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ABSTRACT

The stresses and the elastic constants of bec 8sodium are
calculated by molecular dynamics {MD) for temperatures to T = 340 K.
The total adiabatic potential of a system of sodium atoms is
represented by a pseudopotential model. The resulting expression has
two terms: a large, strictly volume~dependent potential, plus a sum
over ion pairs of a smzll, volume-dependent two-body potential.

The stresses and the elastic constants are given as strain
derivatives of the Helmholtz free energy. The resulting expressions
involve canonical ensemble averages (and fluctuation averages) of the
position and volume derivatives of the potential. An ensemble
correction relates the results to MD equilibrium averages.

Evaluation of the potential and its derivatives requires the
calculation of integrals with infinite upper limits of integration,
and integrand singularities. Methods for calculating these integrals
and estimating the effects of integration errors are developed.

A method is given for choosing initiai conditions that relax
quickiy to a desired equilibrium state. Statistical methods
developed earlier for MD data are extended to evaluate uncertainties
in fluctuation averages, and to test for symmetry.

The fluctuation averages wmake a large contribution to the
elastic constants, and the uncertainties in these averages are the

dominant wuncertainties 1in the elastic constants. The strictly
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volume-dependent terms are véry large. The eésemble correction is
small but significant at higher temperat%;es. Surprisingly, the
volume derivatives of the two-body potential ;ake large contributions
to the stresses and the elastic constants; The effects of finite
potential range and finite system size are discussed, as well as the
effects of quantum corrections and electronic excitations.

The agreement of theory and experiment is very good for the
magnitudes of C;; and Cig+ The magnitude of Chy 1s consisteytly
small by ~ 9 kbar for finlte temperatures. This discrepancy is Aost
likely due to the neglect of three-body contributions to the
potential. The agreement of theory and experiment is excellent for
the temperature dependences of all three elastic constants. This
result 1llustrates a definite advantage of MD compared to lattice
dynamics for conditions where classical statistics are valid. ™MD

methods involve direct calculations of anharmonic effects; no

perturbation treatment is necessary.




CHAPTER 1

INTRODUCTION

The calculation of thermodynamic variables for a real metal

at finite temperatures is a many-body problem par excellence. For

a small system and at temperatures where quantum effects are
negligible, we use a computer to integrate the classical equationms
of motion and to calculate various mechanical quantities along the
system trajectory. Time averages of these quantities, taken after
the system has reached equilibrium, can then be related to
canonical ensemble averages, and the ensemble averages related to
thermodynamic variables.

This kind of computer simulation, molecular dynamics (MD),
eliminates a number of wmany-body difficulties, but it also
introduces a number of new problems. These problems, and some
proposed solutions, will be discussed in Chapters 4 and 5. A
number of many-body problems still remain, principally because the
canonical partition function contains an expression for the total
energy of a system. We need a form for the total energy that is
both mathematically tractable and physically reasonable for a
metal.

We will derive an appropriate form for the total emergy of
a system of sodium atoms, starting with a model of a collection of

spherical closed shell ions, and conduction electrons. We treat
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the ion-ion interaction as essentially Coulombic, and treat the
yéiéggkgﬁéglééffbh and-eélectron-ion interactions by pseudopotential
pergﬁfﬁ;tidn theory (see Chapter 2).

In pseudopotential theory, the electrons belong to either
rigid cores or conduction bands, and the conduction electron wave
functions are orthogonal to the localized core states.! The
orthogonalization transforms a one-electron ‘true’ wave equation
with an unwieldy potential to a pseudo wave equatioq2'3 which ecan

be solved by perturbation theory to give the ‘true’ energy

eigenvalues. We obtain a total energy H of the form

H=Egp + V) + ] o(x5V) (1.1)

where Egy is the total kinetic energy of the ions, V) is a
strictly volume-dependent potential, ¢(r;V) is an effective
interaction potential between two ions separated by a distance r,
and the sum is over all distinct pairs of ions in the system. The
detailed expressions fer (V) and ¢(r;V) are derived in Chapter 2;
the numerical evaluation of these expressions and their derivatives
is discussed in Chapter 3. Note that the form of Eq. (l.l1) is
appropriate for finite temperature calculations, since the energy
can be calculated for an arbitrary ion configuration.

For a model system of metallic sodium at P =0 and at
temperatures up to 2000 K,“*5 we find that Q(V) is a large negative

term, responsible for most of the binding energy; this agrees with

!
H
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i
!
i
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our present understanding of metals. The total gfgecgiyg
interaction poteatial 1is a much smaller term: for temperatures up
to melting, the total effective potential comprises ~ 2% of the
total potential. The effective potential is also volume dependent,
which reflects the importance of screening.

In this dissertation we will use molecular dynamics to
calculate stresses and elastic constants for becc sodium for
pressure P ~ 0 and for the temperature range 100 K - 340 K, where
the melting temperature Tm ~ 371 K. This work 1is :-part of an
ongoing ﬁroject to obtain a deeper understanding of the physics of
metals, 1including both equilibrium and nonequilibrium properties.
Previous work using this model of sodium includes MD calculations
of bulk thermodynamic properties for the solid* and fluid® phases,
MD calculations of the P-T phase diagram,6’7 as well as 1lattice
dynamics calculations of bulk thermodynamic properties,8 and static
lattice calculations of the elastic constants.>

The project also focuses on problems inherent in computer
simulations, in particular the uncertainties in calculations using
MD data, and the nature of computer artifacts. Hence, the
calculations of equilibrium properties of metals with a physically
reasonable potential represent an effort to evaluate the usefulness
of MD techniques, as well as an effort to evaluate the usefulness
of pseudopotential theory.

We discuss below some general features of MD techniques.

We will also trace the connection between thermodynamic variables
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and MD data, and derive expressions for the stresses and adiabatic

elastic constants of sodium in terms of MD time averages.

A. Molecular Dynamics Techniques

As discussed above, a molecular dynamics simulation uses a
computer to solve the classical equations of motion for N particles
in a box of volume V. The result is a trajectory in phase space
(E'B} at discrete time steps t = 0, At, 2At..., mit. The output
consists of mechanical quantities calculated at each time step.
For computations of stresses and elastic constants, these
mechanical quantities include the total kinetic energy for the
particles in the box,Aplus derivatives with respect to position and
volume of the potential. We define an MD system at time t to be
the particles in the box plus the mechanical quantities associated
with them. The constants of motion for such a system are N, V, H,
and the total linear momentum M, where M = 0.

To integ;;te the equations of motion, we first write the

force : a particle L as
EL = - VEL XK ¢(rKL;V) ’ (1.2)

where the sum is taken over a.l particles K within the range of the
effective potential (see below). We then apply two central
difference equations for each time step. For the x component of

the position of particle L, we have
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AxL(t+At/2) = x; (t+at) - x; () , (1.3)

where AxL is the displacement, and the corresponding velocity is

dxy ( t+At/2)  Axg (t+AE/2)
= . (1.4)
dt At

The central difference equation for the position is then

xL(t+At) = xp (t) + AxL(t+At/2) . (1.5)

For the x component of the force on particle L, we have

mdzxL(t) a
Fo(t) = T el gy v [(axp (t+At/2) - Axg(t-At/2)] .(1.6)

The central difference equation for the displacement is then

FxL(t)
Axy (t+At/2) = Axp (t-0t/2) + T (ar)?2 . (1.7)
m

Equations (1.5) and (1.7) comprise the integration algerithm. The
choice of the time step At and the initial set of velocities and
positions is discussed in Chapter 4.

To begin an MD calculation, we introduce periodic boundary
conditions, where the computer program sets up a three-dimensional

lattice of identical boxes with a set of N particles in each box.



6

The boxes are indiscinguishable for all time with regard to the
positions and velocities of the particles inside. We pick one box
and call it the computational cell. A particle in the
computational cell will have an image particle in every other cell.

With periodic boundary conditions, a particle céﬁ interact
with all other particles within the range of a central pairwise
potential; this allows interactions across cell ©boundaries.
However, we nreed to restrict the range of the potential so that a
particle cannot interact with both a second particle and the second
rarticle’s 1image. For a cubic computational cell with side % the
maximum range r;,. < /2.

In an actual MD calculation, we integrate the equations of
motion only for the particles in the computational cell, and move
each image particle along the same trajectory as its corresponding
computational cell particle. If the equations of motion move a
particle out of the computational cell, the particle’s image moves
into the cell at the opposite face. Hence, linear momentum for the
computztional cell will be conserved (within the 1limits of the
integration algorithm), but angular momentum will fluctuate.

Molecular dynamics;output, as discussed above, consists of
a set of mechanical quantities calculated at each time step. A
graph of a mechanical quantity vs time for an MD system has the
appearance of a fluctvating signal which evolves to a steady state,
where the steady state has a constant mean and a constant bandwidth

(see Figs. 1 and 2). Different mechanical quantities evolve to the
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steady state at different rates. We define an MD system to be 1in
equilibrium with respect to a given mechanical quantity when the
mean and bandwidth show no significant trend over time.
Statistical procedures for determining equilibration times and for
establishing confidence 1limits for MD time averages are given 1n
Schiferl and Wallace;10 an extension of these procedures for

evaluating fluctuation averages is given in Chapter 4.

B. The Connection to Thermodynamics

Ir cvder to compute the elastic constants, we need to make
ar explicit connection between thermodynamic variables and MD
equilibrium time averages. We begin by writing the Helmholtz free

energy for the canonical ensemble

F=-kInZ , (1.8)

where Z is the canonical partition function

.1 pH
z-mf....je I, dx; dp; (1.9)

B = (xT)7! , (1.10)

and de goes over the volume V,

T
The stresses Tij and isothermal elastic constants Cijkl are

defined as strain derivatives of F:
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Vo g = (azjj)ﬂ'.T , (1.11)
Vd]i:jkx= (ﬁ%-—;)n’ﬂ (1.12)
where the my 4 are the Lagrangian straius
g =% [E Gy gy - 655] (1.13)

the aij are the strain transformation coefficients, and the strain

derivatives are evaluated at nij = 0.

We wuse the form for the total energy given in Eq. (l.l) to

write
z = V0 -BR(V) Q (1.14)
N3l '
where
A= (2m2/mkT)/2 | (1.15)

and the configuration integral a is given by
Q=VvTN [...fexp[-B | o(r; V)1 dx, . (1.16)

This gives, for the strain derivatives:

;
i
i
i
3
3




oy = - ep Y, 20 KT R (1.17)

oy My Q oMy

2 2 0
vel. . = = NeT .SP__’EY-_ + .53.9_(_"_)._ - kT _5_?_2;3_._
ik Nl OMepdMyy g OMee®Myy
L. S (1.18)
Q2 o g bniJ

We evaluate the above expressions by the method given in
Wallace, Schiferl and Straub.!! If the stress 1s 1isotropic

pressure, we have

and
PV = - &% + NeT - <J(¢* +_;. o) (1.20)
where
* vaR(v)
Q -—W— » (1-21)
o 20(r;V)
o - v 2TV (1.22)
o = ¢ 28(r:V) (1.23)

or
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The sums are taken over all distinct pairs of ions within the range
of the potential, and the brackets indicate ensemble averages.

For a cubic crystal, where the Cartesian indices coincide

with crystal axes, we have three independent elastic constants. 1In _ g

Voigt notation:

vel, = @™ - @" + 2mer

+ B (<102 = <(Lbyy) DI
IR G R O LN (1.24)

T _ k% * i
VCi, = Q@ + 0 b

+ Bl <Ioyy> = <Jo Joy>]

+ <JIe** + o +% o+ (0-0) 22 82> (1.25)
VCi, = - @ + NkT
2 _ 2 j
+ B [<fo>2 - <(Io, ) D]
+<II-" + (0'-0") 22 221>, (1.26)
%
where ;

Q** = y2 d2(V)

=7 (1.27)
05 = €765+ 0 248y (1.28)
2 .
¢ = v2 25T (1.29)
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w2 02¢(r;V)

1.30
¢ ar2 ! ( )
‘ko_ 32¢(r;V)
¢ ') v (1.31)
and
g, = ri/r . (1.32)

The expressions (1.20) and (1.24)-(1.26) involve canonical
ensemble averages. We now proceed to relate the canonical ensemble
averages to MD ensemble averages.12 An  MD ensembleld is
characterized by constant N, V, H, aud M. The corresponding
canonical ensemble has constant N and V, and a distribution of M,
with <M> = 0. The average <A> of a mechanical quantity in the two
ensembles differs by relative order N_l; for our MD systems,
N ~700 and this difference can be ignored. In contrast, the
average of a fluctuation differs by relative order 1 for the two

ensembles, where a fluctuation average is defined as

<AB> - <A> <B> . (1.33)

~.. To relate the canonical ensemble averages to MD ensemble

.

\\
averages, "ye evaluate the ensemble differences of the fluctuation

terms in qufxgl.24)-(l.26) by the method given in Wallace and
N

Straub.12 The corréﬁtipns to be added to the MD ensemble averages

o
are: .

vel, = vel,(mmy-+. 8, (1.34)
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vel, = vel,m) + &, (1.35)
vCi, = VCI,(MD) , (1.36)
where
A = = NkT (ye-1)2/c , (1.37)
¢ =C,/Nk (1.38)

Cv is the constant-volume heat capacity, and y is the Gruneisen

parameter.

We can obtain the adiabatic elastic constants from the

relationsl"

S _vwel = veS. — yel = 2
S -~ vyel

We obtain values for C, and y for bee sodium from the MD
calculations of Swanson et al.“ These bulk thermodynamic
calculations and our elastic constant calculations use the same
pseudopotential model.

The expressions given above for the stresses and elastic
constants involve MD énsemble averages. We now relate the MD
ensemble averages to the MD equilibrium time averages through the

quasi-ergodic hypothesis. The hypothesis is stated by Reif 15 as

<A = A(r) |, (l.41)

where <A> 1s an ensemble average and A(t) is an equilibrium time
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average for a single system in the ensemble. The averaging time <7

must be long enough so that A(t) is independent of <.
In practice, the MD equilibrium time average 1s never

completely independent of the averaging time. Hence, the MD time

average can only be considered as an estimate of A(t) and hence as
an estimate of the MD ensemble average <A>. This introduces a
statistical uncertainty 1into the ensemble averages, and for
fluctuation averages this uncertainty can be very large (see
Chapter 5). The calculation of these uncertainties will  Dbe

discussed in Chapter 4.
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CHAPTER 2
DERIVATION OF THE TOTAL ADIABATIC POTENTIAL

In the previous chapter we described the general theory we -
will use in our computation of the elastic constants of sodium. We
will need to calculate the molecular dynamics time averages of the
total energy and of its derivatives with respect to position and
volume (density). In this chapter we will derive an expression for
the total adiabatic potential of a system of N atoms of metallic
sodium 1Iin 1its ground state. We will discuss the numerical
evaluation of this expression and of its derivatives in Chapter 3.

We begin with a model of closed shell ions, (Z = + 1), in a
compensating background charge. We first simplify this intractable
many-body problem by taking the Born-Oppenneimer, or adiabatic
approximation.l“ In this approximation the electrons adiabatically
fallow the motion of the ioms.

We can write the adiabatic Hamiltonian as

H=Egp + Op +E, + NI, , (2.1)

where EKI is the kinetic energy of the ions, Rry 1s the ion-ion

interaction energy and Eg is the ground state energy of the

electrons. We include NI,, the ionization emergy of the system, in
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the Hamiltonian since the zero of energy for this model of sodium
is a system of neutral atoms at infinitc separation.
The last three terms 1in the adizbatic Hamiltonian are

called the total adiabatic potential @, where

4

Our model, even with the adiabatic approximatiom, is still
intractable. We simplify further by wusing a central potential
model. Since the ions have closed shells, we consider them to be
spherically symmetric. In addition, we will treat each interaction
potential as a sum of two-body terms centered on the ion cores.
Such a two-body term moves rigidly with an ion, regardless of the
positions of any other 1ionms. This eliminates  many-body
polarization effects on the ion cores. Also, the central potential
model enables us to separate out ion position information from
details of the potential due to a single ion. This separation into
structure and form factors will be described below.

The use of the adiabatic approximation and the central
potential model makes possible a form for the total energy suitable
for molecular dynamics calculations. From the adiabatic
Hamiltonian, the ion kinetic energy can be separated out and
calculated at each time step by the standard molecular dynamics
techniques described in Chapter 1. We are left with the sum of

central potentials. Since individual molecular dynamics runs are
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done at constant volume, we want to express the total adiabatic
potential as a strictly volume~dependent term, plus a sum in real
space of effective ion-ion potentials, ¢(rKL;V), over all distinct

pairs of ions:

1 ’
& - NI, = Q(V) +3 KXL (V) (2.3)

where XL is the distance between ions K and L, and V is the volume
of the system. The numerical evaluation of ¢(r;V) and Q(V) and
their derivatives with respect to r and V will be done in
Chapter 3.

We can write QII’ the ion-ion interaction energy, as a sum
of two-body central potentials in real space. Conversely, we can
write Eg, the electron ground state energy, as a sum over
reciprocal apace. For the purposes of molecular dynamics
calcuiations, we want to write our entire expression for ® in real
space. Hence, we will keep Qry in its original form and transform
Eg; this 1s the opposite of the usual procedure in lattice
dynamics.

For all of these calculations we will use atomic units for

length and energy. With length in Bohr radii (ao) and energy in

Rydbergs, we have

ao = ﬁz/mez =1

e?/2ag =1 ;e?2=2 , (2.4)
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where m is the mass of the electroa and e is the charge of the
electron. We will also take Z = 1 for the valence of sodium.

We consider an appropriate form for QII first. We can

write

_1 ' 2
QII = E K’ZL [;i(I + “BexP('YBrKL)] . (2.5)

The first term in Eq. (2.5) 1is the ordinary Coulomb potential
energy of two point ions. The second term 1s a Born-Mayer
repulsive potential, and represents an empirical correction for
core~core repulsion. This latter term is needed for alkall metals,
since the ion cores are large, and some core overlap is possible as
the ions move. The core charge distributions are still treated as
rigid; overlap is not prohibited by the central potential model.
ay and Yg are parameters.

We now consider an appropriate form for the electron ground
state energy, Eg' It should be noted that molecular dynamics
calculations are fundamentally classical; quantum mechanié¢s only
enters in the treatment of Eg.

The calculation of the electronic ground state energy is
gtill an intractable many-body problem; we reduce Eg to an
expression we can calculate by two approximations. First, we will

write the  energy as a sum over states of a one-electron

Hamiltonian, minus double~counting corrections. Second, we will
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solve the one-electron problem by second-order perturbation theory,
where the peérturbation is a locdl, central pseudopotential.

The percurbation theory treatment gives us the sum over
states 1in reciprocal space und the double-counting correcticns in
real space. We will write the entire expression for Eg as a sum
over reciprocal space to allow for cancellation of divergent terms.

We then convert the sums to integrals which can be evaluated

numerically, and obtain
1 .
Eg = V) + 3 K? glrgiV) (2.6)

where g(rKL;V) ig an integral over reciprocal space and Q(V) is a
function independent of rgye We will then show that the full
expression for the total adiabatic potential per atom, &/N, is

bounded.

We can write the one-electron wave equation as
h¢§ = EE¢E . (2.7)
where the one-electron Hamiltonian is
h=-9v+v () , (2.8)

and VSC(E) is a self-consistent potential, We will not solve
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Eq. (2.7) expliecitly. Instead, we will sclve a one-electron pseudo

wave equation:z’3

hot = Sch (2.9)

where

h, =-9V2+W , (2.10)

and ¢, 1s a pseudo wave function. The non-Hermitian operator W is
a pseudopotential, where W¢, is small compared to the free electron
energy.16’17 Equation (2.9) can be solved by second—drdef
perturbation theory to give the same energy eigenvalues as
Eq. (2.7).

From formal perturbation theory, we can write, to first

order in the pseudopotential,

o = L Mgk + g , (2.11)
= g
where
=1 iker ,
k> =2 e== (2.12)
A(g,k) = <k+q[W|k> (ek-ek+g)-1, q#0 , (2.13)

and A(O,E) 1s determined from a normalization condition.
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To second order, we have

g = e + <KIWIK> + I A K)KIWIkg> (2.14)
k Tk g

where e, is the free electron energy.
To simplify Eqs. (2.11) and (2.14), we approximate the
operator W by a local pseudopotential W(E)' We then obtain for the

matrix elements:
<k+gIW(r) ik> = %-f W(E)e'iﬂ'EdE = W(g) . (2.15)

Note that the matrix elements of W(r) are independent of k. We

also obtain, to first order in W(E),l“
¢k = qu . (2.16)

We can now write, for the one-electron wave function and

energy,

G = k> + 2’ W(gq) Ik+q> (ek'ek+g)—l s (2.17)
A ~ S -~ -~
g = e + W(g=0) + E’IW(S)|2 (ek-ek+g)_l . (2.18)
P = q 2 2

We take the sum over states of Eq. (2.18) to obtain the electronic

ground state energy:
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Eg = I ey + W(g=0) + L 1W(g)1?2

-1
zgk(ek-ek )
k g A
- (double-counting corrections), (2.19)

P

where g; 1s the ground state occupation number and N is the number
of conduction electrons.

We calculate the zeroth-order term in Eg first, where the
sum over k is taken up to the Fermi surface. To zeroth order, the
Fermi surface is a sphere in reciprocal space with radius kf, where
kg is the Fermi wave vector, and with all states within the sphere
occupied. Wallacel* and Harrison3 show that the total ground state
conduction electron kinetic energy, correct to second order in the
pseudopotential, is equal to the total ground state free electron
energy. This can be understood by considering that the distortion
of the Fermi sphere is second order, and the anergy change of an
electron moving from inside to outside the original Fermi sphere is
of higher order than zero.

We find the Fermi wave vector, Ef’ by requiring all states
in reciprocal space to be filled up to the surface of the Fermi

sphere. We hLave N conduction electrons and hence N states in a

”

volume V. Hence,

N Egg n? fof k2dk [ d@ , (2.20)

where fdQ is the angular integral, V/(2w)3 is the density of states
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in reciprocal space, and the facter of 2 indicates two electrons of

opposite spin per state. This gives

1/3
3n?
ke = () , (2.21)
a
where
vV, = V/N = volume per atom . (2.22)

We calculate the zeroth-order term by converting the sum
over k to an integral over the Fermi sphere, as in Eq. (2.20), and

by taking e = k2 in atomic units. This glves

2V

k 3
D geep = o3 J f KMk [ do == Nep (2.23)
L&k T w3 Y 5

where eg is the Fermi energy, and
e; = k2 . (2.24)
f £

To determine the first and second order terms and the
" double-counting corrections, we take the form of the one-electron

pseudopotential W(E) to be the sum of three 1local central

potentials:

W(E) = WB(E) + ws(E) + WX(E) ’ (2.25)
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where wB(E) is a model bare-ion potential, consisting of the
electron~ion potential from unscreened closed shell ionms. Ws(s) is
a self-consistent screening potential, involving Coulomb
interactions among the electrons. WX(E) is a one-electron
approximation for exchange and correlation effects, and 1is only
dependent on the density of conduction electronms.

This form allows two further simplifications. First, since
each of the three p#rts of the pseudopotential is a sum of two-body
central potentials, we can factor W(g), or any of its three
components, into two parts: a) a structure factor, S(q), a function
only of ion positions, and b) a form factor, w(q), or wB(q), etc.,
a function only of the details of a single-ion potential,
independent of ion positions.

We show this factoring explicitly with WB(E)' We can Qrite

the bare—ion potential as

WB(E) = I.gl Wg (IE_BLI) ’ (2.26)

where R; 1s the position of the Lth ion. The Fourier components

are

wg(q) Lzl % | exp(-ig-r)wg(1z-Ry 1) dr

- % Lzl exp(-ig*R; ) -Vl— Jexpl-1g+(r-Ry) Iwg(Iz-Rpi)dr . (2.27)
a
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Since r is independent of R;, we can treat (E'BL) in the integrand

as a dummy variable, and we:can write

wg(g) = S(@vg(a) (2.28)
where
" s(g) =1 szlexp(-ig ®) (2.29)
and
wp(@) = 31: | exp(-iger)wy(r)dr . (2.30)

Note that the form £factor, wB(q), is dependent only on the
magnitude of q.

For the second simplification, with ws(g) and WX(E) as
described, we can relate the Fourier components Ws(g) and Wx(g) to
the Fourier component of the total pseudopotential, W(g), ans hence
we can relate W(g) to wB(ﬂ)' Since we can factor out S(g) from
Wa(s), we can write W(q) in terms of the model form factor, wh(q),

and the structure factor.

We mnow consider each of the three parts of the

pseudopotential in detail.

A. WB(E)’ Bare-ion Potential

We take the one-electron potential, wB(E)’ to be the sum of

the interactions of one electron with all the ions, independent of
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the presence of any other electrons. We calculate the form factor,

wp(q), from a single-ion model potential, wg(r):

wB(r) = wz(r) + wc(r) . (2.31)

where wz(r) is the Coulomb potential energy of am electron at a
distance r from a point ion with charge Z = + 1, and w.(r) is a
term, negligible outside the lon core, which cancels the Coulomb
contribution inside the core. Harrison3 takes the core term,
wc(r), to be proportional to a 1ls electron wave function,

cexp(-r/p), where p is a positive parameter. The single~ion

potential then becomes
wg(r) = =2/r + aexp(-r/p) , (2.32)

with Fourier components

wp(q) = ;L-f-i% exp(-iger)dr + ;Lvfaexp(—r/p)exp(-ig-g)dg . (2.33)
a a

For the first integral in Eq. (2.33), we introduce a

convergence factor &, to give

=lm 1 =2 - —iae 1im 1 -8m
“2(0) = 55 - ] 5 em(nene (19 Dz = 5 - 7
-8
“yaZ c9*0 - (2.34)

Vaq
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For the second integral, we obtain

8nap?
=V (13020232
WC(Q) Va(1+q 92)2

This can be written as

- £ 1
w.(q) va_—m(qu) R

where B and p are positive, and will be treated as

parameters.

Hence, we can write the bare-ion form factor as

= 7]

1
W == |-y + 7753 » #0
B() V, g (1+q“p4) d ’

and

w.(q = 0) = B/V,.

(2.35)

(2.36)

ad justable

(2.37)

(2.38)

The Fourier component of the Coulomb term, w,(q), diverges as q-0.

We will show the cancellation of such divergent terms when we write

the full expression for Eg'

B. WS(E)' Screening Potential

We take the one-electron screening potential, Ws(r), to be

the ordinary electron-electron Coulomb potential energy:
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ws(E) = f

— p(r’)dc’ , (2.39)
lr=r"| =~ <

where p(r) is the number density of conduction electrons, and
*
p(r) = § g (D (x) (2.40)
kK ~ - £

This potential is determined self-consistently, in the sense that
the electron density depends on the eigenfunctions ¢, of the entire
one-electron Hamiltonian.

Note that when we sum over all states, we count the Coulomb
energy of each pair of electrons twice; this is the source of the

first double-counting correction. Hence, we can write

Eg = {E B i q,;(;) [el-( + Wg(r) + Wg(r) + Wy(x)

—-% Wg(r) ] ¢ (x)dr} - (other double- (2.41)
- counting corrections) .

If we compare this to Eq. (2.18) for € and use Eq. (2.40) for

p(g), we get

1
Eg =1 Bk ~ 3 J P(r)Wg(r)dr - (other double-counting
k ~~ corrections) ,(2.42)

and the first double-counting correction is therefore
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2 | eog(odr (2.43)

We are also counting the Coulomb energy of each electromn in
its own potential field. This self-energy per electron is of the
order 1/N of the total Coulomb energy per electron, and can be

ignored for large N.

The Fourier components of Ws(E) are

Wg(q) -‘1; | Wg(r)exp(-iq *r)dr

1 2 ) ) o ,
v/ =g exp[-ig*(r-r’)]p(r’Jexp(~iger’)drdr’ . (2.44)

Since r’ and r are independent, (r-r’) becomes a dummy variable,

and we can write

ws(ﬂ)

% J p(x")exp(-igr’)dr’ f%exp(-ig's)dg

o(g) |2 exp(-1ger)ar - (2.45)
From Eq. (2.34) we then obtain

87
Ws(g) = 2P g0, (2.46)

where the Fourier components of the screening term, Ws(g), diverge
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as ¢ + 0. We will discuss the removal of this divergent part when
we write the full expression for Eg.

We can evaluate p(g), and hence find Ws(g) in terms of
W(q), by writing p(x) to first order in the pseudopotential and

taking its Fourier components. From Eq. (2.40) for p(E) and

Eq. (2.17) for ¢k(£), we get

*
. <k+HqIW (q) . W(q) tk+q>
p(r) = ) g [<kl + ] ("Tﬂ_ﬁ][lp + ) (3__~_+ﬂ_)
k ~ k “kig 3 %k kg
=% Leg {1+ Z' [(exp(-ig°£)w*(g)
k = q
+ exp(ig.s)w(g))(ek-ek*.g)—l]} . (2-47)

For the terms of first order in W(g), we take the sum over the
zeroth-order Ferml sphere, giving 8k = Bg- From Eq. (2.15), we

*
have W (q) = W(-qg). Hence, for ¢ +- g and k + - k, we have

gk [(exp(-ig-;)w*<g>+exp<1g-5>w<g>><ek-ek+§>'1]

= 8oy [(exp(igrpIu(g)rexp(~1g W () (eyme 7 ] - (2.48)
We can then write

() =5 Le +2 ) exp(igeri(g) L g lepmeiy) ™! - (2.49)
k" vg . Sk kg

< |
Ll ]
<
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We can write down the Fourier components p(q) by inspection, since

,p(r) 2 p(S\exp(ig-r) Hence,

p(g=0) = N/V = 1/Va , (2.50)
and

2 ' -
P(a) =S W(Q) I glepey)™t » g #0 . (2.51)
v L 55N
Since p(gq) 1is of first order in the pseudopotential for
§ # 0, and distortions of the Fermi surface are of second order, we
take the states k over the Fermi sphere, as in Eq. (2.23). We then

convert the sum over k to an integral:

k T 2T 2
. ) £ k2sin 6 dkdOdé
E gE(eE e5+§) ( n)3 I I I0 (q? + 2qk cos 9)

~

Al kf 24k 1 dx 2.52
(2m)2 Io kd I-1 (q*2qkx) ° (2.52)

There is a singularity in the integrand if

=
.
¥<1

== =%k cos 8 =-4q/2 . (2.53)

This is handled by taking the principal values in the region of the

singularity. The 1limits of integration for x then become

e e

é
!
g
é
|
{
i




31

[- 1, - q/2k¢ - 8] and [- qQ/2kg + 6, 1]« In the limit &30, this

gives

f q+2k 2\ 1- n 1+n
k = k n +1 2 (2.54
mj k a5 Mﬂf[z’rl Hoy! ] .(2.54)
where n = q/2kf . (2.55)

We can therefore write the sum over k as
-1 9%
L splegmepsg) ™t = g (Imeta) (2.56)
kK =~ =~ =

where €(q) 1s the static Hartree dielectric function for free

electrons, and is given by

2K
e(q) = 1 + —& [1 “ m.“’ﬁ +1] . (2.57)

The dielectric function has a singularity at n =1 (q=2kf),
caused by the sharp cutoff of screening at the Ferml sphere. The
function itself is continuous at 1 = 1, since
lim (1-n2 | 1+

(5= ais=1)

n+l 2n j‘nll_n

=0 , (2.58)
but all of the derivatives of the dielectric function with respect

to q and to k¢ (and hence with respect to volume) diverge at n = 1.

1
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It is the exlistence of these singularities that will give Friedel
oscillations in the potential at large r, as discussed below.

The leading terms in the small-q expansion of €(q) are

e(q) - 1 = ? - -3—1tk—f- . (2.59)

The dielectric function diverges as q+*0. This 1s characteristic of
metals, where long-wavelength components of the potential are well
screened.

The leading terms in the large-q expansion of e(q) - 1 are

3 5
16kf 64kf

—1= + . .
e(q) 'EEEE T5q® (2.60)

Hence, short-wavelength components are poorly screened.
We can now write p(g) and Ws(g) in terms of W(q). From

Eqs. (2.51) and (2.56), we obtain

2
p(g) = 2= W@ (U-e(a)) , g #0 , (2.61)

and from Eqs. (2.46) and (2.61), we obtain

Wg(g) = W(g)(1-&(q)) , g #0 . (2.62)
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We can also rewrite the first double-counting correction,

Eq. (2.43), as a Fourier sum:

2 ] o) Wgn)dr =

o<

I e(gug(-q) , (2.63)
g

where the divergent ¢ = 0 term is included in the sum.

C. Wy(r), Exchange and Correlation Poteatial

We approximate exchange and correlation contributions to
the energy of the system by a local potential, X(r), which depends
only on the density of conduction electrons. Although local
potentials must be explicitly spin-independent, this is a plausible
form for an 1interaction between electrons with parallel spins,
since the density of conduction electrons with each spin is p(r)/2.
The one—electron exchange and correlation potential WX(E) and the
associated double-counting correction can be written as functions
of X(r) and p(r).

To determine the "best" one-electron wave equation and the
exchange and correlation double-counting correction, Wallacel" uses

a variational calculation, which minimizes the ground state energy

Eg with regard to variation of the one-electron wave functions

¢k(£), where

E; = E 8k J ¢;(5)[e5+w3(5) + % Wg(r) + X(g)]t&»}s(g)dg «(2.64)
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Note that the double-counting correction of the screening potential
wgig) hééVbéen included -here.

The results of the variational calculation give

_d _ ¥X(x)
Wy(p) = ) (p(x)X(r)) = p(x) 3p(r) + X(r) . (2.65)

The sum over states of the one-electron energiles, minus the

'double-counting corrections, can now be written

1

E, = E g'i‘s / ¢;(5)[e«§ + Wa(r) + Wg(x) + Wy(x)
- (E Wg(r) + Wy(r) - X(r))]¢ (x)dr . (2.66)

In effect, we subtract a second double-counting correction, where

this exchange and correlation correction is

g | B(r) o () (Wy(x) - X(£))dr

1& 1

= [ p(r)(Wg(r) - X(x))dr . (2.67)

We will write this integral as a Fourier sum later.

In order to write Wx(g) in terms of W(g), we must consider
that we have no explicit form for the Fourier components X(gq),
except for the many-body result at g = 0. At g =0, X(q) = X(pg) >
the exchange and correlation energy per electron of a uniform

electron gaa; For the limit of Wy(gq) as g + =, Hubbard18 argues
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that the effect of exchange and correlation is to cancel half of
the screening. We use these results to write an interpolation

approximation for wx(g), of first order in the pseudopotential:

Wg(q) = - Y(q)Wg(g) , g #0 , (2.68)
where
Y(q) = q? (2.69)
VT ad '

The parameter £ is chosen to give the proper behavior for Y(q) in
the limit as.q>0.

To find £ in terms of X(po), we expénd Wx(g) ia powers of
the pseudopotential around the uniform component of the conduction
electron density py = p(g = 0), Eq. (2.50). The expansion of Wx(s)
is done through an expansion of the density p(r) in powers of the

pseudopotential. To second order in the pseudopotential, we can

write

p(r) = pg + Py *+ P2 (2.70)

where

Py = ¥ p(g)exp(iger) , (2.71)
g

and p(g) is given by Eq. (2.51). The explicit form of the second
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order cerm, Py will not be needed. Derivatives with respect to
p(r) are evaluated at pg.

For simplicity, we can drop the r-erendent notation. We

have, to first order,

Wy = Wy(py) + pyWy

’ 2
= Wx(po) + g [97%5§l]p p(q)exp(iger) . (2.72)
0

We then equate the corresponding Fourier components in the

expansion and in the interpolation approximation:

[RAe0) ("X)] o(g) = - YQWgg) - (2.73)

We then take the limit as ¢-+0 to give the defining equation for &:

BlegkCe)] 144 [ 87y Zhn (2.74)
bp& q-0 2(q 2+§k ) q? Ek%

For a uniform electron gas, the exchange and correlation energy per

electron can be written as
, (2.75)

X(pp) = 2 (390
po = 2 T) + (— 0-115 + 0.031 m rs)

where the first te:a is the exchange energyl® and the second term
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is the correlation energy. The correlation energy is obtained f;om
an interpolation by Pines and Nozidres20 for metallic densities,

and

4 3 _
3 g = 1/p0 . (2.76)

By combining Eqs. (2.74) and (2.75), we obtain

£ =2/(1 + 0.0135m/kg) (2.77)

Finally, writing wx(g) in terms of W(gq), we have

We(g) = = Y(QW(g)[1-e(q)] (2.78)

We can express the exchange and coerrelation double-counting
correction, Eq. (2.67), as a Fourier sum of known functions of
W(q), by expandirg the integrand in powers of the pseudopotential,
as in Eqs. (2.70) through (2.72). We obtain, to second order in

the pseudopotential,

I P(WX-X)dE

I [Po(wx(Po) - X( Po)) + (P1+P2)Pow)'(

1 5 ,

+5 o} (pg¥y + W) ldx

= J poliy(eg) = X(ppldr + [ po(Wy; + Wyp)dr
1
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where,wx1 and sz are the first and second-order terms 1in the
expansion of WX(E)'

The first integral in Eq. (2.79) can be written

poVIWx(g=0) - X(pg)] - (2.80)
The second integral in Eq. (2.79) vanishes:
Po / (WyytWyoddr = pg g’ (Wy 1 (g)+Hyg,(q)) / exp(iger)dr = 0 .(2.81)
The third integral can be written as a nonvanishing Fourier sum:

= oWy dr =+ I p(qd¥y(-g) . (2.82)

Hence, we can write the total exchange and correlation

double-—counting correction as

<

Mﬁ@w)-m%»+5§pqmg1). (2.83)

correct to second order in the pseudopotential.

D. Eg' Electron Ground State Energy

We can now write the full expression for E correct to

g’
second order in the pseudopotential, If we rewrite Eq. (2.19),

using Eqs. (2.63) and (2.83) for the double-counting corrections,
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Eq. (2.23) for the first sum over k, and Eq. (2.56) for the second

sum over k, we obtain

" W@N-g) & (1 @) -3 I p(@)iy(-)
?q

)
9
_.% L e(qWg(-q) -« (2.84)
k
We than rewrite the first sum in Eq. (2.84):
21wy & (1 (@) =3 1 e(@u(-g) . (2.85)
9 g

When we transform to real space, we will want to convert

these sums to 1integrals. We begin by adding and subtracting the
limits as g-0:
3
Eg = N [E eg + X(pg) + W(g=0) - Wy(g=0)

- 3 338 (g - W@ ] + 3 1 p(g)Wg(-a) . (2.86)

Nl"‘
N

We can use Egs. (2.62) and (2.78) to write W(gq) in terms of WB(g):

My ) 2.87
[+ (-1 (I - ¥(q) (2.87)

W(q) =
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We can use Eqs. (2.61) and (2.87) to write p(g) in terms of WB(S)'

We then separate Wg(q) and Wp(-q) into structure and form factors:

3
Eg = N (E eg + X(py)) + N % $(q)S(~g)F(q) + NS(q=0)

x [wg(a=0) + wg(q=0) - 3 138 (w(®) +wga)]

where

-V, q?lwg(a)12 (e(q)-1)

We evaluate the structure factors from Eq. (2.29):

2 1=1 ,

970 =y g

2 |-

5(g)8(-9) =glz ) explige(Ry-R;)] +F12 ‘§ 1,
K,L L=1

and convert the sum over q to an integral:

E =N [2er +X(py) + 'a J/ F(q)dq]
g 5 °f P’ T g3 / T4

+ N [ug(a=0) + wg(a=0) - 3 138 (wy(0) + wg(a)]

2V

1 ’
t3 K?L f};%g J F(q) exp (1g°rg;)dg

where Ty = By - Ry

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)
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We can write the sum of the two q = 0 terms as

wp(a=0) + wg(q=0) = £l [wg(a) +wg()l , (2.93)

since both the bare ion form factor, wz(q), and the screening form
factor, ws(q), diverge as q+¥0), but the limit of the sum exists. We
now use Eqs. (2.62) and (2.87) to write ws(q) in terms of wB(q):

. wp(q)  wn(q)(e(q)-1)Y(q)
D3 op(@ + ws(@] = Lt § i

'D(q) D(q) b

(2.94)

where
D(q) =1 + (e(q)-1)(1-Y(q)) . (2.95)

We can evaluate the 1limit in Eq. (2.94), wusing Eq. (2.37) for

wg(q), Eq. (2.69) for Y(q), and Eq. {2.59) for e£(q)-1 at small q:

im

- 2e 4k
18 vg(@) + wg()] = —— + £

3 + 3En

(2.96)

Finally, we substitute the above results into Eg and

perform the angular integrations:
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v [Le +2kf+x()+V IF()zd]
g 15 %€ T3 Ex T Po 72 179744
o @ sin (qryq)
% l I F(q)q2 — L 4q . (2.97)
KL ™ argy

E. Total Adiabatic Potential

Equation (2.97) gives E, in real space. We can now combine

8
Eg with Qp; and NI, to give the total adiabatic potential per atom,
&/N, where

=8V 1

YN - 1, == 5 L oY), (2.98)
K,L

aqv) 4 2kg

\'f ©
a 2 "
— + — + + .
W= 15 e Tyt Xeo) * oz [ Flaatde . (2.99)

and

2 Va @ 2 sin qr
V) =5+ - + F L L2 . (2.100
o(r;V) = _ + agexp(-vgr) + —3 Io (a)q e (2.100)

We collect here the expressions in Eqs. (2.99) and (2.100) for

later reference:

-3k,
X(po) = —E;— - 0.115 + 0.031 fn Tg (2.75)
r, = (3v,/ami/3 (2.76)
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£ =2/(1 + 0.0155%/k¢g) (2.77)
-v_q? |wy(q) 12 (e(q)-1)
a B
= 2.89
F) 16m [1 + (e(q)-1)(1 - ¥(q)] ’ ( )
1 -8
S 2 v as 2292)2] v a*0 (2.37)
2k —n2
e(q) - 1 = n_qﬁfz [l?_% fn |if—:“| +1] (2.57)
n = q/2k¢ , (2.55)
1(q) = g , (2.69)
2(q2+Ekd)
e = k (2.24)
2.1/3
ke = (—3;,3—) , (2.21)
a
vV, = V/N . (2.22)

Equation (2.98) gives the appropriate form of the total
adiabatic potential for wuse 1in molecular dynamics calculations.
Note that R(V) is strictly volume-dependent; all of the position
information is in the effective potential, ¢(rKL;V). The
determination of4the parameters Qg, Yg, B, and p will be discussed
in Chapter 3.

We need to show that the total adiabatic potential per

atom, ®/N, is bounded. To demonstrate this, we first show that the
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two integral terms in $/N exist, and then show that the sum over
all neighbors, z'¢(rKL;V), converges.

To shothhat the integrals in Egs. (2.99) and (2.100)
exist, we take the 1limits of the integrands as q#0 and as q-+=,
where F(q) is given in Eq. (2.89).

At small q, the leading terms in the factors of F(q) are

eq) -1 =—5 , (2.101)
nq
1-Y(q)=1 , (2.102)
lug(a) |2 = 2 8422 (2.103)
Va q
Since éig (Eig;SE) = 1, both integrands go as q0 as q-0.

At large q, the leading terms in the factors of F(q) are

16kg
-1 =—1 X
e(q) Inqt (2.104)
1 -7Y(q) =1/2 , (2.105)
lwg(q) 12 = L 64n? (2.106
B vg q’-i ’ . )

and the integrands go as q_ * and q 2 as g+.
At q = Zkf the dielectric function e(q) has a logarithmic
singularity. As indicated in the previous discussion of €(q), the

function is continuous at q = 2k;. Hence, the integrands do not

L S TR a0 LI
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diverge at this point. Since the limits of the integrands as q-+0
exist, and the integrands vanish faster than q—1 for large q, both
integrals exist.

We now need to show that the sum over all neighbors
converges. For large r, the number of neighbors from r to r + 6r
goes as r28r. Hence, the effective potential, ¢(r;V), for large r
must vanish faster than r 3 for the sum E’¢(rKL;V) to converge.

We cannot find an analytical %orm for the r-dependent
integral in Eq. (2.100) at large r, but we can find an expansion in
powers of r ! by successive integrations by parts, obtaining a
higher power of r ! in each resulting integral. This is the
procedure suggested by Harrisond for the large-r expansion of a
simpler effective potential with no exchange and correlation
contribution. Unlike Harrison’s expression, however, the integral
in Eq. (2.100) cannot be integrated by parts in its present form.
We will rewrite this integral in a more suitable form for partial
integration. Two successive integrations by parts will then give
the leading term of ¢(r;V) at large r.

From Eq. (2.100) we have

orsV) = 2+ agexp(-ygr) + C(o) (2.107)

where

\'/ @
o) =5 fo F(q)q &“rﬂl dq . (2.108)
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If we attempt a partial integration of Eq. (2.108), we

obtain

v V
e =7 | °°§ L §(q) q + —I 9245 (F(@)a)’dq - (2.109)

The integrated term of Eq. (2.104) is infinite at its lower limit,
since F(q)q goes as q"! at small q. In addition, the integral on
the right does not exist, since the derivative (F(q)q)’ goes as q 2
at small q.

This suggests that the leading term of {(r) at large r goes

as r L. Accordingly, we rewrite C(r) to explicitly contain such a

Coulomb term:

-V &
i
) = 1oy S, [afivg(@) 2 =548
-1 e(q) -1
x{1-1+ e RE O A
V2 o |
= Tou3 J, Prog(i? SAL g + f rq—‘ g(a)dg ,(2.110)
where
() = M9 1 yye-1T (2.111)
D(q)
V?

h(q) = '——‘3' lwg(a)12q3 , (2.112)
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and
D(q) = 1 + (e(q)-1)(1-¥(q)) . (2.95)

The leading terms at large r of the first integral in Eq. (2.110)

are
—?2 + j(r) exp(-r/p) , (2.113)

where j(r) is a quadratic polynomial in r. Note that the -2/r term
in C(r) cancels the Coulomb term in ¢(r;V).

The second integral in Eq. (2.110) exists, since g(q) goes
as q at small q, and as q—1 at large q. This form can be
integrated by parts twice. We note that Y(q) and its derivatives
are bounded and continuous for 0 < q €& @, and that h(q) and its
derivativesiare bounded and continuous for 0 < q € =, e(q) 1is
bdunded and continuous for 0 < q € =, but its derivatives with
respect to q contain singularities at q = 2kg; the contributions of
these singularities to {(r) will enable us to find the leading term
of ¢(r;V) at large r.

We integrate by parts once:

® gin qr ® cos qr ®
fo — &) = - o "ng_ g(q) + jo 9%231 g’(q)dq ,(2.114)

where
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g (q) =-—-hD [D-(e~1)] ——z;' [e'+Y (e-1)2] , (2.115)
2k, q2-12k2 q+2k
vron _ Kf £ £ 1
e'(q) = — [4qu., P al (2.116)

and we omit the gq-dependent notation in Eq. (2.115) for simplicity.
The integrated part in Eq. (2.114) vanishes, since g(q)+0 at cvnth
limits. The integrand on the right in Eq. (2.14) is bounded at the
limits of integration, since g’(q) goes as qo at small q, and as
-2

q ¢ at large q. This integrand also contains a logarithmic

singularity at q = 2kg, from the first derivative of the dielectric
function, €°(q).
We integrate by parts once more, and take principal values

in the region of the singularity:

@ 2k -5 '
cos qr , £ sin qr ,
P (q)dq = lim + ———r—
Jo ez &'(¥da = Un {| |2kf+6 7 8 (@}
-2 [ S0 AL g(addg (2.117)
where
_h" 20 [ Lo, 2 h .
g" =5 [1-¥(e-1)] - T3 [€'+Y"(e-1)?] - o7 [¥"(e-1) %e"]

+-§’1h [(e)2(1-Y) - 2e'Y'(e-1) -~ (Y¥)2(e-1)3] , (2.118)

2
2k; 24kZ-q q+2k

in | | +

2
e" = -
(a) n l&qus— q—Zkf qZ(q2_4k§)] » (2.119)
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and we omit the q-dependence in Eq. (2.118).

We can rewrite the limit term in Eq. (2.117) as

0

2kf-5 sin 2k¢r

i .
iin { ——sg—s : Lg(a) + |2k s ET C(2k¢) An |2kf-q|} ,(2.120)
£

60

where the slowly varying terms in sin qr g“(q) in the interval
[Zkf-é, Zkf+6] are taken at q=2kg, and C(Zkf) is a constant. The
first term in Eq. (2.120) vanishes, since sin qr g’(q)»0 at both
limits. The second term also vanishes, since

2k p+5

lim

50 RnIZkf—ql =0 . (2.121)

The integrand on the right of Eq. (2.117) is bounded at the
limits of integration, since the leading terms of g"(q) go as q 3

at large q, and as q 1

at small q. In addition, in the 1limit q+0
the q_1 terms cancel and the next leading terms go as q. This
integrand contains logarithmic singularities at q=2kg, from €°(q)
and €"(q), and a simple pole at q=2kg, from €"(q). This integral

exists, as will be shown below, and we can evaluate its leading

term for large r. We drop the principal parts notation, and write

t(r) ='€? + j(r) exp{-r/p) + Cl(r) , (2.122)

where
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L (r) ==~/ Bn 4T gv(q)dq - (2.123)
0 r

To find the 1leading term of Cl(r) at large r, we discard
all terms formally of order greater than r 3. We can evaluate the
leading order of each of the terms in Cl(r) by considering the

asymptotic behavior of the integral

Io sin qr G(q)dq , (2.124)

where G(q) represents one of the nine terms of g"(q). We consider
two cases: 1) for G(q) bounded and continuous, and 2) for G(q)
containing a finite number of singularities.

For G(q) bounded and continuous, the integral in
Eq. (2.124) will vanish as r+= because of the rapid oscillations of
sin qr. Hence, all terms of g'"(q) that are bounded and continuous
will contribute terms formally of order greater than r 3 to Cl(r).
The only possible contributions of order r? will be from
singularities in g"(q). Of the nine terms in g"(q), only the last
term, which goes as q as q+0 and contains no derivatives of ¢e(q),
is bounded and continuous and can be discarded. Of the remaining
eight terms, seven contain singularities at q=0 and four at q=2k.

For G(q) containing a finite number of singularities, we
can evaluate the leading orders of the contribution of each
singularity at large r. From Lighthill,21 we can find the 1leading

terms at large r of the Fourier transform, (F.T.), of G(q) by
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expanding the continuous part of G(q) around each singularity.

Since each G(q) is an odd function, we have

fo G(q)sin qr dq = - %-Im f N G(q) exp (-iqr)dq

- - % Im [F.T. G(Q)] - (2.125)

Around each singularity q=qg in G(q), where G(q) is now defined on

[==,®], we can write G(q) as the product
G(q) = c(q)Gg(q-qg) (2.126)

where c¢(q) is a continuous function in the interval including the
singularity, and Gs(q-qs) is a generalized function which diverges

at the singularity. We can expand c(q) around the singularity to

give
G(q) = c(qg5)G5(q—qg) + c”(q,)[(q-q4)G4(q-q )]

1w
+ 5 c"(eg) (a9 %6g(a-g )] + .. (2.127)

The two 1leading terms of the contribution of the singularity to

Eq. (2.125) become

1
N |

{c(qg)Im[F.T. Gg(q-qg) I+ " (q5) Im[F.T.((q-q4)6 (q—q.))] ,(2.128)
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and the leading term of the contribution of the singularity at q=qg

to Cl(r) can then be written as

53 eag)InlF.T. Gla-g )] - (2.129)

We need only apply Eq. (2.129) to the singularities in g"(q) on the
interval [~=, =], and discard terms of order greater than r—3, to
find the 1leading term of Cl(r) at large r. We now consider the
effect of each singularity in g"(q) in detail.

The first seven terms in g'"(q) each go as q_1 for small q,

and hence diverge at q=0. If we apply Eq. (2.129) to each of these

terms and take the sum, we obtain

%3 In[F.T. (-;-)] ;: (0 =0 , (2.130)
i=1

since the q-l terms cancel in the 1limit g*). The next order
contribution to Cl(r) from these singularities goes as r % and can

be ignored.
The third, sixth, seventh and eighth terms in g"(q) contain
singularities at gq = % 2k, from €°(q) and €"(q). From
Eqs. (2.116) and (2.119), we have three generalized functions for

the singular parts of £°(q), (€°(q))2 and €"(q) at q = # 2kt

D s e
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Ggy(q¥2ke) = MniqF2kel
Ggo(q¥2kg) = [MniqR2kei]?

Go3(q¥2kg) = 1/(q¥2kg) (2.131)

From Lighthill,21 the Fourier transforms of Gsl(qFZkf) and
G;o(q¥2kg) go as r’l, If we apply Eq. (2.129) to these
singularities, we obtain contributions to Cl(r) of leading order
r %; these contributions can be ignored.

The Fourier transforms of Gs3(1¥2kf) go as ro and hence
contribute two terms of leading order r 3 to Cl(r), from the simple
poles at gq = % 2kg¢. Sinée the contributions from the two

singularities are equal, we apply Eq. (2.129) and write the leading

term of § . {r) at large r as
1 g

h(a) e 1 ] Im[F.T. (——)]

1
¢,(r) = -
1 3 [Dziq) g < q+2kgq=2kg q-2k¢

A cos (Zkfr)

— (2.132)

where

) vgkf le(Zkf)lz
T 8n3(14b)? ’ (2.133)

and
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1 2+¢ .
b= o f(4+;) . (2.134)

We then have, for the leading term of the effective potential at

large r,

A cos(2kgr)

r

where A is given by Eq. (2.133). Hence, the sum over all neighbors
converges and the total adiabatic potential per atom, &/N, is
bounded.

Equation (2.135) has the form of Friedel oscillations, and
it can be seen now that these oscillations are a mathematical
result of the singularities in the derivatives of the integrand in
¢(r;V) at g=2kg. The slogularities, in turn, are caused by the
cutoff of screening at the Fermi sphere; the screening cancels the
Coulomb potential at large r, leaving a small oscillatory tail in

the effective potential, ¢(r;V). The form of this potential is

shown in Fig. 3.
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CHAPTER 3

NUMERICAL TECHNIQUES

In the previous chapter we derived an expression for the
total adiabatic potential of metallic sodium. In Chapter 1 we gave
the expressions needed to calculate the -elastic constants of
sodium, in terms of the total adiabatic potential and 1its
derivatives with respect to position and volume. We now discuss
the numerical evaluation of these expressions.

We need to evaluate eight expressions to determine the
elastic constants. Three of these expressions depend only on
volume (V-dependent); the remaining five expressions depend on both
position and volume ((r;V)-dependent). Using the notation of

Chapter 1, we write the three V-dependent expressions:

Q = Qg
o* ®
N =82V + [ [£1(a) + fp()aimrlildg (3.2)

% &
Q «©
N - &+ f0[f3(q) + £,(9)Anin-1i+ £5(q) n?in-1}

+ £e(q)(m-1)"11dq , (3.3)

where
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4 2k; kg
== — - —— - 0.115 + .
g (V) =g ki+ 3es " ax - Or115 + 031 aarg
K
8 .., 71 % .03l
=-——kI+—-—+ =
g8, i URT RS
14k
_ 8 ., _ kg 031
g3(V) 27 kf 271 3 ’

v
£1(2) = 27 (eft) - minll)

£ -l
20 =37 &

v2Q 2efYf(1+e)) . efY, -4 4

f3() = 57 [ v, '3 ' )
+ eyfintl (333 - 4611:1 - ZEZ(DI—Y) mintli)]
£4(q) = V%?;Z [3"‘;': + 4511)Y1 + 452(;-” mintl]
£5(q) = - Zzé;Q e (1-Y) ,
fol1) = %VﬁLQ (Z?) ’
Q - quz (@)1 2

(3.4)

(3.5)

(3.6)

3.7

(3.8)

3.9

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)




kg
£ =
3 b
2 3w,q

D=1+ g(l-Y) ,
2Y2%¢
Yl 3V EUAY) (35 - 52/2) ’
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(3.15)

(3.16)

(3.17)

and e(q), Y, wp(q), kg, €, rg, and M are given by the equations

following Eq. (2.100).

The five (r;V)-dependent expressions can be written

¢—h(r)+21 lﬂz—;‘*—dq

4 mQE
¢ = hy(r) +2 IO—LBL (cos qr - EEE_SEJ dq

qr ’
" ‘ 3sin qr
¢ - ¢ h3(r) + 2 f G——E;——- 3cos gqr - qr sin qr]dq
o = 2 Io (£1(a) + £5(Q) nin-11) 51_:1:3_5 dq ,
*k 2 ‘k =
o +5 07 = 2] {53 + £ (@ amim11 + £5() L

+ £.(q)(n-1)"1] SL0 4T
6 ar

+—:2; [£1(0) + £5(q)mim-11] (cos qr - ﬂzfu )ldq

where

(3.18)

(3.19)

»(3.20)

(3.21)

»(3.22)
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hl(r) = %-+ ag exp (—YBr) , (3.23)
hy(r) = 22 - (~vgr) (3.24)
2(r) = YgoL exXp Ygr ’ .
and
hy(e) = &4 ypapr(livgr) expC-wr) (3.25)

There are no general analytic solutions to the integrals
above. Hence, we will solve the integrals numerically and obtain
the (r;V)-dependent quantities needed during an MD run from tables
of our numerical solutions. Details of the table construction will
be given in Chapter 4.

Numerical treatment of the integrals 1in Eqs. (3.1)-(3.3)
and (3.18)-(3.22) presents a number of difficulties. The major
difficulties include the infinite limits of integration, as well as
the singularities at q = Zkf in several of the integrands; the
singularities result from differentiation of the total adiabatic
potential with respect to volume.

Previous work on this model of sodium utilized the
numerical techniques described in Swanson.?2? Evaluation of @, ¢,

and ¢ involved a Simpson’s rule integration over the interval

q [0,20], plus an analytic approximation for the integral over

q [20,2]. The volume derivatives Q* and ¢* were obtainad from
fits of Q and ¢ vs V. The uncertainties 1in calculations using

these techniques are very difficult to analyze. In addition, the

i i e
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analytic solution for large q is unsuitable for a slowly converging
integrand (such as the integrand in Eq. (3.20)), and the fitting
technique 1is unsuitable for higher derivatives with respect to the
volune.

We will use substantially different numerical techniques
here. For our calculations of the elastic constants, we will
transform the preceding integrals into expressions that can be
handled efficiently by adaptive Gaussian quadrature. This method
is useable for all of the volume derivatives and for slowly
converging integrands. This method also gives better estimates of
the errors and is quite efficient in its use of computer time.

We begin by determining the parameters for our model
potential and establishing the existence of the preceding
integrals. We will then describe the basic integration routine and

the necessary transformations of the integrals.

A. Parameters

The total adiabatic potential contains four model
parameters: yg and ap from the Born-Mayer repulsion, and f and p
from Harrison’s3 pseudopotential model. We take the value of vy
calculated by Fumi and Tosi23 for NaCl-type sodium halides. We
treat the other three parameters as adjustable. Wallace®
determined the values of ag, g, and p by fitting the total
adiabatic potential and its volume derivatives to the measured
binding energy and compressibility of sodium at zero temperature

and pressure, and requiring agreement between calculated and
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experimental values of the average of the phonon frequencies
squared, <w?». Zero-point vibrations were neglected. The four

parameters were found to be

vg = 1.56 agt , (3.26)
ag = 10.5 Ry , (3.27)
B=37.0 Ry a§ , (3.28)

p=0.5a; . o (3.29)

We also need to consider the typical values of V, and r
that we will use in our simulations. The choice of V, and the
calculation of a minimum and maximum r for a particular MD run will
be discussed in Chapter 4. We give the ranges of V, and r here,

since details of the integration procedure depend on the sizes of

these varilables:

254.9 ad < V_ < 269.0 a§ , (3.30)

580

A

r<27a; - (3.31)

B, Existence of the Integrals

We have previously shown that the integrals in Egs. (3.1)
and (3.18) exist (see Chapter 2). To demonstrate that each
integral 1in the remaining six expressions exists, we first show
that the integrand is bouFded at the lower limit 9f integration and

vanishes faster than q—1 at the upper limit, and then show that

Clon ol e
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either the integrand is continuous over the range of integration or

the Cauchy principal value exists.

We first take the limits of the integrands as q + 0 and as

q »~ @ At small q, the
integrands are
_ =2
Q' n ’
. 4kf
1 nqﬁ ’
4k 2

leading

K 3nVéj;;§ ?

q

Y =
2£kg ?

« _ 9%(3-8/2)
GEkEVa

-1

Since éi% (SEEE;SE)

(P4 . 65 qr)

qr

Eqs. (3.2)-(3.3) &nd (2.19)~(3.22) go as q2, as q-0.

goes

lim

terms

in

the

factors

of the

(3.32)

(3.33)

(3.34)

(3.35)

(3.39)

(3.37)

330 (cos qr) = 1, and tue leading term of

as q2,

integrands all vanish at q = 0,

At large q,

integrands are

the

leading

as

terms

q+0,

in

the

the

integrands

factors

Hence, these

of the

of
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-2
Q== , (3.38)
L6k}
El = —37[;; N (3-39)
4k2
£ 1
= 3.40
E2_ 31Na F » ( )
D = l Iy (3-41)
y=1 (3.42)
2 ° ’
v k2E(3-£/2) 343
1= W . ( . )

The integrand in Eq. (3.20) goes as q 3, as g+=. The integrands in
Egs. (3.2), (3.3), (3.19) and (3.22) go as q %, and the integrand
in Eq. (3.21) goes as q_°, as q+». Hence, these integrands all
vanish faster than q 1, as q + =.

We now consider continuity. Q, &, Y, and Y;, as well as
their derivatives with respect to q, are all bounded and continuous
for 0 < q < =, As indicated in Chapter 2, e(q) is bounded and
continuous for 0 { q < =, but its derivatives with respect to ¢
contain singularities at q = Zkf. Hence, €y and D are bounded and

continuous over 0 { q € @ but their derivatives are unbounded at

q = Zkg.
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The integrands in Eq. (3.19) and (3.20) are both continuous
for 0 < q < = Since these integrands are bounded at q = 0 and
vanish faster than q~! for large q, the integrals in Eq. (3.19) and
(3.20) exist.

The integrands in Egs. (3.2), (3.3), (3.21), and (3.22) are
unbounded at q = Zkf (m=1). All four expressions contain singular
terms of the form £(q)in|m-1|, where f(q) is bounded and continuous
for 0 < q € =, where £(q) vanishes faster than q~3 for large q, and
where f(q) # 0 at n=l. The integrands in Eqs. (3.3) and (3.22)
also contain singular terms of the ferm f(q)anln—ll and
£(q)(n-1)"1, We can divide each unbounded integrand into two
parts: a sum of continuous terms, and a sum of singular terms. The
integral over the continuous part obviously exists. For the
singular part, we need to show that the Cauchy principal value
exists. For simplicity in the following discussion, we will treat
n= q/2kf as the variable of integration.

First, we consider an integrand of the form f(n)nim-1].
We divide the range of integration into three parts: n = [0,a],
n = [a,b] and n = [b,»], where 0 < a <1 <b <= The integrals
over the first and third intervals clearly exist, since the
integrand is bounded and continuous over each interval, and

vanishes faster than 1~ ! for large n.

For the second interval, we integrate by parts:
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b
P Ib f(n)anin-1idn = P a f(M () nin-1} - (n-1)]
a

b
-p [ £ (M(rDain1] - (n-1)]dn . (3.44)
a

The integrated part in Eq. (3.44) can be rewritten

b
Lin {L £() [(n=1) 20 |1-11~(1-1)]

1+56
- l (D n-11-(n-1)]} , (3.45)
1-56

where the slowly varying terms in £(1n) in the interval [1-6, 1+8]
are taken at n = 1. The first expression in Eq. (3.45) is bounded

for finite b. The second expression vanishes, since

lim (&n6-8) = 0 . 3.46
63 ( ) ( )

The integral on the right in Eq. (3.44) can be rewritten

b
P Ia[tl(n) + ty(M -1 J[(-D i1l - (-1) Jdn L (3.47)

where tl(n) and tz(n) are bounded and continuous over [a,b]. The
extra factor of fn|n1| arises from the singular derivative of the
dielectric function ei = £°(q) (see Eq. (2.116)). The integrand in

Eq. (3.47) 1is continuous at 7n = 1, since the limit of the leading

term as 1N * 1 exists:

L (D21 = 18 sm2s =0 (3.48)

e i AK S 5 S ik 1 s 8 e
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Hence, the Cauchy principal value for the integral over [a,b]

exists, and integrals of the form
Io £(m)nin-1idn

exist.

We can use similar arguments for an integrand of the form
f(n)lnzln—ll. After integration by parts, the function for the
integrated part becomes f£(M)[(n1)f?|n-1| - 2(n~1)mjn-1| +
2(n—1)]. This function vanishes as 7*l, and is bounded for finite
be. The leading term in the new integrand as mn°l becomes
tz(n)[(n-1)1n3|n—ll], where tz(ﬂ) is bounded and continuous over

[a,b]. The limit of this term as n+l exists:

] HMrD|irL] = WS sm¥ =0 . (3.49)

Hence, the new integrand is continuous at 7 =1, the Cauchy

principal value over [a,b] exists, and integrals of the form
Io £(n)in?|n-11dn

exis te.
Finally, we consider an integrand of the form f(m)(n-1)"1.
We divide the range of integration into three parts, as before.

The integrals over n = [0,a] and n = [b,®] obviously exist.
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For the integral over m = [a,b], we integrate by parts:

b b b
P/ f£(m)(n1)"ldn="P L f(n)nin1l] - P Ia £/(m)n]n-1jdn .(3.50)
a

The integrated term can be rewritten

b 1+6
lim {| f£(M)inin-1] - I £(1)fn|n-11} . (3.51)
§+0 a 1-8

The first expression in Eq. (3.51) is bounded for finite b, The

second expression vanishes, since
W8 (£(1)anb - £(1)md) = 0 (3.52)

The integral on the right in Eq. (3.50) can be rewritten

b
B/ [ey(mamimll + tp(ma?in-lijan (3.53)

where tl(n) and tz(n) are bounded and continuous over [a,b]l. We
have already established that the Cauchy principal value of an
integral over [a,b] with an integrand of the form tl(n)lnln—ll or
tz(n)lnzln-ll exists, Hence, the integral in Eq. (3.47) exists,

and integrals of the form

I: £(n)(n-1)"1dq

exist.

L o e AL

et et <0
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Hence, the Cauchy principal values of all of the singular

parts of Egs. (3.2), (3.3), (3.21), and (3.22) exist, and the

integrals in these four expressions exist.

C. The Basic Integration Routine

The numerical techniques were influenced by three basic
considerations. First, a relative error tolerance for numerical
integration refers to an entire expression, not just the integral
part. As discussed below and in Chapter 5, we require a relative
error téierance of 107" for each (r;V)-dependent expression, and a
relative error tolerance of 1076 for each V-dependent expression.
For a V-dependent calculation, taking the relative error of the
entire expression reduces the work of numerical integration since
the analytic part tends to be large. For some (r;V)-dependent
calculations, taking the relative error of the entire expression is
the only reasonable approach over certain ranges of r where the
analytic and integral contributions partially cancel. In practice,
the analytic parts are taken under the integral sign for a finite

interval of integration. We can write
b b A
A+ [ £(a)dq = [ [£(a) +laq (3.54)

where A is the analytic part.
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Second, the integration routine was chosen for general
reliability, not for specialized features. All numerical
integration was done with one basic program, employing adaptive
high-order Gaussian quadrature. We choose to transform the
integrals to remove any difficulties that the routine cannot
handle.

This process gives more valuable results than choosing
specialized routines to treat the integration difficulties
directly. The basic routine handled a variety of test integrals
dependably, returning solutions that were safely within the
required error tolerances. In addition the logic and coding in
this routine was traced and found adequate. This was not the case
with several more specialized programs, some of which performed
erratically and some of which contained logic problems. We choose
to sacrifice ease of programming for trustworthiness of results,

Third, the overall integration schemes, including the
methods of removing integration difficulties, were designed to be
handled efficiently by CRAY-1 computers. On vector machines such
as these, it is much faster to perform a large number of arithmetic
operations than to wake a small number of decisions. If we
transform a set of integrals so that all can be handlad in
essentlally the same way by the integration routine, we avoid
decision making during program execution. This is particularly
important for (r;V)-dependent expressions, where the routine must

evaluate thousands of integrals for each volume used.
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We describe below the details of the computer routine and
our treatment of the major integration difficulties.

The basic numerical integration program used is the
subroutine QAG, a globally adaptive integrator using pairs of
Gauss-Kronrod quadrature formulas for the integration rules. Rules
of varying degrees of precision can be chosen. The program also
contains provisions for detection of bad convergence and round-off
error« QAG 1is based on the routine AIND2% and is part of
QUADPACK,25 an integration subroutine package for the numerical
computation of definite one-dimensional integrals. The package
contains both double and single precision variants of QAG; we use
the faster single precision version. For CRAY-1 computers, single

precision gives ~ 14 significant figures.

l. Adaptivity

In a globally adaptive scheme, the interval of integration

is subdivided into a set of subintervals:
[xo, x1l, [xg, Xl 5 eeees [xn-l' x,] .

The subintervals will be large where the integrand is easy to
handle, and small where the integrand is difficult. The same
integration rule is used to estimate fxi+1f(x)dx over each
X.
i

interval. The results of the numerical integration, as well as the

results of the error estimates for the subintervals, are then

sunmed.
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An example of the interval bisection scheme used in QAG
will demonstrate this. We wish to integrate f(x) over the interval
[a,b]. We specify both a relative error tolerance and an absolute
error tolerance. As soon as either tolerance is satisfied, the
routine returns an answer for the integral and the error. In
practice, 1if we desire a relative error tolerance we set the
absolute error tolerance to ~ 0, and vice versa.

We first attempt to integrate over the entire interval. If
either tolerance is satisfied, the routine ends. If not, we divide
the interval into two equal parts and estimate the integral and the
absolute error over each part. We add the two integral
contributions, add the two errors, and decide if either tolerance
is satisfied. If not, we divide the interval with the largest
error estimate into two parts. This process repeats; the next
interval to be subdivided is always the one with the largest error
estimate. If neither tolerance can be satisfied, the routine
returns the current estimates for the integral and the error, plus
information about the kind of difficulty encountered. Such
abnormal exits are discussed below.

The primary advantage of an adaptive routine is economy in
the number of integrand evaluations required. The primary
disadvantage is inefficiency on a vector machine; the process of
intervalusubdivision requires decision making, and decision making
is costly. For the integrals necessary to determine the elastic

constants of sodium, the most important advantage of adaptivity is
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the ability to "throw" most of the error, and most of the
subintervals, into the awkward region around q = 2Zkg;. The adaptive
routine will also subdivide an interval to allow for a larger
contribution to the integral from smaller q, and will automatically
provide small intervals for rapid oscillations at large r. These
advantages outweigh the inefficiencies. The routine can be made
more efficient by choosing a set of subintervals and using this set
as a starting point for the integration. The particular set will
depend on the nature of the integrand and on the value of r. This
would reduce the number of decisions to subdivide. However, the

routine was fast enough to be economical without requiring this

modification.

2. Integration Rules

To estimate the error over each subinterval, we calculate
two different estimates of the integral over the subinterval. The
error is then taken as the magnitude of the difference between
these estimates.

We use n-point Gaussian quadrature for the first estimate

of the integral over each subinterval:

b
a k=1
where w, is the weight for point k of an n-point rule, and all Xy

are in the interior of [a,b]. This rule 1is exact for all

polynomials of class P2n_1.26
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We wish to perform a second evaluation of the integral over
the subinterval, hopefully a more accurate evaluation than the
firat. This second evaluation then becomes the best estimate for
the subinterval. A difficulty with Gaussian integration is that
the abscissas, {xk}, for any rule of order n are distinct from the
abscissas for a rule of any other order, with the exception of the
midpoint in odd-order rules.2® If we perform a second Gaussian
integration with a higher-order rule, we need a completely new set
of integrand evaluations.

Instead, we use a method developed by Kronrod.2’ For the
second evaluation of the integral, ntl new abscissas are added to
the original set of abscissas. The new abscissas are real, located
in the interior of [a,b], and are separated by the original n
abscissas. The new rule is exact for P3,+1 and hence is of higher
accuracy than the original n-point rule. Note that a 2nt+l-point
Gauss rule would be exact for P, ., and hence of higher accuracy
than a 2nt+l-point Gauss-Kronrod rule. This sacrifice of accuracy
is nutweighed by the saving of n integrand evaluations for each
sup:.uterval. For thousands of calculations of complicated
integrands, the Kronrod extension can represent a significant
saving in computer time.

The choice of n for the pair of integration rules (n,2n+l)
depends on two major factors. A higher-order rule requires fewer
interval subdivisions and is better suited to an integrand with

fast oscillations than a lower-order rule. A lower-order rtule

{
]
3
a
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helps to minimize round-off error. We chocse n

15; the
Gauss-Kronrod pair (15,31) represents a reasonable compromise
between higher precision and lower round-off error.

As noted above, the error for a subinterval is calculated
by taking the absolute value of the difference between the
application of the n-point rule and the 2n+l-point rule. We assume
that the latter rule is more accurate; this is not unreasonable if
the integrand is continuous over the subinterval, and if the
higher-order rule 1is not significantly contaminated by round-off
error. This is, of course, not rigorous. The method is actually a
sampling process, since the error tolerance is calculated from a
finite sample of points.28

To evaluate the integrals at the beginning of this chapter,
we need to use the error estimates returned by the integration
routine. However, we can obtain iﬁformation about the reliability
of these estimates by using the routine to evaluate test integrals
whose solutions are known in closed form. The test integrands and
intervals can be chosen to mimic the general form of the actual
integrals in Egqs. (3.1)~(3.3) and (3.18)-(3.22) over various ranges
of gq. The actual errors in the computer calculations of the test
integrals were always at least an order of magnitude smaller than
the error estimates returned by QAG. Calculation of the actual
integrals necessary to evaluate the elastic constants, using
relative error tolerances varying from 10™" to 1078, also indicated

that the error estimates returned by QAG were over an order of
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magnitude too high. This indicates that the integration routine is
reliatle, albeit considerably too accurate for the required
tolerances. For our estimate of the absolute error in an integral
evaluated by routine QAG, we will take 10% of the error calculated
by the routine. This represents an upper bound for the numerical

integration error.

3. Abnormal Exits

As noted above, the program will stop evaluating an
integral upon encountering certain integration difficulties, and
will return estimates for the integral and the error, along with
information about the kinds of difficulties encountered. These
estimates are less reliable than those where the program stops when
the tolerances are satisfied. The routine provides three kinds of
abnormal exits, in addition to the normal exit where either the
absolute error or the relative error is satisfied.

The first abnormal exit, for bad integrand behavior at a
point of the integration range, is not a problem as long as the
integrand is sufficiently smooth. This exit only occurs when
interval subdivision has proceeded wuntil the spacing of the
abscissas X for the 2a+l point rule is too small to resolve.
Hence, we require an integrand to be continuous over the interval
of integration. There should be no sharp peaks and, preferably, no
strong derivative singularities on the interval of integration. In
addition, any singularity off the interval of integration should be

sufficiently distant or weak. The transformation of the integrals
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in Eqs. ¢3.2), (3.3), (3.21), and (3.22) to fit these conditions is
discussed below. In practice, we only require an integrand to be
bounded and plecewise continuous over the interval of integration,
but the positions of any jump discontinuities must be known. QAG
can then be directed to subdivide the interval at these points, and
the jumps present no problem. If the interval of integration is
not divided at jump discontinuities, QAG tends to be very
inefficient, with an increased risk of an abnormal exit for bad
integrand behavior or for an excessive number of integrand
evaluations.

The s=2cond abnormal exit, for an excessive number of
integrand evaluations, is not a problem as long as the integrand is
sufficiently smooth, and as long as the interval of integration is
not too large. The maximum number of subintervals is set to be
large enough so that weak derivative singularities can be 1located,
and small enough to provide an abnormal exit before too much
computer time has elapsed on any one integral.

The third abnormal exit, for round-off error, is not a
serious problem as long as care is taken when specifying error
tolerances and the orders of the integration rules, and as long as
coding designed to minimize round-off 1s wused to specify the
functional form of the integrands. An abnormal exit will occur if
both the error estimate and the integral estimate over a

subinterval do not cnange significantly upon many repeated
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subdivisions. This behavior is typical of integrals with
cancellation of positive and negative areas.

An abnormal exit for round-off error will also occur if the
error estimate repeatedly increases after a large number of
subdivisions has been made. It should be noted that a certain
amount of round-off error can accumulate even with a normal exit.
This underscores the necessity of checking the reliability of an
integration routine with test functionms, as well as comparing the

results of the routine for different tolerances.

D. Integration Difficulties

In order to use the integration routine QAG, we require a
finite interval .o subdivide. However, the integrals in
expressions (3.1-3.3) and (3.18-3.22) all possess an infinite upper
limit of integration. We handle this problem by dividing the range
of integration for each integral into a finite interval, q = [0,b],
and a semi-infinite one, q = [b,«]. We will discuss first the
numerical techniques for handling the incegrals over the finite
range. For now, we take b > 2kg;  this confines all of the
singularities and derivative singularities to the finite part of
the interval of integration. We will discuss the choice of b 1in
more detail when we treat the problems associated with integration

over the semi~infinite interval, q = [b,=].
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1. Singularities
For adaptive n-point Gauss-Kronrod quadrature over a finite
range of integration, the greatest accuracy can be achieved with
the smallest number of integrand evaluations if several conditions
are met. The integrand should be continuous (or bounded and
piecewise continuous) over the interval of integration. The first
2n derivatives should be bounded over the interval of integrationm,
and there should be no integrand singularities in the complex plane
near tne interval of integration.26 If any of these conditions is
not satisfied, obtaining the desired accuracy will be more
difficult.2® If the integrand is not Yt»runded, obtaining the
desired accuracy may be impossible. We note that none of the
integrands in Egs. (3.1-3.3) and (3.18-3.22) satisfy the conditions
above for the interval of integration {0,b]. There are
singularities near the intervair of integration, as well as a
derivative singularity at q = 2k; for each integrand. 1In addition,
several of the integrands are unbounded at q = 2kg. We treat each
of these problems below.
None of the off-interval singularities represents a
significant problem. Each integrand contains two poles on the

imaginary axis, at q = ¥ 2i, from the terms in Q of the form
(1+0292)72 = (1 +q%/4)72 . (3.56)

In addition, the integrands in Eqs. (3.2), (3.3), (3.21), and
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(3.22) contain branch points at n=-1, from the 2n{mtl| and
in?|w+l| terms. None of these singularities is close enough to
q = 0 to have a significant effect on the integrand at small q.

The on-interval derivative singularity also does not
represent a significant problem. Each integrand contains a weak
logarithmic derivative singularity at n = 1, from the (n-1)2n|n-1|
term in the dielectric function, ¢€(q). We can use the
(15,31)-point integration rules for an integrand of this type over
an interval containing the singularity; only a modest number of
subdivisions is necessary for good accuracy.

The on-interval singularities, however., do represent a
significant problem. All of these singularities result from taking
volume derivatives of the dielectric function, and the integrands
containing these singularities are wunbounded at n =1 (q=2kf).
Equations (3.3) and (3.22) contain the strong singularity, (-1)71,
and the weak singularity, m2 -1y, Equations (3.2), (3.3),
(3.21), and (3.22) contain the weak singularity, fnjm-1].

Ordinary Gaussian quadrature tends to produce large errors
for singular integrands, even if the singularities are weak.?2? If
any of the abscissas used in the quadrature falls on the
singularity, of course, the computed integral will diverge. The
errors will tend to be smaller for an adaptive routine, but even if
th; abscissas manage to "miss" the immediate region around the
singularity, which is possible for a single integratiom over a

logarithmic singularity, the routine will be inefficient.
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In order to use adaptive Gaussian quadrature, we require
continuous integrands (or bounded, piecewise—continuous integrands,
as discussed above). Further, we require bounded, or at most,
weakly singular first derivatives. Briefly, the procedure is as
follows. We first transform each (7m~1)"! integrand singularity by
integration by parts. The resulting integrand will contain only
gni.1] and f2|n-1] singularities (see Egqs. (3.50-3.53)). We then
"subtract out" the singularity3? over a finite interval for each
divergent term 1in our integrands. The result 1is a set of
continuous integrands with weak singularities 1in the first
derivatives, plus some analytic terms.
For the (n-1)"! term in Eq. (3.3), we integrate by parts
over the entire range of integration, with n = q/2kf as the

integration variable:

m4kfva Q EZT] © 4kaa QEZT]
/ = dn =P 5 | m-1i
0 3 D (ntl)(n-1) o 3 D< (l+n)
-P fm Ay [f5—"——] min-1lidn . (3.57)
0o 3 fadn D2(n+1)
The integrated part in Eq. (3.57) can be rewritten
lim { ©4 Q &7 1+6
kev -
03 “Fla 2 (ppy | I - Cminli} , (3.58)

where the slowly varying terms are taken at n =1, and C(l) is a
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constant. The first expression in Eq. (3.58) vanishes, The second
expression also vanishes, by Eq. (3.52). The integral on the right

in Eq. (3.57) can be rewritten

P [ 2kg(f7()mimil + £g(q)m?In-11)dn (3.59)
0
where
V_ e 2 2 L
2 a2 1 2y (B q B q*
£00) = 3 2 1 PN Gz m s T e ek dys)
V_ e
2 a2 Q L
T3 DT (n+1 4)
2782 9 [puqpr4ev2 - 6v,e,(1-1)2 11] . (3.60)
3T I [2+4Y+4€ Y2 - 6V, ep(1-Y)fn|nHl| ] .
and
v2e2
fglq) = 4—;3 2 3 (1-Y) . (3.61)
D3(mtl)

The functions f7(q) and fB(q) are bounded and continuous over
0 < n <=, and their leading terms at large m vanish faster than
=3

n as mn*=., By Eqs. (3.44)-(3.49), the integral in Eq. (3.59)

exists.
We can now rewrite the integrand in Eq. (3.3), replacing

the strongly singular (n-1)"! term with weaker logarithmic

singularities. This gives
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*k o
o
N— - 8w+ {£3¢a) + (£4(q) + £7(a)) fnin-11
fc(q)
> 2 . 3.62
* o (Tha In-1] }dq (3.62)

Note that the new lnzln-ll term is continuous at mn =1, by

Eq. (3.48). The (n-1)"! term in Eq. (3.22) can be treated in the

same way. This gives

o** +% 6% =2 j: {[f3(q) + (f4(q) + £7(q)) min-1|

f(a; :
5 2 siu qr
+ = — (n-1)m¢|-1
(r+l) (1) l 1] qr

2 _n _ gin gr
* 3 [£,(@) + g £5(q) 171} ] (cos qr p Jlq . (3.63)

We still need to transiorm the singular terms in
Eqs. (3.2), (3.21), (3.62), and (3.63). These singularities are
all of the form f(n)fn|mn-1| and can all be handled in the same
fashion, We 'subtract out" each of these singularities on a part
of its finite interval of integration that includes the
singularity. The general method for '"subtracting out" a
singularity is to replace a singular integrand f{x) with the
integrand f£(x) - g(x). The new integrand should be continuous with
as many bounded derivatives as possible. The integral of g(x),

which should be known in closed form, is then added.




82
We take f(x) = £f(n)inin-l1}, g(x) = f(1)|n-11}, and
Ygubtract out" the singularity on the interval n = [0,a}, where

a +» l. This gives

b a a
IO £(n)tn|n-1ldn = IO [E¢n) - £(1) Janjn-11dn + PIO £(1)Anin-1idn

b
+ [ f(Min-1ll|dn . (3.64)
a

The first integrand on the right of Eq. (3.64) is bounded at its
limits of integration, and continuous over [0,a], since, from the

discussion following Eq. (3.47),

LR (f(m-£(D1tmin-11 = £(1) 3P [(DAaim-1112aim-11 = 0 .(3.65)

The second integral on the right has the elementary solution
f(1)[(a-1)&n(a-1) - a]. The third integrand on the right is
bounded and continuous over n = [a,b], since there is no
singularity on its interval of integrationm.

The third integrand does have an off-interval singularity
at n = 1. From the previous discussion of the effects of similar
off-interval singularities, we choose a = 2; the singularity at
N = 1 should then have virtually no effect on the integration. For
the purposes of integration over g, we note that Zkf ~ 1 for the
range of volumes used, and n = 2 corresponds to q ~ 2. Hence, we
choose the interval q = [0,2] to subtract out the singularity.AJWe

can now rewrite each of the singular integrands in Eqs. (3.2),

e e i e
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(3.62), (3.21), and (3.63) as a piecewise continuous integrand with

a jump discontinuity at q = 2, plus an analytic term. We have

Q*
N = gz(v) + fz(zkf)P(z)
+ I {61 + (5500) - £kpu@) i lildg (3.66)
Q;*
T = ga(W) + (£, ()t £7(2kg)IP(2)

= fc(q)

2
+ fo {f3(@) + == (rhm?iml

+ [(£,0q) + £4(a)) = (£4,(2kg) + £7(2ke)) (@)1 nin-1ifdq  ,(3.67)

sin Zkfr
kfr

* .
0 = £,(2kg) Sin qr

p2) +2 [ {f @) =

sin 2kcr

- £(2k)Q) ———) Minlilda ,  (3.68)

kfr

sin qr

+ (£2(q) e

*k . sin 2kgr

¢ +%’ ¢ = (fQ(Zk'f) + f7(2kf)) _—E;:———— P(2)

2 (2K )( sin Zkfr
+—=f cos 2ker = ——— P(2
3 20TKEIL008 T Dgr ) D

@ fc(q)
+ 2 fO{[fB(q) +

in qr
1 an 1 §in qr
o (1) 201y ] -

sin ur)

+ < £,(q) (cos qr -
qr




84
in 2ker
sin qr 5 £
+ [(£4¢Q) + £7(a)) —Eﬂ— - (£,(2kg) + £5(2kg) JuXq) ——Z—k—f-r——]
nf,(q)
x in in-li +—§- [——T%i:l—- (cos qr -51—3;95)
£f,(2ke)u(qg) sin 2ker
2 £ f
-— 2ker - n 1} 4d . 3.69
5 (cos 2kgr T }Janin-1] }dq (3.69)
where
l-kf
P(2) = (2 - Zkf)kn -1 -2 , (3.70)
ke
and
w(q) = 1 for q <2 , (3.71)
w(q) = 0 for q > 2 . (3.72)

It should be noted that there are removable (or apparent)
singularities at q = 2kg (7ml) for any integrand of the form
[f(n) - f(l)]xnln-1| as well as for any integrand containing the
factor €]~ In these cases, the limit of the integrand as q + 2Zk¢
exists, but the An[n-1| factors diverge. The limit of the
integrand 1is taken only if an abscissa of the integration rule
falls on q = 2k; * 10714,

There are also removable singularities at q =0 for all
integrands, since €1» &, etce, diverge at this point. This
presents no problems for two reasons. First, Gaussian integration

does not wuse interval endpoints as abscissas. Second, the
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integrands are quite smooth for q = [0,0.5], even for large r.
This interval is never subdivided so finely that machine accuracy
for q near zero is a problem, and it is therefore not necessary to

specify a limit as ¢ + O in the integrand evaluation routines.

2. Infinite Upper Limit of Integration

The integrals in Egs. (3.1};“”w(3.18)-(3.20), and
(3.66)-(3.69) are all amenable to adaptive integration if the
semi—-infinite range of integration [0,=] is replaced with a finite
range [0,b]. This leaves the problem of integration over the
remaining semi-infinite interval [b,=]. The method of integration
over the semi-infinite range depends on the nature of the
integrand; the nonoscillatory V-dependent integrals and the
oscillatory (r;V)-dependent integrals must be handled differently.
In the former case, the semi-infinite interval can be mapped onto a
finite interval, using a change of variable. In the latter case, a
series of integrations over a finite part of the semi-infinite
interval can be used to extrapolate the value of the integral over

the entire interval.

a. V-dependent Integrals. We treat the simpler case of

the V-dependent integrals first. We make the change of variable?6
t = b/q (3.73)

for the interval [b,=»]. This gives
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5 £R) ar . (3.74)

® 1
[, £a)da = | .

0

The transformation provides a finite interval for the integration
routine. The transformed integrand is bounded and continuous over
the interval of integration for b > 2kf. We show first that the
iategrand is bounded at =zero (it is certainly bounded at 1 for
b> Zkf). The leading term in the integrand at large q goes as
q"%tn q for Eq. (3.67), and as q % for Egqs. (3.1) and (3.66).
Hence, the leading term in each transformed integrand goes to zero
faster than t, as t-30. The transformed integrands are also
continuous, since f(q) is continuous for q > 2ke. Hence, the
transformed integrals exist and are suitable for evaluation by QAG.

For efficient numerical integration we choose b large
enough so that the magnitude of the integrand £(q) is monotonically
decreasing for q > b, For all of the V-dependent integrals, b > 7
satisfies this requirement. Ideally, b should be chosen to
minimize the combined number of interval subdivisions for q = [0,b]
and t = [0,1]. We find that b = 8 gives reasonable results for
each of the three V-dependent expressions.

b. (r;V)-dependent Integrals. Evaluation of the (r;V)-

dependent integrals over the interval [b,=] preseats a more
difficult problem. These integrands contain sin qr and cos qr
terms, with r between 5 and 27. The change of variable described

above 1is 1in gereral not suitable for such oscillatory integrands.
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Instead, we transform each integral over [b,=] to an infinite
series, and speed up convergence with the Euler transformation.?26

To obtain an infinite series, we note that an integrand

which oscillates around zero contributes alternating positive and

negative areas to the integral. We can treat these areas as terms

in an infinite alternating series and sum the series. An integrand

containing both sine and cosine terms can be divided into two

integrands; there will then be two such series. For large q, the

leading terms in the (r;V)-dependent integrands go as q" 3sin qr

(3.20), q"Ycos qr (3.19 and 3.69) and q °sin qr (3.18 and 3.68).

‘Hence, the resulting infinite series will converge.

We set the minimum value of b such that the magnitude of
the nonoscillatory factor of each integrand is monotonically
decreasing for q > b; the error in the series sum can then be taken
as the magnitude of the first neglected term. As an estimate of
the sum of the infinite series, this process gives very poor
results for the (r;V)-dependent integrands, since the infinite
series converge very slowly. For b ranging from 15 to 25, and for
alternating series of 5-10 terms, the error is of the order of the
sum itself. This is not a serious problem for small r (r ~ 5-10)
for all of the (r;V)-dependent integrals except Eq. (3.20), the
uncertainty in the sum of the infinite series is usually much
saaller than the numérical integration error. For larger r,
however, the oscillations 1in the finite interval make the

contribution of the tail of the integrand relatively more
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important. For the slowly converging:integrand in Eq. (3.20), the
corntribution of the tail of the intégrand is of the same order as
the value of the integral over [O,b]ifo;:b > 10. The tail of the
integrand 1is also important in caseé where the integral over [0,b]
and the analytic part of the expression tend to cancel.

To speed up convergence of the alternating series, we apply
an Euler transformation. The formal transformation can be

written26
uO—ul+u2-"""’ =_;‘UO"I]‘;‘AUO+%A2 UO“-..--, (3-75)

where

Au0=u1-—u0 >

A2 uy = A(Bug) =uy - 2uy +uy , (3.76)

etc. If the original series on the left of Eq. (3.75) is
convergent, it can be proved that the transformed series on the
right is convergent, and that both series converge to the same
value. This transformation is particularly convenient for the
(r;V)~dependent expressions; the transformed series converges much
faster than the original series for all of these integrals.

In general, the slower the original series converges, the
faster the transformed series converges and the more accurate the

extrapolation becomes.?® In order to improve the accuracy of the
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extrapolation we integrate over five loops of the sine or cecsine
function (Aq = 5 ®/r) for each term of the series. This large
interval gives smaller differences between series terms than a
small 1interval containing only one loop per term. In additiom, an
interval containing five loops requires no subdivision by QAG for a
(15,31) point rule and a relative error tolerance of < 1077,

We can also 1mprove the accuracy of the extrapolation by
increasing b. 1In this case, the accuracy of a sum of n terms of
the original series also improves, but the accuracy of an
extrapolation using a linear combination of these n terms improves
much more quickly.

We take the extrapolation error to be the magnitude of the
last term in the transformed series. This guantity tends to be
somewhat larger than the actual error, and can serve as a cautious
estimate of the uncertainty in the extrapolation.

For efficient extrapolation, we choose b large enough so
that the magnitude of the nonoscillatory factor of the integrand is
monotonically decreasing for q > b. For all of the (r;V)—dependent
integrands, b > 7 satisfies this requirement. We alsc find that
for r >4 and b > 15, extrapolation wusing 2-20 terms of the
transformed series pgives better accuracy than merely summing 2-20
terms of the original series. We therefore choose b =16 and
extrapolate wusing the second through the tenth terms of the

alternating series. The first term, which is simply added to the
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extrapolation sum, 18 the integral from b to the nearest node of

the integrand on [b,=].

3. Round-off Error

Evaluation of the (r;V)-dependent expressions presents 2
other noticeable problem. These expressions involve only the
effective poutential, ¢(r;V), and its derivatives with respect to r
and V. From Fig. 3, it can be seen that ¢(r;V) is oscillatory with
respect to r, with several nodes between r = 5 and 27. Each of the
four other expressions is likewise oscillatory.

Near any of these nodes there will be considerable
cancellation of positive and negative areas for the integrals.
This is a definite source of round-off error, as discussed above
under abnormal exits. We can minimize round-off error, of course,
by requiring as large an error tolerance as possible. We can also
accept a few isolated occurrences of round-off error near the
nodes, since the absolute error will be very small.

The general procedure is merely to identify, during
integration program execution, any cases where the relative error
tolerance is not satisfied due to round-off error. These cases can
be examined later. For a relative error tolerance of 10~ %, we find

that round-off error is not a significant problem.
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E. Numerical Integration Proc~dure

We can now summarize the complete integration procedure.
The three V-dependent expressions that we need to evaluate are
given by Egs. (3.1), (3.66), and (3.67). The five (r;V)-dependent
expressions are given by Egqs. (3.18)-(3.20) and (3.98)-(3.69). The
factors g;(V), h;(r), and P(2) are given by Eqgs. (3.4)-(3.6),
(3.23)-(3.25) and (3.70), respectively. The factors fi(q) are
given by Eqs. (3.7)-(3.12) and (3.60)-(3.61); the individual parts
of the f;(q) are given by the equations following Eq. (3.12).

We divide each interval of integration into a finite and a
semi-infinite part, and take all of the analytic parts under the
integral sign for the finite interval, as illustrated in

Eq. (3.54). This gives, for example, for Eq. (3.1),

b QEI gl(V) =) QEI

IO [T‘l' b ] dq + fb —5— dq . (3.77)

The extension to the other expressions is obvious.

1. Procedure for V-dependent Integrals

For each V-dependent expression, we take b = 8 and apply a
change of variable to the integral over q = [b,=], as given in
Eqs. (3.73)-(3.74). The transformed integral now has a finite
range of integration, t = [0,1]. We require a relative error
tolerance of 10~6 for both the integral over q = [0,8] and the

integral over t = {0,1]. Since the value of the integral over
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[0,8] dominates each expression, the relative error for each
expression will be less than 1076. Evaluation of all three
expressions for a given V takes only a fraction of a second of
computer time oun the CRAY-l, and entails no integration

difficulties for the range of volumes given in Eq. (3.30).

2. Procedure for (r,V)-dependent Integrals

For each (r;V)-dependent expression we take b = 16. For
the [16,«] interval (but not for the finite interval) we divide any
integrand containing both sine and cosine terms into two
integrands.

For each integrand, we generate the first ten terms of an
infinite series. For an integrand containing a sin qr term, we

integrate over the intervals

q=[l6,b"], [b",b" + 5n/r],..., [b" + 40m/r, b’ + 45n/r] , (3.78)

where b’ is the first node of sin qr on the interval q = [16,<].
We extrapolate the value of the infinite series by taking the Euler
transformation given in Eq. (3.75), where ug corresponds to the
second term of the series in Eq. (3.78).

For example, for Eq. (3.18) we then have

16
o= [ 2

Q€) sin qr hl(r) b
0 +
D

qr 16 ] dq + flﬁ

ZQEI sin qr d
D qr 1

+ extrapolation sum , (3.79)
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where the extrapolatioh sum is the sum of the first nine terms of
the transformed series. This procedure is easily extended to an
expression containing both sine and cosine terms in its integrand.

We require a relative error tolerance of 1lu™* for each
(r;V)-dependent expression; two iterations ¢f the integral over
[0,16]) suffice for CAG to return a calculated error estimate that
satisfies this tolerance, except for a few isolated cases of
round-off error. We apportion the error tolerance among the
various integral contributions as follows. For the first iteration
of the integral over [0,16], we require a relative error tolerance
of 8.5%1075, For an integral containing only a sin qr term, we
require a relative error tolerance of 4.0x10”7 for the integration
over [b,b"] and for each integration over [b’+#mn/r, b’+(m+5)n/r],
where the values of m are given in Eq. (3.78). We then take the
extrapolation error to be the magnitude of the last extrapolation
term. For an integral containing both sin qr and cos qr terms, we
require a relative error tolerance of 2.0x10”7 for each integral on
the range of integration [b,=].

If the relative integration error calculated by routine QAG
for the entire expression is greater than 10 %, and round-off error
is not present, we repeat the integration over ([0,16]. For this
second iteration, we require an absolute error tolerance Eab

S:

-]
Eaps = 10 i fo f(q)dq] - err [16,=] |, (3.80)
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where the integral in the first term is the previocus result for the
(t;V)—dependgn;:egppgssiqn, and err [16,«]-1is the total calculated
éft0t“ ovet“tﬁetséhi-infiniteirange. Evaluation of all five (r;V)-
dependent expressions for a given V and r takes between 0.3 and 0.6

seconds on the CRAY-1, with minimal integration difficulties.
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CHAPTER 4
MOLECULAR DYNAMICS PROCEDURES

We now consider the details of our molecular dynamics
simulations. We wish to calculate the pressure and the adiabatic
elastic constants for bcc sodium at each of the temperatures given
in Table I. We first establish an appropriate system of units for
these calculations. We then discuss the setup of the MD runs and

the interpretation of the MD output.

A. Units
As discussed 1in Chapter 2, we use atomic units for length

and energy. From Eq. (2.4), we have, for length in Bohr radii arnd

energy in Rydbergs,

ag = 1, (4.1)

e?/2ay =1 . (4.2)

We take the mass of a sodium iom, Mgy, as unity:

Mg =1 . (4.3)

The natural time vnit is

tO = ao (——ez_) , ’ (4-4)
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which correspeonds to =~ 7x10715 seconds. The temperature is

measured in Kelvins (K), and the pressure in Ry/aa.

B. Molecular Dynamics Setup

The computer simulations were performed using the .
continuous potential MD routine MOLDY developed at Los Alamos
National Laboratory. Principal collaborators for this version of
the code included G. K. Straub, S. K. Schiferl, B. L. Holian,
J. R. Beeler, and J. D. Johnson. We have already described this
code’s algorithms for integration of the equations of mction and
implementation of periodic boundary conditions. We discuss below
the initial setup of an MD routine for the calculation of pressure
and elastic constants.

For all MD runs, we use a cubic computational box. For a
typical number of atoms N = 686, this gives a hox length of & = 7a
for bee structures, where a is the lattice parameter. We use the
experimental volumes (in terms of Va' the volume per atom) for bcec
sodium at atmospheric pressure for all of our calculations. We use
the thermal expansion data of Adlhart et ai.3! to obtain volumes
for the temperature range 300 K-371 K; we use the thermal expansion
data of Siegel and Quimby32 to obtain volumes for the temperature
range 80 K-300 K. Both sets of experimental data were scaled to
agree with the lattice parameter measured by Feder and Charbnau33
at 298.15 K. We calculate the volume for becc sodium at 0 K by
extrapolation from the above measurements. The volumes and numbers

of atoms used in our computer simulations are 1listed in Table I.
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The static lattice calculations with N = 43904 were performed for
the purpose of investigating the effects of varying the range of
the effective potential.
To calculate the ensemble averages in Eq. (1.20) and
Eqs. (1.24)-(1.26), we set up the MD routine to compute the
following mechanical quantities for each time step At: Eyq, E ¢*,
Lose, To'ze, Lo, TG + 20, Lot an
E (¢"—¢l)2292, where Eygy is the total kinetic energy of the ions in
the computational box. The sums are taken over all distinct pairs
of indices K,L: K is taken over all ions in the computational box;

L is taken such that the distance
gL = lIg - ILl (4.5)

is within the range of the effective potential, and L # K. The

routine will also calculate the total mechanical energy Ep:

Ep= Egp + L ®(r,V) = H - (V) . (4.6)

The MD routine must be supplied with a table of all five
(r;V)-dependent expressions (see Chapter 3) for each volume used.
The routine is then directed to interpolate from the table to find
the necessary values of the expressions. We choose a linear
interpolation scheme, which requires a minimum number of operations
per look-up. We discuss below the choice of the interval, the

minimum r, and the maximum r for the table.
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The interval, Ar, is chosen to be small enough so that the
effects of interpolation errors on any pressure or elastic constant
calculation can be ignored (see Chapter 5). We take Ar = 0.01; the
relative interpolation error for any (r;V)-dependent expression is
then less than 2x1073,

We choose a minimum r, Toins tO indicate an energetically
unlikely configuration for the MD system. If the MD routine
encounters r < r

min» @& Wwarning message will be sent and the

particular run can be examined for errors. We take

¢ (rpinsV) ~ 10 <Egy/B> . (4.7)

As discussed below, the initial conditions for am MD run are chosen
so0 that the equilibrium time average of the ion kinetic energy
differs by less than 10% from the initial ion kinetic energy.

Hence, we can select Toin according to the desired temperature T,

and
¢ (rmin;V) ~ 17 kT . (4.8)

The values of Tnin used in these simulations are given in Table I.
For the bec static lattice calculations at V, = 254.921 ag, we

choose Tpin = 6491 ag, since the nearest neighbor distance for the

perfect crystal is approximately 6.918 ag.
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The maximum r, r

max determines the range of the (r,V)-

dependent expressions. If the MD routine encounters r > r_ . the

x?
valuas of all of these expressions are taken to be zero. The value
of Crax is chosen to satisfy several criteria. First, by the
nearest image convention (see Chapter 1), Toax < /2, where & is
the length of the computationai cell. Second, the possible values
of Coax are limited to zeros of the force function - ¢'/r, so that
the force between two'particles as they move out of range passes
smoothly to zero. Th'rd, r .. should be large enough to minimize
the errors in the simulation due to the effects of *his finite
cutoff. We choose Toax to be the fourth node of =-¢'/r following

the initial well (see Fig. 4). The errors due to use of a finite

cutoff are discussed in Chapter 5. The values of Chax are given in

Table I.

The MD time step At should be small enough so that the
total energy H (or the total mechanical energy Ep = H=- V)) is

conserved, and so that the fluctuations of Z¢

x? z¢xy’ etc., are

adequately sampled. To calculate a reasonable time step for energy
conservation, we take ~ 1/50 of the characteristic oscillation
period TO of a sodium iom in the MD system. Swanson?? estimated
To ~ 74 ty; this gives At ~ 1.5 tg.

To calculate a reasonable time step for adequate sam.ling
of the fluctuations, we take ~ 1/50 of the characteristic time AtF
for the fluctuations in z¢xx' We define Aty to be the average time

between local maxima (or local minima) for a mechanical quantity in
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an equilibrium MD system!® (see Fig. 5). For )¢, at T ~ 298 K and
V, = 266.17 a, we find Otp to be ~ 20 ty; this gives At = 0.4 tg.

We find the time step At = 0.4 ty to be satisfactory for
our MD runs. For this time step, there is no long term trend in
the total energy, and the total mechanical emery. Eq fluctuates by
only a few parts in 10°. Hence, the total energy is conserved to
within the accuracy of our simulations. We will discuss the
problems of fluctuation sampling in Chapter 5.

We begin an MD trajectory by specifying N, Va’ At, and a
set of 1initial positions and velocities for the ions. We choose
initial conditions to approximate the desired equilibrium state;
relaxation to a steady state should then occur quickly. The
resulting system should have cubic symmetry and approximately the
correct temperature for the given volume.

These 1initial conditions take the form of a Maxwell
distribution of the velocities of the ions, and a Gaussian
distribution of the displacements of the ions from a perfect bcc
latti-e. For each component of velocity a set of values is
assigned from a random Gaussian distribution with a rms width of
(kT)I’Z. For each component of displacement the Gaussian

distribution has a rms width of (uiT)l/z, where

(ufp )1/2 = B/, (4.9)

and By is the thermal Debye parameter.3"
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In practice, we generate an initial velocity distribution

so that the desired temperature is ~ 95% of the wvalue of the
parameter T in the width of the distribution. We then integrate
the equations of motions for 250 time steps but rescate ihe
velocities of the ions at each time step so that the total kimetic
energy remains constant. After 250 time steps the scaling ceases
and the system 1s allowed to relax. After a few hundred more time
steps the kinetic energy usually reaches a steady state and the
temperature of the system can be estimated. The trajectory can be
restarted with slightly different 1initial conditions 1if the

estimated temperature 1is not sufficiently close to the desired

value.

C. Interpretation of Molecular Dynamics Data

We now consider the evaluation of MD time averages for the
mechanical quantities in Eqs. (1.20) and (1.24)-(1.26). We follow
the procedures given in Schiferl and Wallacel® for determining
equilibration times and for establishing confidence limits for MD
ensemble averages; an extension of these methods is wused for
evaluation of fluctuation averages. A brief outline of these
procedures and their application to calculations of the pressure
and the elastic constants is given below. Tests for symmetry of an

MD system will also be described.
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l. Confidence Limits for Ensemble Averages

As discussed in Chapter 1, the output of an MD run for a
mechanical quantity A consists of values of A calculated at each

time step:

Ap = ACLAE), 1= 1,2 cuuun (4.10)

These "raw data" are highly correlated, and not quite normally
distributed for our MD systems. To obtain data which are normally
distributed and approximately random, while preserving the weight
function for time averages of A(t), we construct coarse-grained, or

time-smoothed data. The series of points Ai’ over a time interval

T

mnAt, is divided into sequential nonoverlapping segments k,
k =1,2, +eeeson. Each segment has m points, and the mean and
variance of the A; for segment k are denoted a, and Sé,
respectively. The n values of a, constitute a sample, drawn from a

population with mean <{A>. The sample mean and variance are A and

sﬁ, respectively:

zl a, (4-11)

2.1 (ay - A2 . (4.12)

1f the sample passes statistical tests for normality, for lack of
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long term trend, and for randomness, Wwe can assign confidence

limits for the ensemble average <A>:

(4.13)

where « is the 0.975 fractile of "Student’s" t distribution with
n~1 degrees of freedom. For n » 24, @, ~ 2.

We need to rewrite the equations for the pressure and the
elastic constants in a form more suitable for the sampling

described above. From Chapter 1, we have

P=0p(R) +Kp+Lp , (4.14)
€, =01 (®) + Ry +Ly +F + X 4K, (4.15)
C3) = 0,p(Q) + Ly +Fjp + X +X, , (4.16)
Cag = 044(Q) + Kyp + Ly & (4.17)

The strictly volume-dependent terms, Oa(Q), are given by

0p( = - /v, (4.18)
o, (@ = (@ -5 yv (4.19)
0,(2 = (@ +25v (4.20)

04,(® = - /v . (4.21)

The kinetic energy terms, K,» are given by
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KP = NkT/V , (4.22)
Ky = 2NKT/V (4.23)

The linear terms, La’ are given by

Lp = = <o . >/V (4.25)
Ly = <D0+ 2 0™ - ot + DRy L 26
Ly, = <L [o* +% 0%+ "+ (4>"—¢')£§£§]>/v ,  (4.27)
Lyg = < [-0" + (o' -0)22e2D/v (4.28)
where
b= 0" +0/3 . (4.29)

The fluctuation terms, F,» are given by

Fip = = B <[ o = <L o211V (4-30)
Fig = = B<] 0y = <L 02lll 0y - <L o> Piv ,  4.31)

Foo == B <[] 0y - <L 0> 1DV, (4.32)

where
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B = (kT)"! . (4.33)

By symmetry, we can rewrite F12 as
\ 1
Fjp=-8 <-:2l [} o, = <L 00212 - 3 [ 6y = <L 02 1D/V o (4.34)

We obtain smaller uncertainties for the ensemble averages of the

fluctuations in C;, if we use Eq. (4.34) instead of Eq. (4.31). We

can also rewrite F44 as
Fuy = — B <[] ¢xy]2>/v , (4.35)

since the ensemble average (2 ¢xy> = 0 for a symmetric system. We
will discuss tests for symmetry below.

The correction terms, X,, are given by

_ _ NKT (ye-1)2
X, ~ o (4.36)
NKT
X, ==~ v (4.37)

where X, is the ensemble correction, Xy 1s the isothermal-adiabatic

correction, Y is the Griinelsen parameter, and c¢ is given by

Eq. (1.38).
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We: begin our evaluation of an MD run by determining th~
equilibration time for the kinetic energy, plus confidence limits
for the temperature. Using the procedure given above, we
coarse-grain the kinetic energy, Eyp. If a coarse-grained sample
of n values, cver a time interval 1, passes the statistical tests

referred to above, we can assign confidence limits according to

T = _2..._ [%- ansK]

3Nk * /a > (4.38)

where E;; is the sample mean, and sé is the sample variance. The
raw data points in this interval T can be written A(te + 1At),
i=0,1,2 ...., where the kinetic energy equilibration time, tos
measures the time elapsed since the beginning of the trajectory.
We will use Eq. (4.38) to define the temperature of the MD system,
and we will wuse only that portion of the run with t > t, for

equilibrium calculations.

To determine confidence limits for the linear terms, L,, we
coarse-grain the bracketed expressions in Eqs. (4.25)-(4.28). If a
coarse—-grained sample passes the statistical tests, we proceed és
in Eq. (4.13).

To calculate confidence limits for the fluctuation terms in
Cll and CIZ’ we will need to coarse-grain two mechanical quantities

over the same time interval. We demonstrate this procedure for the

fluctuation average in Fi1»
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We first coarse-grain the quantity 2 ¢.x+ If a sample of n
values over the interval <t passes the statistical tests, we can

assign confidence limits according to

s
<J 0> = 1 oy :ﬁ“'—/f . (4.39)

where §-¢xx is the sample mean, and sg is the sample variance. We
then coarse-grain the quantity (2 Qxx - STE;;)Z = fll over the
interval t. If a sample of m values passes the statistical tests,

we can assign confidence limits according to

S %S¢ (a.s.)2(n-1)
L 0y = <0 2)H = £)) 2 E’z;‘ '*“‘Jli?jp

] . (4.40)

where YII is the sample mean, sg is the sample variance, and x2 is
the 0.025 fractile of the chi-squared distribution for n~1 degrees
of friedom.3% The first term inside the square brackets in
Eq. : ;.40) is the uncertainty in the average fluctuation of 2¢xx
around .7-3;;. The second term is the uncertainty in the average
fluctuation of STE;;-around <} ¢gx”» i.e., the uncertainty in the
variance of STE;;.

We need to coarse-grain only one expression to obtain the
fluctuation average in C44. From Eq. (4.35), we coarse-grain the

quantity [2 ¢xy]2 and assign confidence limits as in Eq. (4.13).
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2. Symmetry

To derive Eqa. (4.14)-(4.17) and (4.34)-(4.35), we assumed
that the equilibrium MD systems possessed cubic symmetry. We will
nead to test this assumption for each of our MD runs.

Cubic symmetry requires that
1 -
<2f(r)eirj> =3 8 Qf(r)y> (4.41)

where £(r) is any r-dependent function. To check the symmetry of a
particular MD system, we first test for the equality of <Z¢'22> and
<E¢'/3>, using a two-sample test for the equality of two population
means wWhen the two population variances are different.3> We then
test the hypothesis that <X¢xy> = 0, using an ordinary t - test, 3>

Before applying either of these tests, we take coarse-grained
samples and establish that our samples satisfy statistical tests
for normality, 1lack of 1long-term trend, and absence of both
positive and negative correlation. All of the MD gystems listed in

Table I easily satisfied these tests for a 5% level of

significance.
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CHAPTER 5

RESULTS AND DISCUSSION

A. Comparison of Theory and Experiment

OQur results for the adiabatic elastic rconstants of bcc
sodium are given in Table 1i. The calculated values for T > 0 are
compared with the experimental atmospheric-pressure data of
Diederich and Trivisonno,36 Martinson,37 and Fritsch et al.3® in
Fig. 6. The relative uncertainties in the experimental data, for
95% confidence limits, are approximately 2-3Z%. The agreement of
our MD data with experiment is quite good, particularly for the
magnitudes of €y, and Ciae The agreement with experiment is
excellent for the témperature dependences of all three elastic
constants.

The agreement of theory and experiment for the temperature
dependences 1illustrates a definite advantage of molecular dynamics
(and Monte Carlo) techniques, compared to  lattice dynamics
calculations, for conditions where classical statistics are valid
and anharmonic effects are important. MD and Monte Carlo methods
both involve direct calculation of anharmonic effects, eiiminating
the problems inherent in perturbation treatments of anharmonicity.
Evidence that anharmonic effects are significant for bcc sodium at

T > 100 K, and that anharmonic perturbation theory breaks down for
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these temperatures, 1s given by Straub et al.” and by
Swanson et al."

We have ignored the effects of the calculated pressure on
the elastic constants, 1in order to compare experimental and
theoretical elastic constants at the same densities and
temperatures. From Table II, the theoretical pressures are all
less than i.2 kbar. These pressures are quite small, and their

differences from zero can be neglected.

1. Quantum Effects

We have omitted quantum effects in our calculations. This
approach 1is generally correct for temperatures such that T » eﬂm,
where SHQ is the high-temperature harmonic Debye temperature. For
sodium, Oy, ~ 167 K.1* For T ¢ 8y, there will be deviations
between classfcal and quantum calculations, and hence between
classical calculations and experimental data. For the elastic
constants of sodium, however, these deviations are very small for
T > 100 K.

The deviations can be discussed in ‘terms of approximate
temperature dependences.39 In the classical regime, we expect the
elastic constants to vary linearly with temperature. For
calculations employing classical statisties, such as our MD
simulations, this linear dependence will extend to T = 0 K. In the
quantum regime, we expect the values of the elastic constants to

approach 0 K with zero slope. We will ignore the small zero-point



vibrational contribution to the elastic constants. Wallace?®
estimates this contribution to be less than U.o kbar.

From Fig. 6, small quzuium effects in the experimental aata
are present at the lowest temperatures. These effects take the
fore of slight deviations from the straight line dependence of Caﬁ
on T, The MG calculations, of course, do not reproduce this
quantum low-temperature curvature. Even at 100 K, however, this
curvature is very small, and the experimantal results are still
approximately classical. For T > 100 K, this indicates that

quantum effects on the elastic constants can be ignored.

2. Electronic Excitations

We have neglected the effects of electronic excitations on
the pressure and the elastic constants. For temperatures such that
kT <X ep, where ep is the Fermi energy, we can estimate these
effects by treating the excitations as a contribution to the free
energy, F,, wherel®

) :
Fo = -5 IT% . (5.1)

For free electrons,

r = Nn%knz

, (5.2)
ﬁZkg




112
where k is Boltzmann’s constant, m is the electron mass, and Z is

the valence. For sodium, in our units, we can write

3 Ry k2
atom

= |

= 2.068x10711 y2/ (5.3)

The electronic excitation contributions to the pressure and

to the elastic constants are given by

pe - -3%2: , (5.4)
c§; - gg: , (5.5)
cfy = - %NI"T,—: . ‘(5.6)
c§, = ;qrvi . (5.7)

- These  contributions are negligible for the solid wunder the
conditions of our simulations. The maximum excitation contribution
to an elastic constant is ~ 0.024 kbar, at T = 340, The maximum

contribution to the pressure is ~ 0,017 kbar.

3. The Calculation of C44
The main deficiency of our model appears ta be in the

calculation of the magnitude of the shear constant, Chsye The

0.
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temperature dependence agrees well with experiment, but the
calculated values of C,, are consistently too small.

It is probably not possible to obtain both good agreement
with measured bulk properties and good agreement with the measured
shear constant from second-order pseudopotential perturbation
theory. As discussed in Chapter 3, the three adjustable parameters
were fitted to experimental results for the binding energy, the
lattice spacing, and the bulk modulus of bee sodium at zero
temperature and pressure.B The calculated value of the shear
constant, C,,, at zero temperature and pressure was approximately
6 kbar smaller than the  experimental value.? Conversely,
Suzuki et al.*? fitted a pseudopotential to experimental results
for the shear constant of becc sodium, but failed to obtain
agreement with the measured value of the bulk modulus.

‘The most likely source of the discrepancy between

experiment and theory for the value of C44 1s the use of only
.second—order perturbation theory. We have assumed that we can
neglect terms higher than second order in the pseudopotential.
However, Harrison“! indicates that those higher-order terms which
introduce three-body interactions can be significant in the
determination of crystal structures. The contributioms to Cus of
the strain derivatives of these three-body terms could account for
the large, nearly constant difference between experimental and
theoretical values for C44> in the form of a geometrical resistance

to shear that is not contained in the second-order theory.
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B. Theoretical Contributions

Table II gives the various contributions to the theoretical
pressure and elastic constants. Several distinctive features of
these contributions should be noted. First, some of the
fluctuation terms are quite large. At T = 340 K, the magnitude of
the fluctuation term in C;; is ~ 20%Z of the elastic constant. For
C44» the corresponding figure 1is ~ 37%. As discussed below,
fluctuation terms are notoriously difficult to calculate
accurately.

We also note that the strictly volume-dependent terms,
0(Q), are very large for P, Cll’ and C44, ranging from - 22 kbar to
- 40 kbar. The contribution of O0O(R) to ClZ' 5 kbar, is much
smaller, but not negligible. Finally, we note that the ensemble
correction, X;, is small but signifirant at higher temperatures.

Table III shows the effect of the volume dependence of the
effective potential on the pressure and the elastic constants. The
volume-dependent terms in this table are defined as the
contributions to the linear and fiuctuation terms that would be
zero 1if the volume derivative of ¢(r;V) were identically equal to
zero. The r-dependent terms are the contributions of the position
derivatives of ¢(r;V). For example, the volume-dependent part of
the linear term in C;; s <J(¢" +2/3 ¢ - ¢*)>/V.  The

corresponding r-dependent part is <2(¥' - ¢')ﬁ“>/v.
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The most striking feature of this table is the large size
of the volume-dependent linear terms: ~ 12 kbar for P and Cag» and
~ 25 kbar for C;;. These three terms decrease slightly with
increasing volume and temperature. The contributions of the
volume-dependent fluctuation terms to the elastic constants are not

significant.

C. Other Theoretical Work

We discuss briefly two other theoretical calculations of
the elastic constants of bce sodium. Glyde and Taylor'? performed
lattice dynamics calculations for temperatures from 5 K to 361 K.
Cohen et al.“3 performed Monte Carlo calculations at temperatures
of 293 K and 361 K.

The calculations of Glyde and Taylor are based on an
empirical electron-ion potential which was fitted to spectroscopic
term values of the isolated ion. The fitted potential was used to
construct an effective ion-ion potential. The authors calculated
phonon frequencies in the self-consistent harmonic approximation,
with a cubic anharmonic term included as a perturbation. The
elastic constants were calculated from the long-wavelength limit of
the phonon dispersion curves. The results of Glyde and Taylor
differ from experiment considerably more than the present MD
results; our agreement with experiment is better for both the

magnitudes and temperature dependences of the elastic constants.
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The calculations of Cohen et al. are ©based on a
pseudopotential model which includes exchange and correlation
effects. The pseudopotential was used to construct an effective
ion-ion potential. The stresses and the elastic constants were
obtained by taking the expressions derived by Hoover et al.“t for
the adiabatic elastic constants of argon. These expressions are
the strain derivatives of the Helmholtz free energy for a volume-
independent pair potential.

These Monte Carlo calculations are seriously flawed by
several problems. First, the volume dependence of the effective
potential was ignored. The form of the effective potential,
however, is not volume independent. The volume dependence enters
through the dielectric function, €(q), in the integrand of the
expression for ¢(r;V), and through a volume-dependent term in an
interpolation approximation for the effect of exchange and
correlation on the screening. These are the same kinds of volume
dependences that we encounter 1in our effective potential. From
Table III, it can be seen that the contributions of the volume
derivatives of our effective potential to the pressure and the
elastic constants are significant. The contributions of these
volume derivatives to P, Cll’ and C44, in particular, are very
large.

Second, the authors make a conceptual error in the

comparison of their calculations of the elastic constants with
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experiment. They evaluate the stress-strain derivatives, or Birch

coefficients, Bjy q, where 1%

it 5.8)
Pigka T 3n, (5.
and, in Voigt notation:
Bll = Cll - P 3 (5-9)
344 = C44 - P . (5-11)

The pressure P used by the authors is the pressure calculated from
the equations of Hoover et al.%*  for a  volume-independent
potential. This pressure, which we will call 5, is ~ 7 kbar. The
authors then compare the theoretical Birch coéfficients at ~ 7 kbar
with the experimental elastic constants at ~ Q0 kbar. These are
considerably different physical quantities. From Martinson’s 37
analysis, the experimental Birch coefficients at 7 kbar are larger
than the experimental Birch coefficients at 0 kbar by ~ 27-38%.
Third, following these Birch coefficient calculations, the
authors introduce a strictly volume-dzpendent potential, Q(V), for
the purpose of investigating electron gas contributions to the
elastic constants. However, the contributions to the elastic

constants of Q* = VOQ(V)/ @8V were ignored.
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The form of Q(V) is given by Basinski et al.: 45

o) =N Geg+X (o) +5) (5.12)

where egp is the Fermi energy, X(po) is the exchange and correlation
energy per electron of a uniform electron gas, and A is an
adjustable parameter. X(pg) is given by Eq. (2.75) above. The
value of A 1is determined by requiring the total pressure P,
including the o* contribution, to be zero.

The authors calculated the contributions of
Q** = v232Q(V)/3V2 to the Cll and C12 elastic constants for the
form of Q(V) above. They obtained Q**/V = 2.36 kbar for T = 293 K,
and 1.46 kbar for T = 361 K. These contributions were considered
negligible. The contributions of a to the elastic constants are
considerably larger. We. have, for a volume-independent pair

potential, ¢(r),

PV =- g+ NT - <Jo /3> =-0a" +Bv . (5.13)

Introducing the condition P = Q0 gives

v =P . (5.14)
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Hence, the authors’ neglect of the contribution of Q* to
the elastic constants gives an error of - P for Cll and Ciugs and
+P for Cip- Taking the Birch coefficients gives the same
mathematical result as including the contribution of Q* in the
elastic constants, but not the same physical interpretation.
Finally, we note that an appropriate form for Q(V) for
pseudopotential sodium can be derived without requiring an
empirical expression with an adjustable parameter. We show how to
derive such an expression for Q(V) in Chapter 2 of this
dissertation, using only the information necessary to determine the
effective potential. The functional form of Q(V) is given by the
bracketed terms in Eq. (2.92), and by Eq. (2.99). This form
differs significantly from the parameterized expression in
Eq. (5.12). While the first two terms in Eq. (2.92) and Eq. (5.12)
are 1identical, none of the remaining terms in our expression for

Q(V) goes as V™1,

D. Sources of Computational Error

By far the largest source of computational error in our
calculations 1is the statistical error in the MD averages. We will
discuss this statistical error below. We will also discuss several
smaller sources of computational error: integration and

interpolation error, cutoff error, and system size effects.
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l. Statistical Error

The error bars in Fig. 6 correspond to the statistical
uncertainties in the MD averages. The various contributions to
these uncertainties are given in Table IV. To obtain the
uncertainty in the total correction term X, + X,, we take the
relative uncertainties in 7y, the Grineisen parameter, and Cv, the
specific heat, to be ~ 2%, where the values of C, and v are
obtained from Ref. 7.

The dominant statistlcal uncertainty in any elastic
constant calculation is clearly the uncertainty in the fluctuation
term. The wuncertainty in a fluctuation average is given by
Eq. (4.40); this uncertainty goes approximately as 1//t, where T is
the 1length of the averaging interval. For the averages of
fluctuations of 2¢xx’ 2¢rr’ and z¢xy’ we require an averaging
interval of the order of 10% At for a relative accuracy of 15-20%.
The computer time required for such laong rums is considerable for
N = 686, a run of 12000 time steps requires about two hours on the
CRAY-1; for N = 1458, a run of 12000 time steps would require over
six hours. Hence, the accuracy of these calculations cannot be

significantly improved without the use of an inordinate amount of

computer time.

2., Integration and Interpolation Error
By integration error, we refer to the effect of errors in
the numerical integrations on the calculations of the pressure and

the elastic constants. The integration error in a strictly
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volume~-dependent term, O0(Q), can be determined directly from the
numerical integration errors for Q* and Q**. As discussed 1in
Chapter 3, the numerical integration routine QAG calculates an
integral plus an estimate of the absolute error in the integration.
This absolute error 1is a considerable overestimate of the actual
absolute error: we take 10% of the absolute error calculated by QAG
for a particular integral as an upper bound for the numerical
integration error of the integral. This error in 0(Q) contributes
less than 8x1076 kbar to the pressure and the elastic constants,
and can be neglected.

The integration errors in the linear terms can be estimated
as follows. We begin by calculating an wupper bound for the
integration error in each of the seven position-dependent
mechanical quantities that form the output of the MD routine. Each

of these quantities has the form

A= 2 f(rKL;V) f?fg

(5.15)
K,L

A list of these quantities and the raiéii/gé;fﬁe indices K,L are

given 1n Chapter 4. We calculate an wupper bound for the

integration error in A, EU(A), where

Ey(A) = KZL IE[£(re; V) 1eT2S1 (5.16)

and E[f(rKL;V)] is an upper bound for the numerical integration

error in f(ry;;V). The MD routine calculates the sum in Eq. (5.16)
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in the same fashion that it calculates the sum in Eq. (5.153). The
necessary values of E[f(rKL;V)] are obtained by linear
interpolation from a table of the numerical integration errors. We
can then combine .EU(Z¢*), EU[Z(¢“-¢')ﬂ“], etc., zand take time
averages to estimate the integration errors in the linear terms.

We obtaln a relative integration error of less than 1x1075
for each 1linear term. From Chapter 4, the relative interpolation
error for any of the.i(r;V)—dependent expressions 1s 1less than
2x107%,  We estimate‘ an upper bound for the relative integration
and interpolation error of a linear term to be less than 3x1073,
This relative error corresponds to a maximum absolute error of less
than 4x10~ 2% kbar; this error cén be neglected.

The integration and interpolation errors in Eﬁé fluctuation
terms can be estimated as follows. We begin by writing the time

average of the fluctuations of a mechanical quantity A as

(ACt) -~ & + ACt) + 8)2 {(5.17)

where A(t) is the integration and interpolation error in A(t), and
6 1s the corresponding error in the vtime average A. The

integration and interpolation error, EF(A), for the fluctuation

average of A 1s then

Ep(A) = 2(A(t)-R)ACt) + A(E)2 + 62 (5.18)
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We calculate an upper bound for this error, EUF(A), by taking
absolute values for the factors in the first time average of
Eq. (5.18). The second and third terms on the right can then be

neglected, and we obtain

Eyp(A) = 21(ACE-B)IACE)I o (5.19)

To estimate A(t), we note that Z¢xx' Ztrr' and X¢'£ﬁ do not vary
from their respective mean values by more than 1%. In addition,
the relative integration and interpolation error for each of these
mean values 1is less than 3x1075, Hence, for fluctuations in Z¢xx

and 2¢rt’ we take

ACt) = 3x107° Jo ., (5.20)

and

ACt) = 3x107° Jo ., (5.21)

respectively. For fluctuations in Z°xy’ we take

ACt) = 3x1075 Yo g8 . (5.22)
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We can approximate |A(t)-A| in Eq. (5.19) by the rms value

S, where

§2 = (A(t)-K)2 . (5.23)

We then obtain, for the upper bound EUF(A) of the integration and

interpolation error in a fluctuation average of A,

Eyp(A) = 6x1075 [ACE) IS . (5.24)

The maximum error in a fluctuation term, Fa’ due to integration and
interpolation error contributes less than 0.2 kbar to the
corresponding elastic constant. This error is negligible compared

to the statistical error.

3. Cutoff Error

By cutoff error, we refer to the errors in the pressure and
the elastic constants that result from setting the values of the
(r;V)~dependent expressions to zero for r > roax® We can analyze
in some detail the effects of varying Thax for a static lattice.
Figures 7-10 show the results of such static lattice calculations
for the linear terms in the pressure and the elastic constants.
The 1linear term in the pressure, Lp, converges asymptotically to a

constant as r .. 1is increased. For Thax 2 23 ag, the relative

cutoff error in Lp is less than 1%. In contrast, Liys Lyg, and Ly,
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exhibit large oscillations and pronounced beats; convergence 1is

very slow. We estimate, for r ax 2 20 ag, a cutoff uncertainty of

m
less than 1 kbar for Ly and L44, and less than 0.5 kbar for L12.
We cannot apply this analysis to finite temperature
calculations, since the necessity of taking time averages does not
reasonably allow repeated calculations with different cutoffs.
However, the sharp peaks and the clear beat frequencies exhibited
by L, as a function of r .. are properties of a perfect 1lattice.

For time averages for a lattice of vibrating ions, these structures

should be less pronounced, and the cutoff error should be smaller,

4, System Size Effects

By a system size effect, we refer to the difference between
an intensive thermodynamic quantity calculated in the thermodynamic
limit (N+») and the same quantity calculated for a small system.
At present, there is no rigorous way to calculate this difference.
However, the computational error associated with the number of
particles in a system 1is assumed to be of order N1 for systgms
with periodic boundary conditions.

We can iInvestigate the effect of system size on our data by
comparing two MD calculations of the pressure and. the elastic
constants. We perforPed one calculation with N = 686 atoms, and
another with N = 1458 atoms. The twb systems were set up with the
same volume per atom and the same cutoff. In addition, the
temperatures of the two equilibrium systems were approximately the

same: T ~ 296 K for N = 1458, and T ~ 297 K for N = 686. The
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results are given in Table II and Fig. 6. Within the limit of the
stdtistical uncertainties, we found no significant system size

effects.



TABLE 1

MD RUN PARAMETERS
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Td is the desired temperature (see discussion following Eq. (4.9)).

a is the lattice parameter.

Va

(ad)

254.921
254.921
256.400
260.916
266.170
266.170
268.637

T4
(K)

Static Lattice
Static Lattice
100
200
298.15
298.15
340

686
43904
686
686
686
1458
686

a
(ao)

7.989
7.989
8.004
8.05!
8.105
8.105
8.130

Tmin
(ao)

6.91
6.91
5.64
5.19
4.90
4.90
4.80

Tmax

(ao)

24.72
6.91-110.12
24,73
24.78
24.83
24.83
24.86
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TABLE 1I
CONTRIBUTIONS TO THE RESULTS FOR THE PRESSURE AND THE ELASTIC CONSTANTS

All entries are in kbar.

Corrections
Quantity Total a(Q) Ko L, Fo. X X,
Strictly Kinetic Linear  Fluctuations  Ensemble  Isothermal-
V~dependent  Energy Adiabatic

Static Lattice | 4 0.20 -22.8377 4] 23.04 0 0 0

N = 686 Cll 79.7 =40.1284 0 119.84 0 0 0
ClZ 70.2 5.5470 0 64.62 0 0 0
Cah 54.8 -22.8377 0 77.60 0 (4 ]

T = (99.520.2) K P 1.06 -22.7369 0.362 23.44 0 0 0

N = 686 Cll g1.1 -39.9633 0.724 123,29 -3.7 ~-0.81 1.56
Cj,  69.4 5.5105 0 62.59 -0.6 -0.81 1.56
C44 50.2 -22.7369 0.362 74.84 ~2.2 0 0

T = (198.740.4) K P i.12 ~22.4390 0.710 22.85 0 0 0

N = 686 Cll 78.1 =39.4749 1.420 122.37 ~7.7 ~1.63 3.09
ClZ 66.9 5.4031 0 58.69 1.4 -1.63 2.09
664 41,7 -22.4390 0.710 69.87 ~6.5 0 0

T = (295.7%0.5) K P 1.09 ~22.1027 1.036 22.15 0 0 0

N = 1458 Cll 72.8 -38.9213 2.073 120.99 -13.6 -2.77 4,97
C12 64.9 5.2840 Q 54.50 2.9 -2.77 4.97
Cuy 4.6 -22.1027 1.036 64.63 -9.0 0 0

T = (297.220.5) K | 4 1.10 -22.1027 1.042 22.16 0 0 0

N = 686 Cll 73.7 -38.9213 2.083 121.11 ~-12.8 -2.79 5.00
Cjp  64.9 5.2840 0 54.56 2.8 -2.79 5.00
044 35.4 -22.1027 1.042 64.67 -8.2 0 0

T = (339.710.6) K P f.11 -21.9466 1.181 21.88 0 0

N = 686 Cll 72.5 -38.6635. 2.362 120.70 -14.5 -3.60 6.19
Cj;  62.9 5.2296 0 52.58 2.5 -3.60 6.19

Cut 30.2 -21.9466 1.181 62.23 -11.3 Q 0




Static Lattice

N =

L]
[

L]
nn

=2
non

=2
)

686

(99.5+0.2) K
686

(198.7+0.4) K
686

(297.240.5) K
686

= (339.710.6) K
= 686

TABLE IIIX

CONTRIBUTIONS OF THE EFFECTIVE POTENTIAL ¢(x;V)
TO THE PRESSURE AND THE ELASTIC CONSTANTS

All entries are in kbar.
Quantity L, (Linear) F, (Fluctuations)
V-dependent r-dependent V-dependent r-dependent

P 12,58 10.46 0 0
C11 24.76 95.10 0 0
044 12.58 65.03 0 0
P 12.42 11.02 0 0
Cll 25.01 98.28 0.2 —3'9
012 0.17 62.42 0.3 0.3
P 12.19 10.66 0 )
C11 25.39 96.97 0.4 -8.1
Cyo 1.02 57.68 0.6 0.8
Chy 12.19 57.68 0 -6.5
P 11.93 10.24 0 0
C11 25.67 95,45 0.8 ~13.6
ClZ 1.81 52.75 0.7 2.1
044 11.93 52,75 0 -8.2
P 11.80 10.08 0 0
C11 25.75 94.95 1.0 -15.5
C12 2,15 - 50.43 0.9 1.6
C44 11.80 50.43 4] -11.3

621



TABLE 1V

STATISTICAL UNCERTAINTIES IN THE MD RESULTS

Quantity Total AK, AL, AF AX 8 1
Statistical KinetIE_Energy Linear Fluctuation Correction Ayerzking
Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty Interval
(kbar) (kbar) (kbar) (kbar) (kbar) (10? Ac)

{99.510.2) K P 0.002 0.001 0.001 0 0 8.1
686 €11 0.9 0.1N01 0.07 0.8 0.02 8.1
Ci2 0.6 0 0.07 0.6 0.02 8.1

(198.730.4) K P 0.005 0.001 0.003 0 0 11.2
686 C11 1.7 0.003 0.15 1.5 U.04 11.2
ch 1.1 0 0.07 1.0 0.04 11.2

C44 1.1 0.001 0.08 1.0 0 » 11.2

(295.7%0.5) K P 0.007 0.002 0.005 0 0 7.7
1458 Ci1 3.3 0.004 0.17 3.1 0.06 7.7
Ci2 2.4 0 0.07 2.2 0.06 7.7

Cs4 1.7 0.002 0.08 1.6 0 6.0

(297.240.5) K P 0.005 0.002 0.003 0 0 13.0
686 C1 2.3 0.003 0.19 2.1 0.06 13.0
Ci2 1.7 0 0.09 1.5 0.06 13.0

Cuy 1.2 0.002 0.10 1.1 0 13.0

(339.740.6) K P 0.007 0.062 0.005 0 0 12.0
686 Ci1 2.6 0.004 0.23 2.3 0.07 12.0
Ci2 1.9 v 2.11 1.8 V.07 12.0

2.5 0.002 0.12 2.3 0 10.0

OtT
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