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QUANTUM VARIANCES FOR TRANSVERSE SSC INJECTION DYNAMICS
T. Garavaglia

Superconducting Super Collider Laboratory* 
2550 Beckleymeade Avenue 

Dallas, TX 75237

Abstract

Quantum variances for the transverse dynamics associated 
with the injection phase of the Susperconducting Super 
Collider are derived using squeezed state methods.

1 Introduction

During the injection phase into the SSC particles near the 
edge of the dynamic aperture perform chaotic motion [1]. 
With an injection amplitude difference as small as 10-10 
mm chaotic divergences for the x and y transverse betatron 
motions begin to occur as soon as 15 x 103 turns around 
the SSC. It is of interest to see what quantum uncertainties 
are associated with transverse amplitudes. These limits are 
indeed significant for the SSC, and they are in fact larger 
than the small differences which lead to chaotic dynamics.

with four-potential A(q)' is

L(u'^q') = mc\fuiv? + (e/c)A(q)iUl. (3)

In terms of the conjugate four-momentum, the Lagrangian 
becomes L(u',ql) = PiU1, and the invariant action is

5 = y piii'ds = J piii'ds. (4)

Treating s as the time coordinate, p, as the Hamiltonian, 
and using the method of stationary action, one finds equa­
tions which describe transverse betatron motion.

3 Quantum Limits on Injection
As a first approximation for finding the quantum limits, 
one considers a time-dependent linear oscillator Hamilto­
nian for an on momentum particle

2 Betatron Equations

The equations of motion for transverse betatron oscilla­
tions can be found from a Lorentz invariant Hamilto­
nian [2]. This Hamiltonian which is equal to the rest energy 
of the proton is invariant for curvilinear coordinate trans­
formations q' —> ip ■ This allows one to represent equa­
tions for betatron motion in the coordinate system related 
to ideal orbit of a proton and to see the various approx­
imation made to obtain the usual Courant-Snyder equa­
tions. For this invariant Hamiltonian, contravariant coor­
dinates are defined as the four-vector ql = (q°, q1, q2, q3) 
=(ct,x,y, z) —► (ct,x,y,s) where c is the speed of light 
and where s is the arc length along the ideal orbit. The 
contravariant components of the four-velocity and four- 
momentum are

H(s)

With the conditions

A(s)q2
(5)

1w" + K(s)w-----r 0

q" + K (s)q = 0 (6)

and with q = we^'^ and rp1 = Aj, one finds the invariant

21 = 7(s)q2+ a(s)(qp + pq)+/?(s)p2 (7)

with Courant-Snyder parameters

a(s) = —ww1, (3(s) = w2, and
1 + a2(s)

7(s) =
m

(8)

ul = dql/ds and pl = mcu1 (1)

where ds = \Jdqidq1. The invariant Hamiltonian is defined 
as

H(p' <q')/c = Pi11' _ L(u', q') + me (2)
where the invariant Lagrangian for the motion of a particle 
of mass m and electric charge e in an electromagnetic field

'Operated by the Universities Research Association, Inc. for 
the U. S. Department of Energy under Contract No. DE-AC02- 
89ER40-186.

The quantum states for this system can be constructed 
with the aid of the squeezing operator defined as

S = ezp((,f a2 - £at2)/2). (9)

The time-independent rationalized Hamiltonian, H0, is 
found from (5) with K{s) = 1 where the boson opera­
tors are found from \/2q = a + and \/2ip = a — aL The 
invariant (7) can be found from H0 as

2/(s) = SH0St = nTb+^ (10)
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where

b(s) = Se,eaSt = i (---- \- w — iw' | a
2 \ w

1 f1+ 2 \w w — IW (11)

with 6(w,wl). The eigenstates of Z(s) satisfy the eigen­
value equation

I(s)|n,s) = ^n+0|n,s)

|n,s) = ^|0), (12)
y/n\

and the units of I(s) are (Ji/\p\)rad. The Schrddinger 
states [3] are

|n,s)s = e,a"(J)|n,s) (13)

where the phase is

a„(S) = - (* + 0 / (14)

The coherent state for a time-dependent linear oscillator 
used to evaluate variances is generated from the squeezed 
ground state as

|/M)S =^bt(J>-'J'b^|0,s)J (15)

where /?, related to the classical value of the invariant I(s), 
is the eigenvalue of the operator b(s).

One can now use the states (15) to obtain results appro­
priate for the SSC. Using appropriate scaling transforma­
tions

P w and h h
W\ (16)

with the momentum |pl « £/c for a proton of energy £, 
one finds the variances and the uncertainty product rep­
resented in terms of the Courant-Snyder parameters (8) 
are

P_
IpI

h/3{s)
2|p1

a

dq 
ds ’

and cr(q)a dq
ds

2|P1 ’
h\/P(sh(s)

m
(17)

Writing the amplitude as qamp = \/^/^P(s) with the emit- 
tance e = 27r/(5), one finds the results

Qamp

o/7r
Tl he ^proton 

2[j7| ^ ~ 2 (18)

where the quantum emittance, represents half the
resolution length of a proton in the beam. With the ap­
proximations he zz 2 x \0~19 TeV m, and £ k 2 TeV, one 
finds

Cq / 7T W 5 X 10_2° m. (19)

For a typical SSCTRK tracking result showing chaotic mo-
tion with /?(s) ss 300 m and with xamp « 3.5 mm, one finds

e/n « 4 x 10 8 m

and
^(^amp) ss 3.9 x 10-6 mm. (20)

Similarly, the angular uncertainty is

■’(!) « 1.3 x 10 11 rad. (21)

V. Conclusions
The quantized invariant of the linearized betatron equa­

tions which are obtained from an invariant action leads to 
the time-dependent coherent state used to evaluate the un­
certainties of the position and momentum operators. The 
maximum value of /?(s) in the SSC arcs during injection 
is 300 m, the value used to obtain the variances (20) and 
(21). However, larger variances can occur during the injec­
tion phase in other regions where /?(s) > 1800 m. It is of 
interest to note that the emittance defined as e = 2wl(s) 
which is the area of the (q, q') phase space ellipse is quan­
tized and that the variance is

cr(e) = 7r|/?|(/i/|pj)rad.

A more complete account may be found in [4].
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