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Abstract 

The role of smoothly varying transverse gain and refraction profiles on x-ray laser 
intensity and coherence is analyzed by modally expanding the electric field within 
the paraxial approximation. Comparison with a square transverse profile reveals that 
smooth-edged profiles lead to: (1) a greatly reduced number of guided modes, (2) the 
continued cancellation of local intensity from a loosely guided mode by resonant free 
modes, (3) and the absence of extraneous (or anomalous) free mode resonances. 
These generic spectral properties should enable a considerable simplification in 
analyzing and optimizing the coherence properties of laboratory soft x-ray lasers. 

1. Introduction 

Current X-ray laser (XRL) designs rely on amplifying spontaneous emission in a high 
temperature plasma.1 An important issue in the study of XRL's is the degree of 
transverse spatial coherence necessary for holographic applications.2 Longitudinal 
coherence appears to be satisfactory, but transverse coherence remains problematic 
and requires further optimization study. 

Recently, London el a/.3 have undertaken a study of transverse coherence based on 
a modal decomposition of the electric fields in an amplifying medium. With this 
ansatz for the laser fields, the paraxial wave equation is transformed into two 
equations which separately govern the longitudinal and transverse behavior. The 
longitudinal equation describes the usual longitudinal amplification from a 
distributed noise source, whereas the transverse equation is of the SchrSdinger-type 
with complex "potential" arising from the gain or imaginary part of the atomic 
susceptibility. The analysis of this latter equation leads to a spectrum of eigenmodes 
which determines the possible transverse profiles of intensity and coherence. 



The above mathematical characterization for the fields has formed the basis in 
the literature for the predicted phenomenon of "excess noise" in an amplifying 
medium.4 In particular, the inherent non-self-adjoint property of a general 
amplifying medium presumably allows for the possibility that loosely guided or 
bound transverse eigenmodes may dominate the profiles at large transverse 
distances from the lasant medium. Such a prospect has serious implications for 
coherence and intensity studies since the predicted profiles will be unacceptably 
sensitive to the precise value of gain used. 

Previous use of the modal approach to understand XRL phenemena has been 
restricted to the bound or discrete portion of the transverse eigenmode spectrum. 
For sufficiently large values of gain-length product this restricted analysis can obtain 
accurate transverse profiles of intensity and coherence. Unfortunately, most gain-
length products observed in the present generation of amplified spontaneous 
emission (ASE) XRL experiments are not sufficiently large to justify use of this 
truncated approach in general. 

More recently, Amendtef al? have reexamined the modal approach by appending 
the continuum or free modes to the bound mode portion of the transverse 
spectrum for the particular example of transverse square gain and refraction 
strength profiles. The primary motivation for including the continuum is that by 
virtue of the non-orthogonality of the eigenmodes, sufficient cancellation from 
cross-terms in the expression for the modal intensity may occur and possibly 
eliminate to a large extent the "excess noise" phenomenon. It is found that for small 
and moderately large gain-length products the anomalously large intensities 
associated with one loosely bound transverse mode are significantly reduced by the 
inclusion of neighboring free eigenmodes. This feature has the two-fold effect of 
greatly reducing the level of "excess noise" and of removing the source of undue 
sensitivity of previous modal modelling to the exact value of the gain parameter 
adopted. 

Amendt el al.s address some fundamental problems arising in a general ASE XRL 
environment, but they do not determine the degree of transverse coherence 
relevant for an ASE XRL experiment. In particular, the square gain and refraction 
strength profiles explored in that analysis were intended mostly for analytic ease 
and conceptual clarity. What remains to be shown is whether the effective modal 
intensity cancellation persists as effectively for rounded profiles which now allow 
for the beneficial effect of refractive defocussing. In this paper we continue our 
analysis of modal XRL coherence by considering some consequences of rounded 
gain and refraction strength profiles in a finite geometry. 

2. Modal Analysis 

Our starting point is the paraxial equation for the slowly varying wave electric field 
amplitude E:3 

1 Vi -2idz -h(x) + ig(x)] E(x, z) = -4nk P s p(x, z ) , (1) 

where k is the free-space longitudinal (or parallel to z-axis) wavevector, V±* is the 
transverse Laplacian, hso^OO/kc2 is the refraction strength, a^ is the electron 
plasma frequency, g(x) is the atomic gain of the medium, and V^ is the random (in x 
and z), spontaneous atomic polarization. Upon writing E (x, z) = Icn(z)un(x) we find 
a transverse mode equation: 



[13JL - Fjtftx) - if (x))] un(x) = -E nu n(x), (2) 

and a longitudinal transfer equation: 

E[ u n9zCn-i-E n c n u n ] = -iPSp, (3) 

where Ft =kgda2 is an effective Fresnel number, a is the lasant half-width, E„ is the 
eigenvalue, x -> xa, z->zka2, P^P^/Zitika)2, n=h0/g3, and ft =h/h<, and g=g/go are 
normalized transverse profiles. Since eq. (2) is non-self-adjoint, the eigenvalues are 
generally nonreal and the eigenfunctions are biorthonormal: j u Rumdx=S n m 

(*ju„um dx). This feature specifically gives rise to the problem of "excess noise" 
where a "loosely" bound mode may dominate the field intensity < I EI2>/8* at large 
transverse distance (x»a). 4 Amendt et als. have previously shown that free modes 
(lim,.^ u n < ~) contained in the spectrum of eq. (2) tend to compensate for "excess 
noise" arising from marginally bound modes (lmv^u,,. = 0) for the particular 
example of a square gain and refraction strength profile. However, the case of a 
hard-edged profile is r.ot a realistic feature of XRL's that are based on amplifying 
spontaneous emission. 

3. Modal Study with Refracting 

A useful method for considering smooth transverse profiles in the modal approach 
is to numerically relax the square profile into a hyperbolic secant squared profile as 
follows: ft (x), g(x) -> (1-e) f(x, e) + e sech2(x), where e->l and 

I 0 M>l+e 

f(x,e)J sto a[" (M^-e)] i-e<M<l + e , (4) 

and then solving (by shooting methods) the transverse eigenvalue equation (2) at 
each incremental step in e using the eigenvalue for the previous e as a guess. The 
sech2(x) profile is a convenient choice because: 1) h (0) equals unity as for the square 
profile, (2) the integrated area under h coincides with the square profile, and (3) the 
bound mode eigenvalues are analytically known for the case of an unbounded 
geometry: 

E„ = - [1{1 + 4iFe(l + ill))1/2 - (n + J) ] 2 , n=0,1,2,.... (5) 
The general requirement for a bound .mode is that Im (E„) < 0, leading to only three 
bound modes for a Ni-like Se XRL,where typically F. = 1500 and tj = 59.3 By contrast, 
the number of modes n t in a hard-edged laser scales as:3 2F,/0iln[F,/(l + r|)]), giving 
nearly 300 bound modes for the Ni-like Se XRL. Clearly, the coherence length (or 
distance at which the normalized correlation function <E(0,z)E"(x,z)>-
1/[<IE(0, z)l2><IE(x, z)l 2>] 1 / 2 is reduced to 0.85) is far greater for a smooth profile 
than for a square profile, if we consider only the bound mode contribution. The key 
question becomes whether the inclusion of free modes can affect this conclusion. 

To consider this question, we first show how the free mode portion of the 
spectrum compensates for anomalous intensities arising from loosely bound modes 
as in the square profile case. The free modes are obtained by employing a reflecting 
boundary condition at x=± A, where A » l . Figures (la-b) display the compensated 
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Figs.(la-b): Normalized compensated (solid line) and uncompensated (dotted-dash) 
intensity for the square profile (a) and the sech2(x) profile fl>) for F.=0.5, n=0, and 
geometric half-width A=25. 

intensity for one loosely bound mode compared to the uncompensated or "bare" 
intensity. Note how the bound mode intensity dramatically cancels beyond x-±2 for 
the uncompensated case, while in the absence of resonant free modes a considerable 
surplus of energy resides outside the lasant medium (Ix ls i ) . This example 
illustrates the "excess noise" phenomenon for a smooth profile, but with a 
significant degree of reduction occurring due to cross-correlations between 
neighboring (in Re(E„)) free modes and the one marginally bound mode. 
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Figs.(2,3): In fig.(2) (left) are shown the point and free mode (even parity) spectra for 
square and sech2(x) profiles with F,=100 and r(=10. Note the larger value of A (lOx) 
used for the square profile. In fig.(3) (right) are shown coherence profiles for A=5.5, 
F,=100, and n=10 with gain-length parameter GL=5,10. 

In fig.(2) we show the point (or bound mode) and continuum spectra for both square 
and sech2(x) profiles. Note the absence of continuum resonances beyond the one 



(even parity) bound mode for the sech2(x) profile; such resonances effectively act as 
loosely bound modes in the case of the square profile. This generic feature of the 
smooth profile is seen to simplify the analysis: we need only to include those free 
modes which are resonant with a given bound mode for a viable description of 
coherence and intensity in the moderate to large GL (>5) regime. In fig.O) we 
compare coherence profiles for the square and sech^x) gain profiles by considering 
only free modes in the neighborhood of bound modes (but excluding the higher 
continuum resonances for the square profile on the basis of gain discrimination). 
The improved coherence for the sech2(x) profile is due mainly to the fewer number 
of bound modes in the system which is attributed to refractive defocussing in a 
smoothly varying medium. This phenomenon actually consists Gf two parts: (1) the 
usual bending of rays away from the lasant mediuir. when T|*0 and (2) the 
effectively reduced region of maximum gain giving rise to fewer high-gain 
transverse modes in general. Both effects contribute significantly in discarding 
many of the bound modes responsible for degraded transverse coherence. 

4. Discussion 

Realistic coherence modelling of current XRL experiments must include the role of 
refractive defocussing arising from non-trivial gain and refraction profiles. We have 
begun to study this phenomenon from a modal viewpoint with the aim of both 
clarifying the role of "excess noise" in such a system and optimizing the degree of 
coherence for eventual holographic applications. The generally large values of F. 
and r| found in current XRL experiments require a streamlined use of the modal 
approach as outlined above in order to compare with existing numerical wave 
propagation codes.' We have shown that the role of free modes in a smoothly 
varying media appear not to be as important as for the square profile, requiring only 
that the few bound modes be "dressed" or compensated by coincident free mode 
resonances. 
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