _,
At/2 Az /2
2n+% 2n+%
uint2 _ g 2ntl + f 2i+% - /. 2i+4 —0
At/2 Az/2 -

The mass flux

Atfi 2 ( ol o).

For overall conservation on the coarse grid we use the fine mass fluxes

2n+4 f2n.+ %

Az(u™! — ™) + At(fnﬂk fnﬂ) 2th 5 Cas S f::; =0.

The second term is a mass flux correction. By accumulating the fine grid fluxes
at coarse/fine interfaces and keeping the coarse fluxes present the correction can
be applied after levels [ — 1 and ! are aligned at the same time level n + 1 and
2n + 2 respectively.

The adaptive algorithm changes the nature of the difference scheme. The
boundary values for fine grids sometimes comes from the next coarser grid level.
Using a normal mode analysis Berger [6] has shown that for a Lax-Wendroff
scheme the boundary conditions are stable. Using sufficient accuracy in the
interpolation, the adaptive algorithm also preserves order of accuracy of the
integration scheme.




The implementation of AMR methods requires data structures that are not
~ often used with other solution methods for PDEs. As will be seen, object
oriented languages, like C++, can be used to great advantage to implement
these new structures. Before outlining some of the new data structures, we first
describe a way of relating index or domain coordinates at different levels of an
adaptive grid. The integer index for the coarsest grid in two dimensions may
range over ¢ and j as

(3, 4): 0<i< M, 0<j<N, for level 0.
Given a refinement factor r, the index space the has indices
GO, 5y, 0<iW <rM, 0<;V<rN, forlevel 1.
In general indices at level { have ranges
0,0y 0<i@<rM,  0<i9 <rN

For adaptive methods in 2-D, a patch can then be uniquely located in do-
mains described above given two index coordinates. One index coordinate con-
tains the pair of integers that are the minimum values in each coordinate di-
rection of a patch. The other index coordinate contains the pair of integers
that are the maximum values in each coordinate direction of the same patch.
A convenient data structure to handle this pair of coordinates is called a Boz.
Boxes have operations associated with them, called class member functions. For
example, a function may intersect two boxes and return and third. Boxes have
proven such a fundamental abstraction that a library of classes built upon boxes
have been developed called BoxLib [{43]. A prototype declaration in C++ for a
Box class may be

class Box{

public:
Box(int *idMin, int idMax*, int dim); // comstructor
“Box(); // destructor
// public member
// functions follow
private:

int indexMin([3];
int indexMax([3];
int dimension;
// private member
//  functioms follow




The next data structure of interest is called a Patch. A Patch contains data,
used in the time integration of the solution. Patches usually contain a Box,~
arrays for the solution at its current time level and one time level back. Arrays
are also allocated to store fluxes used in the conservative update described
above. The patch data structure has many member functions. In particular,
a patch should be able to advance the solution data a given time step if it is
given boundary conditions. For nonhinear systems the CFL number is solution
dependent. Therefore, every patch must compute its own CFL number. A
prototype declaration in C++ for a Patch class may look like:

class Patch{

public:
Patch(Box &b); // constructor using a Box
“Patch(); // destructor
// public member
// functiomns follow
private:
Box patchBox; //
doubleArray u0ld, uNew; // solutions at two levels

doubleArray fluxes, fluxRegister; // stored fluxes for
//  conservation

void advanceSolution(REAL dt); /7 a.d.va.ncey the solution
REAL computeCFL(); . // compute a CFL number

};

In the above patch definition a doubleArray called “fluxRegister” is initial-
ized. This is used for accumulating fluxes in time to correct coarse/fine interface
disparities. A more sophisticated approach would simply be to define four 1-D
arrays (for 2-D). Each array would be for one face of the patch. This saves
memory but increase implementation complexity. Each level is composed of
patches. Levels are implemented using a container class from what is called the
Standard Template Library (STL). The data structure that we use is called a
vector. A vector of levels of pointers to patches is simply instantiated as:

#include <vector.h>

vector<vector<patch *> > patchLists;

Vectors are dynamic (they automatically grow in size as needed) and are ac-
cessed like C arrays using the square bracket operator. Therefore the fragment

Patch *p;
P = Pa_tChList [i] [j] 3




retrieves the jth patch pointer on level i.

Together, the above data structures comprise what is needed to implement a
hyperbolic AMR solver. Although the data structures are relatively simple, their
dynamic nature would be difficult to duplicate in an older scientific programming
language like FORTRAN 77. FORTRAN 90 has many features, modules and
arrays in particular, that would facilitate an AMR implementation. Using an
object oriented language also facilitates code reuse. For example, only the patch
data structure has solver specific information within it. Therefore the AMR
algorithm can be reused except for the Patch class. Even much of the Patch
class can be put into a generic patch class called a base class. Using an object
oriented mechanism called inheritance only a small amount of code would be
needed to make a complete Patch class.

3.2.2 Curvilinear Meshes

So far, we have only dealt with rectangular grids. If grids are only logically
rectangular the AMR algorithm remains nearly the same. A few details need
to be addressed. For example, a cell that is refined into an r? set of cells may
not have the same area as the sum of the r2 cells.

——— C0a1S€ Mesh

fine mesh

mapping

Figure 3.6: A coarse cell and 4 fine cells generated using a cylindrical mapping.
A simple practice to mitigate this problem is to redefine areas on the underlying

and adjacent coarse grids in terms of the sums of areas on the fine grids.
Arc lengths at coarse/fine interfaces are also inconsistent. However, this is
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taken care of in a similar fashion. The arc lengths are chosen such that they
agree with the refined region arc lengths. That is, the arclength of a coarse cell
edge adjacent to a number of fine cells is redefined as the sum of the arc lengths
of the fine cells. Both of these concepts can be generalized to three dimensions
where edge arch lengths become face areas and cell areas become cell volumes.
Making both the arch lengths/face areas and the cell areas/volumes consistent
leads to what is called free stream preservation. Free stream preservation is
the property that a constant solution remains constant across coarse/fine grid
interfaces.

3.2.3 Moving Meshes

Moving meshes introduce no significant new problems for adaptive meshes. Be-
cause grids continually move in time, it is worthwhile having an evolution equa-
tion for cell volumes. Following Bell, et al. [4] the volume V" of a cell is
advanced as

vetl=vr 4 )" 4V (3.1)

iefaces

The volume fluxes dV; are computed by taking the face or edge values at
new (n + 1) and old (n) times and computing the volumes or areas formed by
the faces and edges respectively.

an+l

n+l
X,

Figure 3.7: Volume flux construction from moving edges or faces.
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It is then seen that (3.1} is a conservation equation for V™.

Like the static case, volumes of cells underlying refinements must be the same
as the sum of the volumes of the refined cells. Likewise cells adjacent to refined
cells must share the same volume fluxes in order to keep volumes conserved just.
as the field variables preserve conserved quantities. The conservation of volumes
is also a sufficient condition for free stream preservation. An integration scheme
that is free stream preserving can be found in the same reference [4].

3.2.4 Overset Meshes

Adaptive meshes on overset grids are implemented in nearly the same way as
single curvilinear mesh AMR algorithms. For each component of an overset
mesh collection a regular AMR mesh hierarchy can be established in a manner
similar to single curvilinear meshes. Where the differences are found is in the
error estimation. Grids on like levels of different component AMR hierarchies
must communicate in order to propagate buffer cells. This is most easily seen in
one dimension in figure 3.8. On grid (a) cells with x’s are flagged for refinement.

interpolation
stencil

i/
)

l\\

b 1 x

(a) ... I I J

[ [ "

}
#

Figure 3.8: Flagged cells add buffer cells across components of an overset mesh
through the interpolation stencil.

If a-buffer is added next to the flagged points, represented by b’s, then it is seen
that ghost cells pass through buffer points to adjacent (same refinement level)
grids on other components through the interpolation stencil. Refinements can
then stay ahead of CFL limited signals across components of overset grids.
Details of an overset adaptive algorithm can be found in {12].




3.3 Parallel Strategies

Parallel processors are becoming more available to the scientific community. It
is quite common for scientific computing practitioners to have access to mul-
tiple CPU workstations, workstation clusters or even more expensive multiple
CPU midrange supercomputers. These processors tend to have shared memory
between CPUs. Computers with thousands of processors, called massively par-
allel processors (MPP), are becoming available to a larger community of users.
MPPs usually have a distributed memory model. A node within an MPP is
a collection of CPUs with shared memory. MPPs still have large numbers of
nodes. Network access and resource sharing will significantly enlarge the number
of people using MPPs over the remainder of the millennium.

The key to effectively using parallel processors is good load balancing and
latency hiding. Load balancing is the process of insuring that every CPU has
about the same amount of work to do as every other CPU. If load balancing
is not achieved some processors will remain idle waiting for tasks on other pro-
cessors to complete. Latency hiding is the process of minimizing the effect of
relatively slow transit times of data between two or more processors. Latency is
the time needed to initiate movement and then move data between one or more
processors. Latency does not seem to be much of a problem with shared mem-
ory machines but can be a big issue on MPPs. Typical memory access times
between nodes of an MPP are 100 — 1000 times slower than memory accesses
on a node.

We will describe three parallel strategies that address the issues of load bal-
ancing and latency hiding. The first method is called the knapsack method of
parallel load balancing by Crutchfield [20]. Here latency is hidden by overlapping
computation with communication. Load balancing is achieved, automatically,
- by finding a uniform distribution of work on all processors. We next describe a
data parallel approach [9]. This method is tailored for data parallel machines.
These computers execute the same instruction on all CPUs at the same time.
They are also called Single Instruction Multiple Data (SIMD) machines or ar-
chitectures. In this approach, the AMR algorithm is simplified by enforcing the
constraint that all patches are the same size. By using a data layout scheme
that maximizes data locality (insuring that data is as close to the node that
uses it as possible} and has a single fixed communication schedule (enabling
smaller latency), a very efficient AMR implementation is implemented. The
last approach by Quinlan (37] develops a model of how much work is done as
a function of the spatial location on an adaptive mesh hierarchy. The function
enables the uniform partitioning of the computational work among the nodes of
a parallel machine.

3.3.1 Knapsack Load Balancing

The knapsack load balancing algorithm treats every AMR patch at every level as
a single entity. That is, no matter how small or how large the patch is, it will be
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resident on a single processor for a single level integration step. Every processor
then maintains a list of the patches it has and is responsible for scheduling
interchanges of boundary data of its patches with patches on other processors.
The question then srises how does one balance the load and hide the latency?

Latency hiding is achieved through overlapping computation with commu-
nication. Since each processor has multiple patches, requests for boundary data
are sent for some patches while other patches are integrated. In the actual ap-
plication each patch was characterized as “fat”. That is each cell of the patch
needed approximately 250 computations to advance one time step. This leaves
plenty of time to move data between nodes.

Load balancing is achieved by a heuristic algorithm for solving an NP (non-
polynomial time) complete problem. Given N balls of random weights and
M < N knapsacks, what is the optimal distribution of balls within the knap-
sacks such that each knapsack has nearly the same load? The obvious applica-
tion of the knapsack problem is if the balls represent patches and the knapsacks
represent processors. The larger the patch size the more work needs to be done.
Work then corresponds to the weights of the balls in the problem. It has been
proven that this problem is not solvable in polynomial time as the number of
balls and knapsacks increase. However, a near-optimal solution to the problem
is found through a heuristic approach. The heuristic algorithm is as follows:

1 - sort balls by size with the largest first
2 - for (each ball), starting with the heaviest,
- assign the ball.to .the lightest knaPsack
- end for
3 - find the hea.\}iest sack

4 ~ for each ball i in the heaviest sack
- for each ball j not in the heaviest sack
- if interchanging i and j improves the load balance
- perform an interchange of i and j and go to 3
- end if
- end for j

- end for i

Define efficiency of the load balancing as E; g where
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ELp = sr——=ay

Mmax (3", W2)
and where W is the weight of the ¢’th ball in knapsack «. Inefficiency I1g is
defined as

It =1-ErB.

Studies were performed on computer generated distributions of weights. As
N/M increased the inefficiency dropped logarithmically. When N/M exceeded
3 inefficiencies were near or below 2%. The load balancing approach was shown
to be effective on the 32 processor BBN 2000 parallel computer. Inefficiency

" was measured at about 5% for N/M near 3.5. The difference between theory
and practice is patch size is neither a perfect or all-determining factor of work.
Scaling studies for larger numbers of processors are not available.

3.3.2 Data Parallel AMR

The algorithm we describe here is designed for SIMD machines. The first dis-
tinguishing characteristic of this algorithm is all patches have the same number
of cells and logical dimensions. For example, a patch in 3-D may have 323 cells
regardless of refinement level. Fixing the patch size has many advantages and
some disadvantages. Advantages include easy memory management and grid
generation. A key disadvantage is a less flexible grid generation algorithm (a
new grid generation algorithm will be needed as the boxing algorithm described
above is not applicable).

Grid generation is accomplished by tiling. As with the standard algorithm,
mesh points with large errors are flagged and buffer cells are added adjacent to
flagged points. For simplicity assume we are working with a 2-D region. The
grid generation algorithm is as follows:

1) Create a regular rectangular matrix of patches that cover the flagged
points.

2) If a patch is not covering any flagged points remove it.

3) For each column of the matrix shift contiguous parts covering flagged
points for higher efficiency by:

a) using fewer patches to cover the given flagged points
b) centering remaining patches on the flagged points

The memory layout uses a periodic mapping to increase locality. Suppose
the domain index coordinates of a patch on the finest level are
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Figure 3.9: Tiling algorithm for fixed size patches.

(Z,J) : tmin <1 X fmag, Jmin £ L Jmaz

and let

= imaz — tmin + 1 = Jmaz — Jmin T 1.
Define a mapping to a computation patch with coordinates

(k, 1) 1<k<mn, 1<i<n

k={—-1modn+1,l=(j—1)mod n+1. (3.2)

The computational patch directly relates how one patch is laid out in memory
with respect to others. The mappings are many to one but two points on two
different patches with the same domain index will have the same computational
patch index. Where this is useful is in filling ghost cells of one patch from
another. Since a patch ghost cell and patch doner cell (the cell that fills in the
ghost cell at the same level) have the same domain index then they are in the
same node of a parallel processor. Therefore, filling ghost cells of the patches
at the same level requires no internode communication.
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Coarse grids have a more complicated mapping into the computational patch
indices

¥ = (r+xkmod n+ (r+k)/n+1
r (r«mod n+ (r*l)/n+1

il

where r is the refinement and k and ! are mappings described in (3.2). This
mapping preserves locality of the coarse grid with respect to the fine grid. A
fine grid interpolating data from a coarse grid will only need to gather data from
coarse grid points on the same node or from nearby nodes. Nearby means in the
neighborhood of a point on the computational patch. An illustrative example
is in 1-D where n = 16 and r is 4. Let the coarse grid cover the entire domain
and the fine grid be embedded in the coarse grid.

comput. patch 1 2 3 4 5 6 7 8 91011 12 13 14 15 16
fine patch 17 181920 5 6 7 8 9 10 11 12 13 14 15 16
coarse patch 1 5 913 2 61014 3 7 1115 4 8 12 16
fine patch proj. &5 5 5 5 2 2 2 2 3 3 3 3 4 4 4 4

The above table shows how fine patch ghost cells with indices 5 and 6 need to
interpolate from coarse cells 1, 2 and 3. Cells 5 and 6 are within Cr memory
locations of coarse cells 1, 2 and 3 where C' < 2. This would be true for larger
n.

Lower level meshes need to be advanced. Advancement is achieved by chang-
ing the data layout of these lower levels to the simpler periodic mapping and
then restoring the more complicated layout when the data is being used for in-
terpolation. Moving data between these two layouts can be made fast since the
communication schedule is only a function of the refinement factor r. On the
CM-5 an optimum communications schedule was computed once at initializa-
tion and then used throughout the computation. This layout strategy is highly
effective on SIMD machines that were tested. Typically 75% of all the time
spent in test runs was in the integrator.

3.3.3 Multilevel Load Balancing

The last approach to load balancing partitions memory through construction of
an integrated work function. Suppose we have a 2-D base grid with m cells in the
abscissa (z) direction and n cells in the ordinate (y) direction. The integrated
work function is constructed as follows:

i) Let IW(m,n+ 1) be an integer array and initialize the first n rows to one

and the n + 1 row to zero (The first dimension of /W is the column index
and second dimension is the row index).
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ii} For every cell of every patch above the base grid determine which cell
it covers on the base grid and increment the integer array value corre-
sponding to that cell by r!. [ is the level number with { = 0 for the base
grid.

iti) Column sum the integer array using the following loop:

fori=1tom
for j =1 ton
IW(i,n+1) := IW(i,n+1) + IW(4,j)
end j
end i

iv) Create a running sum in the last row of the array:

for j=2tonm
IW(j,n+1) := IW(j,n+1) + IW(j-1,n+1)
end j

If there are p processors then let
w=IW(mn+1)/p.

The partitions of the grids are indices i, where
p(J) = min(IW(k,n+1) 2 jw),  j=1,...,p

The integrated work function JW{i,n+ 1) then yields a partition of the base
grid and associated finer grid projections (and thus the fine grids themselves)
that have roughly the same amount of work to perform. The higher the level
of a cell, the more advances it will go through. This is why the work function
is incremented by r! for cells at level . Often the work function may need to
be constructed at levels higher than the base grid because the base grid is too
coarse.

If there are p x p = p? processors then for each stripe, an integrated work
function can be constructed in the ordinate direction. Notice the similarity of
this construction with the tiling algorithm for the SIMD method. It is obvious
how a 3-D partitioning would be done with p x p x p = p® processors. With either
a 1-, 2- or 3-D integrated work function data communication for interpolation
and refluxing is nearly always between adjacent processors.
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Chapter 4

Adaptive Elliptic Methods

The numerical solution of elliptic equations will be briefly be covered in this
chapter. In particular, we concentrate on solving

~Au=f (4.1)
on a region {2 with Neumann boundary condition

g:—:— =0, on 0L

We describe a basic multigrid algorithm on structured adaptive meshes and the
variants discussed in previous chapters. No effort will be expended in discussing
the general elliptic problem as this is the focus of another course in this summer
school. Our primary objective is to have an understanding of the numerical
solution of the Laplace equation in order to apply it to constrained elliptic-
hyperbolic computations in the next chapter. For the remainder of the chapter
we will cover 1) the numerical solution of the Laplace equation on a simple
rectangular grid hierarchy, 2) solving the same problem on a Cartesian grid with
embedded boundary conditions and 3) solving the Laplace equation on a hybrid
Cartesian overset grid. We will include a short discussion of mesh generation
for 3). Our focus is on 2-D and 1-D problems but there is no technical barriers
preventing application of the same concepts in 3-D.

4.1 Rectangular AMR Grids

The multigrid v-cycle for a rectangular adaptive mesh is broken into two parts.
The first part solves a multigrid problem on the base grid. The other part is
the algorithm for the two legs of a v-cycle on the adaptive mesh hierarchy. One
leg starts on the finest grid and extends down to the base grid. The other leg
starts with the base grid and traverses the grid hierarchy up to the finest level.
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The multigrid method on the base grid is an algorithm that is well known.
The right hand side of (4.1) for the base grid multigrid solver is constructed
from f on the base grid cells not covered by finer meshes. Cells covered by finer
meshes will have residuals from finer grids as the right hand side of the Lapla-
cian. A brief summary of the multigrid algorithm follows. A solution guess is
siven on the base grid and a set of corrections to the solution are computed on
coarser grids using residuals from finer grids. The coarse grid corrections are
interpolated to the finer grid while the grid residuals are averaged to coarser
grids. The multigrid hierarchy is used to simplify computation of corrections
by separating Fourier components of the solution onto various parts of the grid
hierarchy. Therefore each error correction method, called a smoother, need only
solve the highest frequency component on a given mesh. Smoothers are inex-
pensive and easy to implement. Most smoothers are relaxation methods such
as Jacobi, Gauss-Seidel or Gauss-Seidel with red-black ordering. The general
multigrid v-cycle can be written recursively.

~ MG_Recurse(Solution Array, RHS Array)
- Smooth Solution Array
- If a coarser level is available
- Compute a Residual Array R=f - L u

- Coarsen the Residual Array to RC = Av(R)

Set the Error Correction Array EC = 0

Call MG_Recurse(EC Array, RC Axray)

Interpolate the EC Array to the Fine Mesh Array E = I(EC)

Solution Array := Solution Array + E

- End If

- Smooth Sclution Array
~End MG_Recurse

For the Laplace equation (4.1), Gauss-Seidel red-black iteration is used as
a smoother because of its ability to completely eliminate the highest frequency

on a grid. On a square m x m mesh with spacing h and right hand side f, the
solution u is first updated on red cells (cells of even parity) as

1
ui= (U g F g+ uj1) — h2f
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(i + j)mod 2 = 0, I<ij<m

The same relaxation procedure is applied to update the black {odd parity) for
(¢ + jymod 2 = 1. The residual is computed as

‘ —Ujpr — U1 + AU — Ui — Uy
T:fﬁ—Ahu:f—< h2 ‘7. 7

1<4,j<m.

Ghost cell boundary conditions used are

Um+1,7 = Um,j, Ui m+1 = Ui,m, Ug,; = U1,5, and U0 = Us 1
Given a coarser grid of size m/2 x m/2, coarse grid residuals are computed from
fine residuals

1
ri; =Av(r) = Z(T2i,2j + 724,251 + T2i-1,25 + T2i-1,2j-1)
1<i,5<m/2

Interpolation from the coarse grid uses piecewise constant profiles

eij = Int(e) = €f;_1y/941 (j-1)/241
1< m.

For a more complete treatment of the multigrid algorithm consider the references
by Briggs [11] and Wesseling [44].

For a properly nested adaptive grid hierarchy we follow Cartwright and Mar-
tin [33]. Operators must be defined at coarse/fine interfaces. Away from bound-
aries the standard five point operator is used and physical boundary conditions
remain unchanged. Referring to figure 4.1 we need to determine an operator for
coarse cells (¢, j} and fine cells (¢, j'). For fine cells we fill in ghost cells using
data from a quadratic interpolant through points (¢, 7 — 1), (¢, ) and (4,5 + 1)
and from a quadratic interpolant using points (¢/,7'), (¢ +1,5’) and a point p
and its value from the first interpolant.

“The coarse cell (4, j) operator is defined as

firy = fiy " Fivy —fi-g

2 2

h h
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Figure 4.1: Interpolants between coarse and fine grids are created to compute
an approximate normal gradient.

and

Fror = 1wyt — o541 L Uiy T Uiy
o h/2 h/2 '

Th: ghost values uy—1 ;- and wy_y 741 are determined, as above, from the
interpolants. Interpolants may be shifted to accommodate extruding corners
(270°) of refined grids.

We now describe three new operators that will be used to compute residuals
and smooth errors. The first operator is a single smoother which we define as

SlGS = Sé;'s(ul’ fls h‘)

where Gauss-Seidel red-black smoothing is applied to all points u! of level [
using a right hand side f' and mesh spacing h'. The smoothing operator St ¢
always uses zero for ghost cell values at boundaries adjacent to coarse cells.

The operator
ALy = ALy(ul, w1, B
is a discrete Laplace operator defined on all level { patches. It uses the solution

u'~! for boundary conditions discussed above. This operator ignores finer grids.
The last operator
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AL = ALl ut ot Rl

is a Laplace operator defined only on those points u! not covered by higher level
meshes. It interpolates ghost cells using values u'~! from the coarser level I — 1
and uses the modified operator at the coarse/fine level [, [ + 1 interfaces with
values u!, ultl,

The multigrid algorithm has the form:

AMG Recurse(l)
if(l = Imax)
glmax = ()
Rlwax — flm“ _ Ai{nnx
endif
if(l > 0)
utsave = ul
e=1=0
el — St(el’Rl,hl)
u =ul + ¢

R = Av(R' — Ailf(e‘,el‘l, hh)
R = fi=t — Al (uh, w1, ul2) on uncovered part
AMGRecurse(l — 1)
e = e + Int(e™ 1)
- R' =R - Al (e, e R

det =0
set = Si(Ge!, R, B)
e = et + de

o1 i
U _usave-i-e

else
solve/relax (e?, R®) on base grid
End AMG_Recurse

The real complexity in this algorithm resided in keeping clear what are error
corrections and what are solution corrections. This differentiation must be made
in order to take into account patches that are partially covered by finer level
patches.




4.2 Embedded Boundaries

Johansen and Colella in {28] describe an extension of the adaptive method for
Cartesian grids with embedded boundaries. The key ingredient in this algorithm
1s finding an operator for the irregular cells caused by the cutouts. We assume
that a single line segment is used to cut each cell. The operator for these

Figure 4.2: Cartesian mesh cut by an embedded boundary creating irregular
cells.

irregular cells need only be first order accurate as the global operator will smooth
errars to second order. There is also a question of centering of variables. For
both uncut and cut cells, u (the solution) is centered at the midpoint (m in
figure 4.2) of the entire cell — whether the cell is cut or not. f (the right hand
side) is centered at the centroid (¢ in figure 4.2) of a cell. For an uncut celi
the centroid is the midpoint. For cut cells the midpoint of the same uncut cell
differs from the centroid. The Cartesian geometry away from cut cells generates
a simple five point stencil in 2-D.

The discretization of the operator at cut cells is performed using a finite
volume approach. First observe '
Au=V-¢=f and ¢=Vu
The divergence theorem provides a simple way of discretizing the divergence.

For smooth vectors ¢
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1 -~
dV = —_ .
v @ V(Q)—,ov /V ¢ v}é‘)“ﬁov ¢-dS

For discrete q;e centered on an edge of a cutaway cell
- 1 -
= “7 ZLe@e ‘R + O(hp)
¢ e

where V. is the area of the cut cell, L. is a length of an edge with index e and
e 18 the edge outward pointing normal. If cz)e 7l 18 known to second order then
p is one or the discrete divergence is first order at the centroid of the cell.

Estimating the normal gradients to second order is done in two steps. The
first step is discretizing the boundary conditions and the second step is discretiz-
ing gradients at cut cell edges. To estimate the normal gradient at a boundary
cut cell, a line I, from the center of the edge and normal to this edge is extended
into the computation region (see figure 4.3). Let S be the set of all straight
lines connecting 3 adjacent midpoints of cells in the computation region. The
midpoint of the cell where the divergence is being computed is excluded from
membership in S. Let {; and Il be the two closest lines in the sense that they
intersect !, and the distance along I, from the edge center to the intersection is
the measure of distance. Quadratic interpolants may be constructed with the
points in I; and I3 to give third order estimates of the solution at the points
of intersection with [,. A third quadratic interpolant can then be constructed
along {, using the value of the derivative of the solution or the solution value
itself at the edge and the two values constructed from the interpolants on I, and
l5. The normal gradient can be computed to second order using the quadratic
interpolant.

The second step in computing gradients is on nonboundary edges of cut cells.
Here we have two cases as well. If an edge is not truncated then the normal
gradient components to second order is one of the following centered differences
U +1 i1 — U
¢x;+%—— X or ¢'yj+%: A 5
For nonboundary cut edges, the centers of these cut edges no longer coincide
with the centers of the edges if they were not cut. Instead gradients must be
interpolated in order to preserve second order accuracy. Suppose a cell with
indices (%, j) is cut as illustrated in figure 4.4. then

o _l—a fuig1 41 —Uin1 +1-§—a Ujpl — U
vitd T 2 h 2 )




Figure 4.3: Interpolants used in construction of a gradient centered at an irreg-
ular edge of a cut cell.

Figure 4.4: Nonboundary edges of cut cells need to interpolate gradients to
compensate for loss of centering in order to preserve second order accuracy.
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and ! is the exposed length of edge (¢,j + 3).

With the gradient and divergence operators defined we can now discuss how
multigrid and adaptive multigrid extensions can be developed. For multigrid,
a coarsened grid hierarchy can be created in the same way as a grid without
embedded boundaries. However, partial cells on the coarse grids may no longer
have single line segments cutting them. This leads to two rules:

i) Line segments on the coarse grids are created by taking the two endpoints
of the two or more segments on the finer grid.

i1) The area of the coarse cut cell is set to the sum of the areas of the under-
lying fine cut and uncut cells.

The second rule changes the averaging operator from fine cell data to coarse.
Near boundaries area weights are used

¢ _ T2i25A2 ) +T2i05-1 42951 + Toi-1,05 421,25 + T2i-1,2-142i-1,2j1
%3 Afa

where
Af ;= Agigj + Azi—1,25 + A2 25-1 + Agi—1,2j-1.

A ; is the (4, j) cell area on a fine grid.

With the coarsening operations and the new operator defined, the multigrid
algorithm for the uncut grid can be directly applied. Likewise the AMR multi-
grid algorithm can also be applied directly provided the finest grid in a hierarchy
determines the underlying areas of coarser cells covered by the finest grid. We
end this section by describing some theoretical and practical issues with the
embedded boundary method. These issues involve symmetry, conditioning and
some empirical observations.

The interpolation used at coarse/fine interfaces and at embedded boundaries
destroy the symmetry of the underlying matrix. This is observed to have little or
no impact on the performance of the multigrid algorithm for the AMR hierarchy.
In the next section on overset grids we will encounter instances where a conjugate
gradient solver will be needed to solve a linear system at the bottom of the V-
cycle. Solvers that tolerate asymmetries in the matrix like BiCG-Stab and
GMRES are needed. These algorithms take twice or more the memory and
time to execute in comparison with conjugate gradient methods for symmetric
positive definite matrices. But memory and time are not issues when solving a
system on the coarsest available grid of a multigrid hierarchy.

It is apparent that some cut cells in 2-D grids can be very small. The question
can then be asked whether the condition of the system blows up? In 1-D, it can
be analytically shown that the system remains well conditioned as the boundary
cell size goes to zero. The order of convergence can also be shown to be second
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order even with a first order discretization of the cut cells. 2-D numerical studies
for both adaptive and nonadaptive embedded boundary problems have shown
uniform second order convergence and insensitivity to small cell sizes.

One empirical observation that improves convergence is the use of underre-
laxation of the smoother near patch boundaries. Underrelaxation with a factor
A=3/4

e = (1 =Ne' + AS(e', R\, ht)

improves convergence. To get a factor of ten or more reduction in residual per
v-cycle, four smoothing iterations per level seems optimal. At cut cells a Jacobi
iteration is substituted for the Gauss-Seidel red-black algorithm as a smoother.
First the Jacobi iteration is applied on cut cells while holding values of uncut
cells fixed. Next the Gauss-Seidel red-black algorithm is applied holding cut cell
values fixed.

4.3 Overset Grids

Overset grids use less complex boundary conditions compared with those found
in embedded boundary methods. However overset grids have interior coupling
conditions {additional interpolation conditions) not found in embedded bound-
ary methods. The relationship can be made more symmetric by using a finite
volume approach to connect components of an overset grid. What is meant is
instead of two or more grids overlapping, a ranking is established among grids
such that each grid with a higher ranking cuts away a grid with lower ranking.
Therefore higher ranking grids act as embedded boundaries for lower priority
grids as illustrated in figure 4.5. The diamond shaped region has a higher rank-
ing than the uniform background mesh. It then cuts away the background mesh
to get a single valued composite mesh. Irregular cells appear near the edges of
the diamond shaped grid.

Forming operators for overset grids requires more effort than on uniform
Cartesian grids because geometric information must be incorporated. The gra-
dient and divergence operators are formed separately and composed. Function
values are cell centered, gradients are edge centered and geometric ((x,y) coor-
dinates) are node centered. The 2-D gradient operator is a discretization of the
continuum case

1
Vu = (ug,uy) = 7(u§y,, ~ UpYe, —Ugly + UpTe)

where

_ oz _
)

Te Ty
Ye Uy

J
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Figure 4.5: The higher ranking diamond grid cuts away at the lower ranking
Cartesian grid. The detail shows how the diamond grid acts like an embedded
boundary in cutting away the Cartesian grid.

The discretization of the gradient operator is placed at cell edges

(V¢)i+,},j = 717 (G ¢)(yi+,},j+§- - yi+§g'—,}) -

i+
1
Z(¢1‘.+1,j+1 = Gig1, -1 + 41 — Gj-1) T — U,
—(Pit1 — O (@i g 44 — Tivkj-4) —
'}I(¢-i+1,j+1 ~dit1,5-1 + i1 — &;-1)(Fit1 — T))

where

Jiry = (&ip1 - i‘)(yi+§,j+,} —Yirg-4) — (@1 — g)(x,ﬁ,jﬁ —Tirgi-3))

and

1
2 = T@irgied T Tigrd T Ticgi-p T Tirhi-d)

1
= 7Wirpsep T ¥i-pgrs TYiopi-4 T Yirdi-p)
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The expression for (V©); ;+4 is similar. The divergence operator uses the same
finite volume formulation as above

L1 Loaa 1 P =
V-i= &}:§0V0 avcu-dS_T—/c—zs:us AS.
where the index s denotes a side and AS is the length of the side times the
normal to the side.

Given an edge centered piecewise constant quantity (dg, ¢y )i, i direct in-
tegration on an edge leads to the following relationship

(4 - AS:)H.% = ¢xi+%(yi+-5-,j+§ - yi+i-,j—§-) - ¢yi+§(xi+§-,j+s} - xi+é,j—§-)'

The volume of a cell V; is computed by observing

Vc:/ dV:/ v-(x,())dv:jf (x,0) - dS.
e Ve v,

The volume is computed by summing up line integral contributions on each side.

On irregular cells the divergence operator is still relevant. It should be
noticed that irregular cells may have more than five sides. Gradients are prob-
lematical. The same kind of trick with polynomial interpolation is used. In
figure 4.6 a gradient is found normal to the cutting edge of a cell using four
quadratic polynomial interpolants. For conservation purposes, both the uncut
and cut cells share the gradients centered at edges.

With operators defined, multigrid hierarchies can be established on each
component grid. Operators can be established at each level using the same rules
of area conservation as discussed for the embedded boundary case. One problem
that is encountered in this case is, in general, a multigrid hierarchy cannot be
fully established. Below some coarsening interpolents and operators cannot be
found. Even more fundamental is the possibility that different components have
varied linear dimension leading to different numbers of cells to coarsen. This
implies a linear solver needs to be used to solve for the error as function of the
residuals on the coarsest level.

Finally, like the embedded boundary case, an AMR multigrid scheme uses
exactly the same algorithm for each component of an overset grid. Residuals
are propagated to the base grid where the multigrid solver is called.
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Figure 4.6: Two interpolants on the cutting mesh with one on the cut mesh
are used to supply data to a fourth interpolant in order to compute a gradient
normal to a cutting edge.
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Chapter 5

Adaptive
Hyperbolic-Elliptic Solvers

In this chapter we examine adaptive methods for hyperbolic systems that are
constrained with an elliptic equation. The model system we use is the incom-
pressible, inviscid Euler equations. We start with a description of a nonadap-
tive algorithm and then develop two adaptive methods. The first method is a
straightforward application of the adaptive multigrid methods described in the
previous chapter and the advection methods described in chapter 2. There is
no recursive time stepping procedure used. The second method incorporates a
recursive time step algorithm with a consequent increase in algorithm complex-

ity.

5.1 Incompressible, Inviscid Flow Solution

For convenience we repeat the equations for incompressible flow

U +U-VU+Vp=0 (5.1)
V-U=0 inaregon Q
U-7n=0 on 99.
where
Uz, y,t) = (u(z, 4, t),v(z, y, t))
and 72 is the normal to the boundary. The numerical method we choose to discuss
to solve {5.1) and its constraints is called a projection method. The projection

algorithm was first studed by Chorin [15] and the second order extension was
developed by Bell, Colella and Glaz {3]. The projection method takes advantage
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of the Hodge theory to eliminate the pressure in the time evolution of U. The
formal structure of the algorithm is, once again, predictor-corrector.

The variables U and p are cell centered but boundary conditions and in-
termediate quantities may be centered at edges. The three major steps in the
algorithm is: 1) To estimate the velocities at cell edges at half time levels much
like the predictor for explicit schemes described in the second chapter. This will
be called the advection step. 2) Make the edge centered velocities divergence
free. This step uses what is called the MAC projection (described below). 3)
Using the edge centered velocities, advance the cell centered quantities to the
full time level. In the last step a second or full projection is applied to recover
the pressure and insure the velocities are divergence free.

5.1.1 Advection

The U - VU term in (5.1) is approximated using an explicit approximation.
Since Vp is orthogonal to divergence free fields we can ignore it in the predictor
because its effect will be felt when the MAC projection is applied. Define

cntd 1 Atu

o, = U‘+§(1— )AU

~ntd 1 At ugyg

DH--},R = Ui+1 - 5 (1 + -h—) AU
~ntd _ 1 Atv

oty = U+§<1 )AU

on ’ Atv;

where h is the mesh spacing and At the time step. Next define Riemann solu-
tions of the form

O = RO, 0T

it i+4,L? +§ R
gty _ pypntt  prtd
Uj+§ = R it sl it T)
“where
Uy, ifug,ug >0
R®(U,,Ug) = Ur ifur,ur <0

£(Up + Ug) otherwise
and the analogous relation in the y direction is

Up ifvg,vr >0
R(y)(UBy UT) = Ur ifvg,vr <0
+(Up + Ur) otherwise.
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Next define

Gase = UNE - S -t -0t
Oz‘+%,R = U::&%R it(i?:l’ﬁ;+ﬁ?ﬂi—%)w:rli+% U:Lli )
Uiegs = Upihs - FOIE+ i HOny -7
LNrj+%,T = U;:;,T Azlt(?:;rkl+ﬁ:jij+l)(0?++gj+l zﬁfaﬂ)

Solve another Riemann problem to get a fully upwinded unsplit time and edge
centered estimate of the velocity

itk )
U::;z — R(z)(U n'f‘é'L, U’;‘:zR)

mntd n+4 n+g
Uj+-§ R(y)(U A B’Ug-f--} T)

5.1.2 MAC Projection

The Hodge projection can be applied to UZ:; and f/';.':% to get a divergence
free field. This is called a MAC projection after the marker and cell method
of Harlow and Welch [27]. Its effect is to incorporate the Vp term into the
predictor. The underlying Laplace equation is

Bis9=Vig U= 3 |G~ h) + @f -7 h)]

where

Ai,j¢—- ¢z+1 +¢z 1 _‘:g'*‘éj-f-l +¢]——

The gradient operator at cell edges (i + §,4) and (4,7 + 3) is

1+§¢ — (¢1+1 ¢ ¢z+1..7+1 ¢z+1,_ih1 + ¢j+1 - ¢j—1)
Vityo= (¢i+1’j‘“ — d)"“ﬂl + Giy1 — Gi—y ’ ¢j+}l“ ¢).

The divergence free part of the edge centered velocities can the be computed as
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RO Fntd N
Li+; = U._*_; —-VH_%(O)
7n+; _ Stk ;
Ui = Uipy —Vi1400)

5.1.3 Corrector Step

To approximate the right hand side of the expression
Uy =-U-VU-Vp

at cell centers and centered in time we use the projected edge velocities in the
following expression

VUit =4 (@i utharst - ot

s n+% nt+} n+&
Wi+t hwrth -uth).

5.1.4 Full Projection

Although the edge centered velocities are divergence free it is not sufficient to
update to the time level n + 1. Instead another projection is applied. Let

U* =U" = At(U - VU)*tE,
- Following Minion [34] we project the cell centered U* to get the advanced time
level value U™t!. To do this the MAC projection is reused. Cell centered values

are averaged onto edges. To preserve accuracy, fourth order interpolants are
applied

—uj_y + 9wt +up,) —ul

By = 16
. vyt 9(v* +v74y) — Vi
’l)j+§_ = 16 .

Define

(v¢)2i+-} + (v‘p)xi-%
2

(V¢)yj+§ + (V¢)yj_%

2

(v¢)x =

Vo), =




then

UMl = U = Vo =U" - ((V8)s, (Vo). (5.2)

The pressure, to within a constant, can be recovered as

= (5.3)
since
Vo Ur —pntl Up—yntl .
At AT T A T PUevY) v

= (I-P)-U-vU)~*t,

In {34], with minor modifications to the advection algorithm described above,
Minion implemented a projection method that uses a hierarchical set of adaptive
grids. A single time step, controlled by the finest grid, is used to advance all
cells on all meshes.

Because of the nonlinear advection terms, the projection method is difficult
to analyze. In particular, stability of the evolution operator has not been an-
alytically proven. The MAC projection is stable and indempotent in the sense
that

IP]]<1 and P?=P

‘respectively. Unfortunately cell centered projections may lose these properties.
These projections are called approzrimate projections. The stability (the projec-
tion operator being bounded by unity) of the projection is certainly a necessary
but not sufficient condition for the overall method to be stable. Therefore some
care must be excercised in formulating approximate projections.

5.2 An Adaptive Ihcompressible Method

We describe an algorithm by Almgren et al. [1] that was developed to adaptively
solve variable density incompressible flow in 3-D. The referenced paper discusses
a numerical solution for the equation set

U+ (U-V)U = -;-(—Vp-&- WAU + Hy)

pe+V-(pU)=0
e+ (U-Ve=H,+ ke
V-U=0
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where additional variables not seen before include Hy an external force, He a
source for an advected scalar ¢ and « is the diffusion coefficient for the advected
concentration c¢. Because of time and space constraints, we simplify the above
equations to constant density, inviscid incompressible flow (5.1). The equation
for the evolution of concentration, ¢, is ignored.

We first examine how a single level mesh is advanced in time. This allows one
to concentrate on the issue of centering and differencing of various quantities.
The differencing of the full projection is different from the full projection above.
In addition, we will see how flux registers are initialized and updated. The
algorithm we describe uses a node based projection method. Therefore, pressure
p*t¥ is centered at nodes while the velocity vector U, continues to be cell
centered.

5.2.1 Single Level Algorithm

The first step in a single level, say level I, time advance is the estimate of
velocities at cell edges at the half time level. This step is identical to the
predictor step described in the first part of this chapter. The predicted velocities

are written as (7::? and ﬁ;: f . These velocities are projected using the MAC

projection to get normal, divergence free velocities to the cell faces. The normal

velocities are written as U {'_“f}v and UA% V. With face centered velocity estimates

and their projections computed, the corrector step, before a projection, can be
written as

U~ -U %

At

== [v- 0o "t

The discretization of V- UAPV[J requires only the normal velocity components
at cell edges for UAPVY. Since there is a node centered pressure, a different
projection is used for advancing the velocity to time level n + 1

U"+%—U_P Us-U
At At

Vot = vt 4 (- P) (U'A"t U) .

The nodal projection computes the divergence at nodes away from coarse/fine
interfaces or physical boundaries using

Ui T Uil 541 — U = Usl | Vidl g1 T Vi1 = Uil —V
Vitiry U= 5h N oh

The adjoint operator, which is the gradient, has the same stencil offset from cell
centers to cell nodes. Also notice that the gradient operator is never evaluated
using data from more than one level.




v _ (Pityiry T35 T Pibgrd T 0i-1i-4
W = ;
®

itdard T 0o+t — Gitd,
K)h

o
Y
i
il
[
S
i
oot
Q.
t
b
N’

The nodal Laplace operator is derived by using finite element techniques.
The weak formulation of the Laplace operator is

/ Vé(z) - Vilz)de = / FVumde V@)

The % are piecewise binlinear elements with support over the four adjacent
cells of a given node. On the coarse/fine interfaces the basis functions are as-
sociated with coarse nodes only, values at intermediate fine nodes are linearly
interpolated from the coarse nodes. This insures a continuous basis set. Prop-
erly normalized, the right hand side of the weak formulation is a divergence
operator. The projection is solved using the time difference of the velocities

u-U
Birdi+s® = Virdirg (T) ‘
The gradient of ¢ is the subtracted from the velocity difference

Uty Ut -U
At At

—-V,; ¢
and the pressure is updated as
prE=pieg

Notice the difference between these relations and (5.2, 5.3). One increments the
pressure while the other computes a a new pressure. These formulations are
equivalent in the continuous limit and stems from deciding whether to project
the velocity field or its time derivative.

In discussing the single level algorithm we have avoided discussing bound-
ary conditions. For a single level advance, both for the the MAC and nodal
projections, physical boundary conditions dictate the normal derivative of ¢ is
set to zero. Otherwise, interpolation is used from a lower level assuming ¢'~!
1S piecewise constant.

Like the hyperbolic case, conserved quantities are stored for refluxing. For
level [, velocity and advective flux registers at coarse/fine interfaces are initial-
ized as
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sul = —AlUAPV
5F5ADV — _AtAl(L;ADV,é[:rn-f%,l)'

(UADVAn+4.1) is a velocity tensor but it only has effectively three nonzero
components, Both flux registers are initialized to cancel the coarse fluxes. A’ is
the face area in 3-D and the edge length in 2-D.

Level { — 1 flux registers are changed by the advance of the solution on level
L.

5Ul-l = 5Ul-l + _I_Al-l Z LrADV,l

r

faces

5FZLI—1,ADV — JFél—l,ADV+Al Z Ati(UADV,lﬁn+-},l)‘
faces
Let
u-U
V=
At

then a mismatch of the divergence computed at nodes is stored in registers as

RHS‘S_p = Vcoarse . (Vl - v¢l)
RHSS, RHSYL + %Vﬂne (V= V¢').

The subscript S — P stands for synchronizing projection and RHS indicates
that the quantities being saved will be used in a two level projection between
levels [ and I — 1 in order to correct inconsistencies in the divergence of the
solution at the coarse/fine interface. The operators Vi ogrse and V fine are node
based operators that when combined compute the composite divergence at a
given node. The coarse operator zeros out the contribution from the fine cells
while the fine node zeros out the contribution from the coarse node as shown in
figure 5.1.

5.2.2 Multilevel Algorithm

Unlike the hyperbolic case, advancing level ! r steps to coincide with one step
of level I — 1 does not just result in local corrections of cells on level { ~ 1 at
coarse/fine interfaces. Instead, a global correction must be made on both levels

84




@ X
¢ b—  ®
® X

coarse fine

Figure 5.1: The coarse and fine operators V perse and Vg4, zero out contribu-
tions from fine and coarse cells respectively.

to satisfy the elliptic constraints. The authors of [1] call this resynchronization.
Registers for resynchronization. have already been described in the previous
section. We outline the resynchronization process below.

(Step 1) The first step involves averaging down level [+1 to level I. Pressure
is time averaged (since it is staggered in time) and the velocity U is averaged
conservatively. This is much like the hyperbolic case with the enhancement of
the pressure averaging in time.

(Step 2) The quantity V.., initially defined at coarse/fine interfaces, is
defined as

" 1

_ ADV,
sync — _WJF U .

This is a velocity correction from the momentum flux. Vsly,w corresponds to

the tensor UAPVAIn 4.} contributions to the velocity field not being divergence
free. Even though V] is only nonzero at coarse/fine interfaces it will have nonzero
values everywhere later in the algorithm.

(Step 3) Once a mismatch is accumulated in the velocity fleld 6U%, it is
projected using a MAC projection

AMA(;'&EL = VMAC . ((SUl)

85




The subscript M AC is used to distinguish the Laplace and divergence operators
form those used in a nodal projection. Though 60" is local to the coarse/fine
interface de’ is global to the level I grid.

(Step 4) A velocity correction U!___ is computed as

Uéorr = VMAc((iel).,
Again, the subscript MAC is used to distinguish the MAC gradient from the

nodal gradient. U.,.. is nonzero on all edges of the level | grid.

(Step 5) This correction is used to update the advected momentum correc-
tion everywhere

‘/slync ' sync + vmac (Ul [}"’*’%rl)_

Now Vsync carries corrections from changes in velocity and advection fluxes.

{Step 6) The above correction also must change the flux registers at level
-1

SU! = SUL 4 Al 1 Z (-
faces
6FZ’—1,ADV — 5Fl LADV | Z At‘( corrU"+*’l)-
faces

{Step 7) A composite solve is done on level ! and level [ 41

A(¢sync) = RHS}S~P + V(‘/sync)

where V{, . is interpolated to level I + 1. The combined interpolated values at

{+1 and szc is called Viyne. This projection corrects discrepancies in the
divergence at coarse/fine interfaces due to advective and velocity mismatches.

(Step 8) At level | and level [ + 1 velocities are corrected

grtt = UM 4 A (Vogne — Volyne)
UrHr = grrhi L ARV - Vel

to get a divergence free composite field. The pressures are also updated as

n+a&l L _ n+#,1 !
bt = prthiigl
1=l 1—o=1 [+1
pn+ P e pn+ pr I ¢s:1*;_nc'
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The corrections must also be introduced to the lower level { — 1 as

- ]
RHSg p = RHS o+ =V fine(Viyne — Vélyne)-

sync

(Step 9) Finally, changes must be propagated upward in the AMR hierarchy.
For all levels I, > g >1+1: : .

prtlg . pntlg Atljconst(vs‘ync - v¢gy”°)
pn+1“;7}ﬂ = n+1—'2rq“ -+ Ilzn(d)Ls;};,c)

The resynchronization process, with the exception of the last step (9), has
a multigrid flavor. The time advance/resynchronization combination is like a
coarse to fine to coarse V-cycle. When all levels coincide the resynchronization
is like a multigrid V-cycle of a composite projection of all levels.
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