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Abstract

Given an efficient numerical method and a supercomputer, differential alge­
bra can be a powerful tool for the study of accelerator physics. “ZLIB”, which 
has a style similar to the numerical library “IMSL”, has been developed to offer 
efficient numerical routines on supercomputers for differential algebra. “ZLIB” 
uses dynamic memory and is both vectorized and parallelized (multi-tasked) be­
sides being scalarly optimized. There are two sub-libraries in “ZLIB”, “TPALIB” 
and “ZPLIB”, with unique data structures for flexibility. The “TPALIB” is more 
flexible in dealing with a different number of variables, and therefore is more suit­
able for use in extracting maps. The “ZPLIB” is more flexible in dealing with a 
different number of orders, and therefore is more suitable for use in analyzing a 
map. Use of “ZLIB” in a scalar computer is also recommended.

* Operated by the Universities Research Association, Inc., for the U.S. Department of Energy 
under Contract No. DE-AC02-89ER40486.



1. INTRODUCTION

With limited computer memory, and limited computational speed, differential 

algebra should be treated as the algebra of truncated power series. The algebra 

of low order truncated power series can be easily accomplished with a simple data 

structure. However, in most cases, high-order truncated power series is desirable. 

Therefore, a special data structure is necessary to optimize both the allocation 

of the computer memory and the numerical speed.

“ZLIB” has been developed for differential algebra, mainly for use on su­

percomputers. The use of “ZLIB” is similar to the use of the “IMSL” library. 

Routines in “ZLIB” are vectorized, multi-tasked and use dynamic memory. There 

are two sub-libraries in “ZLIB”, the “TPALIB” and the “ZPLIB”, with unique 

data structures. The “TPALIB” is more flexible in dealing with a different num­

ber of variables, and therefore is more suitable for use in extracting a one-turn (or 

one-period) map for a storage ring such as the SSC. The “ZPLIB” is more flex­

ible in dealing with a different number of orders, and therefore is more suitable 

for use in analyzing a map. The two sub-libraries can be used simultaneously 

through a structure-translation routine. Although “ZLIB” is developed mainly 

for supercomputers, the authors have simultaneously tried to optimize the rou­

tines for scalar computers and therefore the use of “ZLIB” in scalar computers 

is also recommended.

It is not the authors’ attempt to describe the data structure of the two sub­

libraries, but rather to introduce the use of “ZLIB” to the users. In Section 2, 

the truncated power series is briefly introduced. Readers who are familiar with 

differential algebra should skip this section and go to Section 3, where a brief 

general description is given for the “ZLIB”. Available routines in each of the 

sub-libraries, the “ZPLIB” and the “TPALIB”, are discussed in Section 4 and in 

Section 5, respectively.



2. THE ALGEBRA OF TRUNCATED POWER SERIES

In this section, the authors are not trying to be mathematically rigorous. 

Once a variable, a function, or an operation is mentioned, its existence is assumed.

(a) Symbolic convention

Let z be an n-dimensional vector, i.e. its transpose can be expressed as

rr\

Z — [^1? ^25 • • • ? Zn\ ?

where Zi, for i = 1,..., n, are scalar variables. For example, we can consider

rr\

z = [ZUZ2,...,Z6\ = [x,px,y,py,t,pt}

as the transpose of a vector representing the 6-dimensional phase space coordi­

nates for an accelerator.

Let U be a function of z. This means 17 is a function oi z\, Z2,..., zn. Its 

truncated power series (TPS) expansion up to an integer order is expressed as

u^) = Yl u(^)2k >
k=0

where

and

^ki k2 kn z1 z2 ...zn ,

n

k = k{ , for 0 < A;; < fi ,
i=l

a
= summation over all k’s for A: = 0,1,..., .

k=o
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Note that U(z) is called an n-variable TPS, of order fh The number of 

monomials for an n-variable TPS, of order fl, is given by

(n + ft)! 
n\Q,\

A unit TPS is defined as

n

Az) = X/(k)zk = 1 ,
k=0

i.e.

i(k) = 1 for k = 0 i

and

«(k) = 0 for k > 0 .

Let U(z) be an m-dimensional vector TPS (VTPS), of n variables, and of 0 

order. It is expressed as

Q

U(z) = J^u(k)zk , 
fc=o

(i.e.

by

Q

U,(z) = ^ u,(k)zk, for i — 1,2,..., m) where the transpose of u(k) is given 
k=o

uT(k) = [ui(k), n2(k),..., nm(k)] .

One can consider U(z) as a map in accelerator physics.

A unit n-dimensional, n-variable VTPS of order fi, is defined as

n

!(z) = ) ' i(k)zk = z .
fc=o

3



Its transpose is given by

[z1,z2,... ,zn] .

—* —* —* —* —* —■# —* —+ —a
Numerically, u(k), i(k), u(k), i(k) are used for representing 17(k), /(k), U(k), 
—+ —^
I(k), respectively.

(b) TPS Operations

Addition: W(z) = t/(z) + T(z)

^ u?(k)zk = ^ u(^)*k + 5Z u(k)zk 
k=0 k=0 k=0

n

so

= ^(«(k) + u(k))z1 
k=0

W (k) = w(k) + u(k)

Subtraction: W {z) = U (z) — V (z)

^ u>(k)zk = Y “(k)zk - Y 
k=0 k=0 fc=0

]T(u(k) - i;(k))zk 
k=0

SO

?x)(k) = u(k) — u(k)

4



Multiplication: W(z) = U(z) * V(z)

n / u \ / q \

= (Y1 ) * (S )
j=0 \k=0 / \h=0 J

=x:fEKC)-(j-k)

j=0 \fc=0
So

Q

w(j) = ^u(k) * u(j - k) , 
k=0

with (j — k)i > 0 for i = 1,2,..., n .

Partial derivative: W(z) = (d/dzi)U(z), where z = 1,2,..., or n

n

j=0

d_
dzl

a+i
X] u(k)zk
fc=0

Q+i
= k* * u(k)zk~’:*‘ 

A:=l

ft
= E O' + 0 * u(j + 

]=0 
so

’"(j) = (ji +1) * u(i +1,-),

where li is a unit vector in the ztn dimension.

Partial integration: W(z) = J U(z)dzi, where z = 1,2,..., or n

Q+lx: w(j^j=
J=0

Q

E
k~0

u(k)zk dzi

5



so

fc=0

u(k)z^+^‘ 

+ 1

iu(j) = 0 for ji = 0 ,

^(j) = ( — j * «(j ~ li)for ji > 0 .

Using the above fundamental operations for the TPS, u>(j) can be obtained for 

the following basic TPS operations:

Square: W(z) = U2(z),

Inversion: W(z) = 1/U(z),
Division: W(z) = U(z)/V(z),

Power: W(z) = UP{z), where p is an integer.

Square root: W(z) = sqrt(U(z)),

Exponentiation: W(z) = exp(C/(z)),

Logarithm: W(z) = ln(C/(z)),

Trigonometry: W(z) = sin(I7(z)), or W(z) == cos(17(

Poisson bracket: W(z) = [U(z),V(z)).

(c) VTPS Operations

With the fundamental and the basic TPS operations ready, w(j) can be 

obtained for the following basic VTPS operations.

Concatenation: W(z) = V(U(z)),

where, in the usual case, U is an n-dimensional n-variable VTPS, V and W are 

m-dimensional, n-variable VTPS, m and n may or may not be equal.

6



Inversion:

Given an n-dimensional, n-variable U(z), an n-dimensional, n-variable
—+ .j
U-1(z) can be obtained such that

U-1(U(z)) = U(U-1(z)) = I(z).

All the above basic TPS or VTPS operations have been implemented in “ZLIB”.

(d) Tracking:

z' = U(z)

In conjunction with the implementation of the fundamental and basic TPS 

and VTPS operations, substitution of a numerical vector z into a VTPS (or a 

map) is implemented in the “ZLIB”.

3. THE “ZLIB”

“ZLIB” is a member of the Z-family programs which include (other than 

ZLIB): Zmap (a map extraction program), Ztrack (a vectorized and parallelized 

post-Teapot tracking program), Zremcl and Zremc2 (if - and 2f- dimensional 

relativistic electromagnetic particle simulation programs), and Zpcomp (a macro 

precompiler for fortran). Similar to the routines in the IMSL library which per­

form linear algebra through matrix operations, routines in “ZLIB” perform dif­

ferential algebra through the operations of expanded power series, truncated at 

a pre-set order, to include nonlinear effects. Unlike linear algebra which has a 

domain idealized to be unlimited, differential algebra has a narrow domain where 

the power series converge at a reasonable rate, that is, the scope of differential 

algebra is restricted to problems for which an interest region (domain) can be 

identified to have a reasonable convergent rate for the power series expansion of 

the governing equations. Presently “ZLIB” finds its application in accelerator

/



physics, since particles in an accelerator can only be stable in a region where the 

expanded power series of the nonlinear equations governing the system converge 

with a reasonable rate. Applications of “ZLIB” to other branches of physics, such 

as optics, should be possible.

Since “ZLIB” uses dynamic memory and includes most fundamental oper­

ations for differential algebra, a binary “ZLIB” is generally adequate for users. 

Users are welcome to contact the authors for free implementation of a binary 

ZLIB in their computers. Users are also encouraged to make suggestions and 

comments.

The general convention of the names of the subroutine arguments (the term 

“argument” instead of “parameter” is used to avoid the possible confusion be­

tween parameters in a parameter statement and in a subroutine statement) are:

nv : number of variables, an input integer; nv > 0.

nvw : number of variables actually used in the subprogram, an input inte­

ger; 0 < nvw < nv.

no : order of a TPS or a VTPS, an input integer; no > 0.

no? : such as “nou” or “now”, order of a TPS or a VTPS actually used in 

the subprogram; an input integer; 0 < no? < no.

nm : number of monomials of a TPS, i.e. nm = (nv + no)!/(nv!no!).

nmw : number of monomials of a TPS actually used in the subprogram, an 

input integer; 0 < nmw < nm.

np : number of vectors (or number of particles in accelerator physics), an 

input integer; np > 0.

c : an input scalar (such as c = 5.5).

d : an input scalar.

x : an input vector or vectors (particle phase space coordinates in ac­

celerator physics), usually an array x(nv) or an array x(nx,np).



y : an output vector or vectors (particle phase space coordinates in ac­

celerator physics); usually an array y(nv) or an array y(ny,np). Note 

that the user may (if desired) let “y” share the memory with “x” 

within a subprogram that has both “x” and “y” as its subroutine 

arguments.

u : an input TPS, it is the coefficients of a TPS U(z)\ usually an array 

u(nm).

v : an input TPS, it is the coefficients of a TPS V(z); usually an array 

v(nm).

w : an output TPS, it is the coefficients of a TPS bP(z); usually an array 

w(nm). Note that the user may (if desired) let “w” share the memory 

with either “u” or “v” within a subprogram that has “w” and either 

“u” or “v” or both as its subroutine arguments.

uu : an input VTPS (or a map); usually an array uu(nm * nu), where 

nu is the dimension of the VTPS uu, which is either specified in the 

subroutine parameter or implicitly assumed to be nu = nv.

nu : dimensions of the VTPS uu, an input integer; nu > 0.

vv : an input VTPS, usually an array vv(nm*nw), where nw is the di­

mension of the VTPS vv, which is either specified in the subroutine 

parameter or implicitly assumed to be nw = nv.

ww : an output VTPS, usually an array ww(nm*nw), where nw is the di­

mension of the VTPS ww, which is either specified in the subroutine 

parameter or implicitly assumed to be nw = nv. Note that the user 

may (if desired) let “ww” share the memory with either “uu” or “vv” 

within a subprogram that has “ww” and either “uu” or “vv” or both 

as its subroutine arguments.

nw : dimensions of the VTPS’s vv and/or ww, an input integer; nw > 0.

9



nou : order to be used for the TPS u or the VTPS uu, an input integer; 

0 < nou < no.

nov : order to be used for the TPS v or the VTPS vv, an input integer; 

0 < nov < no.

now : order desired for the TPS w or the VTPS ww, an input integer; 

0 < now < no.

nok : actual order for the TPS w, an input integer; 0 < nok < now.

nd : sets of canonically conjugate variables, an input integer;

0 < nd < nv/2.

npwr : power to be performed for a TPS (such as u ** npwr), an input 

integer; — oo < npwr < oo.

Some of the above subroutine arguments might be commented again upon 

its appearance. Subroutine arguments which are not described above will be 

commented upon when they appear.

4. THE SUB-LIBRARY “ZPLIB”

To use the “ZPLIB” routines, users must obtain the compiled “ZLIB” from 

the authors so that their program can be loaded with the routines in the “ZPLIB”. 

Before any subroutine using the data structure of the “ZPLIB” is called, the user 

should include the following statement (assuming ZLIB 1.0 is used)

“call zpprep(nv,no,nm,npm),”

where “nv’ and “no” are the number of variables and the maximum order 

the user desires; “nm”, is a returned value for the number of monomials, i.e. 

nm= (nv + no)!/(nv!no!), is returned for the user; “npm” is the maximum num­

ber of particles. The user should set a small integer or 0 for npm if tracking is 

not desired. Occasionally, the user may wish to use routines in the sub-library 

“ZPLIB” to perform initialization (reading in a VTPS) and tracking only. In

10



such a case, he may replace the statement “call zpprep(nv,no,nm,npm),” with 

the calling statement “call zptrkp(nv,no,nm,npm),” to save computer memory.

Once the statement, “call zpprep(nv,no,nm,npm),” is executed, all the TPS’s 

(u, v, and w) are assumed to be nv-variable TPS’s of order smaller than or equal 

to “no”, and all the VTPS’s (uu, vv, and ww) are assumed to be nv-variable 

VTPS’s of order “no”, although operations can be performed up to orders that 

are lower than “no”.

The subroutines available in the “ZPLIB” are as follows.

(a) TPS Operation

Initialization:

(1) subroutine zpzro(w,nmw)

(2) subroutine zpconst(c,w,nmw)

(3) subroutine zpcpy(u,w,nmw)

(4) subroutine zpsgn(u,w,nmw)

(5) subroutine zpokl(w,c,iv,nmw

(6) subroutine zppok(w,c,js)

for performing JV(z) = 0

for performing W{z) — c 
if c = 1, W{z) = I(z) = 1

for performing W(z) = U(z)

for performing W(z) = —U(z)

for performing W(z) = c* z-lv

iv: an input positive integer; iv < nv

for performing IV(z) = c * zk 

js: an input nv-dimensional array; 

js(i) = k{ for i = 1,2,..., nv

11



Addition and subtraction:

(7) subroutine zpadd(u,v,w,nmw)

(8) subroutine zpcadd(c,u,w,nmw)

(9) subroutine zpsub(u,v,w,nmw)

(10) subroutine zpsubc(u,c,w,nmw)

(11) subroutine zpcsub(c,u,w,nmw)

for performing W(z) = U(z) + V(z) 

for performing bF(z) = c + U{z) 

for performing W(z) — U(z) — V(z) 

for performing W(z) — U(z) — c 

for performing W(z) = c — U(z)

Multiplication and division with scalars:

(12) subroutine zpcmul(c,u,w,nmw)

(13) subroutine zpdivc(u,c,w,nmw)

(14) subroutine zplin(u,c,v,w,nmw)

(15) subroutine zpblin(d,u,c,v,w,nmw)

for performing W(z) = c* U{z)

for performing W(z) = U(z)/c

for performing W^z) = U(z) + c * V(z)

for performing W(z) = d * U(z) + c * V^z) 

** As an example: “call zpblin(3.3,u,—l.l,v,w,nm)”

Multiplication and division:

(16) subroutine zpmul(u,nou,v,nov,w,now,nok)

for performing W(z) = U(z) * V(z)
(17) subroutine zpdiv(u,nou,v,nov,w,now)

(18) subroutine zpinv(u,nou,w,now)

for performing W(z) = U(z)/V(z)

for performing W(z) = 1/U{z)

12



(19) subroutine zpsq(u,nou,w,now,nok)

for performing W(z) = U(z) * U(z)

(20) subroutine zppwr(u,nou,npwr,w,now)

for performing W{z) = U(z) * * npwr 

** As an example to show that “w” can share memory with “u”, one 

can have a statement such as “call zppwr(u,3,—4,u,5)”

Derivative and Integral:

(21) subroutine zpdrv(u,nou,w,now,iv,nok)

for performing W(z) = (djdz\v)U(z) 

iv (< nv): an input integer.

(22) subroutine zpintg(u,nou,w,now,iv,nok)

for performing W(z) = J U(z)dziv, 

iv (< nv): an input integer.

(23) subroutine zpbrac(u,nou,v,nov,w,now,nok,nd)

for performing W(z) = [17(z), Vr(z)], 

the Poisson bracket of U and V. 

nd: sets of the canonically conjugate variables; nd < nv/2.

Functions:

(24) subroutine zpsin(u,nou,w,now)

(25) subroutine zpcos(u,nou,w,now)

(26) subroutine zpexp(u,nou,w,now)

(27) subroutine zplog(u,nou,w,now)

(28) subroutine zpsqrt(u,nou,w,now)

for performing W(z) = sin(t/(z)) 

for performing W(z) = cos(I7(z)) 

for performing W(z) = exp(t/(z)) 

for performing W(z) = ln([/(z)) 

for performing W(z) = sqrt (U(z))

13



(b) VTPS Operations:

Initialization:

(29) subroutine zpunit(ww,now)

for performing W(z) = I(z) = z

ww : an nv-dimensional, nv-variable VTPS of order “no”, but only up to 

order “now < no” is operated; array ww(nm*nv).

(30) subroutine zpmokl(ww,nw,now,c,iw)

for performing Wlw(z) = cziw

ww : an nw-dimensional, nv-variable VTPS of order “no”, but only up to 

order “now < no” is operated; array ww(nm*nw).

Note: Only the iwth dimension is initiated.

(31) subroutine zpmpok(ww,nw,now,c,js,iw)

for performing Wiw(z) = czk 

js: an input nv-dimensional array; 

js(i) = fc, for ? = 1,2,..., nv

ww : an nw-dimensional, nv-variable VTPS of order “no”, but only up to 

order “now < no” is operated; array ww(nm*nw).

Note: Only the iw1" dimension is initiated.

(32) subroutine rdmaptpa(ww,nwb,nw,now,nomap,imap)

for ini tializing W(z) = Vw(k)zk
k=0

Initialize an nw-dimensional VTPS of order “no” from its nwbtk 

dimension to nwtk dimension up to order “now” by reading a 

“TPALIB” structured VTPS (of order “nomap”) file (specified by 

the number “imap”) where data are stored from the nwbth dimen­

sion to the nwth dimension.
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(33) subroutine rdmapzp(ww,nw,now,imap)

for initializing
n

W(z) = y^w(k)z^ 
it=0

Initialize an nw-dimensional VTPS of order “no” up to a desired 

dimension “nw” and a desired order “now” by reading a “ZPLIB” 

structured VTPS file (specified by the number “imap”) where data 

are stored to any dimension and to any order.

Writing out the VTPS:

(34) subroutine wrmapzp(uu,nub,nu,nou,imap)
Q

output the coefficients u(k) in a file for U(z) =
k=0

Write out an nu-dimensional VTPS, uu, of order “no”, from its nubth 

dimension to nuth dimension up to order “nou” in “ZPLIB” form to 

a file (specified by the number “imap”).

(35) subroutine wrmapzpl(uu,nub,nu,nou,imap)

output the coefficients u(k) in a
n

file for U(z) = ^u(k)zg
Jt=l

Write out an nu-dimensional VTPS (a map), uu, of order “no” from 

its nubth dimension to nuth dimension up to order “nou” in “ZPLIB” 

form to a file (specified by the number “imap”). Note that the zeroth 

order is assumed to be 0 and is not written in the file.

Concatenation of VTPS’s:

(36) subroutine zpcnct(uu,nou,vv,nov,ww,now,nw)

for performing W(z) = V(U(z))

uu : an input nv-dimensional VTPS of order no; uu represent U(z) 

vv : an input nw-dimensional VTPS of order no; vv represent V(z) 

ww : an output nw-dimensional VTPS of order no; ww represent W(z)
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nou : order to be used for the VTPS uu; nou < no 

nov : order to be used for the VTPS vv; nov < no 

now : order desired for the VTPS ww; now < no

* * * An example: “call zpcnct(uu,14,uu,14,uu,15,4)”

Inversion of a VTPS:

(37) subroutine zpmapinv(uu,nou,ww,now)

for performing W(z) = U_1(z)

uu : an input nv-dimensional VTPS of order no; uu represent U(z) 

ww : an output nv-dimensional VTPS of order no; ww represent 

W(z) = U-1(z)

nou : an input; order to be used for the VTPS uu; nou < no

now : an input; order desired for the VTPS ww; now < no; usually now 

= nou.

(c) Tracking

Single-particle tracking:

(38) subroutine zpmtrk(uu,nub,nu,nou,x,y)

for performing y = U(x)

uu : an input nu-dimensional, nv-variable VTPS of order no, although 

only up to order nou (< no) is operated; uu represent U(x).

x : an input vector of dimension nv.

y : an output vector of dimension nu.

actual operations are for yt — uu8(x) for i =nub, nub + 1, ..., nu.
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Multi-particle tracking:

(39) subroutine zpmtrks(uu,nub,nu,nou,np,x,nx,y,ny)

for performing yp = U(xp), p = 1,2,..., np

uu : an input nu-dimensional, nv-variable VTPS of order no, although 

only up to order nou (< no) is operated; uu represent U(x).

x : array x(nx,np) where nx > nv, an input; users should consider it as 

np particles, each with nx-dimensional phase-space coordinates.

y : array y(nx,np) where ny > nv, an output; users should consider it 

as np particles, each with ny-dimensional phase-space coordinates.

actual operations are for y? = uui(xp)

for i = nub, nub + 1, ..., nu, and p — 1,2,..., np.

(40) subroutine zpmtrkq(uu,nub,nu,nou,np,x,nx,y,ny)

for performing yp = U(xp), p = 1,2,..., np

uu : an input nu-dimensional, nv-variable VTPS of order no, although 

only up to order nou (< no) is operated; uu represent U(x).

x : array x(nx,np) where nx > nv, an input; users should consider it as 

np particles, each with nx-dimensional phase-space coordinates.

y : array y(nx,np) where ny > nv, an output; users should consider it 

as np particles, each with ny-dimensional phase-space coordinates.

actual operations are for y1- = uui(xp)

for i = nub, nub +1, ..., nu, and p = 1,2,..., np.

** Note that the internal structures in “zpmtrks” and in “zpmtrkq” are 

different. Vectorization is over particles in “zpmtrks” while vector- 

ization is within a particle and parallel (multi-tasking) computing 

can be chosen over particles in “zpmtrkq.”
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(41) subroutine zpmtrkw(uu,nub,nu,nou,np,npm,x,y)

for performing yp = U(xp), p = 1,2,..., np

uu : an input nu-dimensional, nv-variable VTPS of order no, although 

only up to order nou (< no) is operated; uu represent U(x).

x : array x(npm,nv) where npm > np, an input; users should consider it 

as npm particles, each with nv-dimensional phase-space coordinates.

y : array y(npm,nu) where npm > np, an output; users should consider 

it as npm particles, each with nu-dimensional phase-space coordi­

nates.

actual operations are for y? — uiii('xp)

for i = nub, nub + 1, ..., nu, and p = 1,2,..., np.

(42) subroutine zpmtrkp(uu,nub,nu,nou,np,npm,x,y)

for performing yp = U(xp), p — 1,2,..., np

uu : an input nu-dimensional, nv-variable VTPS of order no, although
—* _^

only up to order nou (< no) is operated; uu represent U(x).

x : array x(npm,nv) where npm > np, an input; users should consider it 

as npm particles, each with nv-dimensional phase-space coordinates.

y : array y(npm,nu) where npm > np, an output; users should consider 

it as npm particles, each with nu-dimensional phase-space coordi­

nates.

actual operations are for = uuI(xp)

for i = nub, nub + 1, ..., nu, and p = 1,2,..., np.

** Note that the internal structures in “zpmtrkw” and in “zpmtrkp” are 

different. Vectorization is over particles in “zpmtrkw,” while vector­

ization is within a particle and parallel (multi-tasking) computing 

can be chosen over particles in “zpmtrkp.”
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Scaling:

(43) subroutine zpmscle(uu,nw,now,ww,s)
- P

for performing W(z') = ^^w(k)z = U(z) = ^^u(k)z^,

where Zj = zj * s(i) for z = 1,2,..nv

uu,ww : nw-dimensional, nv-variable VTPS’s of order “no”, but only up to
—*

order “now” (now<no) is scaled; uu represents U(z), ww represents 

W(z).

s : an input nv-dimensional vector.

(d) Structure translation between “ZPLIB” and “TPALIB”

(44) subroutine zptpa(uu,nw,now,ww,iflag)

Translate an nw-dimensional, nv-variable VTPS of order “no” be­

tween its “ZPLIB” structure and its “TPALIB” structure.

now : desired order to be performed; now<no.

iflag : an input integer;

iflag = 1 : translate the VTPS from its “ZPLIB” structure, uu, to its “TPALIB” 

structure, ww;

iflag ^ 1 : translate the VTPS from its “TPALIB” structure, uu, to its 

“ZPLIB” structure, ww; setting “iflag = 0” would be good.

5. THE SUB-LIBRARY “TPALIB”

Similar to the use of the sub-library “ZPLIB”, to use the “TPALIB”, the 

user has to obtain the compiled “ZLIB” and make a calling statement “call tpa- 

prp(nv,no,nm,npm)” before any subroutine using the data structure of TPALIB 

is called. Note that slightly different from the ZPLIB, “no” is the order (not 

the maximum order) while “nv” is the maximum number of variables the user
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desires. The same as in the ZPLIB, “nm”, is a returned value for the number of 

monomials, i.e. nm = (nv + no)!/(nv!no!), is returned for the user; “npm” is the 

maximum number of particles desired for tracking.

Once the statement “call tpaprp(nv,no,nm,npm)” is executed, all the TPS’s 

(u, v, and w) and the VTPS (uu,vv, and ww) are assumed to be order of “no” 

(although operations may be performed up to orders lower than “no”), but not 

necessarily to be of nv variables. Usually they are nvw-variable TPS’s or VTPS’s, 

where nvw (smaller or equal to nv) is specified as one of the subroutine arguments.

The routines available in the “TPALIB” are as follows.

(a) TPS Operations

Initialization:

(1) subroutine tpazro(w,nmw)

for performing W(z) = 0

(2) subroutine tpaconst(c,w,nmw)

for performing W(z) = c 
if c = 1, W{z) = I(z) = 1

(3) subroutine tpacpy(u,w,nmw)

for performing W(z) = U(z)

(4) subroutine tpasgn(u,w,nmw)

for performing W(z) = —U(z)
(5) subroutine tpapokl(w,c,iv,nmw)

for performing W(z) = c * zjy

iv: an input positive integer; iv < nv

Addition and subtraction:

(6) subroutine tpaadd(u,v,w,nmw)

for performing W(z) = U(z) + V(z)
(7) subroutine tpacadd(c,u,w,nmw)

for performing PU(z) = c + U(z)
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(8) subroutine tpasub(u,v,w,nmw)

for performing W(z) = U(z) — V(z)
(9) subroutine tpasubc(u,c,w,nmw)

for performing W(z) = U(z) — c

(10) subroutine tpacsub(c,u,w,nmw)

for performing W(z) = c — U(z)

Multiplication and division with scalars: 

(11) subroutine tpacmul(c,u,w,nmw)

for performing W(z) = c * U{z)
(12) subroutine tpadivc(u,c,w,nmw)

for performing W(z) = U(z)/c
(13) subroutine tpalin(u,c,v,w,nmw)

for performing W(z) = U(z) + c * V(z)
(14) subroutine tpablin(d,u,c,v,w,nmw)

for performing

W{z) = d * [/(z) + c * y(z)

Multiplication and division:

(15) subroutine tpamul(u,v,w,nvw)

for performing W(z) = U(z) * V(z)
u,v,w: “nvw”-variable TPS’s of order “no”; nvw < nv.

(16) subroutine tpamulo(u,v,w,now,nvw)

for performing IT(z) = f7(z) * V(z) 
u,v,w: “nvw”-variable TPS’s of order “no”; nvw < nv. 

now: order involved in the operation of the TPS’s U,V,W; now < no.

(17) subroutine tpadiv(u,v,w,nvw)

for performing W{z) = U(z)/V(z)
u,v,w: “nvw”-variable TPS’s of order “no”; nvw < nv
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(18) subroutine tpainv(u,w,nvw)

for performing W(z) = 1/U(z) 
u,w: “nvw”-variable TPS’s of order “no”; nvw < nv.

(19) subroutine tpasq(u,w,nvw)

for performing W(z) = U(z) * U(z) 
u,w: “nvw”-variable TPS’s of order “no”; nvw < nv.

(20) subroutine tpapwr(u,npwr,w,nvw)

for performing W(z) = U(z) * * npwr 

u,w: nvw-variable TPS’s of order “no”; nvw < nv. 

npwr: an input integer for the power to be performed for the TPS U.

Derivative and Integral:

(21) subroutine tpadrv(u,w,nvw,iv)

for performing W(z) = (d/dz[y)U(z) 
iv (< nvw): an input integer. 

u,w: “nvw”-variable TPS’s of order “no”; nvw < nv.

(22) subroutine tpabrac(u,v,w,nvw,nd)

for performing W(z) — {U(z),V(z)}, 
the poison bracket of U and V. 

u,v,w: “nvw”-variable TPS’s of order “no”; nvw < nv. 

nd: sets of canonically conjugate variables; nd < nvw/2.

Functions:

(23) subroutine tpasin(u,w,nvw)

(24) subroutine tpacos(u,w,nvw)

for performing W(z) = sin(I7(z)) 

for performing W(z) = cos(I7(z))
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(25) subroutine tpaexp(u,w,nvw)

for performing W(z) = exp(C/(z))

(26) subroutine tpalog(u,w,nvw)

(27) subroutine tpasqrt(u,w,nvw)

for performing W(z) = ln(?7(z))

for performing W{z) = sqrt (U(z)) 
u,w: nvw-variable TPS’s of order “no”; nvw < nv.

(b) VTPS Operations

Initialization:

(28) subroutine tpaunit(ww,nvw)

for performing W(z) = /(z) = z 

ww: nvw-dimensional, nvw-variable VTPS of order “no”.

(29) subroutine rdtpamap(ww,nwb,nw,nvw,imap)
n

for initializing W(z) = ^^w(k)z^
fc=o

Initialize an nw-dimensional, nvw-variable VTPS from its nwbth 

dimension to nwth dimension by reading a “TPALIB” structured 

VTPS (order of “no”) file (specified by the number “imap”) where 

data are stored from the nwbth dimension to the nwth dimension.

Writing out a VTPS:

(30) subroutine wrtpamap(uu,nub,nu,nvw,imap)
n

output the coefficients u(k) in a file for U(z) = ]Ta(k)2k
fc=0

Write out an nu-dimensional, nvw-variable VTPS from its nubth 

dimension to nuth dimension up to order “no” in “TPALIB” form to 

a file (specified by the number “imap”).
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Concatenation of VTPS’s:

(31) subroutine tpacncat(uu,vv,ww,nvw)

for performing W(z) = V(U(z))

uu,vv,ww : nvw-dimensional, nvw-variable VTPS’s of order no; uu represents 

U(z), vv represents V(z), ww represents W(z).

(00) subroutine tpacnct(uu,vv,nov,ww,nvw)

for performing W(z) = V(U(z))

uu, vv,ww : nvw-dimensional, nvw-variable VTPS’s of order no; uu represents 

U(z), vv represents V(z), ww represents W(z).

nov : order of vv actually used in the operation; nov < no.

(00) subroutine tpacnctw(uu,vv,ww,now,nvw)

for performing W(z) = V(U(z))

uu, vv,ww : nvw-dimensional, nvw-variable VTPS’s of order no; uu represents 

U(z), vv represents V(z), ww represents W(z).

now : order of ww actually desired; now < no.

(32) subroutine tpacncto(uu,vv,nov,ww,now,nvw)

for performing W(z) = V(U(z))

uu,vv,ww : nvw-dimensional, nvw-variable VTPS’s of order no; uu represents 

U(z), vv represents V(z), ww represents W(z).

nov : order of vv actually used in the operation; nov < no.

now : order of ww actually desired; now < no.

Inversion of a VTPS:

(33) subroutine tpaminv(uu,ww,now,nvw)

for performing W(z) = U_1(z)

uu,ww : nvw-dimensional, nvw-variable VTPS’s of order no; uu represents 

U(z), ww represents W(z).
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now : order of ww actually desired; now < no.

(c) Tracking

Single-particle tracking:

(34) subroutine tpamtrk(uu,nu,nvw,nou,x,y)

for performing y = U(x)

uu : an input nu-dimensional, nvw-variable VTPS of order no, although 

only up to order nou (< no) is operated; uu represent U(x).

x : an input vector of dimension nvw.

y : an output vector of dimension nu.

actual operations are for yl = uui(x) for i = 1,2,..., nu.

(35) subroutine tpamtrko(uu,nu,nvw,x,y)

for performing y — U(x)

uu : an input nu-dimensional, nvw-variable VTPS of order no and up to 

order no is operated; uu represent U(x).

x : an input vector of dimension nvw.

y : an output vector of dimension nu.

actual operations are for yt = uui(x) for i = 1, 2,..., nu.

** Note that subroutine tpamtrko is faster than subroutine tpamtrk. 

However tpamtrko cannot be used for tracking up to an order nou 

smaller than no.

Multi-particle tracking:

(36) subroutine tpamtrks(uu,nu,nvw,nou,np,x,nx,y,ny)

for performing yp = U(x?)), p = 1,2,..., np.

uu : an input nu-dimensional, nvw-variable VTPS of order no, although 

only up to order nou (< no) is operated; uu represent U(x).

25



x : array x(nx,np) where nx > nv; users should consider it as np input 

nx-dimensional vectors.

y : array x(nx,np) where nx > nv; users should consider it as np output 

ny-dimensional vectors.

actual operations are for yf = uui(5lp)

for z = 1,2,..., nu, and p — 1,2,..., np.

Scaling:

(37) subroutine tpamscle(uu,nw,nvw,ww,s)

for performing W^z7) = w(k)z ^ = U(z) = u(k)z^ ,
k=0 fc—0

where zt = z'l * s(i) for z = 1,2,..., nvw 
uu,ww: nw-dimensional, nvw-variable VTPS’s of order no; uu represents 

U(z), ww represents W(z).

s : an input nvw-dimensional vector.

6. SUMMARY AND SUGGESTION

The fundamental and basic operations for the algebra of truncated power se­

ries (TPS) have been numerically programmed and gathered in a library entitled 

“ZLIB”. There are two sub-libraries in “ZLIB”, the “ZPLIB” and the “TPALIB”, 

with different data structures to provide more flexibility in dealing with a dif­

ferent number of variables and orders simultaneously. The style of the library 

“ZLIB”, being similar to the library “IMSL”, may offer the advantage of famil­

iarity to some users. Sample programs using “ZLIB” are available, which could 

help beginning users. Occasionally, users may need specific operations that can­

not be performed with the available routines described in Section 4 and Section 5. 

Under such a circumstance, users are welcome to call the authors for help.

Beginning users are advised to concentrate on one of the sub-libraries. An 

NERSC (MFE) Cray computer user who wishes to use routines in the “ZPLIB”
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of “ZLIB 1.0” should follow the steps below or its equivalence (assuming the 

user’s file name is “map”).

Step 1 : Obtaining “ZLIB” (use one of the following commands)

cfs get zlib:/yan/zlibl.O/zlib for Cray-2

cfs get zlib:/yan/zlibl.O/zlibd for Cray-2 double precision

cfs get zlib:/yan/zlibl.O/zlibe for Cray-XMP

cfs get zlib:/yan/zlibl.O/zlibed for Cray-XMP double precision

Step 2 : cft77 i = map,b = bmap, ...

Step 3 : Idr b = bmap,lib = (zlib,imsl,...), x = xmap

An example of using the routines in the sub-library “TPALIB” is the pro­

gram “Zmap” which was programmed to extract Taylor maps in a beam line. 

In particular, “Zmap” can extract one-turn maps from a post-Teapot tracking 

program “Ztrack”.

An example of using the routines in the sub-library “ZPLIB” is the sub­

program “OPSMAP” which one (YY) of the authors and his colleagues Ken 

Kauffman and David Ritson programmed to extract one-turn maps in a tracking 

program “SSCTRK”.

“ZLIB 2.0”, which includes routines for the performance of Lie algebraic 

treatment of beam dynamics such as Dragt-Finn factorization (subroutine zp- 

dragt and zpfinn), nonlinear norm form (subroutine zpforest), etc. will be re­

leased once it is well tested.
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APPENDIX A

MEMORY PREPARATION SUBPROGRAMS FOR “ZLIB 1.1”
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Ocasionally, users would like to prepare ZLIB working memory themselves 

just as they prepare working memories for some of the “IMSL” routines. In 

that case, “ZLIB 1.1” instead of ”ZLIB 1.0” should be used. In order to reduce 

errors that might occur due to inappropriate preparation of working memories, 

the author has written suitable working memory preparation subprograms for 

the “ZLIB 1.1”. To use the routines in “ZLIB”, users must load their programs 

with “ZLIB” just as the “IMSL” library is loaded when “IMSL” routines are 

used. Users must include at least one subprogram allocating the working memory 

needed for “ZLIB 1.1” in their program, and must assign suitable integers for 

four parameters in the parameter statement, of the working memory preparation 

subprogram(s). The four parameters are:

“nvm”: the maximum number of variables.

“nom”: the maximum order.

“nmm”: the maximum number of monomials;

nmm = (nvm + nom)!/(nvm!nom!).

“npm”: the maximum number of particles.

A user program must have a statement that calls the working memory prepara­

tion subprogram(s) before the corresponding routines in “ZLIB” are called. For 

example, to use “ZPLIB” of “ZLIB 1.1”, the following statement should be in­

cluded in the user’s program at the very beginning of the executable statements.

“call zpprep(nv,no,nm,np),”

where “nv”, “no”, and “np” are the number of variables, the order, and the 

number of particles, which should always be equal to or smaller than “nvm”, 

“nom”, and “npm” respectively; “nm”, is a returned value for the number of 

monomials, i.e. nm = (nv + no)!/(nv!no!), is returned for the user. At this stage, 

if the user makes a mistake in assigning the integer numbers for “nvm”, “nom”, or 

“nmm”, “ZLIB” will provide messages that will help the user make corrections.

The parameter “nkpm” is calculated in the parameter statement that is guar­

anteed to be large enough for the corresponding working memories. However, if
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both “nvm” and “nom” are large, “nkpm” may become unnecessarily too large. 

Under such a circumstance, a warning message will be provided but the execution 

continues. To save computer memory, the user may choose to stop the execution 

to assign a number suggested by the message for “nkpm” in the parameter state­

ment directly. The user can also look up the table given in Appendix B where 

“nmm” and “nkpm” are given for given sets of “nvm” and “nom” to assign suit­

able integer numbers for “nmm” and “nkpm”. For a beginning user, try not to 

be bothered by the warning message.

The following subprogram “zpprep” prepares the working memories for rou­

tines in the sub-library “ZPLIB” of “ZLIB 1.1”.

subroutine zpprep(nv,no,nm,np) 
implicit double precision(a-h,o-z) 
parameter (nvm = 6,nom = 9,nmm = 5005, npm = 6,

+ nol = nom + 1,
+ nov = (nom + 2) * nol * nvm,
+ nvno = nom * nvm,
+ njv = (nvm + 1) * nmm,
+ nikpm = nol * (nmm - 1) ,
+ navgm = nom/nvm, nrm = nom - navgm * nvm,
+ nkpmx = (navgm + 2)**nrm * (navgm + 1) ** (nvm - nrm) ,
+ nkpm = nmm * nkpmx,
+ n j dm = nvm * nmm * nom/ (nvm + nom) ,
+ nvmsq = nvm * nvm,
+ nmmnp = max(nmm,nvm * npm) ,
+ nmw = nmm * nvm + 6 ,
+ nmwnp = max(nmw,nmm * npm) 
common /strcl/ nmo(nol) 
common /strc2/ nmob(nol) 
common /strc3/ nmov(nov) 
common /strc4/ jv(njv) 
common /strc5/ js(nvm) 
common /strc6/ nmvo(nvno) 
common /strc?/ ivp(nmm) 
common /strcS/ jpp(nmm) 
common /zptps/ jtpa(nmm) 
common /mulpl/ ikp(nikpm)



common /mulbl/ ikb(nikpm) 
common /mulp2/ kp(nkpm) 
common /mulp3/ Ip(nkpm) 
common /drvpl/ jd(njdm) 
common /conpl/ jpc(nmm) 
common /conp2/ ivpc(nmm) 
common /conp3/ ivppc(nmm) 
common /conp4/ mp(nov) 
common /conloc/ noc(nvm) 
common /rdtpal/ jjp(nmm) 
common /mulwk/ wkmul(nmmnp) 
common /divwk/ wkdiv(nmw) 
common /conwk/ work(nmwnp) 
common /mtrxl/ aa(nvmsq) 
common /mtrx2/ bb(nvmsq) 
common /ccsqrt/ csqrt(nom) 
common /ccinvs/ cinv(nom) 
common /ccclns/ cln(nom) 
common /ccexps/ cexp(nom) 
common /csccoe/ csc(nom)
call zpprp(nv,no,nmm,nol,nov,njvjnikpmjnmWjnkpm.njdm.nm)
return
end

The following subprogram “tpaprp” prepares the working memories for rou­

tines in the sub-library “TPALIB” of’’ZLIB 1.1”.

subroutine tpaprp(nv,no,nm,np) 
implicit double precision(a-h,o-z) 
parameter (nvm = 6 ,nom = 9 ,nmm = 5005 ,
+ njpm = nmm * nvm,
+ navgm = nom/nvm, nrm = nom - navgm * nvm,
+ nkpm = nmm * (navgm + 2)**nrm * (navgm +1)** (nvm - nrm) ,
+ nmw = nmm * nvm + 6)
common /pmull/ nklp(nmm) 
common /bmull/ nklpb(nmm) 
common /pmul2/ kp(nkpm) 
common /pmul3/ Ip(nkpm) 
common /pmul4/ iop(njpm)
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common /pdrvl/ jd(njpm)
common /pdrv2/ jp(njpm)
common /pdrvS/ jo(njpm)
common /mulwk/ wkmul(nmm)
common /divwk/ wkdiv(nmw)
common /conwk/ work(nmw)
call tpa626(nv,no,nmm,nmw,nkpm,nj pm,nm)
return
end

Occasionally, the user may wish to use routines in the sub-library “ZPLIB” 

to perform initialization (reading in a VTPS) and tracking only. In such a case, 

he may choose to use the following working memory preparation subprogram 

“zptrkp” to save computer memory.

subroutine zptrkp(nv,no,nm,np) 
implicit double precision(a-h,o-z) 
parameter (nvm = 6,nom = 9,nmm = 5005, npm=l,
+ nol = nom + 1,
+ nov = (nom + 2) * nol * nvm,
+ nvno = nom * nvm,
+ nj v = (nvm + 1) * nmm,
+ nvp = nvm * npm,
+ nmw = nmm * npm)
common /strcl/ nmo(nol) 
common /strc2/ nmob(nol) 
common /strc3/ nmov(nov) 
common /strc4/ jv(njv) 
common /strc5/ js(nvm) 
common /strc6/ nmvo(nvno) 
common /strc?/ ivp(nmm) 
common /strcS/ jpp(nmm) 
common /rdtpal/ jjp(nmm) 
common /mulwk/ wkmul(nvp) 
common /conwk/ work(nmw)
call trkprp(nv,no,np,nmm,npm,no1,nov,njv,nvp,nmw,nm)
return
end
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APPENDIX B

PARAMETERS FOR THE PREPARATION 
OF “ZLIB” WORKING MEMORY
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“ZLIB” WORKING MEMORY PARAMETERS

nvm nom nmm nkpm nvm nom nmm nkpm nvmi 0 1 11 21 4 1 5 9 210 2 66 231 4 2 15 45 210 3 286 1771 4 3 35 165 210 4 1001 10626 4 4 70 495 210 5 3003 53130 4 5 126 1287 2
10 6 8008 230230 4 6 210 3003 210 7 19448 888030 4 7 330 6435 210 8 43758 3103105 4 8 495 12870 2
1" 9 92378 10015005 4 9 715 24310 210 10 184756 30045015 4 10 1001 43758 210 11 352716 84672315 4 11 1365 75582 2Q 1 10 19 4 12 1820 125970 29 /. 55 190 4 13 2380 203490 2Q 3 220 1330 4 14 3060 319770 29 4 715 7315 4 15 3876 490314 2

Q 5 2002 33649 4 16 4845 735471 2
Q (■ 5005 134596 4 17 5985 1081575 29 7 11440 480700 4 18 7315 1562275 29 8 24310 1562275 4 19 8855 2220075 2
9 9 48620 4686825 4 20 10626 3108105 2
Q 10 92378 13123110 4 21 12650 4292145 29 11 167960 34597290 4 22 14950 5852925 29 12 293930 86493225 4 23 17550 7888725 28 1 9 17 4 24 20475 10518300 28 2 45 153 4 25 23751 13884156 2o 3 165 969 4 26 27405 18156204 2
8 4 495 484 5 4 27 31465 23535820 2
C 5 1287 20349 4 28 35960 30260340 28 6 3003 74613 4 29 40920 38608020 28 7 6435 245157 4 30 46376 48903492 2
a e 12870 735471 3 1 4 7 28 9 24310 2042975 3 2 10 28 28 10 43758 5311735 3 3 20 84 28 11 75582 13037895 3 4 35 210 28 12 125970 30421755 3 5 56 462 2o 13 203490 67863915 3 6 84 924 27 1 8 15 3 7 120 1716 27 2 36 120 3 8 165 3003 27 3 120 680 3 q 220 5005 27 4 330 3060 3 10 286 8008 27 c 792 11628 3 11 364 12376 27 6 1716 38760 3 12 455 18564 27 7 3432 116280 3 13 560 27132 27 8 6435 319770 3 14 680 38760 27 9 11440 817190 3 15 316 54264 27 10 19448 1961256 3 16 969 74613 27 11 31824 4457400 3 17 1140 100947 27 12 50388 9657700 3 18 1330 134596 27 13 77520 20058300 3 19 1540 177100 27 14 116280 40116600 3 20 1771 230230 27 15 170544 77558760 3 21 2024 296010 26 1 7 13 3 22 2300 376740 26 2 28 91 3 23 2600 475020 26 3 84 455 3 24 2925 593775 26 4 210 1820 3 25 3276 736281 26 5 462 6188 3 26 3654 906192 26 6 924 18564 3 27 4060 1107568 26 7 1716 50388 3 28 4495 1344904 26 8 3003 125970 3 29 4960 1623160 26 9 5005 293930 3 30 5456 1947792 26 10 8008 646646 3 31 5984 2324784 26 11 12376 1352078 3 32 6545 2760681 26 12 18564 2704156 3 33 7140 3262623 26 13 27132 5200300 3 34 7770 3838380 26 14 38760 9657700 3 35 8436 4496388 26 15 54264 17383860 3 36 9139 5245786 26 16 74613 30421755 3 37 9880 6096454 26 17 100947 51895935 3 38 10660 7059052 26 18 134596 86493225 3 39 11480 8145060 25 1 6 11 3 40 12341 9366819 25 2 21 66 3 41 13244 10737573 25 3 56 286 3 42 14190 12271512 25 4 126 1001 3 43 15180 13983816 25 5 252 3003 3 44 16215 15890700 25 6 462 8008 3 45 17296 18009460 25 7 792 19448 3 46 18424 20358520 25 8 1287 43758 3 47 19600 22957480 25 q 2002 92378 3 48 20825 25827165 25 10 3003 184756 3 49 22100 28989675 25 11 4368 352716 3 50 23426 32468436 25 12 6188 646646 3 51 24804 36288252 25 1? 8568 1144066 3 52 26235 40475358 25 14 11628 1961256 3 53 27720 45057474 25 15 15504 3268760 3 54 29260 50063860 25 16 20349 5311735 3 55 3085c 55525372 25 17 26334 8436285 3 56 32509 61474519 25 18 33649 13123110 3 57 34220 67945521 25 19 42504 20030010 3 58 35990 74974368 25 2 r 53130 30045015 3 59 3782C 82598880 25 21 65780 44352165 3 60 3 9711 90858768 2

B-

nmm nkpm nvm non nmm nkpm nvm nom nmm nkpm3 5 1 1 2 3 1 91 92 42786 15 1 2 3 6 1 92 93 437110 35 1 3 4 10 1 93 94 446515 70 1 4 5 15 1 94 95 456021 126 1 5 6 21 1 95 96 465628 210 1 6 7 28 1 96 97 475336 330 1 7 8 36 1 97 98 485145 495 1 8 9 45 1 98 99 495055 715 1 9 10 55 i
66 1001 1 10 11 6678 1365 1 11 12 * 78
91 1820 1 12 13 91 ,

105 2380 1 13 14 105 ;
120 3060 1 14 15 120 i 1U* 1UD136 3876 1 15 16 >136 1 105 106 5671153 4845 1 16 17 153 1 106 107 5778171 5985 1 17 18 171 1 107 108 5886190 7315 1 18 19 190 1 108 109 5995210 8855 1 19 20 210 1 109 110 6105231 10626 1 20 21 231 1 110 111 6216253 12650 1 21 22 253 1 111 112 6323276 14950 1 22 23 276 1 112 113 6441300 17550 1 23 24 300 1 113 114 6555325 20475 1 24 25 325 1 114 115 6670351 23751 1 25 26 351 1 115 116 6786378 27405 1 26 27 378 1 116 117 6903406 31465 1 27 28 406 1 117 lie 7021435 35960 1 28 29 435 1 118 119 7140465 40920 1 29 30 465 1 119 120 7260496 46376 1 30 31 496 1 120 121 7381528 52360 1 31 32 528 1 121 122 7503561 58905 1 32 33 561 1 122 123 7626595 66045 1 33 34 595 1 123 124 7750630 73815 1 34 35 630 1 124 125 7875666 82251 1 35 36 666 1 125 126 8001703 91390 1 36 37 703 1 126 127 8128741 101270 1 37 38 741 1 127 128 8 25f780 111930 1 38 39 780 1 128 129 8385820 123410 1 39 40 820 1 129 130 8515861 135751 1 40 41 861 1 130 131 8646903 148995 1 41 42 903 1 131 132 8778946 163185 1 42 43 946 1 132 133 8911990 178365 1 43 44 990 1 133 134 90451035 194580 1 44 45 1035 1 134 135 91801081 211876 1 45 46 1081 1 135 136 93161128 230300 1 46 47 1128 1 136 137 94531176 249900 1 47 48 1176 1 137 138 95911225 270725 1 48 49 1225 1 138 139 97301275 292825 1 49 50 1275 1 139 140 98701326 316251 1 50 51 1326 1 140 141 100111378 341055 1 51 52 1378 1 141 142 101531431 367290 1 52 53 1431 1 142 143 102961485 395010 1 53 54 1485 1 143 144 104401540 424270 1 54 55 1540 1 144 145 105851596 455126 1 55 56 1596 1 145 146 107311653 487635 1 56 57 1653 1 146 147 108781711 521855 1 57 58 1711 1 147 148 110261770 557845 1 58 59 1770 1 148 149 111751830 595665 1 59 60 1830 1 149 150 113251891 635376 1 60 61 1891 1 150 151 114761953 677040 1 61 62 1953 1 151 152 116282016 720720 1 62 63 2016 1 152 153 117812080 766480 1 63 64 2080 1 153 154 119352145 814385 1 64 65 2145 1 154 155 120902211 864501 1 65 66 2211 1 155 156 122462278 916895 1 66 67 2278 1 156 157 124032346 971635 1 67 68 2346 1 157 158 125612415 1028790 1 68 69 2415 1 158 159 127202485 1088430 1 69 70 2485 1 159 160 128802556 1150626 1 70 71 2556 1 160 161 130412628 1215450 1 71 72 2628 1 161 162 132032701 1282975 1 72 73 2701 1 162 163 133662775 1353275 1 73 74 2775 1 163 164 135302850 1426425 1 74 75 2850 1 164 165 136952926 1502501 1 75 76 2926 1 165 166 138613003 1581580 1 76 77 3003 1 166 167 140283081 1663740 1 77 78 3081 1 167 168 141963160 1749060 1 78 79 3160 1 168 169 143653240 1837620 1 79 80 3240 1 169 170 145353321 1929501 1 80 81 3321 1 170 171 147063403 2024785 1 81 82 3403 1 171 172* 148783486 2123555 1 82 83 3486 1 172 173 150513570 2225895 1 83 84 3570 1 173 174 152253655 2331890 1 84 85 3655 1 174 175 154003741 2441626 1 85 86 3741 1 175 176 155763828 •2555190 1 86 87 3828 1 176 177 157533916 2672670 1 87 88 3916 1 177 176 159314005 2794155 1 88 89 4005 1 178 179 161104095 2919735 1 89 90 4095 1 179 180 162904186 3049501 1 90 91 4186 1 180 181 16471
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