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Compressed a i r  energy s t o r a g e  (CXS) power systems a r e  c u r r e n t l y  being con- 
s i d e r e d  by v a r i o u s  e l e c t r i c  u t i i i t i e s  f o r  load- ieve i ing  a p p l i c a t i o n s .  I n  
t h i s  paper  we develop models of C-US systems which employ n a t u r a l  un2ezqround 
a q u i f e r  Fcrx2tians,  and p r e s e n t  an opt imal  des ign  ?,etAodoioqy vhich  lemon- 
s t r a t e s  t h e i r  eccnomic c i a b i i i t * ? .  This  ap?roac.i i s  based upon a  deccmposi t ion 
of t h e  C-XES p i a n t  acd u t i i i ' y  qri6 syste!n i n t o  t h r e e  parzialllr-c',ecoupLca 
subsystems. N u ~ e r i c a l  r ~ s u l t s  a r e  g iven  f o r  a  2 l z n t  e ~ p l o y i n g  t h e  Xedia, 
I l l i n o i s  G a l e s v i l l e  a q u i f e r  forir.ation. 

1. INTRODUCTION 

Conlpresead a i r  energy s t o r a g e  i s  one of t h e  
t echno log ie s  t h a t  i s  c u r r e n t l y  a v a i l a b l e  t o  
e l e c t r i c  u t i l i t i e s  t o  supply ?ea% power us ing  
s t o r e d  energy pr:viously gece ra t ed  dur ing  
p e r i o d s  of exces s  capac i ty .  The use  oL en- 
e rgy  s t o r a g e  systems can be econcn ica i ly  ad- 
vantageous t o  u t i l i t i e s ,  s i n c e  they improve 
t h e  u t i l i z a t i o n  of h igh  e f f i c i e n c ~ r  base 
p l a n t s ,  which have h igh  c a p i t a i  bu t  r e l a t i v e -  
l y  low o p e r a t i n g  c o s t s .  Another major bene- 
f i t  of us inq  energy s t o r a g e  systems i s  t h e  
r educ t ion  of premium f u e l  r equ i r ed  i n  gener- 
a t i n g  peak power. A t  p r e s e n t ,  t h e  only  com- 
nonly used energy s t o r a g e  technique  i s  above 
ground pumped hydro, b u t  t h e  w o r l d ' s  f i r s t  
CXS p l a n t  has r e c e n t l y  been b u i l t  i n  West 
~ e r m a n ~  ( ' ) . A demonstrat ion program f o r  
CUS and underground pump~d hydro is  under- 
way i n  t h e  U.S.A . ,  co-sponsored by t h e  De- 
p a r t ? e n t  of  Energy and t h e  E l e c t r i c  Power 
Research I ~ s t i t u t e .  Althcugh CZES a l r e a d y  
appears  t o  be a  t y c h n i c a l l y  and economically 
v i a b l e  , it v i l l  s u r e l y  come i n t o  
use more r a p i d l y  i f  t h e  economic i n c e n t i v e s  
can be improved. The m a t e r i a l  i n  t h i s  paper  
d i s c u s s i n g  t h e  opt imal  des ign  of CAES sys- 
tems, i s  r e l e v a n t  t o  t h i s  goal:" 

Consider  the C X S  power p l a n t  g iven  i n  Fiq- 
a r e  1, which i s  based on a  s p i i t  Frayton cy- 
c l e ,  and composed of  fou r  equipment 5roups: 
a  r e v e r s i b l e  motor /genera tor ,  a i r  compression 
equipment, an a i r  s t o r a g e  r e s e r v c i r  (wi th  
a s s o c i a t e d  p i p i n p ) ,  and 3ower e s r r z c t i o n  e- 
quipment. The use of t h e  t o u p i i n q s  on t t o  
motor/generator  a l l c w s  e i t h e r  e l e c t r i c a l  pow- 
e r  from t h e  u t i l i t y  a r i d  t o  be used i n  COK- 
p r e s s i n g  a i r  o r  ?ewer t o  be g e n e r a t e i ,  us ing  
th s t o r e d  co3pressed a i r  and some ? r e n i u i  
f u e l  (abouc one- rh i rd  KO oce-half a s  nzch 2s 
c o n s u ~ e d  i n  convent iona l  conSusCion t u r k i n e  
peaking u n i t s ) .  The CXS syscem conf igura-  
t l o n  shown i n  F i g . 1  i s  t y p i c a l ,  bu t  zany var-  

i a t i o n s  i n  equipment a r e  p o s s i b l e ( s 7 )  . I n  
terms of i t s  i n t e r a c t i o n  wi th  t h e  o t h e r  e -  
quipment groups,  t h e  t u r b i n e  system can  be 
c l l a r ac t e r i zed  by i t s  des ign  i n l e t  3 r e s s a r e  
(p,, ) and i t s  mass f low r a t s  p e r  u n i t  ?otter - 

' o u t p u t ( $ ) .  The l a t t e r  degends on t h e  t u r -  
b ine  i n l e t  tem7eratures  (premium f u e l .  con- 
sumpt ion) ,  and equipment arrangement 2nd de- 
s ign .  D e t a i l s  of t e s c  r e l a t i o n s h i ~ s  a r e  
discussed elsewhere?7-9 ). %cause 02 t h e  r e -  
quirements  f o r  s t o r i n g  l a r g e  amaunts of h igh  
p r e s s u r e  c o m p r ~ s s e d  a i r  ( e . g . l 0 ' - 1 0 ~ f t ~  a t  
5 0  a t 2  f o r  a  t y p i c a l  200 :.lW p l a n t ) ,  it is  
known t h a t  underground a i r  r e s e r v o i r s  a r e  an 
economic neces s i t y .  The r e s e r v o i r  can  be 
e i t h e r  a cavern  ( i n  hard rock o r  i n  a s a l t  
dome) o r  a  porous rock l a y e r  (most corimonly 
an a q u i f e r ) ,  such a s  t:?e edge water  a q u i f e r  
shown i n  F i cu re  2 .  The choice  of vki.ich type  
of r e s e r v o i r  should be used depends, of 
course ,  on t h e  geo log ica l  c o n d i t i o n s  of t h e  
r eg ion  i n  which t h e  p l a n t  is  t o  be s i t e d .  

The s t o r a g e  r e s e m o i r  des ign  r e q u ' i r m e n t s  
( capac i ty ,  p r e s s u r e  l e v e l ,  p ip ing  des ign ,  
e t c .  ) a r e  interdependent  w i th  t h e  s e l e c t i o n  
(performance c h a r a c t e r i s t i c s  and ope ra t ing  
c o n d i t i o n s )  of t h e  above-ground compression 
and power gene ra t ion  equipment, and t h e  de- 
s i r e d  power out?u t  and o ~ e r a t i n g  c y c l e  of t h e  
CXS p l a n t .  I n  t u r n ,  t h e  d e c i s i o n  cn t h e  
power l e v e l  and duty  c y c l e  i s  impacted by 
the economic and t e c h n i c a l  c h a r a c r e r i s t i c s  
of t . 4 , ~ .  u t i l i t y  ? r i d ,  by t h e  c o s t  of pre.m$m 
f u e l ,  e t c .  Fur thernore ,  we e m e c t  t h a t  t h a  
des ign  c o n s t r u c t i o n  2nd operet lan. ,of  3. CPSS 
p l a n t  would involve  t h e  investriient of l a r q e  
acourits of c a p i t a l .  Yany_$echnical and ec- 
ononic :raEeoffs s n s t  5'& considerod i n  s?ec- 
i f y i a g  3 CilES p l a n t  des ign .  The s c e l e  of 
tec3noica.y invoived i n  s CJSS p l a n t  is  of t h e  
sane o r d e r  of magnitude a s  t h a t  i n  any con- 
ven t iona l  power p l a n t .  The re fo re ,=he  on ly  



p r a c t i c a l  way of  des ign ing  such a  l a r g e  sys-  
tem, wi thout  t h e  b e n e f i t  of p r ev ious ly  dev- 
e loped  s t a n d a r d s ,  i s  t o  automate t he  des ign  
proceeure .  Zny a t t e n p t  a t  manual l e s i g n  
would r e q u i r e  a  tremendous i n p u t  of man?ower 
and i t  would Se d i f f i c u l t  t o  guarantee  a  fea-  
s i b l e  much l e s s  an c p t i n a l  des ign .  Althouqh 
CXS p  anf d e s i c  s t u d i e s  have been per -  
formedti,  > * '' * ' ", and t h e s e  have inc luded  
some a t t empt s  t o  opt imize  c e r t a i n  comgonents 
of t h e  system, d e t a i l e d  CZ-ES system economic 
op t imiza t ions  have n o t  been r epo r t ed .  The 
o b j e c t i v e  of t h i s  paper  i s  t o  ? r e s e n t  a com- 
prehsns ive  oatinurn des ign  approach. 

We s h a l l  s ee  i n  t h e  fo l lowing  d i s c u s s i o n  t h a t  
t h e  system model i s  complex, and l e a d s  u s  t o  
employ a  decoupling o r  decomposition t e c h n i q e  
i n  o r d e r  t o  no re  e f f i c i e n t l y  seek opt imal  de- 
si.gn.s. The oa t ima l  des iqn  approach ? r e sen t=d  
i s  most e a s i l y  j u s t i f i e d  a s  an efficient and 
a c c u r a t e  method of s i t e  comparison and s e l s c -  
t i o n .  There a r e  o t h e r  advantages t o  t h e  ap- 
proach,  which w i l l  w e  t r u s t  be obvious from 
t h e  r e s u l t s  of ou r  s tudy .  

2. CFES SYSTEN XODEL 

A s  we have seen Sn  F igu re  1, broadly speak- 
i n g ,  a CXS power system i s  cocposed of t h e  
fol lowing:  t h e  a i r  compression t r a i n  (com- 
p r e s s o r s ,  i n t e r c o o l e r s ,  a f t e r c o o l e r s ) ;  com- 
p re s sed  a i r  p ip ing ;  a i r  s t o r a g e  r e s e r v o i r  
(any t ~ e ) ;  power gene ra t ion  t r a i n ( t u r b i n e s ,  
combustors,  r e c u p e r a t o r s ) ;  r e v e r s i b l e  motor/ 
gene ra to r  and t h e  u t i l i t y  g r i d .  Although t h e  
u t i l i t y  g r i d  i s  n o t  9 h y s i o a l l y  p a r t  o f  t h e  
CAES p l a n t ,  t h e  i n t e r a c t i o n  should be con- 
s i d e r e d ,  s i n c e  t h e  c o s t  of base load  power 
and t h e  u t i l i t y  load  c y c l e  may have s s t r o n q  
i n f l u e n c e  on des ign  c o s t  of  t h e  CAES f a c i l -  
j t y .  Corresgondingly,  t h e  CXS c o s t s  w i l l  
influence t h e  c o s t  of  power s o l d  by t h e  u- 
t i l i t y .  

2.1 Decomposition S t r a t e g y  

We f i n d  it convenient ,  i f  no t  e s s e n t i a l ,  t o  
decompose t h e  s y s t e n  i n t o  t h r e e  group o r  sub- 
systems a s  seen i n  F igu re  3 .  Subsystem 1 
c o n t a i n s  t h e  a i r  s t o r a g e  r e s e r v o i r ,  a i r  com- 
p r e s s i o n  t r a i n ,  and main p ip ing  and a i r  d i s -  
t r i b u t i o n  system. Subsystem 2  c o n t a i n s  t h e  
power gene ra t ion  t r a i n ,  and subsystem 3 con- 
t a i n s  t h e  motor/generator  and t h e  u t i l i t y  
g r i d .  With t h e  subsystems formed i n  t h i s .  
way, it i s  p o s s i b l e  t o  choose coupl ing  and 
i n t e r n a l  v a r i a b l e s  s o  t h a t  t h e  subsystems 
can be designed wi th  a  degree  of independence 
from t h e  o t h e r  subsystems. The e x a c t  de- 
pendence is con ta ined  i n  t h e  coupl ing  va r -  
i a b l e  r e l a t i o n s h i p s .  .For i n s t a n c e ,  i n  o u r  
work w e  assume t h a t  subsystem 3 ( t h e  u t i l i t y  
g r i d )  a f f e c t s  t h e  r e s t  o f  t h e  system through 
a  v a r i a b l e ,  UL, t h e  u t i l i t y  load  c y c l e  as 
shown i n  F igure  4 .  Th i s  s i n o l e  v a r i a b l e  
could ,  of cou r se ,  r e p r e s e n t  many v a r i a b l e s  
i n  t h e  u t i l i t y  load  c y c l e ,  bu t  t h i s  is  no t  
pursued he re  s i n c e  ou r  i n t e r e s t  is p r i m a r i l y  
wi th  subsystems 2  and 3 .  The coup l inc  i n -  
f luence  should be c l e a r .  F i n a l l y ,  we sug- 
g e s t  t h a t  t h e  d i r e c t  i n t e r a c t i o n s  ( o r  cou- 
p l i n g ) ,  between subsystems 1 and 2  a r e  de- 
pendent on only  two v a r i a b l e s ;  n a ~ e l y ,  t h e  
i n l e t  p r e s su re  t o  t h e  power gene ra t ion  t r a i n  

( p s i ) ,  and t h e  s p e c i f i c  a i r  mass flow r a t e  
(m ) .  A s  t h e  f i g u r e  sugges t s ,  t h e r e  is  t h e  
i n d i r e c t  i n f l u e n c e  of t h e  u t i l i t y  load  c y c l e  
a s  we l l .  I n  t h i s  work we e l i m i n a t e  t h i s  
e f f e c t  by choosing t h e  l cad  c y c l e .  

The c r i t e r i o n  f o r  o ~ t i m a l  des ign  i s  chosen t o  
be t h e  t o t a l  n o m a i i z e d  c o s t  (C) cf t h e  sys-  
tem ( i . e . ,  c o s t  p e r  n n i t  of e l e c t r i c i t y   en- 
e r a t e d  by t h e  CXS paver p l a n t ) .  Th i s  t c t s l  
c o s t  i s  the  sum of t h e  i n l i v i d u a l  c o s t s  xh ich  
normally i nc lude  f u e l  c o s t ,  maintenance,  
charge r a t e  on c a p i t a l ,  e t c .  The c o s t s  have 
t o  be minimized s a b j e c t  t o  v a r i o u s  p e r f o n a n c s  
and t e c h n i c a l  c o n s t r a i n t s .  The i m p l i c a t i o n  
f o r  CXES p l a n t  des ign  i s  t h a t ,  f o r  a  g iven  
u t i l i t y  load  c y c l e ;  an op t imiza t ion  of  sub- 
system 1 would provide  t h e  miniinum subsystem 
c?e ra t i ng  c o s t  ( c? )  and va lues  f o r  t h e  cc r -  
res?onding~subsystern 2esign:~ariables .  a s  a  
func t ion  of t h e  coupi ing  v a r i a b l e s ,  and 
m'. S i m i l a r  op t imiza t ion  f o r  subsystem 2 
would y i e l d  C$  ( t h e  minimum o p e r a t i n g  c o s t  of  
subsystem 2) and i t s  optimun des ign ,  a s  a  
func t ion  of t h e  coupl ing  v a r i a b l e s  on ly .  
F i n a l l y ,  t h e  sun of C: and C :  can be min- 
imized t o  determine t3.e cptimcm va lues  of t?.~ 
coupl ing  v a r i a b i e s ,  t h e  minimun p l a n t  c c s t  
(C*) and t h e  opt imal  p l a n t  des ign .  The pro- 
c e s s  can obviously 3e expanded ( i n  p r i n c i p l e )  
t o  i n c l a d s  v a r i a t i o n s  i n  t he  u t i l i t y  load  
c y c l e  and c o n s i d e r a t i o n  of t h e  r e s u l t i n g  ec- 
onomic b e n e f i t s  o r  p e n a l t i e s  t o  t h e  u t i l i t y .  
The remainder of t h i s  paper  i s  conf ined  t o  
t h e  des ign  of a  p a r t i c u l a r  v a r i e t y  of  sub- 
system 1 (one wi th  an a q u i f e r  r e s e r v o i r ) ,  t o  
t h e  des ign  of s u b s y s t e ~  2, and t o  t h e  syn- 
t h e s i s  of an opt imal  des ign  f o r  t h e  CAES 
p l a n t ,  us ing  t h e  subsystem 1 and 2  r e s u l t s .  

2 . 2  Subsystem 1: Storage  

An a q u i f e r  ( o r i g i n a l l y  w a t e r - f i l l e d )  i s  an 
underground porous median, which f o r  s t o r a g e  
should have t h e  shape of an i n v e r t e d  s auce r  
( s e e  F igu re  5 )  t o  prevent  mig ra t ion  of  t h e  
compressed a i r .  The a i r  bubble is formed Sy 
d i s p l a c i n g  t h e  i n n a t e  water ;  t h e  compressed 
a i r  is conta ined  between t h e  a i r  t i g h t  cap- 
rock and a  bottom l a y e r  of water .  The op- 
e r a t i o n a l  c o n s t r a i n t s  f o r  u t i l i z i n g  such a  
formation a r e  d i s cus sed  by Ahluwalia ( 1 2 ) .  
The compressor t r a i n  inc luded  i n  t h i s  sub- 
system fo l lows  t h e  recommendations of  United 
Technologies  Research ~ s n t e r  ( " ) . To i l l u s -  
trate t h e  procedure,  a  s impl iEied  p ip ing  and 
d i s t r i b u t i o n  system was adopted. The follow- 
ing  d i s c u s s i o n  h r i e f l y  d e s c r i b e s  t h e  tech-  
n i c a l  modeling of subsystem 1. A d e t a i l e d  
d i s c u s s i o n  of  t h e  model emp1oyed . i~  g iven  by 
aluwalia ( 1 where an e -xp lana t~on  of  a l l  
t h e  c o s t  func t ions  i s  a l s o  inc luded .  Eere,  
w e  focus  on t h e  formula t ion  of  t h e  opt imal  
des ign  problem. 

I n  t h e  op t imiza t ion  of subsystem 1, t h e  ob- 
j e c t i v e  i s  t o  determine the  combination of 
i n t e r n a l  des ign  v a r i a b l e s  which minin izes  t h e  
subsystem ope ra t ing  c o s t ,  f o r  g iven  va lues  of 
t he  coupl ing  v a r i a b l e s ,  p t j ,  m' an6 Ui, The 
s e t  of des ign  v a r i a b l e s  can be c l a s s i ~ ~ e d  
i n t o  two subse t s .  The f i r s t  s u b s e t  i nc ludes  
v a r i a b l e s  which a r e  r e s t r i c t e d  t o  t ake  a  
l i m i t e d  number of d i s c r e t e  va lues .  Engineer- 
i ng  cons ide ra t i ons  r e q u i r e  t h a t  t h e  main 
p ip ing  d iameter ,  t h e  type  of  low p re s su re  



compressor, and t h e  r e s e r v o i r  we l l  bore diam- . e t e r s  be r e s t r i c t e d  t o  d i s c r e t e ,  economically 
a v a i l a b l e  des igns .  A s  t h e  number of a l t e r -  
n a t e s  i s  l i m i t e d ,  a s imple ae thod  of i nco r -  
po ra t ing  these  d i s c r e t e  v a r i a b l e s  i n  t h e  op- 
t i m i z a t i o n  i s  an exhaus t ive  s ea rch  i n  a l l  
d i s c r s t e  dimensions. Therefore ,  t h e  fol low- 
ing  formula t ion  a s s u r e s  t h a t  t he  parameters  
r e s u l t i n g  from t h e  s e l e c t i o n  of a  c a i n  p ip ing  
system, low p r e s s u r e  com?ressor, an% t h e  we l l  
bore d iameter  a r e  temporar:? " cons t an t s " .  

The f i n a l  s t e p  i n  o? t imiza t i cn  vould be a  
s ea rch  f o r  minina i n  t h e  p a r h q e t r i c  "con- 
s t a n t "  space.  The remaining i n t e r n a l  var -  
i a b l e s  of subsystem 1 a r e  t r e a t e d  a s  con- 
t inuous  v a r i a b l e s  t o  b s  c ? t i a i z e d ,  i n  ? t c u d  
and cons t r a ined  space.  These v a r i a b l e s  a r e  , 
fou r  geometr ic  parameters  of t h e  r e s e r r o i r  
de s ign ;  N , H I  A , and d ,  i l l u s t r a t e d  i n  
F igu re  5;'and thaC$nergy s t o r a g e  p roces s  var -  
i a b l e s  tcb and t,,=,. The v a r i a b l e s  tch, 
r e p r e s e n t  t h e  t imesLduring t h e  weekly cyk le  
when energy s t o r a g e  p roces se s  begin and tcp. - - 
a r e  t h e  ending t imes  of t h e s e  processes .  ?he 
s t o r a g e  (charg ing)  time v a r i a b l e s  a r e  shown, 
f o r  3 t y p i c a l  c y c l e ,  i n  F i g ~ r e  4 .  The oper-  
a t i n g  c o s t ,  t o  he minix ized ,  can be w r i t t e n  
as (Nw, Hl iac t , d t  tcbit tcei) (2.U 

= K I  (UL)CT + Xz ( U L ) ? c i  (tcei-tcbi) . 
I n  t h e  equa t ion  above, K I  and K Z  a r e  func t ions  
of t h e  coupl ing  v a r i a b l e  UL bu t  a r e  t r e a t e d  
a s  c o n s t a n t s  f o r  t h e  purpose of op t imiza t ion .  
S i m i l a r  n o t a t i o n  i s  used t o  r e p r e s e n t  func- 
t i o n s  of o t h e r  coupl ing  v a r i a b l e s  and func- 
t i o n s  of t h e  t h r e e  d i s c r e t e  i n t e r n a l  v a r i -  
a b l e s .  Absolute c o n s t a n t s  appear  i n  t h e  f o l -  
lowing wi thou t  any f u n c t i o n a l  dependence 
shown. However, f o r  t h e  purFose of t he  op t -  
im iza t ion  problem s t a t e r e n t ,  a l l  K ' s  can be 
t r e a t e d  a s  c o n s t a n t s .  The f i r s t  t e r n  i n  
equat ion  (2.1)  r e p r e s e n t s  t he  o p e r a t i n g  c o s t  
due t o  t h e  annual  charge  r a t e  on c a p i t a l ,  C , ,  
of subsystem 1, where CT i s  t h e  sum of c a p l f a l  
c o s t s  of t h e  v a r i o u s  components: 

CT (NWfH~AaCt~drtCb.  ,tee. 1 
=!JC + LC + BC + EC + ks ( p i p i n g ) .  (2.2) 

K3(piping)  i s  t h e  c a p i t a l  c o s t  o f  t h e  main 

p ip ing  and d i s t r i b u t i o n  system which degends 
upon t h e  p ip ing  des ign  s e l e c t e d .  The cap- 
i t a l  c o s t  of w e l l s  is: ( 2 . 3 )  

with  c o n s t a n t s  % I , % 2 ,  and F(Aact), a known 

func t ion  of  Aact determined from r e s e r v o i r  

Geometry. The term w i t h i n  c u r l y  b r a c k e t s  i n  
equat ion  (2.3) i s  t h e  depth  t o  whi.ch w e l l s  
have t o  be bored. The second t e r n  i n  equa- 
t i o n  (2.2) i s  t h e  c o s t  of purchasing t h e  land  
over t he  proposed r e s e r v o i r :  

LC (dl = K, A (dl , (2.4) 
.dhere A(d) i s  t h e  iand  a r e a  over  t h e  a i r  re -  
s e r v o i r ,  a  known geometr ic  func t ion  of d.  

I n  t h i s  s i m p l i f i e d  model, t h e  c a p i t a l  c o s t  of 
i n i t i a l l y  d i s p l a c i n q  water  from t h e  a q u i f P r ,  
o r  bubble develo?ment, i s  c a l c u l a t e d  i n  terms 
of energy r equ i r ed  t o  compress t h e  volume of 

a i r  i n  t h e  Subble,  which is a  f u n c t i o n  of d, 
f i n a l l y ,  t h e  c a p i t a l  c o s t  of t h e  compressor 
t r a i n  is  e q r e s s e d  a s :  

Here, I< c R 1 f  K c L z l  and K c2 3 a r e  pa rame t r i c  

c o n s t a n t s  determined b y a t h e  cho ice  of com- 
p r e s s o r  t r a i n  des ign .  Mp i s  t h e  a i r  na s s  
flow r a t e  dur ing  t h e  s t o f a g e  p roces se s ,  cho- 
sen t o  be t he  same cluririq a l l  s t o r a c e  proc- 
e s s e s  dce t o  compressor pe r fomance  cons i ze r -  
a t i o n s .  i<?4 is  ano the r  " cons t an t "  determined 
by t h e  coupl ing  v a r i a b l e s  U and i'. t h e  
remaining unknown tsrm i n  e&uat ion  (2 .5 )  i s  
pc,  t h e  d i s cha rge  p r e s s u r e  r equ i r ed  of t h e  
c6npressor  t r a i n .  This p r e s s u r e  can be c a l -  
c u l a t e d  ufi:q t h e  p r e s s u r e  drop models g iven  
by S h a r a  . The second t e r n  i n  equa t ion  
(2.1)  is  t h e  subsystem o p e r a t i n g  c o s t  incur red  
due t o  coEgressor  power consu?l;ption, o 
which i s  given by: - c f  

The f u n c t i o n a l  dependences of  t h e  o b j e c t i v e  
func t ion  a r e  summarized i n  t h e  subproblem 
graph of F igure  6. 

Engineering i n t u i t i o n ,  a q u i f e r  geology and 
geometr l ,  and t h e  u t i l i t y  load  c y c l e  sugges t  
bounds and f u n c t i o n a l  c o n s t r a i n t s  on t h e  de- 
s i g n  v a r i a b l e s .  These have been comnletely 
developed and e-xplained by L i r e n s  ( ' '1 and 
w i l l  no t  be r epea t ed  here.  I n  summary, we 
p lace  bounds on t h e  s t o r a g e  p roces s  t i n e s  a s  
suggested i n  F igure  4 ,  znd upper and lower 
l i m i t s  on t h e  fou r  p h y s i c a l  v a r i a b l e s ,  N..g, H ,  
A,,:, and d  a s  de f ined  i n  F igure  5. Function- 
a l  o n s t r a i n t s  a r e  imposed which r e q u i r e  t h a t  
a l l  s t o r a g e  p roces se s  end a f t e r  they begin,  
t h a t  t h e  w e l l s  be p l aced  c l o s e  enough t o  en- 
s u r e  f u l l  u t i l i z a t i o n  of r e s e r v o i r  volume, 
t h a t  t h e  we l l  bores n o t  p h y s i c a l l y  i n t e r f e r e  
one wi th  ano the r ,  t h a t  t h e  "bukble" be no 
l a r g e r  than  t h e  l and  purchased,  t h a t  t h e  v e l i s  
no t  be d r i l l e d  t o  a  dep th  t h a t  would cause 
" ~ o n i n g ' ~ ,  t h a t  t h e  r equ i r ed  compressor power 
be l e s s  t han  t h a t  which t h e  ut i1i t .z  i s  w i l l -  
i ng  and/or a b l e  t o  supply a t  anytime, and 
f i n a l l y ,  t h a t  t h e  p r e s s u r e  requirement  of 
subsystem 2  i s  m e t  a t  a l l  t imes by subsystem 
1. I n  s m a r y ,  t h e r e  a r e  16 des ign  v a r i a b l e s  
wi th  32 bounds, and 12 c o n s t r a i n t s ,  4 of which 
a r e  non l inea r .  

2.2 Subsystem 2: Generat ion 

Subsystem 2  of t h e  CAES system i s  composed of 
t h e  high end low p r e s s u r e  t - ~ r b i n e s ,  t h e i r  
combustors and t h e  r ecuFe ra to r ,  a s  i n c i c a t e d  
i n  F igure  1. I t  i s  a l s o  cons idered  t o  i nc lu& 
t h e  balance-of-plant  (.assumed n o t  t o  be var-  
i a b l e ) .  The most i n t e r e s t i n g  clesign t r ade -  
o f f s  f o r  t h i s  subsystem a r e :  ( a )  l a r g e r ,  
more e f f e c t i v e  r ecnpe ra to r  vs. g r e a t e r  pre-  
mium f u e i  consumption i n  t h e  combustors,  f o r  
p rehea t ing  t h e  a i r  e n t e r i n g  t h e  t u r b i n e s ,  and 
(b )  advanced, high i n i e t  t e m p e r a t ~ r e  t u r b i n e s  - 



having h igh  c o s t  bu t  h igh  performance vs .  
conven t iona l ,  lo-.?er tempera ture ,  lower c o s t  
t u r b i n e s .  An a d d i t i o n a l  t r a d e o f f ,  of second- 
a r y  importance,  i s  t h e  p re s su re  r a t i o  s p i i t  
between t h e  h igh-pressure  t u r b i n e  and t h e  
low-pressure t u r b i n e .  

The perForxance mo6el f o r  subsystem 2 i s  
based on a  thermodynamic a n a l y s i s  ( i . e . ,  xaas 
and energy balance e q u a t i c n s )  sf t h e  com- 
ponents .  The e e t a i l e d  equa t ions  a r e  g iven  
by ~ i i n  ( ' % ' '1  . I t  should be zen t ioned ,  how- 
e v e r ,  t h a t  t h e  node1 inc ludes  t h e  e f f e c t  
t h a t  a s  t h e  t u r b i n e  i n l e t  t enpe ra t t i r e s  a r e  
i nc reased  above a  c e r t a i n  throshold  va lue  
( t a k e n  t a  be 1600°F),  it i s  necsssary  tg use 
an  i n c r e a s i n g  f r a c t i o n  of t he  compressed a i r  
from s t o r a g e  t o  provide  coo l ing  f o r  t he  t u r -  
b i n e  b l ades  and o t h e r  t u r b i n e  ccnponents .  

Par t h e  purpooe of o a l o u l a t i n g  t h e  cuSsystem 
2  pe r fo rnance ,  t h e  coupl ing  v a r i a b l e s ,  p t i  

( t h e  subsystem i n l e t  p r e s s u r e )  and &' ( t k e  
s p e c i f i c  t u r b i n e  system a i r  flow r a t e ,  lb,/ 
k??h), and DiBp, t h e  t o t a l  power o c t 9 u t  fr6m 
t h e  t v o  ~ U Z Z L ~ S S ,  a r e  r e g a r l s d  a s  i n p u t s .  
Secacs? of t h i s ,  it i s  n c t  p c s s i b i s  to i n -  
dependent ly  s p e c i f y  both t u r b i n e  i n l e t  temp- 
e r a t u r e s ,  T3 and Ts, i f  f i x e d ,  s t a t e -o f - the -  
a r t ,  t u r b i n e  e f f i c i e n c i e s  a r e  ass.&-i,ed. I n  
t h e  p r e s e n t  model, Ts(low-pressure t u r b i n e  
i n l e t  t empera ture)  was c c s s i d e r e d  a s  a  design 
v a r i a b l e  and T , ,  a long wi th  s e v e r a l  i n t e r -  
media te  v a r i a b l e s ,  was subsequent ly  d e t e r -  
mined du r ing  the  i t e r a t i v e  s o l u t i o n  of t h e  
model equa t ions .  The .o the r  des ign  v a r i a b l e s  
of  subsystem 2 a r e  t h e  r e c u p e r a t o r  e f f e c t i v e -  
n e s s ,  E ,  and t h e  low-pressure t u r b i n e  pres-  
s u r e  r a t i o ,  r !=? s / ? ~  ) . The v a r i a b l e  r 

P 
was cons idered  t o  be d i s c r e t e .  I ts  two va l -  
u e s  (11 and 16)  correspond t o  t h e  c u r r e n t  
p r a c t i s e  of  turbomachinery manufac turers .  
With s p e c i f i e d  va lues  of  t h e  des ign  var-  
i a b l e s ,  o t h e r  o p e r a t i n g  cond i t i ons  and per -  
formance c h a r a c t e r i s t i c s  a r e  p r e d i c t e d  from 
t h e  s o l u t i o n  of  t h e  model equa t ions .  Of 
e a r t i c u l a r  no te  i s  t h e  s p e c i f i c  hea t  r a t e ,  
Q a  (Btu/kNh), which i s  p r o p o r t i o n a l  t o  t h e  
r a t e  of  premium f u e l  consumption of t h e  CXES 
p l a n t .  

I n  t h e  op t imiza t ion  of  subsystem 2 ,  t h e  ob- 
j e c t i v e  i s  t o  f i n d  t h e  combination of i n -  
t e r n a l  des ign  v a r i a b l e s  which minimizes t h e  
subsystem o p e r a t i n g  c o s t ,  f o r  g iven  va lues  
of  t h e  coupl ing  v a r i a b l e s .  During a  par -  
t i c u l a r  op t imiza t io?  p roces s ,  t h e  coupl ing  
v a r i a b l e s ,  pPi and m a ,  and UL, a r e  f i x e d ,  s o  
w i l l  be omi t ted  from t h e  f u n c t i o n a l  r e l a t i o w  
s h i p s  which fo l low.  The d i s c r e t e  v a r i a b l e  
rD is a l s o  omi t ted ,  s i n c e  an op t imiza t ion  i s  
performed s e p a r a t e l y  f o r  each o f  i t s  va lues .  
The o p e r a t i n g  c o s t  t o  be minimized can  be 
w r i t t e n  a s :  

The f i r s t  term r e p r e s e n t s  t h e  o p e r a t i n g  c o s t  
due t o  t h e  annual  charqe  r a t e  on t h e  c a p i t a l ,  
C aD, of subsystem 2, where C i s  t h e  sum 
of c a p i t a l  c o s t s :  cap 

According t o  express ion  ( 2 . 9 ) ,  t h e  c a p i t a l  
c a s t  i s  t h e  sum of t h e  c o s t  of t h e  low pres-  
s u r e  t u r b i n e  ( snc luding  t h e  i n c r e a s e  expsnse 
of cool ing  a i r  f o r  h igh  ope ra t ing  t e ~ ~ p e r z t u r d  
,CLGT; t he  c o s t  of t h e  nigh p re s su re  t u r b i n e ,  
C,,,, t he  c o s t  of t he  r e c u p e r a t o r ,  C x ;  and 
tHg-cost of t h e  balance of p i a n t ,  C,,-.  Xe 

.,.-.L.. en?loy t h e  c o s t  r e l a = i c n s h i p  given z;i :.in (' )' '1 
and assllme a  y e a r l y  o2e ra t ing  ti-s of 2560  
hours a t  f u l l  powzr. The sccond t e ~ x  i n  
equakion (2.7)  i s  t h e  c o s t  of t ke  presicm 
f u e l  ose? i n  the  ccmbcstors .  K, i s  ta%en a s  
~2 .50 /10  ' Btu. The h e a t  r a t e ,  "id, i s  de- 
pendent on T3 (TS ,E) and T s .  The f i n a l  t e -n  i n  
equat ion  (2.7)  i s  t k e  ope ra t ing  and ir.ai11- 
tenznce cost of t h e  p l a n t .  I t  i s  csas iE2reS 
t o  nave a  c o n s t a n t  va lue ,  2  mills/kWh. Final- 
l y ,  we p l a c e  upper and lower bounds on t h e  
t h r e e  des ign  v a r i a b l e s ;  e ,  t h e  r ecupe ra to r  
e f f ec t ivenes s :  T3 and Tg, t h e  t u r b i n e  i n l e t  
t w e r a t u r e s .  

i4odern o p t i n i z a t i o n  theor]  ',;as 5orn of t h e  
l o g i s t i c a l  nsc-2s of Yorld Var I T  an& the  
p ioneer ing  ~ ;oz :<  vf  Geor9e ~ a n t z i c j  ! ' ? ) . I.1 
the  e a r l y  y e a r s ,  :.rcrk i n  ?:?is cnuntz:; 26- 
e re s sed  p r o b l e ~ s  where a l l  f unc t ions  involved 
were l i n e a r  i n  t h e  des ign  v a r i a b l e s .  In  
t h i s  s e c t i o n  -;e c o n s i z s r  t h e  XOTE s r a c = i s l l ,  
y e t  d i f f i c ~ l t  p roblen  where a l l  f c n c t i a n s  a r e  
nonl inear .  The methods which fo l low a r e  
modern methods, which a r e  u s e f u l  f o r  t o d a y ' s  
energy managenent pr3blens .  A l l  of t h e  ne th-  
ads  a s s m e  t h e  presence  of a  modern t h i r d -  
gene ra t ion  d i g i t a l  conputer .  I n  p a r t i c u l a r  
we cons ide r  a lgo r i t hms  f o r  t h e  nonl inear  - 
programming problem: 

minimize: f ( x )  , x=[x l  , x , . x l . .  . , % I  E *N (3 .1)  

s u b j e c t  t o :  g .(x)&O j=1 ,2 ,3  ,..., J (3.2)  
3 

hk(x)ZO k=1,2,3 ,..., K (3.3)  

where f ( x )  i s  t h e  o b j e c t i v e ,  a  s c a l a r  func- 
t i o n  of t h e  des ign  v a r i a b l e s  x ,  and g , ( x ) ,  
and h, (x)  a r e  t h e  i n e q u a l i t y  and equaTity 
c o n s t s a i n t  ZunctFcns , r e s p e c t i v e l y .  These 
func t ions  f  ( x )  , g ,  (x )  ,hk ( x )  a r e  assxned t o  
be non l inea r  bu t  ho t  n e c g s s a r i l y  a l g e b r a i c ;  
t h a t  is ,  they  need only  be c a l c u l a b l e  func- 
t i o n s  of x. The i n e q u a l i t y  c o n s t r a i n t s  a r e  
o f t e n  c a l l e d  r e g i o n a l  c o n s t r a i n t s ,  because 

they d i s a l l o w  complete r eg ions  of t h e  des ign  
space. The e q u a l i t y  c o n s t r a i n t s  d e f i n e  ex- 
a c t  r e l a t i o n s h i p s  t h a t  must e x i s t  bekaleen 

Fore no re  t he  des ign  v a r i a b l e s  and a r e  there: 
d i f f i c u l t  t o  handle f o r  most a lgor i thms.  
The nethods t o  be cons idered  gene ra t e  a  se -  
quence of p o i n t s  x ( " )  ,m=l, 2 , 3 , .  . . , M ,  where 
x.(!,f) i s  an e s t i m a t e  of t he  o  u t i o n  x*. We 
assume t h a t  some e s t ima te  x T ~ f  of  t h e  so lu -  
t i o n  i s  a v a i l a b l e .  L i t e r a l l y  hundreds of 
methods have been proposee f o r  t h e  s o l ~ t i o n  
of t h e  non l inea r  prouramming problem i n  t h e  
l a s t  eecada ("1 . Tke u s e f u l  methods qene ra l ly  
f a l l  i n t o  t1:iO c l a s s e s ,  t r a n s f o r n a t i o n  o r  
l i n e a r i z a t i o n .  This  s e c t i o n  c o n t a i n s  a  d i s - ,  
cuss ion  of mzthods i n  each c l a s s  along wi th  
pros  and cons f o r  each method. 

3.1 Transformation- nethods 

These methods t ransform t h e  cons t r a ined  



problem given  i n  (3.1)  - (3.3)  i n t o  a  sequence 
of uncons t ra ined  problems which a r e  ea s ' i e r  
t o  so lve .  That i s ,  g iven  t h e  f u n c t i o n s  f  ( x )  
g  (x), and h,  (x)  , we f o m  t h e  p e n a l t y  func- 
t l o n  ., 

p ( ~ )  = f (x )  + ~ ( R , g ( x ) , 3 ( x ) )  (3.4) 

where R i s  r e f z r r e d  t o  a s  t h e  pena l ty  term 
and is- a  func t ion  of  2 ,  t he  pena l ty  ?ara-  
meter ,  and t h e  c o n s t r a i n t  va lues .  There a r e  
many computer programs a v a i l a b l e  which use 
t h e  pena l ty  func t ion  approach, i nc lud ing  
F l e t c h e r ' s  code i n  t he  HAR:ELL sub rou t ine  
l i b r a ry7"  ) . 
The method of m u l t i p l i e r s ( 2 2 ) ,  which w i l l  
now be d i scus sed ,  add re s se s  t h e  major d i f -  
f i c u l t y  a s s o c i a t e d  wi th  a l l  o t h e r  p e n a l t y  
func t ion  methcds, t h a t  of s e l e c t i n g  and up- 
d a t i n g  R.  Here t h e  parameter  R i s  chosen 
and remains f i x e d  throughout  t h e  e n t i r e  cp- 
t i m i z a t i o n  process .  Furthermore,  R becomes 
simpiy a  s c a l i n g  parameter  which ba lances  
c o n s t r a i n t  v i o l a t i o n  wi th  dec reases  i n  t h e  
o b j e c t i v e .  Other  pa raxe t e r a  a r e  in t roduced  
and rcodified a u t o n a t i c 2 l l y  from s t eqo  t o  
s t a g e  under c o n t r o l  of ths aL,;orit:-~, b l ~ t  
t h e  topology of t h e  des ign  space i s  much 
l e s s  d z a s t i r a l l y  a l t e r 2 2  tkan  before .  Con- 
s i d e r  t h e  func t ion  

where t h e  b racke t  o p e r a t o r  < * >  i s  de f ined  by: 

The m u l t i p l i e r s  a and T~ a r e  f i x e d  through- 
o u t  each  unconstr$ined mln in i za t ion ,  b u t  
changed a t  t h e  end of each  s t a g e  us ing  t h e  
fo l lowing  updat ing r u l e :  

where x ( ~ )  minimizes t h e  mth s t a g e  p e n a l t y  
func t ion .  Because of t h e  b racke t  o p e r a t o r ,  
a has no p o s i t i v e  e lements ,  whereas t h e  e l -  
ements of  T may be of e i t h e r  s ign .  These 
parameters  s e rve  a s  a  b i a s  i n  t h e  arguments 
of t h e  p e n a l t y  t e r n s ,  which toge the r  w i th  
t h e  updat ing r u l e s  tend  t o  i n c r e a s e  t h e  pen- 
a l t i e s  a s s o c i a t e d  wi th  v i o l a t e d  c o n s t r a i n t s ,  
t h u s  f o r c i n g  succes s ive  minimizat ion vectors 
x ( n )  toward f e a s i b i l i t y .  Q u i t e  impor tan t ly ,  
t h e  method l eaves  t h e  cu rva tu re  of  t h e  cou- 
t o u r s  of t h e  ? e n a l t y  func t ion  unchanged from 

, s t a c e  t o  s t a g e  vhen t h e  c o n s t r a i n t s  a r e  l i n -  
e a r .  Fur thernore ,  when t h e  c o n s t r a i n t s  a r e  
n o n l i ~ ~ e ~ r ,  t h e r e  e x i s t s  a  second-order in-  
f l uence  on the  curva tTJre  of t h e  c o n t o m s  of  
t h e  pena l ty  r e s u l t i n g  from changes i n  ,J and. : 
from s t a g e  t o  s t a g e .  This  approach has beon 
implemented i n  t h e  computer program BIAS ), 
which was developed by Root and Ragsdel l  i n  

t h e  Design Group of  t h e  School of :4echanical 
Zngineering a t  Purdue. 

3.2 L i n e a r i z a t i o n  Apprcach- t h e  Genera l ized  
Reduced Gradient  Xethod 

The reduced g r a d i e n t  method was c r i g i n a l l y  
given by Wolf2 f o r  a  non l inea r  o  :$c=i-e 
func t ion  ~ i t h  l i n e z r  c o n s t r a i n t s t ' -  ") . A 

l z a t i o n  of Wcl fe ' s  nethod t o  accsm- geyera l ,  
x s c z t e  n o n l i n e a r i t i s s  i n  both t h e  o b j e c t i v e  * .  func t ion  and c o n s t r a i n t s  :61as r l r s t  accom- 
p l i shed  by ~ b a d i e ( 2 6 ) .  Concxrrent iy t o  both 
!Jolfe and Abaeie, Wilde and S e i q h t e r  deve l -  
oped t h e i r  d i f f e r e n t i s l  a lqo r i t k i i  based on 
t h e  cons t r a ined  d e r i v a t i v e ( 2 7 ) .  The  con- 
s t r a i n e d  d e r i v a t i v e  and t h e  reduced g r a d i e c t  
employ much t h e  same t h e o r e t i c a l  b a s i s ,  b u t  
f o r  p u q o s e s  of  t h i s  d i s c u s s i o n  the  method 
s h a l l  be known a s  t h e  Seduced Gradient  Xeth- 
od. The cons t r a ined  non l inea r  prograirning 
problem of (3.1)  - (3 .3)  can be r e s t a t e C  i n  t h e  
fo l lowing  form: 

Sub jec t  t o :  5:. (:<):O t .=1 ,2 ,2  ,..., L ( 3 . U )  

where A and B a r e  lo*:~er and upper Sounds on 
t h e  des ign  v a r i a b l e s  r e s p e c t i v e l y .  The i n -  
e q u a l i t y  c o n s t r a i n t s  have Seen inc luded  a s  
e q u a l i t y  c o n s t r a i n t s  through t h e  fo l lowing  
t r ans fo rma t ion  : 

The v a r i a b l e s  S .  a r e  nonnegat ive s l a c k  va r -  
i a b l e s ,  which mJst be inc luded  i n  t h e  des ign  
v a r i a b l e  s e t ,  s o  t h a t  N r e p r e s e n t s  t h e  num- 
b e r  of  s l a c k s  p l u s  t h e  o r i g i n a l  nun.ber of 
des ign  v a r i a b l e s .  The des ign  v a r i a b l e s  a r e  
d iv ided  i n t o  two c l a s s e s ,  c a l l e d  s t a t e  and 
d e c i s i o n  v a r i a b l e s ,  o r  

where z  is  t h e  v e c t o r  of d e c i s i o n s  and y con- 
t a i n s  t h e  s t a t e s .  We d i v i d e  x  such t h a t  
t h e r e  a r e  e x a c t l y  t h e  sane number of s t a t e s  
a s  c o n s t r a i n t s .  The d e c i s i o n s  a r e  completely 
f r e e ,  whereas t h e  s t a t e s  a r e  s l a v e s  t o  be 
used t o  s a t i s f y  t h e  c o n s t r a i n t s .  Let  us ex- 
amine t h e  f i r s t  v a r i a t i o n  of t h e  f u n c t i o n s  
i n  (3.9) and (3 .10) :  

where 



Now so lve  (3 ;16)  f o r  dy: 

S u b s t i t u t i ~ g  ( 3 . 2 2 )  i n t o  (3.15) and rear rang-  
i ng  y i e l d s  t h e  fo l lowing  l i n e a r  approximation 
t o  t h e  reduced gyadient :  

The reduced g r a d i e n t  d e f i n e s  t h e  r a t e  of  
change of t h e  o b j e c t i v e  func t ion  wi th  re -  
s p e c t  t o  t h e  d e c i s i o n  v a r i a b l e s ,  w i th  t h e  
s t a t e  v a r i a b l e s  a d j u s t e d  t o  main ta in  f e a s i -  
b i l i t y .  Expression (3.23) g i v e s  t h e  changes 
necessary  i n  t h e  s t a t e s  f o r  a  g iven  change 
i n  t h e  d e c i s i o n s  f o r  l i n e a r  c o n s t r a i n t s .  
Geometr ica l ly ,  t h e  reduced g r a d i e n t  can be 
desc r ibed  a s  a  g r o j e c t i o n  of t h e  o r i g i n a l  
Y-dimensional g r a d i e n t  on to  t h e  (N-L)-di- 
mensional f e a s i b l e  r eg ion  desc r ibed  by t h e  
d e c i s i o n  v a r i a b l e s .  A necessar-r cond i t i on  
f o r  t h e  e x i s t e n c e  of  a  minimum of an uncon- 
s t r a i n e d  non l inea r  func t ion  is t h a t  t h e  e l e -  
ments of t h e  g r a d i e n t  vanish .  S i m i l a r l y ,  
a  minimum of t h e  cons t r a ined  non l inea r  func- 
t i o n  occu r s  when the  a p p r o p r i a t e  elements  of 
t h e  reduced g r a d i e n t  vanish.  A computer 
code, OPT, u t i l i z i n g  t h e  Genera l ized  Be- 
duced Gradient  Xethod has  been developed by 
Gabr i e l e  and q a g s d e l l ( 2 8 )  i n  t h e  Design Group 
of t h e  School of  Mechanical Engineering a t  
Purdue. 

3 . 3  Sca l ing  

Very o f t e n  i n  p r a c t i c e  we encounter  non l inea r  
programming problems which a r e  ?oo r ly  sca led .  
This  may occur  f o r  a  v a r i e t y  of r ea sons ,  b u t  
most o f t e n  due t o  numerical  i n c o m p a t i b i l i t y  
of u n i t s  employed. That  i s ,  one des ign  var -  
i a b l e  may be i n  miles while  ano the r  is  i n  
i nches ,  o r  a  c o n s t r a i n t  xay measure i n  pounds 
pe r  square  inch  while  o t h e r s  a r e  e-xpressed 
i n  f e e t  ? e r  second, a c r e s ,  o r  f e e t .  When 
the  problem i s  2oor ly  s ca l ed  -.qe have d i f f i -  
c u l t y  cocpar inq  v i o l a t i o n s  i n  t he  va r ious  
c o n s t r a i n t s ,  and r e l a t i n g t h e s e  c o n s t r a i n t  
v i o l a t i o n s  t o  5nanqes i n  t he  o b j e c t i v e  va lue .  
D r .  Ronald 3. Root has developed a  s c a l i n g  

a lgor i thm,  a s  a  p a r t  of h i s  d o c t o r a l  work''y) 
i n s t h e  Design Group of t h e  School of Hech- 
a n i c a l  Engineering a t  Purdue Un ive r s i t y .  The 
goa l  of t h e  method i s  t o  au toma t i ca l ly  s c a l e  
o r  cond i t i on  any non l inea r  3 roq ra~ in ing  ?rob- 
lem s o  a s  t o  i nc rease  t h e  probabilit.,. c f  suc- 
c e s s  of modern NL? methods. The  problem i s  
t r ans fo rned  by d e f i n i t i o n  of s c a l i n g  para-  
meters:  

and 

We d e f i n e  a  ma t r ix  J which c o n t a i n s  t h e  con- 
s t r a i n t ' g r a d i e n t s  a s  rows, and p r e s e t  a. and 
8k SO t h a t  a l l  c o n s t r a i n t  va lues  a t  t h e 3 s t a r t -  
i ng  p o i n t ,  x ( O j ,  a r e  of o rde r  10. pie defect 
a  poor ly  s ca l ed  v a r i a b l e  o r  c o n s t r a i n t  by 
n o t i c i n g  rows and/or columns whose nonzero 
elements  a r e  a l l  s i g n i f i c a n t l y  g r e a t e r  i n  
modulus than  o t h e r  s lements  i n  J.  Once ths 
poor ly  s ca l ed  vari .aSies  an5 c o n s t z a i n t s  =re 
d e t e c t e d ,  we define c. , 2. , and ;; s o  a s  t o  
produce roughly equal3  cjraaien s e d s i t i v i  t i e s .  
The d e t a i l s  a r e  q iven  by SootFi0) .  This  
s c a l i n g  a l g o r i t h  has proven t o  be very  use- 
f u l ,  i f  no t  i nd i spensab le  i n  o b t e l n i n ?  t he  
numerical  r e s u l t s  r epo r t ed  i n  t h e  nex t  sec- 
t i o n .  

The g e n e r a l  u t i l i t y  of t h e s e  and o t h e r  a l -  
gori thms f o r  engineer ing  des ign  a p p l i c a t i o n s  
has - n t l y  been d e ~ o n s t z a t e d  by Sand' 
g ren t5yet  and a  portLon of h l s  r e s u l t s  is  . 
given i n  F igure  7 .  The curve  marked "En- 
hanced BIAS" deno te s  t h e  pe r fomance  of t h e  
Method of M u l t i p l i e r s  wi th  Roo t ' s  s c a l i n g  
a lgor i thm,  and OPT and BIAS (wi thout  s c a l i n g )  
a r e  a lgor i thms 11 and 1 r e s p e c t i v e l y  i n  t h e  
f i g u r e .  Q u i t e  abvious ly  OPT and BIAS a r e  
among t h e  very  b e s t  NLP a lgor i thms a v a i l a b l e  
today. 

4 . ?!U.?ZSIt?AL RESULTS 

Using OPT and BIAS and t h e  p rev ious ly  de- 
s c r i b e d  opt imal  des ign  fo rmula t ion ,  we have 
sought  t h e  p l a n t  des ign  which min in i ze s  t h e  
normalized o p e r a t i n g  c o s t  of geneza t ion  
of 600WiJ f o r  t e n  hours  each  weekday. Ne 
have employed the  Kedia, I l l i n o i s  G a l e s v i l l e  , 
a q u i f e r  a s  t h e  s t o r a g e  r e s e r v o i r .  Contour 
maps and m a t e r i a l  p r o p e r t i e s  f o r  t h i s  aquifez 
and o t  e  problem D r ame te r s ,  a r e  a iven  by . 
Shanna21f),  KatZ(ilBand a l u w a l i a  ( 3 2 ) .  The 
subsystem 1 problem was solyed f o r - a  number 
of combinations of and m' us ing  BIAS 
wi th  au tomat ic  s c a l ~ n g .  Reca l l  t h a t  BIAS 
does n o t  r e q u i r e  a  f e a s i b l e  s t a r t i n g  p o i n t .  

Contours of c o n s t a n t  minimized ope ra t ing  
c o s t  f o r  subsystem 1 a r e  shown i n  F igure  8. 
A very  s i q n i f i c a n t  c o s t  v a r i a t i o n  i s  e v i z e n t .  
The s t e e p l y  r i s i n g  c o s t  a t  high p re s su re  r e -  
f l e c t s  t he  ? rssence  of a  c o n s t r a i n t ,  b u i l t  
i n t o  t he  a q u i f e r  a a t h e ~ a t i c a l  moeel r a t k e r  
than appearing s i r e c t l y  i n  t he  opt i .mi=at ion 
problem c o n s t r a i n t  d e f i n i t i o n s .  This  con- 
s t r a i n t  i n s i s t s  t h a t  t h e  mean weekly 3ressure  



i n  t h e  a q u i f e r  should equal  i t s  n a t u r a l  " d i s -  
covery" p r e s s u r e  (840 ? s i a  i n  t h i s  example) . 
i n  o rde r  t o  main ta in  a  cons t an t  mean a i r  
s t o r a g e  v c l m e .  F igu re  8 ,  i n d i c a t e s  t h a t .  
smal l  n ' v a l u e s  ( i . e . ,  low a i r  f low r a t e s )  

. a r e  favored.  This  i s  due p r i n a r i l y  t o  t h e  
h igher  c o s t  of t h e  a i r  s t o r a g e  r e s e r v o i r  a s  
t h e  q u a n t i t y  of a i r  s t o r e d  i s  inc reased .  

The o p t i m m  subsys ten  1 des igns  corresponding 
t o  p o i n t s  i n  F igure  2 xe re  a l s o  found t o  
vary widely.  Of p a r t i c u l a r  i n t e r e s t  i s  t h e  
nuxber of w e l l s  r equ i r ed .  I t  was found t o  
vary from a  low of 51 i n  t h e  lower l e f t  
(low c o s t )  r eg ion  t o  vz lues  i n  t h e  200-500 
range i n  t h e  upper r i c h t  reg ion .  F i n a l l y ,  it 
i s  noted t h a t  t h e  e f f e c t s  of t h e  2 i s c r e t e  
v a r i a b l e s  (low p re s su re  compressor compres- 
s i o n  r a t i o ,  wel lbore  d iameter ,  and main p i p e  
d iameter )  have been s t u d i e d ,  f o r  one set of  
coupl i?c j3yar jab les ,  and a r e  r epo r t ed  by 
Ahrens . The only  signif icant v a r i a t i o n  
i s  due t o  wel lbore  d i a n e t e r ,  which causes  
t h e  c o s t  t o  i n c r e a s e  f o r  i n c r e a s i n g  diameter.  
For  t h e  p r e s e n t  s tudy ,  t h e s e  d i s c r e t e  va r -  
i a b l e s  a r e  he ld  f i x e d  a t  op t imal  o r  near  
opt imal  va lues .  The subsystern 2  problen  :ias 
solved us inq  OPT. Contzurs of c o n s t a n t  n in-  
imized o p e r a t i z g  c o s t  f c r  subsystern 2 a r e  
e r e s e n t e d  i n  " igure  9 f o r  a  range of p  and 
rn' va lues .  The rninimtx~ c o s t  contour  ( 5 3  
mills/kl.ih) correspon2s approximately t g  de- 
s i g n s  having t h e  minimum al lowed (1506-7) 
t u r b i n e  i n l e t  t e r p e r a t u r e s ,  T ,  andTs .  These 
correspond t o  convent iona l  des igns  proposed 
f o r  CAES p l a n t s .  The maximum c o s t  contour  
(24.5 mills/kWh) shown i s  near  t o  t h e  con- 
s t r a i s t  Soundry r ep re sen t ing  t h e  upper l i m i t  
(2400 F) on t u r b i n e  i n l e t  t empera tures .  
These a r e  advanced des igns  r e q u i r i n g  con- 
s i d e r a b l e  coo l ing  a i r .  From t h e  o v e r a l l  
system viewpoint ,  t h e  advantage of  t he se  
t u r b i n e s  i s  t h a t  they  reduce t h e  amount of 
?ir which must be s t o r e d  ( p r o p o r t i o n a l  t o  
m a ) ,  t h u s  reducing t h e  r e s e r v o i r  c o s t .  The 
r e s u l t s  i n  F igure  9 a r e  based on r =16. I t  
was fouhd t h a t  use  of  r3=il y i e l d e a  s i m i l a r ,  
bu t  s l i g h t l y  h igher ,  c o s t  r e s u l t s  throughout  

. t h e  r eg ion  explored .  The optimum recuper-  
a t o r  e f f e c t i v e n e s s ,  E ,  was found t o  vary  
from 0.52 t o  0.77 f o r  t h e  ranges of  coupl ing  
v a r i a b l e s  y i e l d i n g  s o l u t i o n s .  The most com- 
mon va lue  encountered was on t h e  o r d e r  of  
0.7. 

By t h e  n a t u r e  of t h e  decomposition s t r a t e g y  
employed i n  t h i s  s tudy ,  t h e  optimum CAES 
p l a n t  ( t h a t  des ign  which minimizes t he  power 
gene ra t ion  c o s t  f o r  t h e  s p e c i f i e d  u t i l i t y  
load  c y c l e  and a q u i f e r  s i t e )  may be e a s i l y  ' 
found by superpos ing  t h e  r e s u l t s  from Fig- 
u r e s  8 and 9. The r e s u l t i n g  minimized c o s t  
con tou r s  a r e  shown i n  F igure  10. I n t e r e s t -  
i n g l y ,  even though t h e  i n d i v i d u a l  subsystem 
contours  a r e  open, t h e i r  sum e x h i b i t s  an  
o v e r a l l  optimum which is  wi th in  t h e  coupl- 
ing  v a r i a b l e  domain c o n s i m  Figure  10 
demonstrates  t h a t  t h e  pol.ier gene ra t ion  
(ope ra t ing )  c o s t  of t he  optimum CXS p l a n t  
is s l i g h t l y  under 3 7 . 7 5  n i l l s /kYh ,  and t h a t  
t h e  optimum va lues  f o r  t he  coupl ing  var-  
i a b l e s  a r e ,  a g p r o x i ~ a t e l y ,  pr i=625 p s i a  and 
m a =  8.5 lbm/kbih. Knowing t h e  optimum coupb  
ing  v a r i a b l e s ,  one can r e a d i l y  o b t a i n  t h e  
optimum va lues  of o t h e r  des ign  v a r i a b l e s  
from t h e  s e p a r a t e  subsystem 1 and 2  op- 

t i m i z a t i o n  r e s u l t s .  These, and some p e r t i -  
nent  dependent v a r i a b l e  v a l u e s ,  a r e  i n d i c a t e d  
i n  Table 1. The a s s o c i a t e d  c o s t  components 
f o r  t h e  opt ircsl  and an i n i t i a l  f e a s i b l e  de- 
s i g n  a r €  l i s t e d  i n  Table 2 .  I t  i s  of  i n t e r e s t  
t o  note  t h a t  t h e  c o n s t r a i n t s  a c t i v e  a t  t he  
s o l u t i o n  a r e  t h e  t h r e e  a s s o c i a t e d  wi th  t h e  
r equ i r eoen t s  t h a t  ( a )  t h e  we l l  spac ing  should 
not  exceed t h e  maxizum s ~ z c i n q  c o n s i s t e n t  :$it?, 
s f f i c i e n t  a c u i f e r  u t i i i z a t i o n  ( a s  dict?i ts5 5y  
unsteady flow c o n s i 2 e r a t i o n s )  , (5) t h e  1:;eils 
should not  p e n e t r a t e  t h e  a i r  bubble s o  a s  to 
a l low water  coming i n t o  t h e  -::ell l u r i n g  a 
d i s chz rge  p roces s ,  and ( c )  t h e  weekly min-  
inum a q u i f e r  p r e s su re  should n o t  drop below 
t h a t  r equ i r ed  t o  main ta in  flow i n t o  t?,'e t u r -  
b ines .  The low p r e s s u r e  t u r b i n e  i n i e t  tqnp- 
e r a t u r e  (T5) i s  a t  i t s  upper bound (2400-F) 
a t  t h e  s o l u t i o n .  F i n a l l y ,  t h e  charg ing  t i n e  
d u r a t i o n s  were f o u i ~ d  t o  t ake  t h e i r  maximum 
allowed va lue  on weeknights ,  b u t  no t  on t h e  
weekend. 

5. DISCUSSION 

The opt imal  des ign  approach a f f o r d s  a s i g -  
n i f i c a n t  ogpor t zn i ty  f o r  c o s t  s av ings  i n  t h e  
c o n s t r u c t i o n  and o p c r a t i c n  of con!nresscd a i r  
snergg  storaGe s g s t e z s ;  a s  can be seen from 
the  p rev ious ly  g iven  r e s u l t s .  Cn t h e  o t h e r  
hand, t h e  models necessa?! t o  adequate ly  r e -  
p r e s e n t  such a  p r a c t i c a l  ph.;sical systenl can  
be q u i t e  ccnglex.  :re have qiv?en :.?:?at Irie 
f e e l  t o  be t h e  l e a s t  ccmplex s y s t z n  model, 
which w i l l  produce a  meaningful op t imal  de- 
s ign .  Even wi th  ou r  s i m p l i f i e d  epproach t h e  
complete C2ES system op t imiza t ion  ( i nc lud ing  
subsystems 1 and 2) involves  20 des ign  var -  
i a b l e s ,  4 d i s c r e t e  des ign  parameters ,  8 
l i n e a r  c o n s t r a i n t s ,  5 non l inea r  c o n s t r a i n t s ,  
upper and lower bounds on a l l  de s ign  var-  
i a b l e s ,  and a non l inea r  o b j e c t i v e  func t ion .  
Fur thernore ,  t h e  nodel  i nc ludes  func t ions  
which r e q u i r e  c a l c u l a t i o n  o f  t h e  modif ied 
a e s s e l  f u n c t i o n s  of t h e  f i r s t  and second 
degree  and f i r s t  and second k ind ,  and var ious  
s p l i n e  approximations f o r  empi r i ca l  d a t a .  

W e  expected t h e  f u l l  CAES problem ( t h a t  i s ,  
inc lud ing  subsystems 1 and 2) t o  provide  a  
s i g n i f i c a n t  cha l l enge  t o  modern non l inea r  
p r o g r a m i n g  methods. We sought  r e l i e f  i n  
decomposition theo ry ,  whereby t h e  l a r g e s t  
HLP conta ined  16 des ign  v a r i a b l e s .  12 con- 
s t r a i n t s ,  v a r i a b l e  bounds and a  non l inea r  
o b j e c t i v e .  N e  d i d ,  of cou r se ,  have t o  so lve  
t h e  r e s u l t i n g  op t imiza t ion  problems f o r  var -  
i o u s  va lues  of  t h e  coupl ing  v a r i a b l e s .  Our 
e -qe r imen t s  wi th  subsystem 1 and 2  suppor t  
ou r  o r i g i n a l  f e a r s  concnrning t h e  d i f f i c u l t y  
of  t h e  complete CAES problem. Furthermore, 
t h e  subsystem op t imiza t ion  p rob leas  have 
va lue  w i t h i n  themselves.  That  i s ,  these  
subgroups r e s u l t s  2rovide  i n s i g h t s  t h a t  would 
be d i f f i c u l t  a t  b e s t  t o  g a t h e r  i n  any o t h e r  
way. F i n a l l y ,  t h e  deccmposi t ion s t r a t e g y  
employed he re  a l lows  an o r d e r l y  modular ap- 
proach of des ign  t o  be employed. That  i s ,  
we might env i s ion  a  d i f z e r e n t  s t o r a g e  svstem 
(such a s  a  hard rock  cavern)  which would 
produce a  d i f f e r d n t  subsys ten  1 model. iie 
could perform t h e  subsys ten  1 o ? t i n i z a t i o n s  
and syn thes i ze  t h e  o v e r a l l  s y s t e a  r e s u l t s  
j u s t  a s  before .  T h a t  i s ,  t h e  subsystem 2  
r e s u l t s  would be unaf fec ted .  



The r e s u l t s  presented  i n  F i g u r e s  8,.  9, and 10 
demonstrs te  an i n t e r e s t i n  consequence o f  t h e  

4. decomposition s t r a t e g y .  Subsystem 2  r e s u l t s  
show a  very  sirn?le dependence on t h e  cocpl ing  
v a r i a b l e s  which is  i n t u i t i v e l y  s a t i s f y i n g .  
Subsystem 1 r e s u l t s  a l s o  shaw a  somevhat 
simple v a r i a t i o n  with chznqes i n  p  and A' .  

t i  I n t e r e s t i n g l l r ,  n e i t h e r  of t h e  s'uLsystems had 
an o p t i m m  i n s i d e  t he  d e s i q c  s?ac2 e:<plored. 
However, onco t h e  two subsysten; r e s u l t s  ?..:ere 
combined, a  d i s t i n c t  n i n i z m  is  found. An- 
o t h e r  b e n e f i t  of ?eczrrposi t ion i n  t h i s  par -  
t i c u l a r  problem i s  t h a t  f o r  t t e  2 u q o s e  of 
p l a n t  s i t e  s e l e c t i o n ,  on ly  subsystem 1 r e s u l t s  
need be cons idered .  Mhen one o f  many a v a i l -  
a b l e  s i t e s  i s  t o  be s e l e c t e d ;  2s i s  t h e  ca se  
wi th  a  pro?osed C X S  p iLo t  p i a n t  i n  Indiana  
o r  I l l i n o i s ,  t h e  g e o l o g i c a l  and c o s t  2 a t a  f o r  
t h e  va r ious  a q u i f e r s  can be i n p u t  t o  t h e  pro- 
cedure  and t h e  opt imal  d e s i g n s  of  subsystem 
1 a t  v a r i o u s  s i t e . s  can then  be compared i n  
making t h e  f i n a l  d e c i s i o n .  However, s i n c e  - 
d i f f e r e n t  s i t e s  might have d i z f e r c n t  base 
e l e c t r i c i t y  c o s t ,  e t c . ,  a  c o n s i d e r a t i o n  o f  
t h e  i n t e r a c t i o n s  of subsystem L and 2  wi th  
subsystem 3 nay be impor tan t  t o  t h e  eva lua t ion .  
An i n t e r e s t i n g  a s?ec t  of t 5 e  o p t i x i z a t i o n  of  
subsystem 1, showing t h e  g r e a t  va lue  of c p t -  
imal  des iqn ,  i s  a s  F O ~ ~ C W S .  The  au tho r s  o r i q -  
i n a l l y  f e l t ,  based on eng izee r inq  judgment, 

. t h a t  t h e  CAES p l a n t  f o r  t h e  s i t e  assumed i n  
t h i s  s tudy  should be des igned  wi th  p-  2 750 
p s i a  and m'  2 10.4 lba/kwh. T- L )  

paper on C.ZES system 2esicn ( 1 3 r a a  prn-ininzrl , r e s u l t s  f o r  
an i n t u i t i v e  subsgstem 1 des ign  and an opt -  
imized des ign  were p r e s e n t ~ d .  The f o m e r  had 
a  c a p i t a l  c o s t  of $101.6 n i l l i o n ,  an  opera t ing  
c o s t  of  24.25 mills/kWh. and 700 w e l l s ,  wh i l e  
t h e  l a t t e r  had a  $62 m i l l i o n  c a p i t a l  c o s t ,  
19.36 mills/kXh o p e r a t i n g  c o s t  and 402 w e l l s .  
F i n a l l y ,  r e f e r r i n g  t o  i n f o m a t i o n  i n  Tables  
1 and 2, it was found t h a t  t h e  subsystem 1 
des ign  a t  system optimum have a c a p i t a l  c o s t  
o f  on ly  $22.26 m i l l i o n ,  an  o p e r a t i n g  c o s t  of  
12.51 mills/kNh and on ly  needed 54 we l l s :  

I n  conclus ion ,  it can be s t a t e d  t h a t  a  com- 
puter -a ided  opt imal  des ign  technique  has 
been developed,  and a p p l i e d ,  f o r  des ign  of 
a complex power system wi th  ecergy s to rage .  
The r e s u l t s  p r e sen ted  d e n o n s t r a t e  t h e  g r e a t  
va lue  of t h e  op t imiza t ion  approach,  i n  gen- 
e z a l ,  and of  t h e  decomposition method, i n  
p a r t i c u l a r ,  f o r  t h i s  type  of  system. 
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Tahle 1. Op t ina l  CXES P l a n t  Design 

Number of w e l l s  5 4 
Active w e l l - f i e l d  a r e a  ( a c r e s )  ' 276.1 
A i r  bubble t h i ckness  ( f t .  69.75 
Average. a c t i v e  formation th i ckness  ( f t . )  45.45 

TJellbore d iameter  ( i n .  
Sur face  a r e a  t o  be 

purchased ( a c r e s )  
Main p ip ing  d iameter  ( i n . )  
T o t a l  weekly s t o r a g e  time ( h r s .  ) 
Compressor pov;er r equ i r ed  (XV) 
Compressor system d i scha rge  

F re s su re  ( p s i a )  
Low p re s su re  compressor ? r e s s u r e  

r a t i o  
?.ecu?erator e f f e c t i v e n e s s  
Low p re s su re  t a r b i n e  i n l e t  

temperature ( J ~ )  
Sigh ? r e s s u r e  t u r b i n e  i n l e t  

t e a p e r a t u r e  ( .OF)  

2remi.m. f u e l  hea t  r a t e  (Bta/!??lh) 
I n l e t  p r e s su re  t o  sxbsysterr. 2 ('psis) 
S p e c i f i c  t a r b i n e  system a i r  f low 

r a t e  (lbm/kwh) 

Table 2: CAES P l a n t  Cos ts  
I n i t i a l  ? c a s i b l e  Cptimal 

Capi'tal I'tems Design. ( $ l o 6 )  Design (~16') 

Land 
Pip ing  
aubble Develop- 

aer. t 
:.Jell Construc- 

t i o n  
Low Pres su re  

Corpressor  
Boaster  Con- 

p r e s s o r  
Recupera t o r  
Turbine System 
Balance-of- 

P l a n t  '4'2'. 0'0 0 
T o t a l  C a p i t a l  - 

Cost  154.283 80.249 
Other 
Base Load E l e c t r i c i t y  

h i l l / D m )  11.450 
Premium Fuel  

(mill/KWH) 9.715 
Subsystern 1 

Operat ing Cost  24.25 
Subsystem 2  

Operat ing Cost  21.99 
T o t a l  Power 

Generat ion Cos t  
(rnill/WlH) 46.24 
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Figure 1: CaES Power Plant 
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Figure 4: Utility Load Cycle (UL) 

Figure 5: Aquifer Reservoir Geometry 
Figure 2: Edge Water Aquifer 

Fig,ure 3:: CAES Decomposition Strategy 

Figure 6: Calculation Flow ,for Subsystem1 - 
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Figure 7: Uti l iLy  of N L P  Methods 

F igure  8: Subsystem 1 Q t i m i z a t i o n  Resu l t s  

F igure  9: Subsystem 2 Opt imiza t ion  Resu l t s  
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Figure  1 0 :  C X S  P l a n t  Optimizat ion Resu l t s  




