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ABSTRACT

As part of early design studies for the potential Yucca Mountain nuclear waste repository, we
have performed a preliminary probabilistic seismic hazard analysis of ground shaking. A
total of 88 Quaternary faults within 100 km of the site were considered in the hazard analysis.
They were characterized in terms of their probability of being seismogenic, and their
geometry, maximum earthquake magnitude, recurrence model, and slip rate. Individual
faults were characterized by maximum earthquakes that ranged from moment magnitude
(M,,) 5.1 to 7.6. Fault slip rates ranged from a very low 0.00001 mm/yr to as much as 4
mm/yr. An areal source zone representing background earthquakes up to M, 6% = % was
also included in the analysis. Recurrence for these background events was based on the
1904-1994 historical record, which contains events up to M, 5.6.

Based on this analysis, the peak horizontal rock accelerations are 0.16, 0.21, 0.28, and 0.50 g
for return periods of 500, 1,000, 2,000, and 10,000 years, respectively. In general, the
dominant contributor to the ground shaking hazard at Yucca Mountain are background.
earthquakes because of the low slif: rates of the Basin and Range faults. A significant effect
on the probabilistic ground motions is due to the inclusion of a new attenuation relation
developed specifically for earthquakes in extensional tectonic regimes (Spudich et al., 1996).
This relation gives significantly lower peak accelerations than five other predominantly
California-based relations used in the analysis, possibly due to the lower stress drops of
extensional earthquakes compared to California events. Because Las Vegas is located within
the same tectonic r?e as Yucca Mountain, the seismic sources and path and site factors
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affecting the seismic hazard at Yucca Mountain also have implications to Las Vegas. These
implications are discussed in this paper.

INTRODUCTION

Yucca Mountain is located about 130 km northwest of Las Vegas (Figure 1) in the southern
Great Basin of the Basin and Range province. As the proposed site of the nation's first
nuclear waste repository, it has been the focus of extensive geological, seismological, and
geophysical investigations for more than a decade. An objective of these studies is to provide
basic information and data for the evaluation of potential seismic hazards and the
development of appropriate seismic design criteria for facilities at Yucca Mountain. Based
on the results of these studies, a preliminary probabilistic seismic hazard analysis of
earthquake ground shaking has been performed. A final assessment of seismic hazards for
Yucca Mountain is currently ongoing involving an evaluation of seismic sources, ground
motions, and fault displacement by a panel of experts.

Because of their proximity,- Yucca Mountain and the city of Las Vegas share some
similarities with regard to potential seismic hazards. Specifically, some of the seismic
sources that could generate ground shaking at Yucca Mountain could also affect Las Vegas.
Additionally, the rate at which ground motions attenuate with distance should be similar for
both areas. In this paper, we describe the results of our preliminary probabilistic seismic
hazard analysis of Yucca Mountain and discuss its implications to Las Vegas and the
surrounding vicinity.

Approach

The probabilistic analysis described herein revises an earlier study performed for the
Exploratory Studies Facility (ESF) (Wong et al., 1996; CRWMS M&O, 1994). Available
geological, geophysical, and seismological data were used to evaluate the seismic sources
significant to the Yucca Mountain site, the probability of earthquakes occurring on those
seismic sources, and the level of ground motions at a specified probability level. The seismic
hazard model used in this assessment is similar to the original model developed by Comell
(1968) and later refined by McGuire (1974). The probabilistic methodology provides for the
explicit inclusion of the range of uncertainty in interpretations of parameters for the model,
including seismic source characterization and ground motion attenuation. Uncertainties in
seismic sources and other input are included in the probabilistic analysis using logic trees.
Discrete values of the source input parameters have been included along with an assessment of
the likelihood that the discrete value represents the actual value. A more detailed description of
our approach can be found in Wong et al. (1996). "
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SEISMIC SOURCE CHARACTERIZATION

Two types of seismic sources were characterized in this analysis: Quaternary faults and an
areal source representing "background” earthquakes not associated with the faults specifically
modeled in this study.

Quaternarv Faults

Available geologic data show that 88 faults having known or suspected Quaternary (< 2 Ma)
activity are located within about 100 km of Yucca Mountain (Pezzopane, 1996; Keefer and
Pezzopane, 1996) (Table 1; Figure 1). Within about 15 km of the site, 19 "local" faults have
been identified of which 10 exhibit definitive evidence for Quaternary activity. Some of the
faults may be structurally related, such that they may rupture together in a future event. In these
cases, we have evaluated their structural settings and assigned weights to characterize this
capability (see following section).

In general, the seismic source characterization of the local Yucca Mountain faults was the result
of detailed paleoseismic investigations (Whitney et al., 1996). Parameters for most of the
regional faults (beyond a distance of 15 km) are from map compilations, literature reviews, and
reconnaissance investigations (Piety, 1995; Anderson et al., 1995a; 1995b) (Table 1).

Seismogenic Capability

In this analysis, all known faults having documented or suspected geologic evidence of
- Quaternary displacement were considered as potential seismic sources. For the most part, the
association of seismicity has not been a definitive criteria to classify faults as being
seismogenic, typical of the Basin and Range province. The numbers, sizes, and activity rates of
fault populations in the Yucca Mountain region span many orders of magnitude, and in order to
evaluate the range of possible seismic sources in the region, we have characterized the
seismogenic capability for each fault. In this study, we have assessed seismogenic capability
based on two factors: 1) whether the fault is considered an independent seismogenic source,
one that is responsible for the principal seismic energy release; and 2) whether the fault is
active or has been recently active, as evidenced by having a spatial association with historical
‘seismicity, fault offsets or a sharp geomorphic expression in young surficial Quaternary
deposits, or direct structural relation and kinematic connection with another active Quaternary
fault. These two factors, as explained below, were assessed for each fault using a weighting
scheme wherein the product of the weights is the value in Table 1.

The structural setting and mapped length were the primary basis to weight each fault as to
whether it could form an independent, co-dependent, or co-independent rupture. Independent
seismogenic sources are characterized by mapped traces longer than 15 km and cumulative
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throws of hundreds of meters or more in Tertiary or younger deposits. These faults probably
penetrate to seismogenic depths of 5 to 15 km. Independent seismic sources are commonly
range-bounding or block-bounding faults that show repeated displacements in late Quaternary
time. Co-dependent faults have continuous mapped lengths less than 5 km; sporadic, if any,
evidence of Quaternary activity, and traces that usually merge with, and/or strike parallel to,
and are in the immediate vicinity of a much longer (> 15 km) independent fault. Co-dependent
faults probably move in structural association with and only when the nearby independent fault
ruptures. Co-independent faults are characterized by mapped lengths ranging from 5 to 15 km
and traces that usually merge with or form a smaller geometric fault segment of a much longer
(independent) fault. Co-independent faults are thought to occasionally rupture simultaneously
with the independent fault, and sometimes rupture randomly on their own.

According to this subjective structural evaluation, independent and likely co-independent faults
were assigned weights ranging from 0.5 to 1.0 (Table 1). Co-dependent faults were assigned
lower weights ranging from 0.1 to 0.5 because they are not likely to be principal sources of
earthquakes. The weighting factor of independent versus co-dependent seismic sources
accounts for possible fault segmentation models and thus, the relative likelihood that the fault
source could produce an earthquake independently. The main advantage of this scheme is to
allow the possibility that short (< 10 km) faults within 10 km of Yucca Mountain could be
independent earthquake sources.

The second factor considered in the evaluation of seismogenic capability is whether the fault
has been active. For some of the local and many of the regional faults, evaluation of
Quaternary movement is more uncertain because they have not been mapped in detail or
trenched. Many of the regional faults were recognized from interpretations of aenal
photography, and only some have been examined in the field. Even given detailed studies of
suspected Quaternary faults, commonly it is difficult to demonstrate that an apparently inactive
fault has not moved during Quaternary time because complete stratigraphic sections including
older Quaternary deposits are not preserved over the fault traces. Consequently, this study
considers three alternatives to describe the state of evidence for Quaternary fault activity.

Faults having documented Quaternary displacement are assigned a probability of activity of 1.0
(Table 1). Faults for which there is evidence to suspect but not conclusively demonstrate
Quaternary displacement are assigned probabilities of activity ranging from 0.1 to 0.9 based on
an evaluation of the available geologicél evidence of young activity. These faults have
relatively youthful geomorphic expressions as seen on aerial photography and appear to offset
middle to late Quaternary deposits. However, the faults or photolineaments have commonly
not been investigated in the field, which leads to equivocal interpretations of their activity.
Faults that lack youthful-looking displacements or a sharp geomorphic signature, but for which
an absence of Quaternary movement cannot be proved are assigned probabilities of activities
less than 0.5 on the basis of the geological evidence of activity.
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Fault Geometry and Sense of Slip

The mapped locations of local Yucca Mountain faults were generally adopted from Simonds et
al. (1993), and regional fault locations were modified from Piety (1995). Although some of the
faults show slight curvature in map view at the surface, the hazard calculations modeled all
faults as single planes along-strike and downdip. The downdip geometry of almost all of the
faults is uncertain; hence a range of dips was used in this analysis. In all cases, three values of
dip were chosen on the basis of the dominant sense of slip of the fault as seen from surface
offsets and inferred from its tectonic setting. Predominantly normal-slip faults were assigned
dips of 45°, 60°, and 75°, and weighted 0.3, 0.4, and 0.3, respectively (Table 1). Most strike-
slip faults were assigned dips of 70°, 80°, and 90°; whereas some strike-slip and most normal-
oblique slip faults were assigned dips of 60°, 75°, and 90°, all weighted 0.3, 0.4, and 0.3,
respectively. The range of dip values also accounts for possible differences in the style of slip
insofar as the style of faulting is reflected in different downdip geometries. Except for seismic
sources located within a few tens of km from the Yucca Mountain site, dip uncertainties
contribute to variations in maximum magnitude values, which indirectly affect the ground
motion values. )

Maximum Magnitudes

Maximum magnitude was derived from an empirical relation between surface rupture length
and M,, determined by Wells and Coppersmith (1994) for all-slip events. The upper and
lower maximum magnitude values in Table 1 account for the standard deviation of the
empirical relation, taken here as % 0.3 moment magnitude unit from the preferred value.

In determining maximum magnitudes for this analysis, we use the entire mapped length for
each fault. This is a conservative choice because Quaternary displacement rarely is
documented along the entire fault length and faults rarely rupture along their entire length.
Thus, the maximum magnitudes determined for this analysis are likely conservative. For
example, if a fault can rupture at most one-half of its length in an individual earthquake, the
calculated maximum magnitudes may be about 0.4 magnitude units too high. While
inclusion of conservatism is not normally apprbprie}te in a probabilistic seismic hazard
analysis, the preliminary nature of the study and our desire to simplify the calculations
motivate this choice.

The numerous local Yucca Mountain faults permit many different interpretations of their
maximum rupture lengths and how they may connect and behave seismogenically (see
"Seismogenic Capability”). Thus although maximum fault lengths of some of the shorter (<
5 km) intrablock faults are proportional to M, 5.5 to 6.0 events (Table 1), it seems unlikely
that they continue to seismogenic depths and act as independent seismogenic structures,
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given their relatively short lengths, close spacings, and possible terminations against the
more prominent Quaternary faults.

Earthquake Recurrence and Fault Slip Rates

Earthquake recurrence for the faults is assessed using both the truncated exponential
(Gutenberg-Richter) and characteristic earthquake models. The seismic moment approach of
Molnar (1979) and Anderson (1979) is employed with fault slip rates as a proxy for seismic
moment rate to arrive at the recurrence for the truncated exponential model. We used the
numerical model of Youngs and Coppersmith (1985) for the characteristic model.

In cases for which paleoseismic investigations indicate the characteristic recurrence model is
more appropriate than the exponential model, we weight the characteristic model either 0.6 or
0.7 (Table 1). For many faults, however, no paleoseismic data are available. In these cases, the
two recurrence models are assumed to be equally valid (weighted 0.5 each; Table 1).

Three values of fault slip rate were characterized for each fault (Table 1) on the basis of
available geologic and paleoseismic studies: a preferred rate and an upper- and lower-bound.
The central slip rate was assigned a weight of 0.6, whereas the bounding values were
weighted 0.2 each. “Yucca Mountain faults have been tranched at numerous sites, and the
number, size, and age of displacement for events have been determined for all of the longer
(> 5 km) recognized Quatemary faults in the site vicinity. In addition, paleoseismic studies
have also been performed for two more distant seismic sources, the Bare Mountain and Rock
Valley faults. The results of many different absolute and relative dating techniques,
including hundreds of uranium-series, thermoluminescence, ash lithology "fingerprinting"”,
and many other geochronologic analyses, have helped to assess the age of paleoearthquakes
and fault slip rates. The most up-to-date and complete summary of the paleoseismic study
results for all Quaternary faults in the site vicinity is contained in Whitney et al. (1996).
Most of the known Quaternary faults in the Yucca Mountain vicinity have slip rates on the
order of 0.001 to 0.01 mm/yr, whereas regional faults have rates ranging from a presumed
low of 0.00001 mm/yr to as much as a well-determined 4 mm/yr.

The level of study of known and suspected Quaternary faults at distances greater than about
25 km from Yucca Mountain decreases with increasing distance from Yucca Mountain,
except for several of the longer and potentially more significant faults, including the Death
Valley and Furnace Creek faults (within 55 km of Yucca Mountain) and the Rock Valley-
Mine Mountain-Cane Springs fault system. Reconnaissance studies of several of these
regional faults, as well as available data from previous studies are described in Anderson ef
al. (19952), Anderson et al. (1995b), and Piety (1995). Slip rate information for these faults
and other regional faults are described in Whitney et al. (1996).
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Faults for which no slip rate information is available, either because the fault may not be
active or there have been no field studies, were assigned slip rates on the basis of
interpretations of aerial photographs and geomorphic comparisons to other faults for which
some slip rate data exist. In many cases, the uncertainty in slip rate ranges over two orders of
magnitudes. Included in this category are some of the local faults that do not show evidence
of Quaternary displacement but may have a small probability of seismogenic capability (e.g.,
Ghost Dance and Sundance faults), as well as some that are buried (e.g., Midway Valley,
Drill Hole Wash faults) and some that may not even be faults (e.g., Yucca Wash fault?).
Many more regional faults appear on air photos to have scarps in Quétemary deposits, but
they simply lack detailed studies and, hence, slip rate data. In many cases, the overall
minimum to maximum slip rate values range between two orders of magnitude (Table I). As
will be discussed below, only a few of these regional faults contribute to the probabilistic
hazard at Yucca Mountain at return periods less than 100,000 years. A

Background Earthquakes

To account for the hazard from background earthquakes that are not associated with the known
mapped faults already considered in the study, an areal source encompassing the region within
100 km of Yucca Mountain was incorporated into the hazard analysis (Figure 2). This
background source also includes the seismicity that may be associated with shorter (<10 km
long) known regional faults that have not been specifically included in the probabilistic analysis
because of their small contribution to hazard (due to their greater distance and smaller
maximum magnitude).

In characterizing the background source, the 100-km radius area around Yucca Mountain was
considered to be, to first order, uniform in terms of its tectonic, geologic, and seismologic
characteristics. A uniform distribution of events in the depth range of 0 to 15 km was also
assumed. This depth distribution is consistent with observations from the Southern Great Basin
seismographic network (Rogers et al., 1991).

Historical Seismicity

A historical catalogue of 10,113 earthquakes within 100 km of the site and covering the time
period from 1904, the date of the first reported event, through January 1994 was used (Figure 2)
to characterize the earthquake recurrence for the background seismic source. The largest
known earthquake in this region was the 1910 surface wave magnitude (M;) 5.7 Goldfield
event.

All known or suspected mining blasts and underground NTS nuclear explosions, cavity
collapses, and induced aftershocks were removed from the catalogue. The latter were identified
by assuming that all events that occurred within 12 months and within a radius of 6 km of a
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nuclear explosion were induced. The distance criteria was based on the observations of Rogers
et al. (1977). Removal of the NTS-induced aftershocks resulted in a catalogue of 3,358
earthquakes.

Maximum Magnitude

In the Basin and Range province and most regions of the western U.S,, the threshold for surface
faulting, and hence the upper limit for the background earthquake without surface rupture,
usually ranges between Richter magnitude (M;) 6 to 6% (Doser, 1985; Arabasz et al., 1992;
dePolo, 1994; Pezzopane and Dawson, 1996). Earthquakes larger than these magnitudes are
usually accompanied by surface rupture and thus repeated events of this size will produce
recognizable fault or fold-related features at the earth’s surface. On the basis of these
observations, a maximum magnitude of M,, 6% =% has been adopted for the background
source.

The maximum magnitude range for a backgrouhd source overlaps with the range of magnitudes
determined for some faults on the basis of paleoseismic investigations and earthquake rupture
scenarios at Yucca Mountain (Whitney et al., 1996; Pezzopane et al., 1996). Thus, in the
Yucca Mountain vicinity, the maximum magnitude selected for the background zone may be
too high. This is also suggested by results from an empirical and theoretical approach to
estimating the maximum magnitude specifically for the Yucca Mountain setting (Pezzopane
and Dawson, 1996). This study suggests the value for the background zone is M,, 6.1 £ 0.1.
The broader range, nevertheless, is used in this analysis to encompass a greater range of
uncertainty and to account for possible hidden seismic sources, mainly east and south of Yucca
Mountain. :

Earthquake Recurrence

The portion of the historical seismicity catalogue that can be used to evaluate background
earthquake recurrence rates depends on the completeness of the catalogue for different
magnitude ranges. In this analysis, the catalogue completeness was generally adopted from the
analysis by Rogers et al. (1991). The completeness intervals represent the period of time for
which earthquakes within that magnitude (M) range are completely reported in the catalogue.
This information is used in the evaluation of recurrence relation parameters following the
maximum-likelihood procedure developed by Weichert (1980).

For the catalogue used in this study, the vast majority of earthquakes have assigned M, or
equivalent M, values. We have assumed that M; is equivalent to M,, in the range M,, 2.510 5.6
which covers the range of events used in the recurrence calculations. (The 1910 Goldfield
earthquake was not included due to compléteness intervals). M,, is used for the completeness
assessment and in the recurrence calculations.
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The recurrence relation is given in the form of a truncated exponential distribution for the
occurrence of independent earthquakes (Figure 3). Dependent events, either foreshocks,
aftershocks, or smaller events within an earthquake swarm (the largest swarm event is assumed
to be a mainshock) were identified using empirical criteria for the size in time and space of
mainshock-foreshock-aftershock sequences in a procedure adopted from Youngs et al. (1992).
If an event was identified as dependent by two of three criteria, it was not used in the
assessment of recurrence parameters.

Adjusting the catalogue database for dependent events and incompleteness, 329 earthquakes
remained in the range M, 2.5 to 5.6 from which to assess recurrence for the background areal
source (Figure 3). The number of earthquakes in the areal source was normalized on an annual
basis and per km”. Events were placed into 0.5 magnitude unit bins and the regression was
performed on the resulting data points as described in Weichert (1980).

Assuming the usual form of the Gutenberg-Richter relationship (log N = a-bM), the calculated
b-value was 0.87 = 0.04 and the a-value -1.08 = 0.03 (Figure 3). For the probabilistic analysis,
a- and b-values are treated as dependent on each other. Uncertainty in the g-value is taken from
the calculated standard deviation; for the 5-value, the uncertainty is estimated to be = 0.1 which
is larger than the calculated standard deviation. This accounts for model uncertainties related to
the ability of the exponential relationship to describe future earthquake occurrence.

An important assumption in basing the recurrence of background seismicity on the historical
earthquake record is that the events within the record are not associated with any of the faults
considered as seismic sources in the analyses. Within the uncertainties of the epicentral
locations shown in Figure 1, this assumption appears to be generally valid. Possible exceptions
are the 1992 Little Skull Mountain M,, 5.6 earthquake and its aftershocks which may have
occurred on the Mine Mountain fault (Meremonte e al., 1995) and a sequence of shallow
earthquakes along the Rock Valley fault zone in 1993 (Shields er al., 1996). For this analysis,
we assume they are not. '

GROUND MOTION ATTENUATION

Six empirically-based relationships describing the attenuation of peak horizontal acceleration
and spectral acceleration at a period of 1.0 sec were used to evaluate the attenuation of ground
motions in the Yucca Mountain region: Abrahamson and Silva (1997); Sadigh et al. (1993);
Boore et al. (1993) (Class B); Campbell and Bozorgnia (1994) (Campbell [1993] for spectral
accelerations); Idriss (1991; '1994); and Spudich et al. (1996). These relationships are
appropriate for rock sites. With the exception of the last relationship, they are based primarily
on strong motion recordings of California earthquakes. The Spudich et al. (1996) relationship
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has been developed specifically for earthquakes occurring in extensional tectonic regimes like
the Basin and Range province.

A comparison between the various attenuation relationships shows that, for distances of 50 km
or less, the Spudich et al. (1996) relationship gives significantly lower peak horizontal
accelerations than any of the others with the exception of the Boore et al. (1993) relation which
gives similar values. Some previous seismic hazard studies (e.g., Wong et al., 1991) have also
assumed that ground motions generated by Basin and Range province earthquakes are lower
than those from California events due to their lower stress drops (Stark et al., 1992; Becker and
Abrahamson, 1997). The Spudich ef al. (1996) relationship was weighted 0.50 in the
probabilistic analysis because of its more region-specific relevance, and the remaining five
relationships were weighted 0.10 each. Data uncertainty of up to three standard deviations for
the attenuation relationship was included in the analysis.

HAZARD RESULTS FOR GROUND MOTIONS |

The results of the analysis are presented in terms of the annual number of events for which peak
acceleration exceeds a given value. The annual number of exceedances is the reciprocal of the
average return time. Figure 4 presents the computed mean hazard along with the 10th, 16th,
50th (median), 84th, and 90th percentile hazard curves for peak horizontal acceleration and 1.0
sec spectral acceleration. The peak horizontal accelerations at return periods of 500, 1,000,
2,000 and 10,000 years are 0.16, 0.21, 0.28, and 0.50 g, respectively.

To gain a better understanding of the hazard reésults, including the contribution and sensitivity
of various inputs, the effects of various interpretations on the results are examined. The
marginal contributions of the seismic sources to the total hazard for peak horizontal acceleration
and 1.0 sec spectral acceleration is presented in Figure 5. For exceedance probabilities less than
about 107 (return periods greater than 100 years), the peak acceleration hazard at the site is
overwhelmingly dominated by background earthquakes. Given the long recurrence intervals of
most faults in the Basin and Range province (a few thousand to more than 100,000 years), the
background source zone, within which the site of interest is located, is often the dominant
contributor to hazard at return periods less than about 10,000 years (Wong et al., 1995).

In terms of the small contribution of faults to the peak acceleration hazard, distant faults capable
of large earthquakes and with relatively high recurrence rates are the more significant seismic
sources for probabilities greater than about 10% (return periods less than about 100 years).
Seismic sources in this category are the Furnace Creek and Death Valley faults (Figure 5). At
lower probabilities (return periods greater than 1,000 years), the Paintbrush Canyon fault is the
most significant fault due to its comparatively high slip rate (0.01 mm/yr) among the local
. faults (Figure 5). Its contribution to the total hazard is, however, less than 5%. For long-period
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ground motions (e.g., 1.0 sec spectral acceleration), the Furnace Creek and Death Valley faults
are almost as significant as the background earthquakes (Figure 5).

In addition to looking at the marginal contribution of each seismic source to the total hazard
results, the contribution from different magnitude and distance ranges can also be examined,
independent of seismic source. The contributions to the total peak horizontal acceleration and
1.0 sec spectral acceleration hazard for different magnitude and distance ranges, and for return
periods of 2000 and 10,000 years is shown in Figure 6. At 2,000 years, the peak acceleration
hazard is dominated by background earthquakes of M,, 5 to 6% at short distances (< 10 km)
with a small contribution from the distant active faults. At a 10,000-year return period, the
contribution of the Paintbrush Canyon fault becomes more significant and the dominant
magnitude range shifts to slightly higher values (Figure 6). For the 1.0 sec spectral
acceleration, background earthquakes continue to dominate, but the Furnace Creek and Death
Valley faults also contribute significantly, particularly at return periods less than about 5,000
years (Figure 6).

Comparison of the peak acceleration hazard computed using each of the six aftenuation
relationships individually indicates that four of the five western U.S. empirical relationships
give nearly the same peak acceleration hazard results (Figure 7). The fifth relationship, that of
Boore et al. (1993), gives lower peak accelerations. Most significantly, as discussed earlier, the
Spudich et al. (1996) relationship which was weighted 0.5, gives the lowest peak values,
significantly lower than the five western U.S. relationships.

IMPLICATIONS TO THE LAS VEGAS REGION

The locations of both Yucca Mountain and Las Vegas in the southem Great Basin portion of
the Basin and Range province suggest that the potential sources and level of seismic hazards
might be similar. Within 100 km of both locations are numerous Quaternary faults
characterized by maximum earthquakes of M,, 6% to 7% and slip rates of 0.00001 to 4 mm/yr.
At Yucca Mountain, the relatively short local faults pose a low probabilistic ground shaking
hazard because of their very low slip rates (less than 0.01 mm/yr). Although fewer in number,
the local faults within the Las Vegas area such as the Eglington and Frenchman Mountain faults
may pose a relatively greater hazard to this locale because of their higher slip rates (up to 0.1
mm/yr or more; Slemmons, 1996). Longer, more active but more distant faults (M, 7 to 7%2
and 1 to 4 mm/yr), such as Pahrump Valley and Death Valley faults, will contribute to the long-
period seismic hazard at both locations.

Background earthquakes will contribute significantly to the hazard at both locations particularly
at short return periods. The level of background seismicity in the Las Vegas area, however,
appears to be lower than at Yucca Mountain (although this may not be real given the short and
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incomplete historical record) and thus the contribution to hazard may be lower in Las Vegas
from this source.

Given that both sites are in the southern Great Basin, the attenuation of seismic waves will
probably be similar. In contrast, other path and site factors that may increase ground shaking
will be more significant in Las Vegas than Yucca Mountain. Specifically, because Las Vegas is
located within an alluvial valley, basin effects and the presence of low-velocity unconsolidated
sediments will likely amplify ground shaking at both high and low frequencies. In summary,
the probabilistic ground moticns at Yucca Mountain may be comparable to Las Vegas on rock
sites at return periods less than 10,000 years. However, because the latter will be subjected to
enhanced ground shaking due to the above effects, the level of seismic hazard is likely greater
in the Las Vegas area than at Yucca Mountain.
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Figure 3 Truncated exponential earthquake recurrence relationship
for the Yucca Mountain region. Data points are shown with their
standard errors.
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Figure 7. Sensitivity of mean peak horizontal acceleration hazard to
selection of empirical attenuation relationship. Each relationship
is shown when used individually in hazard calculations.




