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ABSTRACT

The stresses and the elastic constants of bcc sodium are

calculated by molecular dynamics (MD) for temperatures to T - 340 K.

The total adlabatlc potential of a system of sodium atoms Is

represented by a pseudopotentlal model. The resulting expression has

two terms: a large, strictly volume-dependent potential, plus a sum

over ion pairs of a so*tll, volume-dependent two-body potential.

The stresses and the elastic constants are given as strain

derivatives of the Helmholtz free energy. The resulting expressions

involve canonical ensemble averages (and fluctuation averages) of the

position and volume derivatives of the potential. An ensemble

correction relates the results to MD equilibrium averages.

Evaluation of the potential and its derivatives requires the

calculation of integrals with infinite upper limits of integration,

and integrand singularities. Methods for calculating these integrals

and estimating the effects of integration errors are developed.

A method is given for choosing initial conditions that relax

quickly to a desired equilibrium state. Statistical methods

developed earlier for MD data are extended to evaluate uncertainties

in fluctuation averages, and to test for symmetry.

The fluctuation averages make a large contribution to the

elastic constants, and the uncertainties in these averages are the

dominant uncertainties in the elastic constants. The strictly



volume-dependent terms are very large. The ensemble correction is

small but significant at higher temperatures. Surprisingly, the

volume derivatives of the two-body potential make large contributions

to the stresses and the elastic constants. The effects of finite

potential range and finite system size are discussed, as veil as the

effects of quantum corrections and electronic excitations

The agreement of theory and experiment is very good for the

magnitudes of C ^ and C^* The magnitude of C»^ is consistently

small by ~ 9 kbar for finite temperatures. This discrepancy is most

likely due to the neglect of three-body contributions to the

potential. The agreement of theory and experiment is excellent for

the temperature dependences of all three elastic constants. This

result illustrates a definite advantage of MD compared to lattice

dynamics for conditions where classical statistics are valid. MD

methods involve direct calculations of anharmonic effects; no

perturbation treatment is necessary.



CHAPTER 1

INTRODUCTION

The calculation of thermodynamic variables for a real metal

at finite temperatures is a many-body problem par excellence. For

a small system and at temperatures where quantum effects are

negligible, we use a computer to integrate the classical equations

of motion and to calculate various mechanical quantities along the

system trajectory. Time averages of these quantities, taken after

the system has reached equilibrium, can then be related to

canonical ensemble averages, and the ensemble averages related to

thermodynamic variables.

This kind of computer simulation, molecular dynamics (MD),

eliminates a number of many-body difficulties, but it also

introduces a number of new problems. These problems, and some

proposed solutions, will be discussed in Chapters 4 and 5. A

number of many-body problems still remain, principally because the

canonical partition function contains an expression for the total

energy of a system. We need a form for the total energy that is

both mathematically tractable and physically reasonable for a

metal.

We will derive an appropriate form for the total energy of

a system of sodium atoms, starting with a model of a collection of

spherical closed shell ions, and conduction electrons. We treat
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the ion-ion interaction as essentially Coulombic, and treat the

electron-electron and electron-ion interactions by pseudopotential

perturbation theory (see Chapter 2).

In pseudopotential theory, the electrons belong to either

rigid cores or conduction bands, and the conduction electron wave

functions are orthogonal to the localized core states.1 The

orthogonalization transforms a one-electron 'true' wave equation

with an unwieldy potential to a pseudo wave equation2*3 which can

be solved by perturbation theory to give the 'true' energy

eigenvalues. We obtain a total energy H of the form

H = ERI + Q(V) + I <Kr;V) , (1.1)

where E K I is the total kinetic energy of the ions, Q(V) is a

strictly volume-dependent potential, <J>(r;V) is an effective

interaction potential between two ions separated by a distance r,

and the sum is over all distinct pairs of ions in the system. The

detailed expressions for Q(V) and <Kr;V) are derived in Chapter 2;

the numerical evaluation of these expressions and their derivatives

is discussed in Chapter 3. Note that the form of Eq. (1.1) is

appropriate for finite temperature calculations, since the energy

can be calculated for an arbitrary ion configuration.

For a model system of metallic sodium at P = 0 and at

temperatures up to 2000 K, *•»5 we find that Q(V) is a large negative

term, responsible for most of the binding energy; this agrees with
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our present understanding of metals. The total effective

interaction potential is a much smaller term: for temperatures up

to melting, the total effective potential comprises ~ 2% of the

total potential. The effective potential is also volume dependent,

which reflects the importance of screening.

In this dissertation we will use molecular dynamics to

calculate stresses and elastic constants for bcc sodium for

pressure P ~ 0 and for the temperature range 100 K - 340 K, where

the melting temperature Tm ~ 371 K. This work is part of an

ongoing project to obtain a deeper understanding of the physics of

metals, including both equilibrium and nonequllibrium properties.

Previous work using this model of sodium includes MD calculations

of bulk thermodynamic properties for the solid1* and fluid5 phases,

MD calculations of the P-T phase diagram,6'7 as well as lattice

dynamics calculations of bulk thermodynamic properties,8 and static

lattice calculations of the elastic constants.9

The project also focuses on problems inherent in computer

simulations, in particular the uncertainties in calculations using

MD data, and the nature of computer artifacts. Hence, the

calculations of equilibrium properties of metals with a physically

reasonable potential represent an effort to evaluate the usefulness

of MD techniques, as well as an effort to evaluate the usefulness

of pseudopotential theory.

We discuss below some general features of MD techniques.

We will also trace the connection between thermodynamic variables
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and MD data, and derive expressions for the stresses and adiabatic

elastic constants of sodium in terms of MD time averages.

A. Molecular Dynamics Techniques

As discussed above, a molecular dynamics simulation uses a

computer to solve the classical equations of motion for N particles

in a box of volume V. The result is a trajectory in phase space

{x,j>} at discrete time steps t = 0, At, 2At.«., mAt. The output

consists of mechanical quantities calculated at each time step.

For computations of stresses and elastic constants, these

mechanical quantities include the total kinetic energy for the

particles in the box, plus derivatives with respect to position and

volume of the potential. We define an MD system at time t to be

the particles in the box plus the mechanical quantities associated

with them. The constants of motion for such a system are N, V, H,

and the total linear momentum M, where M = 0.

To integrate the equations of motion, we first write the

force '. a particle L as

where the sum is taken over a.i.1 particles K within the range of the

effective potential (see below). We then apply two central

difference equations for each time step. For the x component of

the position of particle L, we have
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AxL(t+At/2) - xL(t+At) - x L ( t ) , (1.3)

where AXT is the displacement, and the corresponding velocity is

dxL(t+At/2) AxL(t+At/2)

dt At
(1.4)

The central difference equation for the position is then

xL(t+At) = xL(t) + AxL(t+At/2) . (1.5)

For the x component of the force on particle L, we have

md2xL(t)
FxL(t) = - ^ = ° [(AxL(t+At/2) - AxL(t-At/2)] .(1.6)

The central difference equation for the displacement is then

F (t)
AxL(t+At/2) = AxL(t-At/2) + — (At)2 . (1.7)

Equations (1.5) and (1.7) comprise the integration algorithm. The

choice of the time step At and the initial set of velocities and

positions is discussed in Chapter 4.

To begin an MD calculation, we introduce periodic boundary

conditions, where the computer program sets up a three-dimensional

lattice of identical boxes with a set of N particles in each box.
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The boxes are indistinguishable for all time with regard to the

positions and velocities of the particles inside. We pick one box

and call it the computational cell. A particle in the

computational cell will have an image particle in every other cell.

With periodic boundary conditions, a particle can interact

with all other particles within the range of a central pairwise

potential; this allows interactions across cell boundaries.

However, we need to restrict the range of the potential so that a

particle cannot interact with both a second particle and the second

particle's image. For a cubic computational cell with side 2. the

maximum range r m a x < 1/2.

In an actual MD calculation, we integrate the equations of

motion only for the particles in the computational cell, and move

each image particle along the same trajectory as its corresponding

computational cell particle. If the equations of motion move a

particle out of the computational cell, the particle's image moves

into the cell at the opposite face. Hence, linear momentum for the

computational cell will be conserved (within the limits of the

integration algorithm), but angular momentum will fluctuate.

Molecular dynamics output, as discussed above, consists of

a set of mechanical quantities calculated at each time step. A

graph of a mechanical quantity vs time for an MD system has the

appearance of a fluctuating signal which evolves to a steady state,

where the steady state has a constant mean and a constant bandwidth

(see Figs. 1 and 2). Different mechanical quantities evolve to the
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steady state at different rates. We define an MD system to be in

equilibrium with respect to a given mechanical quantity whsn the

mean and bandwidth show no significant trend over time.

Statistical procedures for determining equilibration times and for

establishing confidence limits for MD time averages are given in

Schiferl and Wallace;10 an extension of these procedures for

evaluating fluctuation averages is given in Chapter 4.

B. The Connection to Thermodynamics

In order to compute the elastic constants, we need to make

an explicit connection between thermodynamic variables and MD

equilibrium time averages. We begin by writing the Helmholtz free

energy for the canonical ensemble

F = - kTJlnZ , (1.8)

where Z is the canonical partition function

d xL dEL

(kT)"1 , (1.10)

and dx^ goes over the volume V

The stresses x.. and i

defined as strain derivatives of F:

The stresses tj. and isothermal elastic constants cT ., , are



VC* - (. d*f .) , (1.12)

where the r\^± are the Lagrangian stratus

| \-l "ki akj
k

the GCj. are the strain transformation coefficients, and the strain

derivatives are evaluated at T). . = 0.

We use the form for the total energy given in Eq. (1.1) to

write

N!\JB

where

\ = Unfi^/mkT)1/2 , (1.15)

and the configuration integral Q i s given by

Q = V"N / . . . / exp[-p I •(r;V)jnLdxL . (1.16)

This gives, for the strain derivatives:



" *L , (1.17)

kiT -
VCijk* *\S?\j a\jlBT>ij Q

-t- _ —

Q2

We evaluate the above expressions by the method given in

Wallace, Schiferl and Straub.11 If the stress is isotropic

pressure, we have

and

where

(1.19)

PV = - Q* + NkT - <£($* +!((.')> , (1.20)

Q* - V d U ( V ) (1 211
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The sums are taken over all distinct pairs of ions within the ramje

of the potential, and the brackets indicate ensemble averages.

For a cubic crystal, where the Cartesian indices coincide

with crystal axes, we have three independent elastic constants. In

Voigt notation:

VC11 = Q** " Q* + 2 N k T

+ P Kit-?2 - <(I*XX)
2>]

+ <IU** - • * + ! • ' * + (•"-•')*£]> , (1.24)

Q** + Q*

r t}> , (1.25)

VC44 = - a* + NkT

*2 r2]> , (1.26)

where

u . 2 9 )



n

, (1.30)

and

ft = ri/r . (1.32)

The expressions (1.20) and (1.24)-(1.26) involve canonical

ensemble averages. We now proceed to relate the canonical ensemble

averages to MD ensemble averages.12 An MD ensemble * is

characterized by constant N, V, H, and M. The corresponding

canonical ensemble has constant N and V, and a distribution of M,

with <M> = 0. The average <A> of a mechanical quantity in the two

ensembles differs by relative order N ; for our MD systems,

N ~ 700 and this difference can be ignored. In contrast, the

average of a fluctuation differs by relative order 1 for the two

ensembles, where a fluctuation average is defined as

<AB> - <A> <B> . (1.33)

'\ To relate the canonical ensemble averages to MD ensemble

averages, Nŵ e evaluate the ensemble differences of the fluctuation

terms in Eqs>\(1.24)-(1.26) by the method given in Wallace and

Straub.12 The corrections to be added to the MD ensemble averages

are:

VC11 = VC![1(MD>+..A , (1.34)
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VCj2 = VCJ2(MD) H- ̂  , (1.35)

VC44 - VCJ4(MD) , (1.36)

where

A » - NkT (yc-l)2/c , (1.37)

c = Cv/Nk , (1.38)

C is the constant-volume heat capacity, and y is the Grffneisen

parameter.

We can obtain the adiabacic elastic constants from the

relations11*

VCfx - V C ^ = Vcf2 - VC|2 = NkTy
2c , (1.39)

VC|4 = VCJ4 . (1.40)

*.

We obtain values for C and y for bcc sodium from the MD

calculations of Swanson et al.4 These bulk thermodynamic

calculations and our elastic constant calculations use the same

pseudopotential model.

The expressions given above for the stresses and elastic

constants involve MD ensemble averages. We now relate the MO

ensemble averages to the MD equilibrium time averages through the

quasi-ergodic hypothesis. The hypothesis is stated by Reif 15 as

<A> = A(t) , (1.41)

where <A> is an ensemble average and A(Jt) is an equilibrium time
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average for a single system in the ensemble. The averaging time T

must be long enough so that A(t) is independent of T.

In practice, the MD equilibrium time average is never

completely independent of the averaging time. Hence, the MD time

average can only be considered as an estimate of A(t) and hence as

an estimate of the MD ensemble average <A>. This introduces a

statistical uncertainty into the ensemble averages, and for

fluctuation averages this uncertainty can be very large (see

Chapter 5). The calculation of these uncertainties will be

discussed in Chapter 4.
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CHAPTER 2

DERIVATION OF THE TOTAL ADIABATIC POTENTIAL

In the previous chapter we described the general theory we

will use in our computation of the elastic constants of sodium. We

will need to calculate the molecular dynamics time averages of the

total energy and of its derivatives with respect to position and

volume (density). In this chapter we will derive an expression for

the total adiabatic potential of a system of N atoms of metallic

sodium in its ground state. We will discuss the numerical

evaluation of this expression and of its derivatives in Chapter 3.

We begin with a model of closed shell ions, (Z = + 1), in a

compensating background charge. We first simplify this intractable

many-body problem by taking the Born-Oppenheimer, or adiabatic

approximation.llf In this approximation the electrons adiabatically

follow the motion of the ions.

We can write the adiabatic Hamiltonian as

where E R I is the kinetic energy of the ions, QJJ is the ion-ion

interaction energy and E is the ground state energy of the

electrons. We include NIZ, the ionization energy of the system, in



the Hamlltonian since the zero of energy for this model of sodium

is a system of neutral atoms at infinite separation.

The lest three tsnaw in the adiabatic Hamiltonian are

called the total adiabatic potential $, where

* = QII + Eg + N Iz

Our model, even with the adiabatic approximation, is still

intractable. We simplify further by using a central potential

model. Since the ions have closed shells, we consider them to be

spherically symmetric. In addition, we will treat each interaction

potential as a sum of two-body terms centered on the Ion cores.

Such a two-body term moves rigidly with an ion, regardless of the

positions of any other ions. This eliminates many-body

polarization effects on the ion cores. Also, the central potential

model enables us to separate out ion position information from

details of the potential due to a single ion. This separation into

structure and form factors will be described below.

The use of the adiabatic approximation and the central

potential model makes possible a form for the total energy suitable

for molecular dynamics calculations. From the adiabatic

Hamiltonian, the ion kinetic energy can be separated out and

calculated at each time step by the standard molecular dynamics

techniques described in Chapter 1. We are left with the sum of

central potentials. Since individual molecular dynamics runs are
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done at constant volume, we want to express the total adiabatic

potential as a strictly volume-dependent term, plus a sum in real

space of effective ion-ion potentials, <KrvT;V), over all distinct

pairs of ions;

$ - NIZ = Q(V) + | f (Kr^jV) , (2.3)
K,L

where rKL is the distance between ions K and L, and V is the volume

of the system. The numerical evaluation of $(r;V) and Q(V) and

their derivatives with respect to r and V will be done in

Chapter 3.

We can write QTT» the ion-ion interaction energy, as a sum

of two-body central potentials in real space. Conversely, we can

write E , the electron ground state energy, as a sum over

reciprocal space. For the purposes of molecular dynamics

calculations, we want to write our entire expression for $ in real

space. Hence, we will keep Q-J-J in its original form and transform

E ; this is the opposite of the usual procedure in lattice

dynamics.

For all of these calculations we will use atomic units for

length and energy. With length in Bohr radii (aQ) and energy in

Rydbergs, we have

aQ = H
2/me2 = 1 ,

e2/2a0 = 1 ; e 2 = 2 , (2.4)
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where m is the mass of the electron and e is the charge of the

electron. We will also take Z = 1 for the valence of sodium.

We consider an appropriate form for QJJ first. We can

write

B p Y B K L 1 (2'5>

The first term in Eq. (2.5) is the ordinary Coulomb potential

energy of two point ions. The second term is a Born-Mayer

repulsive potential, and represents an empirical correction for

core-core repulsion. This latter term is needed for alkali metals,

since the ion cores are large, and some core overlap is possible as

the ions move. The core charge distributions are still treated as

rigid; overlap is not prohibited by the central potential model,

tig and Yg are parameters.

We now consider an appropriate form for the electron ground

state energy, E . It should be noted that molecular dynamics

calculations are fundamentally classical; quantum mechanics only

enters in the treatment of E .

The calculation of the electronic ground state energy is

still an intractable many-body problem; we reduce E to an

expression we can calculate by two approximations. First, we will

write the energy as a sum over states of a one-electron

Hamiltonian, minus double-counting corrections. Second, we will
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solve the one-electron problem by second-order perturbation theory,

where the perturbation is a local, central pseudopotential.

The perturbation theory treatment gives us the sum over

states in reciprocal space and the double-counting corrections in

real space. We will write the entire expression for E as a sum

over reciprocal space to allow for cancellation of divergent terms.

We then convert the sums to integrals which can be evaluated

numerically, and obtain

Eg =

where g(rjr̂ ;V) is an integral over reciprocal space and Q(V) is a

function independent of r^. We will then show that the full

expression for the total adiabatic potential per atom, $/N, is

bounded.

We can write the one-electron wave equation as

h(J)k = e k \ » ^2.7)

where the one-electron Hamiltonian is

h = - V2 + Vec(r) , (2.8)

and V (r) is a self-consistent potential. We will not solve
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Eq. (2.7) explicitly. Instead, we will solve a one-electron pseudo

wave equation:2*3

hp*k = t^ , (2.9)

where

h = - V2 + W , (2.10)

and ^ is a pseudo wave function. The non-Hermitian operator W is

a pseudopotential, where Wi^ is small compared to the free electron

energy.16»17 Equation (2.9) can be solved by second-order

perturbation theory to give the same energy eigenvalues as

Eq. (2.7).

From formal perturbation theory, we can write, to first

order in the pseudopotential,

•k = I A(3,k)|k + 3> , (2.11)

where

- L e £ ,

)"1* 3 * ° »

and A(0,k) is determined from a normalization condition.
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To second order, ye have

ek = ek + <k|Wlk> + l' A(a,k)<k|W|k+q> , (2.14)

" a

where e k is the free electron energy.

To simplify Eqs. (2.11) and (2.14), we approximate the

operator W by a local pseudopotential W(r). We then obtain for the

matrix elements:

<k4g|W(r)|k> = ̂  / W(r)e~ia'Edr = W(a) . (2.15)

Note that the matrix elements of W(r) are independent of k. We

also obtain, to first order in W(r),11*

\ = (1̂  • (2.16)

We can now write, for the one-electron wave function and

energy,

.• <kr = |k> + £ W(q)|k+q> (e k-e U 4}~* , (2.17)

•" - " a " - - ^

^ = ek + W(a=0) + f |W(a)|2 ( e ^ e ^ ) " 1 . (2.18)

a
We take the sum over states of Eq. (2.18) to obtain the electronic

ground state energy:
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E - I gkek + NW(3=0) + f|W(g)|
2 ]

k - - 3 I

- (double-counting corrections), (2.19)

where gi. is the ground state occupation number and N is the number

of conduction electrons.

We calculate the zeroth-order term in E first, where the
©

sum over k is taken up to the Fermi surface. To zeroth order, the

Fermi surface is a sphere in reciprocal space with radius kf, where

k* is the Fermi wave vector, and with all states within the sphere

occupied. Wallace114 and Harrison3 show that the total ground state

conduction electron kinetic energy, correct to second order in the

pseudopotential, is equal to the total ground state free electron

energy. This can be understood by considering that the distortion

of the Fermi sphere is second order, and the energy change of an

electron moving from inside to outside the original Fermi sphere is

of higher order than zero.

We find the Fermi wave vector, k^, by requiring all states

in reciprocal space to be filled up to the surface of the Fermi

sphere. We have N conduction electrons and hence N states in a

volume V. Hence,

^ 2 / (2.20)

where /dQ is the angular integral, V/(2n)3 is the density of states



22

in reciprocal space, and the factor of 2 indicates two electrons of

opposite spin per state. This gives

where

~) . (2.21)
a

Va = V/N = volume per atom . (2.22)

We calculate the zeroth-order term by converting the sum

over k to an integral over the Fermi sphere, as in Eq. (2.20), and

by taking e^ = k2 in atomic units. This gives

1 g!se!s = Sp Jof k*dk l dQ = 1 Nef ' (2'23)
K.

where e^ is the Fermi energy, and

= k| . (2.24)

To determine the first and second order terms and the

double-counting corrections, we take the form of the one-electron

pseudopotential W(r) to be the sum of three local central

potentials:

W(r) = WB(r) + Ws(r) + Wx(r) , (2.25)
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where Wfi(r) is a model bare-ion potential, consisting of the

electron-ion potential from unscreened closed shell ions. Wg(r) is

a self-consistent screening potential, involving Coulomb

interactions among the electrons. ^(r) is a one-electron

approximation for exchange and correlation effects, and is only

dependent on the density of conduction electrons.

This form allows two further simplifications. First, since

each of the three parts of the pseudopotential is a sum of two-body

central potentials, we can factor W(<j), or any of its three

components, into two parts: a) a structure factor, S(<j), a function

only of ion positions, and b) a form factor, w(q), or Wg(q), etc.,

a function only of the details of a single-ion potential,

independent of ion positions.

We show this factoring explicitly with Wg(r). We can write

the bare-ion potential as

WB(r) - 1 wB (l£-RLl) , (2.26)
Li— 1

where R^ Is the position of the Lth ion. The Fourier components

are

V ' exp(-iS.r)wB(|r-RL|) dr

1

a
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Since r is independent of RL, we can treat (r-RL) in the integrand

as a dummy variable, and we can write

where

^ A exp(-i9»RL) , (2.29)

and

wB(q) = -p J exP(-i3«r)wB(r)dr . (2.30)
va

Note that the form factor, Wg(q), is dependent only on the

magnitude of 3.

For the second simplification, with Wg(r) and Wy(r) as

described, we can relate the Fourier components Wg(j) and Wy(j) to

the Fourier component of the total pseudopotential, W(<j), anH hence

we can relate W(cj) to WB(cp. Since we can factor out S(<j) from

WTi(<j), we can write W(<j) in terms of the model form factor, wB(q),

aud the structure factor.

We now consider each of the three parts of the

pseudopotential in detail.

A. Wg(r), Bare-ion Potential

We take the one-electron potential, Wg(r), to be the sum of

the interactions of one electron with all the ions, independent of
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the presence of any other electrons. We calculate the form factor,

wB(q)» from a single-ion model potential, wQ(r):

wB(r) = wz(r) + wc(r) , (2.31)

where wz(r) is the Coulomb potential energy of an electron at a

distance r from a point ion with charge Z = + 1, and w (r) is a

term, negligible outside the ion core, which cancels the Coulomb

contribution inside the core. Harrison3 takes the core term,

w (r), to be proportional to a Is electron wave function,

<zexp(-r/p), where p is a positive parameter. The single-ion

potential then becomes

wB(r) = -2/r + <xexp(-r/p) , (2.32)

with Fourier components

W B ( I ) = IT / — exp(-iq«r)dr + — /aexp(-r/p)exp(-iq-r)dr . (2.33)

va r - ~ va

For the first integral in Eq. (2.33), we introduce a

convergence factor 6, to give

1 t -1— J — exp(-6r)exp(-i(j»r)dr
a

~ 2 » q * 0 • (2.34)
aq



26

For the second integral , we obtain

This can be written as

where p and p are posi t ive , and w i l l be treated as adjustable

parameters.

Hence, we can write the bare-ion form factor as

and

wc(q = 0) = P/Va. (2.38)

The Fourier component of the Coulomb term, wz(q), diverges as q-K).

We will show the cancellation of such divergent terms when we write

the full expression for E .

B. Wg(r), Screening Potential

We take the one-electron screening potential, Wg(r), to be

the ordinary electron-electron Coulomb potential energy:



27

Wc(r) = / — £ - 7 - p(r')dr' , (2.39)
~ |r-r |

where p(r) is the number density of conduction electrons, and

* ' - • ' * . (2.40)

This potential is determined self-consistently, in the sense that

the electron density depends on the eignnfunctions (̂  of the entire

one-electron Hamiltonian.

Note that when we sum over all states, we count the Coulomb

energy of each pair of electrons twice; this is the source of the

first double-counting correction. Hence, we can write

Eg " tl «k J
k ~ ~ ~

\ WS<£>] *k^£)dEl " (° t h e r double- (2.41)
~ counting corrections)

If we compare this to Eq. (2.18) for E^, and use Eq. (2.40) for

p(r), we get

„ If
Eg = 2, 8kek " T J p^£^WS^£^d£ ~ (° t n e r double-counting

k corrections) ,(2.42)

and the first double-counting correction is therefore
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We are also counting the Coulomb energy of each electron in

its own potential field. This self-energy per electron is of the

order 1/N of the total Coulomb energy per electron, and can be

ignored for large N.

The Fourier components of Wg(r) are

TF / , 2>. exp[-ia»(r-r')]p(r')exp(-ia.r')drdr' . (2.44)
V |r-r | * ~ •* ~

Since r' and r are independent, (r-r') becomes a dummy variable,

and we can write

V / P<£')exp(-ia-r')dr' / | exp(-ia-r)dr

= P(£) l\ exp(-ia.r)dr . (2.45)

From Eq. (2.34) we then obtain

Q _
ws(a) = ̂ i p(a) , a * o , (2.46)

where the Fourier components of the screening term, W g( a), diverge
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as q + 0. We will discuss the removal of this divergent part when

we write the full expression for E .

We can evaluate p(a)i
 a^d hence find Wg(cj) in terms of

, by writing p(r) to first order in the pseudopotential and

taking its Fourier components. From Eq. (2.40) for p(r) and

Eq. (2.17) for 4^(r), we get

w(a)|k+q>

I gk {1 + I' [(exp(-iS.r)W*(a)
k ~ 3

(2.47)

For the terms of first order in W(a), we take the sum over the

zeroth-order Fermi sphere, giving gk = g.ĵ - From Eq. (2.15), we

have W (a) = W(-<j). Hence, for a + - <j and k •*• - k, we have

gk [(exp(-i3.r)W*(a)+exp(i3'r)W(a))(ek-ek_)"
1]

= g-k [(exp(ia-r)W(a)+exp(-ia'r)W*(a))(e_k-e_k_3r
1] . (2.48)

We can then write

gk + | I exp(i3.r)W(a) I gkCefc-e^)"
1 . (2.49)
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We can write down the Fourier components p(g) by inspection, since

P(r) = I p(q)exp(iqT). Hence,
" 3

p(q=O) = N/V = 1/Va , (2.50)

and

P( 3) = | W( 3 ) I g k ( e k - e k )"1 , 2 * 0 . (2.51)
k ~ ~ ~

Since p(g) is of first order in the pseudopotential for

£ * 0, and distortions of the Fermi surface are of second order, we

take the states k over the Fermi sphere, as in Eq. (2.23). We then

convert the sum over k to an integral:

1 = 2V f
kf ^ f2Tt -k.2Sin 9 dkd9d(j>

% 3 (2u)3 J
0
 J0 J0 (q2 + 2qk cos 9)

fkf k 2 d k
J0

There is a singularity in the integrand if

k«q
=-*- = k cos 9 = - q/2 . (2.53)
q

This is handled by taking the principal values in the region of the

singularity. The limits of integration for x then become
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[- 1, - q/2kf - 5] and [- q/2kf + 6, 1]. In the limit 6-K), this

gives

-V

where TI = q/2kf . (2.55)

We can therefore write the sum over k as

( 2* 5 6 )

where e(q) is the static Hartree dielectric function for free

electrons, and is given by

(2.57)

The dielectric function has a singularity at t) = 1 (q=2kf),

caused by the sharp cutoff of screening at the Fermi sphere. The

function itself is continuous at r\ = 1, since

lim fl-Tl n_,l+1, A _ n ,„ ,-b\

but all of V.\e derivatives of the dielectric function with respect

to q and to k^ (and hence with respect to volume) diverge at r\ = 1.
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It is the existence of these singularities that will give Friedel

oscillations in the potential at large r, as discussed below.

The leading terms in the small-q expansion of e(q) are

4kf l^ k • (2-59)

The dielectric function diverges as q-K). This is characteristic of

metals, where long-wavelength components of the potential are well

screened.

The leading terms in the large-q expansion of e(q) - 1 are

16kf 64k|
_ ! + _ _ ^ . (2.60)

Hence, short-wavelength components are poorly screened.

We can now write p(<j) and Wg(q) in terms of W(q). From

Eqs. (2.51) and (2.56), we obtain

2
P(3) = ^ W ( 2 ) ( l - e ( q ) ) , 3 * 0 , (2.61)

and from Eqs. (2.46) and (2.61), we obtain

W s( 3) = W(3)(l-e(q)) , a * 0 . (2.62)
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We can also rewrite the first double-counting correction,

Eq. (2.43), as a Fourier sum:

I P(a)Ws(-3) , (2.63)

S

where the divergent 3 = 0 term is included in the sum.

C. Wy(r), Exchange and Correlation Potential

We approximate exchange and correlation contributions to

the energy of the system by a local potential, X(r), which depends

only on the density of conduction electrons. Although local

potentials must be explicitly spin-independent, this is a plausible

form for an interaction between electrons with parallel spins,

since the density of conduction electrons with each spin is p(r)/2.

The one-electron exchange and correlation potential Wx(r) and the

associated double-counting correction can be written as functions

of X(r) and p(r).
Mr

To determine the "best" one-electron wave equation and the

exchange and correlation double-counting correction, Wallace11* uses

a variational calculation, which minimizes the ground state energy

Eg with regard to variation of the one-electron wave functions

r), where

= I gk / <|£(r)[ek+WB(r) + \ Wg(r) + X(r)]<|^(r)dr .(2.64)
k ~ - " l ~ ~ ~ ~
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Note that the double-counting correction of the screening potential

Wg(r) has been included here.

The results of the variational calculation give

( 2' 6 5 )

The sum over states of the one-electron energies, minus the

double-counting corrections, can now be written

E = I gk / 4fc(r)[ek + Wfi(r) + Ws(r) + Wx(r)
k ~

- ("rWs(r) +W x(r) - X(r) )]<l̂ .(r)dr . (2.66)

In effect, we subtract a second double-counting correction, where

this exchange and correlation correction is

I gk / 4^(r)<J1t(r)(Wx(r) - X(r))dr
k ~ ~ ~

= / P(£)(Wx(r) - X(r))dr . (2.67)

We will write this integral as a Fourier sum later.

In order to write Wx(g) in terms of W(<j), we must consider

that we have no explicit form for the Fourier components X(q),

except for the many-body result at 3 = 0. At 3 = 0, X(j) = X(pQ),

the exchange and correlation energy per electron of a uniform

electron gas. For the limit of Wx(j) as 3 * "t Hubbard18 argues
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that the effect of exchange and correlation is to cancel half of

the screening. We use these results to write an interpolation

approximation for Wx(<j), of first order in the pseudopotential:

- Y(q)Ws(3) , 3 * 0 , (2.68)

where

The parameter £ is chosen to give the proper behavior for Y(q) in

the limit as q-K).

To find £ in terms of X(PQ), we expand Wx(r) in powers of

the pseudopotential around the uniform component of the conduction

electron density pQ = p(ej = 0), Eq. (2.50). The expansion of Wx(r)

is done through an expansion of the density p(r) in powers of the

pseudopotential. To second order in the pseudopotential, we can

write

P(r) = p0 + px + p2 , (2.70)

k

where

Pi " f P(s)exp(i3«r) , (2.71)
3

and p(as) is given by Eq. (2.51). The explicit form of the second
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order cerm, p,, will not be needed. Derivatives with respect to

p(r) are evaluated at PQ.

For simplicity, we can drop the r-dependent notation. We

have, to first order,

wx = wx (P o ) + P lw x

- WvCPn) + t [ ^ T ^ ] P(a)^P(ia'r) . (2.72)
a ap Po

We then equate the corresponding Fourier components in the

expansion and in the interpolation approximation:

P(a) = - *(q)ws(a> . (2.73)
P0

We then take the limit as q-»0 to give the defining equation for £:

**«*>> n . , ^ ! * ] . ^ . „.„,

For a uniform electron gas, the exchange and correlation energy per

electron can be written as

-3 3pn 1/3
X(p0) =— (—2-) + ( - 0.115 + 0.031 Jta rg) , (2.75)

where the first tc::ii is the exchange energy19 and the second term
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is the correlation energy. The correlation energy is obtained from

an interpolation by Pines and NoziSres20 for metallic densities,

and

y nr| = l/pQ . (2.76)

By combining Eqs. (2.74) and (2.75), we obtain

Z, = 2/(1 + 0.0155u/kf) . (2.77)

Finally, writing Wx(g) in terms of W((j), we have

= - Y(q)W(3)[l-E(q)] . (2.78)

We can express the exchange and correlation double-counting

correction, Eq. (2.67), as a Fourier sum of known functions of

W(jj), by expanding the integrand in powers of the pseudopotential,

as in Eqs. (2.70) through (2.72). We obtain, to second order in

the pseudopotential,

/ p(Wx-X)dr = / [po(Wx(po) - X(pQ)) + (p1+P2)pQWx

\ Pi

PO(WX1 + WX2)dE

I PlWXld£
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where Wy, and WX2 are the first and second-order terms in the

expansion of V?x(r).

The first integral in Eq. (2.79) can be written

P0V[Wx(a=0) - X(po)] . (2.80)

The second integral in Eq. (2.79) vanishes:

po / (Wxl+Wx2)dr = pQ I (Wxl(a)+Wx2(a)) /
 exP(ia'E>dE - ° '(2.81)

•3

The third integral can be written as a nonvanishing Fourier sum:

| ! piwxid£ " \ I'
a

Hence, we can write the total exchange and correlation

double-counting correction as

N(Wx(a=0) - X(po)) + | I' p(a)Wx(-3) , (2.83)

correct to second order in the pseudopocential.

D. E , Electron Ground State Energy

We can now write the full expression for E , correct to

second order in the pseudopotential. If we rewrite Eq. (2.19),

using Eqs. (2.63) and (2.83) for the double-counting corrections,
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Eq. (2.23) for the first sum over k, and Eq. (2.56) for the second

sura over k, we obtain

E g - N (| ef + W(a-O) - Wx(9=0) + X(p0))

+ ? f w(a)w(-a) f- d-e(q)) -1- f p(a)V-a>
£ Oil &

a a

We than rewrite the first sum in Eq. (2.84):

I' W(3)W(-q) ̂  (l-e(q)) = | I' P(S)W("3) • (2.85)

a a

When we transform to real space, we will want to convert

these sums to integrals. We begin by adding and subtracting the

limits as

E
g -

 N tf
(w(3) " Wx(a))] + 1 ̂  p(a)wB(~3) • (2-86)

We can use Eqs. (2.62) and (2.78) to write W(cj) in terms of Wfi(<j):

-U (• -
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We can use Eqs. (2.61) and (2.87) to write p(a) in terms of WB(<j).

We then separate WB(<j) and Wg(-j) into structure and form factors:

>n> ) + N I S(3)S(-3)F(q) + NS(a=O)
3

[wB(q=O) + ws(q=O) - ± J** (wB(a) + w s( a))] , (2.88)

where

-Vaq2|wB(q)|2 (e(q)-l)

(e(q)-D(l-Y(q))]

We evaluate tha structure factors from Eq. (2.29):

S(a)S(-3) - - J j I' exp[ia-(RK-RL)] +X \ 1 , (2.91)
K,L W L = l

and convert the sum over <j to an integral:

[ | e f + X(pQ) + j ^ j F(q)dq]

N [wB(q-0) + ws(q=0) - | \^ (wB(q) + Wg(q))]

K,L

> 2 V

J F ( q ) 6 X P (i3'-KL>d3 »

w h e r e
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We can write the sum of the two q = 0 terms as

wB(q=0) + ws(q=0) = J*" [wfi(q) + ws(q)] , (2.93)

since both the bare ion form factor, wB(q), and the screening form

factor, ws(q), diverge as q-K), but the limit of the sum exists. We

now use Eqs. (2.62) and (2.87) to write wg(q) in terms of wfi(q):

wB(q)(E(q)-l)Y(q)

-B — } , (2.94)

where

D(q) = 1 + (e(q)-D(l-Y(q)) . (2.95)

We can evaluate the limit in Eq. (2.94), using Eq. (2.37) for

W B ( I ) > E<1- (2.69) for Y(q), and Eq. (2.59) for e(q)-l at small q:

- 2ef 4kf
[wB(q) +ws(q)] _ i + _ £ . (2.96)

Finally, we substitute the above results into E and

perform the angular integrations:



42

4 . 2 kf , V-

1 ^ J ; n F ( q ) q ar dq " (2'97)
2 K,L U ° qr

E. Total Adlabatlc Potential

Equation (2.97) gives E in real space. We can now combine
a

with QJJ and NIZ to give the total adiabatic potential per atom,

, where

(2.98)

and

4>(r;V) = | + aBexp(-YBr) + -^ J°F(q)q2 ̂ ^- dq . (2.100)

We collect here the expressions in Eqs. (2.99) and (2.100) for

later reference:

-3kf
X(p0) = ~^-- 0.115 + 0.031 Jin rs , (2.75)

rs = (3Va/4Tt)
1/3 , (2.76)
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I = 2/(1 + 0.0155n/kf) , (2.77)

F ( q ) = i 6 n [ i + ( e ( q ) - i ) ( i ~ ^ ( q 7 T ' ( 8 9 )

(2.37)

21c

^ 1 ^ ^ ] ( 2 - 5 7 )

T) = q/2kf , (2.55)

4 ' (2'69)
e f = k2 , (2.24)

Va = V/N . (2.22)

Equation (2.98) gives the appropriate form of the total

adiabatic potential for use in molecular dynamics calculations.

Note that Q(V) is strictly volume-dependent; all of the position

information is in the effective potential, ^(rjrxjV). The

determination of the parameters aB, YJJ> P» and p will be discussed

in Chapter 3.

We need to show that the total adiabatic potential per

atom, $/N, is bounded. To demonstrate this, we first show that the



44

two integral terms in $/N exist, and then show that the sum over

all neighbors, £ <t>(rKL;V), converges.
L

To show that the integrals in Eqs. (2.99) and (2.100)

exist, we take the limits of the integrands as q-KD and as q-»-m,

where F(q) is given in Eq. (2.89).

At small q, the leading terms in the factors of F(q) are

4kf
e(q) - 1 1 , (2.101)

nq4

1 - Y(q) = 1 , (2.102)

• (2.103)

Since ^ (̂ iJL-SI) = i, b o t h integrands go as q° as q-K).4^- qr

At large q, the leading terms in the factors of F(q) are

16kJ
^ , (2.104)

1 - Y(q) = 1/2 , (2.105)

» (2-106)

and the integrands go as q"1* and q~5 as

At q = 2kf the dielectric function e(q) has a logarithmic

singularity. As indicated in the previous discussion of e(q), the

function is continuous at q = 2kr. Hence, the integrands do not
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diverge at this point. Since the limits of the integrands as q-*0

exist, and the integrands vanish faster than q"1 for large q, both

integrals exist.

We now need to show that the sum over all neighbors

converges. For large r, the number of neighbors from r to r + 6r

goes as r26r. Hence, the effective potential, <t>(r;V), for large r

must vanish faster than r~3 for the sum £ (Ji(r̂ ;V) to converge.
L

We cannot find an analytical form for the r-dependent

integral in Eq. (2.100) at large r, but we can find an expansion in

powers of r ^ by successive integrations by parts, obtaining a

higher power of r"1 in each resulting integral. This is the

procedure suggested by Harrison3 for the large-r expansion of a

simpler effective potential with no exchange and correlation

contribution. Unlike Harrison's expression, however, the integral

in Eq. (2.100) cannot be integrated by parts in its present form.

We will rewrite this integral in a more suitable form for partial

integration. Two successive integrations by parts will then give

the leading term of <{>(r;V) at large r.

From Eq. (2.100) we have

<Kr;V) = | + aBexp(-YBr) + C(r) , (2.107)

where

, ... . r dq • (2.108)
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If we attempt a partial integration of Eq. (2.108), we

obtain

V CD

cosqr (F(q)q)'dq m (2.109)%2 0 r2 **' * «* 'o

The integrated term of Eq. (2.104) is infinite at its lower limit,

since F(q)q goes as q"1 at small q. In addition, the integral on

the right does not exist, since the derivative (F(q)q)' goes as q~2

at small q.

This suggests that the leading term of £(r) at large r goes

as r"1. Accordingly, we rewrite G(r) to explicitly contain such a

Coulomb term:

- V 2 co

a r r 3 0

16ird 'o B v r H ''o r

where

(2.111)

ah ( q ) = Tfi^ lwB(q)l
2q3 , (2.112)
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and

D(q) = 1 + (e(q)-D(l-Y(q)) . (2.95)

The leading terms at large r of the first integral in Eq. (2.110)

are

— + j(r) exp(-r/p) , (2.113)

where j(r) is a quadratic polynomial in r. Note that the -2/r term

in C(r) cancels the Coulomb term in <|>(r;V).

The second integral in Eq. (2.110) exists, since g(q) goes

as q at small q, and as q"1 at large q. This form can be

integrated by parts twice. We note that Y(q) and its derivatives

are bounded and continuous for 0 < q < », and that h(q) and its

derivatives are bounded and continuous for 0 < q < °°. e(q) is

bounded and continuous for 0 < q < °°, but its derivatives with

respect to q contain singularities at q = 2k^; the contributions of

these singularities to C(r) will enable us to find the leading term

of <Kr;V) at large r.

We integrate by parts once:

CO •

r sin qr , .

Jo —f- g(q) = -
,(2.114)

where
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g'(q)=^[D-( - \ [e'+Y'U-l)2] ,

2kf q2-12k| q+2kf

n

(2.115)

(2.116)

and we omit the q-dependent notation in Eq. (2.115) for simplicity.

The integrated part in Eq. (2.114) vanishes, since g(q)-K) a\- crvth

limits. The integrand on the right in Eq. (2.14) is bounded at the

limits of integration, since g'(q) goes as q at small q, and as

q~2 at large q. This integrand also contains a logarithmic

singularity at q = 2kf, from the first derivative of the dielectric

function, e'(q).

We integrate by parts once more, and take principal values

in the region of the singularity:

g'(q)dq = lim {
6-K)

2kf-6

0

sin qr ,

2kf+6

0

- p L
0

sin qr
"(q)dq »

(q)}

(2.117)

where

g" - ^ - [l-Y(e-l)] -
F

l"Y) - 2e'Y'(e-l) - (2.118)

2kf 24k?-q2
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and we omit the q-dependence in Eq. (2.118).

We can rewrite the limit term in Eq. (2.117) as

lim
6-K)

sin qr ,,_s y f~ - j - * - C(2kf)Jto |2kf-q|} ,(2.120)

where the slowly varying terms in sin qr g'(q) in the interval

[2kj-6, 2k£+6] are taken at q=2kf, and C(2kf) is a constant. The

first term in Eq. (2.120) vanishes, since sin qr g'(q)-K) at both

limits. The second term also vanishes, since

lim
6-K)

2k f-6

2k f+6
Jtn|2kf-q| = 0 . (2.121)

The integrand on the right of Eq. (2.117) is bounded at the

limits of integration, since the leading terms of g"(q) go as q~3

at large q, and as q"1 at small q. In addition, in the limit q-K)

the q"1 terms cancel and the next leading terms go as q. This

integrand contains logarithmic singularities at q=2kf, from e'(q)

and e"(q), and a simple pole at q=2kf, from e"(q). This integral

exists, as will be shown below, and we can evaluate its leading

term for large r. We drop the principal parts notation, and write

C(r) = ~ + j(r) exp(-r/p) + Cx(r) , (2.122)

where
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sin
C,(r) = - / - S - ^ I g»(q)dq . (2.123)
1 0 r°

To find the leading term of C (r) at large r, we discard

all terms formally of order greater than r~3. We can evaluate the

leading order of each of the terms in £ (r) by considering the

asymptotic behavior of the integral

J sin qr G(q)dq , (2.124)

where G(q) represents one of the nine terms of g"(q)» We consider

two cases: 1) for G(q) bounded and continuous, and 2) for G(q)

containing a finite number of singularities.

For G(q) bounded and continuous, the integral in

Eq. (2.124) will vanish as r-*» because of the rapid oscillations of

sin qr. Hence, all terms of g"(q) that are bounded and continuous

will contribute terms formally of order greater than r~3 to Ci(r).

The only possible contributions of order r~3 will be from

singularities in g"(q). Of the nine terms in g"(q). only the last

term, which goes as q as q-»0 and contains no derivatives of e(q),

is bounded and continuous and can be discarded. Of the remaining

eight terms, seven contain singularities at q=0 and four at q=2kf.

For G(q) containing a finite number of singularities, we

can evaluate the leading orders of the contribution of each

singularity at large r. From Lighthill,21 we can find the leading

terms at large r of the Fourier transform, (F.T.), of G(q) by
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expanding the continuous part of G(q) around each s ingularity .

Since each G(q) i s an odd function, we have

m , 0 0

/ G(q)sin qr dq = - — Im / G(q) exp (-iqr)dq
0 2 - 0 0

= - -i- Im [F.T. G(q)] . (2.125)

Around each singularity q=qs in G(q), where G(q) is now defined on

[-<*>,<=], we can write G(q) as the product

G(q) = c(q)Gs(q-qs) , (2.126)

where c(q) is a continuous function in the interval including the

singularitys and Gg(q-qg) is a generalized function which diverges

at the singularity. We can expand c(q) around the singularity to

give

G(q) = c(qs)Gg(q-qs) + C(qg)[(q-qg)Gs(q-qs)]

+ -|c"(qs)[(q-qs)
2Gs(q-qs)] -r .. . (2.127)

The two leading terms of the contribution of the singularity to

Eq. (2.125) become

~\ {c(qg)Im[F.T. Gs(q-qg)]+c'(qs)Im[F.T.((q-qs)Gs(q-qg))] ,(2.128)
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and the leading term of the contribution of the singularity at q=qs

to C,(r) can then be written as

~ c(qs)Im[F.T. Gs(q-qg)] . (2.129)

We need only apply Eq. (2.129) to the singularities in g"(q) on the

interval [-<=, <*>], and discard terms of order greater than r~3, to

find the leading term of C,(r) at large r. We now consider the

effect of each singularity in g"(q) in detail.

The first seven terms in g"(q) each go as q"1 for small q,

and hence diverge at q=0. If we apply Eq. (2.129) to each of these

terms and take the sum, we obtain

^ Im[F.T. (-)] I Cl(0) = 0 , (2.130)
2r

since the q"1 terms cancel in the limit q*0. The next order

contribution to C,(r) from these singularities goes as r~** and can

be ignored.

The third, sixth, seventh and eighth terms in g"(q) contain

singularities at q = ± 2kf, from e'(q) and e"(q). From

Eqs. (2.116) and (2.119), we have three generalized functions for

the singular parts of e'(q), (e'(q))2 and e"(q) at q = ± 2kf:
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Ggl(q+2kf) = inlq+2kf| ,

Gs2(q+2kf) = [J!n|q+2kf|]
2 ,

Gs3(q+2kf) = l/(q+2kf) . (2.131)

From Lighthill,21 the Fourier transforms of Ggl(q+2kf) and

Gs2(q+2kf) go as r"1. If we apply Eq. (2.129) to these

singularities, we obtain contributions to C,(r) of leading order

r l+; these contributions can be ignored.

The Fourier transforms of Ggo(l+2k£) go as r and hence

contribute two terms of leading order r~3 to C,(r), from the simple

poles at q = ± 2k^. Since the contributions from the two

singularities are equal, we apply Eq. (2.129) and write the leading

term of C,(r) at large r as

A. cos (2kfr)
ra » (2.132)

where

Vfkf |wB(2kf)|

and
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(4-44) • (2-134)

We then have, for the leading term of the effective potential at

large r,

A cos(2kfr)
<t>(r;V) = p , (2.135)

where A is given by Eq. (2.133). Hence, the sum over all neighbors

converges and the total adiabatic potential per atom, $/N, is

bounded.

Equation (2.135) has the form of Friedel oscillations, and

it can be seen now that these oscillations are a mathematical

result of the singularities in the derivatives of the integrand in

«r;V) at q=2kf. The singularities, in turn, are caused by the

cutoff of screening at the Fermi sphere; the screening cancels the

Coulomb potential at large r, leaving a small oscillatory tail in

the effective potential, <t>(r;V). The form of this potential is

shown in Fig. 3.
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CHAPTER 3

NUMERICAL TECHNIQUES

In the previous chapter we derived an expression for the

total adiabatic potential of metallic sodium. In Chapter 1 we gave

the expressions needed to calculate the elastic constants of

sodium, in terms of the total adiabatic potential and its

derivatives with respect to position and volume. We now discuss

the numerical evaluation of these expressions.

We need to evaluate eight expressions to determine the

elastic constants. Three of these expressions depend only on

volume (V-dependent); the remaining five expressions depend on both

position and volume ((r;V)-dependent). Using the notation of

Chapter 1, we write the three V-dependent expressions:

(3.1)

(3.2)— - g2(V) + J [fx(q) + f2(q)J!n|iT-l|]dq

Q**
- g3(V) + / [f3(q) + f4(q)*n|T)-l|+ f5(q)An

2|T1-l |

+ f6(q)(tl-l)"
1]dq , (3.3)

where
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gl(V) - • £ ^ + ~ ' ^ ~ - 0.115 + . 031 *nvB , (3.4)

.031 ,„ ^

15

o -i k*

83(V)
_8_ , 1 4 k f .031
27 f 27n 3

4 e l Y l

(3.7)

5 4 ^ ^ ! 2e2(l-Y)
+ e2Jta|TH-l| (-^ ^ ^ 5 Jtolnfllj] , (3.9)

2V|Q
f5(q) = - - ^ y - $ (1-Y) , (3.11)

V Q 2^ 4 (3a2)

Q = - 3 ^ 3 |wB(q)|2 , (3.13)

£i = E(q) - 1 , (3.14)
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D = 1 + Ejd-Y) , (3.16)

2Y2k|
Yx = \ (35 - £2/2) , (3.17)

and e(q), Y, Wg(q), k j , £, r g , and T| are given by the equations

following Eq. (2.100).

The five (rjV)-dependent expressions can be written

h l ( r ) + 2

h2(r) +2 /°5f i (cos q r -Si5_ai) dq ,

" ' = h3(r) + 2 / —— ( a 3cos qr - qr sin qrjdq ,(3.20)

2 f <'* r - \ • JT ^ _ \ »._. _ - . . i s i n q r

0 ^ ' n-r

*** + | • ' * = i f {[f3(q) + f4(q)Jb|Trl| + f5(q)Jta2|T»-l|

+ f [fi(q) + f2(q)Jtoin-n ] (cos qr - *±*-$L )} d q ,(3.22)

where
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hx(r) = | + aB exp (-yBr) , (3.23)

h2 ( r ) = T" " ̂ "B1

and

ho(r) = — + YB
a
B
r(l+YB

r) exp(~YBr) • (3.25)

There are no general analytic solutions to the integrals

above. Hence, we will solve the integrals numerically and obtain

the (r;V)-dependent quantities needed during an MD run from tables

of our numerical solutions. Details of the table construction will

be given in Chapter 4.

Numerical treatment of the integrals in Eqs. (3.1)-(3.3)

and (3.18)-(3.22) presents a number of difficulties. The major

difficulties include the infinite limits of integration, as well as

the singularities at q = 2kf in several of the integrands; the

singularities result from differentiation of the total adiabatic

potential with respect to volume.

Previous work on this model of sodium utilized the

numerical techniques described in Swanson.22 Evaluation of Q, $,

and 4> involved a Simpson's rule integration over the interval

q = [0,20], plus an analytic approximation for the integral over

q = [20,<*>]. The volume derivatives Q and <)> were obtained from

fits of Q and <t> vs V. The uncertainties in calculations using

these techniques are very difficult to analyze. In addition, the
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analytic solution for large q is unsuitable for a slowly converging

integrand (such as the integrand in Eq. (3.20)), and the fitting

technique is unsuitable for higher derivatives with respect to the

volume.

We will use substantially different numerical techniques

here. For our calculations of the elastic constants, we will

transform the preceding integrals into expressions that can be

handled efficiently by adaptive Gaussian quadrature. This method

is useable for all of the volume derivatives and for slowly

converging integrands. This method also gives better estimates of

the errors and is quite efficient in its use of computer time.

We begin by determining the parameters for our model

potential and establishing the existence of the preceding

integrals. We will then describe the basic integration routine and

the necessary transformations of the integrals.

A. Parameters

The total adiabatic potential contains four model

parameters: yB and ag from the Born-Mayer repulsion, and P and p

from Harrison's3 pseudopotential model. We take the value of Yg

calculated by Fumi and Tosi23 for NaCl-type sodium halides. We

treat the other three parameters as adjustable. Wallace8

determined the values of aB, g, and p by fitting the total

adiabatic potential and its volume derivatives to the measured

binding energy and compressibility of sodium at zero temperature

and pressure, and requiring agreement between calculated and
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experimental values of the average of the phonon frequencies

squared, <(J2>. Zero-point vibrations were neglected. The four

parameters were found to be

YB = 1.56 aQ
1 , (3.26)

otg = 10.5 Ry , (3.27)

p = 37.0 Ry a^ , (3.28)

p = 0.5 aQ . ' (3.29)

We also need to consider the typical values of Va and r

that we will use in our simulations. The choice of V_ and the
cL

calculation of a minimum and maximum r for a particular MD run will

be discussed in Chapter 4. We give the ranges of Vfl and r here,

since details of the integration procedure depend on the sizes of

these variables:

254.9 a^ < Va < 269.0 a^ , (3.30)

5 a0 < r < 27 a0 . (3.31)

B. Existence of the Integrals

We have previously shown that the integrals in Eqs. (3.1)

and (3.18) exist (see Chapter 2). To demonstrate that each

integral in the remaining six expressions exists, we first show

that the integrand is bounded at the lower limit of integration and

vanishes faster than q"1 at the upper limit, and then show that
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either the integrand is continuous over the range of integration or

the Cauchy principal value exists.

We first take the limits of the integrands as q + 0 and as

q ->- <*>. At small q, the leading terms in the factors of the

integrands are

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

Q =

e l !

•2

D =

Y =

•v
' 1

-2
n '

= 4kf

4k 2

3uVa

4kf

raf2"

q 2
2

1

•

_ q2(3-C/2)
A P I

Since lim /-sin qr^ _ lim( — ) = ^ (cos qr) = 1, and tlie leading term ofq-X) - qr

( ^— - cos qr) goes as q2, as q-K), the integrands of
qr

Eqs. (3.2)-(3.3) end (3.19)-(3.22) go as q2, as q-H). Hence, these

integrands all vanish at q = 0.

At large q, the leading terms in the factors of the

integrands are
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Q = — , (3.38)

16kl
4 ' <3'39>

4kf

D = 1 , (3.41)

Y-j , (3.42)

The integrand in Eq. (3.kO) goes as q~^, as q+°°. The integrands in

Eqs. (3.2), (3.3), (3.19) and (3.22) go as q~\ and the integrand

in Eq. (3.21) goes as q~5, as q-*». Hence, these integrands all

vanish faster than q"1, as q -*•<*>.

We now consider continuity. Q, E2» Y, and Y,, as well as

their derivatives with respect to q, are all bounded and continuous

for 0 < q < <°. As indicated in Chapter 2, e(q) is bounded and

continuous for 0 < q < », but its derivatives with respect to q

contain singularities at q = 2kf. Hence, ei and D are bounded and

continuous over 0 < q < m but their derivatives are unbounded at

q = 2kf.
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The integrands in Eq. (3.19) and (3.20) are both continuous

for 0 < q < ». Since these integrands are bounded at q = 0 and

vanish faster than q"1 for large q, the integrals in Eq. (3.19) and

(3.20) exist.

The integrands in Eqs. (3.2), (3.3), (3.21), and (3.22) are

unbounded at q = 2k* (rpl). All four expressions contain singular

terms of the form f (q)Jba| r\-l |, where f(q) is bounded and continuous

for 0 < q < », where f(q) vanishes faster than q~3 for large q, and

where f(q) * 0 at Tpl, The integrands in Eqs. (3.3) and (3.22)

also contain singular terms of the form f (q)J!n2| TJ—11 and

f(q)(T|-l)~1. We can divide each unbounded integrand into two

parts: a sum of continuous terms, and a sum of singular terms. The

integral over the continuous part obviously exists. For the

singular part, we need to show that the Cauchy principal value

exists. For simplicity in the following discussion, we will treat

TI = q/2kj as the variable of integration.

First, we consider an integrand of the form f (r|)J!n| Tf-l|.

We divide the range of integration into three parts: T) = [0,a],

T) = [a,b] and r\ = [b,«], where 0 < a < l < b < ° ° . The integrals

over the first and third intervals clearly exist, since the

integrand is bounded and continuous over each interval, and

vanishes faster than T)"1 for large T).

For the second interval, we integrate by parts:



64

p Jb f(n)Jinm-i|d7i = p f(Ti)[(iri)&iiTi-ii -
a la

- P / f'(ri)[(Ti-.l)Jb|Tr-l| - (Tl-l)]dTi . (3.44)
a

The integrated part in Eq. (3.44) can be rewritten

rlb
lim { f(Tj)[(n-l)Jto|T|-l|-(TH)]
6-*0 la

11+6
, (3.45)

where the slowly varying terms in f (T|) in the interval [1-6, 1+6]

are taken at T) = 1. The first expression in Eq. (3.45) is bounded

for finite b. The second expression vanishes, since

lim (6Jin6-6) = 0 . (3.46)
6-K)

The integral on the right in Eq. (3.44) can be rewritten

fb r ir .
[ [t^n) + t2(Ti)J!n|Tj-l|][(Ti-l)J!n|T)-l| - (r)-l)]dT| ,(3.47)
a '

where ti(n) and t2(T]) are bounded and continuous over [a,b]. The

extra factor of J!n|T)-l| arises from the singular derivative of the

dielectric function ej = e'(q) (see Eq. (2.116)). The integrand in

Eq. (3.47) is continuous at T) = 1, since the limit of the leading

term as T) •*• 1 exists:

(TH)J!n2|TKI - ̂  6Jtn26 = 0 . (3.48)
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Hence, the Cauchy principal value for the integral over [a,b]

exists, and integrals of the form

/ f(ti)Jln|Ti-l|dT)

exist.

We can use similar arguments for an integrand of the form

f(ri)Jtn2|TT-l|. After integration by parts, the function for the

integrated part becomes f (TI) [Cn-1) Aa2l T|-l | - 2(Ti-l)Jln|n-l | +

2(T)-1)]. This function vanishes as T)+l, and is bounded for finite

b. The leading term in the new integrand as T)-»-l becomes

2̂̂ "H)[CT)—1)Jin3i T)-l| ], where t2(ii) is bounded and continuous over

[a,b]. The limit of this term as TI+1 exists:

" ™ t2(n)[(n-l)J!n
3ln-l|] = t 2 ( D ^ 6An36 = 0 . (3.49)

Hence, the new integrand is continuous at T) = 1, the Cauchy

principal value over [a,b] exists, and integrals of the form

J f(T|)Jta2|Tl-l|dT)

exist.

Finally, we consider an integrand of the form f(TI)CTJ-I)"1.

We divide the range of integration into three parts, as before.

The integrals over n = [0,a] and r\ = [b,™] obviously exist.
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For the integral over r\ = [a,b], we integrate by parts:

p Jb fCTiXn-ir^Ti = P | b f(n)jiniTi-ii - p / f'(n)J!iinri|dTi .(3.50)
a la a

The integrated term can be rewritten

rib 11+6 .
lim { f(T))J!nlTM] - f(l)Jln|n-l| } . (3.51)
o-*0 |a 11-6

The first expression in Eq. (3.51) is bounded for finite b. The

second expression vanishes, since

(f(l)Jta6 - f(l)Jtn6) = 0 . (3.52)

The integral on the right in Eq. (3.50) can be rewritten

P / [t^^JblTj-ll + t2(r|)Jln
2ln-lI ]d-n , (3.53)

cL

where t̂ (T|) and t£(T|) are bounded and continuous over [a,b]. We

have already established that the Cauchy principal value of an

integral over [a,b] with an integrand of the form t̂ (ri)Anl TJ—1) or

t2C
in)Jln2|T|—11 exists. Hence, the integral in Eq. (3.47) exists,

and integrals of the form

/ f(n)(n-D"1dT1

exist.
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Hence, the Cauchy principal values of all of the singular

parts of Eqs. (3.2), (3.3), (3.21), and (3.22) exist, and the

integrals in these four expressions exist.

C. The Basic Integration Routine

The numerical techniques were influenced by three basic

considerations. First, a relative error tolerance for numerical

integration refers to an entire expression, not just the integral

part. As discussed below and in Chapter 5, we require a relative

error tolerance of 10"1* for each (r;V)-dependent expression, and a

relative error tolerance of 10~6 for each V-dependent expression.

For a V-dependent calculation, taking the relative error of the

entire expression reduces the work of numerical integration since

the analytic part tends to be large. For some (r;V)-dependent

calculations, taking the relative error of the entire expression is

the only reasonable approach over certain ranges of r where the

analytic and integral contributions partially cancel. In practice,

the analytic parts are taken under the integral sign for a finite

interval of integration. We can write

A + / f (q)dq = Jjf (q) + £]dq , (3.54)
0 O b

where A is the analytic part.
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Second, the Integration routine was chosen for general

reliability, not for specialized features. All numerical

integration was done with one basic program, employing adaptive

high-order Gaussian quadrature. We choose to transform the

integrals to remove any difficulties that the routine cannot

handle.

This process gives more valuable results than choosing

specialized routines to treat the integration difficulties

directly. The basic routine handled a variety of test integrals

dependably, returning solutions that were safely within the

required error tolerances. In addition the logic and coding in

this routine was traced and found adequate. This was not the case

with several more specialized programs, some of which performed

erratically and some of which contained logic problems. We choose

to sacrifice ease of programming for trustworthiness of results.

Third, the overall integration schemes, including the

methods of removing integration difficulties, were designed to be

handled efficiently by CRAY-1 computers. On vector machines such

as these, it is much faster to perform a large number of arithmetic

operations than to make a small number of decisions. If we

transform a set of integrals so that all can be handled in

essentially the same way by the integration routine, we avoid

decision making during program execution. This is particularly

important for (r;V)-dependent expressions, where the routine must

evaluate thousands of integrals for each volume used.
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We describe below the details of the computer routine and

our treatment of the major integration difficulties.

The basic numerical integration program used is the

subroutine QAG, a globally adaptive integrator using pairs of

Gauss-Kronrod quadrature formulas for the integration rules. Rules

of varying degrees of precision can be chosen. The program also

contains provisions for detection of bad convergence and round-off

error. QAG is based on the routine AIND24 and is part of

QUADPACK,^S an integration subroutine package for the numerical

computation of definite one-dimensional integrals. The package

contains both double and single precision variants of QAG; we use

the faster single precision version. For CRAY-1 computers, single

precision gives ~ 14 significant figures.

1. Adaptivity

In a globally adaptive scheme, the interval of integration

is subdivided into a set of subintervals:

x2]

The subintervals will be large where the integrand is easy to

handle, and small where the integrand is difficult. The same

integration rule is used to estimate J i+1f(x)dx over each
xi

interval. The results of the numerical integration, as well as the

results of the error estimates for the subintervals, are then

summed.
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An example of the interval bisection scheme used in QAG

will demonstrate this. We wish to integrate f(x) over the interval

[a,b]. We specify both a relative error tolerance and an absolute

error tolerance. As soon as either tolerance is satisfied, the

routine returns an answer for the integral and the error. In

practice, if we desire a relative error tolerance we set the

absolute error tolerance to ~ 0, and vice versa.

We first attempt to integrate over the entire interval. If

either tolerance is satisfied, the routine ends. If not, we divide

the interval into two equal parts and estimate the integral and the

absolute error over each part. We add the two integral

contributions, add the two errors, and decide if either tolerance

is satisfied. If not, we divide the interval with the largest

error estimate into two parts. This process repeats; the next

interval to be subdivided is always the one with the largest error

estimate. If neither tolerance can be satisfied, the routine

returns the current estimates for the integral and the error, plus

information about the kind of difficulty encountered. Such

abnormal exits are discussed below.

The primary advantage of an adaptive routine is economy in

the number of integrand evaluations required. The primary

disadvantage is inefficiency on a vector machine; the process of

interval subdivision requires decision making, and decision making

is costly. For the integrals necessary to determine the elastic

constants of sodium, the most important advantage of adaptivity is
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the ability to "throw" most of the error, and most of the

subintervals, into the awkward region around q = 2kf. The adaptive

routine will also subdivide an interval to allow for a larger

contribution to the integral from smaller q, and will automatically

provide small intervals for rapid oscillations at large r. These

advantages outweigh the inefficiencies. The routine can be made

more efficient by choosing a set of subintervals and using this set

as a starting point for the integration. The particular set will

depend on the nature of the integrand and on the value of r. This

would reduce the number of decisions to subdivide. However, the

routine was fast enough to be economical without requiring this

modification.

2. Integration Rules

To estimate the error over each subinterval, we calculate

two different estimates of the integral over the subinterval. The

error is then taken as the magnitude of the difference between

these estimates.

We use n-polnt Gaussian quadrature for the first estimate

of the integral over each subinterval:

.b n
/ f(x)dk ~ I wkf(xk) , (3.55)
a k=l

where w^ is the weight for point k of an n-point rule, and all xk

are in the interior of [a,b]. This rule is exact for all

polynomials of class P2n-1"26
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We wish to perform a second evaluation of the integral over

the subinterval, hopefully a more accurate evaluation than the

first. This second evaluation then becomes the best estimate for

the subinterval. A difficulty with Gaussian integration is that

the abscissas, {xi.}, for any rule of order n are distinct from the

abscissas for a rule of any other order, with the exception of the

midpoint in odd-order rules.26 If we perform a second Gaussian

integration with a higher-order rule, we need a completely new set

of integrand evaluations.

Instead, we use a method developed by Kronrod.^' For the

second evaluation of the integral, n+1 new abscissas are added to

the original set of abscissas. The new abscissas are real, located

in the interior of [a,b], and are separated by the original n

abscissas. The new rule is exact for P3n+^ and hence is of higher

accuracy than the original n-point rule. Note that a 2n+l-point

Gauss rule would be exact for ?4n+i, and hence of higher accuracy

than a 2n+l-point Gauss-Kronrod rule. This sacrifice of accuracy

is outweighed by the saving of n integrand evaluations for each

subiuterval. For thousands of calculations of complicated

integrands, the Kronrod extension can represent a significant

saving in computer time.

The choice of n for the pair of integration rules (n,2n+l)

depends on two major factors. A higher-order rule requires fewer

interval subdivisions and is better suited to an integrand with

fast oscillations than a lower-order rule. A lower-order rule
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helps to minimize round-off error. We choose n = 15; the

Gauss-Kronrod pair (15,31) represents a reasonable compromise

between higher precision and lower round-off error.

As noted above, the error for a subinterval is calculated

by taking the absolute value of the difference between the

application of the n-point rule and the 2n+l~point rule. We assume

that the latter rule is more accurate; this is not unreasonable if

the integrand is continuous ovar the subinterval, and if the

higher-order rule is not significantly contaminated by round-off

error. This is, of course, not rigorous. The method is actually a

sampling process, since the error tolerance is calculated from a

finite sample of points.^

To evaluate the integrals at the beginning of this chapter,

we need to use the error estimates returned by the integration

routine. However, we can obtain information about the reliability

of these estimates by using the routine to evaluate test integrals

whose solutions are known in closed form. The test integrands and

intervals can be chosen to mimic the general form of the actual

integrals in Eqs. (3.1)-(3.3) and (3.18)-(3.22) over various ranges

of q. The actual errors in the computer calculations of the test

integrals were always at least an order of magnitude smaller than

the error estimates returned by QAG. Calculation of the actual

integrals necessary to evaluate the elastic constants, using

relative error tolerances varying from lO"**1 to 10~8, also indicated

that the error estimates returned by QAG were over an order of
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magnitude too high. This indicates that the integration routine is

reliable, albeit considerably too accurate for the required

tolerances. For our estimate of the absolute error in an integral

evaluated by routine QAG, we will take 10% of the error calculated

by the routine. This represents an upper bound for the numerical

integration error.

3. Abnormal Exits

As noted above, the program will stop evaluating an

integral upon encountering certain integration difficulties, and

will return estimates for the integral and the error, along with

information about the kinds of difficulties encountered. These

estimates are less reliable than those where the program stops when

the tolerances are satisfied. The routine provides three kinds of

abnormal exits, in addition to the normal exit where either the

absolute error or the relative error is satisfied.

The first abnormal exit, for bad integrand behavior at a

point of the integration range, is not a problem as long as the

integrand is sufficiently smooth. This exit only occurs when

interval subdivision has proceeded until the spacing of the

abscissas xfc for the 2n+l point rule is too small to resolve.

Hence, vie require an integrand to be continuous over the interval

of integration. There should be no sharp peaks and, preferably, no

strong derivative singularities on the interval of integration. In

addition, any singularity off the interval of integration should be

sufficiently distant or weak. The transformation of the integrals
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in Eqs. (3.2), (3.3), (3.21), and (3.22) to fit these conditions is

discussed below. In practice, we only require an integrand to be

bounded and piecewise continuous over the interval of integration,

but the positions of any jump discontinuities must be known. QAG

can then be directed to subdivide the interval at these points, and

the jumps present no problem. If the interval of integration is

not divided at jump discontinuities, QAG tends to be very

inefficient, with an increased risk of an abnormal exit for bad

integrand behavior or for an excessive number of integrand

evaluations.

The sscond abnormal exit, for an excessive number of

integrand evaluations, is not a problem as long as the integrand is

sufficiently smooth, and as long as the interval of integration is

not too large. Tha maximum number of subintervals is set to be

large enough so that weak derivative singularities can be located,

and small enough to provide an abnormal exit before too much

computer time has elapsed on any one integral.

The third abnormal exit, for round-off error, is not a

serious problem as long as care is taken when specifying error

tolerances and the orders of the integration rules, and as long as

coding designed to minimize round-off is used to specify the

functional form of the integrands. An abnormal exit will occur if

both the error estimate and the integral estimate over a

subinterval do not change significantly upon many repeated
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subdivisions. This behavior is typical of integrals with

cancellation of positive and negative areas.

An abnormal exit for round-off error will also occur if the

error estimate repeatedly increases after a large number of

subdivisions has been made. It should be noted that a certain

amount of round-off error can accumulate even with a normal exit.

This underscores the necessity of checking the reliability of an

integration routine with test functions, as well as comparing the

results of the routine for different tolerances.

D. Integration Difficulties

In order to use the integration routine QAG, we require a

finite interval ;.o subdivide. However, the integrals in

expressions (3.1-3.3) and (3.18-3.22) all possess an infinite upper

limit of integration. We handle this problem by dividing the range

of integration for each integral into a finite interval, q = [0,b],

and a semi-infinite one, q = [b,™]. We will discuss first the

numerical techniques for handling the integrals over the finite

range. For now, we take b > 2kf; this confines all of the

singularities and derivative singularities to the finite part of

the interval of integration. We will discuss the choice of b in

more detail when we treat the problems associated with integration

over the semi-infinite interval, q = [b,«].
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1. Singularities

For adaptive n-point Gauss-Kronrod quadrature over a finite

range of integration, the greatest accuracy can be achieved with

the smallest number of integrand evaluations if several conditions

are met. The integrand should be continuous (or bounded and

piecewise continuous) over the interval of integration. The first

2n derivatives should be bounded over the interval of integration,

and there should be no integrand singularities in the complex plane

near the interval of integration.26 If any of these conditions is

not satisfied, obtaining the desired accuracy will be more

difficult.29 If the integrand is not bounded, obtaining the

desired accuracy may be impossible- We note that none of the

integrands in Eqs. (3.1-3.3) and (3.18-3.22) satisfy the conditions

above for the interval of integration [0,b]. There are

singularities near the intervaj. of integration, as well as a

derivative singularity at q = 2kf for each integrand. In addition,

several of the integrands are unbounded at q = 2kf. We treat each

of these problems below.

None of the off-interval singularities represents a

significant problem. Each integrand contains two poles on the

imaginary axis, at q = ± 2i, from the terms in Q of the form

(1 4- p 2q 2)" 2 = (1 + q 2 M ) ~ 2 • (3.56)

In addition, the integrands in Eqs. (3.2), (3.3), (3.21), and
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(3-22) contain branch points at n = -1, from the £n|irH| and

Jtn2[ 1T+-11 terms. None of these singularities is close enough to

q = 0 to have a significant effect oa the integrand at small q.

The on-interval derivative singularity also does not

represent a significant problem. Each integrand contains a weak

logarithmic derivative singularity at T) = 1, from the (r|— 1) An( TT- 11

term in the dielectric function, e(q). We can use the

(15,31)-point integration rules for an integrand of this type over

an interval containing the singularity; only a modest number of

subdivisions is necessary for good accuracy.

The on-interval singularities, however; do represent a

significant problem. All of these singularities result from taking

volume derivatives of the dielectric function, and the integrands

containing these singularities are unbounded at TJ = 1 (q=2kf).

Equations (3.3) and (3.22) contain the strong singularity, (TI-I)"1,

and the weak singularity, £n2|ir-l|. Equations (3.2), (3.3),

(3.21), and (3,22) contain the weak singularity, An| TJ— 11 .

Ordinary Gaussian quadrature tends to produce large errors

for singular integrands, even if the singularities are weak.29 If

any of the abscissas used in the quadrature falls on the

singularity, of course, the computed integral will diverge. The

errors will tend to be smaller for an adaptive routine, but even if

the abscissas manage to "miss" the immediate region around the

singularity, which is possible for a single integration over a

logarithmic singularity, the routine will be inefficient.
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In order to use adaptive Gaussian quadrature, we require

continuous integrands (or bounded, piecewise-continuous integrands,

as discussed above). Further, we require bounded, or at most,

weakly singular first derivatives. Briefly, the procedure is as

follows. We first, transform each (IT-1)"1 integrand singularity by

integration by parts. The resulting integrand will contain only

Jto|.,--H and An21 r|—11 singularities (see Eqs. (3.50-3.53)). We then

"subtract out" the singularity30 over a finite interval for each

divergent term in our integrands. The result is a set of

continuous integrands with weak singularities in the first

derivatives, plus some analytic terms.

For the (TI-I)"1 term in Eq. (3.3), we integrate by parts

over the entire range of integration, with TI = q/2kf as the

integration variable:

4kfVaf
m4kfva Q *!*

Jo 3 D* (TH-D(TI-I) nJo 3 (l+n)

r°° 4 d
J
0 3 k*V* d^

The integrated part in Eq. (3.57) can be rewritten

lim r " 4 Q ^ 11+6
6^0 l o 3 k*V> D^ "oSlT ta I i r 1 1 " , CCDialTHl} , O.58)

where the slowly varying terms are taken at T) = 1, and C(l) is a
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constant. The first expression in Eq. (3.58) vanishes. The second

expression also vanishes, by Eq. (3.52). The integral on the right

in Eq. (3.57) can be rewritten

P J 2kf(f7(q)JJn|n-i| + f8(q)J!n
2lTi-ll)dTi , (3.59)

where

- 2 vae2 i ,i 2
T ~*r -̂ T (1"p q

2V2J_ (JL_
3 D2 H 'Hl

- 6Vae2(l-Y)in|TH-l|] , (3.60)

and

The functions fy(q) and fg(q) a^e bounded and continuous over

0 < ti < ™, and their leading terms at large r\ vanish faster than

TI"3 as T]-"=. By Eqs. (3.44)-(3.49), the integral in Eq. (3.59)

exists.

We can now rewrite the integrand in Eq. (3.3), replacing

the strongly singular (n-1)"1 term with weaker logarithmic

singularities. This gives
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^— = g3(V) + f {f3(q) + (fA(q) + f7(q))to|Tl-l|
N 0

fs(q)

( T r l ) J ! n 2 | T 1 1 |^ q ' ( 3" 6 2 )

Note that the new An21 r|—11 term is continuous at T) = 1, by

Eq. (3.48). The (TI-I)"1 term in Eq. (3.22) can be treated in the

same way. This gives

'* = 2 /" {[f3(q) + (f4(q) + f7(q))Jta|Tl-l|

qr

T [fiCq) + j r f2(q)tolT)l|](cos qr
3 A T)+l *• qr

f2(q)tolT)-l|](cos qr -
 S l n 1r)}dq . (3.63)

*• qr

We still need to transform the singular terms in

Eqs. (3.2), (3.21), (3.62), and (3.63). These singularities are

all of the form f (Ti)J!n| T|—11 and can all be handled in the same

fashion. We "subtract out" each of these singularities on a part

of its finite interval of integration that includes the

singularity. The general method for "subtracting out" a

singularity is to replace a singular integrand f(x) with the

integrand f(x) - g(x). The new integrand should be continuous with

as many bounded derivatives as possible. The integral of g(x),

which should be known in closed form, is then added.
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We take f(x) = f ( n) Ha | n-11, g(x) = f (1) An | T]-l! , and

"subtract out" the singularity on the interval T) = [0,a}, where

a .' 1. This gives

/ f(T»)Xa|T|-i|dT) = / a [f(Ti) - f(i)]jto|n-i|dn + P/o o o
4 J f(T))J!n[Ti-l|dT) . (3.64)

a

The first integrand on the right of Eq. (3.64) is bounded at its

limits of integration, and continuous over [0,a], since, from the

discussion following Eq. (3.47),

[f(T))-f(l)]J!n|n-l| = f(l) ]$ [(T)-l)J!n|n-l|]Jtn|Ti-l| = 0 .(3.65)

The second integral on the right has the elementary solution

f(l)[(a-l)An(a-l) - a]. The third integrand on the right is

bounded and continuous over T) = [a,b], since there is no

singularity on its interval of integration.

The third integrand does have an off-interval singularity

at n => 1. From the previous discussion of the effects of similar

off-interval singularities, we choose a = 2; the singularity at

TI = 1 should then have virtually no effect on the integration. For

the purposes of integration over q, we note that 2kf ~ 1 for the

range of volumes used, and T) = 2 corresponds to q ~ 2. Hence, we

choose the interval q = [0,2] to subtract out the singularity. We

can now rewrite each of the singular integrands in Eqs. (3.2),
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(3.62), (3.21), and (3.63) as a piecewise continuous integrand with

a jump discontinuity at q = 2, plus an analytic term. We have

*
- = g2(V) + f2(2kf)P(2)

/ {i(q) ( 2^
)
 2 ^ f > ^ ) ) | r | ^ q • (3'66)

**
j- - g3(V) + (f4(2kf)+ f7(2kf

CO

+ / (f3(q)

[(f4(q) + f7(q)) - (f4(2kf) + f7(2kf))u)(q)]ta|1rl| }dq ,(3.67)

sin 2kfr « *

-^-~~ P ( 2 ) + 2 ^ { f U )

sin 2kfr
f ( 2 k ) t o ( q ) ^ ̂ 'nllldq , (3.68)qr ^ r ^ 2kfr

** 2 '* , sin 2 kf r

<f + i • = (f4(2kf ) + f 7(2kf)) — — P(2)

2 , sin 2 kf r,
| f2(2kf)(cos 2kfr - 2k r

r ) P(2)

2 y[f3(q)

, 2 _ , ,. /• sin ar-v+ - f t(q) (cos qr — — J
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sin 2kfr
[(f4(q) + f7(q))

where

i-k

2 k r

f2(2kf)oi(q) sin 2kfr
— 1 (cos 2kfr -—£-)]jta|n-l|}dq , (3.69)

f

P(2) = (2 - 2kf)Jta \-~-l - 2 , (3.70)
Kf

and

u(q) = 1 for q < 2 , (3.71)

w(q) = 0 for q > 2 . (3.72)

It should be noted that there are removable (or apparent)

singularities at q = 2kf (TI=1) for any integrand of the form

[f(T)) - f (1) ]jto|ri-l| as well as for any integrand containing the

factor Ej. In these cases, the limit of the integrand as q -> 2k^

exists, but the Jln|n~li factors diverge. The limit of the

integrand is taken only if an abscissa of the integration rule

falls on q = 2kf ± 10"
1**.

There are also removable singularities at q = 0 for all

integrands, since Ej, e2, etc., diverge at this point. This

presents no problems for two reasons. First, Gaussian integration

does not use interval endpoints as abscissas. Second, the
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integrands are quite smooth for q = [0,0.5], even for large r.

This interval is never subdivided so finely that machine accuracy

for q near zero is a problem, and it is therefore not necessary to

specify a limit as q •+ 0 in the integrand evaluation routines.

2. Infinite Upper Limit of Integration

The integrals in Eqs. (3.1), (3.18)-(3.20), and

(3.66)-(3.69) are all amenable to adaptive integration if the

semi-infinite range of integration [0,m] is replaced with a finite

range [0,b]. This leaves the problem of integration over the

remaining semi-infinite interval [b,00]. The method of integration

over the semi-infinite range depends on the nature of the

integrand; the nonoscillatory V-dependent integrals and the

oscillatory (r;V)-dependent integrals must be handled differently.

In the former case, the semi-infinite interval cetn be mapped onto a

finite interval, using a change of variable. In the latter case, a

series of integrations over a finite part of the semi-infinite

interval can be used to extrapolate the value of the integral over

the entire interval.

a. V-dependent Integrals. We treat the simpler case of

the V-dependent integrals first. We make the change of variable26

t = b/q (3.73)

for the interval [b,»]« This gives
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It . (3.74)

The transformation provides a finite interval for the integration

routine. The transformed integrand is bounded and continuous over

the interval of integration for b > 2kf. We show first that the

integrand is bounded at zero (it is certainly bounded at 1 for

b > 2kf). The leading term in the integrand at large q goes as

q~\ta q for Eq. (3.67), and as q"4 for Eqs. (3.1) and (3.66).

Hence, the leading term in each transformed integrand goes to zero

faster than t, as t-»0. The transformed integrands are also

continuous, since f(q) is continuous for q > 2kj. Hence, the

transformed integrals exist and are suitable for evaluation by QAG.

For efficient numerical integration we choose b large

enough so that the magnitude of the integrand f(q) is monotonically

decreasing for q > b. For all of the V-dependent integrals, b > 7

satisfies this requirement. Ideally, b should be chosen to

minimize the combined number of interval subdivisions for q = [0,b]

and t = [0,1]. We find that b = 8 gives reasonable results for

each of the three V-dependent expressions.

b. (r;V)-dependent Integrals. Evaluation of the (r;V)-

dependent integrals over the interval [b,»] presents a more

difficult problem. These integrands contain sin qr and cos qr

terms, with r between 5 and 27. The change of variable described

above is in general not suitable for such oscillatory integrands.
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Instead, we transform each integral over [b,m] to an infinite

series, and speed up convergence with the Euler transformation.26

To obtain an infinite series, we note that an integrand

which oscillates around zero contributes alternating positive and

negative areas to the integral. We can treat these areas as terms

in an infinite alternating series and sum the series. An integrand

containing both sine and cosine terms can be divided into two

integrands; there will then be two such series. For large q, the

leading terms in the (r;V)-dependent integrands go as q~3sin qr

(3.20), q"4cos qr (3.19 and 3.69) and q"5sin qr (3.18 and 3.68).

Hence, the resulting infinite series will converge.

We set the minimum value of b such that the magnitude of

the nonoscillatory factor of each integrand is monotonically

decreasing for q > b; the error in the series sum can then be taken

as the magnitude of the first neglected term. As an estimate of

the sum of the infinite series, this process gives very poor

results for the (r;V)-dependent integrands, since the infinite

series converge very slowly. For b ranging from 15 to 25, and for

alternating series of 5-10 terms, the error is of the order of the

sum itself. This is not a serious problem for small r (r ~ 5-10)

for all of the (r;V)-dependent integrals except Eq. (3.20), the

uncertainty in the sum of the infinite series is usually much

smaller than the numerical integration error. For larger r,

however, the oscillations in the finite interval make the

contribution of the tail of the integrand relatively more
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important. For the slowly converging integrand in Eq. (3.20), the

contribution of the tail of the integrand is of the same order as

the value of the integral over [0,b] for b > 10. The tail of the

integrand is also important in cases where the integral over [0,b]

and the analytic part of the expression tend to cancel.

To speed up convergence of the alternating series, we apply

an Euler transformation. The formal transformation can be

written26

uQ - ux + u 2 - = | u 0 - i A u0 + - A
2
 U Q -

where

A u 0 = ux - u0 ,

A2 u0 - A(A uQ)
 = U2 " 2ul + UO » (3.76)

etc. If the original series on the left of Eq. (3.75) is

convergent, it can be proved that the transformed series on the

right is convergent, and that both series converge to the same

value. This transformation is particularly convenient for the

(r;V)-dependent expressions; the transformed series converges much

faster than the original series for all of these integrals.

In general, the slower the original series converges, the

faster the transformed series converges and the more accurate the

extrapolation becomes.26 In order to improve the accuracy of the
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extrapolation we integrate over five loops of the sine or cosine

function (Aq = 5 n/r) for each term of the series. This large

interval gives smaller differences between series terms than a

small interval containing only one loop per term. In addition, an

interval containing five loops requires no subdivision by QAG for a

(15,31) point rule and a relative error tolerance of < 10"7

We can also improve the accuracy of the extrapolation by

increasing b. In this case, the accuracy of a sum of n terms of

the original series also improves, but the accuracy of an

extrapolation using a linear combination of these n terms improves

much more quickly.

We take the extrapolation error to be the magnitude of the

last term in the transformed series. This quantity tends to be

somewhat larger than the actual error, and can serve as a cautious

estimate of the uncertainty in the extrapolation.

For efficient extrapolation, we choose b large enough so

that the magnitude of the nonoscillatory factor of the integrand is

monotonically decreasing for q > b. For all of the (r;V)-dependent

integrands, b > 7 satisfies this requirement. We also find that

for r > 4 and b > 15, extrapolation using 2-20 terms of the

transformed series gives better accuracy than merely summing 2-20

terms of the original series. We therefore choose b = 16 and

extrapolate using the second through the tenth terms of the

alternating series. The first term, which is simply added to the
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extrapolation sum, In the integral from b to the nearest node of

the integrand on [b,«»]»

3. Round-off Error

Evaluation of the (r;V)-dependent expressions presents 2

other noticeable problem. These expressions involve only the

effective potential, <t>(r;V), and its derivatives with respect to r

and V. From Fig. 3, it can be seen that <t>(r;V) is oscillatory with

respect to r, with several nodes between r = 5 and 27. Each of the

four other expressions is likewise oscillatory.

Near any of these nodes there will be considerable

cancellation of positive and negative areas for the integrals.

This is a definite source of round-off error, as discussed above

under abnormal exits. We can minimize round-off error, of course,

by requiring as large an error tolerance as possible. We can also

accept a few isolated occurrences of round-off error near the

nodes, since the absolute error will be very small.

The general procedure is merely to identify, during

integration program execution, any cases where the relative error

tolerance is not satisfied due to round-off error. These cases can

be examined later. For a relative error tolerance of 10"\ we find

that round-off error is not a significant problem.
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E. Numerical Integration Procedure

We can now summarize the complete integration procedure.

The three V-dependent expressions that we need to evaluate are

given by Eqs. (3»l)t (3.66), and (3.67). The five (rjV)-dependent

expressions are given by Eqs. (3.18)-(3.20) and (3.68)-(3.69). The

factors &±(V), h^r), and P(2) are given by Eqs. (3.4)-(3.6),

(3.23)-(3.25) and (3.70), respectively. The factors ft(q) are

given by Eqs. (3.7)-(3.12) and (3.60)-(3.61); the individual parts

of the f^(q) are given by the equations following Eq. (3.12).

We divide each interval of integration into a finite and a

semi-infinite part, and take all of the analytic parts under the

integral sign for the finite interval, as illustrated in

Eq. (3.54). This gives, for example, for Eq. (3.1),

fb r Q 1 g i Q x

/ [± + T ] dq + / b - 3 - dq • (3.77)

The extension to the other expressions is obvious.

1. Procedure for V-dependent Integrals

For each V-dependent expression, we take b = 8 and apply a

change of variable to the integral over q = [b,»], as given in

Eqs. (3.73)-(3.74). The transformed integral now has a finite

range of integration, t = [0,1]. We require a relative error

tolerance of 10~6 for both the integral over q = [0,8] and the

integral over t = [0,1]. Since the value of the integral over
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[0,8] dominates each expression, the relative error for each

expression will be less than 10~6. Evaluation of all three

expressions for a given V takes only a fraction of a second of

computer time on the CRAY-1, and entails no integration

difficulties for the range of volumes given in Eq. (3.30).

2. Procedure for (r,V)-dependent Integrals

For each (r;V)-dependent expression we take b = 16. For

the [16,°°] interval (but not for the finite interval) we divide any

integrand containing both sine and cosine terms into two

integrands.

For each integrand, we generate the first ten terms of an

infinite series. For an integrand containing a sin qr term, we

integrate over the intervals

q = [16,b'], [b'.b' + 5n/r],..., [b' + 40it/r, b' + 45n/r] , (3.78)

where b' is the first node of sin qr on the interval q = [16 ,<*>].

We extrapolate the value of the infinite series by taking the Euler

transformation given in Eq. (3.75), where UQ corresponds to the

second term of the series in Eq. (3.78).

For example, for Eq. (3.18) we then have

dq + I —~^—^±- dqqr 16 J ^ \e D qr

+ extrapolation sum , (3.79)
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where the extrapolation sum is the sum of the first nine terms of

the transformed series. This procedure is easily extended to an

expression containing both sine and cosine terms in its integrand.

We require a relative error tolerance of 10-tt for each

(r;V)-dependent expression; two iterations cf the Integral over

[0,16] suffice for QAG to return a calculated error estimate that

satisfies this tolerance, except for a few isolated cases of

round-off error. We apportion the error tolerance among the

various integral contributions as follows. For the first iteration

of the integral over [0,16], we require a relative error tolerance

of 8.5*10""5. For an integral containing only a sin qr term, we

require a relative error tolerance of 4.0x10~^ for the integration

over [b,b'] and for each integration over [b'+mu/r, b'+(m+5)n/r],

where the values of m are given in Eq. (3.78). We Chen take the

extrapolation error to be the magnitude of the last extrapolation

term. For an integral containing both sin qr and cos qr terms, we

require a relative error tolerance of 2.0x10~7 for each integral on

the range of integration [b,00].

If the relative integration error calculated by routine QAG

for the entire expression is greater than 10"*•, and round-off error

is not present, we repeat the integration over [0,16]. For this

second iteration, we require an absolute error tolerance

Eabs " 10 " I JQ
 fU)dql " err [16,-] , (3.80)
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where the integral in the first term is the previous result for the

(r;V)-dependent expression, and err [16,«] is the total calculated

error over the semi-infinite range. Evaluation of all five (r;V)-

dependent expressions for a given V and r takes between 0.3 and 0.6

seconds on the CRAY-1, with minimal integration difficulties.
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CHAPTER 4

MOLECULAR DYNAMICS PROCEDURES

We now consider the details of our molecular dynamics

simulations. We wish to calculate the pressure and the adiabatic

elastic constants for bcc sodium at each of the temperatures given

in Table I. We first establish an appropriate system of units for

these calculations. We then discuss the setup of the MD runs and

the interpretation of the MD output.

A. Units

As discussed in Chapter 2, we use atomic units for length

and energy. From Eq. (2.4), we have, for length in Bohr radii and

energy in Rydbergs,

a0 = 1 , (4.1)

e2/2a0 = 1 . (4.2)

We take the mass of a sodium ion, MQ, as unity:

MQ - 1 . (4.3)

The natural time unit is

2 MQBQ 1/2
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which corresponds to ~ 7xlO~15 seconds. The temperature is

measured in Kelvins (K), and the pressure in Ry/a^.

B. Molecular Dynamics Setup

The computer simulations were performed using the .

continuous potential MD routine MOLDY developed at Los Alamos

National Laboratory. Principal collaborators for this version of

the code included G. K. Straub, S. K. Schiferl, B. L. Holian,

J. R. Beeler, and J. D. Johnson. We have already described this

code's algorithms for integration of the equations of motion and

implementation of periodic boundary conditions. We discuss below

the initial setup of an MD routine for the calculation of pressure

and elastic constants.

For all MD runs, we use a cubic computational box. For a

typical number of atoms N = 686, this gives a box length of Jl = 7a

for bcc structures, where a is the lattice parameter. We use the

experimental volumes (in terms of Va, the volume per atom) for bcc

sodium at atmospheric pressure for all of our calculations. We use

the thermal expansion data of Adlhart et al.31 to obtain volumes

for the temperature range 300 K-371 K; we use the thermal expansion

data of Siegel and Quimby to obtain volumes for the temperature

range 80 K-300 K. Both sets of experimental data were scaled to

agree with the lattice parameter measured by Feder and Charbnau33

at 298.15 K. We calculate the volume for bcc sodium at O K by

extrapolation from the above measurements. The volumes and numbers

of atoms used in our computer simulations are listed in Table I.



97

The static lattice calculations with N = 43904 were performed for

the purpose of investigating the effects of varying the range of

the effective potential.

To calculate the ensemble averages in Eq. (1.20) and

Eqs. (1.24)-(1.26), we set up the MD routine to compute the

following mechanical quantities for each time step At: EJQ, 1 <t> >

I *'«*, I *'xy, I •', I (•** + | • ' * ) , I <•"-•')**, and

I (<l> -<t> )£2y2. where EJ,T is the total kinetic energy of the ions in

the computational box. The sums are taken over all distinct pairs

of indices K,L: K is taken over all ions in the computational box;

L is taken such that the distance

rKL = 'EK " EL1

is within the range of the effective potential, and L * K. The

routine will also calculate the total mechanical energy ET:

ET= EKI + I 0(r,V) = H - Q(V) . (4.6)

The MD routine must be supplied with a table of all five

(riV)-dependent expressions (see Chapter 3) for each volume used.

The routine is then directed to interpolate from the table to find

the necessary values of the expressions. We choose a linear

interpolation scheme, which requires a minimum number of operations

per look-up. We discuss below the choice of the interval, the

minimum r, and the maximum r for the table.
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The interval, Ar, is chosen to be small enough so that the

effects of interpolation errors on any pressure or elastic constant

calculation can be ignored (see Chapter 5). We take Ar • 0.01; the

relative interpolation error for any (r;V)-dependent expression is

then less than 2xlO~5.

We choose a minimum r, rm^n, to indicate an energetically

unlikely configuration for the MD system. If the MD routine

encounters r < rmin, a warning message will be sent and the

particular run can be examined for errors. We take

~ 10 <EKl/N>

As discussed below, the initial conditions for an MD run are chosen

so that the equilibrium time average of the ion kinetic energy

differs by less than 10% from the initial ion kinetic energy.

Hence, we can select r m i n according to the desired temperature T,

and

* (rmin;V) ~ 17 kT . (4.8)

The values of rmin used in these simulations are given in Table I.

For the bcc static lattice calculations at Va = 254.921 a^, we

choose rmin = 6.91 aQ, since the nearest neighbor distance for the

perfect crystal is approximately 6.918 aQ.
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The maximum r, r^™, determines the range of the (r,V)-

dependent expressions. If the MD routine encounters r > rmax, the

values of all of these expressions are taken to be zero. The value

of r is chosen to satisfy several criteria. First, by the

nearest image convention (see Chapter 1), r^^ < H/2, where X is

the length of the computational cell. Second, the possible values

of r __ are limited to zeros of the force function - fy'/r, so that
luaX

the force between two particles as they move out of range passes

smoothly to zero. Tb/.rd, r_ax should be large enough to minimize

the errors in the simulation due to the effects of *"his finite

cutoff. We choose rmax to be the fourth node of -<fr'/r following

the initial well (see Fig. 4). The errors due to use of a finite

cutoff are discussed in Chapter 5. The values of r^jj are given in

Table I.

The MD time step At should be small enough so that the

total energy H (or the total mechanical energy E T = H - Q(V)) is

conserved, and so that the fluctuations of Y4>____, }"<(>„,,, etc., are

adequately sampled. To calculate a reasonable time step for energy

conservation, we take ~ 1/50 of the characteristic oscillation

period TQ of a sodium ion in the MD system. Swanson22 estimated

TQ ~ 74 tQ; this gives At ~ 1.5 tQ.

To calculate a reasonable time step for adequate sami ling

of the fluctuations, we take ~ 1/50 of the characteristic time Atp

for the fluctuations in £<t>xx. We define Atp to be the average time

between local maxima (or local minima) for a mechanical quantity in
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an equilibrium MD system10 (see Fig. 5). For ^ ^ at T ~ 298 K and

Va = 266.17 â J, we find AtF to be ~ 20 tQ; this gives At = 0.4 tQ.

We find the time step At = 0.4 tQ to be satisfactory for

our MD runs. For this time step, there is no long term trend in

the total energy, and the total mechanical ener̂ ,, E T fluctuates by

only a few parts in 10 . Hence, the total energy is conserved to

within the accuracy of our simulations. We will discuss the

problems of fluctuation sampling in Chapter 5.

We begin an MD trajectory by specifying N, V , At, and a

set of initial positions and velocities for the ions. We choose

initial conditions to approximate the desired equilibrium state;

relaxation to a steady state should then occur quickly. The

resulting system should have cubic symmetry and approximately the

correct temperature for the given volume.

These initial conditions take the form of a Maxwell

distribution of the velocities of the ions, and a Gaussian

distribution of the. displacements of the ions from a perfect bcc

lattlre. For each component of velocity a set of values is

assigned from a random Gaussian distribution with a rms width of

(kT)1/2. For each component of displacement the Gaussian

distribution has a rms width of (u 2
T)

1 / 2,

= BT/8TI ,

and BT i s the thermal Debye parameter.34
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In practice, we generate an initial velocity distribution

so that the desired temperature is ~ 95% of the value of the

parameter T in the width of the distribution. We then integrate

the equations of motions for 250 time steps but reacaxe the

velocities of the ions at each time step so that the total kinetic

energy remains constant. After 250 time steps the scaling ceases

and the system is allowed to relax. After a few hundred more time

steps the kinetic energy usually reaches a steady state and the

temperature of the system can be estimated. The trajectory can be

restarted with slightly different Initial conditions if the

estimated temperature is not sufficiently close to the desired

value.

C. Interpretation of Molecular Dynamics Data

We now consider the evaluation of MD time averages for the

mechanical quantities in Eqs. (1.20) and (1.24)-(1.26). We follow

the procedures given in Schiferl and Wallace10 for determining

equilibration times and for establishing confidence limits for MD

ensemble averages; an extension of these methods is used for

evaluation of fluctuation averages. A brief outline of these

procedures and their application to calculations of the pressure

and the elastic constants is given below. Tests for symmetry of an

MD system will also be described.



102

1. Confidence Limits for Ensemble Averages

As discussed in Chapter 1, the output of an MD run for a

mechanical quantity A consists of values of A calculated at each

time step:

k± = A(iAt), i = 1,2 (4.10)

These "raw data" are highly correlated, and not quite normally

distributed for our MD systems. To obtain data which are normally

distributed and approximately random, while preserving the weight

function for time averages of A(t), we construct coarse-grained, or

time-smoothed data. The series of points A^, over a time interval

x = mnAt, is divided into sequential nonoverlapping segments k,

k =1,2, ......n. Each segment has m points, and the mean and

variance of the A.̂  for segment k are denoted a^ and S^,

respectively. The n values of a^ constitute a sample, drawn from a

population with mean <A>. The sample mean and variance are A and

s^, respectively:

n

If the sample passes statistical tests for normality, for lack of
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long term trend, and for randomness, we can assign confidence

limits for the ensemble average <A>:

ansA
<A> = A ±-^-* , (4.13)

/n

where aQ is the 0.975 fractile of "Student's" t distribution with

n-1 degrees of freedom. For n > 24, <xn ~ 2.

We need to rewrite the equations for the pressure and the

elastic constants in a form more suitable for the sampling

described above. From Chapter 1, we have

P = 0p(Q) + Kp + Lp , (4.14)

Cll " °11<B> + Kll + Lll + Fll + Xl + X2 • <4'15>

C12 = °12<Q) + L12 + F12 + Xl + X2 > (4.16)

C44 = O44(Q) + K u + L 4 4 . (4.17)

The strictly volume-dependent terms, 0 (Q), are given by

Op(Q) = - Q*/V , (4.18)

0 u(Q) = (Q** - Q*)/V , (4.19)

O12(Q) = (Q** + B*)/V , (4.20)

044(Q) = - Q*/V . (4.21)

The kinetic energy terms, Ka, are given by
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Kp = NkT/V , (4.22)

K n - 2NkT/V , (4.23)

K44 = NkT/V . (4.24)

The linear terms, La, are given by

Lp = - <I«t>rr>/V , (4.25)

L12 = <^ f*** + f *'* + ** + (*"-*') tx ty^>/V » (4«2 7)

L44 " <I [-•* + (•"-•')*|*y]>/V , (4.28)

where

<J>rr - •* + <t>'/3 . (4.29)

The fluctuation terms, F , are given by

F l l = - P <[l fxx " <I ^

F12 " ~ P <t l *xx " <l *xx>H^ *yy " <l *yy>3>/v » C4.31)

F44 = " P <tX *xy

where
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(kT)"1 . (4.33)

By symmetry, we can rewrite F ^ a s

<f

We obtain smaller uncertainties for the ensemble averages of the

fluctuations in C12 if we use Eq. (4.34) instead of Eq. (4.31). We

can also rewrite F ^ as

since the ensemble average <£ $vw> = 0 for a symmetric system. We

will discuss tests for symmetry below.

The correction terms, Xa, are given by

miyczni , (4.36)
1 V c

X2 =-
?~Y 2c , (4.37)

where Xj is the ensemble correction, X2 is the isothermal-adiabatic

correction, y is the Grffneisen parameter, and c is given by

Eq. (1.38).
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We begin our evaluation of an MD run by determining tb»

equilibration time for the kinetic energy, plus confidence limits

for the temperature. Using the procedure given above, we

coarse-grain the kinetic energy, E R I. If a coarse-grained sample

of n values, ever a time interval x, passes the statistical tests

referred to above, we can assign confidence limits according to

(4.38)

where E K I is the sample mean, and s^ is the sample variance. The

raw data points in this Interval T can be written A(t + iAt),

i = 0,1,2 ...., where the kinetic energy equilibration time, t ,

measures the time elapsed since the beginning of the trajectory.

We will use Eq. (4.38) to define the temperature of the MD system,

and we will use only that portion of the run with t > tfi for

equilibrium calculations.

To determine confidence limits for the linear terms, La, we

coarse-grain the bracketed expressions in Eqs. (4.25)-(4.28). If a

coarse-grained sample passes the statistical tests, we proceed as

in Eq. (4.13).

To calculate confidence limits for the fluctuation terms in

Cj^ and C12» we will need to coarse-grain two mechanical quantities

over the same time interval. We demonstrate this procedure for the

fluctuation average in FJJ.
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We f i rs t coarse-grain the quantity £ 4>xx. If a sample of n

values over the interval T passes the s ta t is t ica l tests , we can

assign confidence limits according to

where £ <t>xx is the sample mean, and s^ is the sample variance. We

then coarse-grain the quantity (£ <(>xx - £ 't'xx^2 = ^11 o v e r the

interval x. If a sample of m values passes the stat is t ical tes ts ,

we can assign confidence limits according to

£ • -

where f^ is the sample mean, s^ is the sample variance, and x2 is

the 0.025 fractile of the chi-squared distribution for n-1 degrees

of fr .edom.35 The first term inside the square brackets in

Eq. •. ,.40) is the uncertainty in the average fluctuation of

around £ ̂ xx* ^ e second term is the uncertainty in the average

fluctuation of £ <t>xx around <£ <t>xx>» i.e., the uncertainty in the

variance of "T 4>____.

We need to coarse-grain only one expression to obtain the

fluctuation average in C^^. From Eq. (4.35), we coarse-grain the

quantity [£ * x y ] 2 and assign confidence limits as in Eq. (4.13).
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2. Symmetry

To derive Eqs. (4.14)-(4.17) and (4.34)-(4.35), we assumed

that the equilibrium MD systems possessed cubic symmetry. We will

need to test this assumption for each of our MD runs.

Cubic symmetry requires that

~ 6±i <lf(r)> , (4.41)

where f(r) is any r-dependent function. To check the symmetry of a

particular MD system, we first test for the equality of <£$ £2> and

<£<(> /3>, using a two-sample test for the equality of two population

means when the two population variances are different.^ We then

test the hypothesis that <T<j> > = 0, using an ordinary t - test.35

Before applying either of these tests, we take coarse-grained

samples and establish that our samples satisfy statistical tests

for normality, lack of long-term trend, and absence of both

positive and negative correlation. All of the MD systems listed in

Table I easily satisfied these tests for a 5% level of

significance.
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CHAPTER 5

RESULTS AND DISCUSSION

A. Comparison of Theory and Experiment

Our results for the adiabatic elastic constants of bcc

sodium are given in Table II. The calculated values for T > 0 are

compared with the experimental atmospheric-pressure data of

Diederich and Trivisonno,36 Martinson,37 and Fritsch et al.38 in

Fig. 6. The relative uncertainties in the experimental data, for

95% confidence limits, are approximately 2-3%. The agreement of

our MD data with experiment is quite good, particularly for the

magnitudes of Ci, and Cin. The agreement with experiment is

excellent for the temperature dependences of all three elastic

constants.

The agreement of theory and experiment for the temperature

dependences illustrates a definite advantage of molecular dynamics

(and Monte Carlo) techniques, compared to lattice dynamics

calculations, for conditions where classical statistics are valid

and anharmonic effects are important. MD and Monte Carlo methods

both involve direct calculation of anharmonic effects, eliminating

the problems inherent in perturbation treatments of anharmonicity.

Evidence that anharmonic effects are significant for bcc sodium at

T > 100 K, and that anharmonic perturbation theory breaks down for
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these temperatures, is given by Straub et al.7 and by

Swans on et al. **

We have ignored the effects of the calculated pressure on

the elastic constants, in order to compare experimental and

theoretical elastic constants at the same densities and

temperatures. From Table II, the theoretical pressures are all

less than 1.2 kbar. These pressures are quite small, and their

differences from zero can be neglected.

1. Quantum Effects

We have omitted quantum effects in our calculations. This

approach is generally correct for temperatures such that T > 9Ha),

where Q^a is the high-temperature harmonic Debye temperature. For

sodium, 9jjm ~ 167 K.
1H For T < eHoo, there will be deviations

between classical and quantum calculations, and hence between

classical calculations and experimental data. For the elastic

constants of sodium, however, these deviations are very small for

T > 100 K.

The deviations can be discussed in terms of approximate

temperature dependences.39 In the classical regime, we expect the

elastic constants to vary linearly with temperature. For

calculations employing classical statistics, such as our MD

simulations, this linear dependence will extend to T = 0 K. In the

quantum regime, we expect the values of the elastic constants to

approach 0 K with zero slope. We will ignore the small zero-point



vibrational contribution to the elastic constants-. Wallace9

estimates this contribution to be less than O.o kbar.

From Fig,, 6, small quantum effects in the experimental data

are present at the lowest temperatures. These effects take the

for-is of slight deviations from the straight line dependence of C o

on T. The MD calculations, of course, do not reproduce this

quantum low-temperature curvature. Even at 100 K, however, this

curvature is very small, and the experimental results are still

approximately classical. For T > 100 K, this indicates that

quantum effects on the elastic constants can be ignored.

2. Electronic Excitations

We have neglected the effects of electronic excitations on

the pressure and the elastic constants. For temperatures such that

kT « ep, where ep is the Fermi energy, we can estimate these

effects by treating the excitations ss a contribution to the free

energy, Fe, where
14

For free electrons,
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where k is Boltzmann's constant, m is the electron mass, and Z is

the valence. For sodium, in our units, we can write

•£- 2.068X10"11 V 2 / 3 ^ L 5 _ . (5.3)
N a atom

The electronic excitation contributions to the pressure and

to the elastic constants are given by

(5.4)

(5.5)

(5.6)

(5.7)

These contributions are negligible for the solid under the

conditions of our simulations. The maximum excitation contribution

to an elastic constant is ~ 0.024 kbar, at T = 340. The maximum

contribution to the pressure is ~ 0.017 kbar.

3. The Calculation of C^

The main deficiency of our model appears to be in the

calculation of the magnitude of the shear constant, CAA. The

pe _

ce -
11

ce _ .
°12

rr2

3NVa '

4 r r 2

9NVa *

2 r T 2

9NV_ '
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temperature dependence agrees well with experiment, but the

calculated values of C^ are consistently too small.

It is probably not possible to obtain both good agreement

with measured bulk properties and good agreement with the measured

shear constant from second-order pseudopotential perturbation

theory. As discussed in Chapter 3, the three adjustable parameters

were fitted to experimental results for the binding energy, the

lattice spacing, and the bulk modulus of bcc sodium at zero

temperature and pressure.8 The calculated value of the shear

constant, C.*, at zero temperature and pressure was approximately

6 kbar smaller than the experimental value.9 Conversely,

Suzuki et al.1*0 fitted a pseudopotential to experimental results

for the shear constant of bcc sodium, but failed to obtain

agreement with the measured value of the bulk modulus.

The most likely source of the discrepancy between

experiment and theory for the value of C14 is the use of only

second-order perturbation theory. We have assumed that we can

neglect terms higher than second order in the pseujdopotential.

However, Harrison^ indicates that those higher-order terms which

introduce three-body interactions can be significant in the

determination of crystal structures. The contributions to C>> of

the strain derivatives of these three-body terms could account for

the large, nearly constant difference between experimental and

theoretical values for C^, in the form of a geometrical resistance

to shear that is not contained in the second-order theory.
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B. Theoretical Contributions

Table II gives the various contributions to the theoretical

pressure and elastic constants. Several distinctive features of

these contributions should be noted. First, some of the

fluctuation terms are quite large. At T = 340 K, the magnitude of

the fluctuation term in C,, is ~ 20% of the elastic constant. For

C.i, the corresponding figure is ~ 37%. As discussed below,

fluctuation terms are notoriously difficult to calculate

accurately.

We also note that the strictly volume-dependent terms,

0(Q), are very large for P, Cjlt and C44, ranging from - 22 kbar to

- 40 kbar. The contribution of 0(Q) to C^. 5 kbar, is much

smaller, but not negligible. Finally, we note that the ensemble

correction, Xj, is small but significant at higher temperatures.

Table III shows the effect of the volume dependence of the

effective potential on the pressure and the elastic constants. The

volume-dependent terms in this table are defined as the

contributions to the linear and fluctuation terms that would be

zero if the volume derivative of 4>(r;V) were identically equal to

zero. The r-dependent terms are the contributions of the position

derivatives of <t>(r;V). For example, the volume-dependent part of

the linear term in C n is <£(<)>** + 2/3 <|>'* - $*)>/V. The

corresponding r-dependent part is <£($ - $
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The most striking feature of this table is the large size

of the volume-dependent linear terms: - 12 kbar for P and C^, and

~ 25 kbar for C ^ . These three terms decrease slightly with

increasing volume and temperature. The contributions of the

volume-dependent fluctuation terms to the elastic constants are not

significant.

C. Other Theoretical Work

We discuss briefly two other theoretical calculations of

the elastic constants of bcc sodium. Glyde and Taylor1*2 performed

lattice dynamics calculations for temperatures from 5 K to 361 K.

Cohen et al.1*3 performed Monte Carlo calculations at temperatures

of 293 K and 361 K.

The calculations of Glyde and Taylor are based on an

empirical electron-ion potential which was fitted to spectroscopic

term values of the isolated ion. The fitted potential was used to

construct an effective ion-ion potential. The authors calculated

phonon frequencies in the self-consistent harmonic approximation,

with a cubic anharmonic term included as a perturbation. The

elastic constants were calculated from the long-wavelength limit of

the phonon dispersion curves. The results of Glyde and Taylor

differ from experiment considerably more than the present MD

results; our agreement with experiment is better for both the

magnitudes and temperature dependences of the elastic constants.
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The calculations of Cohen et al. are based on a

pseudopotential model which includes exchange and correlation

effects. The pseudopotential was used to construct an effective

ion-ion potential. The stresses and the elastic constants were

obtained by taking the expressions derived by Hoover et al.1*4 for

the adiabatic elastic constants of argon. These expressions are

the strain derivatives of the Helmholtz free energy for a volume-

independent pair potential.

These Monte Carlo calculations are seriously flawed by

several problems. Firsts the volume dependence of the effective

potential was ignored. The form of the effective potential,

however, is not volume independent. The volume dependence enters

through the dielectric function, e(q), in the integrand of the

expression for <fr(r;V), and through a volume-dependent term in an

interpolation approximation for the effect of exchange and

correlation on the screening. These are the same kinds of volume

dependences that we encounter in our effective potential. From

Table III, it can be seen that the contributions of the volume

derivatives of our effective potential to the pressure and the

elastic constants are significant. The contributions of these

volume derivatives to P, C n , and C^, in particular, are very

large.

Second, the authors make a conceptual error in the

comparison of their calculations of the elastic constants with
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experiment. They evaluate the stress-strain derivatives, or Birch

coefficients, B ^ ^ , where11*

oxii
1 , (5-8)

and, in Voigt notation:

Bll = Cll " P ' ( 5 # 9 )

B 1 2 = C12 + P , (5.10)

B44 = C44 - P . (5.11)

The pressure P used by the authors is the pressure calculated from

the equations of Hoover et al.**1* for a volume-independent

potential. This pressure, which we will call P, is ~ 7 kbar. The

authors then compare the theoretical Birch coefficients at ~ 7 kbar

with the experimental elastic constants at ~ 0 kbar. These are

considerably different physical quantities. From Martinson's37

analysis, the experimental Birch coefficients at 7 kbar are larger

than the experimental Birch coefficients at 0 kbar by ~ 27-38%.

Third, following these Birch coefficient calculations, the

authors introduce a strictly volume-dependent potential, Q(V), for

the purpose of investigating electron gas contributions to the

elastic constants. However, the contributions to the elastic

constants of Q* = VdQ(V)/oV were ignored.
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The form of Q(V) is given by Basinski et al.:1*5

Q(V) = N (|ep + X (pQ) +|) , (5.12)

where e^ is the Fermi energy, X(PQ) is the exchange and correlation

energy per electron of a uniform electron gas, and A is an

adjustable parameter. X(PQ) is given by Eq. (2.75) above. The

value of A is determined by requiring the total pressure P,

including the Q contribution, to be zero.

The authors calculated the contributions of

Q** = V2d2Q(V)/dV2 to the C ^ and C12 elastic constants for the

form of Q(V) above. They obtained Q**/V = 2.36 kbar for T = 293 K,

and 1.46 kbar for T = 361 K. These contributions were considered

negligible. The contributions of Q to the elastic constants are

considerably larger. We- have, for a volume-independent pair

potential, <t>(r),

PV = - Q* + NkT - <l$'/3> = - Q* + PV . (5.13)

Introducing the condition P = 0 gives

Q*/V = P . (5.14)
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Hence, the authors' neglect of the contribution of Q to

the elastic constants gives an error of - P for C^ and C^^, and

+ P for C^2" Taking the Birch coefficients gives the same

mathematical result as including the contribution of Q in the

elastic constants, but not the same physical interpretation.

Finally, we note that an appropriate form for Q(V) for

pseudopotential sodium can be derived without requiring an

empirical expression with an adjustable parameter. We show how to

derive such an expression for Q(V) in Chapter 2 of this

dissertation, using only the information necessary to determine the

effective potential. The functional form of Q(V) is given by the

bracketed terms in Eq. (2.92), and by Eq. (2.99). This form

differs significantly from the parameterized expression in

Eq. (5.12). While the first two terms in Eq. (2.92) and Eq. (5.12)

are identical, none of the remaining terms in our expression for

Q(V) goes as V"1.

D. Sources of Computational Error

By far the largest source of computational error in our

calculations is the statistical error in the MD averages. We will

discuss this statistical error below. We will also discuss several

smaller sources of computational error: integration and

interpolation error, cutoff error, and system size effects.
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1. Statistical Error

The error bars in Fig. 6 correspond to the statistical

uncertainties in the MD averages. The various contributions to

these uncertainties are given in Table IV. To obtain the

uncertainty in the total correction term Xj + X2, we take the

relative uncertainties in y, the Grffneisen parameter, and Cv, the

specific heat, to be ~ 2%, where the values of C and y are

obtained from Ref. 7.

The dominant statistical uncertainty in any elastic

constant calculation is clearly the uncertainty in the fluctuation

term. The uncertainty in a fluctuation average is given by

Eq. (4.40); this uncertainty goes approximately as 1/Zx, where x is

the length of the averaging interval. For the averages of

fluctuations of l^x^t ^rr» anc* ^xy' w e r e <l u i r e a n averaging

interval of the order of 10 ** At for a relative accuracy of 15-20%.

The computer time required for such long runs is considerable for

N = 686, a run of 12000 time steps requires about two hours on the

CRAY-1; for N = 1458, a run of 12000 time steps would require over

six hours. Hence, the accuracy of these calculations cannot be

significantly improved without the use of an inordinate amount of

computer time.

2. Integration and Interpolation Error

By integration error, we refer to the effect of errors in

the numerical integrations on the calculations of the pressure and

the elastic constants. The integration error in a strictly
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volume-dependent term, 0(Q), can be determined directly from the

numerical integration errors for Q and Q . As discussed in

Chapter 3, the numerical integration routine QAG calculates an

integral plus an estimate of the absolute error in the integration.

This absolute error is a considerable overestimate of the actual

absolute error: we take 10% of the absolute error calculated by QAG

for a particular integral as an upper bound for the numerical

integration error of the integral. This error in 0(Q) contributes

less than 8*10~6 kbar to the pressure and the elastic constants,

and can be neglected.

The integration errors in the linear terms can be estimated

as follows. We begin by calculating an upper bound for the

integration error in each of the seven position-dependent

mechanical quantities that form the output of the MD routine. Each

of these quantities has the form

A - 2f(rKL;V) tjfj . (5>15)
K,L

A list of these quantities and the ranges of^the indices K,L are

given in Chapter 4. We calculate an upper bound for the

integration error in A, EyCA), where

%(A) = I |E[f(rKL;V)]r™r
n| , (5.16)

K.L J

and E[f(rRL;V)] is an upper bound for the numerical integration

error in f(rKL;V). The MD routine calculates the sum in Eq. (5.16)
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in the same fashion that it calculates the sum in Eq. (5.15). The

necessary values of E[f(rRL;V)] are obtained by linear

interpolation from a table of the numerical integration errors. We

can then combine Ey(£<j> ), EJJ[£($ "• )£**]» etc., and take time

averages to estimate the integration errors in the linear, terms.

We obtain a relative integration error of less than lxlO""5

for each linear term. From Chapter 4, the relative interpolation

error for any of the (r;V)-dependent expressions is less than

2*10~5. We estimate an upper bound for the relative integration

and interpolation error of a linear term to be less than 3xlO~5.

This relative error corresponds to a maximum absolute error of less

than 4xlO~3 kbar; this error can be neglected.

The integration and interpolation errors in the fluctuation

terms can be estimated as follows. We begin by writing the time

average of the fluctuations of a mechanical quantity A as

(A(t) -A+ A(t) + 6) 2 , (5.17)

where A(t) is the integration and interpolation error in A(t), and

6 is the corresponding error in the time average 5. The

integration and interpolation error, Ej.(A), for the fluctuation

average of A is then

EF(A) = 2(A(t)-5)A(t) + A(t)
2 + 62 . (5.18)
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We calculate an upper bound for this error, E U F(A), by taking

absolute values for the factors In the first time average of

Eq. (5.18). The second and third terms on the right can then be

neglected, and we obtain

EUF(A) - 2|(A(t)-£)||A(t)| . (5.19)

To estimate A(t), we note that I1!1™. I$rr»
 a Qd 1$ xx do not vary

from their respective mean values by more than 1%. In addition,

the relative integration and interpolation error for each of these

mean values is less than 3*10~5. Hence, for fluctuations in T<J>

XX

and I$ r r» we take

A(t) = 3xlO~5 X*^ . (5.20)

and

A(t) = 3X1CT5 £• , , , (5.21)

respectively. For fluctuations in I$vxrt we take
xy

A(t) = 3xlO"5 4̂>'xx . (5.22)
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We can approximate |A(t)-5| in Eq. (5.19) by the rms value

S, where

S 2 = (A(t)-S)2 . (5.23)

We then obtain, for the upper bound EyF(A) of the integration and

interpolation error in a fluctuation average of A,

EUF(A) = 6xlO~
5 |A(t)|S . (5.24)

The maximum error in a fluctuation term, Fa, due to integration and

interpolation error contributes less than 0.2 kbar to the

corresponding elastic constant. This error is negligible compared

to the statistical error.

3. Cutoff Error

By cutoff error, we refer to the errors in the pressure and

the elastic constants that result from setting the values of the

(r;V)-dependent expressions to zero for r > r___. We can analyze

in some detail the effects of varying r_a,, for a static lattice.

Figures 7-10 show the results of such static lattice calculations

for the linear terms in the pressure and the elastic constants.

The linear term in the pressure, Lp, converges asymptotically to a

constant as rfflax is increased. For rfflax > 23 aQ, the relative

cutoff error in Lp is less than 1%. In contrast, L,,, Lio, an<* ̂ 44
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exhibit large oscillations and pronounced beats; convergence is

very slow. We estimate, for r m a x > 20 aQ, a cutoff uncertainty of

less than 1 kbar for LJJ and L ^ , and less than 0.5 kbar for L12«

We cannot apply this analysis to finite temperature

calculations, since the necessity of taking time averages does not

reasonably allow repeated calculations with different cutoffs.

However, the sharp peaks and the clear beat frequencies exhibited

by L a as a function of rmax are properties of a perfect lattice.

For time averages for a lattice of vibrating ions, these structures

should be less pronounced, and the cutoff error should be smaller.

4. System Size Effects

By a system size effect, we refer to the difference between

an intensive thermodynamic quantity calculated in the thermodynamic

limit (N-*-") and the same quantity calculated for a small system.

At present, there is no rigorous way to calculate this difference.

However, the computational error associated with the number of

particles in a system is assumed to be of order N"1 for systems

with periodic boundary conditions.

We can investigate the effect of system size on our data by

comparing two MD calculations of the pressure and the elastic

constants. We performed one calculation with N = 686 atoms, and

another with N = 1458 atoms. The two systems were set up with the

same volume per atom and the same cutoff. In addition, the

temperatures of the two equilibrium systems were approximately the

same: T ~ 296 K for N = 1458, and T ~ 297 K for N = 686. The
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results are given In Table II and Fig. 6. Within the limit of the

statistical uncertainties, we found no significant system size

effects.
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TABLE 1

MD RUN PARAMETERS

T^ is the desired temperature (see discussion following Eq. (4.9)).
a is the lattice parameter.

Va Td N a r m i n r ^

(a^) (K) (aQ) (a0) (aQ)

254.921 Static Lattice 686 7.989 6.91 24.72
254.921 Static Lattice 43904 7.989 6.91 6.91-110.12
256.400 100 686 8.004 5.64 24.73
260.916 200 686 8.051 5.19 , 24.78
266.170 298.15 686 8.105 4.90 24.83
266.170 298.15 1458 8.105 4.90 24.83
268.637 340 686 8.130 4.80 24.86



TABLE II

CONTRIBUTIONS TO THE RESULTS FOR THE PRESSURE AND THE ELASTIC CONSTANTS

All entries are in kbar.

oo

Static Lattice
N =•

T -
N =

T -
N -

T »
N •»

T -
N -

T -
N =

686

(99.
686

(198
686

(295
1458

(297
686

(339.
686

5±0.

.7±0

.7+0

.2±0

.7+0

2)

.4)

.5)

.5)

.6)

K

K

K

K

K

Quantity

P
Cll

c|JC44

P
Cll
C 2*ll
P
Cll
C 2il
P
Cll
C 2Cll
P
Cll
C 2

P
Cll

c..

Total

0
79
70
54

1
81
69
50,

i.
78,
66,
41,

1.
72.
64.
34.

1.
73.
64.
35.

1.
72.
62.
30.

.20

.7

.2

.8

.06

.1

.4

.2

.12

.1

.9

.7

.09
,8
.9
6

10
7
9
4

11
5
9
2

0(Q)

Strictly
V-dependent

-22
-40
5

-22

-22
-39
5

-22,

-22,
-39,
5.

-22,

-22,
-38.
5.

-22.

-22.
-38.
5.

-22.

-21.
-30.
5.

-21.

.8377

.1284

.5470

.8377

.7369

.9633

.5105

.7369

.4390

.4749

.4031

.4390

.1027
,9213
,2840
,1027

,1027
9213
2840
1027

9466
6635
2296
9466

Kinetic
Energy

0
0
0
0

0
0,
0
0,

0,
1,
0
0.

1.
2.
0
1.

1.
2.
0
1.

1.
2.
0
1.

.362

.724

.362

.710

.420

.710

,036
,073

,036

042
083

042

181
362

181

K
Linear

23.04
119.84
64.62
77.60

23.44

123.29
62.59
74.84

22.85
122.37
58.69
69.87

22.15
120.99
54.50
64.63

22.16
121.11
54.56
64.67

21.88
120.70
52.58 -
62.23

Fluctuations

0
0
0
0

0
-3.7
-0.6
-2.2

0
-7.7
1.4

-6.5

0
-13.6
2.9

-9.0

0
-12.8
2.8

-8.2

0
-14.5
2.5

-11.3

Corrections
Xl

Ensemble

0
0
0
0

0
-0.
-0,
0

0
-1,
-1,
0

0
-2.
-2.
0

0
-2.
-2.
0

0
-3.
-3.
0

.81

.81

.63
,63

,77
.77

79
79

60
60

X2
Isothermal
Adlabatlc

0
0
0
0

0
1.56
1.56
0

0
3.09
3.09
0

0
4.97
4.97
0

0
5.00
5.00
0

0
6.19
6.19
0



TABLE III

CONTRIBUTIONS OF THE EFFECTIVE POTENTIAL (|>(r;V)
TO THE PRESSURE AND THE ELASTIC CONSTANTS

All entries are in kbar.

Static Lattice
N =

T =
N =

T =
N =

T =
N =

T =
N =

686

(99.5±0.2)
686

(198.7±0.4)
686

(297.2±0.5)
686

(339.7±0.6)
686

K

K

K

K

Quantity

P
Cll
C 2

P
CI1
C 2

P
cll
c\l2
C44

P
Cll
C 2il
P
cll
C 2
C44

La

V-dependent

12
24

- 0
12

12
25
0
12

12
25
1

12

11
25
1
11

11
25
2
11

.58

.76

.40

.58

.42

.01

.17

.42

.19

.39

.02

.19

.93

.67

.81

.93

.80

.75

.15

..80

(Linear)

r-dependent

10.46
95.10
65.03
65.03

11.02
98.28
62.42
62.42

10.66
96.97
57.68
57.68

10.24
95.45
52.75
52.75

10.08
94.95

- 50.43
50.43

Fa (Fluctuations)

V-dependent

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
1
0
0

.2

.3

.4

.6

.8

.7

.0

.9

r-dependent

0
0
0
0

0
-3.9
0.3
-2.2

u
-8.1
0.8

-6.5

0
-13.6
2.1

-8.2

0
-15.5
1.6

-11.3



TABLE IV

STATISTICAL UNCERTAINTIES IN THE MO RESULTS

Quantity Total AKa

Statistical Kinetic Energy
Uncertainty Uncertainty

(kbar) (kbar)

^ ? ^ - 1
Linear Fluctuation Correction Averaging

Uncertainty Uncertainty Uncertainty Interval
(kbar) (kbar) (kbar) (103 At)

T -
N -

T «
N -

T -
N -

T -
N -

T -
N -

(99.5+0.
686

(198.7±0
686

(295.7+0
1458

(297.2±0
686

(339.7±0.
686

2)

.4)

•5)

.5)

•6)

K

K

K

K

K

P
c.
Q
C44

P
c..
C12
C44

P
c..
C12
C44

P
c..
C12
C44

P

c..
C12

0.
0.
0.
0.

0.
1.
1.
1.

0.
3.
2.
1.

0.
2.
1.
1.

0.
2.
1.
2.

.002
,9
,6
,5

,005
7
1
1

007
3
4
7

005
3
7
2

007
6
9
5

0.
0.
0
0.

0.
0.
0
0.

0.
0.
0
0.

0.
0.
0
0.

0.
0.
0
0.

.001
,001

,001

001
003

001

002
004

002

002
003

002

002
004

002

0.001
0.07
0.07
0.07

0.003
0.15
0.07
0.08

0.005
0.17
0.07
0.08

0.003
0.19
0.09
0.10

0.005
0.23
0.11
0.12

0
0.
0.
0.

0
1.
1.
1.

0
3.
2.
1.

0
2.
1.
1.

0
2.
1.
I.

8
6
4

5
0
0

1
2
6

1
5
1

3
8
3

0
0.02
0.02
0

0
0.04
0.04
0

0
0.06
0.06
0

0
0.06
0.06
0

0
0.07
0.07
0

8.1
8.1
8.1
6.6

11.2
11.2
11.2

> 11.2

7.7
7.7
7.7
6.0

13.0
13.0
13.0
13.0

12.0
12.0
12.0
10.0
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2 3 4 5

Time (IO3At)

Fig. I. Equilibration of MD Data: Changing
Mean of the Kinetic Energy
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4 6
Time (I03 At)

Fig. 2. Equilibration of MD Data: Changing
Bandwidth of the Kinetic Energy
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r(ao)

Fig. 3. The Effective Ion-Ion Potential

The volume per atom is VQ = 256.4 a0
3.

The dashed curve is $(r;V)x|OO.
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O
a

I

O

r(a«)

Fig.4. The Effective Pairwise Force F(r)

The volume per atom is Va = 256.4 a0
3.

The dashed curve is F(r)xiOO.



135

Eo

DC
tvj

b

•e-

-4.0

Time (IOztQ)

Fig. 5. Determination of the Fluctuation
Time AtF

The average time between relative
maxima is AtF ~ 20t0 .
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Fig. 7. Effects of Finite Potential Range:

Lp vs rmax for the Static Lattice
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max

Fig. 8. Effects of Finite Potential Range=
vs rmax for the Static Lattice
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max

Fig. 9. Effects of Finite Potential Range:

LI2 v s rmox f o r t n e Static Lattice
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Fig. 10, Effects of Finite Potential Range;
L 4 4 v s rmox f o r t h e Static Lattice
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