U sscr-300
Superconducting Super Collider Laboratory

VA4S B < K"

"ZLIB"
A Numerical Library for
Differential Algebra
(A User's Guide for Version 1.0)

Y. Yan and Chiung-Ying Yan

December 1990

STRiBUTIQOM OF THIjb OQCUMBN
tNT iS UN

DISCLAIMER

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image
products. Images are produced from the best available
original document.

DE91 012552

0
H

0d

=1 I

& ATA

0)
=

)

I

‘Joaray) AousSe Aue I0 JUSUIUISAOD sojelS payun)

oY) Jo osoyl 109[Ja1 10 21els A[LEssadou jou op ureroy possaidxo sioyine Jo suorurdo pue

smotA U] Jooray) Aoudde Aue IO JUSWIUIDAOD soje1g pouun oyl Aq SuloAEj 10 ‘UonEpUST

w0001 UAWASIOPUD s} A[dWI 10 SIMISUOD A[LIBSSOOU JOU SI0P OSIMIAUIO IO “IdINjoeynuew

Spewopel) ‘Qweu dpel £q 991A108 10 ‘ssdo01d “onpoid [erorouwtIod oyroads Aue 0} UIRISY dDUD
-10§oy "SIYSH paumo Aoreand oSuLyul jou p[nom Isn syt ey} syuosardor 1o ‘pasofosip ssaooxd

‘smeredde ‘uoneuiojur Aue Jo ssaunyosn 1o ‘gsouoa[durod ‘Aoeindde Oy} I0J Arq
‘Kyueirem Aue sosew ‘sodkorduwd

N 9y} IOYIION JUSWUISACD
se poredoxd sem jrodar sYL

10 “yonpoid
-1suodsorx 10 Ayjiqer| [eSo] Aue sawnsse 10 ‘porjdwr Io ssoxdxd
1oy} Jo Aue 10U JodIdy} AouoSe Aue IOU JUSWIUIOAOD SI1BIS Pl

sojelg panun oy Jo AousSe ue £q poiosuods JI0m JO JUNODDE UE

JANWIVIOSIA

0

L
s
= 1

= O
b

X

on A

e QS S

maaata A

P!

TRz =
o

15

o—

S

(&}

T

- fna 8=—)e
&E0 &=
7522

0ea
e
Cu o

IS8 E=p
eav
o

S =x

be
<k

Zen

g2 $Gr&-

foowi ;o o 0O A Q0RS8

unde-

cS

HZX

ARSEI

5

» ®OQ

SSCL-300

“ZLIB”
A Numerical Library for Differential Algebra
(A User’s Guide for Version 1.0)

Yiton Yan

Superconducting Super Collider Laboratory*
2550 Beckleymeade Avenue
Dallas, TX 75237

and
Chiung-Ying Yan

1823 Beaver Creek Drive
Duncanville, TX 75237

December 1990

Abstract

Given an efficient numerical method and a supercomputer, differential alge-
bra can be a powerful tool for the study of accelerator physics. “ZLIB”’, which
has a style similar to the numerical library “IMSL”’, has been developed to offer
efficient numerical routines on supercomputers for differential algebra. “ZLIB”
uses dynamic memory and is both vectorized and parallelized (multi-tasked) be-
sides being scalarly optimized. There are two sub-libraries in “ZLIB”’, “TPALIB”
and “ZPLIB”, with unique data structures for flexibility. The “TPALIB” is more
flexible in dealing with a different number of variables, and therefore is more suit-
able for use in extracting maps. The “ZPLIB” is more flexible in dealing with a
different number of orders, and therefore is more suitable for use in analyzing a
map. Use of “ZLIB” in a scalar computer is also recommended.

* Operated by the Universities Research Association, Inc., for the U.S. Department of Energy
under Contract No. DE-AC02-89ER40486.

1. INTRODUCTION

With limited computer memory, and limited computational speed, differential
algebra should be treated as the algebra of truncated power series. The algebra
of low order truncated power series can be easily accomplished with a simple data
structure. However, in most cases, high-order truncated power series is desirable.
Therefore, a special data structure is necessary to optimize both the allocation

of the computer memory and the numerical speed.

“ZLIB” has been developed for differential algebra, mainly for use on su-
percomputers. The use of “ZLIB” is similar to the use of the “IMSL” library.
Routines in “ZLIB” are vectorized, multi-tasked and use dynamic memory. There
are two sub-libraries in “ZLIB”, the “TPALIB” and the “ZPLIB”, with unique
data structures. The “TPALIB” is more flexible in dealing with a different num-
ber of variables, and therefore is more suitable for use in extracting a one-turn (or
one-period) map for a storage ring such as the SSC. The “ZPLIB” is more flex-
ible in dealing with a different number of orders, and therefore is more suitable
for use in analyzing a map. The two sub-libraries can be used simultaneously
through a structure-translation routine. Although “ZLIB” is developed mainly
for supercomputers, the authors have simultaneously tried to optimize the rou-
tines for scalar computers and therefore the use of “ZLIB” in scalar computers

1s also recommended.

It is not the authors’ attempt to describe the data structure of the two sub-
libraries, but rather to introduce the use of “ZLIB” to the users. In Section 2,
the truncated power series is briefly introduced. Readers who are familiar with
differential algebra should skip this section and go to Section 3, where a brief
general description is given for the “ZLIB”. Available routines in each of the
sub-libraries, the “ZPLIB” and the “TPALIB”, are discussed in Section 4 and in

Section 5, respectively.

2. THE ALGEBRA OF TRUNCATED POWER SERIES

In this section, the authors are not trying to be mathematically rigorous.

Once a variable, a function, or an operation is mentioned, its existence is assumed.

(a) Symbolic convention

Let z be an n-dimensional vector, i.e. its transpose can be expressed as

m

Z — [MIA25 0001 Zn)\)

where Zi, for i = 1,..., n, are scalar variables. For example, we can consider

m

Z = [ZUZ2,...,Z6\ = [x,px,y,pYy>t,pt]

as the transpose of a vector representing the 6-dimensional phase space coordi-

nates for an accelerator.

Let U be a function of z. This means 17 is a function oi z\, Z2,..., zn. Its

truncated power series (TPS) expansion up to an integer order is expressed as

u™) = Y7 u(M)2k>

k=0
where
o L S L
k= ki, for 0 < A; < fi,
i=
and
a
= summation over all k’s for A = 0,1,...,
k=0

Note that U(z) is called an n-variable TPS, of order fh The number of

monomials for an n-variable TPS, of order fl, is given by

(n + ft)!

n\Q,\

A unit TPS is defined as

Az) = X/(K)zk = 1 ,
k=0

1.€.
i(k) =1 for k=10
and

«k)=0 for k > 0.

Let U(z) be an m-dimensional vector TPS (VTPS), of n variables, and of O

order. It is expressed as

Q
U(z) = JMu(k)zk ,
fc=o0
o
G.e. U(z) = u,(k)zk, for i — 1,2,..., m) where the transpose of u(k) is given
k=0

by

uT(k) = [ui(k), n2(k),..., nm(k)] .

One can consider U(z) as a map in accelerator physics.

A unit n-dimensional, n-variable VTIPS of order fi, is defined as

I(z) =) '"i(kzk =z .
fc=0

Its transpose is given by

[21,225-.. ,2n] .

. - _t _. ¥ —+ 3 - -
NuArnerically, u(k), i(k), u(k), i(k) are used for representing 17(k), /(k), U(k),
4
I(k), respectively.

(b) TPS Operations

Addition: Wz) = t/(z) + T(z)

~ u?(k)zk = “Su(M)*k + 5Z u(k)zk
k=0 k=0 k=0
= N «(k) +uk))zl
k=0

SO

w(k) = w(k) + u(k)

Subtraction: Wiz) = U(z) — V(z)

~ w>(k)zk = Y “(k)zk - X
k=0 k=0 fe=0

1T(u(k) - 1;(k))zk
k=0

SO

%K) = u(k) — u(k)

Multiplication: Wz) = U(z) * V(z)

Loosloms)

== :TEKC)-(g-k)

j=0 \fc=0
So
Q
w() = "udk) *ug - k),
k=0
with G — k)i > 0fori= 1,2,...,n.
Partial derivative: W(z) = (d/dzi)U(z), where z = 1,2,..., orn
n d ati
- X] u(k)zk
. dzl
j=0 fe=0
Q+i
= k* * u(k)zk~"*
A=l
Jt
=E O +0*u(+
J=0
SO

"G) = Gi 1) uli 1),

where 11 is a unit vector in the ztn dimension.

Partial integration: W(z) = J U(z)dzi, where z = 1,2,..., orn

Q+.l ./\ . 9]
X. W(]] = E utozk dzi
k~0

u(k)z M+~

fe=0 +1

SO

u(G) =0 for ji =0,

G) = (—j *«(~ lforji > 0.

Using the above fundamental operations for the TPS, u>(j) can be obtained for

the following basic TPS operations:

Square: W(z) = U2(2),

Inversion: Wz) = 1/U(z),

Division: W(z) = U(z)/V(z),

Power: W(z) = UP{z), where p is an integer.
Square root: Wi(z) = sqrt(U(2)),

Exponentiation: W(z) = exp(C/(2)),

Logarithm: W(z) = In(C/(2)),

Trigonometry: W(z) = sin(17(z)), or W(z) = cos(17(
Poisson bracket: Wz) = [U(z),V(z)).

(¢) VTPS Operations

With the fundamental and the basic TPS operations ready, w(j) can be

obtained for the following basic VTPS operations.

Concatenation: W(z) = V(U(2)),

where, in the usual case, U is an n-dimensional n-variable VTIPS, V and W are

m-dimensional, n-variable VTPS, m and n may or may not be equal.

Inversion:

Given an n-dimensional, n-variable U(z), an n-dimensional, n-variable

6—i(z) can be obtained such that
U-1(U(2)) = U(U-1(2)) = 1(2).
All the above basic TPS or VTPS operations have been implemented in “ZLIB””.

(d) Tracking:

z' = U(z)

In conjunction with the implementation of the fundamental and basic TPS
and VTPS operations, substitution of a numerical vector z into a VTIPS (or a

map) is implemented in the “ZLIB”’

3. THE “ZLIB”

“ZLIB” is a member of the Z-family programs which include (other than
Z1LIB): Zmap (a map extraction program), Ztrack (a vectorized and parallelized
post-Teapot tracking program), Zremcl and Zremc2 (if - and 2f- dimensional
relativistic electromagnetic particle simulation programs), and Zpcomp (a macro
precompiler for fortran). Similar to the routines in the IMSL library which per-
form linear algebra through matrix operations, routines in “ZLIB” perform dif-
ferential algebra through the operations of expanded power series, truncated at
a pre-set order, to include nonlinear effects. Unlike linear algebra which has a
domain idealized to be unlimited, differential algebra has a narrow domain where
the power series converge at a reasonable rate, that is, the scope of differential
algebra is restricted to problems for which an interest region (domain) can be
identified to have a reasonable convergent rate for the power series expansion of

the governing equations. Presently “ZLIB” finds its application in accelerator

physics, since particles in an accelerator can only be stable in a region where the
expanded power series of the nonlinear equations governing the system converge
with a reasonable rate. Applications of “ZLIB” to other branches of physics, such

as optics, should be possible.

Since “ZLIB” uses dynamic memory and includes most fundamental oper-
ations for differential algebra, a binary “ZLIB” is generally adequate for users.
Users are welcome to contact the authors for free implementation of a binary
ZLIB in their computers. Users are also encouraged to make suggestions and

comments.

The general convention of the names of the subroutine arguments (the term
“argument” instead of “parameter” is used to avoid the possible confusion be-

tween parameters in a parameter statement and in a subroutine statement) are:
nv . number of variables, an input integer; nv > 0.

nvw : number of variables actually used in the subprogram, an input inte-

ger; 0 < nvw < nv.
no : order of a TPS or a VTPS, an input integer; no > 0.

no? . such as “nou” or “now”, order of a TPS or a VTPS actually used in

the subprogram; an input integer; 0 < no? < no.
nm : number of monomials of a TPS, i.e. nm = (nv + no)!/(nv!no!).

nmw : number of monomials of a TPS actually used in the subprogram, an

input integer; 0 < nmw < nm.

np . number of vectors (or number of particles in accelerator physics), an

input integer; np > 0.
¢ : an input scalar (such as ¢ =5.5).
d : an input scalar.

X . an input vector or vectors (particle phase space coordinates in ac-

celerator physics), usually an array x(nv) or an array x(nx,np).

uu

nu .

\AS

WWwW !

nw

: an output vector or vectors (particle phase space coordinates in ac-

celerator physics); usually an array y(nv) or an array y(ny,np). Note
that the user may (if desired) let “y” share the memory with “x”

within a subprogram that has both “x” and “y” as its subroutine

arguments.

. an input TPS, it is the coefficients of a TPS U(z)\ usually an array

u(nm).

an input TPS, it is the coefficients of a TPS V(z); usually an array

v(nm).

. an output TPS, it is the coefficients of a TPS bP(z); usually an array

w(nm). Note that the user may (if desired) let “w” share the memory

[{3E T} €y,

with either “u” or “v” within a subprogram that has “w” and either

(I} (Y3}

u” or “v” or both as its subroutine arguments.

* nu), where

an input VTIPS (or a map); usually an array uu(nm
nu is the dimension of the VTPS uu, which is either specified in the

subroutine parameter or implicitly assumed to be nu=nv.
dimensions of the VTPS uu, an input integer; nu > 0.

an input VTPS, usually an array vv(nm*nw), where nw is the di-
mension of the VTPS vv, which is either specified in the subroutine

parameter or implicitly assumed to be nw = nv.

an output VTPS, usually an array ww(nm*nw), where nw is the di-
mension of the VTIPS ww, which is either specified in the subroutine
parameter or implicitly assumed to be nw =nv. Note that the user
may (if desired) let “ww” share the memory with either “uu” or “vv”
within a subprogram that has “ww” and either “uu” or “vv” or both

as its subroutine arguments.

dimensions of the VTPS’s vv and/or ww, an input integer; nw > 0.

nou : order to be used for the TPS u or the VTPS uu, an input integer;

0 < nou < no.

nov : order to be used for the TPS v or the VTIPS vv, an input integer;

0 < nov < no.

now : order desired for the TPS w or the VTIPS ww, an input integer;

0 < now < no.
nok : actual order for the TPS w, an input integer; 0 < nok < now.

nd : sets of canonically conjugate variables, an input integer;

0 < nd < nv/2.

npwr . power to be performed for a TPS (such as u ** npwr), an input

integer; —oo < npwr < 00.

Some of the above subroutine arguments might be commented again upon
its appearance. Subroutine arguments which are not described above will be

commented upon when they appear.

4. THE SUB-LIBRARY “ZPLIB”

To use the “ZPLIB” routines, users must obtain the compiled “ZLIB” from
the authors so that their program can be loaded with the routines in the “ZPLIB”’,
Before any subroutine using the data structure of the “ZPLIB” is called, the user

should include the following statement (assuming ZLIB 1.0 is used)
“call zpprep(nv,no,nm,npm),”

where ‘nv’ and “no” are the number of variables and the maximum order
the user desires; “nm’, is a returned value for the number of monomials, i.e.
nm= (nv + no)!/(nv!no!), is returned for the user; “npm” is the maximum num-
ber of particles. The user should set a small integer or 0 for npm if tracking is
not desired. Occasionally, the user may wish to use routines in the sub-library

“ZPLIB” to perform initialization (reading in a VTPS) and tracking only. In

10

such a case, he may replace the statement “call zpprep(nv,no,nm,npm),” with

the calling statement “call zptrkp(nv,no,nm,npm),” to save computer memory.

Once the statement, “call zpprep(nv,no,nm,npm),” is executed, all the TPS’s
(u, v, and w) are assumed to be nv-variable TPS’s of order smaller than or equal
to “no”’, and all the VTPS’s (uu, vv, and ww) are assumed to be nv-variable
VTPS’s of order “no”’, although operations can be performed up to orders that

are lower than “no”’.

The subroutines available in the “ZPLIB” are as follows.
(a) TPS Operation

Initialization:
(1) subroutine zpzro(w,nmw)
for performing JV(z) = 0
(2) subroutine zpconst(c,w,nmw)
for performing W{z) — ¢
ifc=1, W{z) = I(z) =1
(3) subroutine zpcpy(u,w,nmw)
for performing W(z) = U(z)
(4) subroutine zpsgn(u,w,nmw)
for performing W(z) = —U(z)
(5) subroutine zpokl(w,c,iv,nmw
for performing W(z) = c* rlv
iv: an input positive integer; iv < nv
(6) subroutine zppok(w,c,js)
for performing IV(z) = ¢ * zk
js: an input nv-dimensional array;

js(G) = k{ for i = 1,2,..., nv

11

Addition and subtraction:
(7) subroutine zpadd(u,v,w,nmw)
for performing W(z) = U(z) + V(z)
(8) subroutine zpcadd(c,u,w,nmw)
for performing bF(z) = ¢ + U{z)
(9) subroutine zpsub(u,v,w,nmw)
for performing W(z) — U(z) — V(z)
(10) subroutine zpsubc(u,c,w,nmw)
for performing W(z) — U(z) — ¢
(11) subroutine zpcsub(c,u,w,nmw)

for performing W(z) = ¢ — U(z)

Multiplication and division with scalars:
(12) subroutine zpcmul(c,u,w,nmw)
for performing W(z) = c* U{z)
(13) subroutine zpdivc(u,c,w,nmw)
for performing W(z) = U(z)/c
(14) subroutine zplin(u,c,v,w,nmw)
for performing W"z) = U(z) + ¢ * V(z)
(15) subroutine zpblin(d,u,c,v,w,nmw)

for performing W(z) = d * U(z) + ¢ * V"z)

** As an example: “call zpblin(3.3,u,—l1.1,v,w,nm)”

Multiplication and division:
(16) subroutine zpmul(u,nou,v,nov,w,now,nok)

for performing W(z) = U(z) * V(z)
(17) subroutine zpdiv(u,nou,v,nov,w,now)

for performing W(z) = U(z)/V(z)
(18) subroutine zpinv(u,nou,w,now)

for performing W(z) = 1/U{z)

12

(19) subroutine zpsq(u,nou,w,now,nok)
for performing W(z) = U(z) * U(z)
(20) subroutine zppwr(u,nou,NPWr,w,NOW)
for performing W{z) = U(z) * * npwr
** As an example to show that “w” can share memory with “u”, one

3

can have a statement such as “call zppwr(u,3,—4,u,5)”

Derivative and Integral:

(21) subroutine zpdrv(u,nou,w,now,iv,nok)
for performing W(z) = (djdz\v)U(z)
iv (< nv): an input integer.

(22) subroutine zpintg(u,nou,w,now,iv,nok)
for performing W(z) = J U(z)dziv,
iv (< nv): an input integer.

(23) subroutine zpbrac(u,nou,v,nov,w,now,nok,nd)
for performing W(z) = [17(z), Vr(2)],
the Poisson bracket of U and V.

nd: sets of the canonically conjugate variables; nd < nv/2.

Functions:
(24) subroutine zpsin(u,nou,w,now)

for performing W(z) = sin(t/(z))
(25) subroutine zpcos(u,nou,w,now)

for performing W(z) = cos(17(z))
(26) subroutine zpexp(u,nou,w,now)

for performing W(z) = exp(t/(z))
(27) subroutine zplog(u,nou,w,now)

for performing W(z) = In([/(2))
(28) subroutine zpsqrt(u,nou,w,now)

for performing W(z) = sqrt (U(z))

13

(b) VTPS Operations:

Initialization:
(29) subroutine zpunit(ww,now)

for performing W(z) = I(z) = z

ww : an nv-dimensional, nv-variable VTIPS of order “no’’, but only up to
order “now < no” is operated; array ww(nm*nv).
(30) subroutine zpmokl(ww,nw,now,c,iw)

for performing Wiw(z) = cziw

ww : an nw-dimensional, nv-variable VTPS of order “no”, but only up to

order “now < no” is operated; array ww(nm*nw).

Note: Only the iwth dimension is initiated.
(31) subroutine zpmpok(ww,nw,now,c,js,iw)
for performing Wiw(z) = czk
js: an input nv-dimensional array;

js(i) = fc, for? = 1,2,..., nv

ww : an nw-dimensional, nv-variable VTIPS of order “no”, but only up to

order “now < no” is operated; array ww(nm*nw).

Note: Only the iwl" dimension is initiated.
(32) subroutine rdmaptpa(ww,nwb,nw,now,nomap,imap)
for initializing W(z) = Vw(k)zk
k=0

Initialize an nw-dimensional VTPS of order “no” from its nwbtk
dimension to nwtk dimension up to order “now” by reading a
“TPALIB” structured VTPS (of order “nomap™) file (specified by
the number “imap’’) where data are stored from the nwbth dimen-

sion to the nwth dimension.

14

(33) subroutine rdmapzp(ww,nw,now,imap)
n
for initializing W(2) = y"w(k)z"
it=0
Initialize an nw-dimensional VTIPS of order “no” up to a desired
dimension “nw” and a desired order “now” by reading a “ZPLIB”

structured VTPS file (specified by the number “imap’’) where data

are stored to any dimension and to any order.

Writing out the VTPS:

(34) subroutine wrmapzp(uu,nub,nu,nou,imap)
Q
output the coefficients u(k) in a file for U(z) =

k=0
Write out an nu-dimensional VTPS, uu, of order “no”’, from its nubth
dimension to nuth dimension up to order “nou” in “ZPLIB” form to
a file (specified by the number “imap”).

(35) subroutine wrmapzpl(uu,nub,nu,nou,imap)
n
output the coefficients u(k) in a file for U(z) = ~u(k)zg
Jt=1
Write out an nu-dimensional VTPS (a map), uu, of order “no” from

its nubth dimension to nuth dimension up to order “nou” in “ZPLIB”

form to a file (specified by the number “imap’’). Note that the zeroth

order is assumed to be 0 and is not written in the file.

Concatenation of VITPS’s:
(36) subroutine zpcnct(uu,nou,vv,NOV,wWw,noOw,nw)

for performing W(z) = V(U (z2))
uu : an input nv-dimensional VTPS of order no; uu represent U(z)
vv . an input nw-dimensional VTPS of order no; vv represent V(z)

ww : an output nw-dimensional VTPS of order no; ww represent W(z)

15

nou . order to be used for the VTPS uu; nou < no
nov . order to be used for the VTIPS vv; nov < no
now . order desired for the VTIPS ww; now < no

2

* %% An example: “call zpcnct(uu,14,uu,14,uu,15,4)

Inversion of a VTPS:
(37) subroutine zpmapinv(uu,nou,ww,now)

for performing W(z) = U_1(z)
uu : an input nv-dimensional VTPS of order no; uu represent U(z)
ww : an output nv-dimensional VTPS of order no; ww represent
W(z) = U-1(z2)
nou : an input; order to be used for the VTIPS uu; nou < no

now . an input; order desired for the VTIPS ww; now < no; usually now

= nou.

(¢) Tracking

Single-particle tracking:

(38) subroutine zpmtrk(uu,nub,nu,nou,x,y)

for performing y = U(X)

uu : an input nu-dimensional, nv-variable VTPS of order no, although

only up to order nou (< no) is operated; uu represent U(x).
X . an input vector of dimension nv.
y . an output vector of dimension nu.

actual operations are for yt — uu$(x) for i =nub, nub+ 1, ..., nu.

16

Multi-particle tracking:

(39) subroutine zpmtrks(uu,nub,nu,nou,np,x,nx,y,ny)

uu .

for performing yp = Uxp), p = 1,2,..., np

an input nu-dimensional, nv-variable VTPS of order no, although

only up to order nou (< no) is operated; uu represent U(X).

. array x(nx,np) where nx > nv, an input; users should consider it as

np particles, each with nx-dimensional phase-space coordinates.

. array y(nx,np) where ny > nv, an output; users should consider it

as np particles, each with ny-dimensional phase-space coordinates.
actual operations are for y? = uui(xp)

fori =nub, nub+1, ..., nu, and p — 1,2,..., np.

(40) subroutine zpmtrkq(uu,nub,nu,nou,np,x,nx,y,ny)

uu

k%

for performing yp = U(xp), p = 1,2,..., np

an input nu-dimensional, nv-variable VTPS of order no, although

only up to order nou (< no) is operated; uu represent U(X).

. array x(nx,np) where nx > nv, an input; users should consider it as

np particles, each with nx-dimensional phase-space coordinates.

. array y(nx,np) where ny > nv, an output; users should consider it

as np particles, each with ny-dimensional phase-space coordinates.
actual operations are for y} = uui(xp)
for i =nub, nub+1, ..., nu, and p = 1,2,..., np.

Note that the internal structures in “zpmtrks” and in “zpmtrkq” are
different. Vectorization is over particles in “zpmtrks” while vector-
ization is within a particle and parallel (multi-tasking) computing

can be chosen over particles in “zpmtrkq.”

17

(41) subroutine zpmtrkw(uu,nub,nu,nou,np,npm,x,y)

uu

for performing yp = U(xp), p = 1,2,..., np

an input nu-dimensional, nv-variable VTPS of order no, although

only up to order nou (< no) is operated; uu represent U(x).

. array x(npm,nv) where npm > np, an input; users should consider it

as npm particles, each with nv-dimensional phase-space coordinates.

. array y(npm,nu) where npm > np, an output; users should consider

it as npm particles, each with nu-dimensional phase-space coordi-

nates.
actual operations are for y? — uiii("xp)

for i =nub, nub+ 1, ..., nu, and p = 1,2,..., np.

(42) subroutine zpmtrkp(uu,nub,nu,nou,np,npm,x,y)

uu

ek

for performing yp = U(xp), p — 1,2,..., np

an input nu-dimensional, nv-variable VIPS of order no, although

L3

only up to order nou (< no) is operated; uu represent U(X).

array x(npm,nv) where npm > np, an input; users should consider it

as npm particles, each with nv-dimensional phase-space coordinates.

. array y(npm,nu) where npm > np, an output; users should consider

it as npm particles, each with nu-dimensional phase-space coordi-

nates.
actual operations are for = uul(xp)
for i =nub, nub+ 1, ..., nu, and p = 1,2,..., np.

Note that the internal structures in “zpmtrkw” and in “zpmtrkp” are
different. Vectorization is over particles in “zpmtrkw,” while vector-
ization is within a particle and parallel (multi-tasking) computing

can be chosen over particles in “zpmtrkp.”

18

Scaling:
(43) subroutine zpmscle(uu,nw,now,ww,s)
. P
for performing W(z') = "w(k)z = U(z) = "u(k)z",
where Zj = zj * s(i) forz = 1.,2,..nv

uu,ww : nw-dimensional, nv-variable VTPS’s of order “no”, but only up to
%

order “now” (now<no) is scaled; uu represents U(z), ww represents

W(z).

s . an input nv-dimensional vector.
(d) Structure translation between “ZPLIB” and “TPALIB”

(44) subroutine zptpa(uu,nw,now,ww,iflag)

Translate an nw-dimensional, nv-variable VTPS of order “no” be-

tween its “ZPLIB” structure and its “TPALIB” structure.
now . desired order to be performed; now<no.
iflag : an input integer;

iflag = 1 : translate the VTPS from its “ZPLIB” structure, uu, to its “TPALIB”

structure, ww;

iflag ~ 1 : translate the VTPS from its “TPALIB” structure, uu, to its

“ZPLIB” structure, ww; setting “iflag = 0” would be good.

5. THE SUB-LIBRARY “TPALIB”

Similar to the use of the sub-library “ZPLIB”, to use the “TPALIB”, the
user has to obtain the compiled “ZLIB” and make a calling statement “call tpa-
prp(nv,no,nm,npm)” before any subroutine using the data structure of TPALIB
is called. Note that slightly different from the ZPLIB, “no” is the order (not

the maximum order) while “nv” is the maximum number of variables the user

19

desires. The same as in the ZPLIB, “nm”, is a returned value for the number of
monomials, i.e. nm = (nv + no)!/(nv!no!), is returned for the user; “npm” is the

maximum number of particles desired for tracking.

Once the statement “call tpaprp(nv,no,nm,npm)” is executed, all the TPS’s
(u, v, and w) and the VTPS (uu,vv, and ww) are assumed to be order of “no”
(although operations may be performed up to orders lower than “no’’), but not
necessarily to be of nv variables. Usually they are nvw-variable TPS’s or VTPS’s,

where nvw (smaller or equal to nv) is specified as one of the subroutine arguments.

The routines available in the “TPALIB” are as follows.
(a) TPS Operations

Initialization:
(1) subroutine tpazro(w,nmw)
for performing W(z) = 0
(2) subroutine tpaconst(c,w,nmw)
for performing W(z) = ¢
ifc=1, W{z) = I(z) =1
(3) subroutine tpacpy(u,w,nmw)
for performing W(z) = U(z)
(4) subroutine tpasgn(u,w,nmw)
for performing W(z) = —U(z)
(5) subroutine tpapokl(w,c,iv,nmw)
for performing W(z) = ¢ * zjy

iv: an input positive integer; iv < nv

Addition and subtraction:
(6) subroutine tpaadd(u,v,w,nmw)

for performing W(z) = U(z) + V(z)
(7) subroutine tpacadd(c,u,w,nmw)

for performing PU(z) = ¢ + U(z)

20

(8) subroutine tpasub(u,v,w,nmw)
for performing W(z) = U(z) — V(z)
(9) subroutine tpasubc(u,c,w,nmw)
for performing W(z) = U(z) — ¢
(10) subroutine tpacsub(c,u,w,nmw)

for performing W(z) = c— U(z)

Multiplication and division with scalars:
(11) subroutine tpacmul(c,u,w,nmw)
for performing W(z) = ¢ * U{z)
(12) subroutine tpadivc(u,c,w,nmw)
for performing W(z) = U(z)/c
(13) subroutine tpalin(u,c,v,w,nmw)
for performing W(z) = U(z) +c * V(z)
(14) subroutine tpablin(d,u,c,v,w,nmw)
for performing

Wiz) = d* [/(z) +c* y(2)

Multiplication and division:
(15) subroutine tpamul(u,v,w,nvw)
for performing W(z) = U(z) * V(z)

u,v,w: “nvw”’-variable TPS’s of order “no’’, nvw < nv.

(16) subroutine tpamulo(u,v,w,now,nvw)
for performing IT(z) = 7(z) * V(z)
u,v,w: “nvw”-variable TPS’s of order “no”’; nvw < nv.

now: order involved in the operation of the TPS’s U,V,W; now < no.

(17) subroutine tpadiv(u,v,w,nvw)
for performing W{z) = U(z)/V(z)

u,v,w: ‘“nvw”-variable TPS’s of order “no’’; nvw < nv

21

(18) subroutine tpainv(u,w,nvw)
for performing W(z) = 1/U(z)

uw: “nvw’’-variable TPS’s of order “no’>; nvw < nv.

(19) subroutine tpasq(u,w,nvw)
for performing W(z) = U(z) * U(z)

u,w: “nvw’-variable TPS’s of order “no””, nvw < nv.

(20) subroutine tpapwr(u,npwr,w,nvw)
for performing W(z) = U(z) * * npwr
u,w: nvw-variable TPS’s of order “no”>, nvw < nv.

npwr: an input integer for the power to be performed for the TPS U.

Derivative and Integral:
(21) subroutine tpadrv(u,w,nvw,iv)
for performing W(z) = (d/dz[y)U(z)
iv (< nvw): an input integer.
uw: “nvw”’-variable TPS’s of order “no””, nvw < nv.
(22) subroutine tpabrac(u,v,w,nvw,nd)
for performing W(z) — {U(z),V(z)},
the poison bracket of U and V.
u,v,w: “nvw”-variable TPS’s of order “no”’, nvw < nv.

nd: sets of canonically conjugate variables; nd < nvw/2.

Functions:
(23) subroutine tpasin(u,w,nvw)

for performing W(z) = sin(17(z))
(24) subroutine tpacos(u,w,nvw)

for performing W(z) = cos(17(z))

22

(25) subroutine tpaexp(u,w,nvw)

for performing W(z) = exp(C/(z))
(26) subroutine tpalog(u,w,nvw)

for performing W(z) = In(?7(z))
(27) subroutine tpasqrt(u,w,nvw)

for performing W{z) = sqrt (U(z))

u,w: nvw-variable TPS’s of order “no’’; nvw < nv.

(b) VTPS Operations

Initialization:
(28) subroutine tpaunit(ww,nvw)
for performing W(z) = /(z) = z
ww: nvw-dimensional, nvw-variable VTIPS of order “no”’.

(29) subroutine rdtpamap(ww,nwb,nw,nvw,imap)
n
for initializing W(z) = ~w(k)z"

fc=o0

Initialize an nw-dimensional, nvw-variable VTPS from its nwbth

dimension to nwth dimension by reading a “TPALIB” structured

VTPS (order of “no”) file (specified by the number “imap’’) where

data are stored from the nwbth dimension to the nwth dimension.

Writing out a VTPS:

(30) subroutine wrtpamap(uu,nub,nu,nvw,imap)
n

output the coefficients u(k) in a file for U(z) = JTa(k)2k

fe=0

Write out an nu-dimensional, nvw-variable VTPS from its nubth

dimension to nuth dimension up to order “no” in “TPALIB” form to

a file (specified by the number “imap”).

23

Concatenation of VTPS’s:
(31) subroutine tpacncat(uu,vv,ww,nvw)

for performing W(z) = V(U(z))
uu,vv,ww . nvw-dimensional, nvw-variable VTPS’s of order no; uu represents

U(z), vv represents V(z), ww represents W(z).

(00) subroutine tpacnct(uu,vv,novV,ww,nvw)

for performing W(z) = V(U(2))
uu, vv,ww : nvw-dimensional, nvw-variable VTPS’s of order no; uu represents

U(z), vv represents V(z), ww represents W(z).

nov : order of vv actually used in the operation; nov < no.
(00) subroutine tpacnctw(uu,vv,ww,now,nvw)

for performing W(z) = V(U(z))

uu, vv,ww : nvw-dimensional, nvw-variable VTPS’s of order no; uu represents

U(z), vv represents V(z), ww represents W(z).

now : order of ww actually desired; now < no.
(32) subroutine tpacncto(uu,vv,nov,ww,now,nvw)

for performing W(z) = V(U(2))

uu,vv,ww : nvw-dimensional, nvw-variable VTPS’s of order no; uu represents

U(z), vv represents V(z), ww represents W(z).
nov . order of vv actually used in the operation; nov < no.

now : order of ww actually desired; now < no.

Inversion of a VTPS:
(33) subroutine tpaminv(uu,ww,now,nvw)

for performing W(z) = U_1(z)

uu,ww . nvw-dimensional, nvw-variable VTPS’s of order no; uu represents

U(z), ww represents W(z).

24

now : order of ww actually desired; now < no.

(¢) Tracking

Single-particle tracking:

(34) subroutine tpamtrk(uu,nu,nvw,nou,x,y)

for performing y = U(X)

uu : an input nu-dimensional, nvw-variable VTPS of order no, although

only up to order nou (< no) is operated; uu represent U(X).
X . an input vector of dimension nvw.
y . an output vector of dimension nu.

actual operations are for yl = uui(x) for i = 1,2,..., nu.

(35) subroutine tpamtrko(uu,nu,nvw,x,y)

for performing y — U(x)

uu : an input nu-dimensional, nvw-variable VTIPS of order no and up to

order no is operated; uu represent U(X).
x . an input vector of dimension nvw.
y : an output vector of dimension nu.
actual operations are for yt = uui(x) fori = 1, 2,..., nu.

** Note that subroutine tpamtrko is faster than subroutine tpamtrk.
However tpamtrko cannot be used for tracking up to an order nou
smaller than no.

Multi-particle tracking:

(36) subroutine tpamtrks(uu,nu,nvw,nou,np,x,nx,y,ny)

for performing yp = U(x?), p = 1,2,..., np.

uu ;. an input nu-dimensional, nvw-variable VTPS of order no, although

only up to order nou (< no) is operated; uu represent U(x).

25

x . array x(nx,np) where nx > nv; users should consider it as np input

nx-dimensional vectors.

y : array x(nx,np) where nx > nv; users should consider it as np output

ny-dimensional vectors.
actual operations are for yf = uui(3lp)

forz=1,2,..., nu, and p — 1,2,..., np.
Scaling:
(37) subroutine tpamscle(uu,nw,nvw,ww,s)
for performing W”z7) = w(k)z * = U(z) = u(k)z” |
k=0 fe—0
where zt =z *s(i) for 2 = 1,2,...,nvw
uu,ww: nw-dimensional, nvw-variable VTPS’s of order no; uu represents

U(z), ww represents W(z).

s : an input nvw-dimensional vector.

6. SUMMARY AND SUGGESTION

The fundamental and basic operations for the algebra of truncated power se-
ries (TPS) have been numerically programmed and gathered in a library entitled
“ZLIB”. There are two sub-libraries in “ZLIB”’, the “ZPLIB” and the “TPALIB”,
with different data structures to provide more flexibility in dealing with a dif-
ferent number of variables and orders simultaneously. The style of the library
“ZLIB”, being similar to the library “IMSL”’, may offer the advantage of famil-
iarity to some users. Sample programs using “ZLIB” are available, which could
help beginning users. Occasionally, users may need specific operations that can-
not be performed with the available routines described in Section 4 and Section 5.

Under such a circumstance, users are welcome to call the authors for help.

Beginning users are advised to concentrate on one of the sub-libraries. An

NERSC (MFE) Cray computer user who wishes to use routines in the “ZPLIB”

26

of “ZLIB 1.0” should follow the steps below or its equivalence (assuming the

user’s file name is “map”).

Step | : Obtaining “ZLIB” (use one of the following commands)

cfs get zlib:/yan/zlibl.O/zlib for Cray-2

cfs get zlib:/yan/zlibl.O/zlibd for Cray-2 double precision

cfs get zlib:/yan/zlibl.O/zlibe for Cray-XMP

cfs get zlib:/yan/zlibl.O/zlibed for Cray-XMP double precision

Step 2 : cft77 i = map,b =bmap, ...
Step 3 : Idr b = bmap,lib = (zlib,ims]l,...), x = xmap

An example of using the routines in the sub-library “TPALIB” is the pro-
gram “Zmap” which was programmed to extract Taylor maps in a beam line.
In particular, “Zmap” can extract one-turn maps from a post-Teapot tracking

program “Ztrack™”.

An example of using the routines in the sub-library “ZPLIB” is the sub-
program “OPSMAP” which one (YY) of the authors and his colleagues Ken
Kauffman and David Ritson programmed to extract one-turn maps in a tracking

program “SSCTRK”.

“ZLIB 2.0, which includes routines for the performance of Lie algebraic
treatment of beam dynamics such as Dragt-Finn factorization (subroutine zp-
dragt and zpfinn), nonlinear norm form (subroutine zpforest), etc. will be re-

leased once it is well tested.

27

ACKNOWLEDGEMENTS

The authors wish to point out that there is a “da-package” developed by
M. Berz, which also performs differential algebra. Besides the difference in data

structure, there are two major differences between “ZLIB” and “da-package’

(a) Optimization for “ZLIB” is primarily on vector and parallel com-
puting while optimization for “da-package” is primarily on scalar
computing.

(b) “ZLIB” uses dynamic memory while “da-package” uses decks of

memories.

One of the authors (Yiton Yan) thanks E. Forest for many valuable sugges-
tions, J. Irwin for many valuable conversations, and K. Kauffman, T. Sen, and
R. Talman for valuable comments. He thanks Alex Chao for continuous support

and encouragement.

28

APPENDIX A

MEMORY PREPARATION SUBPROGRAMS FOR “ZLIB 1.1”

Ocasionally, users would like to prepare ZLIB working memory themselves
just as they prepare working memories for some of the “IMSL” routines. In
that case, “ZLIB 1.1” instead of ”ZLIB 1.0” should be used. In order to reduce
errors that might occur due to inappropriate preparation of working memories,
the author has written suitable working memory preparation subprograms for
the “ZLIB 1.1”. To use the routines in “ZLIB”’, users must load their programs
with “ZLIB” just as the “IMSL” library is loaded when “IMSL” routines are
used. Users must include at least one subprogram allocating the working memory
needed for “ZLIB 1.1” in their program, and must assign suitable integers for
four parameters in the parameter statement, of the working memory preparation
subprogram(s). The four parameters are:

nvm’> the maximum number of variables.

13 R

nom’” the maximum order.
“nmm’” the maximum number of monomials;
nmm = (nvm + nom)!/(nvm!nom!).

13 29

npm’”: the maximum number of particles.

A user program must have a statement that calls the working memory prepara-
tion subprogram(s) before the corresponding routines in “ZLIB” are called. For
example, to use “ZPLIB” of “ZLIB 1.1, the following statement should be in-

cluded in the user’s program at the very beginning of the executable statements.

“call zpprep(nv,no,nm,np),”

>

where “nv”, “no”, and “np” are the number of variables, the order, and the
number of particles, which should always be equal to or smaller than “nvm?”,
“nom”, and “npm” respectively; ‘“nm”, is a returned value for the number of
monomials, i.e. nm = (nv + no)!/(nv!no!), is returned for the user. At this stage,

29 (¢

if the user makes a mistake in assigning the integer numbers for “nvm”, “nom”, or

(13 2

nmm”’, “ZLIB” will provide messages that will help the user make corrections.

The parameter “nkpm” is calculated in the parameter statement that is guar-

anteed to be large enough for the corresponding working memories. However, if

A-2

both ‘nvm” and “nom” are large, “nkpm” may become unnecessarily too large.
Under such a circumstance, a warning message will be provided but the execution
continues. To save computer memory, the user may choose to stop the execution
to assign a number suggested by the message for “nkpm” in the parameter state-
ment directly. The user can also look up the table given in Appendix B where
“nmm” and “nkpm” are given for given sets of “nvm” and “nom” to assign suit-
able integer numbers for “nmm” and “nkpm”. For a beginning user, try not to

be bothered by the warning message.

The following subprogram “zpprep” prepares the working memories for rou-

tines in the sub-library “ZPLIB” of “ZLIB 1.1

subroutine zpprep(nv,no,nm,np)
implicit double precision(a-h,o0-z)
parameter (nvm = 6,nom = 9,nmm = 5005, npm = 6,
nol =nom + 1,
nov = (nom+ 2) * nol * nvm,
nvno = nom * nvm,
njv = (nvm + 1) * nmm,
nikpm =nol * (nmm - 1),
navgm = nom/nvm, nrm = nom - navgm * nvm,
nkpmx = (navgm + 2)**nrm * (navgm + 1) ** (nvm - nrm) ,
nkpm = nmm * nkpmx,
nj dm = nvm * nmm * nom/ (nvm + nom) ,
nvmsq = nvm * nvm,
nmmnp = max(nmm,nvm * npm) ,
nmw =nmm * nvm + 6

+ 4+ 4+ + + + + + + 4+ + + +

nmwnp = max(nmw,nmm * npm)
common /strcl/ nmo(nol)
common /strc2/ nmob(nol)
common /strc3/ nmov(nov)
common /strc4/ jv(njv)
common /strc5/ js(nvm)
common /strc6/ nmvo(nvno)
common /strc?/ ivp(nmm)
common /strcS/ jpp(nmm)
common /zptps/ jtpa(nmm)
common /mulpl/ ikp(nikpm)

common /mulbl/ ikb(nikpm)
common /mulp2/ kp(nkpm)
common /mulp3/ Ip(nkpm)
common /drvpl/ jd(njdm)
common /conpl/ jpc(nmm)
common /conp2/ ivpc(nmm)
common /conp3/ ivppc(nmm)
common /conp4/ mp(nov)
common /conloc/ noc(nvm)
common /rdtpal/ jjp(nmm)
common /mulwk/ wkmul(nmmnp)
common /divwk/ wkdiv(nmw)
common /conwk/ work(nmwnp)
common /mtrxl/ aa(nvmsq)
common /mtrx2/ bb(nvmsq)
common /ccsqrt/ csqrt(nom)
common /ccinvs/ cinv(nom)
common /ccclns/ cln(nom)
common /ccexps/ cexp(nom)
common /csccoe/ csc(nom)
call zpprp(nv,no,nmm,nol,nov,njvjnikpmjnmWjnkpm.njdm.nm)
return

end

The following subprogram “tpaprp” prepares the working memories for rou-

tines in the sub-library “TPALIB” of’ZLIB 1.1

subroutine tpaprp (nv,no,nm,np)
implicit double precision(a-h,o-z)

parameter (nvm=6,nom=9 ,nmm= 5005,

+ njpm = nmm * nvm,

+ navgm = nom/nvm, nrm = nom - navgm * nvm,

+ nkpm = nmm * (navgm + 2) **nrm * (navgm +1) ** (nvm - nrm) ,
+ nmw = nmm * nvm + 6)

common /pmull/ nklp (nmm)
common /bmull/ nklpb (nmm)
common /pmul2/ kp (nkpm)
common /pmul3/ Ip (nkpm)

common /pmuld/ iop (njpm)

A4

common /pdrvl/ jd(njpm)

common /pdrv2/ jp(njpm)

common /pdrvS/ jo(njpm)

common /mulwk/ wkmul (nmm)

common /divwk/ wkdiv (nmw)

common /conwk/ work (nmw)

call tpa626 (nv,no,nmm,nmw, nkpm,njpm,nm)
return

end

Occasionally, the user may wish to use routines in the sub-library “ZPLIB”
to perform initialization (reading in a VTPS) and tracking only. In such a case,
he may choose to use the following working memory preparation subprogram

“zptrkp” to save computer memory.

subroutine zptrkp (nv,no,nm,np)
implicit double precision (a-h,o-z)

parameter (nvm= 6,nom= 9,nmm= 5005, npm=1,

+ nol = nom + 1,

+ nov = (nom+ 2) * nol * nvm,
+ nvno = nom * nvm,

+ njv= (nvm+ 1) * nmm,

+ nvp = nvm * npm,

+ nmw = nmm * npm)

common /strcl/ nmo (nol)
common /strc2/ nmob (nol)
common /strc3/ nmov (nov)
common /strc4/ Jjv(njv)
common /strch5/ Jjs(nvm)
common /strc6/ nmvo (nvno)
common /strc?/ ivp (nmm)
common /strcS/ Jpp (nmm)
common /rdtpal/ jjp (nmm)
common /mulwk/ wkmul (nvp)
common /conwk/ work (nmw)
call trkprp (nv,no,np,nmm,npm,nol,nov,njv,nve,nmw,nm)
return

end

A-5

APPENDIX B

PARAMETERS FOR THE PREPARATION
OF “ZLIB” WORKING MEMORY

B-1

“ZLIB” WORKING MEMORY PARAMETERS

nvm 1

=
El
=
=]
=
=
=
El
=
-
=}
=
=
El
=
=1
=
=
=)
g

nvm nom nmm nkpm nvm non nmm nkpm
i1 11 [5 9 1 3 5 11 2 3
10 00 42 15 43 2 6 15 1 3
10 3 286 17 4 3 35 165 3 10 35 9
10 4 1001 10626 4 70 495 4 15 70 { 5
10 3 3003 53130 4 3 126 1287 5 21 126 S0
10 6 008 230230 40 210 3003 1 6 28 210 16 7
107 19448 88803 4 7 330 643 17 36 330 17 8
10 8 43758 310310 4 8 495 12870 § 45 495 8 9
1 o 92378 10015005 49 715 24310 55 715 9 10
10 10 184756 30045015 4 10 1001 43758 10 [1001 10 11
10 11 352716 84672313 4 11 1365 75582 11 7 1365 11 12
| 1 4 12 1820 125970 12 9 1820 12 13
/ 35 190 4 13 2380 203490 13 105 2380 13 14
0 3 220 1330 4 14 3060 319770 1 14 120 3060 14 15
9 4 713 73 4 15 3876 490314 1 15 136 3876 15 16 >136
e 5 2002 336 4 16 4845 735471 1 16 153 4845 16 17
0 5005 134596 4 17 5985 1081575 1 1717 5985 17 18
9 7 11440 480700 4 18 7315 1562275 18 19 7315 18 19
9 8 24310 1562275 4 19 835 2220075 19 21 855 1 19 20
o 9 48620 468682 4 20 10626 3108105 20 231 10626 1 20 21
o 10 92378 13123110 421 12650 4292145 21 253 12650 1 21 22
9 11 167960 34597290 4 22 14950 5852925 1 2 276 14950 122 23
9 12 293930 86493225 423 17550 7888725 223 300 17550 23 24 300
8§ 1 9 17 4 M4 20475 10518300 24 325 20475 24 25 325
8§ 1 45 153 4 25 23751 13884156 25 351 23751 25 260 351
o 3 165 969 4 20 27405 18156204 26 378 27405 20 27 378
s 4 495 484 5 4 27 31465 23535820 27 406 31465 27 28
c 5 1287 20349 4 28 35960 30260340 28 435 35960 28 29 435
8 0 3003 74613 429 40920 38608020 29 465 40920 29 30 465
§ 7 0435 245157 4 30 46376 48903492 30 49 46376 30 31 4%
a o 12870 735471 Yo 4 1 31 528 52360 31 32
8§ 9 24310 2042975 kI 10 28 32 561 58905 32 33 36l
§ 10 43758 531173 33 20 84 33 595 660045 33 M 395
§ 11 75382 13037895 K| 35 210 4 630 73813 34 3 630
§ 12 125970 30421755 3 5 36 462 35 666 82251 35 36 666
o 13 203490 67863915 30 84 924 36 703 91390 36 37
T 1 15 37 120 1716 37 741 101270 37 38
1] 36 120 ;8 165 3003 38 780 111930 8 39
T 3 120 680 3 q 220 3005 39 820 123410 39 40 820
A 330 3060 1 286 008 1 40 861 135751 40 41 861
7t 792 11628 ol 364 12376 41 903 148995 aa 42 903
T 6 1716 38760 1 455 18564 1 4 946 163185 42 43 96
T 7 3432 116280 I 560 27132 43 990 178365 43 4 990
1 a 6435 319770 } i 680 38760 44 1035 19458 44 45 1035
1 11440 817190 } 15 316 34264 45 1081 211876 45 46 1081
710 19448 1961256 316 969 746013 40 1128 2303 46 47 1128
T11 31824 4457400 I 17 1140 100947 47 1176 249900 47 48 1176
T 12 50388 9657700 318 1330 134596 48 1225 270725 48 49 1225
T 13 77320 20058300 19 1540 177100 49 1275 292825 49 50 1275
T 14 116280 40116600 320 1771 230230 50 1326 316251 50 31 1326
7 15 170544 77558760 3o 2024 296010 51 1378 341055 5152 1378
6 1 1 13 322 2300 376740 52 1431 367290 52 33 1431
6 2 28 i 323 2600 475020 53 1485 395010 1 33 54 1485
6 3 84 455 3 4 2925 593775 4 1540 424270 4 55 1540
6 4 210 1820 325 3276 736281 35 1596 455126 35 56 1396
6 3 462 6188 320 3654 56 1653 487635 36 57 1653
6 6 18564 32T 4060 1107568 1 57 1711 521855 57 58 1711
6 7 1716 50388 3 28 4495 1344904 38 1770 537845 8 59 1770
6 8 3003 125970 329 4960 1623160 59 1830 595665 59 60 1830
6 9 5005 293930 330 5456 1947792 60 1891 635376 60 61 1891
6 10 6466 331 5984 2324784 61 1933 677040 ol 62 1953
6 11 12376 1352078 3 32 6545 2760681 62 2016 720720 62 603 2016
6 12 18564 2704156 333 7140 20 1 63 2080 766480 63 64 2080
6 13 27132 5200300 1 3 7770 3838380 64 2145 814385 64 65 2145
6 14 38760 96 335 8436 4496388 65 2211 864501 65 65 2211
6 15 54264 17383860 3 3 9139 5245786 66 2278 916893 6 607 2278
6 16 4613 30421755 KXY 67 2346 67 ¢ 2346
6 17 100947 51893935 338 10660 05 6s 2415 1028790 65 609 2415
6 18 134596 86493225 3 39 11480 8145060 69 2485 1088430 69 70 2485
31 6 11 3 40 12341 3 9 2 70 2556 1150626 0 71 2556
3 1 21 00 3 41 13244 10737573 712628 1215450 72 2628
5y 3 36 286 342 14190 12271512 72 2701 1282975 713 2701
5 4 126 1001 3 43 15180 13983816 732775 1333275 374 27715
55 252 3003 3 4 16215 15890700 74 2850 1426425 74 75 2850
56 462 8008 145 17296 18009460 175 2926 1502501 75 76 2926
5 T 792 19448 346 18424 20358520 76 3003 1581580 76 77 3003
5 8 1287 43758 347 19600 22957480 77 3081 1663740 77 18 3081
5 oq 2002 92378 348 20825 25827165 78 3160 1749060 78 79 3160
5 10 3003 184756 349 22100 28989675 79 3240 1837620 79 80 3240
1 4368 352716 350 23426 32468436 80 3321 1929501 80 81 3321
5 12 6188 64664 351 24804 36288252 81 3403 2024785 81 82 3403
51 8568 1144066 352 26235 40475358 1 82 3480 2123555 1 8 83 3486
3 14 11628 1961256 353 27720 45057474 1 83 3570 2225895 1 83 84 3570
315 15504 3268760 3 29260 50063860 84 3655 2331890 84 85 3655
3 16 20349 5311735 i 55 3085c 55525372 85 3741 2441626 8 86 3741
y 17 26334 8436285 gg 32509 61474519 86 3828 2555190 86 87 3828
18 33649 13123110 3 34220 67945521 87 3916 2672670 87 88 3916
319 42504 20030010 g 58 35990 74974368 88 4005 2794155 88 89 4005
Y o2r 53130 30045015 39 3782C 82398880 894095 2919735 89 90 4095
5 1 65780 44352165 360 39711 90858768 1 90 4186 3049501 90 91 4186

B-2

e e o -

