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ABSTRACT
A nonvariational approach for determining the ideal MHD stability of
axisymmetrie toroidal confinement systems is presented. The code {NOVA)
employs cubic B-spline finite elements and Fourier egpansion in a general flux
coordinate {(v,8,z) system. Better accuracy and faster convergence were
obtained in comparison with the variational PEST ~ad ERATQ codes. The
nonvariational approach can be exiended to problems having non-Hermitian

eigenmode equations where variational energy principles cannot be obtained.
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1. INTRODUCTION

Linear stability analysis of magnetohydrodynamic (MHD) modes in
axisymmetric torcidal plasmas is crucial to thermonuclear fusion research. In
particular, ideal MHD instabilities are thought Lo play an important role in
limiting the gB-values of tokamak devices, The mathematical problem is to
solve the two-dimensional eigenmode equations and obtain the growth rates of
the MHD instabilities. The exact solutions are impossible to obtain without
the use of numerical computations. A pumber of two-dimensional normal mode
codes {1-6] have been developed extensively to study the dependence of ideal
MHD instabilities on a variety of parameters relating to the geometry as well
as the pressure and current profiles., As practical tools, they are used to
aid in the design of new experiments and in the analysis of experimental
data. All these ideal MHD codes utilize a Lagrangian formalism [7] for
linearized perturbations and involve the use of the linear Galerkin procedure,
which reduces the problem to the minimization of an algebraic quadratic form
Wwith respect to a certain set of variational parameters. The wvzriational
caleulation is then reduced to the determination of eigenvalues and
eigenfunctions of the matrix eigenvalue problem. Noretheless, these codes
have inherent limitations in their appliecations to various ideal MHD stability
caleculations and in their extensions Lo the nonideal M™MHD stability
calculations. With the PEST code [1], for -example, the choice aof
representation of the displacement vector prevents the stz2bility anmalysis of
equilibria where the toroidal field vanishes in plasmas, such as in the
spheromak and reversed field pinch configurations. The PEST-2 (6], which is
basically a numerical treatment of the energy principle, has eliminated this
restriction, but has a major shortcoming in that it does not calculate the

real physical growth rates or eigenfunctions of the ideal MHD instabilities.



However, an important limitation of these codes is that because of their
variational nature, they cannot be extended to the stability calculations of
the non-Hermitian eigenmode equations, such as in the cases of ideal MHD with
equilibrium flows, resistive MHD and kinetic MHD, ete., where variational
energy principles cannot be established.

In this paper, we present a nonvariational ideal MHD stability code
{NOVA), which can be easily generalized to integrate non-Hermitian eigenmode
equations. All these variational ideal MHD stability codes employed linear
finite elements in the minor radius direction, which are the lowest order
finite elements allowed for representing the displacement vector E. Since
they are in quadratic forms, the numerical errors in the eigenvalues, m2,
scale as N'2, where ¥ is the total number of the radial computational grid
points. Therefore, our nonvariational approcach requires higher order finite
elements to achieve better accuracy and faster convergence, For example, with

2 scale as N‘u. In a

the cubic B-spline finite elements (8] the errors in w
general flux coordinate (¢,8,r)} system with an arbivrary Jacobian, the NOVA
code employs Fourier expansion in the poloidal angle & direction, as in the
PEST code, and the cubic B-spline finite elements in the radial ¢ direction.
An arbitrary nonuniform y-mesh is set up to provide the option of zoning the
mesh to allow more finite elements near rational surfaces, the plasma edge,
and the magnetic axis. In comparison with these existing variational ideal
MHD stability codes, the NOVA code converges faster and gives more acecurate
results.

In the following, we first briefly deseribe in Sec. II the MHD
equilibrium and present a class of generalized toroidal coordinate system
which can greatly improve the representation of various MHD instabilities. 1In

Sec. III, we present. the ideal MHD eigenmode equations (91 and the

prondwis il
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corresponding boundary conditions for our nonvariational treatment. Th?
numerical methods used to sclve the eigenmode equations are described in Sec:‘
IV. Convergencz studies of the NOVA code are presented for the analykical
Soloveyv equation {10}, and detailed comparisons, as presented with other
variational codes [11], are given in See, V. Several applications of the NOVA
code to numerical tokamak equilibria have indicated the accuracy and
efficiency of this method, and are described in Sea. VI, In Sec. VII, we

summarize the prineipal conclusions of this work.

2. TOROIDAL MHD EQUILIBRIUM AND FLUX COORDINATE SYSTEM

We consider stationary id2al MHD equilibriz satisfying
TxB=zvp, vxB8:=J,andv-B=20 , (1)

- -
where J, B, and P are the equilibrium current, magnetic field, and pressure,

respectively. In terms of the flux toordinate system (v,0,z), the equilibrium

magnetic field with nested magnetic surfaces can be written as 3

B=vgxup+qly) wpxys (2)
where 2wy is the poloidal flux within a magnetic surface, q(¢) is the safety
factor, 8 is the generalized poloidal angle varying between O and 27, and ¢
the generalized toroidal angle varying between 0 and 2x. Since

B-v=f Liql) , H

where the Jacobian f is defined by
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the magnetic field lines are straight in this coordinate system,
For axisymmetric equilibria, we can also express the equilibrium magnetic

field as
B =ve x vw+ gle)ve (5)

where & is the torocidal angle in the usual cylindrical cocrdinate (X,4,Z)

system. Then ¢ can be determined numerically by solving the Grad-Shafranov
equation,
*

x2

vz X% - (15 ) = -(x2pv + gg') , (6)

X
if P(y) and g(w) are specified. Here, the prime denotes the partial
derivative with respect to ¢. We can write the generalized torcidal angle ¢
as L]

=& ~qé&(e,py (7}

where &(8,v) is periodic in 6. Then from Egs. (2) and (5), & and J are

related by

28y . &l
a1+ 33 - (8)

Along a flux surface in the poloidal plane we have

4
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ds _ flvy] (9)

where ds is the element of arc length along a constant (4,7 Lline.
Specification of , therefore determines the & cocordinate. In this paper, we

choose the Jacobian in the form

xi

_ A (10)
a(v) [ve|IB¥

,(th) =
where i,j,k can be freely specified and a(¥) is given by the requirement that
8 increases by 2r during one poleidal circuit., The form of[ in Eq. (10) is a
trivial generalization of that used in the PEST-2 cade (6}. Thus, from Eq.

{9) we have

2%
fas( Jve]d 1B %11

a(yp) = . (1)

For the choice i = 2, j k = 0, the (v,9,z) coordinate represents the PEST-1
coordinate. For i = j = 1, k¥ = 0, we have the equal are length coordinate
system, and & Hamada-like coordinate system 1is obtained by letting
i=j=k=0 The choice i=J=0, k=2 is used in the Hamiltonian
representation of the magnetie field [12].

The general flux coordinate system (¢,8,%) constructed here is not
orthogonal and its metric is complicated because ¢y - 95 = 0, 99 - vz =+ O,
76 - vv # 0, and |v5|% # 1/%2, However, ¢ is still an ignorable coordinate

for azisymmetrie equilibria, and the perturbed quantities can be represented

by a single mode varying as ewp(-ing).
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3. LINEARIZED IDEAL MHD EIGENMODE EQUATIONS
Let £, b, py be the perturbed quantities for the plasma displacement,
magnetic field, and plasma pressure, respectively. Taking the time dependence

¥T(%,t) = T(%) exp(-iwt) and applying the Laplace transform, the linearized

ideal MHD equations governing the asymptotie behaviors of the perturbed

quantities are given by

Py + E.gP + 1P7 - £:=0, 12)
ou’t = ¥, + b« (VxB) +Bx (vxB) (13)

and 7
B=vx («8 |, (1) |

where y, = 5/3 is the ratio of specific heats, p is the plasma equilibrium

density, and the initial source perturbations have heen neglected because ws

are not interested in the transient phenomena. We decompose the displacement
vector and perturbed magnetic field as
. £ £ E
A 5 VY + -g (# <« v) + —% 5, {15)
jow| B B
and
. Q Q Q ‘
Bzt —25 B+ -g I (16)
| 7] [vw] B
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50 that

3 =E-vv.ss=3-(?ﬂ‘:’3).a -E-E,Qq‘:t’;-vw ,
o

Q -E-M,and0b=5-§.

s B2
The three components of the momentum equation, Eq. (13), obtained after taking
the scalar products with ¢y, B x 9y, B, can be written as

9P, = m2p§$ + |v¢-|2 B . o9

vy - 7 ®

2
s (Jv)®s-8-7) lg—gl-(g cve - se) vk e . ()

(B x vo) - wP, = mzp]vw|2gs + (B-2)8 - g,

2 foy|?
+BB .9 = (B - ve, - s;w)] + 2R - (B xw |,
(18)
and
2
w p;b =B . V[p1 + P'ﬁw] . (19)
where P1 = pq + ; E is the total perturbed pressure, P' = aP/3y,

- - -+ -
K = (B/B) - 9(B/B) is the magnetic field curvature, and S = (B x v9/|v¥|2)

>
7 x (B x W/|v|%) is the local magnetic shear. Similarly, the three

components of the induction equation, Eq. (14), can be written as



Qw = g - vﬁw ] (20)
- ulv 2 - -
QS = [ B ) (E v ES SEQ‘) 4 (2”
Q =82 - o(8) - 8% -t -2k . (B« i)
b " g2 ¢ - s
(® - )L
2R« ww)—=¢ + P'g (22)
lee ] b !

where v - g can be explicitly expressed as

Ty VE Bxvi-vg
g - = v, [V . (—vl—-]]g + A (Ex\?'b]f,'
2 2 b 2 8
fvei ive] B
£
v B . E[-%] . (23)
B

Now &y, Q$, Qgr and Qp can be eliminated by using Eqs. (19) - (22) and from
Eqs. (12),{17),{(18), and (23) the linearized ideal MHD eigenmode equation can

be cast into the following form [9]

P1 P1 Ea
wWo- v = C +D r (24)
Em E$ Vg
and
Es P1 :
E L] =F ' _ (25)
V5 ﬁw .

-

where C,D E,F are 2x2 matrix operators involving only surface derivatives B -

v and {B x ¥¢) - V. The matrix operators are given by




RN ] RRURTIR

! jl,l s

H

- =10~

X G \
C =
\0 SRR [—L’ VIE) , (26)
Vi
2
(19917 - 3]*'2—?'—?5 -9 2y PR,

<

B
ooz, - B ) e s o) )
w p

8° B \
E = 2 ‘
vy P+B vy B B

2K S DERES . T , , (28)

s B2 m.? B2 .

2
-2K + §"W’-v E-v-liflg’—l——s-i'gﬁ-v-zp'x
? B B s
F =
-2k

v (29)

14

..4.

(“’_ZQME + B . V[JV_'U;H] . 2vPK,

|ve|?

where in Egs. (26)-(29) B-V operates on all the quantities on its right side,

and also note that in Eq.(24)

eV = [vw[ ——+ (V- ve)—+ (9y- \7:)—- )
2
G = w'n + 2P'K, + |vo|8 - v[i-y—é] + (-7 - Slvwlz)iugj— ,
[vel B
K, =% - vy, and K - g - B
s B2

v
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The boundary condition at the magnetic axis is &y = 0. For fixed
boundary modes the boundary condition |is &y = 0 at the plasma-wall
interface. For free boundary modes the boundary condition at the plasma-
vacuum inferface is given by gv « o= E . vgw, Where ;v is the vacuum
magnetic field which must be solved from the divergence-free equation
V-;sz.

For a given equilibrium we first solve &g and 7 - E in terms of Py and Ew
from Eq. (25) by inverting the surface matrix operator E. Equation (24) then
reduces £¢ an equation for P1 and gw. Admissible regular solutions must be
periodic in both € and g, and satisfy the appropriate boundary conditions.
This procedure fails if the inverse of the surface matrix operator £ does not
exist for 2 given w at some ¢ surface. Then only non-square-integrable
solutions with spatial singularities at the singular surface are possible., If
at each surface noutrivial sirgle-valued periodic solutions in 8 and i can be

found for the eguation
ef 5 =0, (30)

the corresponding set of eigenvalues w® forms the continuous spectrum for the
equilibrium [13,14], Equation (30) represents the coupling of the sound waves
and the shear Alfven waves through the surface component of the magnetic
curvature and the plasma pressure. Equations (24) and (25) represent the
toroidal generalization of the set of eigenmode equations derived by Appert et

al., [15] for the circular cylindrical pinch.

b
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4. NUMERICAL METHODS
The eigenmodelequations, Eqs. (2%) and (2%), are solved by the Galerkin
method, where the eigenfunction is represented by a linear superpositicn of a
finite subset of a complete set of basis functions. We first represent the

perturbed quantities by a finite Fourier series in Q,
Ev,0,2) = § £ () exp[i(me - n0)}, (31)
m

where the summation over m is truncated to a total number of L poloidal
harmonics, and n is the torcidal mode number. The elimination of Es and ¢ « £
proceeds by finding the algebraic Fourier matrix representation of the surface

operators C,D,E, and F. Introducing the bracket notation,
E z <m'|E[m> = %; ﬁda[exp(-im'a)]E[exp(ime)] , (32)

Eq. (25) reduces to

£ s . F , i (33)

wnere the Fourier indices m' and m have the same truncated domain. Note that

the evaluation of the algebraic matrix operations, E ete., Iinvolves

m'm

convolutions that occur in evaluating operator products. To avoid aliasing

errors, a larger truncated Fourier series domain than L, say L*, is imposed

and is increased until the results are satisfacteorily converged. Now E_.m can
-

be inverted to obtain Esm and (v-s)m in terms of P1m and Ewm’ and then by

eliminating P, in favor of ome Eq. (24} is reduced to a set of L second-

order differential equations.
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T TR CE T C R TR
where the H's are algebraic L = L matrices and are functions cf r only, where
r = (w/¢t0t)i/2 and g = gy/r is a vector of dimension L. The explicit
axpressions cf the H's are toco tedious and complicated to present in full
detail here. The boundary conditions at the magnetic axis are now modified to
Eq = 0 for m® £ 1 and gg,/ar = 0 for m? = 1. ———

We mention here that the MHD fast- wave spectrum is best calculated
numerically using the coupled set of first order equations given by Egs. (24)
and (25), rather than the second order eqﬁation, Eq. (34), because of the
apparent singularity in Eg. (34) related to those frequencies.

Equation {34) is integrated by employing cubic B-spliue finite elements

[8,16] with the representation

N+2
() = ]

L i (F) (35)

where the U's are the cubic B-spline finite elements, N is the total number cf
radial grid peints, and we reqguire (N + 2) cubic B-spline elements with
N > 5. The cubic B-spline elements are localized‘ﬁiecewise cubic polynomials
occupying four grid intervals with continuity up to second derivatives, and
are shown in Fig. 1. The errors in this representation scale as N-b. Note
that the cubie spline has the property of minimum curvature among all third
order polynomials. For a detailed description of the cubic B-spline finite
elements interested readers are referred to Ref. 11.

Now operating on Eq. (34) with the projection operator, 0, = I] dr U, we

o]
obtain a set of algebraic equations




1o ey
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m'k’ _

mzk N G =0 s {36}
1

where Mmék' isa (N + 2) L x (N + 2) L matrix with nonvanishing elements along

its L2 T-banded diagonals. After imposing the boundary conditions to modify

the matrix M, the nontrivial solution of Eq. (36) can be obtained by requiring
£(u2) = deb{M(u®)| = 0 . (37)

The eigenvalue problem is therefore nonlinear in w? and its numerical solution
must be found by iteratian. Convergence is assumed If |[f(mg+1) -

f'(wg)]./f(wg)l < €4, and/or |m2

pel ~ mgl ¢ ey 4 where €, and e, are appropriate

small nuﬁbars, and p denoctes the iteration step. When the eigenvalue
iterationfig converged to the required accuracy, Eq. (36) is used to construct
the eigenveétors E and P;. For this purpose, the matrices C,D,E,F for each
surface ére saved in disk files when they are computed during the calculation
of the matrix elements of MﬁLk'.

The iteration is enpensive computationally because the matrix inversion
must be earried out for Eg. (33) at each iteration for each surface.
Consequently, the execution times scale as the total number of vadial grid
points N as well as L2 for the matrix inversion. Finally, to be consistent we
have also employed the cubic ‘B-spline finite elements to obtain the
equilibrium quantities from the mapping codes.

Next, we consider the vacuum solution of ¢ - ;v = 0 wWith the vacuum
region surrounded by a conducting wall. For nzo modes, we represent ;v =

Vx. Them in terms of the Green's theorem we have
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amx(k) = Ja8, - [G(R X )vox(E) - x(E v 0GR ] (38)
where we have chosen the Green's function G to satisfy
vgc(}tlis) = Uns(%, - %) (39)

+ + + +
and G(x.|x.} = lxt - xs|‘1. Now x; can be either on the plasma-vacuum
interface or on the wall, and the integral extends over both surfaces in
Eg. (38). With the boundary conditions ¢y - V¢ = E " V5, on the plasma~-vacuum
interface and vy - d;w = 0 on the wall, Eq. (38) can be Solved to obtain x on
both surfaces by the method of collocation [17].

For the n = 0 mode, the magnetic field cannot be deseribed by a single-
valued scalar potential. Instead, we follow the procedure of Lust and
Martensen [18] and define

b, = X + 8,V x Ta + a4 (40)

where a4 and a, are constants related to the perturbed quantities. x can be
obtained by the same procedure as for ’n + 0 modes with the additional
constraint $xde = O due to the singular nature of the matrix in Eq. (38) for

the n = 0 mode. a can be solved by taking v¢ - Vv «x bv = 0 and we have (1]
sazo -2 -0 . (41)

The boundary conditions are a = 1 on the plasma~vacuum interface and ¢ = O on

the wall, Equation {41) again can be sclved in terms of the Green's theorem

R rm—— -

N
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2 ,+ -
Yxalx ) ds a -
S N t o +> - > g
T = ¢ = [G(k, 1% v alk,) - alX, )7, G(X ()] (L2)
£

where the Green's function é satisfies

) = o A
8,G(x [%.) = - L2 §(X, - X)8(Z_ -2 , (43,
S

and is given by

- unxr 1
B) == Py o(W) (41)

where Pl1/2 is the associated generalized Legendre function,

2 2,2 4 . 2y11/4
o= [(2 - 127+ (2, -2, )" w2062+ $0)(z, - 22N, (45)
and
[ex2e(z_-z_)?]
Wz =3 £ . s_t (16)
r

To determine ay and a, we make use of the praperty

[ox - V¢d3x = [y - (V¢ x Vu)d3x =0 .
- -
Then, with the aid of the boundary conditions A x dsw = 0 on the wall and
- - >
Ax W =gy B on the plasma-vacuum interface, where A is the vector potential
+ +
defined by bv = ¥ x A, we obtain

o §(V¢xvu) . (;pxﬁ]dsp
41 -

. , W)
[194x90)%a%x
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and
$ v¢-(n_xA)ds
=P D
a, = (48)
2 flvsl2a3k
where s, denates the plasma surface and n, = -74/|9[. After we solve the

+
vacuum magnetic field bv in terms of EW’ we obtain the boundary condition for

solving Eags. (24%) and (25) at the plasma-vacuum interface:

p, =8B -B=J ,ﬁmm’ 5¢m,exp[1(me - ng)] . (45)
Note that P, is related to 5y and a;w/aw in Eq. (24).
This conecludes our discussions on the vacuum solutions. For more

details, the reader is referred to Ref. 17.

5. CONVERGENCE STUDIES
To illustrate the convergence properties of the code, we consider the
analytical Salavev equilibria [10] which have been used previously [11] for
extensive comparisons of variational ideal MHD stability codes. Our results
will be compared with the previous results, which provide a series of cross
chec :s essential for validating such a large, complex code. The Solavev

equilibria which satisfy the Grad-Shafranov eguation, Eq. (6), with g' = 0 are

given by
nB .2
N e LR ¥ (SN ) (50)
ER“q(0)
(1+52)Bo
P(w) = by, - ), (51)

2rER%q(0) P
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ds
aly) = RB(‘) § W N (52)

where (X,4,2) is a cylindrical coordinate system, B, is the toroidal field at
the magnetic axis ¥ = R, P(¥) is the plasma pressure, and q(¥) is the safety
factor with the contowr of integration along a line oé constant v and ¢. The
system 1s characterized by the paramsters: the elliptieity E, the inverse
aspeet ratio {e = [qu(o)/wERQBOI}V2 and gq{o). The wall position is
specified by A = (¥,/¥y)'/%, and 2mby is the total poloidal flux in the
plasma.

To achieve the correct eigenvalue and an accurate representation of the
corresponding eigenfunetion, in principle one requires a very large number of
basis expansion functions. Sinee this number 1is limited by the computer
memory and computing time, it is necessary to extrapolate from the lower order
representations to obtain the asymptotic eigenvalue. Fortunately, we need
only a few points because the extrapolation formulas are simple.

Numerical convergence is shown below for the small aspeet ratio,
elliptical case with the parameters: R = By=1, E=2e= 1/3, q{o) = 0.3,
A =1, andn = 2. We employ a uniform r-mesh of N grid points and retain the
peloidal harmonies m = ['Lo'Lo]° For the equal arc-length © coordinate, the
convergerze curves of the eigenvalue (72 = -mz) are shown in Fig., 2. Here 12

2 2

is normalized in terms of BE(O)/D(O)Q2(1)R2. The eigenvalue y* scales as y< =

Y? + Cy exp(-LO/E) for fixed N and as 72 = v% + Cp N‘4 for fixked L,, where 712

2
and
Y2

are the converged value for fized N and L,, respectively. The resuits
from the PEST code show that 72 scales as 72 = yg + Dy exp{-L/2) for fixed N,
where L = 2Lo + 1, and FPor Fixed L, as 72 = yi + Dy N2, Note that if we use

the PEST ©-coordinate, the growth rate from our code also scales as 72 = (72 +



-19-

61exp(-L/2). Convergence curves from the PEST code are also shown in
Fig., 2. Detailed comparison between the results of our code and those of the
PEST code indicates that [Cy| ~ |D4| and |C,| <<[Dy{. Even with N = 5, our
code converges in L, with an error of less thanA11 of its converged value. On
the other hand, comparable accuracy from the PEST cod2 would require at least
three times as many linear finite elements, The eigenfunction £y and the
plasma flow pattern for this ecase are shown in Figs, (3a) and (3b),
respectively., Comparisons of the converged values of the square of growth
rates from different Solovev equilibria obtained from various ideal MHD
stability codes [11] are summarized in Table I. For most of the cases, our
results are roughly between thase of PEST [1] and ERATC [2] codes. These
small discrepancies may be due to different mapping codes used in these

stability codes.

6. APPLICATIONS

In this section we present several test cases of calculating eigenvalues
from numerical equilibria. Qur code can make use of an arbitrarily spaced
radial mesh and has the option of rezoning this mesh to allow various nodes of
+ the radial finite elements to coincide with the rational surfaces. Our
experience in choosing various e-coordinate systems does not warrant an
coptimal one. The best choice of 8 may be determined by the requirements for
an accurate and efficient calculation of the toroidal equilibrium quantities
as well as aceurate and efficient representation of the eigenfunction
involved. Since these issues are problem dependent, the ability of choosing
arbitrary Jacobian (or @-coordinate) and arbitrary radial mesh is essential.
It provides not only the extra confidence in the results which come from

obtaining consistent eigenvalues from different coordinate systems, but also
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the physical insight of the MHD perturbations. In general, because it
distributes mesh points uniformly over the plasma surfaces, the equal arc-
length é-coordinate is usually a good choice. For a small aspect ratio bean-
shaned tokamak where the PEST 8-coordinate does not sample the region on the
autside of the torus yery wWell, the equal arc-length system is indeed much
superior. We have applied our code to study external kinks, internal Kinks,
torojdicity-induced glgbal Alfvén modes, and the continuum modes far taoraidal

equilibria of various shapes and 8 values. The results are described below.

ba. EXTERNAL KINK MODES
The external kink instabilities are studied for a high-8 bean-shaped
equilibriun [19] with the plasma surface defined by X = X + p cos A, Z = Ep
sin A, o = A(1+B cos t), A=Csint, with X, = 2.71, E = 0.895,
A=1,B=06, and C = 1,693, This corresponds to d/2a = 0.3035,
b/a = 1,7385, and R/A = 3.449, as shown in Fig. 4. The equilibrium profiles
are defined by P(y) = P (1.003 - yZ)E, and qly) = % qiyi , Where y = u/Aub,

=0

P 0.109, q{n) = 1.03, g{1) = 4.2, q'{o) = 0.84375, g'{1) = 9.0, and

[¢]

Ay = 0,248 is the plasma poloidal flux. The average beta is <8> = 8.75%.
Note that g{s are uniquely determined by q‘(o0), a(1), q'{o), and g'{1). The
extermal kink mode has the eigenvalue 12 = 3.5 and has maximum amplitude near
the plasma surface, Therefore an aptimal radial coordinate is the uniform g
grid becaugse it samples more grid points near the edge. The convergence in @
(i.e., Fourier harmonics) is mueh more rapid for the equal arc length e-
coordinate, because the PEST 8-grid concentrates more grid points around the
tips of the beam, but the mode has more weight toward the outside of the

torus. In fact, the equal arc length @-coordinate is rapidly convergent with

an error of less than 2% of its converged value with -5 ¢ m ¢ 8. Comparable
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accuracy with the PEST ¢-coordinate would require approxirately three times as
many Fourier components for the positive maximum m, i.a., =5 ¢ m ¢ 25. These
results can be clearly seen in Figs. 5 and & which show the poloidal
components of converged eigenfunction £y for the equal arc length @-coordinate
and the PEST 0-coordinate, respectively. The plasma flow pattern on the ¢ = O
plane is shown in Fig. 7 where large flow is clearly seen on the outside of
the torus. Thus, the external kink can be effectively stabilized by placing a

metal plate on the outside of the torus to stop or reduce the flow,

f. INTERNAL KINK MODES
The n = 1 ideal MHD internal kink is usually unstable in tokamak plasmas
when qaxis<1 [20] so that the @ = 1 surface lies within the plasma and g is,

2

finite. The growth rate of this mode is typically a factor of ¢ smaller than

the more dangerous external kinks, where ¢ is the inverse aspect ratio. =[tf
eigenfunction 5w is localized inside the q = 1 surface and cdecreases rapidl}
to zero outside. Because of the small growth rate and the need to resolve the
q £ 1 region accurately, studying this mode provides a challenge for testing a
stability code. A specially tailored r-grid with grid packing near the q = 1
surface has been used to obtain accurate results. The tailored r-grid usually
produces faster convergence than the tailored y-grid when the q = 1 surface is
closer to the magnetic axis. This is because the r-grid weights the region
near the magnetic axis more heavily than the ¢-grid. In general, accurate
representation of the eigenfunction near the rational surfaces is also of
eritical importance to boundary layer treat:ent of nonideal instabilities,
such as the resistive tearing modes, kinetic fishbone modes, etc.

We consider a PDX type equilibrium with circular plasma surface computed

from a flux equilibrium code with the profiles P(y) = Po(1 - y2)2, qly) = qlo}

&

f
i
1
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+ ylq(1) - q(0) + (y - 1)}q'(1) - a(1) + ale)](1 - y3)/y ~ yg)}, where y, =
fq'{1) - q{1) + q{o)1/{q'(e)+q'(1)-2[q(1) - g{e)]} y = v/av. The parameters
are &y = 0.0609, <8>,, = 1.277%, R=1.43, R/a = 3.4, F, = 0.02456, q(o) = 0.8,
q(1} = 2.85, a'(o) = 13.857, and gq'(1) = 106.88, For the n = 1 fixed boundary
mode the eigenvalue is 12 = 2,306 x 103 and the eigenfunction Ew versus r is
shown in Fig. 8. The g-profile is alsc shown in Fig. 8. The plasma flow
pattern at ¢ = o, shown in Fig., 9, clearly indicates large flow at the g = 1
surface with the dominant m = 1 component. The computation was carried out
Wwith the equal arc-length ® coordinate, and the dominant poloidal harmonics
are 1 s m £ 3. Because of the relatively high growth rate, we do not have to
pack many grid peints nesar the g = 1 and @ = 2 surfaces, However, for smaller
growth rates the eigenfunction exhibits a sharp gradient, anda local packing of

more grid points near singular surfaces may be necessary.

6. TOROIDICITY-INDUCED ALFVEN WAVES

Recent studies of the stable shear Alfven spectrum for toroidal plasmas
using the ideal MHD model have led to the discovery of the discrete
toroidicity-induced Alfven waves {9]. The toroidal coupling effects due to a
nonuniform magnetic field over a magnetic surface can cause interactions among
the neighboring poloidal harmonies and can break up the shear Alfven
eontinubus spectrum resulting in continuum gaps. In addition, discrete,
global, torcidicity-induced eigenmodes were found with frequencies inside the
continuum gaps. The existence of these toroidiecity-induced shear Alfven
eigenmodes suggests a new efficient Alfven wave heating scheme. In addition,
instabilities can be excited by tapping the free energy of energetic particles
associated with the plasma inhomogeneities through wave-particle resonances.

Figure 10 shows the poloidal harmonics of the n = 1 fixed boundary



-23-

eigenfunction %, versus ¢ for a low-8, eircular numerical equilibrium. The
numerical equilibrium has the same P{¥) and q(¥) functional forms as in Fig. 8
but  with  the  parameters: P, = 4.55 x 107, R =4, R=1,
qle) = 1.05, g{1) = 2.3, q'(o) = 36.12, q'(1) = 180, Ay = 0.020768, and
B>, = 0.0407%. The eigenfrequency of this fixed boundary n =z 1 mode is
we 2 0.5. The gq-profile is also shown in Fig., 10, It 1s clear from Fig. 10
that primarily m = 1 and 2 harmonics dominate around the q = 1.5 surface with
a small coupling to m = 3 harmonics toward the plasma surface. Projection of
the displacement vector E onto the ¢ = o plane is shown in Fig. 11, where the
plasma vortices corresponding to m = 1 and 2 harmonics are clearly seen. Note
that, due to the regular mode struecture and the existence of the continuum

gap, the numerical computation is rather easy.

6d. SHEAR ALFVEN CONTTNUUM MODE

The continuum spectrum is due to the singular nature of the ideal MHD
model [13] and is a result of the noninvertibility [9,14] of the surface
operator E in Eg. (25). The continuum eigenfunctions have singular behavior
somewhere inside the plasma. At the resonance surface by the eigenfunetion
can behave [21] locally as {C1ln(¢ - wo} » CE]' The constant C, can have an
arbitrary finite discontinuity, which pravides the possibility of satisfying
the boundary conditions for a continuous set of eigenvalues and leads to a
continuous spectrum. In numerical calculations the continuous spectrum is
approzimated by a dense set of discrete eigenvalues with the number of
discrete eigenvalues proportional to the number of grid points. These
numerical discrete eigenvalues are only the approximate solutions of Eq. (30)
and we do not encounter difficulties in inverting the surface operator E in

Eq. (23). Figure 12 shows the eigenfunction of the n = 1 fixed boundary



i
;

-2k

continuum mode with frequency w? = 0.302 tur tue same equilibrium as in
Fig. 10. Figure 13 shows the approximate continuous spectrum [?] from the
solutions of Eq. (30) for the same numerical grid points as used in Fig. 12.
Comparing Fig. 12 with Fig. 13, our uaumerical usolution £y correctly shous
the ln|b - w°| behavior near the 3ingular surface of Lhe m = 2 mode and a jump
discontinuity near the singular surface of the m = 1 mode. Thesc singular
surfaces are the locations of the singularities of the surface operator E in

Eq. (25) for the cantinuum frequency w® = 0.302.

7. CONCLUSION

In this paper we have presented a nonvariational ideal MHD stability code
{NCVA)} which represents an accurate and efficient approach for datermining the
ideal MHD spectrum and stability of axisymmetric toroidal contfinement
systems., In a general flux coerdinate system the code makes use of the cubic
B-spline finite elements in the minor radius direction and Fourier expansion
in the poloidal direction. The ideal MHD eigenmode eguations are reduced to a
set of coupled second order differential equations in the minor radial
direction. With the cubic B-spline finite elements, we are solving a matrix
equation with nontrivial solutions. In compariszon with the variational codes
[1-6], the NOVA code can produce more accurate results with less computational
efforts. The code is fast and efficient on a CRAY-1 computer so that i: is
written in the interactive mode which can provide more flexible usages. The
code has alsc been applied to several typical problems to illustrate the
convergence properties with different coordinate systenms.

The improved efficiency over the previous variational codes may allow for
an examination of the stability of fully three-dimensional magnetic

confinement devices, such as stellarators, Finally, since Lthe numerical
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preceedure does not rely on the variational energy principles, this successful
nonvariational approach can be easily extended to other physical problems

where the eigenmode equations are non-Hermitian.
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TABLE I

Comparison of the Eigenvalues 72 for Different Solovev Equilibria

“rom Various Ideal MHD Stability Codes

E E A qlo) ala) n  Kerner PE3T-1 ERATO Degtyarev NOVA

176 1 2  1.79¢ 2.0 1 0.202 0.204 0.21 0.208

176 1 2 2,2387 2.5 1 0.504  0.506 0.511 0.508

/3 2 1 0.3 0.5224 2 0.413 0.427 0.431 0.430 0.430

1/3 2 0.7 1.219 2 0.118 0.119 0.120 0.121 0.119

173 2 = 1.2 2,0897 1 0.75 0.78 0.748

1/3 2 ® 2.0 2.4829 1 0.€8 0.75 0.656

/73 2 @ 0.6 1.0449 2 1.31 1.40 1.32 1.35

/3 2 = 1.0 1.7415 2 1.03 1.07 1.06 1.038 %
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FIGURE CAPTIONS

Typical cubic B-spline finite element for a uniform grid.

Comparisons of convergence results in both the radial and the
poloidal directions for our nonvariational code and the PEST code.
The Solovev equilibrium has the parameters R = By = 1, E = 2,
e =1/3, g(o} = 0.3, A = 1, and n = 2. The eigenvalue 12 is

extrapolated numerjically in both the number of poleidal harmonics

and the number of radial finite elements.

(a) The poloidal harmonics of the eigenfunction Ew versus r and (b)
the projection of the displacement vector onto the ¢ = 0 plane for
the converged solution as shown in Fig. 2. The a-profile is alse

shown in Fig. (3a).

The flux surface of a typical high-g bean-shaped tokamak

equilibrium,

The poloidal components of the converged n = 1 free boundary
external kink mode eigenfunction §, versus ¢. It is computed with
an equal are length o-coordinate for a bean-shaped equilibrium with
the parameters X, = 2.71, d/2a = 0,3035, b/a = 1.7385, RB/a = 3.449,

<B>,, = 8.75%, qle) = 1.03, q(1) = 4.2, P, = 0.109. The eigenvalue

2

is v 3.5 and the g-profile is also shouwn.
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The poleoidal components of the converged n = 1 free boundary
external kink mode eigenfunction gy versus v with PEST 9-coordinate

for the same bean-shaped equilibrium as in Fig. 5.

The projection of the plasma flow on the ¢ = O plane is shown for

the n = 1 free boundary external kink mode for the same case as in

Fig. 5.

The poloidal components of the n = 1 fixed boundary internal kink
mede eigenfunction gw versus r. The equilibrium has a circular

plasma =urface with R = 1.43, R/a = 3.4, q(o) = 0.8, g(1) = 2.85,

P, = 0,02456, <8> 1.277%. The eigenvalue is 12 = 2.306 x 10-3

[¢] av

and the g-profile is also shown.

The projection of the displacement vector % onto the ¢ = 0 plane for

the n = 1 fixed boundary internal kink mode shown in Fig. 8,

The poloidal harmonics of the n = 3 fixed boundary toroidicity-
induced shear Alfven eigenmcde, Eﬁ, versus r for a low B circular
equilibrium with the parameters: R = 1, R/a = 4, q(o) = 1.03, g(1) =
2.3, Py = 4.55 x 107%, and <&>, = 0.0407%. The g-profile is also

shown and the eigenvalue is W = 0.5.

The projection of the displacement vector £ on to the ¢ = O plane
for the n = 1 fixed boundary toroidicity-induced shear Alfven

eigenmode as shown in Fig. 10.

]
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The poloidal harmeonies of the n = 1 fixed boundary continuum mode &y
versus r for the same equilibrium as in Fig. 10, The eigenvalue is

w® = 0.302 and the g-profile is also shown.

The n = 1 continuous spectrum for the same equilibrium as in

Fig. 12.
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