7 Cond- 91041464 -

UCRL-JC-105736
PREPRINT

Modal Study of Refractive Effects onj{:;: v e y { Sﬂ :

X-ray Laser Coherence bu ;
MAY 2 1 t99y’
Peter Amendt and Richard A. London == ;
Lawrence Livermore National Laboratory e
Livermore, CA 94551
Moshe Strauss

Nuclear Research Centre-Negev, Beer Sheva, Israel

This paper was prepared for submittal to
1991 Short-Wavelength Coherent Radiation: Generation
and Application Topical Meeting
Monterey, CA
April 8-10, 1991

April 5,1991

Thisisapreprintofapaperintended for publication in & journalor proceedings, Since
changes may be made before pnblication, this preprint is sade available with the- -
understanding that it will not be cited or reproduced withcut the permission of the
author,

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



DISCLAIMER

This document was prepared as an sccoust of work sponsored by an sgency of the
United States Government. Neither the United States Government mor the Usiversity
of California mor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or ibility for the or wselul-
wess of any information, upparates, product, or process disclosed, or represeaty thay
its wse would net infringe privately owned rights. Refe herein te any specific
commercial products, process, or service by trade name, trademark, manulacturer, or
berwise, does not il itute or imply its

or favering by the United States Government or the University of California. The
views wnd opinioas of auihors expressed herein do mot mecessarily state or reflect
those of the United States Gevernment ar the University of California. and shall not
be wsed for ising or product

TPRIS



Modal Study of Refractive Effects on X-ray Laser Coherence

Peter Amendt and Richard A. London

University of California UCRL-JC--105736
Lawrence Livermore National Laboratory
Livermore, California 94550 DE91 012083
Moshe Strauss ‘

Nuclear Research Centre-Negev
P.O. Box 9001, Beer Sheva, Israel

Abstract

The role of smoothly varying transverse gain and refraction profiles on x-ray laser
intensity and coherence is analyzed by modally expanding the electric field within
the paraxial approximation. Comparison with a square transverse profile reveals that
smooth-edged profiles lead to: (1) a greatly reduced number of guided modes, (2) the
continued cancellation of local intensity from a loosely guided mode by resonant free
modes, (3) and the absence of extraneous (or anomalous) free mode resonances.
These generic spectral properties should enable a considerable simplification in
analyzing and optimizing the coherence properties of laboratory soft x-ray lasers.

1, Introduction

Current X-ray laser (XRL) designs rely on amplifying spontaneous emission in a high
temperature plasma.! An important issue in the study of XRL’s is the degree of
transverse spatial coherence necessary for holographic applications.2 Longitudinal
coherence appears to be satisfactory, but transverse coherence remains problematic
and requires further optimization study.

Recently, London et al.3 have undertaken a study of transverse coherence based on
a modal decomposition of the electric fields in an amplifying medium. With this
ansatz for the laser fields, the paraxial wave equation is transformed into two
equations which separately govern the longitudinal and transverse behavior. The
longitudinal equation describes the usual longitudinal amplification from a
distributed noise source, whereas the transverse equation is of the Schradinger-type
with complex “potential” arising from the gain or imaginary part of the atomic
susceptibility. The analysis of this latter equation leads to a spectrum of eigenmodes
which determines the possible transverse profiles of intensity and coherence.



The above mathematical characterization for the fields has formed the basis in
the literature for the predicted phenomenon of “excess noise” in an amplifying
medium.* In particular, the inherent non-self-adjoint property of a general
amplifying medium presumably allows for the possibility that loosely guided or
bound transverse eigenmodes may dominate the profiles at large transverse
distances from the lasant medium. Such a prospect has serious implications for
coherence and intensity studies since the predicted profiles will be unacceptably
sensitive to the precise value of gain used.

Previous use of the modal approach to understand XRL phenemena has been
restricted to the bound or discrete portion of the transverse eigenmode spectrum,
For sufficiently large values of gain-length product this restricted analysis can obtain
accurate transverse profiles of intensity and coherence. Unfortunately, most gain-
length products observed in the present generation of amplified spontaneous
emission (ASE) XRL experiments are not sufficiently large to justify use of this
truncated approach in general.

More recently, Amendtet al.5 have reexamined the modal approach by appending
the continuum or free modes to the bound mode portion of the transverse
spectrum for the particular example of transverse square gain and refraction
strength profiles. The primary motivation for including the continuum is that by
virtue of the non-orthogonality of the eigenmodes, sufficient cancellation from
cross-terms in the expression for the modal intensity may occur-and possibly
eliminate to a large extent the “excess noise” phenomenon. It is found that for small
and moderately large gain-length products the anomalously large intensities
associated with one loosely bound transverse mode are significantly reduced by the
inclusion of neighboring free eigenmodes. This feature has the two-fold effect of
greatly reducing the level of “excess noise” and of removing the source of undue
sensitivity of previous modal modelling to the exact value of the gain parameter
adopted.

Amendt et al.5 address some fundamental problems arising in a general ASE XRL
environment, but they do not determine the degree of transverse coherence
relevant for an ASE XRL experiment. In particular, the square gain and refraction
strength profiles explored in that analysis were intended mostly for analytic ease
and conceptual clarity. What remains to be shown is whether the effective modal
intensity cancellation persists as effectively for rounded profiles which now allow
for the beneficial effect of refractive defocussing. In this paper we continue our
analysis of modal XRL coherence by considering some consequences of rounded
gain and refraction strength profiles in a finite geometry.

2.Modal Analysis

Our starting point is the paraxial equation for the slowly varying wave electric field
amplitude E2

[% V2 21, -h(x) + ig)] Elx, 2) = 4nk Pugt, 2), m

where k is the free-space longitudinal (or parallel to z-axis) wavevector, V,? is the
transverse Laplacian, h=w,,%(x)/ke? is the refraction strength, w,, is the electron
plasma frequency, g(x) is the atomic gain of the medium, and P, is the random (in x
and z), spontaneous atomic polarization. Upon writing E (x, ) = Z¢,(z)u, (x) we find
a transverse mode equaiion:
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and a longitudinal transfer equation:
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where F, =kgga? is an effective Fresnel number, a is the lasant half-width, E, is the
eigenvalue, x -> xa, z->zka?, P->P,./2r(ka)2, n=hy/g, and h =h/h, and g=g/g, are
normalized transverse profiles. Since eq. (2) is non-self-adjoint, the eigenvalues are
gererally nonreal and the eigenfunctions are biorthonormal: | u,u,dx=5,,
(#/u,u,'dx). This feature specifically gives rise to the problem of “excess noise”
where a “loosely” bound mode may dominate the field intensity <iEl2>/8x at large
transverse distance (x>>a).t Amendt et alS. have previously shown that free modes
(lim, . u, < <) contained in the spectrum of eq. (2) tend to compensate for “excess
noise” arising from marginally bound modes (lim,, u, = 0) for the particular
example of a square gain and refraction strength profile. However, the case of a
hard-edged profile is not a realistic feature of XRL's that are based on amplifying

spontaneous emission.

A useful method for considering smooth transverse profiles in the modal approach
is to numerically relax the square profile into a hyperbolic secant squared profile as
follows: h (x), g(x) -> (1-€) f(x, €) + € sech¥(x), where &->1 and

0 M>1+e
f(x, £) = sinz[-’im’;—;—le—)] 1-e<pd<l+e , @
1 X Kl<1-€

and then solving (by shooting methods) the transverse eigenvalue equation (2) at
each incremental step in € using the eigenvalue for the previous € as a guess. The
sech¥(x) profile is a convenient choice because: 1) 4 (0) equals unity as for the square
profile, (2) the integrated area under & coincides with the square profile, and (3) the
bound mode eigenvalues are analytically known for the case of an unbounded
geometry: :

En=- [%-(1 +4iE( + )2 -+ D) i ,n=0,1,2,.... )

The general requirement for a bound 'mode is that Im (E,) < 0, leading to only three
bound modes for a Ni-like Se XRL,where typically F, = 1500 and n = 59.2 By contrast,
the number of modes n, in a hard-edged laser scales as:3 2F,/[xIn[F,/(1 + n)]}), giving
nearly 300 bound modes for the Ni-like Se XRL. Clearly, the coherence length (or
distance at which the normalized correlation function <E(0,z)E*(x,z)>-
1/[<IE(, z)I2><|E(x, 2)12>]12 is reduced to 0.85) is far greater for a smooth profile
than for a square profile, if we consider only the bound mode contribution. The key
question becomes whether the inclusion of free modes can affect this conclusion.

To consider this question, we first show how the free mode portion of the
spectrum compensates for anomalous intensities arising from loosely bound modes
as in the square profile case. The free modes are obtained by employing a reflecting
boundary condition at x=+ A, where A>>1. Figures (la-b) disptay the compensated
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Fige.(1a-b): Normalized compensated (solid line) and uncompensated (dotted-dash)
intensity for the square profile (a) and the sech?(x) profile (b) for F,=0.5, n=0, and
geometric half-width A=25,

intensity for one loosely bound mode compared to the uncompensated or “bare”
intensity. Note how the bound mode intensity dramatically cancels beyond x~42 for
the uncompensated case, while in the absence of resonant free modes a considerable
surplus of energy resides outside the lasant medium (Ix{21). This example
illustrates the “excess noise” phenomenon for a smooth profile, but with a
significant degree of reduction occurring due to cross-correlations between
neighboring (in Re(E,))) free modes and the one marginally bound mode.
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Figs.(2,3): In fig.(2) (left) are shown the point and free mode (even parity) spectra for
square and sech?(x) profiles with F,=100 and n=10. Note the larger value of A (10x)
used for the square profile. In fig.(3) (right) are shown coherence profiles for A=5.5,
F =100, and 11=10 with gain-length parameter GL=5, 10.

In fig.(2) we show the point (or bound mode} and continuum spectra for both square
and sech(x) profiles. Note the absence of continuum resonances beyond the one



(even parity) bound mode for the sech?(x) profile; such resonances effectively act as
loosely bound modes in the case of the square profile. This generic feature of the
smooth profile is seen to simplify the analysis: we need only to include those free
modes which are resonant with a given bound mode for a viable description of
coherence and intensity in the moderate to large GL (>5) regime. In fig.(3) we
compare coherence profiles for the square and sech(x) gain profiles by considering
only free modes in the neighborhood of bound modes (but excluding the higher
continuum rescnances for the square profile on the basis of gain discrimination).
The improved coherence for the sech¥(x) profile is due mainly to the fewer number
of bound modes in the system which is attributed to refractive defocussing in a
smoothly varying medium. This phenomenon actually consists f two parts: (1) the
usual bending of rays away from the lasant mediui when n=0 and (2) the
effectively reduced region of maximum gain giving rise to fewer high-gain
transverse modes in general. Both effects contribute significantly in discarding
many of the bound modes responsible for degraded transverse coherence.

1. Di .

Realistic coherence modelling of current XRL experiments must include the role of
refractive defocussing arising from non-trivial gain and refraction profiles. We have
begun to study this phenomenon from a modal viewpoint with the aim of both
clarifying the role of “excess noise” in such a system and optimizing the degree of
coherence for eventual holographic applications. The generally large values of F,
and 1 found in current XRL experiments require a streamlined use of the modal
approach as outlined above in order to compare with existing numerical wave
propagation codes.f We have shown that the role of free modes in a smoothly
varying media appear not to be as important as for the square profile, requiring only
that the few bound modes be “dressed” or compensated by coincident fiee mode

resonances.
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