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ABSTRACT 
A nonvariational approach for determining the ideal MHD stability of 

axisymmetric toroidal confinement systems is presented. The code (NOVA) 
employs cubic B-spline finite elements and Fourier expansion in a general flux 
coordinate < iii, e, c) system. Better accuracy and faster convergence were 
obtained in comparison with the variational PEST rnd ERATO codes. The 
nonvariational approach can be extended to problems having non-Hermitian 
eigenmode equations where variational energy principles cannot be obtained. 
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1. INTRODUCTION 
Linear stability analysis of magnetohydrodynamic (MHD) modes in 

axisymmetric toroidal plasmas is crucial to thermonuclear fusion research. In 
particular, ideal MHD instabilities are thought to play an important role in 
limiting the e-valuec of tokamak devices. The mathematical problem is to 
solve the two-dimensional eigenmode equations and obtain the growth rates of 
the MHD instabilities. The exact solutions are impossible to obtain without 
the use of numerical computations. ft number of two-dimensional normal mode 
codes [1-6] have been developed extensively to study the dependence of ideal 
MHD instabilities on a variety of parameters relating to the geometry as well 
as the pressure and current profiles. As practical tools, they are used to 
aid in the design of new experiments and in the analysis of experimental 
data. All these ideal MHD codes utilize a Lagrangian formalism [7] for 
linearized perturbations and involve the use of the linear1 Calerkin procedure, 
which reduces the problem to the minimization of an algebraic quadratic form 
with respect to a certain set of variational parameters. The variational 
calculation is then reduced to the determination of eigenvalues and 
eigenf./notions of the matrix eigenvalue problem. Nonetheless, these codes 
have inherent limitations in their applications to various ideal MHD stability 
calculations and in their extensions to the nonideal MHD stability 
calculations. With the PEST code [11, for example, the choice of 
representation of the displacement vector prevents the stability analysis of 
equilibria where the toroidal field vanishes in plasmas, such as in the 
spheromak and reversed field pinch configurations. The PEST-2 [6], which is 
basically a numerical treatment of the energy principle, has eliminated this 
restriction, but has a major shortcoming in that it does not calculate the 
real physical growth rates or eigenfunctions of the Heal MHD instabilities. 

'I 
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However, an important limitation of these codes is that because of their 

variational nature, they cannot be extended to the stability calculations of 

the non-Hermitian eigenmode equations, such as in the cases of ideal MHD with 

equilibrium flows, resistive MHD and kinetic MHD, etc., where variational 

energy principles cannot be established. 

In this paper, we present a nonvariational ideal MHD stability code 

(NOVA), which can be easily generalized to integrate non-Hermitian eigenmode 

equations. All these variational ideal MHD stability codes employed linear 

finite elements in the minor radius direction, which are the lowest order 

finite elements allowed for representing the displacement vector 5. Since 

they are in quadratic forms, the numerical errors in the eigenvalues, u , 

scale as N , where M is the total number of the radial computational grid 

points. Therefore, our nonvariational approach requires higher order finite 

elements to achieve better accuracy and faster convergence. For example, with 

the cubic B-spline finite elements [8] the errors in or scale as N \ In a 

general flux coordinate (4i,8,c) system with an arbitrary Jacobian, the NOVA 

code employs Fourier expansion in the poloidal angle 8 direction, as in the 

PEST code, and the cubic B-spline finite elements in the radial 1/ direction. 

An arbitrary nonuniform <i-mesh is set up to provide the option of zoning the 

mesh to allow more finite elements near rational surfaces, the plasma edge, 

and the magnetic axis. In comparison with these existing variational ideal 

MHD stability codes, the NOVA code converges faster and gives more accurate 

results. 

In the following, we first briefly describe in Sec. II the MHD 

equilibrium and present a class of generalized toroidal coordinate system 

which can greatly improve the representation of various MHD instabilities. In 

Sec. Ill, we present the ideal MHD eigenmode equations [9] and the 
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corresponding boundary conditions for our nonvariational treatment. The 
r 

numerical meehods used to solve the eigeronode equations are described in Sec. 
IV. Convergence studies of the NOVft code are presented for the analytical 
Solovev equation [10], and detailed comparisons, as presented with other 
variational codes [11], are given in Sec. V. Several applications of the NOVA 
code to numerical tokamatc equilibria have indicated the accuracy and 
efficiency of this method, and are described in Sec. VI. In Sec. Vlt, we 
summarize the principal conclusions of this work. 

2. TOROIDAL MHD EQUILIBRIUM AND FLUX COORDINATE SYSTEM 
We consider stationary idaal MHD equilibria satisfying 

J « § = VP, f « 5 : J, and f - 5 ; 0 , (1) 

where J, B, and P are the equilibrium current, magnetic field, and pressure, 
respectively. In terms of the flux coordinate system C il>, e, c), the equilibrium 
magnetic field with ne3ted magnetic surfaces can be written as \ 

S = VS x ?i)> + qdji) ̂ 3̂  x J78 , (2) 

where 2irV is the poloidal flux within a magnetic surface, q(i|j) is the safety 
factor, 8 is the generalized poloidal angle varying between 0 and 2ir, and ; 
the generalized toroidal angle varying between 0 and 2s. Since 

where the Jacobian / is defined by 
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* _ 1 

/ = Vip x V8 • 7K, , ('*) 

the magnetic field lines are straight in this coordinate system. 

For axisymmetric equilibria, we can also express the equilibrium magnetic 

field as 

§ = 7* x VI|J + g(t|j}<7tt> , ( 5 ) 

where * is the toroidal angle in the usual cylindrical coordinate (X,4,Z) 

system. Then i(i can he determined numerically by solving the Grad-Shafranov 

equation, 

A % = X 29 • (^ VUiJ = -(X2P' + gg'J , (6) 
X 

if P(\ji) and g(ip) are specified. Here, the prime denotes the partial 

derivative with respect to it. We can write the generalized toroidal angle c 

as « 

c = * - q fi{e,«) , (7) 

where 6(6,<J) is periodic in 9. Then from Eqs. (2) and (5), 6 and f are 

related by 

q ( l + f f ) = ^ . 
Along a flux surface in the poloidal plane we have 
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de " X ' ^ ' 

where ds is the element of arc length along a constant (4>,$> line. 
Specification of f therefore determines the 6 coordinate. In this paper, we 
choose the Jacobian in the form 

/(x,z) = £ - _ , do) 
a( iD) [Vi i i | J B 

where i,j,k can be freely specified and a(i|i) is given by the requirement that 
8 increases by 2ir during one poloidal circuit. The form off in Eq. (10) is a 
trivial generalization of that used in the PEST-2 code [6]. Thus, from Eq. 
(9) we have 

«<*) = 2 ! « „ . . - (11) 
fds(|v»|J B /* ) 

For the choice i = 2, j = k = 0, the (i|i,s>t) coordinate represents the PEST-1 
coordinate. For i = j = 1, k = 0, we have the equal arc length coordinate 
system, and a Hamada-like coordinate system is obtained by letting 
i = j = k = 0. The choice i = j = 0, k = 2 is used in the Hamiltonian 
representation of the magnetic field [12]. 

The general flux coordinate system (i|>,8,0 constructed here is not 
orthogonal and its metric is complicated because Vi> • v? * 0, 79 - 7c. * 0, 
79 - V4i * 0, and |7s| 2 * 1/X . However, c is still an ignorable coordinate 
for axisymmetric equilibria, and the perturbed quantities can be represented 
by a single mode varying as exp(-inr,). 
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3. LINEARIZED IDEAL MHD EIGENMODE EQUATIONS 
Let c, b, p. be the perturbed quantities for the plasma displacement, 

magnetic field, and plasma pressure, respectively. Taking the time dependence 
?(x,t) - ?(8) exp(-iut) and applying the Laplace transform, the linearized 
ideal HHD equations governing the asymptotic behaviors of the perturbed 
quantities are given by 

p + X • yP + Y Pv • t = 0> '(12) 

P u 5 = vp. + S * (v x S) + 6 x (v x 5) , (13) 

and 

5 : V « (5 < J) , (14) 

where •*„ = 5/3 is the ratio of specific heats, p is the plasma equilibrium 
density, and the initial source perturbations have been neglected because ,;= 
are not interested in the transient phenomena. We decompose the displacement 
vector and perturbed magnetic field as 

l = Js_„ + !a (S x n ) + ! | § , d5) 
|V«>|2 B 2 B 2 

and 

Q Q Q 
5 = % n * — ^ (fi * **> + -i? § , (16) 

|v*|2 |7*| 2 B 2 
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so that 

Q s a 6 . Jjjil, a n d Qfa s 5 . 3. 

The three components of the momentum equation, Eq. (13) , obtained a f t e r taking 

the s ca l a r products with v<l>, B x Viji, B, can be wri t ten as 

n • ve. - up$, + |?i|)| $ • '( I) 

+ ( | 7 * | 2 S - S • J) i 2 | L ( S • V5S - S^) + 2R • 7«»Qb , (17) 
B 

(6 x V4») * ?P. s ui 2p]7i|)| 2£ + (6-3)8 • V« 

B § • ? ( ^ — ( 8 • 7£ g - S ^ j ] + 2t • (3 x v^)Q b , 

(18) 

and 

2 
co p 5 b = 6 • 7 ( P l + P ' ^ ) , (19) 

where P 1 = p 1 + b • B is the total perturbed pressure, P' = aP/a*, 
•*• - * -*• • * ~ 

K = (B/B) • 7(B/B) is the magnetic field curvature, and S = (B x ?<i/|v^p) 
• 9 x (B x Vi(i/|Vi()|'i) i3 the local magnetic shear. Similarly, the three 
components of the induction equation, Eq. (14), can be written as 
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Q = 3 - VE. , (20) 
* 

•IM) 2 (§ - V C f l - S 5 J r ( 21 ) 

Qb = B 2§ • V(^|) - B 27 • | - 2t • (fi x w*)« a 

-2(g • 7 # ) - ^ 5 + P-e , (22) 

-*• 
where v • 5 can be explicitly expressed as 

v*-v5, _, 8x?*-v5 

i v * r I»*I B 

• S • *£-|) . (23) 

Now 5 b, (L, Q g, and Q b can be eliminated by using Eqs. (19) - (22) and from 
Eqs. (12) ,(17) ,(18), and (23) the linearized ideal MHD eigenniode equation can 
be cast into the following form [9] 

7* • V I |= C ( I D ! ° I, (24) 
< : : ) • • V \ v , ? 

and 

« - • ( : : ) 
(25) 

where C,P,5,F are 2x2 matrix operators involving only surface derivatives B 
V and (8 x v<i) - V. The matrix operators are given by 
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c = 

E = 

/2K. G \ 

) (26) 

p 

d7*r :s - e • 3}iaJ-B • v 2Y PR, 
1 ' g2 3 1(1 

V*| 2 (2K ? - ^ • v) | V . | 2 [ 1 * ^ 8 . 7 ( ^ ) 1 / , (27) 
B Hi p 8 

«--42!L * 8 • ? (MLl i5 ) 2 Y P K V 
B B S S l 

Y„P+B Y P -*— + ^f- 8 - »£§) / , (.58) 
3 B 2 n>2p B" 

_2K + hn . v B . , i i | L 3 . Idfe . „ . 2 P . K 

1 - 2K, 
- ^ — ^ / , (29) 

B 2 | v * | 2 

where in Eqs. (26)-{29) B-7 operates on a l l the quan t i t i e s on i t s r igh t s i d e , 

and also note that in Eq.(24) 

v<i • v -. | 7 * | 2 | j j + (v*-?e) | ^ + (7*.75) f̂  , 

G = <u2p + 2P 'K . + |V*| 2S • v[-te*) * [t • 3 - S f v H 2 ) ^ 
V | v * r B̂  

^ - . t - n, and Ks = if • I s a 
B 
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The boundary condition at the magnetic axis is JL = 0. For fixed 

boundary modes the boundary condition is r : 0 at the plasma-wall 

interface. For free boundary modes the boundary condition at the plasma-

vacuum interface is given by b v * 7t|> = B • 75., where b v is the vacuum 

magnetic field which must be solved from the divergence-free equation 

V • b v = 0. 

For a given equilibrium we first solve 5 S and v • 5 in terms of P 1 and ^ 

from Eq, (25) by inverting the surface matrix operator E. Equation (21) then 

reduces to an equation for P̂  and %^. Admissible regular solutions must be 

periodic in both e and z, and satisfy the appropriate boundary conditions. 

This procedure fails if the inverse of the surface matrix operator E does not 

exist for s given ui at some ip surface. Then only non-square-integrable 

solutions with spatial singularities at the singular surface are possible. If 

at each surface no:itrivial sir.gle-valued periodic solutions in 9 and r. can be 

found for the equation 

(30) 

the corresponding set of eigenvalues vr forms the continuous spectrum for the 

equilibrium [13,14). Equation (30) represents the coupling of the sound waves 

and the shear Alfven waves through the surface component of the magnetic 

curvature and the plasma pressure. Equations (24) and (25) represent the 

toroidal generalization of the set of eigenmode equations derived by Appert et 

al., [15] for the circular cylindrical pinch. 
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4. NUMERICAL METHODS 
The eigenmode equations, Eqs. (24) and (25), are solved by the Galerkin 

method, where the eigenfunction is represented by a linear superposition of a 
finite subset of a complete set of basis functions. We first represent the 
perturbed quantities by a finite Fourier series in 0, 

5(^,8,t) = I Zm(i>) exp[i(me - ne)j, (3D 
m 

where the sumination over m is truncated to a total number of L poloidal 
harmonics, and n is the toroidal mode number. The elimination of 5 S and 7 • 5 
proceeds by finding the algebraic Fourier matrix representation of the surface 
operators C,D,E, and F. Introducing the bracket notation, 

E , = <m'|E|m> = 4- ^d8[exp(-im19)]E[exp(im8)] , (32) 
m m ' ' £TT 

Eq. (25) reduces to 

• ( • - . ) . 
V . % = F,-J t I • ' (33) 

where the Fourier indices m' and m have the same truncated domain. Note that 
the evaluation of the algebraic matrix operations, &mim etc., involves 
convolutions that occur in evaluating operator products. To avoid aliasing 
errors, a larger truncated Fourier series domain than L, say r. , is imposed 
and is increased until the results are satisfactorily converged. Now E m,m can 
be inverted to obtain zsm and (?"5) m in terms of P 1 m and 5. m, and then by 
eliminating P 1 | t ] in favor of Z^m, Eq. (24) is reduced to a set of L second-
order differential equations. 
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IF Hm'M IF 5m + V m IF5m + V m 5m + IF [ Hm'm 5 m ] ' °' ( 3 4 ) 

where the H's are algebraic L x L matrices and are functions of r only, where 
r = (Uj/ititot) ''2 and 5 m = 5̂ ,,/r is a vector of dimension L. The explicit 
expressions of the H's are too tedious and complicated to present in full 
detail here. The boundary conditions at the magnetic axis are now modified to 
£„ = 0 for m2 i 1 and 35m/3r = 0 for m 2 = 1. m ^m »•—.^m 

He mention here that the MHD fast- wave spectrum is best calculated 
numerically using the coupled set of first order equations given by Eqs. (24) 
and (25), rather than the second order equation, Eq. (34), because of the 
apparent singularity in Eq. (34) related to those frequencies. 

Equation (34) is integrated by employing cubic B-spli;ie finite elements 
[8,161 with the representation 

V'> = % <WV r > • ( 5 5 > 

where the U's are the cubic B-spline finite elements, N is the total number of 
radial grid points, and we require (N + 2) cubic B-spline elements with 
N > 5- The cubic B-spline elements are localized piecewise cubic polynomials 
occupying four grid intervals with continuity up to second derivatives, and 
are shown in Fig. 1. The errors in this representation scale as IT . Note 
that the cubic spline has the property of minimum curvature among all third 
order polynomials. For a detailed description of the cubic B-spline finite 
elements interested readers are referred to Ref. 11. 

I 
Now operating on Eq. (34) with the projection operator, 0., = J" dr U , we 

K o K 

obtain a set of algebraic equations 
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l < k , 5 , , = 0 , (36) 
mTk m k m k 

where Mfjj^ is a (N + 2) L x (M + 2) L matrix with nonvanishing elements along 
its L 2 7-banded diagonals. After inroosing the boundary conditions to modify 
the matrix M, the nontrivial solution of Eq. (36) can be obtained by requiring 

f U 2 ) = det|M(u 2)| = 0 . (37) 

The eigenvalue problem is therefore nonlinear in u> and its numerical solution 
must be found by iteration. Convergence is assumed if |f^ un +i) 
f(u)p) J/f(up) | < e-j, and/or |<"p+1 - <A\ < E 2 I where e 1 and E 2 are appropriate 
small> numbers, and p denotes the iteration step. When the eigenvalue 
iteration>is converged to the required accuracy, Eq. (36) is used to construct 
the eigenvectors i and P.|. For this purpose, the matrices C,D,E,F for each 
surface are saved in disk files when they are computed during the calculation 
of the matrix elements of h^L^ • 

The iteration is expensive computationally because the matrix inversion 
must be carried out for Eq. (33) at each iteration for each surface. 
Consequently, the execution times 3cale as the total number of radial grid 
points N as well as L 2 for the matrix inversion. Finally, to be consistent we 
have also employed the cubic B-spline finite elements to obtain the 
equilibrium quantities from the mapping codes. 

Next, we consider the vacuum solution of 1 • b y = 0 with the vacuum 
region surrounded by a conducting wall. For n*o modes, we represent b v = 
Vx- Then in terms of the Green's theorem we have 



-15-

2*x<2 s> = /d5 t • [G(S t|* B)v t>£(S f c) - x(x t)v tG(x f c|i? s)j t (38) 

where we have chosen the Green's function G to satisfy 

7^G(xt|xs) = 4»«(xt - xs) , (39) 

and G(xfc)xe.) = |xt - x g| . Now x g can be either on the plasma-vacuum 

interface or on the wall, and the integral extends over both surfaces in 

Eq. (38). With the boundary conditions 7x • vi|i = B • Vt;,, on the plasma-vacuum 

interface and 7x • ds H = 0 on the wall, Eq. (38) can be'solved to obtain x o n 

both surfaces by the method of collocation [17]. 

For the n = 0 mode, the magnetic field cannot be described by a single-

valued scalar potential. Instead, we follow the procedure of Lust and 

Martensen [18] and define 

b v = Vx + a^* x va + a 2V$ , (10) 

where ai and ap are constants related to the perturbed quantities, x can be 

obtained by the same procedure as for in * 0 siodes with the additional 

constraint ^xde = 0 due to the singular nature of the matrix in Eq. (38) for 

the n = 0 mode, a can be solved by taking V<t> - V x b v = 0 and we have [1] 

A*ce = 9 • (-!) = 0 . (41) 

The boundary conditions are o = 1 on the plasma-vacuum interface and a = 0 on 

the wall. Equation (41) again can be solved in terms of the Green's theorem 
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nA(x ) ds. 
s x t 

where the Green's function G satisfies 

s 

and is given by 

- * * **** 1 

where P_i/2 i s t h e associated generalized Legendre function, 

r - [(X2 - X 2 / + (Z s - Ztf + 2(X 2 • *\){Zs - Z 2 ) ] ' ^ , (45) 

and 

[x2

+X2

+(Z - z j 2 ] 
w = s z s t _ ( i ) 6 ) 

r 

To determine a 1 and a 2 we make use of the property 

J" 7x - 7<|>d3x = JVx • CV* x vu)d^x = 0 . 

I 
Then, with the aid of the boundary conditions A % ds H = 0 on the wall and 

A x ?i|i = ̂  B on the plasma-vacuum interface, where A is the vector potential 
defined by b v = v x ft, we obtain 

9<7"txVa)-(n xS)ds 
J|VtxVa| d dX 
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and 

$ v*-(n »S)ds 
a 2 = — p ^ S , (tB) 

2 J><i| d 3 x 

where s denotes the plasma surface and n - -7i|//|v4if. After we solve the H P 
-t-

vacuum magnetic field b v in terms of %., we obtain the boundary condition for 

solving Eqs. (24) and (25) at the plasma-vacuum interface: 

m,m 

Note that P 1 is related to $. and 3^^/a^ in Eq. (24). 

This concludes our discussions on the vacuum solutions. For more 

details, the reader is referred to Ref. 17. 

5. CONVERGENCE STUDIES 

To illustrate the convergence properties of the code, we consider the 

analytical Solovev equilibria [10] which have been used previously [11] for 

extensive comparisons of variational ideal MHD stability codes. Our results 

will be compared with the previous results, which provide a series of cross 

chet ;s essential for validating such a large, complex code. The Solovev 

equilibria which satisfy the Grad-Shafranov equation, Eq. (6), with g1 = 0 are 

given by 

• = l— (X 2Z 2 • |HX 2 - R 2 ) J . <50) 
EETq(O) 4 

(UE 2)B 
P( + ) = 5——(*„ - *) , (51) 

2TTER q(0) ° 
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*»(*J s RBo * A ' {5Z) 

where (X,$,Z) is a cylindrical coordinate system, B 0 is the toroidal field at 
the magnetic axis X = R. P(ip) is the plasma pressure, and q(i|>) is the safety 
factor with the contour of integration along a line of constant ty and o>. The 
system is characterized by the parameters: the ellipticity E, the inverse 
aspect ratio (e = (<{inq(o)/irER2B „}i and q(o). The wall position is 
specified by A = (ty^/ty^) > and 2ni|iB is the total poloidal flux in the 
plasma. 

To achieve the correct eigenvalue and an accurate representation of the 
corresponding eigenfunction, in principle one requires a very large number of 
basis expansion functions. Since this number is limited by the computer 
memory and computing time, it is necessary to extrapolate from the lower order 
representations to obtain the asymptotic eigenvalue. Fortunately, we need 
only a few points because the extrapolation formulas are simple. 

Numerical convergence is shown below for the small aspect ratio, 
elliptical case with the parameters: R = B Q = 1, E = 2, e = 1/3, q(o) - 0,3, 
A = 1, and n = 2. We employ a uniform r-mesh of W grid points and retain the 
poloidal harmonics m = [-L Q,L 0]. For the equal arc-length 0 coordinate, the 
convergence curves of the eigenvalue (Y* 5 -« ) are shown in Fig. 2. Here Y 2 

is normalized in terms of B2(o)/p(o)q2(1)R2. The eigenvalue Y 2 scales as Y 2 = 
Y 2 + C, exp(-LQ/2) for fixed N and as Y 2 = Y | + C 2 tT^ for fixed LQ, where Y 2 

and Y are the converged value for fixed N and L Q, respectively. The resu.lts 
from the PEST code show that Y 2 scales as Y 2 = Y 2 + ni exp(-L/2) for fixed N, 

3 ' 
where L = 2L 0 + 1, and for fixed L, as Y 2 = Y 2 + n

2
 N " 2 - N o f c e t h a t i f w e u s e 

the PEST e-coordinate, the growth rate from our code also scales as Y 2 = ( Y 2 + 
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Cjexp(-L/2). Convergence curves from the PEST code are also shown in 
Fig. 2. Detailed comparison between the results of our code and those of the 
PEST code indicates that [C,| - |D.j| and |C 2| <<|D2|. Even with W = 5, our 
code converges in L with an error of less than 1? of its converged value. On 
the other hand, comparable accuracy from the PEST cods would require at least 
three times as many linear finite elements. The eigenfunction £. and the 
plasma flow pattern for this case are shown in Figs. (3a) and (3b), 
respectively. Comparisons of the converged values of the square of growth 
rates from different Solovev equilibria obtained from various ideal MHD 
stability codes [11] are summarized in Table I. For most of the cases, our 
results are roughly between those of PEST [1] and ERATO [2] codes. These 
small discrepancies may be due to different mapping codes used in these 
stability codes. 

6. APPLICATIONS 
In this section we present several test cases of calculating eigenvalues 

from numerical equilibria. Our code can make use of an arbitrarily spaced 
radial mesh and has the option of rezoning this mesh to allow various nodes of 
the radial finite elements to coincide with the rational surfaces. Our 
experience in choosing various 9-coordinate systems does not warrant an 
optimal one. The best choice of 8 may be determined by the requirements for 
an accurate and efficient calculation of the toroidal equilibrium quantities 
as well as accurate and efficient representation of the eigenfunction 
involved. Since these issues are problem dependent, the ability of choosing 
arbitrary Jacobian (or 9-coordinate) and arbitrary radial mesh is essential. 
It provides not only the extra confidence in the results which come from 
obtaining consistent eigenvalues from different coordinate systems, but also 
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the physical insight of the MHD perturbations. In general, because it 

distributes mean points uniformly over the plasma surfaces, the equal arc-

length 8-eoordinate is usually a good choice. For a small aspect ratio bean-

shaped tokamak where the PEST a-coordinate does not sample the region on th_-

outside of the torus very well, the equal arc-length system is indeed much 

superior. Me have applied our code to study external kinks, internal kinks, 

toroidicity-induced global ftlfven modes, and the continuum modes for toroidal 

equilibria of various shapes and 6 values. The results are described below. 

6a. EXTERNAL KINK MODES 

The external kink instabilities are studied for a high-e bean-shaped 

equilibrium [19] with the plasma surface defined by X = X Q + p cos \ , Z = Eo 

sin \ , o = fl(1 + B cos t), X = C sin t, with X 0 » 2.71, E - 0.895, 

A = 1, B = 0.6, and C = 1.693. This corresponds to d/2a = 0.3035, 

b/a s 1.7385, and R/A = 3.449, as shown in Fig, 4. The equilibrium profiles 

are defined by P(y) = P.O.003 - y 2 ) 2 , and q{y) = ? q.y1 , where y - ID/A*, 
i-0 x 

P Q = 0.109, q{o) = 1.03, q(D = 4.2, q'(o) = 0.84375, q'O) = 9.0, and 

tii = 0.248 is the plasma poloidal flux. The average beta is <6> = 8.75JS. 

Note that q[s are uniquely determined by q'(o), q(1), q'(o), and q ' O ) . The 

external kink mode has the eigenvalue T 2 = 3.5 and has maximum amplitude near 

the plasma surface. Therefore an optimal radial coordinate is the uniform 41-

grid because it samples more grid points near the edge. The convergence in e 

(i.e., Fourier harmonies) is much more rapid for the equal arc length e-

coordinate, because the PEST 9-grid concentrates more grid points around the 

tips of the beam, but the mode has more weight toward the outside of the 

torus. In fact, the equal arc length 8-coordinate is rapidly convergent with 

an error of less than 2% of its converged value with -B < m < 8. Comparable 
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accuracy with the PEST 8-coordinate would require approximately three times as 
many Fourier components for the positive maximum m, i.e., -5 < ra < 25. These 
results can be clearly seen in Figs. 5 and 5 which show the poloidal 
components of converged eigenfunction 5^ for the equal arc length 9-coordinate 
and the PEST 8-coordinate, respectively. The plasma flow pattern on the <* = 0 
plane is shown in Fig. 7 where large flow is clearly seen on the outside of 
the torus. Thus, the external kink can be effectively stabilized by placing a 
metal plate on the outside of the torus to stop or reduce the flow. 

6b. INTERNAL KINK MODES 
The n = 1 ideal MHD internal kink is usually unstable in tokamak plasmas 

when Q a xi S<1 {20] so that the q = 1 surface lies within the plasma and e ia^ 
finite. The growth rate of this mode is typically a factor of e 2 smaller than 
the more dangerous external kinks, where E is the inverse aspect ratio. •• Its 
eigenfunction c,^ is localized inside the q = 1 surface and decreases rapidly 
to zero outside. Because of the small growth rate and the need to resolve the 
q < 1 region accurately, studying this mode provides a challenge for testing a 
stability code. A specially tailored r-grid with grid packing near the q = 1 
surface has been used to obtain accurate results. The tailored r-grid usually 
produces faster convergence than the tailored iji-grid when the q = 1 surface is 
closer to the magnetic axis. This is because the r-grid weights the region 
near the magnetic axis more heavily than the *-grid. In general, accurate 
representation of the eigenfunction near the rational surfaces is also of 
critical importance to boundary layer treat:=it of nonideal instabilities, 
such as the resistive tearing modes, kinetic fishbone modes, etc. 

We consider a PDX type equilibrium with circular plasma surface computed 
from a flux equilibrium code with the profiles P(y) = P0<1 - y 2 ) 2 , q(y) = q(o) 
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+ y(q(1) - q(0) + (y - 1)[q'(1) - q(1) + q(o)](1 - y3)/(y - y s)}, where y 3 = 
[q'{1) - q d ) + q(o)]/{q,(o)+q'{1)-2[q(1) - q(o)j} y = */A*. The parameters 
are iip = 0.0609, <S> a v = 1.277J, R=1.13, B/a = 3.4, F Q = 0.02156, q(o) = 0.8, 
q(1) = 2.85, q'(o) = 13.857, and q'(1) = 106.88. For the n = 1 fixed boundary 
mode the eigenvalue is Y 2 = 2,306 x 10"^ and the eigenfiinction g^ versus r is 
shown in Fig. 8. The q-profile is also shown in Fig. 8. The plasma flow 
pattern at * = o, shown in Fig. 9, clearly indicates large flow at the q = 1 
surface with the dominant m - 1 component. The computation was carried out 
with the equal arc-length a coordinate, and the dominant poloidal harmonics 
art 1 < m < 3. Because of the relatively high growth rate, we do not have to 
pack many grid points near the q = 1 and q = 2 surfaces. However, for smaller 
growth rates the eigenfunction exhibits a sharp gradient, and local packing of 
more grid points near singular surfaces may be necessary. 

6c. T0R0IDICITY-INDUCED ALFVEN WAVES 
Recent studies of the stable shear Alfven spectrum for toroidal plasmas 

using the ideal MHD model have led to the discovery of the discrete 
toroidicity-indueed Alfven waves [9]. The toroidal coupling effects due to a 
nonuniform magnetic field over a magnetic surface can cause interactions among 
the neighboring poloidal harmonics and can break up the shear Alfven 
continuous spectrum resulting in continuum gaps. In addition, discrete, 
global, toroidioity-induced eigenmodes were found with frequencies inside the 
continuum gaps. The existence of these toroidicity-induced shear Alfven 
eigenraodes suggests a new efficient Alfven wave heating scheme. In addition, 
instabilities can be excited by tapping the free energy of energetic particles 
associated with the plasma inhomogeneities through wave-particle resonances. 
Figure 10 shows the poloidal harmonics of the n = 1 fixed boundary 
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eigenfunction j;. versus ijj for a low-6, circular numerical equilibrium. The 
numerical equilibrium has the same P(i(0 and q(ip) functional forms as in Fig. 8 
but with the parameters: P Q = 4.55 x 10"1*, R/A = 4, R = 1, 
q(o) = 1.05, q{1) = 2.3, q'(o) = 36.12, q'{1) = 140, &(i = 0.020768, and 
<S> a v = 0.0407$. The eigenfrequency of this fixed boundary n = 1 mode is 
w = 0.5. The q-profile is also shown in Fig. 10. It is clear from Fig. 10 
that primarily m = 1 and 2 harmonics dominate around the q = 1.5 surface with 
a small coupling to ra = 3 harmonics toward the plasma surface. Projection of 
the displacement vector % onto the <t - o plane is shown in Fig. 11, where the 
plasma vortices corresponding to ID : 1 and 2 harmonics are clearly seen. Note 
that, due to the regular mode structure and the existence of the continuum 
gap, the numerical computation is rather easy. 

6d. SHEAR ALFVEN CONTINUUM MODE 
The continuum spectrum is due to the singular nature of the ideal MHD 

model [13] and is a result of the noninvertibility [9,14] of the surface 
operator E in Eq. (25). The continuum eigenfunctions have singular behavior 
somewhere inside the plasma. At the resonance surface ij)0, the eigenfunction 
can behave [21] locally as [C|ln(\|> - ii>0) + C-,]. The constant C, can have an 
arbitrary finite discontinuity, which provides the possibility of satisfying 
the boundary conditions for a continuous set of eigenvalues and leads to a 
continuous spectrum. In numerical calculations the continuous spectrum is 
approximated by a dense set of discrete eigenvalues with the number of 
discrete eigenvalues proportional to the number of grid points. These 
numerical discrete eigenvalues are only the approximate solutions of Eq. (30) 
and we do not encounter difficulties in inverting the surface operator E in 
Eq. (2d). Figure 12 shows the eigenfunction of the n = 1 fixed boundary 
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eontinuum mode with frequency or = 0.302 tor t^e same equilibrium as in 
Fig. 10. Figure 13 shows the approximate continuous spectrum [9] from the 
solutions of Eq. (30) for the same numerical grid points as used in Fig. 12. 
Comparing Fig. 12 with Fig. 13, our numerical '.solution £. correctly shows 
the ln|i|i - I|I | behavior near the Jingular surface of the E = 2 mode and a jump 
discontinuity near the singular surface of the m = 1 mode. These singular 
surfaces are th" locations of the singularities of the surface operator E in 
Eq. (25) for the continuum frequency m2 = 0.302. 

7. CONCLUSION 
In this paper we have presented a nonvariational ideal MHD stability code 

(NOVA) which represents an accurate and efficient approach for determining the 
ideal MHD spectrum and stability of axisymmetric toroidal confinement 
systems. In a general flux coordinate system the code makes use of the cubic 
B-spline finite elements in the minor radius direction and Fourier expansion 
in the poloidal direction. The ideal MHD eigenmode equations are reduced to a 
set of coupled second order differential equations in the minor radial 
direction. With the cubic B-spline finite elements, we are solving a matrix 
equation with nontrivial solutions. In comparison with the variational codes 
[1-6], the NOVA code can produce more accurate results with less computational 
efforts. The code is fast and efficient on a CRAy-1 computer so that it is 
written in the interactive mode which can provide more flexible usages. The 
code has also been applied to several typical problems to illustrate the 
convergence properties with different coordinate systems. 

The improved efficiency over the previous variational codes may allow for 
an examination of the stability of fully three-dimensional magnetic 
confinement devices, such as stellarators. Finally, since the numerical 
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prccedure does not rely on the variational energy principles, this successful 
nonvariational approach can be easily extended to other physical problems 
where the eigenmode equations are non-Hermitian, 
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TABLE I 

Comparison of the Eigenvalues Y 2 for Different Solovev Equilibria 

from Various Ideal MHD Sbability Codes 

z E A q(o) q(a> n Kerner PEST-1 ERATO Degtyarev NOVA 

1/6 1 2 1.79! 2.0 1 0.202 0.204 0.211 0.208 

1/6 1 2 2,2387 2.5 1 0.504 0.506 0.511 0.508 

1/3 2 1 0.3 0.5224 2 0.413 0.427 0.431 0.430 0.430 

1/3 2 1 0.7 1.219 2 0.118 0.119 0.120 0.121 0.119 

1/3 2 - 1.2 2.0897 1 0.75 0.78 0.748 

1/3 2 » 2.0 3.4829 1 0.68 0.75 0.656 

1/3 2 » 0.6 1.0449 2 1.31 1.40 1.32 1.35 

1/3 2 » 1.0 1.7415 2 1.03 1.07 1.06 1.038 
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FIGURE CftPTIOHS 
Fig. 1. Typical cubic 8-spline finite element for a uniform grid. 

Fig. 2. Comparisons of convergence results in both the radial and the 
poloidal directions for our nonvariational code and the PEST code. 
The Solovev equilibrium has the parameters R = B a 1, E = 2, 
e = 1/3, q(o) = 0.3, A = 1, and n = 2. The eigenvalue -^ is 
extrapolated numerically in both the number of poloidal harmonics 
and the number of radial finite elements. 

Fig. 3- (a) The poloidal harmonics of the eigenfunction £, versus r and (b) 
the projection of the displacement vector onto the * = 0 plane for 
the converged solution as shown in Fig. 2. The n-profile is also 
shown in Fig. (3a). 

Fig. 4. The flux surface of a typical high-B bean-shaped takamak 
equilibrium. 

Fig. 5. The poloidal components of the converged n = 1 free boundary 
external kink mode eigenfunction 5. versus (1. It is computed with 
an equal arc length 9-coordinate for a bean-shaped equilibrium Mith 
the parameters X Q = 2.71, d/2a = 0,3035, b/a * 1.7385, R/a = 3.449, 
<6> a v = 8.75*, q(o) = 1.03, q(1) = 4.2, P Q = 0.109. The eigenvalue 
is Y = 3*5 and the q-profile is also shown* 
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6. The poloidal components of the converged n = 1 free boundary 
external kink mode eigenfunction s-, versus \p with PEST 9-coordinate 
for the same bean-shaped equilibrium as in Fig. 5. 

7. The projection of the plasma flow on the « = 0 plane is shown for 
the n = 1 free boundary external kink mode for the same case as in 
Fig. 5. 

8. The poloidal components of the n = 1 fixed boundary internal kink 
mode eigenfunction §. versus r. The equilibrium has a circular 
plasma -urface with R = 1.43, B/a = 3.4, q(o) = 0.8, q(1) = 2.85, 
P Q = 0.02456, <8> a v = 1.277?. The eigenvalue is Y 2 = 2-306 * 10" 3 

and the q-profile is also shown. 

9- The projection of the displacement vector X onto the <t> = 0 plane for 
the n = 1 fixed boundary internal kink mode shown in Fig. 8. 

10. The poloidal harmonics of the n = 1 fixed boundary toroidicity-
induced shear Alfven eigenmcde, i' , versus r for a low s circular 
equilibrium with the parameters: R = 1, R/a = 4, q(o) = 1.03, q(D = 
2.3, P 0 = 4.55 * 10"*, and <8> a v = 0.04075- The q-profile is also 
shown and the eigenvalue is u 2 = 0.5-

11. The projection of the displacement vector t on to ttie 4 = 0 plane 
for the n = 1 fixed boundary toroidicity-induced shear Alfven 
eigenmode as shown in Fig. 10. 
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Fig. 12. The poloidal harmonics of the n = 1 fixed boundary continuum mode 5^ 
versus r for the same equilibrium as in Fig. 10, The eigenvalue is 
OJ2 = 0.302 and the q-profile is also shown. 

Fig. 13. The n = 1 continuous spectrum for the same equilibrium as in 
Fig. 12. 
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