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Summary

Specifie configurations of horizontal and vertical bending magnets are given
that, when acting on the spin polarization vector of a particle beam, generate
& group of 24 operators isomorphic to the group of rotational symmetries of a
cube, known as the octahedral group. Some of these configurations have the
feature of convertiog transversely polarized beams to longitudinally polarized
beams (or vice versa) at the midpoint of the configuration for, in principle, all
beam energies. Since the first order optical transfer matrix for each half of these
configurations is nearly that of a drift region, the external geometry remams
unchanged and midpoint dispersion is not introduced.

Changing field strengths and/or polarities aliows a corfiguration to serve
as either ¢ fnake{1" or gnd kind} ar a Rotator, where in both cases the spin

polarization is longitudinal at the midpaint,

In this conceptualization, emphasis has been placed on clectron beams and,
indecd, for these beams some practical applications car be envisioned. However,
due to the relatively high integrated field strengths required, application of these

concepts to proton beams may be more promising.

* Work supported by the Department of Energy, contract DE - AC03 - 765F 00515,
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Introduction

There are several known types of Siberian ._S._pakes_"\‘:'...fozma-nipuhﬁbﬁ”if e

electron beam polarization vector.

The Snake of the 1% kind (first proposed by the Soviet authors Y. A. Der-
benev and A. M. Kondratenko of Novosibirsk, USSR, hence the name Siberian
Snake) has the elegance of not introducing dispersion nor affecting the beam
trajectory externzl to the system. It has a wide range of operating energies but,
unfortunately, is not useful by itself in converting transverse polarization inte
longitudinal polacization. This Snake rotates the polarization vector about the
longitudinal axis of the beam (a rotation of 90° for each one-half of a snake),

The Snakeof the 2°¢ kind does ratate tranaverse polarization into longitudinal
polarization, making it more interesting to those doing polarized beam experi-
ments. However, known versions of this snake o introduce midpoint dispersion
and may have a limited range of operating energies andfor variable geometry.
The Snake of the 2% kind rotates the polarization vector about the transverse

axis (this axis is horjzontal in Ref. 1 and, again, the rotation is 90“ for one-half
of a snake).

Two other novel versions of the Siberian Snake have been praposed.” They
are the Left and Right Pointed Snakes which represent rotatiuns of 180° about
axes lying in the plane containing the horizontal axis and the axis of the beam
direction. The direction cosines of this rotation axis have a magnitude of :i:l?:

with respect to the coordinate axes mentioned.

In general then, a Siberian Snake has been defined in Reference 1. to consist of
a sequence of magnets that rotate the spin vector by 180° about an arbitrary axis
l¥ing in a plane containing the horizontal axis and the axis of the beam direction.
This definition requires that a Spake always invert the vertical component of the
spin pelarization vector.

The imnportance of Snakes in circular machin- seen extensively deseribed

but we will refer only to a review ar . by Montague.” One of the uses de-
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seribed in this review and attributed to Derbenev and Kondratenko, applies to
electron storage rings. It is explained that two snakes placed in a ring at diamet-
rically opposing positions, one of the 1" kind and the other of the 2" kind, can be
used to achieve a spin tune of 0.5, with the vertical component of the spin vector
parallel to the field in one half of the machine and antiparalie! in the other half,
independent of energy. Such a procedure, according to Montague, reduces “sub-
stantially the effects of large energy spread and imperfectinn resonances at high
energies, permitting polarized beams to be obtained up to perhaps 100 GeV.” In
his review Montague develops an elegant method that uses spinor algebra and
unitary transformations for describing spin transformations and calculating spin
tune. This method is used in proving that the configuration described above has
a spin tune of 0.5 which means, he points out, that “any arbitrary spin vector

closes upon itself after two revolutions,” around the sirg.

There are also systems called Rotators (see Ref. 2). This name has been
used to classify systems of magnets which have the property of rotating the
vertical component of the polarization vector into the longitudinal direction at
the midpoint {Interaction Point) and then restoring the original direction. These
systems are useful for polarized beam physics. Montague has shown that, in
general, if such a system is constrained to be fully antisymmetric about the
midpoint, then the overall spin transformation is the identity, independent of
beam energy or the details of the field strengths. This is an important point to
which we will again refer. Most Rotators operate at only a specified beam energy
or with changing geometry (see Refs. 2 and 4).

One of the configurations of magnets which we will describe is identical in
appearance to that of the Snake of the 1** kind. Either Snakes or Rotators can be
generated with this configuration. In addition, its function can be easily changed
by adjusting field strengths or polarities. Rather than having several names for a
single system depending upon which purpose it serves we have chosen to simply
use the name, Serpent, when referring to this configuration. We will point ont

when this configuration is serving as a Snake or Rotator.
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Another half Snake or hall Rotator we have named the half Up-Down Snake.
It shares many of the properties of the Serpent but is sufficiently different that
it requires another name. Now, we will describhe the Serpent, and return to a

description of the Up-Down Snake later.

Figure 1 represents the configuration of horizontal and vertical bend magnets
that will generate one-half of a Serpent. This configuration is identical to that of
one-half of the Snake of the I"* kind, except that for the Serpent the magnitude
of the ficlds are to be doubled. It retains the nice features of the 1? kind in that
it has an extremely wide range of operating energies and acceptance, does not
introduce dispersion(at end of half of system), and the beam entering the snake

(head) is collinear with the beam exiting (tail) so it ean replace a drift region.

Far the remainder of this discussion we Jimit ourselves to only those configu-
rations of magnets that do not introdnce dispersion or change external geometry

as a function of beam energy,
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Before proceeding further, we will comment on notation, write some useful

relationships, and define a coordinate system.

One half of a Serpent rotates the spin polarization vector about an axis that
can be graphically represented by a vector connecting opposite corners of a cube
(the rotation angle is 120° for one half of a Serpent). It may be seen immediately
that such an operation can perform an even or cyclic permutation of the coor-
dinates of the polarizaiion vector and thus permmute transverse and longitudinal
coordinates. Four such non-orthogonal axes are chosen for our representation.
They will be defined later as vectors having direction cosines all equal in magni-
tude but with varying signs. We define directions for these axes and the magnetic
fields such that for an electron, a positive rotation about these axes obeys the
right hand rule. The reader will note that in general such a rotation applied
three times results in an identity. If represented operationally, A*{120°) = I, or
A%(120°) = A~1(120°) = A(-120°). We will choose to write A~1(120°) instead
of A%(120°).

The precession angle of the spin nolarization vector is given by the relation-

ship
Yp = dya.- . {1)

In which ¢ is the bending angle of the beam in the transverse magnetic field. ¥
is the precession angle for the polarization vector of an on-momentum particle
about the direction of the field in the coordinate system foliowing the beam (orbit
frame). < is the Lorentz factor, and a,- is a measure of the electron’s anomalous
magnetic moment (see Ref. 4. for discussion of the Thomas-BMT equation and

detailed roferences).

a,- = (9_;2.) =1.159652 x 10°% . (2)



It is also useful to express ¥ in terms of the [ Bdé of the applied feld since
the energy dependence then factors out:

1, = 0.680 f Bdt  (radians, T-m) . (3)

Note that an integrated field of 2.31 T-m will precess the spin polarization vector

by /2 or 90° independent of beam energy. This fact will be referred to later.

At the beam energies of the Stanford Linear Collider (~ 50 GeV), and higher
energies, the bending angle of the beam is small {< 1°) i traversing such a field.
Hence, the spin precession angle when measured in laboratory coordinates or
beam coordinates is nearly the same.

Figure 2 shows the coordinate system following the beam and the definitions
of certain vectors.
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Figure 2.

In this conrdinate system the spin polarization vector is expressed in terms of
its initial coordinates and it is assumed that its magnitude has been normalized
to a value between 0.0 and 1.0. This vector is expressed as

p=Hi+Vi+Sk ,
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or alternatively as the column vector

H
p= W

[}
\S,

For an electron traversing a horizontal bend 1aagnet, the spin polarization
vector wil) precess through an angle #, where positive # is defined by the right
hand rule representing rotation about the y axis. The resultant polarization
vector will be given by

p'=H(+0)p
where H({+0) is an orthogonal matrix operator defined hy

cosf§ O sind H
p'= 0 1 0 v . (Horizontal Bend) (1)
-sind 0 cosd S

For a vertica) bend magnet the precession angle v, again is defined as positive
by the right hand rule about the x axis, and

P = V{iy)p

where the orthogonal matrix V{+1) is defined by

1 0 0 " H
o~ )0 cos¥ -sing V. (Vertical Bend) (5)
0 siny cosy S

With these definitions we now represent the effect on the spin polarization

vector of the combined vertical and horizontal bend magnets that were shown in
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Figure 1 by
p' = H(+80) Y (+u)H(—20)V (- 2¢)H(+0)V(+¥)p . (6)

Note that the beam sees a vertical bending inegnet first in this configuration,

go the first matrix operating on p is V(+), therefore, one reads the matrices

from right to left to reconstruct a configuration.

We will represent this configuration by the notation, V{4, +0), which indi-
cates that the first magnet scen by the beam is a vertical bending magnet with
a positive precession angie, and the second magnet (horizontal) also has positive
precession. Other configurations will follow the same patterns, so H{+, —#),
where the arguments are not transposed, would represent a horizontal magnet
first with negative precession angle followed by a vertical magnet with positive

precession angle.
We write Eq. (6) as

p' = V(+y,+0)p

Serpont

If we now select field strengths such that ¢ = +90% and § = +90° (recalling
that the required integrated field is independent of beam energy having a value
of 2.3 T-m for 90° and double thar value for 180°) then

p' = V(+90, i 90)p
Or in the expanded form of the equation,

p’' = H(+90)V (+90)H(- 180)V{ -180)H{+90)V(+90)p .



Calculation using Eqs. {4) and (5} gives

0 01 H
pP=|100 v
010 S
or
s
pP=|H]|.
v

We see that the vertical component of the initial polarization vector has now
been rotated into the longitudinal direction. This configuration performs a cyclic
permutation of initial coordinates with no changes of sign. It can be represented

by a positive rotation of 120° about the axis, a1, given by

ay=1/3(+vV3i+Vv3j+V3k)

We now define a matrix operator, A (+120) where

A1(+120) = V(+90,+90) =

2 - D
- o Q
S o -

As noted earlier, A;a[-§-120] =T and
Ar*(4120) = ATY(+120) = A, {-120)

Since the rotation angle will be understood to be 120° for this and three following
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operators, we shorten the notation further to
0 01 010
Aj=|1 00 and A7'I=]0 0 1
010 1 00

We now select three other axes of rotation given by

az=1/3 (+V31-v33i-ViK) ,

a3=1/3(~V3i+v3)-V3k) ,
and

ag=1/3(-V3i-v3j+V3k)

These will be eigenvectors (rotation axes} for corresponding operators
A,, As! A, ,

and their inverses

A‘z-l' A;l' A:I
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With these definitions we find the following correspondence between config-

urations and operators for half Serpents:

V{+90, +90) =~

(
0 0 -|
v(+90,—9a)—_-(-—1 0 ¢
1

0 0
0 o 1
V(-90,+90)=| -1 0 ©
6 -1 0
[0 0 -1)
V(-90,-90)-]1 0 ©
\o -1 0/
/0 1 0
H(490,400)= | 0 0 -1
\~-1 0 90/
/0 -1 0
H(+90,-%0)~ {0 O -1
1 0 0O
-1 0\
H(-90,+90) =} 0 0@ 1}
-1 0 O

0 1 0
H(-90,-90)= |0 0 1
1 0 0

1

H 8
V | =>|H
5 ) v
H\ -8\
Vi—=]|-H
(SJ (VJ
H 5\
V]| =]|-H
)=
H -5\
V) =-.=-( n
-1
H v
(V] -—4(—5
5 -F
H -V
(V} =:>(—S
s H
1\ [~V
v i-—= s
(3) \-#
I 4
Vi=]3§
(sz \H]




And, of course,

100 H i
V(©0,0) = H(0,0) = {0 1 0] = I vi]=|v
00 1 5 §

With one-hall of a Serpent, there are eight interesting final states where the
transverse polarization has been rotated to longitudinal polarization. They are
all cyclic {even) permutations of coordinates with some changes of sign. The total
number of such permutations and sign changes is 24 (3 cven permutations and
8 possible assignments of sign). If both even and odd permutations are included
the total is 48. Of that set, a subset of 24 would have a determinant of 1
and represent rotations. Both even and odd permutations can be generated by
rotations. The subset of 24 aperators having a determinant --1 would include
a reflection of right-handed coordinates to left-handed coordinates. The nine

operators we have found tl. i far do not form a group.

Reversing direction of the longitudinal polarization requires that the fields
of at least half of the magnets reverse po.2rity. For electrons the total [ Bdl
tequired is 18.4 T-m. This high value coupled with the need for low fields to
limit synchrotron radiation wiil require long magnets and hence, large energy
dependent beam excursions within the system. Spin depolarization effects may
aleo be enhanced. Applications for electron beams are limited by these consider-
ations. For protons the required integrated field is only slightly less but, shorter
magnets can be used. The purpose here is to proceed to investigate other inter-
esting properties of these configurations which, at least in principle, may have

applications.

12



We now seek additional final states by combining two one-half Serpents, end
to end. This gives us three new operators, Cy, C2 and Cj3 (see Table I) that
can be made in a number of ways. They do not change transverse to longitudinal
polarization. In fact, C) is the operation defining a Snake of the 1* kind, whereas
the operation Cj is that defining a Snake of the 2°d kind. These two operators
and all operators corresponding to a snake will, by definition, invert the vertical

component.

-1 0 GY H -H
0 -1 0 =C V]i=I| -V
0o 0 1) 5 5
1 0 ¢ \ H

0 -1 0 =Cy Vi=]|-V
0 o0 —1) 5 -5
-1 0 0 \ H —H
0 1 ) = C; v == 14
9 0 -1/ S -5

Note that C;* = C;* == C3* =1,aud C;C; = C;C; = C; for i # j # k.

The set of 4 operators {C;,C3,C3,1} forms a commutative group with re-
spect to matrix multiplication.

The rotation angle i= 180° for operators Cy, C2, and Ci about eigenvectors

C} = iks

s = :bi,
and

ca=%j
respectively.
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TABLE 1
Multiplication Table for

combinations of two half Serpents

A Az As Ac AN AFY Ayl Ap
ATl I Ci | C | C | As | Ac | As | A
Al G 1 C; | Ci | As | Ay | Az | A,
Al G | G 1 Cz | Ax | As | Ad | Az
Al C: | ©& | Cs I | A | A2 | A | Ag
Acl A AP A | AT T C | C | Gy
Az A VA AT A © 1 Cx | Ce
A A AN A A C | Cs 1 Cr
AMlarlat Al A’ s C | @& 1

The operators in the top row represent the first haif serpent as seen by the
beam {or the right hand matrix operator). Those in the left column are for the

second haif serpent, (or the left band matrix operator). The identity operator has
been omitted as a multiplier.

For example:

A4A; = AST

and
AjAg = Al
The set of 12 operators
{A1,Az,As, A A AT AL AT, €, C,,Ca 1}

forms a non-commutative group with respect to matrix multiplication. There-
fore, cornbining three or more haif Serpents will not generate any additional

final states or new operators.
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As mentioned, it is shown in TABLE I that either the Snake of the 1t
kind or the Snake of the 2™ kind can be gencrated by the proper combination
of half Serpents. There is an important difference, however, between these new
combinations and those known earlier. This difference siems from the fact that
half Serpents do not rotate about eigenvectors confined to the plane containing
the unit vectors i and k. If the first half serpent as seen by the beam corresponds
to one of the operators A, Az, Az or Ay there is the bonus of having rotated
the vertical component into the longitudinal direction at the interaction region
(midpoint). For the first time, we can obtain snakes of either the 1% or 20
kind with midpoint longitudinal polarization for all energies above a lower limit

determined by magnet apertures.

Combinations A, YA, = 1, where 1 - [,2,3,4 could be used as Rotators,
These Rotatars would retain their properties for all beamn energies above a lower
limit. Notice also thal these Rotators are fully antisymmetric with respect to the
midpoint, a property that Montague has shown will always result in an identity
spin transforrmation. We can, therefore, reverse the direation of the longitudi-
nal polarization at the midpoint by ramping magnets from nne coniiguration to

another while maintaining this antisvmmetrsy.

Example

To illustrate how, in principle, these devices conld be used in a eircular ma-
chine we will emuliate the example ¢ited by Montagne. We will use in this exarple
a circular machine having four symmetrically placed straight sections or drifts
and assume an interaction point (IP) at the midpoint of each. Each drift will be

equipped with an identical assemblage of magnets as shown in Figure 3
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Figure 3.

The configuration chosen for illustration in Figure 3. represents the fully an-
tisymmetric Rotator given by A, 'A; — L It can be made apparent by pairing
these magnets, starting with the two adjacent to the IP, that the antisymmetry
ensures the identity transformation for the spin. Furthermore, if care is taken
to preserve the correct field reiationships within each of the four triplets of mag-
nets, the overall optical transfer atrix {that of a drift) is preserved for all field
strengths. It follows that these magnets (fo.ining a Rotator) can be ramped
if 1his symmetry and field strength relationship are maintained. This will not
be true fur the snakes ihat can also be formed by this assemblage as the spin
transiormation changes during ramping. In this figure the first half serpent as
scen by the beam would always be represented by an operator Ay, Az, Az, Ay
or I selected by chovsing the proper fields and polarities. The first four of these
aperators would allow lopgitudinal polarization at the IP. The second half ser-
et can generate operators A, ' AL A T ALY or 1. Other aperators that can
be formed by these assemblages are not included in this example and will be

discussed later.
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Priar to a particular machine running period a selection is made, designating
two diametrically opposed interactic regions to serve as snakes, The experiments
at these interaction pointa can still benefit by having longitudinally polarized
beams available, but change of direction from parallel to antiparaliel can nol be
readily made.

We number the interaction points 1 through 4 counter clockwise, and arbi-
trarily select IP 1 and IP 3 to serve as snakes, The fields and polarities of IP 1
are adjusted to perform the operation A;!A; = Cz (Snake of the 2 kind) and
those of IP 3 to perform the operation A;‘Al = C; {5nake of the 1* kind). For
now, the magnets at IP 2 and IP 4 are left with zeroed fields.

The configuration just d-escribe is shown in Figure 4a. where the direction of
a vertically polarized spin vector is indicated in various regions. This vector or an
antiparalle] vector becornes longitudinal at IP 1 and 3. The initial direction {up
or down) of this vector is arbitrary as there is no preferred polarization direction
in this configuration. Thet is because the presence of the snakes will cause any
vertical component to be parallel to the bend fields in one half of the machine
and antiparalle] to the fields in the other half, The Sokolov-Ternov polarizing
mechanism (see Ref. 4} is thus turned off. As pointed out by Montague, an

alternate polarizing mechanism such as wigglers would have to be provided.

17



{at

AL Ay Cy = Snake of
! 15t Kind
3.
.~ A1

\A
~
K} Ay= C, => Srake of Znd Kind
ib: .
Cy== Snoke of 1s! Kind
Rolator
I
Rotator
.17
Cz# Sngke of 2nd Xind S2GAAL

Figure 4.

18




In his example, Montague showed in an elegant fashion that this configuration
has a spin tene of 0.5. An attempt to depict this in the figure would have an
incomprehensible reault. We will use a simple but intuitively helpful argument to
demonstrate his resuit, Let us assume that the initial spin tune of this machine,
before inserticn of the snakes, was given by 5. Then the spin precession angle
for a beam traversing one half of the machine would be given by 7rig. Now an
arbitrary point sp {see Fig, 4z2) is chosen in one arc. It is then assumed that
the beam will bend through an angle ¢ and the spin will precess by angle o
(o = ¢ya..) as the beam iravels from sg to the end of this arc.

Using Eq. (4) we can now represent the spin transformation cperation for
one turn starting at sp and with the snakes now inserted as

p' = H(mrg - a) Cp H{mg) C; Hle) p
Since Ca? = I, this equatiun can be rewritten as

P = H{xwo - a)|C2 H(xwn) C; Hio) ca]c,, p .

The reduction of the expression within the brackets is made simpler by the
multiplication rules for C;,Cy and Cj.
C; multiplied from the left{right) changes signs of rows(columns) 1 a..d 2.
C; multiplied from the left(right} changes signs of rows{columns) 2 and 3.
Cz multiplied from the left{right) changes signs of rows{colurans) 3 and 1,
After reducing the expression in brackets the equation becomes
p' = H(nw — &) H{rp ~ a) C3 p
Since H(f) is orthogonal, F(¢) = H~1(#), and the equation reduces to
pP’=GCsp

We know Csz to be the operator represeniing a precession angle of 180° or =
about the rotation axis +j. Using the definition of spin tune (precession angle

19




for one turn equals 27r) we calculate a new spin tune v for this machine with

snakes inserted.

T =2ry ar =045

Because C;3? = I, after two revolutions the spin polarization will close upon itself;

The new spin tune i has a fixed value independent of 15 or beam energy, whereas

the spin tune o Jhanges with beam energy.

Rotators are now introduced as shown in Figure 4b. The half serpents at
IP 2 and IP 4 are ramped up as previously described to act as Rotators. Both
interaction regions have been given a2 configuration identical to that shown in
Figrre 3. The resulting longitudinal polarization in one region is the reverse of
that in the other. When desired, the polarization at either of these regions can be
reversed independently of all others. For instance, by ramping only the vertical
magnets in IP 2 to the opposite polarity, the operat.on Al_lAl = I I ecomes

Ay 'As =T and at the interaction point the longitudinal polarization is reversed.

Combinations with half Snakes

Since a given half Serpent can be converted to a hali Snake of the 1° kind
by just halving the feld strenzth, we may consider configurations where these
two are combined end to end. As it turns out, eight new retation operators
are found in this way. They are not cyclic or even permutations. Instead they
represent an odd {1 or 3) number of transpositions of initial coordinates; they
also change coordinate signs. These operators are interestin ; in that they also

rotate transverse to longitudinz| polarization.
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First, we calcu,ate the operators S, and S; !, which are obtained by one half

of a snake of the 1% kind (90° sotation about eigenvector s3 = k).

o 1 0 (1{ v
V{45, +45) = H(F45,245) = | -1 0 0| =8;" \V = | ~H
0 0 ! 38 s

0 -1 0 (H -V
V(:J:45,=F45)=H(ﬂ:45,¢45)= 1 9 O0]|=8S; |V =] H
o o 1} s s

As noted earlier,
Saz = (S;l)’ = C1 .

MSCLAIMER

This report was prepared us un account of work sponsored by an agency of the United States
Goverrnenl.  Neither the Uniled States Gov srnment nor any agency thereof, nos any of their
employees, makes any warranly, express or hoplied, or assumies any legal lability or responsi-
bility tor the accuravy, completeness, or usefulness of any information, apparates. produet, or
process disclosed, or represents that its use would not wnfomge privately owned nights Refer-
eace herein 1o any specific commercial product. provess, or servize by teade nar«. trademars
manufaciurer or J.herwise doss not necessarily constitute or ymply it§ endotsernent, recoms
mendation, or favoring by the United States Government or any agency thereof The views
and opinions of authoss expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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Combininrg S; and Sj 1

with the operators for one half of a Serpe.ut

(A1,Az,A3, A, and inverses, see TABLE II), gives the new operators.

o -1 HY §
0 -1 0 =Ix V=
-1 0 o s) H)
o 9 1 HA 5\
0 -1 0 =D> V)= v
1 e 9 S ) (;;J
0 1) H s
0 =Ds V| = v
-1 0 o/ 5 (mg)
0 0 -1\ (H —5
01 0 =D3! Vi=|vVv
10 ¢) \ § (H)
-1 0 ¢ (H ~H
0 ¢ -1 = E; V]|=| -8
0 -1 o \ s (—V)
/-1 0 D {H\ ~H\
0 0 1 =E; V]=]| s
Lo 10 \s) (w
/1.0 0\ H H
D 0 -1 = Ea v]|=1|-5
\o 1 o0/ S / (v)
(1 0 0) HY H
c o 1 = Ej! vi=| s
\o -1 o/ s =y

These operators all rotate transverse to longitudinal polarizat’ *n. Also ncte that

2 =D =E¢ = E,* = 1. Dy and D; invert the vertical component.
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TABLE 11
Multiplication Table for
combinations of two half snakes of the 1** kind
and/or half Serpents

Ay Ay As Ay AU AP AU ATY S; SF
S;'f Ea | E: [ E1 [BJ' Dy D' || Da| T |Gy
S; fE: | Ey |BJ'| By [ D3| DDy D' C | X
AT T |GG | Co | Az | Ay | As | AL |EY| B2
ATIE G | 1 |G| Ci A | A Az As | B E;!
Al |l 1 |G A lAs Al A2 | By | Es
AN C (G [Ca| 1 |Ag| Az | A | A |Es | By
A At 1At At AN T |G |G | G | Dy D5
As JA' 1A A AP’ Ci | T |G |G | D | D2
A JATU AV A (AT G | G | 1) G | DY Dy
A JATY AV AV |ATY |Gl |y | T | D; | Ds

The operators in the top row represent the first half serpent or halif snake as
seen by the beam {the right hand matrix operator). Those in the left column are
for the second half serpent or half snake (the left hand matrix operator). The
identity operator has been omitted as 2 multiplier.
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The roiaticn angle is 180° for operators D;, D2, Ej, and E; about eigen-

vectors
dy = 1/2 (+vV2iF V2 k) ,
dz=1/2 (£V2ixV2k) ,
e =1/2 (xV2]FV2K) ,
and
ex =1/2 (£V2jxVv2k) ,
respectively.

Whereas, the rot:ition anglz for D3 and Ej is 90° like that of 83 with their
respective eigenvectors given by

(=T

1]
I

+

and

e = +1
Again, it can be shown that either the set of operators
{DI|D2!D31D:-;-1'C13 C?acail}

or the set

{ElsE21E3’E;lscI|CZ;Ca|1}

will form a non-commutative grenp with respect to matsix multiplication.
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As pointed out, conversion between Snakes of the I** kind and Serpents is
easy, requiring only a change in field strengths. Also reversing polarity of fields
generates different configurations. However, it is difficult to convert a magnet
from horizontal to vertical bend (mechanical rotation required), but if configu-
rations are constructed using seven magnets as shown in Figure 5, where one

magnet is normally turned off, then we can convert from H(y,8) to V(,8)
configurations if desired.

(o) o 8 -28 8
Tuoraed
LB
Vit+y,+8)
; Holf Serpent
3:2:—"_5‘\9\ E/B—*—*Beam
¥ 2y ¢
OR
(b) 8 -28 é 0
e K
.\E?e%v Beam
H {(+¢,+8)
. Half Serpent
Mo o
4-86 4 -2y ¥ B36AT
Figure 5,
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Left-Right Snakes and Half Up-Down Snakes

It may have been noticed, that the operators Dy and D: correspond to the
definitions of Left and Right pointed Snakes. These snakes are shown in Fig-
ure Ga and were conccived (see Ref. 3) as a practica! means of achieving spin
tune of 0.5, They are efficient in that the total f F'dZ required is only 16.1
T-m whereas for two haif Snakes of the 1* kind the [ BdZ is 18.4 T-m. These
Snakes rotate about eigenvectors d, or d2 by 1807, operations which we have
shown not only invert the vertical] component, but also rotate the horizontal
component of the spin polarization vector into the longitudinal direction. This
fact immediately suggests that if a Left-Right Snake were to Le converted to
half an Up-Down Snake (see I'igure 6b) by mechanically rotating it about the
direction of the beam, tl.2n the eigenvectors wauld become ¢; and ez with cor-
responding operators E; and E; which we have shown will rotate the vertical

component of the spia polarization vector into the longitudinal direction.

We proceed to eiamine these types of snakes using the same methods as

before and similar notations, understanding that the configurations are given in
Figure 6.

For the Left-Right Snakes we write
P =LR{¢,0) p
and tor half of an Up-Down Snake we write
p=UD(W,8) p .

it will be shown later that snakes can be made by combining two half Up-Down

Snakes.
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(a) Left - Right Snake
+45° -90° +90°  -45°

Top
View

Side
V:ew—"—g\\E—f—e'_’Beum

+90° -90° -90° +90°

Beom

{b) Holf Up- Down Sngke
+90° -90° -90° +90°

Jop m
Beom

View
Side
View Beam
i-ug +45° -90° +90° -90° 538444

Figure 6.
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With these definitions we find the following correspondence between config-
urations and operators for L-R Snakes and half U-D Snakes:

LR(+90, +45] =

LR(-90, +45) =

LR(+90,-45) =

LR(—90,—45) =

UD(+45, +90) =

UD(+45,—-90) =

UD(-45,490) =

UD(—43,-90) =

[0 O -1

0 -1 0 =D,
\—l 0 0

(0 o -1

0 -1 0 =D
-1 0 0

/0 0 1

0 -1 D) = D3
Kl 0 0

0o 0 1

0 -1 0) =2
1 0 0

(-1 0 0

0 01 = E;
\o 1 o)

/=1 0 0

) 1) =E;
\o 10

/-1 0 0

0 O —l) =E
\o -1 0

(-1 0 0

O 0 -1 =E
\0 -1 0)

(H

V] =

\ 5

(H

Vi =

\s)

{ H

V | =

ks)
—1

I

1)
)~
)

(-5
-V
\-H

[ —5
-V
\~-H

5\
-V
)]
§ )
-V
")
[—H
S
\V)

(-H

)
)
|




With L-R Snakes (as expected) or half U-D Snakes we find that they duplicate

operations which heretofore required a combination of two half snakes. Again,

we inquire about combining these half U-D snakes with others. We limit these

combinations to only those in which the vertical component of the polarization

vector is rotated to longitudinal at the midpoint. The intention is to summarize

such combinations that can be used either as Snakes or Rotators (i.e. operators

C1,C12,Dq,D; or I). Combinations such as these are shown in TABLE 1IL

Again, we find that combining these configurations give two new operators

§; and §3. This bringy the total number of found operators to 24. All have a

determinant of +1 as expected for rotations and represent half of the 48 aperators

which would include all permutations and all changes of sign.

01 0)
1 0 0
0 Q0 -1}
0 -1 0
-1 0 ©
c 0 -1/

7 4 | 4
Vi=— H
S -8
H -V
Vi i—|-H
S -5

Note that Sy2 = 8§,% == 1, Again, it can be shown that the set of operators

{Slts'hsai sa_laCIfCZt C:hI}

forms a non-commutative group with respect to matrix multiplication.

The rotation angle is 180° for operators 83 and S; about eigenvectors

8) - 1/2 (+V2i+v2)) ,

and

B3 = 1/2 (£v2i4 V2 ))



TABLE 111
Multiplication Table for combinations of two half serpents

or half snakes, where vertical gpin becomes longitudinal at midpoint.

Ay A, As Ay E; E;
~ Da D D; C2
Dy D, D;! Ds | Cy
A;l Aa_l Al—l A;—l S;l S,
A7 ATt Aj! Aj! Sa S,
A A Al Al S1 S3
At A Az' Aj! Sz s3!
C, C Cs D;! D,
G C; 1 C, D3 Dy
Ca 1 Ca Cy D: Dsl
1 Ca L of C, Dy Dy
Sz Sy S\ 85! Al AZ!
! 51 Sa Sy Az’ A7l
E. E; E;! E, Az Az
Ea p >N E, E;! A A

The operators in the top row represent the first half serpent or half snake as

seen by the beam. Those in the Jeft column are for the second half serpent or
half snake.

Combinations resulting in C;, C3, D; or D2 are Snakes. Combinations that
recult in I Lre Rotators. For example, E{Ez = Cy, is combination that forms a
Snake of the 2™ kind. Whereas, E;E; = I, is a Rotator.
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In TABLE IV we summarize the 24 operators that have been found by
combining half serpents or half snakes of various kinds.

This set of operators forms a group with respcct to matrix multiplication.
The group is isomorphic to the group of rotational symmetries of a cube, known
as the octahedral group.™

TABLE IV
Summary of 24 Operators

with respective rotation angles and eigenvectors (rotation axes)

AL A7’ +120°, -120° a; = 1/3(+v3i + v3j + Vv3k)
Az, A7 +120°, —120° az = 1/3(+3i - /3 — v/3k)
Az A +120°, —120° as = 1/3(~v/3i + V3j — V3k)
A,AQl +120°, —120° ag = 1/3(—v/3i - V3j + V3k)

C 180° c; =k

Cy L8o° €y = £i

C; 180° €3 = %]

1 0

D, 180° d; = 1/2{+v2i F /2k)

D 180° dz = 1/2(+/%2i £ +/2k)
D;,D3! +90°, —90° ds = +j

E; 180° e = 1/2(2v2j F Vik)

E; 180° ez = 1/2(+v2j £ v3k)
E3, E;! +90°, —90° ea=+i

S, 180° 81 = 1/2(£v2 £ vZj)

Sq 180° s2 = 1/2(2v/21 F v32i)
S3,83" +90°, -90° 83 = +k
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1 is interesting to note that the operators I3, E3 and Sy along with their
inverses are but special cases of the spin ope. ‘livns performed by single magnets:
horizontal bending {eq. 4.), vertical bending (eq. 5) or a solenoidal Feld m.._
net, respectively. It is not surprising then that it is simple to show that these
operators, representing rotztions about the 4-[old symmetry axes, generate all
operators of the octahedral group.

In the Introduction, the definition of a snake was cited as the single operation
of rotating the spin polarization vector by 180° about an arbitrary axis in the
horizontal plane. An alternate way of describing thiz operation as the product
of two operations is also given in Reference 1. This description can be expressed
using operators which have been defined here. The first operation represents a
rotation of 180° about the axis +i {corresponding to operators E3?, (E;!)? or C;
given in TABLE 1IV) foliowed by an arbitrary spin precession through an angle
a about +j (corresponding to the operator H(a) for a horizontal bend magnet
given by eq. 4).

The product defining 2 snake is then H{a) C,

The arbitrary axis referrad to in the initial definition of a snake is defined as
the vector a , which is now given by

a=4 cos(%)i + sin(g)k

For example, the special cases describing L-R snakes are c:btained by setting
a = 190°, since

H(+9%0) C; = D3 C; = Dy = LR(%90,+45)

and

K(-90) C; = D7} C; = Dy = LR(+90,-45).
/

Similarly, H(0) C2 = Cz and H{IBO] C; = C3 C3 = C; define Snakes
of the 24 and 1% kind, respectively.
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In TABLE II1 we show that D; or Da(the L-R Snake operators) can also
be obtained by the product of two operators where the first operator rotates the
vertical spin component into the longitudinal direction. This suggests that such
configurations may be capable of generating snakes with longitudinal polarization
at the midpoint and an arbitrary precession angle a. Sce References 1. and 4.
for detailed references and discussion of the advantages of achieving an arbitrary

precession angle a .

Ay an example, we assume that the first operator is given by .4; which
provides midpoint longitudinal polarization and the second operator (Lo be found)
is given by M. Equating their product to the product defining a snake gives

M A, =H(a) C;

aor

M = Hla) C; A}

-sina cosa ¢
M= 0 0 -1

\—cosa —sina 0

Reducing gives

If we again set & = 4+90° then M = E; and M A; = B, A; = D; as shown
in TABLE JII. The operator E,; is gencrated by one half of a U-D snake. This
suggests that practical solutions for a chosen value of @ near 90° may be found
by examining UD({,#) configurations for values of ¥ and # that wili generate
the operator M .

Still assuming that the first operator is given by A, , similar considerations
for o near 0° would indicate examination of the configuration corresp nding Lo
operator A, * and for a near 180° the configuration corresponding to the operator
AL

a3




CONCLUSIONS

By combining two half serpents or half snakes of various kinds, we have found
a group of 24 roiation operators. [t was noted that five different subsets of these
operators form subgroups. The isomorphism to the octahedral group suggests

that efficient means of obtaining arbitrary rotations for particular applications
are achievable.

Several combinations, as sho‘:\rn in Tables IT and Tables II1, result in lon-
gitudinal polarization at the midpoint (interaction point) and also invert the

vertical component. In principle, these or other combinations would be useful in

circular machines.

For electzans the total [ Bdf required for these combinations ranges from
32.2 T-m to 36.8 T-m. These high values may limit the usefulness of these
configuratians in some applications due to synchrotran radiation, which implies
long magnets and large beam excursions. In proton machines shorter magnets
can be used.

One hali of a serpent could be used to rotate longitudinal to vertical polar-
ization for transporting and injecting electrons in*o a high energy (= 10 GeV)
damping ring of a Super Linear Collider. Another half serpent would restore the
longitudinal polarization in the damped beam. The need for solencidal fields the

strengih of which scale as vya,—- would be eliminzted.

At the Stanford Linear Collider (SLC) presently under construction, con-
plications due to the precessicn of a longitudinally polarized beam in the mile
long Arcs could be avoided if the polarization was made to be paraliel to those
fields. The desired longitudinal polarization at the irteraction point then could
be achieved by introducing the proper half serpent. Unfortunately, the required
drift space (10 to 20 m) is not presently avajlable.
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