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Summary 

Specific configurations of horizontal and vertical bending magnets are given 
that, when acting on the spin polarization vector of a particle beam, generate 
a group of 24 operators isomorphic to the group of rotational symmetries of a 
cube, known as the octahedral group. Some of these configurations have the 
feature of convert!og transversely polarized beams to longitudinally polarized 
beams (or vice versa) at the midpoint of the configuration for, in principle, all 
beam energies. Since the first order optical transfer matrix for each half of these 
configurations is nearly that of a drift region, the external geometry remains 
unchanged and midpoint dispersion is not introduced. 

Changing field strengths and/or polarities allows a configuration to serve 
as either t f nake{l" or 2 n d kind) or a Rotator, where in both cases the spin 
polarization is longitudinal at the midpoint. 

In this conceptualization, emphasis has been placed on electron beams and, 
indeed, for these beams some practical applications can be envisioned. However, 
due to the relatively high integrated field strengths required, application of these 
concepts to proton beams may be more promising. 

* Work supported by tHe Department of Energy, eoiUract DE - AC03 - 76SF0O5 15. 
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Introduction 

There are several known types of Siberian* Sn^e^'Ciibr.-mMipolatfBh"oT'an* 
electron beam polarization vector. 

The Snake of the 1 s t kind (first proposed by the Soviet authors Y. A. Dcr-
bencv and A. M. Kondratenko of Novosibirsk, USSR, hence the name Siberian 
Snake) has the elegance of not introducing dispersion nor affecting the beam 
trajectory external to the system. It has a wide range of operating energies but, 
unfortunately, is not useful by itself in converting transverse polarization into 
longitudinal polarisation. This Snake rotates the polarization vector about the 
longitudinal axis of the beam (a rotation of 90" for each one-half of a snake). 

The Snake of the 2 n d kind does rotate transverse polarization into longitudinal 
polarization, making it more interesting to those doing polarized beam experi­
ments. However, known versions of this snake do introduce midpoint dispersion 
and may have a limited range of operating energies and/or variable geometry. 
The Snake of the 2 t t d kind rotates the polarization vector about the transverse 
axis (this axis is horizontal in Ref. 1 and, again, the rotation is 90" for one-half 
of a snake). 

Two other novel versions of the Siberian Snake have been proposed.'" They 
arc the Left and Right Pointed Snakes which represent rotations of 180° about 
axes lying in the plane containing the horizontal axis and the axis of the beam 
direction. The direction cosines of this rotation axis have a magnitude of ±*£ 
with respect to the coordinate axes mentioned. 

In general then, a Siberian Snake has been defined in Reference 1. to consist of 
a sequence of magnets that rotate the spin vector by 180° about an arbitrary axis 
lying in a plane containing the horizontal axis and the axis of the beam direction. 
This definition requires that a Snake always invert the vertical component of the 
spin polarization vector. 

The importance of Snakes in circular machine .joen extensively described 
but we will refer only to a review ar ,i by Montague.1*1 One of the uses d«-
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scribed in this review and attributed to Derbenev and Kondratenko, applies to 
electron storage rings. It is explained that two snakes placed in a ring at diamet­
rically opposing positions, one of the 1*' kind and the other of the 2 n d kind, can be 
used to achieve a spin tune of 0.5, with the vertical component of the spin vector 
parallel to the field in one half of the machine and anliparallci in the other half, 
independent of energy. Such a procedure, according to Montague, reduces "sub­
stantially the effects of large energy spread and imperfection resonances at high 
energies, permitting polarized beams to be obtained up to perhaps 100 GeV." In 
his review Montague develops an elegant method that uses spinor algebra and 
unitary transformations for describing spin transformations and calculating spin 
tune. This method is used in proving that the configuration described above has 
a spin tune of 0.5 which means, he points out, that "any arbitrary spin vector 
closes upon itself after two revolutions," around the iirg. 

There are also systems called Rotators (see Ref. 2). This name has been 
used to classify systems of magnets which have the property of rotating the 
vertical component of the polarization vector into the longitudinal direction at 
the midpoint (Interaction Point) and then restoring the original direction. These 
systems are useful for polarized beam physics. Montague has shown that, in 
general, if such a system is constrained to be fully antisymmetric about the 
midpoint, then the overall spin transformation is the identity, independent of 
beam energy or the details of the field strengths. This is an important point to 
which we will again refer. Most Rotators operate at only a specified beam energy 
or with changing geometry (see Refs. 2 and 4). 

One of the configurations of magnets which we will describe is identical in 
appearance to that of the Snake of the I*1 kind. Either Snakes or Rotators can be 
generated with this configuration. In addition, its function can be easily changed 
by adjusting field strengths or polarities. Rather than having several name* for a 
single system depending upon which purpose it serves wc have chosen to simply 
use the name, Serpent, when referring to this configuration. We wil] point out 
when this configuration is serving as a Snake or Rotator. 
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Another half Snake or half Rotator we have named the half Up-Down Snake. 
It shares many of the properties of the Serpent hut is sufficiently different that 
it requires another name. Now, we will describe the Serpent, and return to a 
description of the Up-Down Snake later. 

Figure 1 represents the configuration of horizontal and vertical bend magnets 
that will generate one-half of a Serpent. This configuration is identical to that of 
one-half of the Snake of the I p t kind, except that for the Serpent the magnitude 
of the fields are to be doubled. It retains the nice features of the l r t kind in that 
it has an extremely wide range of operating energies and acceptance, does not 
introduce dispersion (at end of half of system), and the beam entering the snake 
(head) is collinear with the beam exiting (tail) so it can replace a drift region. 

For the remainder of this discussion we limit ourselves to only those configu­
rations of magnets that do not introduce dispersion or change external geometry 
as a function of beam energy, 

Precession Angle* >« Horizontal Dipoles 
8 -28 8 

•Beam 

•Beam 

Precession Angle* m Vertical Dipoles 
« 'B6 

*Proporttortot io Bend Angle sse**» 

Figure 1. 
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Before proceeding further, we will comment on notation, write some useful 
relationships, and define a coordinate system. 

One half of a Serpent rotates the spin polarization vector about an axis that 
can be graphically represented by a vector connecting opposite corners of a cube 
(the rotation angle is 120" for one half of a Serpent). It may be seen immediately 
that such an operation can perform an even or cyclic permutation of the coor­
dinates of the polarization vector and thus permute transverse and longitudinal 
coordinate*. Four such non-orthogonal axe3 are chosen for our representation. 
They will be defined later as vectors having direction cosines all equal in magni­
tude but with varying signs. We define directions for these axes and the magnetic 
fields such that for an electron, a positive rotation about these axes obeys the 
right hand rule. The reader will note that in general such a rotation applied 
three timet* results in an identity. If represented operationally, J4 3 (120*) = / , or 
A*(120°) = / r ! ( l 2 0 ° ) = ^(-120°). We will choose to write ^-'(^O*) instead 
ofd a (120') . 

The precession angle of the spin polarization vector is given by the relation­

ship 

ipp = 4nat- . (l) 

In which 4> is the bending angle of the beam in the transverse magnetic field. ^r 

is the precession anglu for the polarization vector of an on-momentum particle 
about the direction of the field in the coordinate system following the beam (orbit 
frame). 1 13 the Lorentz factor, and ae- is a measure of the electron's anomalous 
magnetic r'oment (see Ref. 4. for discussion of the Thomas-BMT equation and 
detailed references). 

ac = ( ? — ? J = 1.159652 x 10** . (2) 
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It is also useful to express ^ p in terms of the / Bdl of the applied field since 
the energy dependence then factors out: 

I/F,, = 0.680 / Bdl (radians, T-m) . (3) 

Note that an integrated field of 2.31 T-m will precess the spin polarization vector 
by ff/2 or 90" independent of beam energy. This fact will be referred to later. 

At the beam energies of the Stanford Linear Collider (~ 50 GeV), and higher 
energies, the bending angle of the beam Is small (< 1°) \a traversing such a Held. 
Hence, the spin precession angle when measured in laboratory cooriinates or 
beam coordinates is nearly the same. 

Figure 2 shows the coordinate system following the beam and the definitions 
of certain vectors. 

6 * 9j Fo' Hgn£oMai fiend 

Figure 2. 
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In this coordinate system the spin polarization vector is expressed in terms of 
its initial coordinates and it is assumed that its magnitude has been normalised 
to * value between 0.0 and 1.0. This vector is expressed as 

p = Hi + Vj + Sk 
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or alternatively as the column vector 

For an electron traversing a horizontal bend magnet, the spin polarization 
vector will precess through an angle 8, when; positive 9 is defined by the right 
hand rule representing rotation about the y axis. The resultant polarization 
vector will be given by 

p ' = H(+tf)p 

where H(+0) is an orthogonal matrix operator denned by 

cos 9 0 sin 9' 
p ' =• | 0 l 0 | | V | . (Horizontal Bend) (4) 

- sin 0 0 cos 0, 

For a vertical bend magnet the precession angle 0, again is defined as positive 
by the right hand rule about the x axis, and 

p ' - V{ t 0)p 

where the orthogonal matrix V(+$) is defined by 

n o o w / / x 
p' - 0 cost/; -sintfi \\V . (Vertical Bend) (5) 

V.0 sinifr coŝ fr / \Sj 

With these definitions we now represent the effect on the spin polarization 
vector of the combined vertical and horizontal bend magnets that were shown in 
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Figure 1 by 

p ' = H(+f l )V(+*)H{-20)V(-20)H(+0)V(+t f . )p . (6) 

Note that the beam sees a vertical bending magnet first in this configuration, 

so the first matrix operating on p is A r ( + ^ ) ( therefore, one reads the matrices 

from right to left to reconstruct a configuration. 

We will represent this configuration by the notation, V ( + ^ , + 0 ) , which indi­

cates that the first magnet seen by the beam is a vertical bending magnet with 

a positive precession angie, and the second magntt (horizontal) also has positive 

precession. Other configurations will follow the same patterns, so H { + ^ , - ( / ) , 

where the arguments are not transposed, would represent a horizontal magnet 

first with negative precession angle followed by a vertical magnet with positive 

precession angle. 

We writt Eq. (6) as 

p ' = V(+^ ,+ t f )p . 

Serpent 

If we now select field strengths such that •& - +90° and 8 — +90° (recalling 

that the required integrated field is independent of beam energy having a value 

of 2.3 T-m for 90° and double thai value for 180°) then 

p ' - V[ f 90, f 90)p . 

Or in the expanded form of the equation, 

p ' - H(+90)V(+9Q)H( 180)V{ 180)H{+gO)V(+90)p . 
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Calculation using Eqs. (4) and (5) gives 

or 

We see that the vertical component of the initial polarization vector has now 
been rotated into the longitudinal direction. This configuration performs a cyclic 
permutation of initial coordinates with no changes of sign. It can be represented 
by a positive rotation of 120° about the axis, at, given by 

aj * l / 3 ( 4 \ / 3 i + v / 3j + V /3k) -

We now define a matrix operator, Ai(+120) where 

r ° *\ 
Ai( + 120) = V(h90,+90) = 1 0 0 I . 

\ 0 1 Oj 

As noted earlier, A i 3 ( *-120) = I and 

Ai*(+120) - AfH+120) = A^-120) , 

Since the rotation angle wili be understood to be 120" for this and thrwe following 

9 



operators, we shorten the notation further to 

F) 
\ 0 1 Oj 

0 1 0 
At = I 1 0 0 I and AJ-1 = | 0 0 1 

.1 0 0, 

We now select three other axes of rotation given by 

a 2 = l / 3 (+ i / 3 i -V3 j - \ / 3k ) , 

a a = l /3 ( -v^ i + v/iiJ-v/Sk) , 

and 

a 4 = i / 3 ( - V ^ i - v / 3 j + \ ^ k ) . 

These will be eigenvectors (rotation axes} for corresponding operators 

Aa, A$, A« , 

and their inverses 

A" 1 A - 1 A - 1 

•™2 * 3 » " 4 
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With these definitions we find the following correspondence' between config­
urations and operators for half Serpents: 

/Q 0 l \ 
V{+90,+90H I 1 0 0 

\ 0 1 0 

0 0 - 1 
vf+go^-uo)^ | -i o o 

o i o 
o o i \ 

V(-90,+90) = I 1 0 0 

V(~90T-90) 

H(-90,490) - 0 0 1 I 
V-i o o/ 

H(-90,-90) 

= A, 

= A 3 

= A 3 

= A< 

= A, -

= A," 

- A - l 

= A : 

•™> 
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And, t>f course, 

V(0,0) -« H(0,0) - 0 1 0 = 1 

With one-half of a Serpent, there are eight interesting final states where the 
transverse polarization has been rotated to longitudinal polarization. They are 
all cyclic (even) permutations of coordinates with some changes of sign. The total 
number or such permutations and sign changes is 24 (3 even permutations and 
8 possible assignments of sign). If both even and odd permutations are included 
the total is 48. Of that set, a subset of 24 would have a determinant of i-1 
and represent rotations. Both even and odd permutations can be generated by 
rotations. The subset of 24 operators having a determinant - I would include 
a reflection of right-handed coordinates to left-handed coordinates. The nine 
operators we have found tl. > far do not form a group. 

Reversing direction of the longitudinal polarization requires that the fields 
of at least half of thu magnets reverse po.»rity. For electrons the total / Bdt 
required is 18.4 T~m. This high value coupled with the need for low fields to 
limit synchrotron radiation will require long magnets and hence, large energy 
dependent beam excursions within the system. Spin depolarization effects may 
also be enhanced. Applications for electron beams are limited by these consider­
ations. For protons the required integrated field is only slightly less but, shorter 
magnets can be used. The purpose here is to proceed to investigate other inter­
esting properties of these configurations which, at least in principle, may have 
applications. 
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We now seek additional final states by combining two one-half Serpents, end 
to end. This gives us three new operators, C] t Cj and C3 (see Table I) that 
can be made in a number of ways. They do not change transverse to longitudinal 
polarization. In fact, Ci is the operation defining a Snake of the l r t kind, whereas 
the operation C3 is that defining a Snake of the 2 D d kind. These two operators 
and all operators corresponding to a snake will, by definition, invert the vertical 
component. 

= d 

= C S 

= C, 

Note that C1 2 = C* 4 - C 3 * = I, and C,Cy = CjC, = C* for i ^ j j * k. 

The set of 4 operators {Ci,C2,C3,I} forms a commutative group with re­
spect to matrix multiplication. 

The rotation angle iz 180" for operators C|, C2, and C3 about eigenvectors 

ci = ±k, 

=2 = ±i, 

and 

respectively. 
« 



TABLE I 
Multiplication Table for 

combinations of two half Serpents 

Ai A3 A3 A 4 A,"1 Ai"1 A,"' A: 1 

A71 I 1 C3 1 c, 1 d A a A 4 A3 Ai 
A*1 c 3 I Cj Cj As Aj Aa A 4 

A,"1 Ci c 2 I C 3 Ai A3 A* A 2 

A ; 1 c2 Ci c 3 I A 4 A 2 A, A3 
A* A2- AJ 1 Af l A ; 1 I Ci c 3 c 3 

A 3 A7' Af' AJ 1 A,'1 Ci I Ca c 3 

M AJ1 A,"1 A,"1 Ar1 Ci Cs I c, 
Ax Ar1 A,"1 A,1 A 3 1 C3 c 2 Ci I 

The operators in the top row represent the first half serpent as seen by the 
beam (or the right hand matrix operator). Those in the left column are for the 
second half serpent (or the left hand matrix operator). The identity operator has 
been omitted as a multiplier. 

For example: 

A1A1 = A ^ 1 

and 

A ^ ^ A J 1 . 

The set of 12 operators 

{Ai,A2,A3,A4,A7 I ,A3 1 ,A 2" J ,AJ' t ,Ci,Ca,C3.I} 

forms a non-commutative group with respect to matrix multiplication. T n e r e ~ 
fore, combining three or more half Serpents will not generate any additional 
final states or new operators. 
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As mentioned, it is shown in TABLE I that either (he Snake of the l " 

kind or the Snake of the 2 n d kind can be generated by the proper combination 

of half Serpents. There is an important difference, however, between these nrw 

combinations and those known earlier. This difference sterns from the fact that 

half Serpents do not rotate about eigenvectors confined to the plane containing 

the unit vectors 5 and k. If the first half serpent as seen by the beam corresponds 

to one of the operators A1.A1.A3 or A4 there is the bonus of having rotated 

the vertical component into the longitudinal direction at the interaction region 

(midpoint). For the first time, we can obtain snakes of either the I " or 2 n d 

kind with midpoint longitudinal polarization for fill energies above a lower limit 

determined by magnet apertures. 

Combinations A ( ' ' A t — I, where 1 -• 1,2,3,4 could be used as Rotators. 
These Rotators would retain their properties for all beam energies above a low<;r 
limit. Not'.ce also that these Rotators are fully antisymmetric with respect to the 
midpoint, a property that Montague has shown will always result in an identity 
spin transformation. We can, therefore, reverse i/ie direction of the longitudi­
nal polarization at the midpoint by ramping magnets from one roniiguration to 
another while maintaining this antisymmetry. 

Example 

To illustrate how, in principle, these dev :ces could be used in a circular ma­

chine we will emulate the example cited by Montague. We will use in this example 

a circular machine having four symmetrically placed straight sections or drifts 

and assume an interaction point (IP) at the midpoint of each. Each drift will be 

equipped with an identical assemblage of magnets as shown in Figure 3 

l» 
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IP 
• 9 0 -180 *9C 1-90 +180 - 9 0 

The configuration chosen for illustration in Figure 3, represents the fully an­

tisymmetric Rotator given by A (

 l A i - I. It can be made apparent by pairing 

these magnets, starting with the two adjacent to the IP, that the antisymmetry 

ensures the identity transformation for the spin- Furthermore, if care is taken 

to preserve the correct field relationships within each of the four triplets of mag­

nets, the overall optical transfer matrix (that of a drift) is preserved for alt Seld 

strengths. It follows that these magnets (fojining a Rotator) can be ramped 

if i his symmetry and field strength relationship are maintained. This will not 

be true for the snakes that can also be formed by this assemblage as the spin 

transformation changes during ramping. In this figure the first half serpent as 

seen by the beam would always be represented by an operator A I , A 2 , A 3 , A . J 

or I selected by choosing th« proper fields and polarities. The first four of these 

operators would allow longitudinal polarization at the IP. The second half ser­

pen t ran generate operators A t ' . A j l , A 3 ' . A , ' or I. Otlusr operators that can 

be formed by theae jurat'!!:Mages are not included in this example and will be 

discussed later. 
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Prior to a particular machine running period a selection is made, designating 
two diametrically opposed interactir regions to serve as snakes. The experiments 
at these interaction points can still benefit by having longitudinally polarized 
beams available, but change of direction from parallel to antiparallel can not be 
readily made. 

We number the interaction points 1 through 4 counter clockwise, and arbi­
trarily select IP 1 and IP 3 to serve as snakes, The fields and polarities of IP 1 
are adjusted to perform the operation A~ I Ai = C2 (Snake of the 2 n d kind) and 
those of IP 3 to perform the operation A 3 l Ai = Ci (Snake of the l' 1 kind). For 
now, the magnets at IP 2 and IP 4 are left with zeroed fields. 

The configuration just describe is shown in Figure 4a. where the direction of 
a vertically polarized spin vector is indicated in various regions. This vector or an 
antiparallel vector becomes longitudinal at IP 1 and 3. The initial direction (up 
or down) of this vector is arbitrary as there is no preferred polarization direction 
in this configuration. Thrit is because the presence of the snakes will cause any 
vertical component to be parallel to the bend fields in one half of the machine 
and antiparallel to the fields in the other half. The Sokolov-Ternov polarizing 
mechanism (see Ref. 4) is thus turned off. As pointed out by Montague, an 
alternate polarizing mechanism such as wiggjers would have to be provided. 
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A"̂  A,s C 2 ^ ^ Snake »l 2nd Kind 

A3 A, = C, Snake of 
1st Kind 
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RolOlOr 
I 
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Snake of Is) Kind 

Rotator 
4-(It. 

Figure 4. 
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In his example, Montague showed in an elegant fashion that this configuration 
has a spin tune of 0.5. An attempt to depict this in the figure would have an 
incomprehensible result. We will use a simple but intuitively helpful argument to 
demonstrate his result. Let us assume that the initial spin tune of this machine, 
before insertion of the snakes, was given by J/Q. Then the spin precession angle 
for a beam traversing one half of the machine would be given by ITI/Q, Now an 
arbitrary point so (see Fig. 4a) is chosen in one arc. It is then assumed that 
the beam will bend through an angle 4> and the spin will process by angle <x 
(a = <jyyat-.) as the beam travels from so to the end of this arc. 

Using Eq, (4) we can now represent the spin transformation operation for 
one turn starting at so and with the snakes now inserted as 

p ' = H(7rt/o - ot) C 2 H{iri/o) Ci H(«t) p . 

Since C 3

2 — I, this equation can be rewritten as 

p' = n(nt/Q - a) Cj H(iri^) Ci H(a) C3IC3 p . 

The reduction of the expression within the brackets is made simpler by the 
multiplication rules for C i , C 2 and C3. 

Ci multiplied from the left(right) changes signs of rows(columns) 1 a d 2. 

C2 multiplied from the left(right) changes signs of rows(columns) 2 and 3. 

C3 multiplied from the left(right) changes signs of rows(columns) 3 and 1, 

After reducing the expression in brackets the equation becomes 

p' = H(TTMO - a) H(JTWO - a) C3 p . 

Since H(0) is orthogonal, H(0) — H - 1 ( 0 ) , and the equation reduce; to 

p ' = C 3 p 

We know C& to be the operator representing a precession angle of ISO0 or JT 
about the rotation axis ± j . Using the definition of spin tune (precession angle 
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for one turn equals 2nv) we calculate a new spin tune u for this machine with 

snakes inserted. 

7r = 2ffi/ or v = 0.5 

Dccause C31 = I. after two revolutions the spin polarization will close upon itself; 

p ' - C 3

2 p = P 

The new spin tune u has a Gxed value independent of UQ or beam energy, whereas 

the spin tune VQ changes with beam energy. 

Rotators are now introduced as shown in Figure 4b. The half serpents at 

IP 2 and IP 4 are ramped up as previously described to act as Rotators. Both 

interaction regions have been given a configuration identical to that shown in 

Figvre 3. The resulting longitudinal polarization in one region is the reverse of 

that in the other. When desired, the polarization at either of these regions can be 

reversed independently of all others. For instance, by ramping only the vertical 

magnets in IP 2 to the opposite polarity, the operation A^" 1Ai = I t ecomes 

A j ' A a = I and at the interaction point the longitudinal polarization is reversed. 

Combinations with half Snakes 

Since a given half Serpent can be con verted to a half Snake of the 1"' kind 
by just halving the field strength, we may consider configurations where these 
two are combined end to end. As it turns out, eight new rotation operators 
are found in this way. They are not cyclic or e^en permutations. Instead they 
represent an odd (1 or 3) number of trans positions of initial coordinates; they 
also change coordinate signs. These operators are interestin; in that they also 
rotate transverse to longitudinal polarization. 
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First, we cakn-ate the operator* S 3 and S ^ which are obtained by one half 

of a snake of the l f t kind (00° rotation, about eigenvector s 3 = k) . 

_ (*; V ( ± 4 5 , ± 4 5 ) = H ( T 4 S , ± 4 5 ) = I - 1 0 0 = Sg* I 

' 0 - 1 0 \ 

Vf±45,=F45) = H ( ± 4 5 , ± 4 5 ) = | 1 0 0 

t 0 0 1 

As noted earlier, 

S 3

2 = ( S J 1 ) 2 - Ci 

fa' 
{ s 3 I v 

5. 

DISCLAIMER 

This report <vas prepared in un account of work sponsored by an agency or the United States 
Government. Neither Ihe United States G01 jrnmeTit nor any agency thereof no/ tinv of their 
employees, makes any warranty, e\prm or 'rnptied, or assumes, any legal liability <•'( rcsponw-
bility lor the accuracy, complete new;, w usefu!n«* of any information. appar»tci. product, or 
process disclosed, or represents that its use would nut infringe privately owned rights Refer* 
ence herein 10 any specific commercial product, protcsi. or service hy trade nar«. trademark 
manufacturer o' Ulhcrwisc does not necessarily constitute or imply its endorsement, recom­
mendation, or favoring by the Uniiod Stales Government or any agency thereof The views 
and opinions of authors expressed herein do nol Tiecessarily slate or reflect those of the 
United States Government or any agency thereof. 
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Combining S3 and S3 1 with the operatcrs for one half of a Serpe.it 
(A|, A 3 ,A 3 ,A4 and inverses, see TABLE II), gives the new operators. 

= D, 

= V2 

= D a 

= D - 1 

= E, 

= E8 

= E 3 

= E 3 ' 

These operators all rotate transverse to longitudinal poIarizat: -*n. Also note that 
D i 2 = D2 2 — E1 2 = E2 2 = I- Di and D2 invert the vertical component. 
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TABLE II 
Multiplication Table for 

combinations of two half snakes of the 1" kind 
and/or half Serpents 

AJ A 2 A3 A 4 A,"1 A,1 AJl A ; ' S 3 S3 1 | 
S3- Ea E>2 Bi •*' D t * . - ' D 3 Dj I I Ci 
S3 Ej E 3 Ea* E, D 3 Da D, I>3* c, I 
Af 1 I c 3 c, c a A 2 A 4 A 3 Ai E3 1 E 2 

A- c 3 I c 3 Ci A3 Ai As A 4 Ej B."1 

A 3 1 Ci C 3 I c 3 Ai A3 A 4 A 2 Ei E 3 

A 4" 1 c2 c, c 3 I A< Aj A, A 3 E3 E, 
A 4 A*1 A" 1 Ar1 A,'1 I c, C a c 3 »i D 3' ! 

M Kl A - 1 
A3- A- Ci I c 3 Cj D 3 Dz 

A a A 3 1 A- A 4" ] Ar1 CJ C S I Ci DJ1 Di 
Al |A- A4- A- AJ1 c 3 C 2 Ci I D z ] »3 

The operators in the top row represent the First half serpent or half snake aa 
seen by the beam (the right hand matrix operator). Those in the left column are 
for the second half serpent or half snake (the left hand matrix operator). The 
identity operator has been omitted as a multiplier. 
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The rotation angle ia 180" for operators D j , D2, Ei, and Eg about eigen­

vectors 

d, = l / 2 ( ± \ / 2 i : F \ / 2 k ) , 

d , = 1/2 (±i/2 i ± y/2 k) , 

c, = l / 2 ( ± V 2 j q : V ^ k ) , 

and 

e 2 = l / 2 ( ± \ / 2 j ± v / 2 k ) , 

respectively. 

Whereas, the roiition angl? for D 3 and E 3 is 90" like that of S3 with their 
respective eigenvectors given by 

03 = +j , 

and 

Again, it can be shown that either the set of operators 

{ D l , D 2 , D 3 l D J 1 , C 1 , C 2 , C 3 , I } 

or the set 

{ E ^ E j ^ E ^ . C j . C ^ . C a , ! } 

will form a non-commutative group with respect to matrix multiplication. 
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As pointed out, conversion between Snakes of the I s t kind and Serpents is 
easy, requiring only a change in field strengths. Also reversing polarity of fields 
generates different configurations. However, it is difficult to convert a magnet 
from horizontal to vertical bend (mechanical rotation required), but if configu­
rations are constructed using seven magnets as shown in Figure 5, where one 
magnet is normally turned off, then we can convert from H(V',0) to V(V>,0) 
configurations if desired. 

View 

Side 
View 

Side 
View 

4-M 

- 2 * 

OR 

Beam 
Vt+^.+ SJ 
Half Serpent 

©—»Beam 

6 0 
Turned 
Off 

•e—s—>Beam 
H Ht+6M 
Half Serpent 

Beam 

•3C<A3 

Figure 5. 
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Left-Rjflht Snakes and Half Up-Down Snakes 

It may have been noticed, that the operators Di and D2 correspond to the 
definitions of Left and Right pointed Snakes. These snakes are shown in Fig­
ure 6a and were conceived (sec Ref. 3) as a practice' means of achieving spin 
tune of 0,5, They are efficient in that the total / Bit required is only 16.1 
T-m whereas for two half Snakes of the 1* kind the / Bdt is 18.4 T-m. These 
Snakes rotate about eigenvectors di or ds by 180", operations which we have 
shown not only invert the vertical component, but also rotate the horizontal 
component of the spin polarization vector into the longitudinal direction. This 
fact immediately suggests that if a Left-Right Snake were to be converted to 
half an Up-Down Snake (see Figure 6b) by mechanically rotating it about the 
direction of the beam, tLen the eigenvectors would become ej and 62 with cor­
responding operators E| and E? which we have shown will rotate the vertical 
component ot the spin polarization vector into the longitudinal direction. 

We proceed to examine these types of snakes using the same methods as 
before and similar notations, understanding that the configurations are given in 
Figure 6. 

For the Left-Right Snakes we write 

p' = LR(0,(l)p . 

and tor half of * n Up-Down Snake we write 

p' = UDfcM)i. . 

It will be shown later that snakes can be made by combining two half Up-Down 
Snakes. 
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(a) L e f t - Right Snake 
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Figure 6. 
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With these definitions we find the following correspondence between config­
urations and operators for L-R Snakes and half U-D Snakes: 

) o - i \ (H 
LR(+90,+45) = I 0 - 1 0 I = D | 

Ml ( -90 ,+45) « I 0 - 1 0 1 = D i 

LR(-+90,-45)= 0 - 1 0 = P j 

L R ( - 9 0 , - 4 5 ) = I 0 - 1 0 I = D 2 

UD(+45,+90) = 0 0 1 = E 2 

U D ( + 4 5 , - 9 0 ) = 0 0 1 = E j 

TJD(-45,+00) = 0 0 - 1 - E i 

U D ( - 4 ' J , -90) = 0 0 - 1 = E i 
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With L-R Snakes (as expected) or half U-D Snakes we find that they duplicate 
operations which heretofore required a combination of two half snakes. Again, 
we inquire about combining these half U-D snakes with others. We limit these 
combinations to only those in which the vertical component of the polarization 
vector is rotated to longitudinal at the midpoint. The intention is to summarize 
such combinations that can be used either as Snakes or Rotators (i.e. operators 
C| ,Ci ,Di ,D2 or I). Combinations such as these are shown in TABLE TIL 

Again, we find that combining these configurations give two new operators 
Si and Sj. This brings the total number of found operators to 24. All have a 
determinant of +1 as expected for rotations and represent half of the 48 operators 
which would include all permutations and all changes of sign. 

( ! ) - ( • ) 

Note that S i 2 = S i a — I. Again, it can be shown that the set of operators 

{Si,Sj,S3,S3 ,Ci t C2,C3,I} 

forms a non-commutative group with respect to matrix multiplication. 

The rotation anf;le is 180* for operators Si and S2 about eigenvectors 

*j - 1/2 ( + V2i - rV2j ) , 

and 

B3 = 1/2 ( i V ^ i + V ^ j ) . 

29 

r 1 0 
0 

\Q 0 - 1 

0 - 1 0 
- 1 0 0 
0 D - 1 



TABLE III 
Multiplication Table for combinations of two half serpents 

or half snakes, where vertical spin becomes longitudinal at midpoint. 

A , A 2 A 3 AA Ei Ei 

E2 D 3 1 D 3 Dt D 2 c 2 I 

Ei D i D a D 3 - ' D 3 I C j 

A< A,"1 A3- 1 Ar1 A ; 1 S 3 1 s2 

A3 A ; 1 Ar1 A , 1 A , 1 S3 s, 
A 3 A 3 1 A , 1 A ; 1 Ar1 S i s 3 

A, Ar1 A,"1 A , 1 A,- 1 s 2 S3- 1 

A,"1 c 2 c, c 3 1 D.- 1 D i 

A,"1 c, c 3 I c . D 3 D , 

A,"1 c 3 I c 2 c, D 2 D3- 1 

Ar1 1 c 3 c, c2 Di D 3 

D . s 2 s 3 s, s ; 1 Ar1 A 3 ' 

D2 s 3 - Si s 3 s 2 A - AT1 

s 3 E 2 Ea EJ1 E t A3 A 3 

0 - 3 
a 3 E 3 E j E, E3-» A< Ai 

The operators in the top row represent the first half serpent or half snake as 
seen by the beam. Those in the left column are for the second half serpent or 
half snake. 

Combinations resulting in Cj . C 3 , D] or D 2 are Snakes. Combinations that 
result in I ^re Rotators. For example, EjE 2 = C2, is combination that forms a 
Snake of the 2 n d kind. Whereas, E J E J = I, is a Rotator. 
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In TABLE IV we summarize the 24 operators that have been found by 
combining half serpents or half snakes of various kinds. 

This set of operators forms a group with resprct to matrix multiplication. 
The group is isomorphic to the croup of rotational symmetries of a cube, known 
as the octahedral group.1*' 

TABLE IV 
Summary of 24 Operators 

with respective rotation angles and eigenvectors (rotation axes) 

A i , A | 

A 2 . A J 1 

A 3 , A 3 1 

A4.A7 1 

+ 120*, -120* 

+ 120*,-120* 

+ 120",-120" 

+ 120*,-120* 

ai = l/3(+y^i + y/%$ + v^k) 

aj = l/3(+y3i - V5i - VSk) 

a 3 = l / 3 ( - \ / 3 i + v /3J~v /3lO 

a< = l /3(-V& - VH + \/3k) 

I 

180* 

LfiO* 

180" 

0* 

ci = ± k 

«2 = ± i 

c 3 = ±j 

D 2 

D 3 . D J 1 

180* 

180° 

+90°, -90" 

d t = l / 2 ( ± > / 2 i T ^ k ) 

d 2 = l/2(±V2i ± \/2k) 
d 3 = +j 

E , 

E» 

E 3 , E 3 - ' 

180* 

180* 

+90° , -90° 

e i = l/2(±V2j =F V5&) 
e 2 = l/2(±>/2j ± ^/5k) 

e a = +i 

Si 

S 2 

s 3,s^ 

180* 

180° 

+90", -90° 

s, = l/2(±v5i±v'ti) 
9; = l / 2 ( ± v ^ i =F V2j) 

| s 3 = +k 
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It is interesting to note that the operators D3, E3 and S3 along with their 
inverses are but special cases of the spin ope. '.Lions performed by single magnets: 
horizontal bending (eq. 4.), vertical bending (eq. 5) or a solenoidai field m«._ 
net, respectively. It is not surprising then that it is simple to show that these 
operators, representing rotations about the 4-fold symmetry axes, generate all 
operators of the octahedral group. 

In the Introduction, the definition of a snake was cited as the single operation 
of rotating the spin polarization vector by 180* about an arbitrary axis in the 
horizontal plane. An alternate way of describing this operation as the product 
of two operations is also given in Reference 1. This description can be expressed 
using operators which have been defined here. The first operation represents a 
rotation of 180" about the axis +i (corresponding to operators E3 3 , ( E J 1 ) 2 or C2 
given in TABLE IV) followed by an arbitrary spin precession through an angle 
a about +j (corresponding to the operator H(a) for a horizontal bend magnet 
given by eq. 4). 

The product defining a snake is then H(a) Cj 

The arbitrary axis referred to in the initial definition of a snake is defined as 
the vector a , which is now given by 

a = ± c o s ( f ) i ± * l n ( f ) k . 

For example, the special cases describing L-R snakes are obtained by setting 
a = ±90", since 

H(+90) C 2 » D3C1 = Di = LR(±90,+45) 

and 

H(-90) C 2 = D 3 ' C 2 = Da = LR(±90, -45) . 
/ 

Similarly, H(0) C 2 = C 3 and H{180) C 2 = C 3 C 3 = Ct define Snakes 

of the 2 n d and 1"' kind, respectively. 
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In TABLE III we show that D | or D2(thc L-R Snake operators) can also 
be obtained by the product of two operators where the first operator rotates the 
vertical spin component into the longitudinal direction. This suggests that such 
configurations may be capable of generating snakes with longitudinal polarization 
at the midpoint and an arbitrary precession angle a. S*-e References 1. and 4. 
for detailed references and discussion of the advantages of achieving an arbitrary 
precession angle a . 

As an example, wc assume that the first operator is given by A t which 
provides midpoint longitudinal polarization and the second operator (to be found) 
is given by M. Equating their product to the product defining a snake gives 

M At = H(a) C 2 

or 

M = H ( o ) C z A f ' . 

Reducing gives 
/ — sin or cos a 0 \ 

M -= I 0 0 - I I . 
V - coso - s in a 0 / 

If we again spt j = +90° then M = Ej and M A | ^ £ | A | = D] its shown 
in TABLE III. The operator Ei is generated by one half of a U-D snake. This 

suggests that practical solutions for a chosen value of a near 90' may be found 
by examining \TD{it>9) configurations for values of i> and 0 that will generate 
the operator M . 

Still assuming that the first operator is given by Ai , similar considerations 
for a near 0" would indicate examination of the configuration corrcsp. riding u> 
operator A4

1 and for a near 180" the configuration corresponding to the operator 
AJ>. 
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CONCLUSIONS 

By combining two half serpents or half snakes of various kinds, we have found 
a group of 24 rotation operators. It was noted that five different subsets of these 
operators form subgroups. The isomorphism to the octahedral group suggests 
that efficient means of obtaining arbitrary rotations for particular applications 

are achievable. 

Several combinations, as shown in Tables II and Tables III, result in lon­
gitudinal polarization at the midpoint (interaction point) and also invert the 
vertical component. In principle, these or other combinations would be useful in 
circular machines. 

For electrons the total / Bdl required for these combinations ranges from 
32.2 T-m to 36.8 T-m. These high values may limit the usefulness of these 
configurations in some applications due to synchrotron radiation, which implies 
long magnets and large beam excursions. In proton machines shorter magnets 
can be used. 

One half uf a serpent could be used to rotate longitudinal to vertical polar­
ization for transporting and injecting electrons in'o a high energy ( » 10 CeV) 
damping ring of a Super Linear Collider. Another half serpent would restore the 
longitudinal polarization in the damped beam. The need for solenoidal fields the 
strength of which scale as iae- would be eliminated. 

At the Stanford Linear Collider (SLC) presently under construction, com­
plications due to the preeessirn of a longitudinally polarized beam in the mile 
long Arcs could be avoided if the polarization was made to be parallel to those 
fields. The desired longitudinal polarization at the interaction point then could 
be achieved by introducing the proper half serpent. Unfortunately, the required 
drift space (10 to 20 m) is not presently available. 
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